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Abstract. Tabular ExpressionfParnas et al. [20, 28, 32, 33]) are means to represent thpleam
relations that are used to specify or document softwaresystA formal model and a semantics for
tabular expressions are presented. The model covers moshkiypes of tables used in software
engineering, and admits precise classification and definiaf new types of tables. The practical
importance of the semantics of tabular expressions is ésoissed.

1. Introduction

In the classical engineering fields, as well as in mathematizmulae are seldom longer than a dozen
or so lines. In software engineering, the formulae are oftech longer. For example, an invariant of
a concurrent algorithm can occupy more than one page, ansptiwfication of a real system can be a
formula dozens or more pages long.

Standard mathematical notation works well for short fomeulbut not for long ones. One way to
deal with long formulae is to use some form of module striecamd hierarchical structuring (see [24]).
However hierarchical structuring and modularity al@me not sufficien{see [32, 33]). The problem is
that standard mathematical notation is, in princifilegar. This makes it hard to read when many cases
have to be considered, when functions have many irregudaodtinuities, or when the domain and range
of functions are built from elements of different types. Thelti-dimensional tabular notatiomakes it
easier to consider every case separately while writing ading a requirements or design document. It
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turns out that using tables helps to make mathematics maotigal for computing systems applications
[20].
The key assumptions behind the idea of tabular expressrens a

¢ the intended behaviour of programs is modelled by a (usialtgplex) relation, say.

¢ the relationR may itself be complex but it can be built from a collection efationsR,,, a € I,
wherel is a set of indices, and eadh, can be specified rather easily. In most caBgscan be
defined by a simple linear formula that can be held in a fewsa#lh table. Some cells define the
domain ofR,,, the othersR,, itself.

¢ the tabular expression that descrilféss a structured collection of cells containing definitioris o
R,’s. The structure of a tabular expression informs us as tothewelationR can be composed
from all theR,’s.

In principle, tabular expressions are a generalizatiowofdimensional tables which are well known
and have been around now for many years. Decision tablestatedtsansition tables [14] date back to
early years in computer science. In the late 1970s David e étgrnas and others at the U.S. Naval
Research Laboratories used tabular representations torgot requirements for the A-7E aircraft [4,
11, 12, 28, 35]. The ideas were quicly picked up by Grummanlifs. Air Force, Bell Laboratories and
many others [33, 36, 41]. Since then, a number of projects haed tables to document requirements
and software design. The best known example is probably dftevare for the Darlington Nuclear
Generating Station Shutdown System (Ontario, Canada)(3338, 41]. At least two organizations,
Ontario Power Generation ([27, 39, 41]), and U.S. Naval Re$elLaboratories ([10]) have fashioned
their approach to software development around the use ofamabxpressions. Other users include the
Software Quality Research Laboratory at McMaster Uniwgri22, 23, 37, 38, 43], ORA Inc. [13], and
University of California at Irvine [9, 26].

More than any other person, David Lorge Parnas has changitreeuse of tabular expressions
in documenting software [20, 30, 31, 32, 33]. He also suggkstte first semantic analysis of tabular
expressions [29].

The semantics discussed in this paper were first proposetbjnahd subsequently developed in
[16, 19, 21].

The model presented here covers most of (mttall) the known types of tables used in Software
Engineering (see [1, 40]).

The central concept in our approach is the so-catieltlconnection graphvhich characterizes the
information flowof a given table.

All examples of tables used in this paper are very simple ip@se. More realistic examples (such
as loop invariants, program specifications) the reader adnirii[1, 33, 38] and others.

The next section contains some introductory examples dachially explains our approach. Section
3, the main section of this paper, describes a formal seosaofitabular expressions. A first rough
approximation of the table concept is given in Section 3.e €rucial concept of th€ell Connection
Graphand more precise approximations of the table concept acestisd in Sections 3.2, 3.3, 3.4 and
3.5. The formal definition of @&abular expressioron a syntactic level is given in Section 3.6, and its
semanticgs discussed in Section 3.7. Section 4 contains some ide&sbten classification, Section 5
describes why the development of semantics of tabular sganes is important, and final comments are
in Section 6.
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This paper is an extended and refined version of the resudtsepted as two conference papers
[21] and [40], and a continuation of the results presentddén 19]. Reference [29] provided a major
motivation for this work.

We assume that the reader is familiar with such conceptsnatidm, relation, Cartesian product, etc.
Standard mathematical notation is used throughout therpape

2. Examples and Motivation

Let us consider the following definition of a function.

ifx>0Ay=10

T ifzx<0Ay=10
2 .

Y ifz>0Ay>10

—y* fz>0Ay <10

r+y fz<0Ay>10

(z—y fz<0Ay <10

This is a classical mathematical notation which sometinies/a us to relax the linearity principle.
Lamport [24] proposes similar relaxation rules for more ptex cases. In a purely linear notation, the
definition of the functionf is represented by

flz,y)=ifx>0Ay=10then0
elseifr <0Ay=10thenz

else ifz > 0 Ay > 10 theny?
elseifz > 0 Ay < 10 then — g2
elseifr <0Ay>10thenz +y
elseifr <0Ay < 10thenz —y

which is less readable than the classical mathematicationtaHowever, arguably thenostreadable
definition is that represented in Figure 1, where the conogpttable is used. Note that in all our
examples, value/result cells hasdeuble border lines

Consider now the functiog defined as

z+y f(z<0Ay>0)V(z<yAy<O0)
gz, y)=q z—y FO0<z<yAy>0)V(y<z<0Ay<O0)
y—zx f(x>yAy>0)V(z>0Ay<0)

Again, this not very readable description becomes veryrded obvious when the concept of an (in-
verted)tableis used (see Figure 2).

The table in Figure 3 defines the followinglation G C IN x OUT, whereIN = Reals X Reals,
OUT = Reals x Reals x Reals, x1, 9 are the variables ovdiN, y1, i, y3 are variables ove@UT,
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y=10 | y>10 | y<10

z2>0 0 y? —y?
z<0 T T+Yy T—y

Figure 1. The functiorf defined by a (normal) table.

Loty | o-y [y-=]
y>0 z<0 | 0<z<y | x>y
y <0 z<y | y<z<0 | >0

Figure 2. The functiog defined by an (inverted) table.

and
=Z1 4+ T2 A Yox1 — To = Y3 .
y/l\ +1 2 |y2|31 2= if zo <0
Y3 T T1x2 = Y3
(z1,72)G (y1,92,y3) <=
Y1 =1 — Ta N\ 1+ Tays = |yo| .
if zo >0

Nys =z

while the table in Figure 4 defines the functipn Temperature x Weather x Windy — Activities,
where Activities = {go sailing, go to the beach, play bridge, gargen
The table from Figure 4 is calleddecision tableand such tables have been used as specification tools
since the fifties [13, 14].
Figure 5 contains generalized decision tab[&, 29]. It represents the function: Realsx Reals —
Reals defined as
21+ o if 19 <20 A /29 > 30
hzi,22) = ¢ 1 — 30 if 2119 > 20 A1 /19 < 30
12 if :L'l/.’EQ =30

Although the tables from Figures 1 - 5 are of different typgbsy have some elements in common.
All global functions specified by these tables:g, h, andy are built from simpler local functions.

The functionf is acompositiorof local representationg; ;,7 = 1,2, 3, j = 1, 2, where for example
f3,2 1 (—00,0) x (—00,10) = Reals, andfzo(z,y) = = — y for (z,y) € dom(f32).

Similarly g is a composition 0¥; ;,7 = 1,2,3, j = 1,2, and for exampléom(g2,1) = {(z,y) | 0 <
z <yAy >0}, g21(z,y) =z —y. The functionsf andg areunionsof their local representations, i.e.

f= U fij and g = U Gij-

1€{1,2,3}nj€{1,2} 1€{1,2,3}nj€e{1,2}
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z0 <0 z9 >0 ‘
Y1 = 1+ 22 T1 — X2
Yol YoX1 — Ty = y% z1 + Tay2 = |y2|
3| Y3 + 129 = |y3|3 Y3 = T

Figure 3. The relatiod’ defined by a (vector) table.

| go sailing gtb gtb play bridge | garden ||
Temperatures {hot, cool} * * hot * cool
Weathere {sunny, cloudy, rainy} sunny V cloudy sunny cloudy rainy cloudy
Windy € {true, false} true false false * false

* = don't care, gtb = go to the beach

Figure 4. The functior defined by a (decision) table (from [13]).

H T1 + 22 ‘ T1 — T2 ‘ T1T2 H
T129 # <20 #>20 true
T+ X # > 30 # < 30 # =30

Figure 5. The functiok defined by a (generalized decision) table.
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The relationG is a composition of local representatio6$;, « = 1,2, j = 1,2,3, and for instance
G13 C IN; 3 x OUT, 3, whereIN; 3 = Reals X (—00,0), OUT, 3 = Reals, and

(r1,22)G13y3s <= y3 +x172 = lys|®.
The relationGy 1 is a functionG 1 : INy 3 — OUTy 1, With IN; ; = IN; 3 andOUT; ; = Reals, and
(z1,22)Gray1 = y1 = Gra(z1,22) = 21 + 2.

The relationg; ; are functions, which is indicated by the symbol “=" afterightey; in the left header.
The symbol 1" after y, andys indicates that?; » andG; 3 are relations withy, andys as their respective
output variables.

The functiony is a composition of; ;, i = 1,...,5, j = 1,2, 3, and for instances. s : {sunny} —
{go to the beach 2 2(sunny) = go to the beach. The domain @f 5 is { sunny} rather than
{sunny, cloudy, rainy} since we prefer to deal with total functions.

The functionh is a composition of; ;, ¢ = 1,2,3, j = 1,2. For instancehy; : INy 1 — Reals,
WheI’EINQ,l = {(161,1‘2) | T1T9 > 20} anth,l(xl,wz) = I — T9, while h371 : Reals x Reals —
Reals andhs 1 (z1, z2) = z122.

However the functions, ¢ and the relatiorfs arenotthe unions oti; ;'s, ¢; ;'s andG; ;'s. We have
here

3 2 3 2 5 3 3 2
h={J () b, and we will show thate = X) | J Gij, © =] Q) wij, and h =[] ) ki,
i=1j=1 j=1i=1 i=1j=1 i=1 j=1
where® is an operator, a generalization lobth the intersection and the well-known “join” from the
relational data-base theory [2]. The operagois discussed in detail in Section 3.5.

Each of the tables from Figures 1 - 5 consists of two one dilnaakheadergtop row and left-hand
column), and one two dimensiongtid. Both headers and grids consista#lls each cell containing
anexpression Thelocal representationsf functions and the relation from Figures 1 - 5 are defined by
parts of tables we will caltaw elements The raw element is just a table restricted to one cell foheac
header and one cell for the grid.

Everylocal representatiornR; ; can be represented by the relation/function expressioneotype

xR; jy < if P, ;(x) then R, ;(x,y),

wherex is the (vector)nput variable y is the (vector)output variable P; ;(x) is thepredicate expres-
sion built from the guard expressions held iguard cells and R; ;(x,y) is the expression defining a
function/relationand is built from thevalue expressions held imaluecells. For example fo6 | 3 we
haveP; 3(z) = z2 < 0, Ry 3(x,y3) equals toys + z122 = |ys|®, wherex = (z1, z2), for ho; We have
Py (z) = 122 > 20, Ry 1(x,y), Wherex = (z1, z2), equals tay = z; — z, (see Figure 6).

For each table and each header or grid, either all cells itogterd expressions, or all contain value
expressions.

All the above observations will be used to build a homogesesmmantics of most possible types of
tables.
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y <0 E
’

‘ <0 ‘ H T —y H fao(z,y) = f y<10Az<Othenz —y

| o

‘ go,1(z,y) = ify>0N0<z<ythenz -y

T—y
‘yZO‘ ‘0§$<
z9 <

(1,22)Gray1 = if z9

'

[ vl | |y +zza =yl | (€1,22)Grsys <= if 22 < 0 then ys + z172 = |ys[*

IN

0 then y; = 71 + x2

Y
<0

[ =

|| go to the beach ||

p2,2(Weather) =  if Weather = sunny

Weather € {sunny, cloudy, rainy} | | sunny | b 0 the beach
en go to the beac

| r1 — T2 | E

‘ T1T9 ‘ ‘ # > 20 ‘ hio(z1,2z2) = if z12z2 > 20 then z; — x5

Figure 6. The functiongs 2, 92,1, ¢2,2, h1,2, the relationgr; 1, G1,3 and their appropriate raw elemeritsthen
descriptions, and cell connection graphs.
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3. Tabular Expressions and Their Semantics

The aim of this section is to provide a formal definition of Wiy Expressions and their semantics. This
is an improved and revised version of the model that was ptedefor the first time in [15] and was
subsequnetly developed in [16, 19].

We define alabular Expressiorior Tablg as a tuple:
T = (PT, rT, CT, CCC, Hl, “eey Hn, G; \I’, IN, OUT),
where:

e Pris atable predicate rule which indicates how predicatetsdbtine local representations are to
be built from the contents of table cells,

e 7 is atable relation rule which indicates how relations/fiorts that are local representations are
to be built from the contents of table cells,

e (C'r is a table composition rules which states how the globaticgldunction is built from local
representations,

e CCG is a cell connection graph which defines the information flowhie table,
e Hy,..., H, are headers of the table,

e (G is agrid of the table,

e U is a mapping that assigns particular expressions to tab ce

¢ IN is the set of inputs, and

e OUT is the set of outputs.

The relationRr which describes the semantics®f has the propertyRr C IN x OUT.

The subsections below will define and analyse all the notimingduced above.

3.1. Raw Table Skeleton

Intuitively, a table is amrganized collection of sets of cells, each cell containagropriate expression
Such an organized collection empty cellswithout expressions, will be called a (raw or mediuat)le
skeleton We assume thateell is a primitive concept which does not need to be explained.

e A headerH is an indexed set of cell§] = {h; | i € I'}, wherel = {1,2,...,k}, for somek, is a
set of indices.

e A grid G indexed by header#l1, ..., H,, with H; = {k/ | i € I/}, j = 1,...,n is an indexed set
of cellsG, whereG = {g, | @ € I}, andI =[] I (or I = I' x ... x I"). The setl is the
index ofG.
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Hy ={hi |i=1,2,3}

hi h3 h3

Hy={h?]i=1,2}
h? gi1 g21 g31
h% gi2 g22 932

G={9:;i=123Aj=1,2

Figure 7. An example of a raw table skeletBtf” = (H;, H,, G).

We are now able to define the first approximation of a tableeté®nl

o A raw table skeletors a tuple
" = (Hb ey Hn7 G)
whereH1, ..., H, are headers and G is the grid indexed by the healers., H,.

e The elements of the set
Comp(T) = {H., ..., H,, G} are calledable components

Figure 7 illustrates the above definitions.

3.2. Cell Connection Graph and Medium Table Skeleton

The first step in expressing the semantic difference betwagnus types of tables is to defineCzll
Connection Graphwhich characterizes information flovim(here do | start reading the table and where
do | get my result?). Intuitively a Cell Connection Graph is a relation that kkbbe interpreted as an
acyclic directed graphwith the grid and all headers as the nodes, plus the decotiggosi nodes into
two distinct classes calleguard componentandvalue componentsThe only additional requirement
for the relation is that each ansust either start from or end at the gr.

Let Comp(T) = {H4, ..., H,,G}. A Cell Connection Graplis anasymmetriaelation
—C Comp(T) x Comp(T)
satisfying: for allA, B € Comp(T),
A—B = ((A=GVB=G)\NA# B), (1)
plus a decomposition @'omp(T) into Guards(T) andV alues(T).

The relation—*, reflexive and transitive closuref —, is apartial order. A componentd €
Comp(T) is maximalif A —* B impliesB = A for everyB € Comp(T). Similarly A € Comp(T)
is minimal if B —* A implies B = A for everyB € Comp(T). A componentd € Comp(T) is
neutralif it is neither minimal nor maximal.

'!A—3*B <= (A=B)V(A— B)V (3A1,..., Ap. A— A; — Ay —> ... — Ay —> B).
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The relation— representsnformation flowamong table cells and, intuitively, if the component
A is built from the cells describing the domain of a relationdtion specified, and the compondst
is built from the cells that describe how to calculate theugal of the relation/function specified, then
A —t B, where—T is the transitive closufeof —s. This means thathe components built from
the cell describing the domains are never maximdiile the components built from the cells containing
formulae for values are never minimal

Thus the partition o€omp(T') into Guards(T) andV alues(T') must satisfy the following proper-
ties:

1. Comp(T) = Guards(T) U Values(T),

2. Guards(T) N Values(T) = 0,

3. Aismaximal = A € Values(T),

4. Ais minimal = A € Guards(T)

5.VA € Guards(T).VNB € Values(T).
A+—T B.

(2)

7

One can also easily show thaly the gridG can be neutral, and there exists at most one neutral
component

We may now defin€'C'G, Cell Connection Graphas a triple
CCG = (Guards(T),Values(T),—)
where— satisfies (1) anduards(T), Values(T) satisfy (2).

There are six different types of Cell Connection Graphs wiardistinguishing among the headers.
Type 1. Each element is either maximal or minimal. There is only orimal element.

Type 2a. There is only one maximal element and one neutral elemerd.n€htral element belongs to
Guards(T).

Type 2b. There is only one maximal element and one neutral elemerg.n€ltral element belongs to
Values(T).

Type 3a. There is a neutral element and more than one maximal elerhbetneutral element belongs
to Guards(T).

Type 3b. There is a neutral element and more than one maximal elemibatneutral element belongs
to Values(T).

Type 4. Each element is either maximal or minimal. There is only on@mmal element.

AT B <= (A— B)V (3A1,..., Ap. A—3 A; — Ay —3 .. —3 A, —> B).
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The division into types 1, 2, 3 and 4 is based on the shape okthBon—, the types a and b result
from different decompositions intGuards(T') andValues(T'). Figure 8 illustrates all cases far= 3.
When the number of headers is smaller than 3, the cases 3datisbppear.

It turns out that:

e type 1 corresponds to Normal Tables in [29],

e type 2a corresponds to Inverted, Decision and Generalismision Tables [13, 29],
e type 2b corresponds to Vector Tables in [29].

The types 3a, 3b and 4 have no known wide application yet. $heyn to be useful when some degree
of non-determinism is allowed. The types 3a and 3b might laésoseful as a representation of complex
vector tables. Reference [1] provides an excellent surfeyast types of tables used in Software Engi-
neering practice.

By adding the Cell Connection Graph we obtain the next appration of the table skeleton concept.

e By amedium table skeletone mean a tuple
™ = (CCG, Hy, ..., H,, Q)
where(Hq, ..., H,, G) is araw table skeleton ar@C'G is a cell connection graph foH, ..., H,, G).

The type of Cell Connection Graph will usually be identifigddbsmall icon resembling an appropriate
graph from Figure 8. The icon is placed in the left upper cooféhe table. Figure 9 presents examples
of medium table skeletons. Note how the CCG shows where tbrstading the tableH;, H, in the
normal table,H,, G in the inverted table), and where to find the resudisif the normal,H; in the
inverted table).

3.3. Raw and Medium Table Elements

LetT™ = (CCG, Hy, ..., H,, G) be amedium table skeleton with indéxand letT"** = (Hy, ..., H,, G)
be the raw table skeleton. Consider the elenﬁbht, ey 1 ga) € Hy X ... x Hy X G.

We shall say thath! , ..., h . ga) is araw elementf and only if a = (i1, ..., 4p).

717"

We will denote the raw elemerth} h . ga) by TT%"|,, since it can be interpreted as a kind

R

of projection (restriction) of T7%% onto the indexa. The set {h}l, -, b, ga} Will be denoted by
Compo(TT™).

Let—4C Compo(T"*) x Compo(T™*") be arelation defined as

€1 —>q o <= JA1, Ay € Comp(T"™). ¢1 € Ay
A cg € Ay N A — As.
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Figure 8. Six different types of cell connection graphs= 3). Double boxes indicate value cells, single boxes
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H,

}

Hy, —| G |+~ H3

Type 1. Each element is either

maximal or m_inimal. There is
only one maximal element.

H,y

i

Hy, —| G |~ H3

Type 2b. There is only one
maximal element and a
neutral element. The neutral
element belongs t¥alues(T).

H,

i

Hy, —| G || H3

Type 3b. There is a neutral
element and more than one
maximal element. The neutral
element belongs tFalues(T).

indicate guard cells

H,

!

Hy — G [~ Hj

Type 2a. There is only one
maximal element and

a neutral element. The neutral
element belongs tGuards(T).

H,

i

Hy — G | H3

Type 3a. There is a neutral
element and more than one
maximal element. The neutral
element belongs tGuards(T).

H,

i

Hy; \~— G | H3

Type 4. Each element is either
maximal or minimal. There is
only one minimal element
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08 [T 11" o L™

G H G
7™ = (CCG, H1, H2,G) 7™ = (CCG, Hy, H», G)
H, H,y
H> H,
—= —=
\ G \ €]
Guards(T) = {Hi1, H2} Guards(T) = {H2, G}
Values(T) = {G} Values(T) = {H:1}

Figure 9. Medium table skeletons.

Since—, is isomorphic to— we will denote them by the same symbel when we identify them,
and use the same icon to describe them. We also défimeds, (17*), Values, (TTV) as appropriate
projections ofGuards(T"*) andV alues(T"*") onto (h; , ..., bl , go). Formally

TR

Guards,(T™™) = {c | ¢ € Comp(T"™*")

A JA € Guards(T™™). c € A},
Valueso (TT*) = {c | ¢ € Compy(T"*)

A JA € Values(T™™). c € A}.

The triple
CCG, = (Guardsy, Valuesqy, —q)

will be called thecell connection graph off ™%%|,.

By amedium elemerdf 7¢¢ we mean a tuple

Tmed|0€ = (CCG(M hzlla i hnn ’ goe)

2

where(h}l, - h ,ga) is araw element. Again, a medium element can be interpretedpaojection of

T™e% onto . Figure 10 illustrates a medium element.

3.4. Well Done Table Skeleton

Let R be a relation that is going to be specified by a tabular exjmesd et dom(R) andrange(R)
denote thedomain and range of R respectively. Bothdom(R) and range(R) could be Cartesian
Products or subsets of Cartesian Products, i.e. in gedera{R) C X; x ... x X, for somek,
range(R) C Y] X ... X Y,,, for somem.
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The relationR can be composed aR,’s, a € I, wherel is a finite set of indices, and the set
F = {R, | a € I} will be called arepresentatiorof R.

The basic idea behind using tables to specify the reldtios that in practice we can frequently use
amedium elemerit,, = 74|, to specifyR,, a € I. The entire relatiork could be very complex, but
eachR, is relatively simple. The relatiof® is equal toR = Ezpr(F), whereEzpr(F) is a relational
expression built from the elements Bfand relational operators that are defined by the table type. T
table structure is supposed to make the understandifgepf (F) natural and simple.

Let x be a (possible scalar or vector) variable odem(R), y be a (possible vector) variable over
range(R), and letP(x) be a predicate defining the domain®yf, i.e.

x € dom(R,) C dom(R) < P(x) = true.
Let E,(x,y) be arelational expression that defines (in a readable wayersetF,, of the relationR,,,
ie.

R, C E, where (x,y) € E, <= E,(x,y).

The relationR,, is a restriction ofE, to dom(R,), i.e. Ra = Ea|dom(a), @nd is described completely
within that domain by the following predicate expression

if P,(x) then E,(x,y).

We have to now fit thgredicateexpressiorif P,(x) then E,(x,y) into themedium elemerit, =
T™e4|,,. Figure 10 shows how it can be done for the exampi€ af, < 0 A z3 < 0 then y? = 22 +z2.

The idea we will be using is the following:

e the expressions defining the relational expres#ig(x, y) are held invalue cells(Values(T)).
¢ the expressions defining the predicate expresBigix) are held inguard cells(Guards(T).

However, the partition of cells into value and guard typesassufficient. Let us consider the cell
connection graph from Figure 10. We said it correspondele@xpressioif z; <0Azy <0 then y? =
7? + 72, Butwhyz; < 0 A 22 < 0? Why not for examplez; < 0V 23 < 0, or =(z1 < 0) Az < 0
etc.?

There is no explicit information in the table that indicatEsjunction, or any other operation. A
medium table skeleton does not provide any information om the domain and values of the relation
(function) specified are determined. Such information nesadded.

We have a similar situation for the expressiBr(x,y). For Types 2b, 3a, 3b and &, (x,y) must
somehow be composed of two or more components, each contgagiag described by an expression
of one cell.

3The predicateif P,(x) then E,(x,y) can equivalently be written a®,(x) A Ea(x,y). We prefer theif-then
form because it is more readable, in particular whr(x) itself contains the A” operator (see Figure 12). But clearly
if P,(x) then E,(x,y) = P.(x) A Ea(x,y).
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D—E 1 <0 hzl

R | 22<0 Y’ = o] + x3|| i

Figure 10. An example of a (partially) interpreted mediueneént.

To say precisely how theedium elemertan be used to specify the predicate expresHioR, (x)
then E,(x,y), not only do we need to divide cells into value and guard types we also need to
describe howP,(x) can be built from the expressions held in the guard cells Bgfk,y) from the
expressions held in the value cells.

LetT = (CCG, H,, ..., H,,G) be amedium table skeleton. Assume Walurds(T) = {Bu,...,
B, }, Values(T) = {A1,...,As}.

e A predicate expressiofir (B, ..., By), whereBy, ..., B, are variables corresponding to the com-
ponentsBy, ..., B, is called @able predicate rule

e A relation expressiomr(Ayq, ..., Ag), whereAy, ..., Ag are variables corresponding to the com-
ponentsAq, ..., A;, is called aable relation rule

The predicateP, (x) can now be derived fron?r (B, ..., Bs) by replacing each variabB; by the
content of the cell that belongs to both the medium elenignand the componenB;. Similarly, the
relation expressio, (x,y) can now be derived from;(Ay, ..., Ag) by replacing each variabla; by
the content of the cell that belongs to both the medium elédgmand the componem,;.

The predicate expressioRr is built from table component names (variabl@), ..., B, where
Guards(T) = {B,..., B;}, together with logical operators\®, “ Vv”, “ =", the replacement operator,
and some constant and relation symbols. The replacemerdatopés of the formE[E, /z], whereE,

E, are expressions; is a variable or constant, atitf E, /z] represents a new expression derived flBm
by replacing every occurrence ofin E by E;. The constants and relation symbols depend on the type
of input domaindom(R). The relation symbol=" can always be used. If the elementsdoin(R) are

ordered, the relation symbolsc*, “ >" can be usetl

The relation expressiony is built from table component name&;, ...., A, (variables), where
Values(T) = {A,..., A, }, together with set operatorsJ)”, “N”, etc., relation operators=", “ <”,
“>" etc., and the operator of “concatenatiors”®.

The table predicate and relation rules are sufficient to tatdied how the predicate expressions
if P,(x) then E,(x,y) can be built from the contents of appropriate cells. We dtlhot know how

“The survey [1] indicates thai”, “ v”, “ =" and “E[E /x]" suffice in most cases.

SFor example for Figure 13 (top half) we haf@n =) o (z1 + £2)) = (31 = 21 + 22), ((¥3]) © (Y3 + 2122 = |y3]?) =
(y3 | ys + z12 = |y3]?), where(ys | ys + z1z2 = |y3|®) means thays is the (only) output variable in the expression
Yys + 2122 = |y3|3-
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the relationR should be built from allR,’s that create aepresentationF of R. There is nothing in the
middle table skeleton to say how all thoBg’s should be composed, which leads us to the following
concept.

e Arelation expressio@ of the formR = Exzpr(F) is called aable composition rule
In general Expr(F) is a relational expression built from the expressions dafifi,’s, and various
relational operators. We shall discuss it in detail in thet section.

The final approximation of a table skeleton is the following.
¢ A well done table skeletois a tuple
v = (Pp, vy, Cr,CCG, Hy, ..., H,,G),
where(CCG, Hy, ..., H,, G) is a medium table skeleto®; is a table predicate ruley is a table

relation rule, and’r is a table composition rule.

In essence, a well done table skeleton defines the comptatduse of a tabular expression except
filling out all the cells with proper expressions that defilefg,’s. The definition is illustrated in Figu-
re 11.

3.5. ComposingR from R,

LetPC X xY,QCX'xY'. If X =X"andY =Y', thenPUQ, PN Q, P\ Q are defined in the
standard way (see [34]).

In many casef,’s are heterogeneous relations [34] defined on the domaatém intuitively be
interpreted as subdomains @ém(R) but they arenot subsets oflom(R). For exampledom(R) =
Dq x Dy x D3, dom(Rl) = Dy x D3, dom(RQ) = Dy x D3, etc.

Let T be a set of indices{D; | t € T'} be a family of sets (domainsy, K, L, M be subsets df’,
and letP, @ be the following relations

PCI[Dex [ e, Q€[] De x ] D
teJ teK teL teM

[1.c; D: denotes the direct product &f;, for all t € T. For example it/ = {1, 2,4} then]],.; D;
is equivalent taD; x D9y x Dy.

If J C L,z € [[,c;, Ds, thenz|; € [[,c; Dy is arestriction (projection) of z to J. For instance if
T = (.’L‘1,.’E2,l‘4) € Dy X Dy x Dy, J = {1,4}, thenx|J = ($1,$4).

We now define the operatioms, ®, © as follows

Po Q = {($ay) | T € Hte]uL Dy ANy € HteKuM Dy A (($|Jay|K) EPV ($|L7y|M) € Q)}’
P® Q = {(x,y) | T € HtejuL Dy A Yy e HteKuMDt A (($|Jay|K) €PA ($|Lay|M) € Q)}’
Po Q = {(‘T’y) | T € HtEJUL Dt Ny € HteKuMDt A (($|Jay|K) €PA (‘T|L,y|M) ¢ Q)}a
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Normal Type 4
]
H1 Hl
Ok ]
H2 H2
G G
PT(Hl,HQ) = H; N H, PT(G) =G
TT(G)=G ’I‘T(Hl,HQ):HlUHQ
Relation name R Relation name R
Cr:(R= U?:1 sz':1 Ri;) Cr:(R= @?:1 ®]2':1 Ri;)
\Vector Generalized Decision
[ ]
H1 Hl
OkO]
H»> H,
G G
Pr(Hy) = Hy Pr(H;, G) = G[H2/#]
TT(HQ,G) :HQOG TT(H1) =H1
Relation name R Relation name R
Cr: (R: @iy Ui, Rij) Cr: (R=Uii Ni=i Riy)

Figure 11. Four examples of well done table skeletons.
For example ifdlom(P) C Dy x D3, range(P) C Dy, dom(Q) C Dy x Dy, range(Q) C Dy,
where allD+, ..., D5 are reals, and

P ={((z1,3),25) | 25 = 71 + 3}
Q = {((z1,22),4) | T4 = 71 * 22}

then we have

PoQ={((z1,72,3), (z4,75)) | (z1,23),25) € PV ((z1,72),74) € Q},
P®Q ={((z1,72,73), (z4,75)) | (z1,73),25) € P A ((71,72),74) € Q},
PoQ={((z1,22,23), (z4,5)) | (z1,23),25) € P A ((z1,72),24) ¢ Q},

If J =L andK = M then®, ®, & are justy, N, and\. The operator® can also be regarded as a
generalization of aatural join operator used in relational data bases [2].
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We think that in general the problem of composiRdrom R,, is an open research problem (see [19]
for more details). The definitions of operatioBs ®, © were application driven. The general problem
can be formulated as "how to build the whole, i.B, from the parts, i.e.R,’s” in terms of algebra
of relations. This observation provided a major motivationan attempt to formulate a mereology for
direct product and relations [17, 18].

Why is the composition oR from R, important? There are a number of practical considerations
that are affected by this.

e One of the major advantages of tabular expressions in daaimgefunctions and relations is that
the table can be checked for “correctness”. For exampleigar€ 1, the table can be checked to
ensure that the entire input domain is covered, and thatatiie tomponents are disjoint. Since
Pr(Hy, Hy) = Hy A Hy, andCr : (f = Uj_, Ui, f,;), we can see that to satisfy input domain
coverage we must have

3 2
U dom(H}) = Reals, and U dom(H?) = Reals
i=1 i=1
and for disjointedness we must havem (H{) N dom(HY) = 0, dom(H{) N dom(H3) = 0,
dom(Hy) N dom(H3) = 0, anddom(H?) Ndom(H3) = §.
The practical importance of this is clear. Tabular expmssiare typically used to specify be-

haviour, and so complete input domain coverage ensurewéaave specified responses to every
input combination, while disjointness ensures that thpareses are unambiguously defined.

e We do not know of any practical systems that can be documdytedsingle (readable) table. We
thus need to be able to document systems by a collection lefstalm some cases we may want a
cell in the table to refer to another table. If we do not havenavedge of the composability of
the individual tables we cannot hope to produce a matheallgticonsistent description.

¢ In a similar vein, it is sometimes important to be able to ldiferent kinds of tables to describe
the total behaviour of a system. These links usually takédime of a cell in one table referring to
a cell in a different kind of table. We have also seen a celhia table reference a row (or column)
in another table.

3.6. Tabular Expressions

We are now able to fully define the concept of a table expradsiat was introduced at the beginning of
Section 3.

e A tabular expressiorfor table) is a tuple
T = (Pp,rr,Cp,CCG, Hy,...,H,,G; ¥, IN,OUT)

where(Pp,rp,Cp,CCG, Hy, ..., H,, G) is a well done table skeleton, addis a mapping which
assigns a predicate expression, or part of it, to each gedlirchnd a relation expression, or part of
it, to each value cell. The predicate expressions havehlasavelIN, the relation expressions
have variables ovefIN x OUT, wherelIN is the set (usually heterogeneous product) of inputs,
andOUT is the set (usually heterogeneous product) of outputs.
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For every tabular expressidh, we define thesignatureof T' as:
Signy = (Pp,rp,Cp, CCG).

The signature describes all the global and structural imédion about the table. We may say that a tab-
ular expression is a triplesignature raw skeleton(which describes the number of elements in headers
and indexing of the grid), and theapping® (which describes the content of all cells).

Figures 12, 13 and 14 show examples of tabular expressidnessignatures enriched by information
about variables are presented in special two column tablesabove definitions describe, more or less,
the syntaxof tables. In generall may assign @redicate expressigror part of one, to each guard cell,
and arelation expressionor part of one, to each value cell. We do not provide a corapglenotational
semantics ofl over the syntactic expressions in cells. It can be donebuonast cases it is rather obvi-
ous, and quite lengthy in the general case. Formally we reegdroduce first an operatawl(c) which
simply returns the contents of cellas an uninterpreted string of symbols (i.e. syntactic yratsd then
defineW in a standard denotational manner.

Let I be the index ofl", let

P = Pr[¥(c;)/B1, ..., ¥(cs) /Bs)

rL = rp[U(d1)/Ax, ..., U(d,)/ As] 3)

wherec; = B; N Guardsy(T),1 =1, ...,s, andd; = A; N Valuesy(T),1 =1, ...,r.

Both Pr andrr must satisfy the followingonsistencyule
e for everya € I, P is a syntactically correct predicate expression.
e for everya € I, vl is a syntactically correct relation expression.

The relation composition expressidiy is built from the relation/function names, and indices. The
operators®, ®, ©, U, N, \ are special cases. The survey [1] shows that the pat@fnsg R; ;j, UgRq,
andU; ®; R; ; are sufficient in most cases.

3.7. Semantics of Tabular Expressions

LetT = (Pr,rr,Cr,CCG, Hy,...,H,,G; U, IN,OUT) be a tabular expression, with the indéx
and leta € I. By aninterpreted medium elemewe mean a tuple:

T|Oé = (PT, 7, CCGy; w|C’ompa (T))
Figure 10 plusPr = Hy A Ho, r7 = G, represents an example of the interpreted medium element.
For everya € I, we defined,, E,, as

X € Ay <= P,(x) = true,
(x,y) € Eo <= Ea(x,y).
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0 ifz>0Ay=10
T ifz<0Ay=10
- Yy ifz>0Ay>10
f@,y) = ifz>0Ay <10
z+y fz<0Ay>10
r—y fz<0Ay<10
input variables z,y : Reals H,
output variables | =z : Reals y=10 y > 10 y < 10
ccaG D»E Hy
Pr Hi N Ho >0 yQ _y2
rT G —
Function name | fandz = f(z,y) z <0 T z+Yy T—Y
Cr ?:1 U?:l fij
z+y f(z<0Ay>0)V(e<yAy<O0)
z—y f(O0<z<yAy>0)
9(z,y) = Viy <
y<z<0Ay<O0)
y—z if(x>0Ay>0)V(z>0Ay<0)
input variables z,y : Reals
output variables | 2 : Reals
. [cov ] oy [v—=]
cca
Pr Hy NG Hy
rT H y>0 z <0 0<z<y x>y
Function name gandz = g(z,y) y <0 <y y<z<0 >0

Cr

3 2
Uizi Uj=1 90

H,

G

Figure 12. Two examples of tabular expressions - normalv@band inverted (below). They correspond to

Figures 1 and 2.
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(z1,22)R(Y1,Y2,¥3) <=

y1 =21+ T2 A Y231 — T2 = Y3

Ays+zize = |ys|3

y1 =1 — T2 A T1 + Z2y2 = |y2|
ANys =11

input variables

T1,T2 : Reals

output variables

Y1,Y2,Yy3 : Reals

ceca O]
PT Hy

rT Hyo G
Relation name G

Cr

3 2
®j:1 Uiz Gisj

if 2 <0

if zo >0

H, 2 <0 wy > 0 | m
Y1 = 1+ T2 T1 — T2 G
Yol YoT1 — Tg = y% z1 + T2y2 = |y2|
Y3 Ys + 129 = |y3|3 Y3 =T

21

The symbol =" after y; in H» indicates that the relation®; 1,7 = 1, 2, are functions. The symbo|™after y» andys in H» indicates that
R; 2 andR; 3, i = 1,2 are relations withy; andys as respective output variables.

¢ : Temperature X Weather X Windy — Activities, whereActivities = { go sailing, go to the beach, play bridge, garflen

input variables

Temperature{hot, cold}

Weather {sunny, cloudy, rainy}

Windy: {true, false}

output variables

action :{go sailing, go to the beach,play bridge, garflen

o

cea

Pr Hy =G

TT Hy

Function name  andaction = p(Temperature, Weather, Windy)
Cr Ui ®F_1 9ij

notation * = don't care, gtb = go to the beach

H,
| go sailing gtb | gtb | playbridge | garden |
Hy
Temperatures {hot, cool} * * hot * cool
Weathere {sunny, cloudy, rainy} sunny V cloudy sunny cloudy rainy cloudy
Windy € {true, false} true false false * false
G

Figure 13. Next two examples of tabular expressions - veatie (above) and decision table [14] (below). They

correspond to Figures 3 and 4.
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1+ T2 if z120 <20 A 21 + 22 > 30
h(z1,z2) = 1 —xz2  fx102 > 20N 21 + 22 < 30
T1T2 if z1 + z2 =30
input variables T1,x2 : Reals
output variables | z : Reals
D»% H T1+ x2 ‘ T1 — T2 ‘ T1%2 H
cea
Hy
Pr G[Ha/#]
rT H: T1T9 # < 20 # > 20 true
Function name h gndz :2 h(z1,x2) T1 = To # < 30 # > 30 # = 30
Cr i=1 ®7'=1 hi,j
(x=0 A y1=0Ay2+z=1)
vV (z< -1 A y1=0AY2+z=0)
vV (z=1 A y1=0Ay2 =x2)
T <~ .
z (ylny) Vi (0<$<1 A y1=1/\y§+$=1)
V (-1<z<0 A y1=1Ag2+2=0)
vV o (z>1 A y1=1Ay2 =zx2)
input variables T : Reals
output variables | 1,2 : Reals H, || y1=0 | =1 ||
0O
CcCG @E :
Pr a y§+z—1 z=0 I<z<1
rp H1®H2 y2+$=20 -’I;<—1 —1§.’IJ<0
Relation name Y Y2=2 z=1 z>1
Cr ?:1 U?=1 i,

Every interpreted medium eleméft, describes now the relatiaR, = E,|A,, i.€.

(x,y) € Ry, < if P,(x) then E,(x,y).

We may now define the semantics of tabular expressions imaaforay:

e The relationR, describes the semantics of tiierpreted medium skeletdr,.

e Thesemanticof atabular expressiofl” is defined by:

Rr = CT(RQ).

Figures 12, 13 and 14 illustrate the above definitions.

H,

G

Figure 14. Another two examples of tabular expressions egdized decision (above) and type 4 (below). The
top one corresponds to Figure 5.
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4. On Table Classification

Tabular expressions can be classified according to:

the cell connection grapl§;CG,
the table composition rulé)r,

table predicate and relation ruld3; andrr,

the mapping? which assigns meaning to cells.

In most cases we do not provide a complete classificatiohgratome special cases are chosen and
named.

The table classification accordingC' G is presented in Figure 8. Type 1 tables are caflednal
and type 2a are calledverted The relationship between normal and inverted tables ikyaee in detail
in [44].

The table is calleghlain if dom(R,) C dom(R), foralla € I, andRr = |J,¢; Ra- The table is
calledoutput-vectorif Ry = ), P, Ri;. The table is callednput-vectorif Ry = P, ®, Ri,;. In
general @), P, Ri,; # @; &Q; Ri ;, even though occassionally such equality might be truetablles
modeled in [15] are plain. The vector tables of [29] are ofpoirvector type, and most of (but not all)
decision tables [13, 14, 29] are of input-vector type.

The classification according 8 andr, has not yet been proposed. Since the most popular type
of Pr (see [1]) is conjunction, followed by disjunction, equgliand replacement[E’ /#], disjunctive
tables conjunctive tablesequality tablesand#-replacement tableare natural candidates for special
table types.

Classification on the basis @f is a different type of classification from each of the aboveepends
on what the contents of cells are, and is not the subject ®fiduper. The division of tables into function,
relation and predicate types, as well as into proper anddapeartables [29, 38, 44], is based mainly on
¥, but also onry, Pr, andCr. Some popular types such as vector, decision, and gereztalizcision
require a special type oF, a special type o€’ and a special type dPr and/orr.

5. The Importance of Semantics of Tabular Expressions

There are some compelling reasons for developing semaritiabular expressions.

e Software tools for creating, checking, transforming anespnting tabular expressions are a prac-
tical necessity. Building those tools without a semanticdei®f the tables is doomed to failure.

e One of the strongest motivations for using tabular expoessis that it enables us to use mathe-
matical precision in the documentation of software requéets and design in a way that is quite
intuitive to a broad base of readers/users. It is vital thvaryone reading these documents has
the same unambiguous understanding of the functionaligrdeed by these tables. Even in the
early days of using tables, there was an attempt to tell redd®v to interpret the tables, i.e. very
simple/crude semantics for the specific tables were pravitlew that tabular expressions are be-
coming more popular, are used to document larger and moeesgisystems, and are used within
the context of various different mathematical models, & bacome imperative that we find more
general and sophisticated ways of telling readers how &pnt tabular expressions.
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e It is natural that users of these tables will find ways of edieg and/or modifying them so that
they become more and more useful. In recent years we have anadecerted effort to make
tables easy and intuitive to read and understand. In sones eas have modified the structure to
take advantage of the visual advantages that tables prdvigteexample, we can take tables of the

form:

H; = Cases
‘ Case; ‘ Casegy ‘

H, = Conditions

Cond; N Sub_Cond; resi resil

Cond; N\ Sub_Conds resi, | res?,
Conds resy resy G = Results
Cond3 ress res3
Cond, resk res?

and introduce a visual enhancement to highlight the stracitipredicates and results:

H, = Cases

‘ Case; ‘ Cases ‘

H, = Conditions

Cond Sub_Cond; resyq
onai
Sub_Conds ‘1“65%'2 ‘ res%_2
Conds resy G = Results
Conds res; res’
1 2
Cond, res, res;,

Without an understanding of the formal semantics of talileés likely that some of these modifi-
cations will be ill-formed, resulting eventually in ambigus interpretations.

6. Final Comments

The paper provides a relational semantics for Tabular EBgwas. The Tabular Expressions have proven
to be invaluable in documenting requirements and softwasigds, and very useful in testing and veri-
fication (see [40, 41]).

The model presented in the paper covers most but not all tyjpeebles currently used in Software
Engineering. It also allows us to define precisely new tayjpes. The specific forms oF are not the
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subject of this paper, so we do not make any distinction betvienction and relation tables and between
proper and improper tables [29]. Of course, for an efficiesgt af tables some classification according
to ¥ is necessary. In particular the distinction between famstiand relations is important from the

application point of view, since the properties are différi@ many aspects. However it should be done
after the general semantics is precisely defined, so in this papetoanot address this problem. The

model also does not address default cases such as "no cteergahtics often used when defining state
transition semantics. The "sparse matrix” representatfcafunction [1] is also not easily covered.

The approach presented here is complementary to that aof [283 classification provided in [29]
was based on several years of practical experience of wsdhestfor specifying real computing systems.
The classification provided in this paper follows from thpdlmgy of an abstract entity called ‘table’,
and per se, is application independent. In fact, some pbssghallowed by this approach might have
rather unique applications.

In principle, the approach presented in this paper is bas¢deofollowing concepts

¢ the cell connection relation—, which represents the information flow in tables,
e division of table components intGuards(T') andV alues(T),

e Pp, the table predicate rule,

e 7, the table relation rule,

e (7, the table composition rule.

So far, in our approach, no substantive assumptions abedbtms of Pr andrr are made. This
is an area for further development, since not all form#gfandr; make practical sense. When real
examples are analyzed (see for instance [1, 33]), one manabthat in many cases the distribution of
input and output variables among headers is not arbitratyate arranged to serve a particular purpose.
This problem is also not addressed here. The cases2 andn = 3 need special attention since they
will eventually be the most frequently used in practice.afi concurrency, non-determinism, arrays of
tabular expressions and the concept of time, are not addr@sshis paper.

Semantics for tabular expressions are crucial to theirmgeactice and also to the development of
software tools for creating, editing and transformimg ¢ablThe model presented in the paper is not the
only one that has been proposed. An algebra of arrays ofaetahas been used in [5, 6] to present an
alternative semantics for tabular expressions. A strictignpositional semantics was proposed in [22],
and an algebraic and recursive model was presented in [42].

A real strength of tabular expressions is their sequencepigicident view of behaviour. This enables
us to deliver true black-box descriptions of behaviour. sT¢trength is also a weakness. We have yet
to find a way to use tabular expressions to document algositlsimply because in an algorithm, the
sequence of operations is supremely important [40].

Recently, tabular expressions have been succesfully ngeduirements analysis, especially in con-
junction with a scenario-based approach [7, 8, 23, 41], &xi§p and verify safety critical software
[25, 41], and to deal with refinement problems [37].



26 R. Janicki and A. Wassyng/ Tabular Expressions and TheatiRebl Semantics

There are some topics still that need further research m tdrsemantics for tabular expressions.
For example, semantics that cope with arrays; semantitgié#h with concurrency (see [43]) and for
dealing with time are still in the early stages, if they essall.
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