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abstract and concrete models of computation. In concrete models, unlike abstract models, the
computations depend on the representation of the algebra. First, we show that with abstract mod-
els, one needs algebras with partial operations, and computable functions that are both continuous
and many-valued. This many-valuedness is needed even to compute single-valued functions, and
so abstract models must be nondeterministic even to compute deterministic problems. As an
abstract model, we choose the ‘“‘while’-array programming language, extended with a nondeter-
ministic “countable choice” assignment, called the WhileCC™ model. Using this, we introduce the
concept of approzimable many-valued computation on metric algebras. For our concrete model,
we choose metric algebras with effective representations. We prove: (1) for any metric algebra A
with an effective representation o, WhileCC" approximability implies computability in «, and
(2) also the converse, under certain reasonable conditions on A. From (1) and (2) we derive an
equivalence theorem between abstract and concrete computation on metric partial algebras. We
give examples of algebras where this equivalence holds.
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1. INTRODUCTION

The theory of data in computer science is based on many sorted algebras and ho-
momorphisms. The theory originates in the 1960s, and has developed a wealth of
theoretical concepts, methods and techniques for the specification, construction,
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2 . J.V. Tucker and J.l. Zucker

and verification of software and hardware systems. It is a significant achievement
in computer science and has exerted a profound influence on programming [Goguen
et al. 1978; Meseguer and Goguen 1985; Wirsing 1991]. However, given the abso-
lutely fundamental nature of its subject matter — data — there are many fasci-
nating and significant open problems. An important general problem is:

To develop a comprehensive theory of specification, computation and
reasoning with infinite data.

By infinite data we mean real numbers, spaces of functions, streams of bits or re-
als, waveforms, multidimensional graphics objects, video, and analogue and digital
interfaces. The application areas are obvious: scientific modelling and simulation,
embedded systems, graphics and multimedia communications.

Data types of infinite data are modelled by topological many-sorted algebras. In
this paper we consider computability theory on topological algebras and investigate
the problem

To compare and integrate high-level, representation independent, ab-
stract models of computation with low-level, representation dependent,
concrete models of computation in topological algebras.

Computability theory lies at the technical heart of theories of both specification
and reasoning about such systems. There are many disparate ways of defining
computable functions on topological algebras and some have (different) signifi-
cant mathematical theories. In the case of the real numbers one can contrast
the approaches in books such as [Aberth 1980; 2001; Pour-El and Richards 1989;
Weihrauch 2000; Blum et al. 1998].

Generally speaking, the models of computation for an algebra can be divided into
two kinds: the abstract and concrete.

With an abstract model of computation for an algebra, the programs and al-
gorithms do not depend on any representation of the algebra and are invariant
under isomorphisms. Abstract models originated in the late 1950s in formalising
flowcharts, and include program schemes and many languages that have been used
in the study of program semantics [de Bakker 1980; Apt and Olderog 1991]. Ex-
amples of such models are the While programming language over any algebra
and the Blum-Cucker-Shub-Smale (BCSS) model [Blum et al. 1989; Blum et al.
1998] over the rings of real or complex numbers. The theory of abstract models
is stable: there are many models of computation and the conditions under which
they are equivalent are largely known [Tucker and Zucker 1988; 2000]. For example,
‘while’ programs, flow charts, register machines, Kleene schemes, etc., are equiva-
lent on any algebra; the BCSS models are simply instances obtained by choosing
the algebra to be a ring or ordered ring.

With a concrete model of computation for an algebra the programs and com-
putations are not invariant under isomorphisms, but depend on the choice of a
representation of the algebra. To understand invariance requires a study of reduc-
tions and equivalences between “computable” representations. Complications arise
in relating different concrete representations. Usually, the representations are made
from the set N of natural numbers, and computability on an algebra is reduced to
classical computability on N. Concrete models originated in the 1950s, in formalis-
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Abstract versus Concrete Computation on Metric Partial Algebras . 3

ing the computable functions on real numbers [Grzegorczyk 1955; 1957; Lacombe
1955]. Examples of concrete models are computability via

—effective metric spaces [Moschovakis 1964],

—computable sequence structures [Pour-El and Richards 1989,

—domain representations [Stoltenberg-Hansen and Tucker 1988; 1995;
Edalat 1995; 1997],

—type two enumerability [Weihrauch 2000], and

—numbered topological spaces [Spreen 1998; 2001].

The theory of concrete models is not stable, though it seems to be converging:
the above models are known to be equivalent under conditions satisfied by many
(though not all) important spaces (see [Stoltenberg-Hansen and Tucker 1999] for
equivalence results; also [Weihrauch 2000, §9] for counterexamples). In the case
of the real numbers, the above concrete models (and others) are all known to be
equivalent to Grzegorczyk-Lacombe (GL) computability.

In the theory of computation on algebras, abstract models are implemented by
concrete models. Thus, the gap between the models is the gap between high level
programming abstractions and low level implementations, and can be explored in
terms of the following concepts:

—Soundness of abstract model: The functions computable in the abstract model
are also computable in the concrete model.

—Adequacy of abstract model: The functions computable in the concrete model are
computable in the abstract model.

—C Completeness of abstract model: Functions are computable in the abstract model
if, and only if, they are computable in the concrete model.

However, there is a considerable gap between abstract and concrete models of com-
putation, especially over topological data types. For example, the popular abstract
model in [Blum et al. 1998] is not sound for the main concrete models because of its
assumptions about the total computability of relations such as equality. Equality on
the real numbers is not everywhere continuous, but in all the concrete models com-
putable functions are continuous (¢f. Ceitin’s Theorem [Ceitin 1959; Moschovakis
1964]). The connection between abstract and concrete models of computation on
the real numbers is examined in [Tucker and Zucker 1999] where approzimation
by ‘while’ programs over a particular algebra was shown to be equivalent to the
standard concrete model of GL computability over the unit interval.

First attempts at bridging the gap for all topological algebras in general have been
made in [Brattka 1996; 1999], using a generalisation of recursion schemes (abstract
computability) and Weihrauch’s type two enumerability (concrete computability).
Here we investigate further the problems in comparing the two classes of models and
in establishing a unified and stable theory of computation on topological algebras.
We prove new theorems that bridge the gap in the case of computations on metric
algebras with partial operations.

By reflecting on a series of examples, we show that to compute functions on
topological algebras, it is necessary to consider

(i) algebras with partial operations,
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4 . J.V. Tucker and J.l. Zucker

(i) computable functions that are both continuous and many-valued, and
(i4i) approximations by abstract programs.

In particular, many-valued functions are needed in the abstract model, even to com-
pute single-valued functions. Thus, to prove an equivalence between abstract and
concrete models we must include a nondeterministic construct to define many-
valued functions, and in this way use nondeterministic abstract models even to
compute deterministic problems. We find that

imperative and other abstract programming models must be nondeter-
ministic to express even simple programs on topological data types.

We choose the While programming language as an abstract model for computing
on any data type, and extend it with the nondeterministic assignment of countable
choice

x : choose z : b(z,x,y)

where z is a natural number variable and b is a Boolean-valued operation. This
new model is called WhileCC~ computability (‘CC” for “countable choice”, *’ for
array variables.) In particular, we introduce a notion of approzimable many-valued
computation, and formulate and prove the continuity of their semantics. We thus
have the partial many-valued functions approximable by a WhileCC - program on
A.

As a concrete model, we choose effective metric spaces; this is known to be equiv-
alent with several other concrete models. It is an elegant approach, we feel, suitable
for theoretical investigation and comparison with other models of computability;
some other choices of concrete model (among those listed above) may be closer to
practical techniques for exact computation with reals (say).

In computation with effective metric spaces A we pick an enumeration « of a
subspace X of A, and construct the subspace C,(X) of a-computable elements of
A, enumerated by @. We thus have the partial functions computable on C,(X) in
the representation a.

We then prove two theorems that can be summarised (a little loosely) as follows.
Soundness Theorem: Let A be any metric partial algebra with an effective
representation «. Suppose Co(X) is a subalgebra of A, effective under @. Then
any function F on A that is WhileCC™ approximable over A is computable on
Co(X) ina.

This theorem is technically involved but quite general, and gives new insight into the
semantics of imperative programs applied to topological data types. The converse
theorem is more restricted in its data types:

Adequacy Theorem: Let A be any metric partial algebra A with an effective
representation «. Suppose the representation a is WhileCC ¥ computable and
dense. Then any function F: A — A that is computable on C,(X) in @ and
effectively locally uniformly continuous in o is WhileCC ¥ approximable over A.

These are combined into a Completeness Theorem. The proper statements of
these three theorems are given as Theorems A, B and C (in Sections 8, 9 and 10).
Some interesting applications to algebras of real numbers and to Banach spaces are
studied.
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Here is the structure of the paper. We begin, in Section 2, by explaining the
role of partiality, continuity and many-valuedness in computation, using simple
examples on the real numbers. In Section 3 we describe topological and metric
partial algebras. In Section 4 we introduce the WhileCC” language, give it an
algebraic semantics, and define approximable WhileCC” computability. Section
5 is devoted to examples. In Section 6 we prove the continuity of WhileCcC™
computable many-valued functions. In Section 7 we introduce our concrete model,
effective metric spaces, and prove a Soundness Theorem (Theorem Ag) for the
special case of surjective enumerations of countable (not necessarly metric) algebras.
In Section 8 we define the subspace of elements computable in a metric algebra,
and then prove the more general Soundness Theorem (Theorem A) and, in Section
9, the Adequacy Theorem (Theorem B). These are combined into a Completeness
Theorem (Theorem C) in Section 10. Concluding remarks are made in Section 11.

This work is part of a research programme — starting in [Tucker and Zucker
1988] and most recently surveyed in [Tucker and Zucker 2000] — on the theory
of computability on algebras, and its applications. Specifically, it has developed
from our studies of real and complex number computation in [Tucker and Zucker
1992a; 1999; 2000], stream algebras in [Tucker and Zucker 1992b; 1994] and metric
algebras in [Tucker and Zucker 2002a].

2. PARTIALITY, CONTINUITY, MANY-VALUEDNESS AND EXTENSIONALITY

When one considers the relation between abstract and concrete models, a number of
intriguing problems appear. We explain them by considering a series of examples.
Then we formulate our strategy for solving these problems.

Our chosen abstract and concrete models are introduced later (in Sections 4 and
6, respectively), so we must explain the problems of computing on the real number
data type in general terms. First, we sketch the abstract and concrete forms of the
real number data type. The picture for topological algebras in general will be clear
from the examples.

2.1 Abstract versus concrete data types of reals; Continuity; Partiality

(a) Abstract and concrete data types of reals. To compute on the set R
of real numbers with an abstract model of computation, we have only to select
an algebra A in which R is a carrier set. Abstract computability on an algebra
A is computability relative to A: a function is computable over A if it can be
programmed from the operations of A using the programming constructs of the
abstract model. Clearly, there are infinitely many choices of operations with which
to make an algebra A, and hence there are infinitely many choices of classes of
abstractly computable functions. All the classes of abstractly computable functions
on R have decent mathematical theories, resembling the theory of the computable
functions on the natural numbers — thanks to the general theory of computable
functions on many-sorted algebras [Tucker and Zucker 2000).

In contrast, to compute on R with a concrete model of computation, we choose
a representation map «: C — R from a structure C (typically a subset of the
naturals N or Baire space NN) based on the fact that the reals can be built from the
rationals, and hence the naturals, in a variety of equivalent ways (Cauchy sequences,
decimal expansions, etc.). Computability of functions on the reals is investigated
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using the theory of computable functions on C, applied to R via a.

To compare concrete with abstract models, we choose an algebra A in which R
is a carrier set and the operations of A are computable with respect to a. For
example, multiplication by 3 is not computable in the decimal representation, but
the field operations on R are computable in the Cauchy sequence representation.

In the examples in §2.2 below, we will take as our concrete model the set CS C NV
of fast Cauchy sequences, i.e., sequences (k,) of naturals such that for all n and
all m > n, |rg,, — 7k, | < 27", where ro,71,72,... is some standard enumeration
of the rationals. Note that the canonical map a: CS — R is continuous and onto.
(b) Continuity. Computations with real numbers involve infinite data. The
topology of R defines a process of approximation for infinite data; the functions on
the data that are continuous in the topology are exactly the functions that can be
approximated to any desired degree of precision.

For abstract models we assume the algebra A that contains R is a topological
algebra, i.e., one in which the basic operations are continuous in its topologies. We
expect further that all the computable functions will be continuous. However, the
class of functions that can be abstractly computed exactly turns out to be quite
limited; approrimate computations are found to be necessary in abstract models
[Tucker and Zucker 1999].

In the concrete models, moreover, it follows from Ceitin’s Theorem [Moschovakis
1964] that computable functions are continuous.

Thus, in both abstract and concrete approaches, an analysis of basic concepts
shows that computability implies continuity.

(¢) Partiality. In computing with an abstract model on A we assume A has some
boolean-valued functions to test data. For example, in computing on R we need
the functions

=p:R? > B and <gR? > B

where B = {it,f} is the set of booleans. This presents a problem, since total con-
tinuous boolean-valued functions on the reals must be constant. Further, as was
shown in [Tucker and Zucker 1999], the ‘while’ and ‘ while’-array computable func-
tions on connected total topological algebras are precisely the functions explicitly
definable by terms over the algebra.

To study the full range of real number computations, we must therefore redefine
these tests as partial boolean-valued functions, where the undefinedness corresponds
intuitively to “divergence” or non-termination of the relevant algorithm. Compu-
tation with partial algebras has interesting effects on the theory of computable
functions, as indicated in [Tucker and Zucker 1999].

On the basis of these preliminary remarks, we turn to the examples.

2.2 Examples of nondeterminism and many-valuedness

We look at three examples of computing functions on R.
Ezample 2.2.1 (Pivot function). Define the function

piviR® = {1,...,n}
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some i: x; 0 if such an ¢ exists

piv(zy,...,z,) = { (1)

T otherwise.
where ‘1’ denotes “divergence” or undefinedness.

Computation of the pivot is a crucial step in the Gaussian elimination algorithm
for inverting matrices.

Note that (depending on the precise semantics for the phrase “some i” in (1))
piv is nondeterministic or (alternatively) many-valued on dom(piv) = R™\{0}.
Further:

(a) There is no single-valued function which satisfies the definition (1) and is contin-
uwous on R™. For such a function, being continuous and integer-valued, would have
to be constant on its domain R"\{0}, with constant value (say) j € {1,...,n}.
But its value on the z;-axis would have to be different from j, leading to a contra-
diction.

(b) However there is a computable (and hence continuous!) single-valued function
pivy: CS™ = {1,...,n} (2)

with a simple algorithm. (The space CS was defined in §2.1(a).) Note however that
piv, is not extensional on CS™ (i.e., not well defined on R™), or (equivalently) the
map (2) cannot be factored through R":

cs"

R® ————>{1,...,n}

In effect, we can regain continuity (for a single-valued function), by foregoing ex-
tensionality.

(¢) Alternatively, we can maintain continuity and extensionality by giving up single-
valuedness. For the many-valued function
piv,: R" — P,({1,...,n})
(where P, (...) denotes the set of countable subsets of ...) defined by
k € pivy(z1,...,2n) <= 1 #0 (k=1,...,n)

is extensional and continuous, where a function f: A — P, (B) is defined to
be continuous iff for all open Y C B, f7Y] (=¢¢ {z€A| f)NY #0}) is
open in A. (We will consider continuity of many-valued functions systematically in
Section 6.)

Remarks 2.2.2. (a) The many-valued function piv,, is “tracked” (in a sense to
be elucidated in Section 7) by (any implementation of) piv,.

(b) We could only recover continuity of the piv function by giving up either exten-
sionality (as in (b) above) or single-valuedness (as in (¢)).
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8 . J.V. Tucker and J.l. Zucker

(c) Note however that the complete Gaussian algorithm for inverting matrices is
continuous and deterministic (hence single-valued) and extensional, even though
it contains piv, as an essential component!

Ezxample 2.2.3 (“Choose” a rational arbitrarily near a real). Define a function

F:RxN — N

by

F(z,n) = “some” k: d(z,rx) < 27" (3)
where (as before) rg,r1,72,... is some standard enumeration of the rationals. Note
again:

(a) There is no single-valued, continuous function F' satisfying (3), since such a
function, being continuous with discrete range space, would have to be constant in
the first argument.

(b) But there is a single-valued computable (and continuous) function
Fp:CSxN = N
trivially — just define

FO (é.:n) = é.n
This is, again, non-extensional on R.

(¢) Further, there is a many-valued, continuous, extensional function satisfying (3):
F,:RxN = P,(N)
where
E,(z,n) = {k|d(z,rs) <2 "}.

Ezample 2.2.4 (Finding the root of a function). (Adapted from [Weihrauch 2000].)
Consider the function f, shown in Figure 1, where a is a real parameter. It is defined
by

r4+a+2 if < -1
folx) = Ca—2 if -1<z<1
r+a—2 if 1<z

This function has either 1 or 3 roots, depending on the size of a. For a < —1, f,
has a single (large positive) root; for a > 1, f, has a single (large negative) root;
and for —1 < a <1, f, has three roots, two of which become equal when a = +1.

Let g be the (many-valued) function, such that g(a) gives all the non-repeated
roots of f,. This is shown in Figure 2. Again we have the situation of the previous
examples:

(a) We cannot choose a (single) root of f, continuously as a function of a.

(b) However, one can easily choose and compute a root of f, continuously as a
function of a Cauchy sequence representation of a, i.e., non-extensionally in a.

(¢) Finally, g(a), as a many-valued function of a, is continuous. (Note that in order
to have continuity, we must exclude the repeated roots of f,, at a = £1.)
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Y y=£,(x

—

Figure 1

g(a)

Figure 2

Note that other examples of a similar nature abound, and can be handled sim-
ilarly; for example, the problem of finding, for a given real number z, an integer
n> x.

2.3 Solutions for the abstract model
In the above three examples we have presented a number of single-valued functions

f:R™ = R that we want to compute, and argued that:

(1) they are not continuous; and hence

(#4) they cannot be abstractly computed on the abstract data type containing R;
(#97) however they can be computed in the concrete data type CS;
(

iv) they are selection functions for many-valued functions on R that are continu-
ous.
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At the level of concrete models of computation, there is no real problem with the
issues raised by these examples, since concrete models work only by computations on
representations of the reals (say by Cauchy sequences), to be described in Sections
6 and 8.

The real problem arises with the construction of abstract models of computation
on the reals which should model the phenomena illustrated by these examples, and
should, moreover, correspond, in some sense, to the concrete models. Thus we have
the question:

Can such continuous many-valued functions be computed on the ab-
stract data type A containing R using new abstract models of computa-
tion? If they can, are the concrete and abstract models then equivalent?

The rest of this paper deals with these issues. We answer the above question
more generally, over many-sorted metric partial algebras A.

The solution presented in this paper is to extend the While" programming lan-
guage over A [Tucker and Zucker 2000] with a nondeterministic “countable choice”
programming construct, so that in the rules of program term formation,

choose z : b

is a new term of type nat, where z is a variable of type natand b is a term of type
bool. We will revisit the examples after giving the language definition in Section 4.

Alternatively (and equivalently), one could use other abstract models; e.g., mod-
ify the pPR* function schemes [Tucker and Zucker 2000, §9.1] by replacing the
constructive least number (u) operator, f(z) =~ pz € Ng(z,z) = #] (where
g is boolean-valued) by a nondeterministic choice operator f(z) ~ choose z €
Nlg(z, z) = t].

In [Brattka 1999] a more elaborate set of recursive schemes over many-sorted
algebras, with many-valued operations, was presented.

3. TOPOLOGICAL PARTIAL ALGEBRAS AND CONTINUITY

We define some basic notions concerning topological and metric many-sorted partial
algebras. Much of this information is in [Tucker and Zucker 2000], but we introduce
here the concept of partial algebra, with examples which are important for later.

3.1 Basic algebraic definitions

A signature X (for a many-sorted partial algebra) is a pair consisting of (i) a
finite set Sort(X) of sorts, and (i4) a finite set Func (X)) of typed function symbols
F:u — s, where u is a X-product type s1 X -+ X §p, (m > 0), with s1,...,8,,5 €
Sort(X). (The case m = 0 corresponds to constant symbols.) We write u,wv, ...
for X-product types.

A partial X-algebra A has, for each sort s of X, a non-empty carrier set A; of sort
s, and for each Y-function symbol F : u — s, a partial function F4 : A* 5 A,
where we write A* =g A; x---x A, if 4 =8 X--- X sp. (The notation
f: X 3Y refers to a partial function from X to Y.) We also write X(A4) for the
signature of A.

The algebra A is total if F4 is total for each Y-function symbol F. Without
such a totality assumption, A is called partial.
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In this paper we deal mainly with partial algebras. The default assumption is that
“algebra” refers to partial algebra. We will, nevertheless, for the sake of emphasis,
often speak explicitly of “partial algebras”.

Ezamples 3.1.1. (a) The algebra of booleans has the carrier B = {t, f} of sort
bool. The signature X(B) and algebra B respectively can be displayed as follows:

signature X'(B) algebra B

sorts bool carriers B

functions true, false : — bool, functions tt,f: — B,
and, or : bool® = bool and®,orf : B2 > B
not : bool — bool not’ : BB

end end

and

Note that the signature can essentially be inferred from the algebra; indeed from
now on we will not define the signature where no confusion will arise. Further, for
notational simplicity, we will not always distinguish between function names in the
signature (true, etc.) and their intended interpretations (true® = t, etc.)

(b) The algebra N of naturals has a carrier N of sort nat, together with the zero
constant and successor function:

algebra N
carriers N
functions 0: — N,

S:N—» N
end

(¢) The ring Ro of reals has a carrier R of sort real:

algebra Ry

carriers R

functions 0,1: — R,
+,x:R? 5 R,
—tR—=R

end

(d) The field Ry of reals is formed by adding the multiplicative inverse to the ring
Ro:

algebra R,

import Ry

functions inv® : R — R
end

where
VR (z) = 1/z if z 75'0
0 otherwise.
This is an example of a partial algebra. Other examples will be given later.

Throughout this work we make the following assumption about the signatures
X,
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12 . J.V. Tucker and J.l. Zucker

AssuMPTION 3.1.2 (INSTANTIATION ASSUMPTION). For every sort s of X, there
is a closed term of that sort, called the default term 8° of that sort.

This guarantees the presence of default values 6% in a X-algebra A at all sorts
s, and default tuples 84 at all product types u.
3.2 Adding booleans: Standard signatures and algebras

The algebra B of booleans (Example 3.1.1(a)) plays an essential role in computation.
This motivates the following definition.

Definition 3.2.1 (Standard signature). A signature X is standard if (i) it is an
expansion! of X (B), and (ii) the function symbols of X include a conditional

ifs : bool x s2 — s
for all sorts s of X other than bool.

For a standard X', a Y-sort s is called an equality sort if X includes an equality
operator

eq, : s> — bool.

Definition 3.2.2 (Standard algebra). Given a standard signature X, a Y-algebra
A is a standard if (i) it is an expansion of B, (i7) the conditional operator on each
sort s has its standard interpretation in A; i.e., for b€ B and z,y € A;,

b=
iAo,y = 7 L0
y if b=*f;

and (i7i) the operator eq, is interpreted as a partial identity on each equality sort
s, i.e., for any two elements of A, if they are identical, then the operator at these
arguments either returns tt or diverges; and if they are not identical, then it either
returns f or diverges.

Remarks 3.2.3. (a) In practice, part (i4¢) of the above definition occurs as one
of three cases. First, the case

A t if z=y
eq; (z,y) = ;
% (7,9) {ff otherwise,

i.e., total equality, represents the situation where equality is “decidable” or “com-
putable” at sort s, for example, when s = nat. Second, the case

A t if z=y
eqs (z,y) = .
% (#,9) {T otherwise

represents typically the situation where equality is “semidecidable”. An example is
given by the initial term algebra of an r.e. equational theory. Third, the case

B T ifz=y
€ ) = i
q, (z,9) {ff otherwise,

IExpansions of signatures and algebras are defined in [Tucker and Zucker 2000, Def. 2.6].
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represents typically the situation where equality is “co-semidecidable”. Examples
are given by the data types of streams and reals; cf. the discussion in 2.1(c) and
Example 3.2.4(c).

(b) Any many-sorted signature X can be standardised to a signature X° by ad-
joining the sort bool together with the standard boolean operations; and, corre-
spondingly, any algebra A can be standardised to an algebra A® by adjoining the
algebra B as well as the conditional and equality operators.

Ezample 3.2.4 (Standard algebras).
(a) The simplest standard algebra is the algebra B of the booleans (Example

3.1.1(a)).

(b) A standard algebra of naturals N is formed by standardising the algebra N
(Example 3.1.1(b)), with (total) equality and order operations on N:

algebra N

import N, B

functions if),, : B x N> — N,
eqes Is{,‘gt N > B

end

(¢) A standard partial algebra R, on the reals is formed similarly by standardising
the field Ry (Example 3.1.1(d)), with partial equality and order operations on R:

algebra R
import  Rq, B
functions if’%, : B x R? 5 R,

R R .2 -
eqca)s Isyear : R* =B

end
where
+if t if <y
if z= .
engaﬂ(x,y) = ] y and Iszgm(;v,y) =<f if z>y
f if x#y N
if x=uy.

Discussion 3.2.5 (Semicomputability and co-semicomputability). The signifi-
cance of the partial equality and order operations in Example (¢) above, in con-
nection with computability and continuity, has been touched on in §2.1(c). The
continuity of partial functions will be discussed in §3.5 (and see in particular Ex-
ample 3.5.4(b)). Regarding computability, these definitions are intended to capture
the intuition of the “semicomputability” of order and “co-semicomputability” of
equality on (a concrete model of) the reals. For given two reals z and y, repre-
sented (say) by their infinite decimal expansions, suppose their decimal digits are
being read systematically, the n-th digit of both at step n. Then if x # y or z < y,
this will become apparent after finitely many steps, but no finite number of steps
can confirm that z = y.

Throughout this paper, we will assume the following.
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ASSUMPTION 3.2.6 (STANDARDNESS ASSUMPTION). The signature X and X-
algebra A are standard.

3.3 Adding counters: N-standard signatures and algebras

The standard algebra A of naturals (Example 3.2.4(b)) plays, like B, an essential
role in computation. This motivates the following definitions.

Definition 3.3.1 (N-standard signature). A signature is N-standard if (i) it is
standard, and (%) it is an expansion of X' (N).

Definition 3.3.2 (N-standard algebra). Given an N-standard signature X, a cor-
responding Y-algebra A is N-standard if it is an expansion of A.

Note that any standard signature X can be N-standardised to a signature SV
by adjoining the sort nat and the operations 0, S, eqnat, ISnat and ifpat. Corre-
spondingly, any standard X-algebra A can be N-standardised to an algebra AN by
adjoining the carrier N together with the corresponding standard functions.

Ezamples 3.3.3 (N-standard algebras). (a) The simplest N-standard algebra is
the algebra V' (Example 3.2.4(b)).
(b) We can N-standardise the algebra R, (Example 3.2.4(c)) to form the algebra
RY.
P

3.4 Adding arrays: Algebras A* of signature X*

A standard signature X, and standard X-algebra A, can be expanded in two stages:

(1°) N-standardise these to form ¥ and AV, as in §3.3.

(2°) Define, for each sort s of X, the carrier A% to be the set of finite sequences or

arrays a* over Ag, of “starred sort” s*.

The resulting algebras A* have signature £*, which extends XV by including, for
each sort s of X, the new starred sorts s*, and certain new function symbols. Details
are given in [Tucker and Zucker 2000, §2.7] and (an equivalent but simpler version)
in [Tucker and Zucker 1999, §2.4].

The significance of arrays for computation is that they provide finite but un-
bounded memory. The reason for introducing starred sorts is the lack of effective
coding of finite sequences within abstract algebras in general (unlike the case with
N).

3.5 Topological partial algebras

We now add topologies to our partial algebras, with the requirement of continuity
for the basic partial functions.

Definition 3.5.1. Given two topological spaces X and Y, a partial function
f: X 5Y is continuous iff for every open V C Y, f~1[V]is open in X, where

V] =4 {z€X |z € dom(f)and f(z) €Y }.

Remark 3.5.2. For later use, we recast this definition in the language of met-
ric spaces. Given two metric spaces X and Y, a partial function f: X =Y is
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continuous iff
Va € dom(f) Ve > 036 > 0Vz € B(a,d) (z € dom(f) A f(z) € B(f(a),¢)).

Definition 3.5.3. (a) A topological partial X-algebra is a partial X-algebra with
topologies on the carriers such that each of the basic X'-functions is continuous.

(b) An (N-)standard topological partial algebra is a topological partial algebra which
is also (N-)standard, such that the carriers B (and N) have the discrete topology.

Ezxamples 3.5.4. (a) Discrete algebras: The standard algebras B and N of
booleans and naturals respectively (§§3.1, 3.3) are topological (total) algebras un-
der the discrete topology. All functions on them are trivially continuous, since the
carriers are discrete.

(b) The partial real algebra R, (Example 3.2.4(c)) and its N-standardised version
Rf)v (Example 3.3.3(b)) can be construed as topological algebras, where R has its

usual topology, and B and N the discrete topology. Note that the partial operations
eq’t,, and s, are continuous. (Recall the discussion in (1.1(c)).)

(¢) Partial interval algebras on the closed interval [0, 1] have the form

algebra 17,

import R,

carriers [

functions ir : I — R,
F: 1™ - ],
Fp: 1M —» T

end

where I = [0,1] (with its usual topology), ir is the embedding of I into R, and
F;: I'™ — I are continuous partial functions. There are also N-standard versions:

algebra Z;,V

import R;,V
carriers [
functions iy : I — R,

end

(d) The N-standard total real algebra R is defined by

algebra R
import R, N, B
functions ifzgal :B x R? 5 R,

divi, : Rx N = R,

end

Here Ry is the ring of reals (example 3.1.1(c)), AV is the standard algebra of naturals
(3.2.4(b)), and divnat is division of reals by naturals (total and continuous! — just
let divnat(mreal,O"at) =g Oreal)‘
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Note that R;' does not contain (total) boolean-valued functions < or = on the
reals, since they are not continuous (cf. the partial functions eqyes and Is,ey of Rp).

Definition 3.5.5 (Extensions of topology to AN and A*). The various algebraic
expansions of A detailed in §§3.3/3.4 induce corresponding topological expansions.
(a) The topological N-standardisation AV of signature X7, is constructed from A
by giving the new carrier N the discrete topology.

(b) The topological array algebra A*, of signature X*, is constructed from AV by
giving A% the disjoint union topology of the sets (A;)™ of arrays of length n, for
all n > 0, where each set (A5)" is given the product topology of the sets A,.

It can be seen that this is the topology on A* generated by the new functions,
i.e., the weakest topology which makes them continuous. It can also be described
as follows. The basic open sets in A% have the form

{a* € A} | Lgth(a*) =n and a*[i1] €Uy, ..., a*[ix] € Uy }
for some n,k,i1,...,%, where 0 < k <n and 0 <4 < --- <4 < n, and for
some open sets Uy, ..., U, C As.

3.6 Metric algebra

A particular type of topological algebra is a metric partial algebra. This is a many-
sorted standard partial algebra with an associated metric:

algebra A
import B, R,
carriers  Ay,..., A,

functions FA: A"t — A,

F,;“:A“’c — As,,

d: A2 5 R,

dt: A2 5 R
end

where B and R, are respectively the algebras of booleans and reals (Examples
3.1.1(a), 3.2.4(c)), the carriers A;,..., A, are metric spaces with metrics d2,...
.. ,df respectively, Fi,..., F} are the Y-function symbols other than dy,...,d,,
and the (partial) functions F/* are all continuous with respect to these metrics (cf.
Definition 3.5.1).
Note that the carrier B (as well as N, if present) has the discrete metric, defined
by

d(z,y) = 0 if z=y
K] if z#y,

which induces the discrete topology.
We will often speak of a “metric algebra A”, without stating the metric explicitly.

Ezxample 3.6.1. Clearly, metric partial algebras can be viewed as special cases of
topological partial algebras. Thus the partial and total real algebras R,, Rf,v and
RY (Examples 3.5.4) can be recast as metric algebras in an obvious way.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.



Abstract versus Concrete Computation on Metric Partial Algebras . 17

Remark 3.6.2 (Extension of metric to A*). A metric algebra A can be expanded
to a metric algebra A* of arrays over A. Namely, given a metric d, on Ay, we define

a (bounded) metric d*; on A? as follows: for a* = (ay,...,ax), b* = (b1,..., b)) €
A%
1 if k#1
d*s(a*a b*) = . k—1 . . ' 7£
min (1, max}— d,(a*[i],b*[i])) otherwise.

This gives the topology on A* induced by the topology on A (Definition 3.5.5)
[Engelking 1989].

Remark 3.6.3 (Product metric on A). If A is a Y-metric algebra, then for each
XY-product sort u = 81 X --- X 8,,, we can define a metric d, on A% by

du((xla s ;xm)7 (yla e -aym)) = I{l;?liX(ds, (xuyz))

or more generally, by the £, metric

m

1
du((@1, ey 2m)s W1y ym) = (O (ds (@i,90)))? (1<p<oo)
i=1
where p = oo corresponds to the “max” metric. This induces the product topology
on A¥.

Remark 3.6.4 (W-continuity). An alternative notion of continuity of partial func-
tions, used by Weihrauch and others [Weihrauch 2000; Brattka 1996], is discussed
in Appendix A.

4. ‘'While PROGRAMMING WITH COUNTABLE CHOICE

The programming language While CC = WhileCC (X)) is an extension of While(X)
[Tucker and Zucker 2000, §3] with an extra ‘choose’ rule of term formation. We give
the complete definition of its syntax and semantics, using the algebraic operational
semantics of [Tucker and Zucker 2000].

Assume X is an N-standard signature, and A is an N-standard X-algebra.

4.1 Syntax of WhileCC(X)
We define four syntactic classes: wvariables, terms, statements and procedures.

(a) Var = Var(X) is the class of X-program variables, and for each X-sort s,
Var, is the class of program variables of sort s: a®,b%,...,x% y% ....

(b) PTerm = PTerm(X) is the class of X-program terms t,..., and for each
X-sort s, PTerm, is the class of program terms of sort s. These are generated by
the rules

t == x* | F(t1,...,ty) | choose z"™* : b
where s,s1,...,8, are X-sorts, F : sy X---X s, — s is a XY-function symbol,
t; € PTermg, for i = 1,...,n (n > 0), and b is a boolean term, i.e., a term of

sort bool.
The ‘choose’ term has sort nat. Think of ‘choose’ as a generalisation of the
constructive least number operator least z : b which has the value k in case b[z/k]
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is true and b[z/i] is defined and false for all 7 < k, and is undefined in case no such
k exists.

Here ‘choose z : b’ selects some value k such that b[z/k] is true, if any such k
exists (and is undefined otherwise). In our abstract semantics, we will give the
meaning as the set of all possible k’s (hence “countable choice”). Any concrete
model will select a particular k, according to the implementation.

Note that the program terms extend the algebraic terms (i.e., the terms over
the signature X') by including in their construction the ‘choose’ operator, which
is not an operation of ¥. An alternative formulation would have ‘choose’ not
as part of the term construction, but rather as a new atomic program statement:
‘choose z : b’. We prefer the present treatment, as it leads to the construction
of many-valued term semantics (as we will see), which is interesting in itself, and
which we would have to deal with anyway if we were to extend our syntax to include
(many-valued) function procedure calls in our term construction.

We write ¢ : s to indicate that ¢ € PTerms, and for u = 81 X +++ X 8p,, W€
write t : u to indicate that ¢ is a u-tuple of program terms, i.e., a tuple of program
terms of sorts si,...,8m,. We also use the notation b,... for boolean terms.

(¢) AtSt= AtSt(X) is the class of atomic statements Sat,... defined by
Sat = skip | div | x:=t¢

where ‘div’ stands for “divergence” (non-termination), and x :=t is a concurrent
assignment, where for some product type u, t:u and x is a u-tuple of distinct
variables.

(d) Stmt = Stmit(X) is the class of statements S, ..., generated by the rules
S = Sat | S1;52 | if b then S; else Sy fi | while b do S od

(e) Proc = Proc(X) is the class of function procedures P,(Q,.... These have
the form

P = funcin a out b aux c begin S end

where a, b and c are lists of input variables, output variables and auziliary (or local)

variables respectively, and S is the body. Further, we stipulate:

—a, b and ¢ each consist of distinct variables, and they are pairwise disjoint,

—all variables occurring in S must be among a, b or c,

—the input variables a must not occur on the lhs of assignments in S,

—initialisation condition: S has the form S;,;;;S', where S;,;; is a concurrent
assignment which initialises all the output and auziliary variables, i.e., assigns
to each variable in b and c the default term (3.1.2) of the same sort.

If a:u and b: v, then P is said to have type u — v, written P :u — v. Its
input type is u and its output type is v.

4.2 Algebraic operational semantics of WhileCC

We interpret programs as countably-many-valued state transformations, and func-
tion procedures as countably-many-valued functions on A. Our approach follows
the algebraic operational semantics of [Tucker and Zucker 2000, §3.4]. First we
need some notation.
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Notation 4.2.1.
(a) Pu(X) is the set of all countable subsets of a set X, including the empty set.
(b) PH(X) is the set of all countable non-empty subsets of X.
(c) We write YT for Y U {71}, where ‘?” denotes divergence.
(d) We write f: X =Y for f: X - P,(Y).
(e) We write f: X 3+ Y for f: X — PL(Y).

We will interpret a WhileCC procedure P : u — s as a countably-many-valued
function P4 from A* to A,", i.e., as a function

AL AY - PHAT
or, in the above notation:
PA: Av 3t AT

Remark 4.2.2 (Significance of 4’). Notice that an output of, say, {2,5,1} is
different from {2, 5}, since the former indicates the possibility of divergence. So a
semantic function will have, for inputs not in its domain, ‘1’ as a possible output
value.

Definition 4.2.3 (States). (a) For each X-algebra A, a state on A is a family
(o5 | s € Sort(X)) of functions

os: Vary — A;.

Let State(A) be the set of states on A, with elements o, .. ..

(b) Let o be a state over A, x = (x1,...,%,) :u and a = (a,...,a,) € A* (for
n > 1). The variant o{x/a} of o is the state over A formed from o by replacing
its value at x; by a; fori =1,...,n.

We give a brief overview of algebraic operational semantics. This was used in
[Tucker and Zucker 1988] for deterministic imperative languages with ¢ while’ and
recursion (see [Tucker and Zucker 2000] for the case of While(X)), but it can be
applied to a wide variety of imperative languages. It has also been used to analyse
compiler correctness [Stephenson 1996]. It can also be adapted, as we will see, to a
nondeterministic language such as While cc’.

Assume (i) we have a meaning function for atomic statements

(Sat) : State(A) =t State(A)",
and (i7) we have defined a pair of functions

First : Stmt — AtSt
Rest? : Stmt x State(A) =3+ Stmit,

where, for a statement S and state o,
First(S) is an atomic statement which gives the first step in the execution
of S (in any state), and Rest?(S,o) is a statement (or, in the present
nondeterministic context, a finite set of statements) which gives the rest
of the execution in state o.
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From these we define the computation step function
CompStep” : Stmt x State(A) =+ State(A)"
by
CompStep”(S,0) = (First(S))"o.

from which, in turn, we can define (for the deterministic language of [Tucker and
Zucker 2000]) a computation sequence or (for the present language) a computation
tree. The aim is to define a computation tree stage function

CompTreeStage” : Stmt x State(A) x N =t (State(4)")<v
where Comp TreeStage” (S, o, n) represents the first n stages of CompTree” (S, o).
Here (State(A)")<“ denotes the set of finite sequences from State(A)", interpreted
as finite initial segments of the paths through the computation tree. From this are

defined the semantics of statements and procedures.

Remark 4.2.4. The intuition behind these semantics is that for any input z € A%,
PA(x) is the set of all possible outcomes (including divergence), for all possible
implementations of the ‘choose’ construct, including non-constructive implemen-
tations! So if (for a given input z) the only infinite paths through the semantic
computation tree are non-constructive, then P4(z) will still include ‘¢’. This is
discussed further in §4.4(b).

We turn to the details of these definitions.
(a) Semantics of program terms. The meaning of ¢t € PTerm; is a function
[t]* : State(4) =t AT
The definition is by structural induction on ¢:

[x]%c = {o(x)}

[ = {c*}
[F(tl,...,tm)]]Aa = {y|3z1 € An[ti]o ... 3zm € AN[tm]o : FA(z1,...,2m) Ly}
U{t |3z € An[tiJo ... 3z, € AN[tn]o : FA(21,...,2m) 1}
U{T|T€[[t,-]]Aa for some i,1 <i<m}
[if(b, t1,t2)]"0 =  {y|(te[b]*o Aye[t]?e) v (Fe[b]?o Aye ta]?o)}
L ulritemo}
[choose z : b]"0 = {neN|te[b] o{z/n}}

U {t|vneN(fe[b] o{z/n} vV teb]?o{z/n})}.

Notice that [choose z : b]]Aa could include both natural numbers and *1”, since for
any n, [b]*c{z/n} could include both t and .

(b) Semantics of atomic statements. The meaning of Sy € AtSt is a
function

(Sat) : State(4) =t State(A)'
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defined by:

stiPDjU = {0}
‘<|E'VDA0 - {1} B B
(x:=t)"0c = {o{x/a}|a€AN[t] c} U {1|1€[t]" o}

(¢) The First and Rest operations. The operation

First: Stmt — AtSt
is defined exactly as in [Tucker and Zucker 2000, §3.5], namely:

S if S is atomic
First(S) = < First(S;) if S=51;9
skip otherwise.

The operation
Rest” : Stmt x State(A) =T Stmt,

is defined as follows (cf. [Tucker and Zucker 2000, §3.5]):
Case 1. S is atomic. Then Rest4(S,0) = {skip}.
Case 2. S = S51;55.
Case 2a. S is atomic. Then Rest*(S,0) = {S»}.
Case 2b. S; is not atomic. Then Rest?(S,0) =

{8';8,|S" € Rest?(S;,0)} U {div|dive Rest?(S;,0)}.
Case 3. S = if bthen S; else S fi. Then Rest“(S,0) contains all of:
S, if e [b]%e
Sy if Fe [b]'e
div if 1€ [b]%.

Note that more than one condition may hold.
Case 4. S = while bdo Sy od. Then Rest“(S,o) contains all of:

So; S if k€ [b]]Aa
skip if e [b]%c
div if te |[b]]AU.

Note again that more than one condition may hold.
(d) Computation step. From Firstwe can define the computation step function
CompStep” : Stmt x State(4) =+ State(A)"

which is like the one-step computation function Compf of [Tucker and Zucker
2000, §3.4], except for being multi-valued:

CompStep™(S,0) = (First(S) |)Aa.
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(e) The computation tree. The computation sequence, which is basic to the
semantics of While computations in [Tucker and Zucker 2000], is replaced here by
a computation tree

CompTree” (S, o)

of a statement S at a state o. This is an w-branching tree, branching according to
all possible outcomes (i.e., “output states”) of the one-step computation function
CompStepA. Each node of this tree is labelled by either a state or ‘1’.

Any actual (“concrete”) computation of statement S at state o corresponds to
one of the paths through this tree. The possibilities for any such path are:

() it is finite, ending in a leaf containing a state: the final state of the computation;
(i4) it is finite, ending in a leaf containing ‘4’ (local divergence);
(i4i) it is infinite (global divergence).

Correspondingly, the function Comp” of [Tucker and Zucker 2000, §3.4] is re-
placed by a computation tree stage function

CompTreeStage” : Stmt x State(A) x N =t (State(4)T)<v
where Comp TreeStage” (S,o,n) represents the first n stages of Comp Tree (S, o).
This is defined (like Comp™) by a simple recursion (“tail recursion”) on n:

Basis: CompTr‘eeStageA(S,a,O) = {0}, i.e., just the root labelled by o.

A(

Induction step: Comp TreeStage”(S,o,n) is formed by attaching to the root {o}

the following;:

(i) for S atomic: the leaf {o'}, for each o' € (]S[)Aa (where ¢’ may be a state
or 1);
(i7) for S not atomic: the subtree Comp TreeStage™(S',o',n—1), for each o' €
CompStep™(S,0) (o' #1) and S' € Rest*(S,0), as well as the leaf {1}
if 4’ e CompStep”(S,0).
Then Comp Tree” (S,0) is defined as the “limit” over n of CompTreeStageA(S, o,n).
Note that only the leaves of CompTree®(S,s) may contain ‘4’ (“local diver-
gence”).

(f) Semantics of statements. From the semantic computation tree we can easily
define the i/o semantics of statements

[S]* : State(A) =t State(A)'.

Namely,
[S]]A(J' is the set of states and/or ‘4’ at all leaves in CompTreeA(S, o),
together with ¢’ if Comp Tr'eeA(S, o) has an infinite path.
Note that, by its definition, |[S]]Aa cannot be empty. It will contain (at least) ‘1’
if there is at least one computation sequence leading to divergence, i.e., a path of
the computation tree which is either infinite or ends in a “}’ leaf.

(9) Semantics of procedures. Finally, if

P = funcin a out b aux c begin S end 4)
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is a procedure of type u — v, then its meaning in A is a function
pA. A ot gt
defined as follows (cf. [Tucker and Zucker 2000, §3.6] ). For z € A",
PAz) = {d'(b) | o' € [S]"o} U {t|t€[S]"0}

where o is any state on A such that o[a] = . (From the initialisation condition
(84.1(e)) it follows by a “functionality lemma” [Tucker and Zucker 2000, 3.6.1] that
P4 is well defined.)

Definition 4.2.5. A WhileCC procedure P : u — v is deterministic on A if for
all z € A, P4(z) is a singleton.

Remark 4.2.6 (Two concepts of deterministic computation). One can distinguish
between two notions of deterministic computation: (i) strong deterministic compu-
tation, the common concept, in which each step of the computation is determinate;
and (i7) weak deterministic computation, in which the output (or divergence) is
uniquely determined by (i.e., a unique function of) the input, but the steps in
the computation are not necessarily determinate. A good example of (i7) is the
Gaussian elimination algorithm (examples 2.2.1 and 5.2.1) which, although defin-
ing a unique function (the inverse of a matrix), incorporates the (nondeterministic!)
pivot function as a subroutine. In Definition 4.2.5 and elsewhere in this paper, we
are concerned with the weak sense of deterministic computation.

Definition 4.2.7.

(a) A many-valued function f: A* =t A,7 is WhileCC computable on A if
there is a WhileCC' procedure P such that f = P4,

(b) A partial function f : A* = A, is WhileCC computable on A if there is a
deterministic WhileCC procedure P : u — s such that for all z € AY,
() f(z)ly = PA()={y}, and
(@) flz)t = PAz)={1},

Remark 4.2.8 (Many-valued algebras). As we have seen, the semantics for While-
CC procedures is given by countably many-valued functions. If we were to start
with algebras with many-valued basic operations, as in [Brattka 1996; 1999], the
algebraic operational semantics could handle this just as easily, by adapting the
clause for the basic X-function f in part (a) (“Semantics of program terms”) of the
semantic definition above.

4.3 The language WhileCC"(X)

In [Tucker and Zucker 1999; 2000] we worked with the language While' (%) (rather
than While(X)), formed by augmenting While with auxiliary array and nat
variables [Tucker and Zucker 2000, §3.13]. The importance of While" computabil-
ity lies in the fact that it forms the basis for a generalised Church-Turing Thesis
for computability on abstract many-sorted algebras [Tucker and Zucker 2000, §8].

Here, similarly, we will work with the language WhileCC™ = WhileCC" (%),
which can be viewed similarly as WhileCC(X) augmented by auxiliary array and
nat variables (or as While (¥) augmented by the ‘choose’ construct).
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More precisely, a WhileCC*(Z‘) procedure is a WhileCC(X*) procedure in
which the input and output variables have sorts in X only. (However the auxiliary
variables may have starred sorts or sort nat.)

Thus it defines a countably-many-valued function on any standard X'-algebra.

4.4 Some computability issues in the semantics of WhileCC® procedures

Some interesting issues in the semantics of While CC” arise already in the case of
computation over the algebra N of naturals (Example 3.2.4(b)).

(a) Eliminating ‘choose’ from deterministic WhileCC" on total algebras

The ‘choose’ operator can be eliminated from deterministic WhileCC™ procedures
(cf. Definition 4.2.5 and Remark 4.2.6) over total algebras.

THEOREM 4.4.1. For any total X-algebra A and f: A* = A,,
f is WhileCC " computable over A < fis While™ computable over A.

ProOOF. (=) Let P be a deterministic While cc” procedure over A which com-
putes f. Since A is total, evaluation of any boolean term b over A (relative to a
state) converges to tt or f in A. Further, since P is deterministic, its output for
a given input is independent of the implementation. Hence every ‘choose’ term
in P of the form choose z : b[z] can be replaced by a ‘while’ loop which tests
b[0], b[1], b[2], ... in turn, i.e., finds the least k for which b[k] is true, if it exists,
and diverges otherwise. [

Applying this to the total algebra A, and recalling that While" computability
over N is equivalent to partial recursiveness (i.e., classical computability) over N
[Tucker and Zucker 2000], we have:

COROLLARY 4.4.2. For any f:N" 5N,
fis WhileCC” computable over N' <= f is partial recursive over N.

(b) Recursive and non-recursive implementations

The semantics P4 of a procedure P (§4.2) is given, for an input z, by all paths of the
computation tree T = CompTree?(S,0) (where S is the body of P) representing
all possible computation sequences for S starting at state o, where o[a] = z, i.e.,
all possible implementations of instances of the ‘choose’ construct occurring in the
execution of S starting at . This leads to interesting computation-theoretic issues
even in the simple case that A = A/, where we can assume that T is coded as a
subset of N in a standard way. Now any path of T ending in a leaf is finite, and
therefore (trivially) recursive. An infinite path or computation sequence (leading
to divergence), however, may or may not be recursive. (See Remark 4.2.4.)

THEOREM 4.4.3. There is a WhileCC™ (N') procedure P such that its compu-
tation tree has an infinite path, but no recursive infinite path.

The construction of P is based on the construction of a recursive tree with an
infinite path, but no recursive infinite path [Odifreddi 1999, V.5.25]. Details are
given in Appendix B.

For this procedure P, 1+ € P4(), i.e., divergence is possible. However, if we were
to restrict computation sequences to be recursive, then divergence would not be a
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possible outcome for P4 (). The semantics, as we give it (i.e., all possible computa-
tion sequences included, whether recursive or not) is simpler than this alternative.
In any case, as we will see, this choice will not affect continuity considerations (cf.
Lemmas 6.1.7 and 6.2.1).

4.5 Approximable WhileCC" computability

The basic notion of computability that we will be using in working with metric
algebras is not so much computability, as rather computable approximability on
metric algebras, as discussed in [Tucker and Zucker 1999, §9]. We have to adapt
the definition given there to the nondeterministic case with countable choice.

Let A be a metric X-algebra, u a X-product type and s a X-type. Let

P:natxu — s
be a WhileCC"(Z") procedure. Put
PA =4 PA(n,-): A* 3T A
Note that that for all z € A%, PA(x) # 0.

Definition 4.5.1 (WhileCC * approzimability to a single-valued function). Let
f: A* = A, be a single-valued partial function on A.

(a) fis WhileCC" approzimable by P on A if for all n € N and all z € A¥:

z € dom(f) = 1 ¢ Pi(z) C B(f(z),2™). (5)
(b) fis strictly WhileCC "™ approzimable by P on A if in addition to (5),
z ¢ dom(f) = Pjl(z) ={1}. (6)

Remarks 4.5.2.

(a) Clearly, WhileCC” computability is a special case of WhileCC” approxima-
bility.
(b) For total f, the concepts of While cc” approximability and strict WhilecC™
approximability coincide.
(¢) If a single-valued function f is strictly approximable by P, then (from (5) and
(6)) for all z € A* and all n:
f@)r <= 1ePRl@) < Pl)={1}
Definition 4.5.3 (WhileCC ’ approzimability to a many-valued function). Let
f:A* = A, be a countably-many-valued function on A.
(a) fis WhileCC" approzimable by P on A if for all n € N and all z € A%:

f@#0 = 1¢ PH2) C Uyes)Bly, 27"

and £(@) C Uyepa B, 277). @
Note that (assuming 1 ¢ P2 (z)) the r.h.s. of (7) implies
du(f(2), Pl@)) <277, (8)
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and is implied by

du(f(z), P(z)) < 277, (9)
where X denotes the closure of X, and dy is the Hausdorff metric on the set of
closed, bounded non-empty subsets of A, [Engelking 1989, 4.5.23]. (Actually, the
Hausdorff metric applies only to the space of closed bounded subsets of a given
metric space, so (8) and (9) should be taken as heuristic statements.)

In other words (assuming f(z) # 0), for all z € A* and all n, each output of f(x)
lies within 27" of some output of PA(z), and vice versa.

(b) f is strictly WhileCC™ approzimable by P on A if in addition,
f@)=0 = Pl@)={1}

Remark 4.5.4. (Cf. Remark 4.5.2(¢).) If a many-valued function f is strictly
approximable by P, then for all x € A* and all n:

f@)=0 < 1e€PRle) = Pl@)={1}

5. EXAMPLES OF While CC" EXACT AND APPROXIMATING COMPUTATIONS
5.1 Discussion: Use of ‘choose’ for searching and dovetailing

Following the examples in Section 2, the ‘choose’ construct was introduced to com-
pute many-valued functions. Technically, this construct strengthens the power of
the While language in performing searches. In a partial algebra, simple searches
(e.g., “find some zj, in an effectively enumerated set X = { zo, 1, Z2,...} satisfying
b(xr)”) will obviously fail in general if the search simply follows the given enumer-
ation of X (i.e., testing in turn whether b(zg), b(x1), b(x2), ...holds), since the
computation of the boolean predicate b(xz) may not terminate for some .

This problem is overcome, at the concrete model level, by the use of scheduling
techniques such as interleaving or “dovetailing”: at stage n, do n steps in testing
whether b(z;) holds, for i =0,...,n.

An important function of ‘choose’, which will recur in our examples, is to simulate
such scheduling techniques at the abstract model level. This allows searches over any
countable subset X of an algebra A that has a computable enumeration enumy :
N — X, since we can search X in A by assignments such as

x := enumx (choose z : b(enumx (z))).

5.2 Examples

We now illustrate the use of the WhileCC" language in topological partial al-
gebras with examples, which involve computations which are either many-valued,
or approximating, or both. The examples given in §2.2 to motivate many-valued
abstract computation are a good place to start. They can be displayed in the table:

| I Exact computation | Approximating computation

Single-valued Gaussian elimination e®, sin(z), etc.

Many-valued || Approx. points in metric algebra | All simple roots of polynomial

Examples 5.2.1, 5.2.2 and 5.2.4 below are all based on the metric algebra derived
from R;)V (Example 3.3.3(b)).
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Ezample 5.2.1 (Gaussian elimination). This is a single-valued exact computa-
tion. The algorithm can be found in any standard text of numerical computation,
e.g., [Heath 1997]. It is deterministic, but only in the weak sense (c¢f. Remark 4.2.6),

since it contains, as an essential component, the computation of the pivot function

(82.2), which is many-valued, and can be formalised simply with the ‘choose’ con-
struct:

func in xp,...,x%,: real
out i:nat
aux k: nat
begin
i := choose k: (k=1 and x; #0) or
(k=2 and x2 #0) or

(k=n and x, #0)

end.

Ezample 5.2.2 (Approzimations to €°). On the interval algebra I;V (Example
3.5.4(c)) we give a While procedure to approximate the function e® on I:

func in n: nat, { degree of approximation }
x:intvl  {‘intvl’ is the sort of reals in the interval [0,1] }
out s: real { partial sum of power series }
aux y:real, {current term of series }
k: nat { counter }
begin
k := 0;
y=1
s = 1;
while k < 2**! do
k= k+1;
y = yxirx)/in®k);  {y=x"/k!}
s:=s+y {s:Z;{:Oxi/i!}
od
end

Here ir : I — R is the embedding of I in R, which is primitive in ¥ (Ii,V ), and
in : N = R is the embedding of N in R, which is easily definable in While(Rg ).
Denoting the above function procedure by P, and IZIJV by A, we have the semantics

PA:T - R

with

[
3
+
=
8
=,

P\(z) =

i
o
.

and so for all z € I,

d(Pi(z), ") < 277,
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i.e., €* is While approximable on Ii,v by P.
This computation of e* is single-valued, but approximating.

Ezample 5.2.3. (“Choosing” a member of an enumerated subspace close to an
arbitrary element of a metric algebra.) Given a metric algebra A with a countable
dense subspace C', and an enumeration enumg: N — C' of C in the signature, we
want to compute a function f: A x N — C such that

f(a,n) = “some” x € C such that d(a,z) < 27",
This is a generalisation of the problem of approximating reals by rationals (Example
2.2.3).
Here is a WhileCC™ procedure (in pseudo-code) for an exact computation of f.

(Note that the real-valued function 2= is While computable on Rf,v , and hence
on A.)

funcin a:space, n:nat

out x :space

aux k:nat
begin

x := enumc (choose k : d(a,enumc(k)) < 27°)
end

This computation is many-valued, but exact.

Ezample 5.2.4 (Finding simple roots of a polynomial). We construct a WhileCC
procedure to approximate “some” simple root of a polynomial p(X) with real co-
efficients, using the method of bisection. By a simple oot of p(X) we mean a real
root at which p(X) changes sign. (See [Heath 1997]. In practice, a hybrid method
is generally used, involving bisection, Newton’s method, etc.)

Fundamental to the bisection method is the concept of a bracket for p(X), which
means an interval [a,b] such that p(a) and p(b) have opposite signs. By rational
bracket, we mean a bracket with rational endpoints. We note the following;:

(1) Any bracket for p contains a root of p (by the Intermediate Value Theorem),
in fact a simple root of p.

(2) Conversely, any simple root of p is contained in a rational bracket for p of
arbitrarily small width.

(3) If z is a simple root of p, then any bracket for p of sufficiently small width
which contains z, contains no other simple root of p.

(4) If [a,b] is a bracket for p, then, putting m = (a + b)/2, exactly one of the
following holds:
(7) p(m) = 0; then m is a root of p (not necessarily simple);
(#4) p(m) has the same sign as p(a); then [m, b] is a bracket for p;
(741) p(m) has the same sign as p(b); then [a,m] is a bracket for p.

It follows from the above that starting with any rational bracket J for p, we can,
by repeated bisection, find a nested sequence of rational brackets

o
J=1Jo, Ji, Ja,...  where () In = {=}
n=0
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for some simple root z of p. Then, letting r, be the left-hand endpoint of J,, we
have a fast Cauchy sequence (ry), with limit z.

One complication with our algorithm is the occurrence of case (i) in (4) above,
i.e., the case that the midpoint m of the bracket is itself a root of p, since by the
co-semicomputability of equality (Discussion 3.2.5) on R we can only verify when
f(m) # 0, not when f(m) = 0. We therefore proceed as follows. By means of the
‘choose’ construct, we search in the middle third (say) of the bracket [a,b] for a
“division point”, i.e., a rational point d such that f(d) # 0, producing either [a, d]
or [d, b] as a sub-bracket. (So we use a “trisection”, instead of ” bisection”, method.)

This new bracket may not halve the width of [a, b]; in the worst case its width is
2/3(b—a). However a second iteration of this procedure leads to a bracket of width
at most (2/3)? < 1/2 the width of [a,b], and so 2n iterations lead to a bracket of
width less than 27"(b — a).

For convenience, we will use the following two conservative extensions to our
“official” programming notation:

(a) Simultaneously choosing two naturals with a single condition:
kl,kz := choose Z1,23 ! b[Zl,Zg]

which is easily expressible in WhileCC by the use of a primitive recursive
pairing function pair on N and its inverses proj;, proj,:

k := choose z : b[proj; (z), proj,(2z)];
ki,ka = proj;(k), proj, (k).

(b) Choosing a rational (of type real) satisfying a boolean condition:

real . (

q := choose r “r is rational” and b[r]).

Let rat : N - R be a While-computable enumeration of the rationals in R.
Then this can be interpreted as:

q := rat(choose k : b[rat(k)]).

Finally, a polynomial p(X) over R will be represented by an element p* of R*:

n—1
* _ n—1i
p = (a07"'7an—1) - E aiX .
=0

Its evaluation at a point ¢, denoted by p*(c), is easily seen to be While(R) com-
putable in p* and c.

Hence we can give a WhileCC” procedure for approximably computing some
simple root of an input polynomial, in the signature of R, (see Figure 3).
For input natural n and polynomial p, the output is within 27" of some simple root
of p. Further, for any simple root e of p, there is some implementation of the ‘choose’
operator which will give an output within 27" of e. Finally, the computation will
diverge if, and only if, p has no simple roots.

This computation is both many-valued and approximating.
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funcin  n:nat, { degree of approximation }
p* : real* {input polynomial, given by list of coefficients }
out x:real { approximation to root }
aux a, b : real, { endpoints of bracket }
d : real, { division point of bracket }
k : nat { counter }
begin
k :=0;

a,b := choose a,b: (“a and b are rational” and a<b<a+1 and
(p*(a) > 0 and p*(b) < 0)
or (p*(a) <0 and p*(b) > 0));
while k < 2n do
k :=k+1;
d := choose d : (“d is rational” and (2a+b)/3 < d < (a+ 2b)/3
and p*(d) # 0);
if (f(d) >0 and f(a) >0) or (f(d) <0 and f(a) <0)
then a,b := d,b { new bracket on right part of old }
else a,b:= a,d { new bracket on left part of old }

Xx:=a {x := b would also work here }
end.

Figure 3

6. CONTINUITY OF COUNTABLY-MANY-VALUED WhileCC" FUNCTIONS

In this section we define continuity for countably-many-valued functions, and then
. *

prove that countably-many-valued functions computed by WhileCC programs

are continuous.

6.1 Topology and continuity with countably many values and ‘4"

The results in this subsection are mostly of a technical nature, and their proofs are
relegated to Appendix C. (Actually, all these results hold for arbitrary many-valued

functions f:X — P(Y), not necessarily countably-many-valued.) Recall Notation
4.2.1.

Definition 6.1.1 (Totality). The function f: X =Y is said to be total if for all
z € X, f(z) is a non-empty subset of Y, d.e., if f: X 3T Y.

Our semantic functions (in Section 7) will typically be of the form
: A =t AT (10)

Remark 6.1.2. We think of the “deterministic version” of (10) as being a total
function ®, where for each z € X, ®(x) is a singleton, containing either an element
of A® (to indicate convergence) or ‘1’ (to indicate divergence). (Cf. Remark 4.2.2.)
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We must now consider what it means for such a function (10) to be continuous.

Definition 6.1.3 (Continuity). Let f: X =Y, for topological spaces X,Y.
(a) Forany V CY,

f7V] =4 {zeX|[fl@)NV£0},
i.e., © € f71[V] iff at least one of the elements of f(z) liesin V.
(b) f is continuous (w.r.t. X and Y) iff for all open V CY, f1[V] is open in X.

Remarks 6.1.4. (a) For metric spaces X and Y, Definition 6.1.3(b) becomes:
f: X 2Y is continuous iff

Va € X Vb € f(a)Ve > 036 > 0Vz € B(a,d) (f(z) NB(b,€) #0).

(b) Definition 6.1.3(b) reduces to the standard definition of continuity for total
single-valued functions from X to Y.

(¢) Tt also reduces to the definition of continuity for partial single-valued functions
(Definition 3.5.1), as we will see below (Remark 6.1.9). We must first see how to
extend the topology on Y to that on YT (Definition 6.1.6 below).

Definition 6.1.5. For two functions f: X Y, ¢: X 2'Y, we define
fCg <= forallzeX, f(z) C g(z).

Definition 6.1.6. We extend the topology on Y to YT (= YU{1}) by specifying
that the only open set containing {1} is YT. (So YT is a “one-point compactifi-
cation” of Y.)

Now, given a function f: X = Y, we define functions
ff:XxX3Y" and [f:X3Y
by
@) = f@u{t} and [~ (@) = fl@\{1}

In other words, f1 adds ‘4’ to the set f(zx) for each z € X and f~ removes “’
from every such set. This changes the semantics of f (see Remark 4.2.2), but not
its continuity properties, as will be seen from the following technical lemma, which
will be used in the proof of continuity of computable functions below (§6.2).

LEMMA 6.1.7. Let f: X = Y and g: X 3% YT be any two functions
such that

fcgcC [l
ie., forallz € X, g(x) # 0, and either g(z) = f(z) or g(z) = f(x) U{1}. Then
f is continuous <= g is continuous.
COROLLARY 6.1.8. Suppose f:X =t Y" (ie., f is total). Then

f is continuous <= f~ s continuous <<= f1 is continuous.
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Remark 6.1.9 (Justification of Remark 6.1.4(c)). Let f : X >Y be a single-
valued partial function. Define

f:X=vY and f:XxX=ty?

oy _ J (@)} if =€ dom(f) iy _ J (@)} if =€ dom(f)
fle) = {0 otherwise and - fle) = {{T} otherwise.

(We can view either f or f as “representing” f in the present context, cf. Remark
6.1.2.) Then

f is continuous (according to Def. 3.5.1)
<= [ is continuous (according to Def. 6.1.3)
< [ is continuous (according to Def. 6.1.3).

The equivalence of the continuity of f and f follows immediately from the defini-

tions. The equivalence of the continuity of f and f follows from Lemma 6.1.7.

LEMMA 6.1.10. Given f: X =3 YT, extend it to f: Xt =2 YT by stipulating
that f(1) =1. If f is continuous and total, then f is continuous.

Definition 6.1.11 (Composition). (a) Suppose f: X =Y and g:Y = Z. We
define gof: X 3 7 by
= {9 ly e f(=)}.
(b) Suppose f:X:kYT and g:Y:;ZT. We define go f: X =+ ZT by

= Jlsw) lyef@ny} u {t|tef(@)}
PROPOSITION 6.1.12 (CONTINUITY OF COMPOSITION).
(@) If {:X33Y and ¢g:Y =3 Z are continuous, then sois go f: X = Z.
M) If f:X=TY"T and g: Y 3% ZT are continuous, then sois gof: X =+ Z7.
Definition 6.1.13 (Union of functions). Let f;: X = YT be a family of func-
tions for ¢ € I. Then we define

|_|f,-: X =y
1el

(L] )@ = U fi=)

i€l i€l
LEMMA 6.1.14. If f;: X =3 YT is continuous for all i € I, then so is Ll ¢ 1 fi-

by

6.2 Continuity of WhileCC computable functions

Let A be an N-standard topologlcal J-algebra.

To prove that WhileCC” procedures on A are continuous, we first prove that
such procedures are (almost) equivalent to While procedures (without ‘choose’)
in an extended signature, which includes a symbol f: nat — nat for an “oracle
function”. Then we apply Lemma 6.1.7.
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LEMMA 6.2.1 (ORACLE EQUIVALENCE LEMMA). Given a WhileCC (X) state-
ment S, and procedure

P = func in a out b aux c begin S end,
we can effectively construct a While(X's) statement S¢ and procedure
P; = funcin a out b aux c begin St end

in a signature X5 which extends X by a function symbol f : nat — nat, such that,
putting
13|j4 =df |_| P]{l:
feF

where F = NN s the set of all functions f:N — N and Pf‘ is the interpretation
of Pr in A formed by interpreting f as f, we have

ptC P} C(PY (11)
(Recall Definition 6.1.5, and the definition of P4: A* =3+ A*T in §4.2(g).)

PRrROOF. Intuitively, f represents a possible implementation of the ‘choose’ op-
erator: f(n) is a possible value for the nth call of this operator in any particular
implementation of P. We will then take the union of the interpretations over all
such possible implementations.

In more detail: S is constructed from S as follows. Let ¢ be a new “counter”,
i.e., an auxiliary nat variable which is not in S. First, by “splitting up” assignments
in S, and introducing more auxiliary nat variables, we re-write S in such a way
that every occurrence of the ‘choose’ construct is in the context of an assignment
of the form

z' 1= choose z : b (12)

where the boolean term b does not contain the ‘choose’ construct. Now replace
each assignment of the form (12) by the pair of assignments

c:=c+1;
if b(z/f(c)) then z':=f(c) else div

and initialise the value of ¢ (at the beginning of the statement) to 0. The result
is a While*(Zf) procedure P; with a body S; which, for a given interpretation f
of f, “interprets” successive executions of ‘choose’ by successive values of f, when
this is possible (i.e., b(z/f(c)) has tt as one of its values), and otherwise, causes
the execution to diverge.

For those f which (for a given input) always give “good” values for all the suc-
cessive executions of ‘choose’ assignments (12) in S, Pf‘ will give a possible imple-
mentation of P. For all other f, P){1 will diverge. Since (for a given input) each PJ{1
either simulates one possible implementation of successive executions of ‘choose’
in S or diverges, their “union” P gives the result of all possible implementations
of ‘choose’, plus divergence; hence the conclusion (11). O

THEOREM 6.2.2. Let
P = func in a out b aux c begin S end (13)
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be a WhileCC procedure, where a:u and b :v. Then the interpretation
PA: Av ot gt
18 continuous.

PROOF. In the notation of the Oracle Equivalence Lemma (6.2.1): PJ:‘1 is con-
tinuous for all f € F, by the continuity theorem for While [Tucker and Zucker
2000, §6.5]. Hence P4 is continuous, by Lemma 6.1.14. Hence, by (13) and Lemma
6.1.7,sois PA. O

Remark 6.2.3. In the special case that P4 is deterministic, i.e., single-valued:
PA: A" AY,
it follows by Remark 6.1.9 that P4 is continuous according to our definition (3.5.1)
of continuity for single-valued partial functions.
COROLLARY 6.2.4. A WhileCC" computable function on A is continuous.

PRrROOF. Such a function is WhileCC computable on A*, hence (by Theorem
6.2.2) continuous on A*, and hence on A. [

6.3 Continuity of WhileCC* approximable functions
Recall Definition 4.5.1.

THEOREM 6.3.1. Let A be a metric X-algebra, and f: A* = A. If f is WhileCcC”~
approzimable on A and dom(f) is open in A¥ then f is continuous.

PROOF. Suppose f is approximable on A by the WhileCC” procedure P: nat X
u — v. We will show that f is continuous, using Remark 3.5.2. Given a € dom(f)
and € > 0, choose N such that

27N < ¢/3. (14)
Then by Definition 4.5.1,
0 # Py(a) C B(f(a), 277). (15)
Choose b € Pi(a). By (15),
d(f(a),b) < 27N, (16)

By Corollary 6.2.4, P# is continuous on A, and so by Remark 6.1.4(a), there exists
6 > 0 such that

Vz € B(a,d), Pi(z) NB(b,e/3) #0. (17)
Since dom(f) is open, we may assume that ¢ is small enough so that
B(a,d) C dom(f).
Take any = € B(a,d). By Definition 4.5.1 again,

Py(z) C B(f(2),27") (18)
By (17), choose y € Pi(z) N B(b,€/3). So
d(y,d) < €/3 (19)
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and by (18)
d(f(z),y) < 27V, (20)

Hence

d(f(x), f(a)) < d(f(2),y) +d(y,b) + d(b, f(a))

< €
by (20), (19), (16) and (14). The theorem follows by Remark 3.5.2. O

7. CONCRETE COMPUTABILITY; SOUNDNESS OF WhileCC' COMPUTA-
TION ON COUNTABLE ALGEBRAS

To compute on a metric algebra A using a concrete model of computation, we
choose a countable subspace X of A and an enumeration a: N — X.

In this section we step back from topological algebras and consider computability
on arbitrary countable algebras A. We show (Theorem Ag) that if A is enumerated
by a and its basic functions are a-computable, then functions that are WhileCC™
computable on A are also a-computable. This is a key lemma in the soundness
theorem for WhileCC” approximation in the next section.

7.1 Enumerations and tracking functions for partial functions

Let X = (X, | s € Sort(X)) be a family of non-empty sets, indexed by Sort(X).
Definition 7.1.1. An enumeration of X is a family
a = {as: Qs > X, | s € Sort(X))
of surjective maps a;: Q3 - X, for some family
Q = (Q, | s € Sort(X))

of sets s C N. The family X is said to be enumerated by a. We say that
a:Q — X is an enumeration of X, and call the pair (X,a) an enumerated family
of sets. (The notation ‘—’ denotes surjections, or onto mappings.)

We also write Q4,5 for Q, to make explicit the fact that Q; = dom(as).

Definition 7.1.2 (Tracking and strict tracking functions). We use the notation
X¥=X; x---xX,, and Qp = Qg X+ X Qq5,, Wwhere 4 =51 X - -+ X Spp.
Let f: X*— X, and ¢: Qy = Qq s,

(a) o is a tracking function with respect to a, or a-tracking function, for f, if the

following diagram commutes:

xv—tox,

N" ——N
in the sense that for all k € Q,
fl@ k)L = k)L Ap(k) € Qs A fla®(R)) = as(p(k)).
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(b) ¢ is a strict a-tracking function for f if in addition, for all k € Qp
fla"(B)t = k)1

Here we use the notation a¥(k) = (as, (k1),...,as,, (kn)), where k = (k1,...,kmn).
(We will sometimes drop the type super- and subscripts.)

Definition 7.1.3 (a-computability). (a) Suppose A is a Sort(X)-family, and (X, «)
an enumerated subfamily of A4, i.e., Xy C A, for all YX-sorts s. Suppose we have
frA*S A, and p:N" 3N
such that
frx*:XxX* 5 X, and el QL Q8 = Qas,
and ¢ [ QF is a (strict) a-tracking function for f [ X. We then say that ¢ is a
(strict) a-tracking function for f.

(b) Suppose now further that ¢ is a computable (i.e., recursive) partial function.
Then f is said to be (strictly) a-computable.

Remarks 7.1.4. (a) In the situation of Definition 7.1.3, we are not concerned
with the behaviour of f off X*, or the behaviour of ¢ off Q.

(b) For total f, the concepts of tracking function and strict tracking function coin-
cide; as do the concepts of a-computability and strict a-computability.

(¢) For convenience, we will always assume:
Qa,bool = {05 ]-}a Opool (0) = f, abool(l) =t
and also (when X' is N-standard):
Qanat =N and anat is the identity on N.

Assume now that A is a Y-algebra and (X, ) is a Sort(X)-family of subsets of
A, enumerated by a.

Definition 7.1.5 (Enumerated X-subalgebra). (X, ) is said to be an enumerated
X -subalgebra of A if X is a X-subalgebra of A.

Definition 7.1.6 (X-effective subalgebra). Suppose A is a Y-algebra and (X, a)
is an enumerated X-subalgebra. Then « is said to be

(a) X-effective if all the basic X-functions on A are a-computable; and
(b) strictly X-effective if all the basic X-functions on A are strictly a-computable.
7.2 Soundness Theorem for surjective enumerations

For the rest of this section we will be considering the special case of §7.1 in which
the enumerated subalgebra X is A itself, i.e., we assume the enumeration is onto
A. To emphasise this special situation, we will denote the enumeration by

B: Q5 —» A,

so that (A4, B) is our enumerated X'-algebra. Then given a function
frAY > A,

we have two notions of computability for f:
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(i) abstract, i.e., WhileCC™ computability, as described in Section 4; and
(73) concrete, i.e., f-computability, as in Definition 7.1.3, in the special case that
X =A

We will prove a soundness theoremn (Theorem Ag), for these notions of abstract
and concrete computability, i.e., (i)=-(i%), assuming strict effectiveness of 3.
A more general soundness theorem (Theorem A), with more general notions of

abstract computability (WhileCC* approzimability) and concrete computability
(computability w.r.t. the computable closure of an enumeration), will be proved in
Section 8.

THEOREM A, (SOUNDNESS FOR COUNTABLE ALGEBRAS). Let (A,() be an enu-
merated N—sta*ndard Y -algebra such that B is strictly X-effective. If f : A* = A,
is WhileCC computable on A, then f is strictly B-computable on A.

7.3 Proof of Soundness Theorem Ag

Assume, then, that (A4, f) is an enumerated N-standard Y-algebra and £ is strictly
Y-effective. We must show that each of the semantic functions listed in §4.2(a)—(g)
has a computable strict tracking function. More precisely, we work, not with the
semantic functions themselves, but “localised” functions representing them [Tucker
and Zucker 2000, §4]. This amounts to proving a series of results of the form:

LEMMA SCHEME 7.3.1. For each WhileCC semantic representing function
$: Av ot oAt
representing one of the semantic functions listed in §4.2(a)—(g), there is a com-
putable tracking function w.r.t. B, i.e., a function
p: Q5 = Q

which commutes the diagram

Au :¢+A’UT

A

Q3 —;)> Q3
in the sense that for all k,l € Qj:
ek) Ll = p"(l) € 2(8"(k)),
p(k)t = 1€ ®(B"(k).
[This Lemma Scheme is proved in Appendix D.]
Remarks 7.3.2. (a) Here ¢ is a combination “strict tracking function” and “se-
lection function”. We can think of ¢ as giving one possible implementation of

®. (Compare the representative functions for various semantic functions in [Tucker
and Zucker 2000, §4].)

(b) We are not concerned with the behaviour of ¢ on N™\Qg. (Cf Remark
7.1.4(a).)
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Theorem A then follows easily from this lemma scheme. (See Appendix D).

8. SOUNDNESS OF WhileCC' APPROXIMATION

We return to the general situation introduced in §7.2, of a partial metric X-
algebra A with an enumerated subalgebra (X, @), and prove a more general sound-
ness theorem (Theorem A) for WhileCC™ approximation. From the enumeration
a: N — X we will build the space C,(X) of a-computable elements of A, and
enumerate it with @: N C,(X).

8.1 Enumerated subspace of metric algebra; Computational closure

Let A be an N-standard metric X-algebra, and (X,a) an enumerated Sort(X)-
family ((Xs,a) | s € Sort(X)) of subsets X; C A; (s € Sort(X)). Each X, can
be viewed as a metric subspace of the metric space A;. We call (X, «a) a Sort(X)-
enumerated (metric) subspace of A. From (X, a) we define a family

Co(X) = (Cu(X), | s € Sort(X))

of sets Co(X), of a-computable elements of A, i.e., limits in A, of effectively
convergent Cauchy sequences (to be defined below) of elements of X, so that

Xs C Ca(X), C A,
with corresponding enumerations
s Qg > Ca(X)g'

Writing @ = (@, | s € Sort(X)), we call the enumerated subspace (Co(X), @) the
computable closure of (X, a) in A.

We will generally be interested in @-computable (rather than a-computable)
functions on A (¢f. Definition 7.1.3), as our model of concrete computability on
A.

The sets Qz,; C N consist of codes for Co(X), (w.r.t. a), i.e., pairs of numbers
¢ = {e,m) where

(i) eis an index for a total recursive function defining a sequence a o {e} in Xj,
i.e., the sequence

a5 ({€}(0)), as({e}(1)), as({e}(2)), .-, (21)

of elements of X,
(i) m is an index for a modulus of convergence for this sequence:

Vk, 1> {m}(n) : ds(a({e}(k)), a({e}(1))) <27 (22)

For any such code ¢ = {e,m) € Qgs, @s(c) is defined as the limit in A, of the
Cauchy sequence (21), and C,(X)_ is the range of @,:

8
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Remarks 8.1.1. (a) (Fast Cauchy sequences.) We may assume, when convenient,
that the modulus of convergence for a given code is the identity, i.e., replace (22)
by the simpler

V1> n: dy(ae}k)), a({e} (1)) < 27"

or, equivalently,
Vk >n: ds(a({e}(k)), a({e}(n))) <277, (23)

because any code ¢ = (e, m) satisfying (22) can be effectively replaced by a code
for the same element of C,(X), satisfying (23), namely ¢’ = (¢’,m1), where m;
is a standard code for the identity function on N, and e’ = comp(e,m), where
comp(x,y) is a primitive recursive function for “composition” of (indices of) com-
putable functions, i.e., {comp(e,m)}(z) ~ {e}({m }(z)). In the case of a code
¢ = (e,mq) satisfying (23), the sequence (21) is called a fast (a-effective) Cauchy
sequence. We may then, for simplicity, call e itself the “code”, and the argument
of @,. So we can shift between “c-codes” and “e-codes” as convenient.

(b) In the case s = nat, we can simply take Qg nat = Qq,nat = N, and @pat and
Qnat as the identity mappings on N. Similarly, in the case s = bool, we can take
Qs bool = Qaboot = {0,1}, with @(0) = (0) = f and a(l) = a(1) = t. (Cf.
Remark 7.1.4(c).)

(¢) (Closure of a-computability operation) The subspace (Cq(X), @) is “compu-
tationally closed in A”, in the sense that the limit of a (fast) @-effective Cauchy
sequence of elements of C,(X) is again in Co(X), ie., Ca(Co(X)) = Co(X).
(Easy exercise.)

(d) (Decidability of Qq,s) We usually assume that Qg is decidable, in fact, that
Qq,s = N for all s, which is typical in practice, unlike the case for Q7. (See Example
8.1.2.)

(e) (Eztension of enumeration to A*) Given an enumeration a of a X-subspace X
of A, we can extend this canonically to an enumeration a* of a X*-subspace X* of
A*. (Easy ezercise.) This in turn generates an enumeration o* of a X*-subspace
Co(X)* of a*-computable elements of A*. Tt is easy to see that

(i) if C4(X) is an X-subalgebra of A, then C,(X)" is a X*-subalgebra of A*;
(ii) if @ is (strictly) X-effective, then o* is (strictly) X*-effective.

We will usually use this extension (of (X, a) and (C4(X), @)) to A* implicitly, i.e.,
writing ‘a’ instead of ‘a*’ etc.

Ezample 8.1.2 (Constructible reals). The best known nontrivial example of an
enumerated subspace (X, ), and its extension to a subspace of a-computable ele-
ments, is the following. Let A be the metric algebra R, of reals (Example 3.6.1),
with signature Y. Let Xy be the set of rationals Q C R, let 2, rea1 = N and let
real: N = Q be a canonical enumeration of Q. Then Co(Q) =4 Ca(X)real C R
is the subspace of recursive or constructible reals. Note that it is a subfield of R,
and hence C,(X) is a subalgebra of R. Further, it is easily verified that @ is strictly
X(R)-effective. (Cf. Definition 7.1.6.) Note that Q, real = N, whereas Qg req is
non-recursive. (See Remark 8.1.1(d).)
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8.2 Soundness theorem for effective numberings
We now prove the first main theorem mentioned in the Introduction.

THEOREM A (SOUNDNESS). Let A be an N-standard metric X-algebra, and
(X,a) an enumerated Sort(X)-subspace. Suppose the enumerated Sort(X)-space
(Ca(X), @) of a-computable elements of A is a X-subalgebra of A, and @ is strictly
Y-effective. If f : A*— A, is WhileCC *—approximable on A, then f is a-
computable on A.

PROOF. The proof uses the Soundness Theorem A, (Section 7), or rather the
Lemma Scheme 7.3.1 (specifically, part (g) of the proof) applied to the enumerated
subalgebra (C,(X), @) in place of (A, 3).

So suppose f : A* = A, is effectively uniformly WhileCC~ approximable on
A. Then there is a WhileCC" (%) procedure

P:natxu—s
such that for all n € N and all z € dom(f):
t ¢ Pl() C B(f(),27") (24)

(see Definition 4.5.1). By Lemma Scheme 7.3.1 (specifically, part (g) of the proof,
applied to (C,(X), @) in place of (4, 3)) there is a computable function

b Nx QL 5 Qg
which tracks P4 strictly, in the sense that for all n € N, e € Q% and e’ € Qg5
(and writing ¢, = ¢¥(n, -)):

Yn(e) Le' = a(e) € Pl(ale)),

a1 = 1ePA@(e)). (25)
We will show how to define a partial recursive a-tracking function
p: QF = Qg
for f as follows. Given any e € Q%, suppose @(e) € dom(f), i.e.,
f(a(e) | € A,. (26)
We must show how to define an @-tracking function ¢ for f, i.e., such that
ple) €Qzs and  a(p(e)) = f(ale)). (27)
By (24), for all n
T ¢ Pl@e) € B(f(@e)), 2. (28)
Hence by (24), for all n
Pnle) L€ Oz, (29)
and
a(¥,(e) € Pl(ale)). (30)
and so by (29) we may assume (by definition of §25) that for all n
ao{y,(e)} is a fast Cauchy sequence, with limit @(y,,(e)). (31)

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.



Abstract versus Concrete Computation on Metric Partial Algebras . 41

Also by (29) and (28),

d(@¥y,(e)), f@e))) < 27 (32)

Now let e’ be a “canonical” index for the (partial) function

{e't: n = {P,(e)}n) (33)

obtained uniformly effectively in e. So {e'} is the “diagonal” function formed from
the sequence of functions with indices 1,,(e). Consider the sequence a;o{e'}, i.e.,

a;({e'}0)), as({e'}H1)), as({e'}(2)), ... . (34)

CrLAM: (34) is a Cauchy sequence in A, with modulus of convergence An(n + 2).

Proor ofF cLaiM: For any n and k > n:

Al

d(a({e'}(k), a({e'}n))
d(a({yx(e) }(k), ({%( )%(n)) by def. (9) of ¢’

d(a({v(e)}(k)),
di + dy + ds (Say)

+ d(@@y(e)), avn(e))) + d(@,(e)), al{$nle)}(n)))

where by (31)

di < 275, dg < 277,
and by (32)
< ( f(@e)) + d(f(@e)), a(yy,(e)))
<
Therefore
d(a({e'}(k)), a({e'}(n)) < di + dy + d3
< 2.27F 4 2.9-n
< 2—n+2

This proves the claim. O

Further, by the method of Remark 8.1.1(a) (composing {e'} with the modulus
of convergence), we can replace the index e’ by an e-code e” for a fast Cauchy
sequence:

{e"}(n) ~ {e'}(n+2). (35)

Then we define

ple) = €. (36)

We show that ¢ is an a-tracking function for f, i.e., (assuming (26)) we show (27).
Since a o {e"} is a fast Cauchy sequence, with the same limit in A (if it exists) as
ao{e'} (by its definition (35)), to prove (24) it is enough to show (by (24)) that

a({e'}(n)) — f(a(e)) as n — oo. (37)
This follows since
d(a({e'}(n), f(@(e))) = d(a({¢n(e)}(n), f(@le))) by def. (9) of '
< d(a({®,(e)}(n), a(¥,(e)) + d(@(¥,(e)), f(ale)))
< 27" 4+ 277 by (31) and (32)
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proving (24). O
A deterministic version of Theorem A (i.e., without ‘choose’) was proved in
[Stewart 1998].

9. ADEQUACY OF WhileCC™ APPROXIMATION
9.1 Adequacy Theorem

In this section we will prove Theorem B, a converse to the result of the previous sec-
tion. Assume that A is an N-standard metric X-algebra, and (X, ) an enumerated
XY-subspace, with a-computable closure (C,(X), @).

Note that we are not assuming in this section that C,(X) is a subalgebra of A,
or even that a is X-effective.

One of the assumptions in the theorem, “effective local uniform continuity w.r.t.
an open exhaustion”, must first be defined, as must “open exhaustion”.

Definition 9.1.1 (Open exhaustion). Let U be a subset of a metric space X. An
open ezhaustion of U is a sequence of open subsets of X

V = (Vo,Vi,Va,...)  such that Uw=u
p=0

Remarks 9.1.2. (a) Clearly, if U has an open exhaustion, then U is open.
(b) Tt is helpful (though not necessary) to think of the sets of an exhaustion as
increasing: Vp CVi CVh C....
(¢) Any open set U has the trivial exhaustion U,U,....
(d) A simple non-trivial example of an open exhaustion is the standard open ex-
haustion V of R, where V,, = (—p,p).

We also need an effective notion of open exhaustion:

Definition 9.1.3. An open exhaustion V of U C A% is WhileCC*—eﬁective in
A if it satisfies the following two conditions:

(a) (WhileCC"-effective Archimedean property of U w.r.t. V) Thereis a WhileCC”
procedure Pjyc: u — nat which, given z € U, “locates” z in V, i.e., produces
some p such that z € V}; more precisely:

PA () = {plxeV,} if xeU
loc {1} otherwise.

(b) (WhileCC” -effective openness of V) There is a WhileCC" -computable func-
tion v: A, x N = N such that for all p and all z € V),

B(z, 277@P) C V.

Remarks 9.1.4. (a) Typically, the procedure Py.(x) is realised in the form
“choose p : x € V,” where “z € V,” can formalised as a boolean test in the
language.

(b) The standard open exhaustion of R (Remark 9.1.2(d)) is WhileCC” -effective
in RY.
P
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Definition 9.1.5 (Effective global and local uniform continuity). Let X andY be
metric spaces, and let f: X Y.

(a) We say f is effectively (globally) uniformly continuous iff dom(f) is open and
there is a recursive function ¢ : N — N such that for all n and all z,y € dom(f):
dx(z,y) <27 = dy(f(2),f(y) <27"

(b) We say f is effectively locally uniformly continuous w.r.t. an open exhaustion
V of dom(f) iff there is a recursive § : N> — N such that for all p,n and all
z,y € Vp:

dx(z,y) < 275" = dy(f(z), f(y)) <27

Example 9.1.6. This occurs typically when A is a countable union of neighbour-
hoods with compact closure; for example, in the algebra R, of reals, R is the
union of the neighbourhoods (—k, k) for k =1,2,.... Then a continuous function
f on R will be uniformly continuous on each of these neighbourhoods.

Remarks 9.1.7. (a) Effective global and local uniform continuity implies conti-
nuity (as we would hope).
(b) Effective global uniform continuity of f corresponds to the special case of ef-
fective local uniform continuity with respect to the trivial ezhaustion of dom(f).
We are now ready for the theorem.

THEOREM B (ADEQUACY). Let A be an N-standard metric X-algebra, (X, a)
an enumerated Sort(X)-subspace, and (Cy(X), @) the Sort(X)-subspace of a-
computable elements of A. Suppose that for all X-sorts s:

(i) Xs is dense in A, and
(ii) as : N = A, is WhileCC " -computable on A.
Let f: A* 5 A, be a function on A and V an open exhaustion of dom(f) such
that
(iii) V is WhileCC " -effective, and
(iv) f is effectively locally uniformly continuous w.r.t. V.
If f is @-computable on A, then f is WhileCC” approzimable on A.
Remark 9.1.8. From the proof of the theorem, it will be apparent that only sorts

s in the domain of f have to satisfy condition (z), and only sorts s in the domain
or range of f have to satisfy condition (i%).

The proof uses the following notation.

Notation 9.1.9 (Embedding X into its a-computational closure). By elementary
recursion theory, there is a primitive recursive function const: N — N such that
for each k, const(k) is the index of the function on N with constant value k, i.e.,
for all n,

{const(k)}(n) = k,

Thus for all k, const(k) can be taken as a code for a fast Cauchy sequence in X (see
Remark 8.1.1(a)), making const an «,@-tracking function for the inclusion map
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t: X = Co(X), in the sense that for each sort s the following diagram commutes:

X, —% Co(X),

N——=Qa,;

const

9.2 Proof of Theorem B
We give (in WhileCC" pseudo-code) an algorithm for a function
g: NxA* =+ A0
which approximates f, in the sense that for all n and all z € dom(f),
gn(z) C B(f(z),2°") C A,. (38)

With input n and z € A%: assume z € dom(f) (otherwise we don’t care about the
output).
(1°) First, we want to find some p such that z € V,. This is WhileCC”™ com-

putable, by the WhileCC” -effectiveness of V (assumption (iii)). Note the use of
the ‘choose’ construct in “finding” p (see Remark 9.1.4), even though p will not be

an explicit argument of g. Note that (still by (i4¢), and in the notation of Definition
9.1.3)

B(z, 277%) C V, C dom(f). (39)
Now, using assumption (iv) and in the notation of Definition 9.1.5(b), compute
M := max(y(z,p), d(p,n+1)) (40)

which (since v is WhileCC™ computable and § is recursive) is WhileCC™ com-
putable.

(2°) Next we want to find some k such that
d(a(k), ) < 27 M. (41)

By the density assumption (i) such a k exists. Again, we can find such a k using
the ‘choose’ construct. Note again the use of the ‘choose’ construct in “finding” k,
even though & will not be an explicit argument of g. Now by (40) and (39),

B(z,2 ") C B(z,2 """) C dom(f)
and so by (41)

a(const(k)) = a(k) € dom(f). (42)
By assumption, f has an a-tracking function ¢. By (42),
p(const(k)) | € Q5. (43)

(3°) Compute p(const(k)) | €'. By (43), €' € Q, and
fa(k)) = f(@(const(k))) = @(p(const(k))) = af(e’).
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Hence by (39), (40) and (41),

d(f(), ae)) = d(f(2), fak)) < 27" (44)
(4°) Finally compute

y = a({e'Hn+1)). (45)
This is possible by assumption (i¢). Then, since ao{e'} is a fast Cauchy sequence,
d(y, a(e) = d(a({e}n+1), a)) < 2. (46)
Hence by (46) and (44),
d(y, f(z)) < d(y,a(e) + d(a(e), f(z))
< 2—n—1 + 2—71.—1

27",

Now the value of y computed in (45) is the output of the algorithm for g. Note how-
ever that this value depends on the actual implementation of the ‘choose’ construct
as used in the above algorithm. Therefore (in accordance with our semantics for
the abstract model) we define g¢,(z) to be the set of all such y, for all possible
implementations of ‘choose’. Then g satisfies (38), and is WhileCC" computable,
by the above discussion.

9.3  WhileCC " -semicomputability of dom(f)

Here we point out a connection betzveen While CC*—semicomputability of the func-
tion domain and strict WhileCC approximability.

Definition 9.3.1. (a) The halting set of a WhileCC™ procedure P:u — v on
Ais

{ze A | PA)\{1} #0}.

(b) A subset of A" is While CC” -semicomputable if it is the halting set of some
WhileCC™ procedure.

The following two lemmas have easy proofs.

LEMMA ?.3.2. If U has a WhileCC*—eﬁective open ezhaustion, then U is
WhileCC -semicomputable. In fact, it is the halting set of Poc (in the notation
of Definition 9.1.3).

LEMMA 9.3.3. Suppose dom(f) is WhileCC " -semicomputable. Then
f is WhileCC *—appro:cimable < f is strictly WhileCC *—appromimable.

(Recall Definition 4.5.1.) Hence we see, by Lemmas 9.3.2 and 9.3.3, that the con-
clusion of Theorem B can be replaced by the (apparently) stronger statement:

If f is @-computable on A, then f is strictly WhileCC ¥ approximable on A.
10. COMPLETENESS OF WhileCC* APPROXIMATION

Under certain assumptions, we can combine Theorems A and B into a single equiv-
alence, namely Theorem C below. We will then look at several examples of metric
algebras where our abstract and concrete models are equivalent according to this
Theorem.
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10.1 Completeness

We are ready to state the completeness theorem for While cc” approximability
relative to a-computability.

THEOREM C (COMPLETENESS). Let A be an N-standard metric X -algebra, and
(X,a) an enumerated Sort(X)-subspace. Suppose the enumerated Sort(X)-space
(Ca(X), @) of a-computable elements of A is a X-subalgebra of A. Assume also
that for all X'-sorts s,

(i) @ is strictly X-effective,
(ii) X is dense in As, and
(iii) as:N— A, is WhileCC -computable on A.

Let f: A* = A, be a function on A and V an open exhaustion of dom(f) such
that

(iv) V is WhileCC "-effective, and
(v) f is effectively locally uniformly continuous w.r.t. V.
Then

f is WhileCcC”™ approximable on A <= f is a-computable on A.
PROOF. From Theorems A and B. [
10.2  @-semicomputability of dom(f)
(Compare §9.3.)

Definition 10.2.1 (a-semicomputability). A subset of AY is a-semicomputable if
it is the domain of a strictly @-computable function.

LEMMA 10.2.2. If U C A" is a-semicomputable then
a'lU] = {e€Qt|ale)leU} = SN
for some recursively enumerable set S C N.

Remark 10.2.3. If @ is onto A%, then the reverse implication of Lemma 10.2.2
holds.

LEMMA 10.2.4. Let f: A= A,. Suppose dom(f) is a-semicomputable. Then
f is @-computable <= f is strictly a-computable.

PRrROOF. (=) Since dom(f) is a-semicomputable, by Lemma 10.2.2 there is an
r.e. set S such that

{e € Q% |a(e) € dom(f)} = SNQE.

Now if ¢ is a computable a-tracking function for F', it can be replaced by a strict
a-tracking function ¢', defined by

e) if eeS
Se) ~ ©(e) :
0 otherwise

which is easily seen to be computable. [
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From this lemma and the discussion in §9.3, we have another form of the Theorem
C, in which @-computability of dom(f) is (also) assumed (condition (vi) below).

THEOREM CT. (COMPLETENESS FOR FUNCTIONS WITH SEMICOMPUTABLE DO-
MAIN) Let A be an N-standard metric X-algebra, and (X,a) an enumerat-
ed Sort(X)-subspace. Suppose the enumerated Sort(X)-space (Co(X), @) of a-
computable elements of A is a X-subalgebra of A. Assume also that for all
X -sorts s,

(i) @ is strictly X-effective,

(ii) X is dense in As, and

(iii) as :N— A, is WhileCC " -computable on A.

Let f: A* 5 A; be a function on A and V an open ezhaustion of dom(f) such
that

(iv) V is WhileCC -effective in A,

(v) f is effectively locally uniformly continuous w.r.t. V, and

(vi) dom(f) is @-semicomputable.

Then

f is (strictly) WhileCC~ approzimable on A <= f is (strictly) a-computable on A.
Note that the word “strictly” may be omitted or inserted in either side at will.

10.3 Completeness for total effectively uniformly continuous functions

A special case of the Completeness Theorem, with a simpler formulation, is obtained
by assuming that f is total and effectively globally uniformly continuous.

Note that since f is total, the difference between WhileCC*—approximability
and strict While CC*—approximability, and between a-computability and strict a-
computability, vanish, and applying Theorem C or C* (with the trivial exhaustion
of A%, which need not be mentioned explicitly) we obtain:

COROLLARY C'*. (COMPLETENESS FOR TOTAL EFFECTIVELY UNIFORMLY CON-
TINUOUS FUNCTIONS) Let A be an N-standard metric X-algebra, and (X, a) an

enumerated Sort(X)-subspace. Suppose the enumerated Sort(X)-space (Co(X), @)
of a-computable elements of A is a X-subalgebra of A. Assume also that for all
X -sorts s,

(i) @ is strictly X-effective,

(ii) X is dense in As, and

(iii) as:N—> A, is WhileCC -computable on A.
Let f: A* — A, be a total function on A such that
(iv) f is effectively uniformly continuous.

Then

fis WhileCC”™ approrimable on A < [ is a-computable on A.
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10.4 Examples of the application of the Completeness Theorem

(a) Canonical enumerations. The purpose of this example is to make plausible
condition (é4i) of Theorem C (and condition (i¢) of Theorem B in Section 9), i.e.,
the assumption of WhileCC” computability of the enumeration «, by describing
a commonly occurring situation which implies it.

Suppose (X, ) is an enumerated X-subalgebra of A.

Definition 10.4.1. The enumeration «: N — X is effectively determined by a
system of generators G = (9§, 97,95,---), ¢ Sort(x) if; and only if,

(1) G generates X as a X-subalgebra of A;

(i1) « is defined as the composition of the maps

enum eval
N——— Term(Y) —————= X
where enumy is the inverse of the Godel numbering of Term(XY), and evalg is
the term evaluation induced by the mapping xf — g¢f, ({ =0,1,2,...) for some
standard enumeration x§, x§, x3,... of the Y-variables of sort s; and
(444) if, for any X-sort s, the sequence (g§,95,93,...) is finite, then each gf is a X-
constant, whereas if this sequence is infinite, then the map i — g7 is a X-function.

An enumeration constructed in this way is called canonical w.r.t. G.

Remark 10.4.2 (Totality of evalg). We assume here that evals (and hence «)
is total. This is achieved by assuming that either (i) A is total, or (ii) Term(X) is
replaced by some decidable subset Term/(X) on which ewalg is total (for example,
omitting all terms involving division by 0).

Either one of these assumptions holds in each of the following examples; for
example, (i) holds in example (b) below, and (i7) in example (c), resulting in the
same “canonical” enumeration « of Q in both cases (even though the algebras are
different).

LEMMA 10.4.3. If a is effectively detecmined by a system of generators, then
the canonical enumerations o, are While computable for all X'-sorts s.

PROOF. This follows from While computability of term evaluation [Tucker and
Zucker 2000, Cor. 4.7]. O

The significance of the above definition and proposition is this: it is quite common
for an enumeration to be effectively determined by a system of generators; and in
such a situation, condition (i7) in Theorem B, and (4i%) in Theorem C, will be (more
than) satisfied. This will be the case in the following examples.

(b) Partial real algebra. Recall (Example (8.1.2) the enumeration a of Q as a
subspace of the N-standardised metric algebra R;,V of reals (Examples 3.5.4(b) and
3.6.1) and the corresponding enumeration @ of the set C,(Q) of recursive reals.
Note that « is canonical, being effectively determined by the generators {0,1},
and is hence While computable over R. Further, Q is dense in R, C,(Q) is a
subfield of R, and @ is strictly X'(R)-effective. We then have, as another corollary
to Theorem C™:
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COROLLARY 10.4.4. Suppose f: R™ = R is effectively locally uniformly con-
tinuous w.r.t. some WhileCC -effective open exhaustion of dom(f), and suppose
dom(f) is a-semicomputable. Then

[ is (strictly) WhileCC "-approzimable on Rf,v < [ is (strictly) a-computable on R.

(Here, again, the word “strictly” may be omitted or inserted in either side at will).

Examples of functions satisfying the assumption (and also the equivalence) are
all the common (partial) functions of elementary calculus, such as 1/z, logz and
tan .

Consider the special case of total functions on the unit interval I = [0,1]. (Recall
that a continuous function on I is uniformly continuous, so we may as well assume
effective global uniform continuity on I.) Applying Corollary C%*t to the partial
interval algebra I;,V (Example 3.5.4(c)) and a canonical enumeration « of QN 1, we
obtain:

COROLLARY 10.4.5. Suppose f:I™ — I is effectively uniformly continuous.
Then
f is WhileCC -approximable on IIJ,V < f is a-computable on I.

(¢) Banach spaces with countable bases. Let X be a Banach space over R
with a countable basis eg, eq,es, ..., which means that any element z € X can be
represented uniquely as an infinite sum

oo
r = E rie;
=0

with coefficients r; € R (where the infinite sum is understood as denoting con-
vergence of the partial sums in the norm of X). (Background on Banach space
theory can be found in any of the standard texts, e.g., [Royden 1963; Taylor and
Lay 1980].) To program with X, we construct a many-sorted algebra X'

algebra X
import ’R;V
carriers X
functions 0: — X,

+:X? 5 X,
- XX,
@:Rx X — X,
I-1: X - R,
e:N—= X,
ifx:Bx X% X
end
where ® is scalar multiplication, ||-|| is the norm function and and e is the

enumeration of the basis: e(i) = e;. Note that the algebras B and N are implicitly
imported, as parts of ’R;,V , so that there are four carriers: X, R, B and N, of sorts
vector, scalar, bool and nat respectively.
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Let ¥ = X(X). Let Xy be X without the norm function || - ||, and let Xy be the
reduct 2 of X to Xy. Then X is the signature of an N-standardised vector space
over R, with explicit countable basis.

This can be turned into a metric algebra in the standard way, by defining a
distance function on X in terms of the norm d(z,y) =4 ||z —y|-

Let L(Q,e) C X be the set of all finite linear combinations of basis elements
from e with coefficients in Q. The following are easily shown:

—L(Q,e) is countable; in fact it has a canonical enumeration a: N —» L(Q,e)
w.r.t. the generators e, which (by (a) above) is While computable;

—L(Q,e) is dense in X;

—L(Q,e), with scalar field Q (with carriers N and B) is a Xy-subalgebra of Xy.

Now let (C,(L(Q,e)), @) be the enumerated subspace of a-computable vectors.
Then

—Cq(L(Q,e)), with scalar field C,(Q) (with carriers N and B) is also a Xp-
subalgebra of X¢; and moreover,

—a is strictly Xp-effective.

However C,(L(Q,e)) is not necessarily a normed subspace of X, since it may not
be closed under ||-||, é.e., ||z|| may not be in C,(Q) for all z € C4(L(Q,e));
for example, if X is the space ¢ or LP[0,1] where p is a nonrecursive real (see
Examples 10.4.9 below). We must therefore make an explicit assumption for the
Banach space (X, ||-||) with respect to both the closure of C,(L(Q,e)) under
[|-]l, and the @-computability of || - ||

ASSUMPTION 10.4.6 (@-COMPUTABLE NORM ASSUMPTION FOR (X, || -|[|)). For
allz € Co(L(Q,e)), ||z|| € Ca(Q). Further, the norm function || - || is @-computable.

As we will see, many common examples of Banach spaces satisfy this assumption.
Note that Assumption 10.4.6 is equivalent to the following (apparently weaker)
assumption, which is often easier to prove:

AsSsSuMPTION 10.4.7 ((o,@)-COMPUTABLE NORM ASSUMPTION FOR (X, || -]])).
For all © € L(Q,e), ||z|| € Ca(Q). Further, || - || has a computable (o, @)-tracking
function, i.e., a computable function p: N — N such that the following diagram
commutes:

Suppose now that (X, || - ||) satisfies the @-computable norm assumption. Then the
Yo-subalgebra C,(L(Q,e)) of X can be expanded to a X-subalgebra of X (which
we will also write as C,(L(Q,€))), enumerated by @, which is strictly X-effective.

2Reducts of algebras are defined in [Tucker and Zucker 2000, Def. 2.6].
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Now let F': X — R be a (total) linear functional on X. F is said to be bounded
if for some real M,

|F(z)] < Mlz|| forall z € X. (47)
Write ||F|| for the least M for which (47) holds. Then if F' is bounded,
|F(z) = F(y)| < IF[|-llz —yll forall z,y € X,

and so F' is uniformly continuous, in fact it is clearly effectively uniformly continu-
ous. We may therefore apply Corollary Ct*t to F.

COROLLARY 10.4.8. Let X be a Banach space over R with countable basis, and
let Co(L(Q,e)) be the enumerated subspace of a-computable vectors, where a is
a canonical enumeration of the subspace L(Q,e). Suppose (X, ||-||) satisfies the

(a0, @)-computable norm assumption. Then for any bounded linear functional F' on
X,

F is WhileCC™ approximable on X <= F is a-computable on X.

Here X is the N-standard algebra formed from X as above.
Finally we give examples of Banach spaces which satisfy the a-computable norm
assumption.

Ezamples 10.4.9 (Banach spaces with computable norms).
(a) For 1 < p < oo, we have the space £P of all sequences z = ()
such that Y7 [z, |P < oo, with norm defined by

lzll, = (3 Jzal?)"",
n=0

and a countable basis given by e; = (ejn),.,, Where

1 if 4=mn,
€in = .
0 otherwise.

o0

o Of reals

It is easy to see that
if p is a recursive real, then (P satisfies the computable norm assumption,
and so Corollary 10.4.8 can be applied to it.

(b) For 1 < p < oo, we have the space LP[0,1] of all Lebesgue measurable functions
z(t) on the unit interval [0, 1] such that fol |z|P < 00, with norm defined by

! 1/p
lell, = ( / j2p?)/”,

and a countable basis given by (e.g.) some standard enumeration of all step func-
tions on [0, 1] with rational values and (finitely many) rational points of disconti-
nuity, or of all polynomial functions on [0,1] with rational coefficients. Again, we
see that

if p is a recursive real, then LP[0,1] satisfies the computable norm assumption.
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(¢) The space C[0,1] of all continuous functions z(t) on [0,1], with norm
#llsup = sup |(t)]
tel

and a countable basis given by a standard enumeration of all zig-zag functions
on [0,1] with (finitely many) turning points with rational coordinates, or of all
polynomial functions on [0, 1] with rational coefficients. Again,

C[0,1] satisfies the computable norm assumption.

11. CONCLUSION

We have compared two theories of computable functions on topological algebras,
one based on an abstract, high level model of programming and another based
on a concrete, low-level implementation model. Our examples and results here,
combined with our earlier results [Tucker and Zucker 1999; 2000] and those of
Brattka [Brattka 1996; 1999], show that the following are surprisingly necessary
features of a comprehensive theory of computation on topological algebras:

1. The algebras have partial operations.

2. Functions are both continuous and many-valued.

3. Classical algorithms in analysis require nondeterministic constructs for their
proper expression in programming languages.

4. Indeed, many-valued subfunctions are needed to compute even single-valued
functions, and abstract models must be nondeterministic even to compute de-
terministic problems.

5. Abstract models and effective approximations by abstract models are generally
sound for concrete models.

6. Abstract models even with approximation or limit operators are adequate to
capture concrete models only in special circumstances.

7. Nevertheless there are interesting examples where equivalence holds.

8. The classical computable functions of analysis can be characterised by abstract
models of computation.

Specifically, we examined abstract computation by the basic imperative model of
‘while’-array programs. Many algorithms in practical computation are presented
in pseudo-code based on the ‘while’ language. To meet the requirement of feature
2 above we added the simplest form of countable choice to the assignments of
the language, and we defined the WhileCC™ approximable computations. We
proved a Soundness Theorem (Theorem A) and an Adequacy Theorem (Theorem
B), and combined these into a Completeness Theorem (Theorem C), in the case of
metric algebras with partial operations. We considered algebras of real numbers
and Banach spaces where equivalence theorems hold.

Interesting technical questions arise in working out the details of the computabil-
ity theory for the WhileCC™ model (¢f. the theory for single-valued functions on
total algebras in [Tucker and Zucker 2000]). Other important abstract models of
computation, for example the schemes in [Brattka 1999], could be extended with
nondeterminsitic constructs in order to establish equivalence with concrete models.
The topological properties of many-valued functions also need investigation.
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Returning to the general problem posed in the Introduction, the features 1-8
above suggest that new research directions are needed to develop a comprehen-
sive theory of specification, computation and reasoning with infinite data. What
are the appropriate programming constructs for topological computations? What
specification techniques are appropriate for continuous systems? What logics are
needed to support verification of programs that approximate functions? Our work
on computation suggests that some advanced semantic features are needed; in par-
ticular, the nondeterminism that was important in programming methodologies of
the late 1970s (e.g., [Dijkstra 1976]) seems necessary for the proper development
of topological programming. There are plenty of algorithms in scientific modelling,
numerical analysis and graphics to investigate, using such new theoretical tools.

The paper [Tucker and Zucker 2002b] is a sequel to this paper.

ELECTRONIC APPENDIX
The electronic appendix for this article can be accessed in the ACM Digital Library.
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