We want to design a box with dimensions $\ell \times b \times h$ such that the volume of the box is at least V, and the total surface area is minimal.

$$
\min _{l, b, h} 2(\ell b+b h+\ell h), \quad \ell b h \geq V, \quad \ell, b, h>0 .
$$

Non-convex problem! Replace ℓ by $e^{x_{1}}$, etc:

$$
\min _{x_{1}, x_{2}, x_{3}} 2\left(e^{x_{1}+x_{2}}+e^{x_{2}+x_{3}}+e^{x_{1}+x_{3}}\right)
$$

such that

$$
x_{1}+x_{2}+x_{3} \geq \ln (V), \quad x_{1}, x_{2}, x_{3} \in \mathbf{R}
$$

Let

$$
f\left(x_{1}, x_{2}, x_{3}\right)=2\left(e^{x_{1}+x_{2}}+e^{x_{2}+x_{3}}+e^{x_{1}+x_{3}}\right)
$$

and

$$
g\left(x_{1}, x_{2}, x_{3}\right)=\ln V-\left(x_{1}+x_{2}+x_{3}\right)
$$

The transformed problem is of the form ($C O$) and satisfies Slater's regularity condition (why?).

KKT conditions: we are looking for $x \in \mathcal{F}$ such that

$$
\nabla f(x)=-y \nabla g(x)
$$

for some $y \geq 0$, and such that $y g(x)=0$. This means
$2\left[\begin{array}{c}e^{x_{1}+x_{2}}+e^{x_{1}+x_{3}} \\ e^{x_{1}+x_{2}}+e^{x_{2}+x_{3}} \\ e^{x_{1}+x_{3}}+e^{x_{2}+x_{3}}\end{array}\right]=-y\left[\begin{array}{l}-1 \\ -1 \\ -1\end{array}\right], \quad y\left(\ln V-\left(x_{1}+x_{2}+x_{3}\right)\right)=0, \quad y \geq 0$.
By solving this system we find the following KKT point:

$$
x_{1}=x_{2}=x_{3}=\frac{1}{3} \ln (V), y=4 V^{2 / 3}
$$

This gives for the original variables:

$$
\ell=e^{x_{1}}=V^{1 / 3}, \quad b=e^{x_{2}}=V^{1 / 3}, \quad h=e^{x_{3}}=V^{1 / 3}
$$

So the optimal solution is the cube $(\ell=b=h)$!

