Linearly Constrained NLO : Consider the following linearly constrained non-linear optimization (NLO) problem:

$$
\begin{array}{rrl}
(\mathrm{NLO}) & \min & x_{1}+x_{2}+x_{1} x_{2} \\
& \text { s.t. } & 3 x_{1}+2 x_{2}=5
\end{array}
$$

a. Reduce this problem to an unconstrained optimization problem.
b. Let us assume that the variables x_{1} and x_{2} are nonnegative. Make one step of the Reduced Gradient algorithm from the point $(1,1)^{T}$ when x_{2} is the basis variable.

Solution

a. Substituting $x_{2}=\left(5-3 x_{1}\right) / 2$ into the objective function, we get the reduced unconstrained problem

$$
\min \quad f_{N}\left(x_{1}\right)=\frac{5}{2}+2 x_{1}-\frac{3}{2} x_{1}^{2}
$$

b. Here, x_{2} is the basis variable, so $B=2$ and $N=3 ; x^{1}=(1,1)^{T}$.

Compute the reduced gradient:
$\nabla f\left(x^{1}\right)=\binom{1+x_{2}^{1}}{1+x_{1}^{1}}=\binom{2}{2}, \nabla f_{N}\left(x_{N}^{1}\right)=\left(I,-B^{-1} N\right) \nabla f\left(x^{1}\right)=(1,-3 / 2) \nabla f\left(x^{1}\right)=-1$.
The search directions are:
$s_{N}^{1}=-\nabla f_{N}\left(x_{N}^{1}\right)=1 ; \quad s_{B}^{1}=-B^{-1} N s_{N}^{1}=-3 / 2 s_{N}^{1}=-3 / 2 ; \quad s^{1}=\left(s_{N}^{1}, s_{B}^{1}\right)^{T}=(1,-3 / 2)^{T}$.
The new values of the variables are, depending on the step-length λ :

$$
\begin{aligned}
& x_{N}^{2}=x_{1}^{2}=x_{N}^{1}+\lambda s_{N}^{1}=x_{1}^{1}+\lambda s_{1}^{1}=1+\lambda \\
& x_{B}^{2}=x_{2}^{2}=x_{B}^{1}+\lambda s_{B}^{1}=x_{2}^{1}+\lambda s_{2}^{1}=1-3 / 2 \lambda .
\end{aligned}
$$

which stays non-negative if $\lambda \leq \bar{\lambda}$, where

$$
\bar{\lambda}= \begin{cases}\min _{s_{i}^{1}<0}\left\{\frac{x_{i}^{1}}{-s_{i}^{1}}\right\} & \text { if } s^{1} \nsupseteq 0 \\ \infty & \text { if } s^{1} \geq 0 .\end{cases}
$$

So, $\bar{\lambda}=\min _{s_{i}^{1}<0}\left\{\frac{x_{i}^{1}}{-s_{i}^{1}}\right\}=2 / 3$.
Now, we have to solve one-dimensional problem (line search):

$$
\min _{0<\lambda \leq 2 / 3} f(1+\lambda, 1-3 \lambda / 2)=\min _{0<\lambda \leq 2 / 3}-\frac{3}{2} \lambda^{2}-\lambda+3
$$

The minimum is attained at $\lambda=\bar{\lambda}=2 / 3$.
So, $x^{2}=x^{1}+\lambda s^{1}=(5 / 3,0)^{T}, f\left(x^{2}\right)=5 / 3, \nabla f\left(x^{2}\right)=(8 / 3,1)^{T}$.

