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Abstract We briefly present a software methodology for
safety-critical software, developed over many years to cope
with industrial safety-critical applications in the Canadian
nuclear industry. Following this we present discussion
on software tools that have been used to support this
methodology, and software tools that could be used, but
have not been used for a variety of reasons. Based on our
experience, we also present and motivate a list of high-level
requirements for tools that would facilitate the development
of safety-critical software using the presented methods,
together with a small number of tools that we believe are
worth developing in the future.

1 Introduction

Software development is maturing. With that maturity
has come the realisation that any particular development
methodology will not succeed unless it is well-supported
by software tools. There are many diverse software tools
available to software developers. Most of these tools are tar-
geted at particular tasks. Not many of them provide com-
prehensive support for a particular methodology. When they
do, they can be extraordinarily successful. For example, al-
though UML [28] had no semantic basis, it proved to be
extremely successful in industry. The success of UML, to
a large extent, can be attributed to the comprehensive tool
support that was available for it.

Software development for safety-critical systems is
generally viewed as costly and time consuming. Software
tools are always touted as a means to combat the labour
intensive nature of software development, and safety-critical
software development in particular. We are convinced that
appropriate tool support can, indeed, help us produce
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safety-critical software at reduced costs. What is sometimes
lost in the “better, cheaper, faster” mantra of tool proponents
is that for safety critical systems, the most important thing
is that tool support should also make it easier to see and
demonstrate the quality of the software–for the producer,
customer and regulator alike.

This paper concentrates on software tools for safety-
critical software and is based on many years of experience
of developing safety-critical software applications, with and
without tool support. The emphasis is on software tools that
support our methods.

The remainder of the paper is organized as follows.
Section 2 provides an overview of the software engineer-
ing methodology we have used, in enough detail to un-
derstand the role and application of tools. Section 3 de-
scribes the tools that we believe are essential for making
the method practical. Following this, Sect. 4 comments on
additional tools that would be useful, but currently have
not been implemented or have not been integrated with our
methods. A discussion of regulatory requirements on sup-
porting tools for safety-critical software in Sect. 5 helps to
illustrate why developing tools for safety-critical software
presents some unique challenges. Section 6 provides a list of
high-level requirements for tools, motivated by our experi-
ence, and the last two sections discuss future tools and draw
conclusions.

2 A safety-critical software methodology

The software methodology we have used on safety-critical
projects has been described previously in [20, 33]. It is
based primarily on Parnas’ descriptions of a “Rational
Design Process” [23, 26] and makes extensive use of tabular
expressions [13, 32]. The methodology was developed
at Ontario Hydro, now Ontario Power Generation (OPG)
Inc. The primary applications were the two independent
Shutdown Systems for the Darlington Nuclear Generating
Station in Ontario, Canada.
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The Software Cost Reduction (SCR) Method developed
at the U.S. Naval Research Laboratory (NRL) [7–9], is also
based on Parnas’ Rational Design Process, and also makes
extensive use of tabular expressions. NRL focused quite
early on the production of software tools. OPG focused pri-
marily on the production of the software applications and
documentation that were essential to the nuclear regulator
granting operating licences for the Darlington Nuclear Gen-
erating Station. Tool support was developed where and when
necessary. This is due to the nature of a research versus a
production environment. NRL researchers have focused on
extending capabilities of different tools rather than applying
them end to end on the critical path of production for a ma-
jor project. OPG focused on what was needed for regulator
approval and what was immediately beneficial to the project.
However, those involved in the OPG projects now have the
experience to apply to the development of software tools to
aid that methodology. We also have the luxury of being able
to learn from the extensive tool development conducted by
NRL.

2.1 Requirements

The software requirements for both of the Darlington
shutdown system are described mathematically. For one
of the shutdown systems, the system level requirements
are described mathematically, and contains the Software
Requirements Specification. This is the system we will
describe in this paper. The life-cycle phases and documents
are shown in Fig. 1. This figure does not include the
requirements development process, its starting point is the
requirements document.

In all our documents, stimuli are referred to as monitored
variables, and responses are controlled variables. We pre-
fix identifiers by a suitable character followed by so as to
help clarify the role of the identifier, e.g. m name is a moni-
tored variable, c name is a controlled variable, f name is an

Fig. 1 Life-cycle phases, documents and tools

internal function (produced as a result of decomposing the
requirements), k name is a numerical constant, and e name
is an enumerated token.

The requirements model we use is a finite state machine
with an arbitrarily small clock-tick. The finite state machine
is assumed to describe idealised behaviour, i.e. results are
produced instantaneously. If C(t) is the vector of values of
all controlled variables at time t , M(t) is the vector of values
of all monitored variables at time t , S(t) is the vector of
values of all state variables at time t , we can define functions
R (requirements) and NST (next state) as follows:

C(tk) = R(M(tk), S(tk))
S(tk+1) = NST(M(tk), S(tk)), for k = 0, 1, 2, . . .

(1)

where the time of initialisation is t0, and the time between tk
and tk+1 is an arbitrarily small time, δt . Typically, state data
at the requirements level has a very simple form, namely
the previous values of functions and variables. We indicate
elements of state data by f name−1, which is the value of
f name at the previous clock-tick, and similarly, m name−1
and c name−1.

We also describe how the software will interface with the
hardware. To achieve this we use Parnas’ 4 variable model
[24].

This model relates the variables in the requirements do-
main to the variables in the software domain. Specifically, I
and O represent the input and output variables in the soft-
ware. SOF is the function that describes the software’s be-
haviour. REQ is the function that describes the requirement
behaviour. We already saw in (1) how R relates C to M and
S. The state data, S, is an encapsulation of the history of M ,
so Fig. 2 and Eqs. (2)–(5) should be interpreted as including
relevant history.

The vast majority of the requirements are specified
using tabular expressions. As an example, the definitions of
the “Neutron OverPower Parameter Trip and Sensor Trips”
are shown in Fig. 3. Roughly speaking, a sensor trip occurs
when a function that depends on a sensor value goes out of
safe range. A parameter trip depends on a function of related
sensor trips. To give a better idea of the “horizontal function
tables” we use to define the required behaviour, some of
the other functions required for the evaluation of this trip
are shown in Fig. 4 (without their related lists of inputs and
other such information). These examples also demonstrate

Fig. 2 The 4 variable model
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Fig. 3 Specifications of the neutron overpower parameter trip and sensor trips in the requirements
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Fig. 4 Examples of tabular expressions related to the NOP trip in the requirements

the use of natural language expressions, that are used to
make the tables more intuitive for domain experts who
have to validate the requirements. The natural language
expressions also help to partition the requirements, and all
natural language expressions are defined mathematically.
One of these is shown in the example in Fig. 4. We also
use natural language comments in the tables to aid readers.
These comments are italicised, and are enclosed within
braces.

The advantages of tabular expressions have been wide-
ly documented (e.g. [11, 25]), and two of the primary rea-
sons tables are so useful in the specification of requirements
are the completeness and disjointness criteria that can be en-
forced easily. Table tools make this enforcement even easier,
especially in the case of more complex conditions.

2.2 Software design

The software design process is one of the most labour in-
tensive stages in the life-cycle. The resulting document,
the Software Design Document, is arguably the most cru-
cial document in the project. Common wisdom has it that
the requirements documents determine the success of the
project. It is true that if the requirements documents are not
“correct”, complete, understandable and unambiguous, the
project is likely to fail. However, the design must exhibit all

of these attributes, but also must be decomposed in such a
way as to enhance the future maintenance of the software,
including subsequent changes to the hardware platform. Es-
pecially in safety-critical projects, the design must also be
verifiable (this typically means that the design must be math-
ematically verifiable against the requirements), and must be
sufficiently detailed as to provide a complete specification
of behaviour from which code can be developed and against
which it subsequently can be verified and tested. Thus, while
the requirements document is crucial for initial success of
the project, the software design is critical to the long term
success of the project.

Surprisingly, other than the table tools (and, occasion-
ally, documentation layout tools), we have not used any de-
sign specific software tools in this phase of the life-cycle.

The software design re-organises the way in which the
behaviour in the requirements is partitioned. This is done to
achieve specific goals, two of which are: (i) The software
design should be robust under change; and (ii) On the target
platform, all timing requirements will be met.

Like all other stages in the life-cycle, the software de-
sign process and documentation are described in detail in a
Procedure (a project standard that specifies the process and
mandatory documentation format). The quality of the design
is tied closely to a number of quality attributes defined in the
Procedure. The Procedure uses these attributes to drive the
design process.
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Fig. 5 Example module cover page and internal declarations

Information hiding principles form the basis of the de-
sign philosophy. A list of anticipated changes documented
in the requirements is augmented by the software developers
and is used to create a Module Guide that defines a tree-
structure of modules. Each module hides a secret (a require-
ments or design decision that is likely to change in the fu-
ture), and fulfils a responsibility. Leaf modules represent the
eventual code, and the entries for those also list the specific
requirements functions to be implemented in that module.
The interfaces to the modules are defined by the externally
visible entities, primarily exported types, constants and pro-
grams. Externally accessible programs are known as “access
programs”. The module cover page (Fig. 5) describes the
responsibility of the module, and lists all exported constants
and types as well as the access programs for the module. The
role of each access program is described in natural language,
and the black-box behaviour of the program is defined by
referencing the requirements functions encapsulated in the
access program. (This will be explained in more detail
when we discuss supplementary function tables later in this
section.)

The module internal declarations describes all items
that are private to the module, but not confined to a
single program. The detailed design of each program is
documented using either function tables or pseudo-code
(sometimes both). Pseudo-code is used when a sequence
of operations is mandatory and cannot easily be described

in tabular format, or when specific language constructs
have to be used, e.g. when specific assembler instructions
have to be used in transfer events. The function tables
used in the software design are very similar to those
used in the requirements. Over the years we found that
horizontal condition tables worked well for requirements
documents, since they read naturally from left to right, and
requirements typically involve functions that have single
outputs, but many predicates. However, the functions in the
software design often have more than one output, and fewer
predicates, so we use vertical condition tables in the design
document.

As examples, we provide extracts related to the re-
quirements functions that were displayed in Fig. 3. The
module cover page for module NPParTrip is shown in
Fig. 5. The module’s internal declarations, and the specifi-
cation of its programs, are shown in Fig. 6. The complete
sensor trip module is not shown in order to save space.
However, Fig. 7 shows the access program that evaluates
f NOPsentrip. If we compare Fig. 7 with the required
behaviour of f NOPsentrip in Fig. 3, it is obvious that the
design computes an “additional” quantity. This is a common
occurrence, since the designers have to be concerned with
efficient implementation of the behaviour, which is not a
consideration at the requirements level. In this case, STSNP
maps to f NOPsentrip, and STINP maps to latched values of
the sensor trips, that are specified in a different function in
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Fig. 6 Example module program specifications. (VCT means “vertical condition table”)

the requirements document. Variables and constants in the
design are restricted to six characters because the software
design had to be implemented in FORTRAN 66, the only
compiler available for the hardware platform.

It is likely that just a portion of a requirements function
may be implemented in an access program, or that a
composition of requirements functions may be implemented
in an access program. This poses a couple of important
problems. (i) We reference requirements functions to
specify the black-box behaviour of an access program,
and so if the access program does not implement a single,
complete requirements function, this black-box behaviour
is difficult to specify; and (ii) it is difficult to verify the

design behaviour against the requirements behaviour when
the data-flow topologies of the two are different.

The way we overcome these difficulties is through the
use of Supplementary Function Tables (SFTs). Imagine a
pseudo-requirements specification in which the data-flow
topology exactly matches that in the software design. If
such a pseudo-requirements specification were to exist, then
verifying the design against the requirements could be per-
formed in two steps: (i) verify the design against the pseudo-
requirements specification; and (ii) verify the pseudo-
requirement specification against the original requirements
(we need to verify only those blocks that are different from
the original). The way we create the pseudo-requirements
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Fig. 7 Extract of the sensor trip access program. (NC means No Change)

specification is by piece-wise “replacing” some composition
of requirements functions by a new set of functions that have
the same behaviour as the original requirements functions,
but the topology of the design. These replacement functions
are represented by what we called SFTs.

Thus, the SFTs are developed during the forward go-
ing process, by the software designers themselves, but are
not considered “proved”. They are then available to aid in
the mathematical verification of the software design. Rather
than show a series of function tables that demonstrates the
use of SFTs, we present some simple data flow examples in
Fig. 8 to illustrate these points.

The top left diagram in the figure shows an extract from
the requirements. If we assume that the software design in-
cludes programs that implement the behaviour starting with
an input “a” and resulting in an output “e”, but partitions
the behaviour differently from the requirements, we may
have a situation as pictured in the top right diagram of
Fig 8.

If this is the design, the designers must have had good
reasons for partitioning the behaviour this way, and must
also have good reason to believe it implements the original
requirements. For instance, they may have split some of the
functions in the requirements, so that the requirements can
be viewed as shown in the bottom left diagram.

Finally, we regroup the functions so that they match
the topology of the design as shown in the bottom right
portion of Fig. 8. In this example, we have assumed that
s Z is a compound data structure, and mutually exclusive

elements are used in f X and f Y. We can now describe
f x, f y, f c′, f d′, f z and f e′ in tabular format, and these
function tables “replace” the original f c, f d and f e. The
“replacement” tables are the SFTs, and they, as well as rele-
vant requirements functions, are used on module cover pages
as references to the required behaviour.

One final point regarding the software design is that it is
easy to “extend” the input and output mappings so that in-
stead of I , and O , the transfer events work with Mp and Cp
known as “pseudo M” and “pseudo C”, constructed to be as
close to M and C as possible. Then, instead of constructing
SOF, the software design simply has to implement REQ, as
described in the requirements. This situation is shown graph-
ically in Fig. 9. More details on this decomposition tech-
nique can be found in [20, 33].

2.3 Software design verification

The main activity in the software design verification is
the comparison of tabular expressions in the design with
corresponding expressions in the requirements. The results
of the verification are documented in the Design Verification
Report. This is complicated by the fact that the requirements
describe idealised behaviour, and then specify tolerances on
that behaviour so that an implementation becomes feasible.
The tolerances can take the form of accuracies on monitored
and controlled variables, and timing tolerances that allow
for finite processing time and the fact that analogue signals
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Fig. 8 Example use of supplementary function tables

Fig. 9 Modified 4 variable model

must be sampled. As we will see in Sect. 3, the design veri-
fication process invites the extensive application of software
tools.

There are two primary goals of the software design veri-
fication. (i) Prove that the behaviour described in the design
matches the behaviour described in the requirements, within
tolerances; and (ii) identify behaviour in the design that
is outside the behaviour specified in the requirements, and
show that the behaviour is justified and that it cannot nega-
tively affect the required behaviour. To accomplish the first

goal, we conduct a mathematical comparison of behaviour
in the design against the behaviour in the requirements. This
is by far the more time consuming of the two activities, since
the design adds very little behaviour not already defined (at
a higher level of abstraction) in the requirements. To un-
derstand the verification process we need to start with the
overall proof obligation. Figure 9 shows the input and out-
put mappings replaced by abstraction functions. Comparing
Path 1 with Path 2 we see that our proof obligation is given
by (6). The abstraction functions have to be verified through
Eqs. (7) and (8).

We prove (6) in two steps. Firstly we prove the de-
sign complies with the pseudo-requirements. Since the
data-flow topology in the design is the same as in the
pseudo-requirements, we can show that verification can
be performed piece-wise. This approach results in a feasible
method and is now quite well supported by software tools
(see Sect. 3).

The SFTs developed during the design phase help to re-
duce the work-load on the verifiers. Although there is no
obligation on the designers to verify that their SFTs are cor-
rect, their intimate knowledge of the design and require-
ments should lead them to construct accurate SFTs. Thus,
the second proof, pseudo-requirements versus the origi-
nal requirements, is “smaller” than the proof of (6). These
proofs typically have to be tailored to the particular design
decisions that were made, and are dealt with on a case-by-
case basis. For example, with reference to Fig. 8, we would
need to prove that the composition of f x and f c’ is equiv-
alent to f c (including the relevant state data), that the com-
position of f y and f d’ is equivalent to f d (including the
relevant state data), and that the composition of f z and f e’
is equivalent to f e.
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2.4 Coding, code verification and testing

Conceptually, coding is not much different from coding in
non safety-critical projects, except that it is likely that the
coding guidelines are more precise and more restrictive. Al-
most all the behavioural details are already described in the
software design.

Most code functions are produced directly from tabular
expressions in the design. Relatively few functions are
coded from pseudo-code. The coding procedure imposes
relatively strict guidelines on how to implement code from
tabular expressions and from pseudo-code. Comments
in the code are used to document whether the code was
developed from tables or from pseudo-code. For all those
functions described by tabular expressions in the design,
the code verifiers manually develop function tables from the
code and then compare them with the tables in the design.
Since the pseudo-code is already very close, in abstrac-
tion level, to the code, the pseudo-code implementations
are verified by direct comparison and logical argument.
An example of code is presented in Fig. 10. This is an
extract from the FORTRAN implementation of the access
program EPTNP in module NPParTrip that was shown in
Fig. 6.

Finally, there are all the typical testing procedures: unit
testing, software integration testing, validation testing, and
statistically driven random testing. Space does not permit
an in-depth discussion of the testing procedures and docu-
ments.

3 Essential tools for our methodology

Figure 1 shows most of the tools we have used with our
methods and project documents. Not surprisingly there is a
good match between these tools and those we consider es-
sential for the cost effective application of the methodology.
This section will examine each of the tools in a little more
detail.

To understand the current suite of tools used at OPG it is
necessary to know that all project documentation has to be
available in Microsoft Office Word format. MS Word is the
corporate approved word processing platform.

3.1 Generic tools

It is crucial that all project documents and tools be main-
tained under configuration control. This means that there
must be an easily accessible/usable configuration manager.
In some early projects, configuration management errors
caused costly delays. This prompted OPG management to
mandate comprehensive configuration management support.
An e-mail front-end was developed to support PVCS, a
commercially supported configuration management system.
With the e-mail interface, all project personnel had access
to project documents under configuration management. We

Fig. 10 Code extract from EPTNP (NOP sensor trip)
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refer to the complete system as the Configuration Manage-
ment Tool.

Another essential generic tool is a database for record-
ing and tracking potential changes. These may be changes in
process or in an actual life-cycle deliverable. They may arise
as a result of discovering a defect of any type, but may also
be simple suggestions for a potentially better way of doing
something. At OPG these were called Document Change Re-
quests. We like the way OPG removed the “defect” or “bug”
connotation in Document Change Requests. In order to em-
phasise the fact that the tool deals with all change requests,
we will refer to the tool simply as the Change Request
Tool.

The Table Tools enable users to generate function tables
and check tabular expressions for completeness and disjoint-
ness. They are also capable of translating between a lim-
ited number of table formats, namely: structured decision
tables, horizontal condition tables, and vertical condition ta-
bles [1]. These tools are not as extensive as those produced at
McMaster [15] or at NRL [8, 9]. Our experience has shown
that some tables are more readable than others [33], and
OPG standardised on just a few types of tabular expressions.
In addition, the Table Tools were specifically designed to in-
terface to MS Word.

3.2 Life-cycle phase-oriented tools

These tools were developed to support the major develop-
ment life-cycle phases and their resulting documents as de-
scribed in Sect. 2. Section 2 as well as the brief descrip-
tions below of the existing tools can therefore be seen as an
overview of the technical requirements for these tools.

The Requirements Tool is capable of directing the au-
thor by generating the required documentation section titles.
The tool dynamically constructs a database of identifiers and
uses the database in a number of consistency checks. It also
links to the Table Tools so that tabular expressions can be
checked for completeness and disjointness. Finally, the tool
is capable of extracting tabular expressions so that they can
be translated for use in a theorem prover (PVS).

The Design Tool, like the Requirements Tool, guides the
author of the software design by generating templates. It also
dynamically generates a database of identifiers, links to the
Table Tools, and extracts and translates tabular expressions
for use in PVS.

The Design Verification Tool has proved to be the most
used tool in the suite.

An experience report on manually applying tabular
methods to the block-by-block software design verification
appears in [31]. The report cites the excessive amount of
time required to perform the verification by hand as a major
short fall of the method. As a result, OPG and its partners
undertook efforts to automate the verification procedure.

Figure 11 provides a graphic overview of the relationship
between the documents and tools employed in the verifica-
tion process. The word processor, augmented with the tools

Fig. 11 Tools and documents of the design verification process

described above, was used to create and check, first the soft-
ware requirements, then the software design and finally the
design verification report. The tools provide basic complete-
ness and consistency checks of the requirements, design and
design verification report documents that can be run offline
on an entire document or invoked interactively via a macro
from within the word processor to check individual tabular
function definitions as they are created.

The design verification report provided the cross refer-
ence between the requirements and design inputs, outputs
and functions, and defined the abstraction functions that are
part of the block decomposition of the proof obligations.
These parts of the design verification report were manually
generated by the verifier with guidance provided by the re-
quirements and design documents. The word processor was
then used to create Rich Text Format (RTF) versions of these
three documents that become input for the Design Verifica-
tion Tool. At the time the tools were developed RTF pro-
vided the closest thing to a “standard” input format for the
tools independent of the word processor used to create the
documents. For each verification block the Design Verifica-
tion Tool produced an input file for SRI International’s PVS
automated reasoning system [22]. Each file contained the
theorems, and associated function and type definitions that
need to be proved for the block as required by the verifica-
tion procedure. Due to space limitations, we refer the reader
to [18, 20] for examples of the types of proof obligations
passed to PVS in the design verification of the Darlington
shutdown systems.

Although the PVS specification language and interactive
proof environment have their own steep learning curve, the
verifiers require only a small subset of PVS’ capabilities to
perform the verification. Additionally, by designing the tools
to employ standard word processors for document creation,
we have ensured that no other team members require knowl-
edge of the underlying proof system. While the verification
procedure currently makes use of only a fraction of PVS’ ca-
pabilities, integrating the tools with PVS provides the oppor-
tunity to increase the scope of the computer assisted verifica-
tion to include real-time properties [3, 6, 19] and functional
properties involving tolerances [20]. Additional reasons for
choosing PVS were its existing support for tabular methods
[21] integrated with theorem proving and model-checking,
and the abilities of its extensive type-checking capabilities
to be used to detect software errors [29].

Additional details on experience with the verification
procedure and the tooled tabular methods employed in it can
be found in [18, 20].
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The original Code Verification Tool was hardly used. Its
primary purpose was to again guide the author by generating
templates for the code verification documentation. However,
we created a tool that examined the code, extracted identifier
information, and classified identifiers in the code in much
the same way that module specifications are documented.
This actually accounts for a huge percentage of the work
we normally have to do in verifying code against RDP (Ra-
tional Design Process) modules. “All” that is left after that
is to describe the behaviour of a code access program as a
tabular expression (e.g.), so that the behaviour can be com-
pared with the corresponding behaviour in the SDD. Right
now we have not yet managed to automate the extraction of
behaviour into tabular expressions. However, our experience
is that compiling the identifier information takes roughly 10
to 15 times the amount of time it takes to analyse the code
behaviour. This means that the tool we constructed performs
the mundane but time-consuming tasks, and leaves place-
holders for the tabular expression (or pseudo-code if appro-
priate) and the subsequent comparison with the design be-
haviour.

Finally, a Simulation Tool was built to provide a platform
for testing. Automated oracles and test suites were used with
the simulator. In cases where precise timing was essential,
individual tests were conducted with the aid of a logic anal-
yser.

One important point to note about the tool suite that was
developed – the tools were designed to work together. For
example, the Requirements Tool was used not only in the re-
quirements phase, but also in the software design verification
phase. The Table Tools were designed so that they interfaced
with all the other tools in which function table manipulation
and checking may be required.

4 Nice-to-have tools for our methodology

The tools suggested in this section may exist in other en-
vironments, or may simply be tools that we are confident
can be built. Top of the list in tools that would be useful
to us is Model Checking. Model checking has proven itself
in many circumstances, and has become a staple component
in the SCR toolset. The underlying model in both versions
of the software requirements documents at OPG is a finite
state machine. It should therefore be reasonably straightfor-
ward to link model checkers to the current tool suite. This
would give the requirements teams capabilities to check the
requirements behaviour over multiple clock ticks of the fi-
nite state machine, whereas our current capability is limited
to one-step transitions.

Another tool that would be useful is a Module Decom-
position Tool that would be used during software design.
One of the crucial tasks facing the software designers is
the decomposition of the behaviour presented in the require-
ments, into a modular design based on information hiding
principles. During this decomposition phase, designers suc-
cessively decompose modules into smaller and smaller mod-

ules, using lists of likely and unlikely changes to the spec-
ified behaviour to define secrets [23, 33] , as well as a set
of software quality attributes. To understand the effect of
the decomposition, the designer has to trace exactly which
requirement(s) (function tables or parts of a function table,
usually) each module will be responsible for, and also what
dependencies there will be between modules (the Uses Hier-
archy, for example). Since the requirements are completely
and formally documented, a tool could be used to show
the designer the effect of a change in the module structure,
i.e. what requirements functions are encapsulated in each
module; what constants are used in each module; and what
other modules are used by each module. This would clearly
be of benefit to the designer at this stage of the process. It
could also perform completeness and consistency checks,
e.g. all requirements are encapsulated in one, and only one,
module. If the requirement function is only partially “im-
plemented” in a module, this should be noted. (This is what
SFTs were developed to cope with, see Sect. 2.2.)

Many of the traditional tools would prove useful in our
software development. For example, Profilers, if available
for the languages and platforms we use, would facilitate both
coding and testing. Code Analysis Tools, such as CodeSurfer
[2] could facilitate code inspections and reviews.

There are other tools that we would like, but right now do
not have the necessary theory developed to build the tools.
One of these, a tool to construct tabular expressions, is dis-
cussed in Sect. 7.

5 Regulatory aspects

Regulatory considerations may have a tremendous impact on
the tools that are, and can be used for safety-critical software
development. Clearly, depending on the country and appli-
cation domain, regulators may play a definitive role in the
success or failure of any particular safety-critical project.

In most cases, we believe that regulators will prove to be
in favour of the extensive use of software tools. Their use
can make feasible approaches that are otherwise too costly.
For those who have been involved in such projects, it is rea-
sonably obvious that software tools have the capacity to im-
prove the quality of the developed application. There are
many aspects that are more reliably analysed/implemented
by automated tools than by error prone humans. However, it
is likely that regulators will require that software tools used
in safety-critical applications should be qualified before be-
ing used. In the Canadian nuclear industry, there are usually
just two ways of qualifying such tools. (i) Prove that the tool
was developed with the same rigour as is necessary for the
applications to which it is to be applied. (ii) Make a case that
through extensive use of the product, its reliability has been
“proven”.

This introduces a rather serious “catch-22” situation for
any specially developed software tools. These tools will
probably have relatively low usage profiles, so building a
case on extensive usage is not possible. Building tools to the
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same standards as the actual products to which it will be ap-
plied is often too costly if the number of such products is
likely to be small. There is one way out of this dilemma,
which is the method we employed in most cases. We can
build the tools, qualify them as best we can, but not use them
to the exclusion of manual techniques. This negates much of
the cost benefit of using the tools, but still realises the quality
benefit discussed earlier.

Another approach may be to develop more than one ver-
sion of the tool and compare their outputs. This approach
is often prohibitively expensive, and does not guarantee that
common-mode errors in the tool have been avoided.

In other industries, the required reliability of each tool
is tied to the extent to which the output of that tool can be
checked – by manual or automated means.

The development of in house and/or use of third party
CASE tools to facilitate specification, formal verification,
and testing of safety-critical software has become an in-
creasingly common phenomena. Unfortunately the utility
and adoption of mathematically sound tools has been ham-
pered by a lack of well defined (consistent) open standards
and associated support tools. Significant resources are some-
times required to develop tools that are not directly related to
a company’s core competencies. Faced with a lack of third
party software in the area of high performance computing
software, a US President’s Information Technology Advi-
sory Committee has recommended an open source software
approach [27]. In the case of safety-critical software, this ap-
proach has the added benefit of making the entire verifica-
tion and testing process transparent to regulators, allowing
them to investigate the internal workings of any tools em-
ployed on a project. While the regulators may not posses the
skills to perform such an investigation, it does allow the reg-
ulator to employ independent experts to evaluate the tools
on their behalf. Any reported findings could be made public
and used as a basis for further evaluation and use of the tools
in a regulated environment.

In the long term, we believe that the developers of
methodologies will have to also deliver qualified software
tools that facilitate the implementation of that methodol-
ogy. Those developers will need to convince regulators in
many countries and many application domains, that those
tools have been developed, verified and tested to the degree
commensurate with their usage. Using open source tools and
standards, the regulators (and the public) can convince them-
selves of the quality of the tools by “looking under the hood”
and seeing how they work. Sharing the source of the safety-
critical tools they have developed, companies can distribute
development costs and increase tool usage profiles. Taking
the open source concept one step further, organisations could
also share formal analyses of source code.

6 Requirements for tools

This section presents primarily high-level requirements for
tools to support the safety-critical methods we use. The em-

phasis is on requirements that deal with those aspects we did
not already deal with in Sects. 3 and 4.

Software practitioners have clearly indicated the need to
automate routine tasks in order to effectively and reliably
develop software. The application of formal methods simi-
larly needs to become a largely automated process with tools
of even better quality than those used for building and test-
ing software. Knight et al. hypothesize that by incorporating
formal methods tools into existing software packages such
as off the shelf office suites and other software engineering
tools, formal methods might be able to overcome their lack
of “superstructure” and become more widely used in indus-
try [16]. The experiences described in [18, 33] support this
conjecture.

While applications of tool supported formal methods to
industrial examples have been previously described in e.g.,
[10], such case studies typically focus on a specific aspect,
such as requirements analysis, and typically involved some
reverse engineering of previously developed requirements
documents. As a result these methods usually were not part
of the production software engineering process. To be truly
successful in industry, formal methods tools cannot just be
“bolted on to the side” of an existing software development
process.

This section describes what we believe to be important
high-level requirements for tools that would support our
methodology. These requirements do not necessarily reflect
any actual requirements of the tool suites currently in use.
Rather, they are the requirements that we believe should ap-
ply, now that we have experience in both developing and
using generic software tools as well as tools specifically ori-
ented towards safety-critical application development.

The requirements are documented by listing the require-
ment itself, followed by rationale for that requirement in
italics.

6.1 General requirements

The following requirements apply to all phases of the devel-
opment life-cycle.

• The tools should form a comprehensive suite, designed
to interface with each other, with complementary func-
tions. The integrated suite shall provide automated sup-
port for all phases of the software development life-
cycle.

We gain real advantages if we can make assumptions
about the inputs to a tool. One of the lessons we have
learned is that generalising tools so that a wide vari-
ety of inputs is allowed, typically reduces rather than
enhances the scope of the tool. An example of how to
take advantage of our knowledge in one phase to help
a subsequent phase is the Module Decomposition Tool
discussed in Sect. 4.

• The tools shall generate documentation in as universal a
document format as possible, while ensuring that:
– The documentation format has adequate support for

tables.
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– The documentation format has adequate support for
graphics.

– The documentation format has adequate support for
mathematical notation.

Many safety-critical projects have a long life-cycle. It
is likely that being tied to a specific word processor or
proprietary document format will prove to be an obstacle
at some stage of the development or maintenance. We
experienced a change from WordPerfect to Word that was
time-consuming and thus costly.

• It shall be possible to construct parts of the documenta-
tion manually in such a way that the reader cannot tell
that the section has been created manually. There should
be a mechanism for automatically including such manu-
ally created sections in future versions of the document.

Project deadlines should not be missed simply be-
cause a tool fails to operate adequately. We worked on
one project where a tool could print only the complete
document, not page-ranges of the document. This caused
a problem when a few pages had to be corrected imme-
diately before a deadline. If manual edits cannot be in-
corporated automatically in future versions of the doc-
ument, then manual edits will prove to be of very little
use.

• The tools shall maintain a database of identifiers com-
mon to all phases of the development life-cycle. This in-
cludes identifiers defined in manually created sections of
documents.
Integrated tools require an integrated database of iden-
tifiers.

• The tools shall ensure that entities are not defined in
more than one place. If a definition is required in more
than one place, the definition shall be stored once only
and copied to all applicable locations.

This requirement makes sense for manually imple-
mented methods as well. Anyone who works in software
development should be sensitive to this issue.

• Tools that aid in the construction of a project document
shall guide the author so that all mandated sections of the
document are completed, and must be flexible enough to
allow additional sections if not prohibited by governing
procedures.

A friendly nudge from the tool that a mandatory sec-
tion has not been completed is useful, as long as it is
not too intrusive. Flexibility is important, since we have
found that users of the tools are rightly frustrated if the
tool insists on completion of specific section in order if
the completion order is not important. Try as we may, it
has proved to be impossible to predict the exact struc-
ture of many of the project documents. For example, the
specification of the serial communication to and from
the shutdown computer had to take into account a non-
standard multiplexor that required detailed descriptions
that were not foreseen when the requirements procedures
were developed. If additional sections are not allowed,
document preparation grinds to a halt.

• Tools that aid in the construction of project documents
shall be capable of spell-checking the document. The

database of identifiers shall be used to augment the spell-
check dictionary.

We have found that an effective check for misused
identifiers is to use a spell-checker.

• The suite of tools shall facilitate the seamless integration
of the configuration management tools described below.
Version control is of utmost importance in any software
project. It is far more reliable to have the tools control
the configuration management than it is to rely on people
to manually invoke the configuration management tools.
We worked on a project in which someone spent signifi-
cant time verifying an old version of a document. There
was a configuration management system in place, but
humans are error prone - especially in time pressured
situations.

6.2 Configuration management tool

• The tool shall facilitate management of “baselines”.
A baseline represents a milestone and specifies a collec-
tion of documents and their particular revisions as repre-
sentative of that milestone. Many configuration manage-
ment systems control revisions of individual documents
but do not provide a baseline capability. Without base-
lines it is becomes difficult to track that requirements 1.5
was used to produce Software Design 3.2 and Code 2.5,
let alone all the test suites, verification and review docu-
ments that are associated with those specific documents.

• The tool shall timestamp documents entered into the
database.
This is an obvious requirement, but has to be stated.

• The tool should have at least the capabilities of com-
mercially available configuration management tools
such as PVCS. It is conceivable that a front-end for an
existing commercial tool may be sufficient. Many
commercially available configuration management tools
have evolved to the stage where they do an excellent job
of configuration management. A front-end such as the
e-mail interface developed by OPG may supplement the
features of the commercial system, and may hide some of
the complexity of the system by making just a necessary
subset of the features available to general users. In
addition, including mathematical theories associated
with the formal verification would be beneficial. Ex-
isting systems such as MAYA, a tool to support formal
verification and incremental development of software
[4, 12], and related work on collaborative content
management [30] and version control for structured
mathematical knowledge [17], extend revision control
systems such as CVS [5], to help guarantee global
correctness of the results of formal reasoning about
systems.

6.3 Change request tool

• The tool shall facilitate the entry and subsequent tracking
of the analysis and disposition of change requests.



14 A. Wassyng, M. Lawford

This is the obvious role of the tool.
• The tool shall link related change requests. This can be

achieved both through algorithms that detect common-
alities and dependencies in change requests, and also by
allowing users to insert links manually.

This is useful from two points of view: (i) A similar
change request may already have been entered. (ii) An
earlier change request that has been analysed may affect
the analysis of the current change request.

• The tool shall timestamp the individual components of
each change request. (It is anticipated that change re-
quests will consist of a number of sections, e.g. problem,
analysis, implementation, follow-up.)

Post analysis of the development/maintenance of the
application would be enhanced.

• The tool shall record the name of the person responsible
for each component of the change request.

This is important for any follow-up activities.
• The tool shall enforce the recording of the life-cycle

phase in which the author of the change request was in-
volved when the potential change was “discovered”.

This is important both for quality control and for fu-
ture improvements to the processes.

• The tool shall maintain separation between the statement
and analysis of the problem.

It is a mistake to try to analyse the problem at the
time that the potential problem is first documented. We
know of one instance in which a change request was
not filed because the person who uncovered the potential
problem was (erroneously) persuaded that there was no
problem.

• The tool shall facilitate the attachment of any kind of
project document (or extract of that document) to any
component of a change request.

The best explanation of a problem, presentation of
analysis and sometimes even the disposition of the
change request, in many cases, is an extract from a
relevant document. The tool must facilitate storing such
attachments so that the link to the change request is
obvious.

6.4 Requirements tool

• The tool shall tag every requirement (a function table
may be tagged as a single requirement), and the tag shall
be visible in printed versions of the document. Section
numbers may be used as tags.

It is essential that the software design, design review
and verification, testing and change requests be able to
refer to relevant requirements.

• The tool shall guide the author to include rationale
and/or references for each requirement.

Most engineers already appreciate the importance of
documenting rationale for design decisions. Before work
started on the current version of the Darlington shut-
down system software, the responsible group at OPG
conducted a separate project to document the rationale

for the existing software. The requirements documents
now contain appendices that record changes made from
previous “in use” systems. In addition, rationale is doc-
umented for each function and natural language expres-
sion, whenever possible. However, rationale for some de-
cisions that were made fifteen to twenty years ago has
been lost. In one case, that lack of rationale led us to in-
clude a requirement that added pushbutton debouncing
to the communications link-enable pushbutton, with the
same debounce delay as other pushbuttons. This deci-
sion complicated the design of the communications soft-
ware, since it adversely affected how soon after enabling
communications the buffer could be flushed.

• The tool shall maintain a database of requirements.
The database shall contain required behaviour compo-
nents including initialisation, rationale and references,
descriptions of stimuli (monitored variables), responses
(controlled variables), constants, and types.

It is often essential that we find all requirements that
involve a particular function, constant or some other
identifier. A static database that reflects the current rela-
tionships would be indispensable. Searches in a flat text
environment are possible, but the time taken dealing with
false matches is wasteful. Such a database would clearly
enhance our capability to trace requirements.

• The tool shall maintain lists of likely and unlikely
changes that may be made in the future.

These lists are essential inputs to the information hid-
ing design principle.

• The tool shall maintain a database of required timing be-
haviour for each controlled variable/monitored variable
pair.

Timing behaviour is the most complex issue we deal
with at the requirements level. It also is a crucial element
in the design of the scheduler in the software design.
Time required by the hardware, especially I/O hardware,
is vital. The software designer and verifiers need to have
easy access to this information so that they can cal-
culate the timing tolerances that apply to the software
alone.

• The tool shall provide different views of the require-
ments, i.e. the requirements organised/partitioned in dif-
ferent ways, some textual and some graphical.

No single view provides the best view of the require-
ments for all situations. Sometimes tabular expressions
are required for a detailed view, while at other times, an
overview via data-flow diagrams may be better.

• The tool shall be able to generate lists of differences in
behaviour between two selected revisions of the require-
ments. It would be useful to be able to select sets of be-
haviour to be included. For example, select initialisation
only, or select timing requirements only, or select all be-
haviour. The lists should include related rationale if re-
quested.

A document “diff” is an indispensable tool. However,
current comparison tools are severely lacking when the
document contains function tables and graphics.
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6.5 Software design tool

• The tool shall maintain lists of likely and unlikely
changes that may be made in the future. These lists
should be of items not already included in the require-
ments lists of likely and unlikely changes. The tool shall
be able to combine the requirements and design lists so
that a complete set of likely and unlikely changes is doc-
umented.

These lists are essential to the information hiding de-
sign principle. They drive the decomposition of require-
ments into modules as described in Sect. 2.2.

• The tool shall maintain a database of design behaviour.
The database shall contain the behaviour of each access
program for each module, organised by interface and im-
plementation.

Similar to the requirements database, the design data-
base is an essential component of the design tool. It is far
more useful as a persistent database, accessible by other
tools, rather than as a non-persistent database as in the
current tool suite.

• The database maintained by the tool should include map-
pings between requirements identifiers and software de-
sign identifiers.

The software designer is always aware of these rela-
tionships while creating the design, and it has to be doc-
umented anyway. The information is immensely helpful
in later life-cycle phases, especially during software de-
sign verification.

• The database of design behaviour shall include provision
for the storage of design notes linked to any relevant as-
pect of the design.

Design notes are the equivalent of rationale at the
requirements level. They record all relevant design de-
cisions, from top level decisions such as decomposition
into modules, to lower level decisions such as the choice
of data structures, Maintenance of the design will be
hampered if relevant design notes are not included in the
documentation. A tool that eases the burden of compil-
ing and storing these notes will make it more likely that
designers actually record the notes.

• The tool shall enable project managers to assign the in-
ternal detailed design of specific modules to specific de-
signers. The tool shall then make available to each de-
signer only what that designer is supposed to be able to
access.

This is another essential aspect of information hiding.
For example, a designer implementing the internal de-
sign of module A should be allowed to see all details
related to module A, but only the interface specifications
for each of the other modules.

• The tool shall provide different views of the design, i.e.
the design organised/partitioned in different ways, some
textual and some graphical.

This is equivalent to a similar item for the Require-
ments Tool. Viewing the design by data-flow, uses hier-

archy, or scheduling requirements satisfies different ob-
jectives. No single view is universally useful.

6.6 Software design verification tool

• The tool shall take as input the main documentation used
by all developers, reviewers, testers, and verifiers.

Since it is less readable and typically used by fewer
people, the formal documentation can easily become out
of date. By taking the main documentation as input, the
project receives the benefits of the associated formal
methods without an increases burden in documentation,
though this does require the documentation to adhere to
a more rigid document format in order to facilitate pars-
ing by the tools.

• The tool shall interface to general verification tools that
have built in proof strategies or decisions that automati-
cally discharge a significant portion of these conditions.

Controls engineers would never dream of rolling their
own mathematical design and simulation tools when
programs such as Matlab with its controls toolbox are
available. Similarly good theorem provers, modelcheck-
ers and other tools are difficult to build and debug. Sig-
nificant development effort has been expended on these
tools and we should make use of it. The domain specific
toolboxes of Matlab provide us with a successful model
for specialization of a powerful, general tool to improve
applicability to a particular domain.

• When the tool suite fails to automatically prove a ver-
ification obligation, it shall, when possible, generate a
counter example that can be simulated/executed by the
verifier. If it fails in the counter example generation it
should allow the verifier to attempt the proof interac-
tively.

As much as possible of the verification should be auto-
mated but having access to an interactive mode for ver-
ification allows human guidance based upon knowledge
of the problem to guide the verification if necessary.

• The tool shall have batch processing and audit trail gen-
eration facilities. After any change to any of the docu-
ments, it should be possible to automatically rerun all
of the previous verification steps (consistency checks,
block comparison proofs, etc.) and see which, if any,
have broken.

Generation of complete detailed proof output as an
audit trail for the verification was required by the regu-
lator. Before batch processing facilities were added to
PVS, rerunning the verification proofs and producing
the proper output was time consuming and tedious man-
ual work requiring a couple of days effort. Emacs LISP
scripts to automate the process were eventually writ-
ten that allowed the re-verification and output gener-
ation process to be automatically run over night after
each revision of the documents, automatically highlight-
ing the failed proofs. Over night, the design verification
tool went from an additional burden to a system that im-
proved productivity.
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6.7 Coding tools

Coding from formal, detailed designs, is straightforward in
most programming languages. Generic programming tools
are likely to be more than adequate. (See Sect. 7 for discus-
sion on a Coding Tool we would like to see in the future.)

6.8 Code review tools

As with the coding tools, many generic code review tools
could prove useful. The deciding factor is support for the
specific programming language(s) used on the project.

6.9 Testing tools

Testing usually requires tools that are quite project specific
and as such are really beyond the scope of this paper. Testers
do, indeed need access to the requirements, software de-
sign and code, and will make heavy use of the relevant
tools.

For hard real-time systems, testing timing is always a
major concern. Without precise logic analysers this task
would usually prove to be intractable.

6.10 Code verification tool

• The tool shall generate the Code Verification Report, or-
ganised by modules, directly from the code.

A restatement of the purpose of the tool.
• For each code module generated by the tool, the layout of

the document should be as close as feasible to the struc-
ture of the relevant sections of the software design itself.

This facilitates manual comparison with the software
design. In the future, much of the comparison may be
handled automatically – see Sect. 7.

• The tool shall automatically generate design extracts in
appropriate sections of the Code Verification Report as
directed by the analyst.

Again, for manual comparison it is necessary to show
the corresponding section of the software design. It is
time consuming for the analyst to copy and paste from
the software design into the verification document.

• The tool shall be capable of merging the analysis and
comparisons so that if the report has to be regenerated
existing analyses and comparisons will be automatically
inserted in the appropriate sections.

This is special case of the general requirement
(Sect. 6.1) to be able to automatically include manually
created sections in future versions of the document.

6.11 Table tool

• The tool shall include the capability to check tabular
expressions for completeness and disjointness, in the

context within which the tabular expression is placed.
(The tool will need information about the identifiers in
the table cells. This information will be extracted from
the relevant databases.)

As already indicated (Sect. 2.1), one of the main
benefits of representing functions by tabular expressions
is that the tables present the functions so that the input
domain is demonstrably complete, and the predicates
are disjoint. This enforces specifications in which every
input condition has an assigned output value, and
the specifications are unambiguous. In some complex
tables, these conditions are not obvious and automated
support is particularly time-effective.

• The tool shall include the capability to transform a tab-
ular expression of a particular “kind” (vertical condition
table, for example) into an equivalent tabular expres-
sion of a different kind (structured decision table, for
example).

We often have to compare behaviour specified in
one tabular format with the behaviour specified in a
different format. It is essential to be able to make these
comparisons. At the very least, the tool must be able to
convert all tabular expressions to one tabular format.
This is the option chosen by OPG.

• The tool shall be capable of comparing two tabular
expressions to determine if they describe equivalent
behaviour.

This is an obvious requirement. It may be imple-
mented within the Table Tool itself, or the tool may use
theorem provers such as PVS.

• The tool shall be capable of functionally composing
tabular expressions.

One of the most common tasks in dealing with tabular
expressions, is to compose two or more tables. For
example, it is quite common for the software design to
implement the composition of tables in a single program.
Functional composition of tables presents significant
technical problems, since it is necessary to be able to
simplify resulting expressions if the composition is to
be useful. Some progress in this regard has been made
recently by Kahl [14].

• The tool shall be capable of interpreting a tabular
expression that has been manually created (as long
as the manually created table adheres to agreed on
specifications).

This is again a special case of the general require-
ment (Sect. 6.1) to be able to automatically include
manually created sections in future versions of the
document.

6.12 Other specification tools – pseudo-code tool

The only other specification tool we require (immediately),
is one that will handle the pseudo-code used to specify algo-
rithms when the sequence of statements is important (since
tabular expressions are independent of the sequence of state-
ments).
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7 Future tools

A tool that would be of obvious benefit, as discussed in
Sect. 6.10, is a tool that could extract tabular expressions
from source code. If we could construct such a tool, we
could go a long way towards completely automating the
code verification. Although we have over thirteen years ex-
perience in performing this task manually, we still do not
know how to perform this task automatically. As far as we
know, no-one has succeeded in doing this – yet. Such a tool
would be extremely useful in reverse engineering projects
as well. We are actively investigating methods for automat-
ing this task, and are examining a few promising alterna-
tives. The case in which the code is transformed from tabu-
lar expressions through the application of proscriptive cod-
ing guidelines is clearly easier to automate than the general
case.

As described in Sect. 6.7, a tool that could transform
tabular expressions into target code, would also be benefi-
cial. Our experience is that the module internal designs in
the software design are detailed enough to make this practi-
cal. The coding guidelines in use are already extremely pre-
scriptive, and in this domain specific context, it should be
possible to construct efficient code from the tabular expres-
sions.

Another candidate for a tool is mentioned in Sect. 6.10.
This tool would perform the detailed comparisons of the tab-
ular expressions extracted from the code (together with the
extracted variable classifications), against the corresponding
information in the software design. It is likely that the tool
would have to link to a theorem prover such as PVS.

Automatic generation of test cases is of obvious benefit.
Tabular expressions would seem to lend themselves to this
activity and there has been some preliminary work in this
regard. However it is of practical importance that the num-
ber of generated test cases is manageable, which prohibits
the application of some of the more obvious “brute force”
approaches.

8 Conclusion

We believe that most formal methods will not be viable in
practical software development, without extensive and com-
prehensive tool support. It is vital that the suite of tools
should be integrated and work co-operatively over the com-
plete software development life-cycle.

Developers of the methodologies need to produce tool
support of a quality commensurate with the anticipated us-
age of the methodology. One way of achieving this in the
long term, is to develop them as open source products, in co-
operation with the growing community of software develop-
ers whose applications are (or will be) classified as safety-
critical.

One lesson we have learned, is that developing tools
to cope with mundane, but necessary and time-consuming
tasks, can have an immense impact on schedule. The code

verification tool described in Sect. 3.2, e.g., reduced the doc-
ument preparation time from approximately three months to
less than one month. The tools may not present the same ex-
citement and challenge to their developers as more sophisti-
cated tools might, but their importance to the project can be
even more substantial.

Another vital lesson we learned is that the tools must
be flexible. The tools should never prevent the use of man-
ual construction of sections of project documents. If they do
prevent these manual efforts, it is possible that critical dead-
lines/milestones may be missed simply because of a tooling
problem.
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