
NOTIONS OF SEMICOMPUTABILITY IN TOPOLOGICAL ALGEBRAS
OVER THE REALS

MARK ARMSTRONG, JEFFERY ZUCKER

Department of Computing & Software, McMaster University
Hamilton, ON L8S 4K1, Canada

Abstract. Several results from classical computability theory (computability over discrete
structures such as the natural numbers and strings over finite alphabets, due to Turing,
Church, Kleene and others) have been shown to hold for generalisations of computability
theory over total abstract algebras, using a computation model of a high level imperative
(While) language.

We present a number of results relating to computation on topological partial algebras
using an abstract model of computation, While , based on high level imperative languages.
We investigate the validity of several results from the classical theory in the context of
topological algebras on the reals: closure of semicomputable sets under finite union, the
equivalence of semicomputable and projectively (semi)computable sets, and Post’s Theorem.

This research has significance in the field of scientific computation, which is underpinned
by computability on the real numbers. By the Continuity Principle, computability of func-
tions implies their continuity. Since equality, order, and other total boolean-valued functions
on the reals are clearly discontinuous, we resolve this incompatibility by redefining such func-
tions to be partial, leading us to consider topological partial algebras.

1. Introduction

1.1. Generalising computability theory.
In classical computability theory, many formalisms have been presented and been proven to

be equivalent, including the formalism of Turing machines, λ- calculus, and the µ-recursive
functions, presented by Alan Turing [Tur36], Alonzo Church [Chu36] and Stephen C. Kleene
[Kle36] during the 1930’s. These all capture the informal notion of computation by a finite,
deterministic algorithm on N or on Σ∗ (the set of strings from a finite alphabet Σ).

We investigate generalisations of the classical computability theory to other abstract struc-
tures, especially the domain of real numbers R. An important reason for this is that scientific
computation is done largely on the reals.

We are very grateful to Professor Ludwig Bröcker for his input on the properties of basic semi-algebraic
sets. This research was supported by a grant from the Natural Sciences and Engineering Research Council
of Canada.

1

2 NOTIONS OF SEMICOMPUTABILITY IN TOPOLOGICAL ALGEBRAS OVER THE REALS

An important difference between R and N is that real numbers can in general only be
constructed or described as infinite objects; for instance, as infinite sequences of rational
numbers. Thus when working with R, at least with concrete computation models (described
below), we must work with the idea of finite approximations. Further, the topology of the
reals gives us the concept of “nearness”, and hence closeness of approximations. Hence the
topology of the reals is a crucial concept in computation over the reals.

A model of computation is a mathematical model of some general method (algorithm) for
computing functions, or deciding membership of a set. We distinguish two main kinds of
such models: abstract and concrete [TZ04, XFZ15].

In abstract models of computation, the data are taken as primitive, so that the programs
and algorithms do not depend on representations. Examples of abstract models are high
level imperative programming languages, flow charts and register machines over any algebra
[TZ00, dB80, AO91].

In concrete models, data are given by representations, and so the programs and algorithms
depend crucially on the choice of representation, e.g. the representation of reals by (indices
of) effective Cauchy sequences of rationals [SHT99, Wei00].

An important part of our work in this paper is to consider whether certain well-known
results from classical computability theory still hold in the generalised theory, e.g. the closure
of semicomputable sets under union. In addition, we investigate the properties of semicom-
putable subsets of the real plane, e.g. the equivalence or inequivalence with respect to some
notion of semicomputability for variations of a high-level imperative language for topological
algebras over the reals.

1.2. Related work.
There is a rich history of work in generalised computability theory, with many models

having been proposed. Good overviews of several of them are provided in [Wei00, TZ00].
We will focus in this paper on models based on the simple imperative language While ,

which have been investigated thoroughly by the second author [TZ00, TZ15]. In [Fu07, Fu14],
an extension of the While model (with non-determinism and approximability) was shown to
be equivalent to several other models of computation over the reals, including Grzegorczyk-
Lacombe (GL) computability [Grz55, Grz57, Lac55, PER89] and tracking computability
[SHT99, SHT03, TZ04, TZ05], under some reasonable assumptions.

1.3. Overview.
In Section 2 we review many-sorted algebras, relations and projections, topological partial

algebras (in particular the algebra R on R with the ring structure of the reals), and the
abstract models While , WhileOR and While EN over R, as well as “starred” versions of
those languages (i.e. with arrays).

In Section 3 we give definitions and lemmas for the While(R) language, in preparation
for a Structure Theorem for While(R) in Section 4. Using that Structure Theorem, we
prove that the class of While(R) semicomputable sets is not closed under union.

NOTIONS OF SEMICOMPUTABILITY IN TOPOLOGICAL ALGEBRAS OVER THE REALS 3

In Section 5 we present results regarding the (in)equivalence of models of computation on
R based on the While language.

In Section 6 we summarise our conclusions, and give some ideas for future work.
In Appendix A we consider an adaptation of our (in)equivalence results to the 1-dimensional

case over R.
In Appendix B we outline a proof of the equivalence of While(R) with its starred version.
In Appendix C we check that another result from the classical theory, Post’s Theorem,

also holds in the case of R.

1.4. Previous work.
This paper developed out of the first author’s Master’s thesis. It serves as an extension of

the work contained in [XFZ15].
Specifically, the structure theorems presented there for 1-dimensional computation were

previously extended to 2-dimensional computation in [Fu14], with an incomplete structure
theorem for While ; we now present a complete version.

Additionally, in [XFZ15] it was shown that the model While EN is computationally equiv-
alent to its projective version; we extend this result by showing the (in)equivalence of various
models and their projective versions.

2. Signatures; Algebras; the While language

We will study the computation of functions and relations by high level imperative pro-
gramming languages based on the ‘ while’ construct, applied to a many-sorted signature Σ.
We give semantics for this language relative to a topological partial Σ-algebra, and define
the notions of computability, semicomputability and projective semicomputability for this
language. Much of the material is taken from [TZ00, TZ15].

We begin by reviewing basic concepts of many-sorted signatures and algebras. Next we
define the syntax and semantics of the abstract computation model While . Then we present
several extensions to this language.

2.1. Basic algebraic definitions.
A many-sorted signature Σ is a pair 〈Sort(Σ),Func (Σ)〉, where Sort(Σ) is a finite

set of basic types or sorts s1, ..., and Func (Σ) is a finite set of basic function symbols,
F : s1 × ... × sm → s, (m ≥ 0) (the case m = 0 gives a constant symbol ; we then write
F : → s).

A product type of Σ has the form s1 × · · · × sm, where m > 0 and s1, . . . , sm are Σ-sorts.
We write u, v, ... for product types. A function type has the form u→ s, where u is a product
type, or simply → s (for constant functions).

4 NOTIONS OF SEMICOMPUTABILITY IN TOPOLOGICAL ALGEBRAS OVER THE REALS

For a signature Σ, a Σ-algebra A has, for each Σ-sort s, a non-empty set As, called the
carrier of sort s, and for each function symbol F : s1 × ... × sm → s, a function FA : As1 ×
...× Asm ⇀ As.

1

We write Σ(A) for the signature of an algebra A.
An algebra A is said to be total if FA is total for all F ∈ Func (Σ); otherwise, it is partial.

Example 2.1. The signature and (total) algebra of the booleans are as follows:

signature Σ(B)
sorts bool
functions tt, ff : → bool

or, and : bool2 → bool
not : bool→ bool
if-then-else : bool3 → bool

algebra B
carrier B
functions ttB, ffB : → B

orB, andB : B2 → B
notB : B→ B
if-then-elseB : B3 → B

The (total) algebra of the naturals is as follows:

algebra N
import B
carriers N
functions 0N : → N

sucN : N→ N
eqN, lessN : N2 → B
if-then-elseN : B× N2 → N

where the carrier sets B and N, the functions and constants ttB, ffB, andB, orB, notB, 0N, SN,
eqN and lessN have their usual meanings.

We will use the infix notations ∨ and ∧ in place of ‘or’ and ‘and’ and also write ‘¬’ in
place of not, and drop the superscripts ‘B’ and ‘N’ where unambiguous.

Definition 2.2 (Standard signatures and algebras). A signature is called standard if
it includes the sorts and functions of Σ(B).

Correspondingly, an algebra is called standard if it is an expansion of B (i.e. it contains
the carrier B with the standard boolean operators) and additionally, any equality operators,
for sorts on which they are defined, are (partial) identities on these sorts.

Definition 2.3 (N-standard signatures and algebras). A signature is called N-standard
if, in addition to being standard, it includes the sorts and functions of Σ(N).

Correspondingly, an algebra is called N-standard if, in addition to being standard, it is an
expansion of N (i.e. it contains the carrier N with the standard arithmetic operators).

1We use ⇀ in place of → to signify that a function is partial.

NOTIONS OF SEMICOMPUTABILITY IN TOPOLOGICAL ALGEBRAS OVER THE REALS 5

Remark 2.4. All signatures and algebras in this paper will be assumed to be N-standard
(and hence also standard). So Σ refers to any N-standard signature and A to any N-standard
algebra.

2.2. Relations and projections.

Notation 2.5. For a Σ-product type u = s1 × ...× sm, we write

Au =df As1 × ...× Asm

A relation R on A of type u (written R : u) is a subset of Au.
The complement of a relation R : u is the relation

Rc = Au\R = {a ∈ Au | a 6∈ R}
Definition 2.6 (Projection). Let R be a relation of type u = s1 × ...× sm where m > 0.

Let ~i = i1, ..., ir be a list of numbers such that 1 ≤ i1 < ... < ir ≤ m, and let ~j = j1, ..., jm−r
be the list {1, ...,m}\~i. Then the projection of R off ~i is the relation S : sj1 × ... × sjm−r

where ∀xj1 : sj1 , ..., xjm−r : sjm−r ,

S(xj1 , ..., xjm−r) ⇐⇒ ∃xi1 : si1 , ..., xir : sir , R(x1, ..., xm).

2.3. Topological partial algebras.
Recall the definition of continuity of partial functions:

Definition 2.7 (Continuity). Given two topological spaces X and Y , a partial function
f : X ⇀ Y is continuous iff the preimage under f of any open subset of Y is open in X, or
equivalently

(1) dom(f) is open, and
(2) for every open V ⊆ Y , f−1[V] =df {x ∈ X | x ∈ dom(f) and f(x) ∈ V } is open (in

X).

Definition 2.8 (Topological partial algebra). A topological partial algebra is a partial Σ-
algebra with topologies on the carriers such that each of the basic Σ-functions is continuous.
The carriers B and N have the discrete topology.

Discussion 2.9 (Continuity of computable functions). The significance of the continu-
ity of the basic functions of a topological algebra A is that it implies continuity of all While
computable function on A [TZ99, TZ00].

This is in accordance with the Continuity Principle, which can be expressed as

computability =⇒ continuity

This principle is a classical design decision for models of computation over the reals; see for
example [PER89, Wei00, TZ99].

One motivation for this design decision is Hadamard’s principle [Had52], which, as re-
formulated by Courant and Hilbert [CH53, Had64], states that for a scientific problem to be
well posed, the solution must (apart from existing and being unique) depend continuously
on the data.

6 NOTIONS OF SEMICOMPUTABILITY IN TOPOLOGICAL ALGEBRAS OVER THE REALS

2.4. The algebra R of reals.
In the following sections, we work mostly with the following topological algebra2:

algebra R
import B,N
carriers R
functions 0R, 1R : → R

negR : R→ R
plusR, timesR : R2 → R
eqR, lessR : R2 ⇀ B
if-then-elseR : B× R2 → R
cand, cor : B2 → B

where the functions and constants 0R, 1R, plusR and timesR have their usual definitions, the
function eqR and lessR are defined as in Remark 2.11 below and the “conditional” boolean
operators cand and cor can defined using if-then-elseB as in Discussion 2.12.

We will often write −, + and ∗ in place of ‘negR’, ‘plusR’ and ‘timesR’, = and < in place

of ‘eqR’ and ‘lessR’ (and ‘eqN’ and ‘lessN’),
c
∧ and

c
∨ in place of cand and cor, and drop the

superscripts ·R, ·B and ·N where unambiguous.
The signature Σ(R) can be inferred from the above, with real as the sort of R.

Notation 2.10. We write ↑ to denote “undefinedness”. We use the symbol ‘'’ to denote
“Kleene equality”, where the two sides are either both defined and equal, or both undefined
[Kle52, §63].

Remark 2.11 (Equality on the reals). R is a partial algebra, with the basic boolean-
valued partial functions eqR and lessR, which for x, y ∈ R are defined as:

eqR(x, y) '

{
↑ if x = y

ff o/w

and

lessR(x, y) '

tt if x < y

ff if x > y

↑ o/w.

Note that by contrast, the basic functions eqN and lessN on N are total.

2In [FZ15] ‘R’ was used for the algebra of reals which also included the multiplicative inverse operation on the reals.

‘R0’ referred to the algebra without the multiplicative inverse.

NOTIONS OF SEMICOMPUTABILITY IN TOPOLOGICAL ALGEBRAS OVER THE REALS 7

Discussion 2.12 (Conditional boolean operators). For b1, b2 ∈ B, the semantics of the

“conditional” operators
c
∧ and

c
∨ of R can be defined by:

b1
c
∧ b2 ' if b1 then b2 else ff

and

b1
c
∨ b2 ' if b1 then tt else b2

i.e., the operators
c
∧ and

c
∨ are “evaluated from the left”.

By contrast, the semantics of operators ∧ and ∨ are taken to be “strict”, i.e. b1 ∧ b2 is
undefined whenever either b1 or b2 is (and similarly for ∨).

While it is not strictly necessary to include the conditional operators, they seem a natural
inclusion when dealing with partial functions.

Note that we will discuss the semantics of the infinite conditional disjunction in Discussion
3.3.

Discussion 2.13 (Motivation for use of partial functions). We present two approaches
motivating the above partial functions. The first is a discussion of the continuity of com-
parison operators on R. The second is a Gedankenexperiment involving concrete models of
computation.

(1) The total versions of the comparison operators eqR and lessR on R are not continuous.
(By contrast any boolean-valued operator on N is trivially continuous, because N has the
discrete topology). Continuity of these operators is important because of the Continuity
Principle and our definition of topological partial algebras (Definition 2.8 and Discussion
2.9), which requires all basic operators to be continuous.

(2) Consider now the task of determining whether, in some concrete model, two representa-
tions denote the same real number or not. As an example, let us use, as representations
of these real numbers, effective Cauchy sequences of rationals (r0, r1, r2, ...). We assume
for our convenience3 that the sequences are “fast”, i.e.,

∀n,∀m ≥ n, |rn − rm| < 2−n.

Now suppose given two reals x and y with such representations (r0, r1, r2, ...) and (s0, s1, s2, ...)
respectively. Suppose also that for n = 0, 1, 2, 3, ... the inputs rn and sn are observed
(from some device) at n time units. Then the first real is less than the second iff for
some n, rn + 2 · 2−n < sn, and this can be determined in a finite amount of time. Corre-
spondingly, the two reals are equal iff for all n, |rn − sn| < 2 · 2−n, but this cannot be
determined in a finite amount of time. So from this example it is natural for comparison
operators on reals x and y to diverge in cases when x = y.

3When using effective Cauchy sequences as a representation, we assume given a computable modulus of
convergence; given this, we can (by effectively taking subsequences) easily restrict our attention to sequences
which are fast.

8 NOTIONS OF SEMICOMPUTABILITY IN TOPOLOGICAL ALGEBRAS OVER THE REALS

Remark 2.14. Throughout this paper we focus on functions on R2. The well-established
methods of proof for R do not generally “lift” to R2 (see e.g. Appendix A), but the methods
we will use for R2 easily “lift” to Rn for n > 2.

2.5. The algebra R∗.
The algebra R∗ is formed from R by adding the carriers R∗, N∗ and B∗ (of sorts real∗,

nat∗ and bool∗ respectively) consisting of all finite sequences or arrays of reals, naturals
and booleans (respectively), together with certain standard constants and operations for the
empty array, updating of arrays, etc.

The significance of arrays for computation is that they provide finite but unbounded
memory. Note that despite the convenience of the starred sorts, R∗ is computationally
equivalent to R (a proof of this fact is outlined in Appendix B). As such, we omit the
precise definition of R∗, which can be found in [TZ00, TZ15].

2.6. Syntax of terms and the While programming language.
As has been mentioned, we will study the abstract models of high level imperative pro-

gramming languages based on the ‘ while’ construct. We begin with the syntax.
Note that ‘≡’ denotes syntactic identity between two expressions.

• Σ-variables : For each Σ-sort s, there are variables xs, ys, ... of sort s. Var s(Σ) is
the set of variables of sort s, and Var(Σ) is the set of all Σ-variables.
• Σ-terms : Tm(Σ) is the set of Σ-terms : t, ... and Tms(Σ) is the set of Σ-terms of

sort s: ts, We define this using a modified BNF:

ts ::= xs | F (ts11 , ..., t
sm
m)

where F is a Σ-function symbol of type s1 × ...× sm → s (m ≥ 0).
• Statements : Stmt(Σ) is the set of Σ-statements S, ... generated by:

S ::= skip | x := t | S1;S2 | if b then S1 else S2 fi | while b do S0 od

where x := t denotes simultaneous assignment, i.e., for some m > 0, x ≡ (x1, ..., xm)
and t ≡ (t1, ..., tm) are variable and term tuples of the same product type, with the
condition that xi 6≡ xj for i 6= j; and b is a Σ-boolean4.
• Procedures: Proc(Σ) is the set of Σ-procedures P, ... of the form:

P ≡ proc D begin S end

where the statement S is the body and D is a variable declaration of the form

D ≡ in a : u out b : v aux c : w

where a, b and c are tuples of input, output and auxiliary variables respectively. We
stipulate further:
(i) a, b and c each consist of distinct variables, and they are pairwise disjoint,
(ii) every variable occurring in the body S must be declared in D (among a, b or c).

If a : u and b : v, then P has type u→ v, written P : u→ v.

4That is, a Σ-term of sort bool.

NOTIONS OF SEMICOMPUTABILITY IN TOPOLOGICAL ALGEBRAS OVER THE REALS 9

2.7. Semantics of terms and the While language.
We now give the semantics of terms, statements and procedures. To begin, we need to

define the notions of state and variant a of state.
A state over A is a family 〈σs | s ∈ Sort(Σ)〉 of functions σs : Var s(Σ)→ As. State(A)

is the set of states over A, with elements σ,
We write σ(x) for σs(x) when x ∈ Var s(Σ). We also write, for tuples x ≡ (x1, ..., xm) : u,

σ[x] in place of (σ(x1), ..., σ(xm)).
Let σ be a state over A, and for some Σ-product type u, let x ≡ (x1, ..., xn) : u and

a = (a1, ..., an) ∈ Au (for n ≥ 1). We define the variant σ{x/a} to be the state over A
formed from σ by replacing its value at xi by ai for i = 1, ..., n. That is, for all variables y:

σ{x/a}(y) =

{
σ(y) if y 6≡ xi for i = 1, ..., n

ai if y ≡ xi

We can now define the semantics of terms, statements and procedures:

• Σ-terms : The meaning of a Σ-term t is given by the function

JtKA : State(A) ⇀ As

where JtKAσ is the value of t in A at state σ.
The definition of JtKAσ is by structural induction on Σ-terms t:
– JxKAσ = σ(x)

– JF (t1, ..., tm)KAσ '

{
F (Jt1KAσ, ..., JtmKAσ) if JtiKAσ ↓ for all i = 1, ...,m

↑ o/w

• Statements : The meaning of a While statement S w.r.t. A, written JSKA, is a
partial state transformation on the algebra A:

JSKA : State(A) ⇀ State(A),

Its definition is standard [TZ99, TZ00] and lengthy, and so we omit it. Briefly, it
is based on defining the computation sequence of S starting in a state σ, or rather
the nth component of this sequence, by a primary induction on n, and a secondary
induction on the size of S.

10 NOTIONS OF SEMICOMPUTABILITY IN TOPOLOGICAL ALGEBRAS OVER THE REALS

• Procedures: The meaning of a While procedure

P ≡ proc in a : u out b : v aux c : w begin S end,

of type u → v, written JP KA : Au ⇀ Av, is defined as follows5. For a ∈ Au, let σ be
any state on A such that σ[a] = a. Then6

JP KA(a) '

{
σ′[b] if JSKAσ ↓ σ′

↑ if JSKAσ ↑ .
.

2.8. While computability and semicomputability.
A function f : Au ⇀ As is said to be computable (on A) by a While procedure P : u→ s

if f = PA.
While(A) is the class of functions While computable on A.
The halting set of a procedure P : u→ v on A is the set

HaltA(P) =df {a ∈ Au | PA(a) ↓}.
A set R ⊆ Au is While semicomputable on A if it is the halting set on A of some While

procedure.

2.9. Extending While to WhileOR and While EN.
In preparation for the theorems in Sections 4 and 5, we give the semantics of strong

disjunction and strong existential quantification to introduce the WhileOR and While EN

extensions to the While language.
The motivation for these extensions is that with our model of While computation on
R, the partial operations leave us unable to implement interleaving or merging. The prob-
lem is that in the interleaving of two processes, one process may converge and the other
diverge locally (because of the partial operations). The resulting process will then diverge,
whereas we might want it to converge. Thus, as we will see in Section 4, the union of two
semicomputable sets is not necessarily semicomputable. Concrete models, which work with
representations of the reals instead of taking them as primitive, do not have this deficiency,
as local divergence is not an issue. The extensions WhileOR and While EN compensate for
this deficiency in While .

The WhileOR language is created from While by introducing the strong disjunction
operator ‘∇’, where b1∇b2 converges to tt if either b1 or b2 do so, even if the other diverges.

5We overload the symbols ↑, ↓ and ', discussed in Notation 2.10 where they deal with the definedness of
terms, for use with statements and procedures. Here instead of definedness they refer to the convergence or
divergence of computations.
6The definition can be shown to be independent of the exact choice of σ (by the Functionality Lemma [TZ00, Lemma
3.4]).

NOTIONS OF SEMICOMPUTABILITY IN TOPOLOGICAL ALGEBRAS OVER THE REALS 11

The While EN language is created from While by introducing a strong existential quan-
tification construct over the naturals in the context of an assignment:

xB := En P (t, n)

where n : nat and P is a boolean-valued procedure. Its semantics are defined by

J En P (t, n)KAσ '

{
tt if P (JtKAσ, m) ↓ tt for some m

↑ o/w.

To simplify the exposition, we include the strong disjunction operator ‘∇’ in the While EN

language.
If instead of strong existential quantification, we constructed While EN using existential

quantification “evaluated from the left”, this would (as can easily be shown) give a conser-
vative extension of While , in that any function implemented in it could be implemented in
While (assuming here we do not include the strong disjunction operator)7.

By means of these constructs, interleaving of processes may be simulated. The WhileOR

language allows for the interleaving of an arbitrary but finite number of processes, and the
While EN language for infinitely many processes.

3. Semantic disjointedness; Engeler’s Lemma

We now present some important background relating to boolean terms. We begin by
introducing notation used throughout this section and section 4:

Notation 3.1.

• We will often write x to mean a u-tuple of variables; i.e. x ≡ (x1, ..., xm) : u.
• For a tuple of variables x ≡ (x1, ..., xm), m ≥ 1, let Bool(R)(x) be the set of Σ(R)-

booleans containing variables in x only.
• Similarly define Bool(ROR)(x), whereROR is the extension of the algebraR including

strong disjunction (∇).

3.1. Engeler’s Lemma.
This is of vital importance in proving our Structure Theorem for While(R) semicom-

putable sets.
First we need the concepts of semantic disjointedness of a sequence of booleans.

Definition 3.2 (Semantic Disjointedness). A sequence (b0, b1, b2, ...) of boolean terms is
semantically disjoint over A if for any state σ over A and any n,

JbnKAσ ↓ tt =⇒ ∀i 6= n, JbiKAσ ↓ ff.

7cf. the two definitions of infinite disjunction given in Discussion 3.3.

12 NOTIONS OF SEMICOMPUTABILITY IN TOPOLOGICAL ALGEBRAS OVER THE REALS

Discussion 3.3 (Semantics of infinite disjunction). Let (bk) be a sequence of Σ-
booleans. There are (at least) two different reasonable semantic definitions for the infinite
disjunction

∞∨
k=0

bk

for 3-valued logics (“reasonable” in the sense of having computational significance):

(1) Infinite conditional disjunction (“evaluation from the left”), written

∞
c∨

k=0

bk, with two

possible results, tt and ↑:

J
∞
c∨

k=0

bkKAσ '

{
tt if ∃k, JbkKAσ ↓ tt and ∀i < k, JbiKAσ ↓ ff

↑ otherwise.
.

This definition is easily seen to be While computable (in the sequence of codes pbkq).

(2) Infinite strong disjunction (“strong Kleene evaluation”), written
∞̀

k=0

bk, again with

two possible results, tt and ↑:

J
∞̀

k=0

bkKAσ '

{
tt if ∃k, JbkKAσ ↓ tt

↑ otherwise.
.

This definition is not (in general) While computable. If it were, While would be at
least as powerful as While EN, which we will show is not the case (Theorems 4, 5).

Remark 3.4. Note that if an effective sequence of booleans (bk) is semantically disjoint over
A, then for any σ,

J
∞̀

k=0

bkKAσ ' J
∞
c∨

k=0

bkKAσ

i.e. J
∞̀

k=0

bkKAσ can be “evaluated from the left”.

We will only consider infinite disjunction in the context of semantically disjoint sequences
of booleans, and so for our purposes the choice of semantic definition is irrelevant.

Lemma 3.5 (Engeler’s Lemma for While). Given a partial Σ-algebra A and a Σ-product
type u = s1× ...× sm, if a relation R ⊆ Au is While semicomputable over A then R can be
expressed as the infinite disjunction of a semantically disjoint effective sequence of Σ-booleans
over A; i.e., for all x : Au

x ∈ R ⇐⇒
∞∨
k=0

JbkKσ{x/x}

for some semantically disjoint effective sequence of booleans (b0, b1, ...), where σ is any state
and each bk has no free variables other than those in x : u.

NOTIONS OF SEMICOMPUTABILITY IN TOPOLOGICAL ALGEBRAS OVER THE REALS 13

Remark 3.6. Engeler’s Lemma can be proved by an analysis of the computation trees for
While programs [TZ00]. It was originally stated in [Eng68] without the semantic disjoint-
edness property; this property was subsequently noted in [XFZ15, §4].

3.2. Canonical form for Bool(R)(x).
In the proof of our Structure Theorem in §4 for While(R) semicomputable sets, we require

a canonical form for booleans containing real variables only.

Lemma 3.7 (Canonical form for Bool(R)(x)). For a tuple x of real variables, any term
in Bool(R)(x) is effectively semantically equivalent to a boolean combination of equations
and inequalities of the form:

p(x) = 0 and q(x) > 0

where p and q are polynomials in x of degree > 0.8

The proof is by structural induction on the booleans.
Note that the canonical form of booleans coincides with the notion of semi-algebraic set,

to which we now turn.

3.3. Basic and semi-algebraic sets.
We introduce the concepts of basic and semi-algebraic sets, which are fundamental to our

results. We consider these sets on R2, though they can clearly be generalised to Rn for any
n ≥ 1.

Definition 3.8 (Basic set). A basic set is a subset of R2 that can be expressed in the form

{x ∈ R2 | p1(x) > 0 ∧ ... ∧ pk(x) > 0} (k > 0)

where p1, ..., pk are polynomials.

Remark 3.9. In this paper, polynomials are always taken as having rational [or, equivalently,
integer] coefficients.

Note that all basic sets are open9.

Definition 3.10 (Semi-algebraic set). A semi-algebraic set is a subset of R2 that can be
expressed in the form
n⋃

i=1

{x ∈ R2 | pi,1(x) > 0 ∧ ... ∧ pi,ki(x) > 0 ∧ qi,1(x) = 0 ∧ ... ∧ qi,li(x) = 0} (ki, li > 0)

where each pi,j and qi,j is a polynomial.

Remark 3.11. The class of basic sets is closed under binary intersection.

8Note that this “canonical form” is not unique.
9We use “basic sets” to mean “basic open semialgebraic sets”

14 NOTIONS OF SEMICOMPUTABILITY IN TOPOLOGICAL ALGEBRAS OVER THE REALS

Remark 3.12. Given a polynomial p(x) on R2, there are disjoint basic sets B+, B− and a
semi-algebraic set D, such that

• p > 0 on B+

• p < 0 on B−

• p = 0 on D

and B+ ∪B− ∪D = R2

3.4. Positive and negative sets.

Definition 3.13 (Positive, negative and divergent sets of booleans). Let x ≡ (x1, x2).
For any b ∈ Bool(R)(x), let:

PS(b) =df {x ∈ R2 | b[x] = tt}
NS(b) =df {x ∈ R2 | b[x] = ff}
DS(b) =df {x ∈ R2 | b[x] ↑}.

These will be used in the proof of the Partition Lemma in the next section.

4. While(R) semicomputable sets: Structure Theorem and failure of
closure under union

We present a Partition Lemma for booleans in Bool(R)(x), where x ≡ (x1, x2), which we
then use to give a Structure Theorem for While(R) semicomputability over R2. By means
of this we will give an example of two While(R) semicomputable sets whose union is not
While(R) semicomputable.

Convention 4.1. For the remainder of this section, let x ≡ (x1, x2).

4.1. Partition Lemma for booleans in Bool(R)(x).

Lemma 4.2 (Partition Lemma for booleans in Bool(R)(x)). Consider any boolean
b ∈ Bool(R)(x). The positive and negative sets10 for b in R2 can be expressed as:

PS(b) =
k⋃

i=1

B+
i

NS(b) =
l⋃

j=1

B−j .

where B+
i , B−j are basic sets, and

B+
i ∩B−j = ∅ for i = 1, ..., k and j = 1, ..., l

B+
i1
∩B+

i2
= ∅ for i1 6= i2

B−j1 ∩B
−
j2

= ∅ for j1 6= j2

.

10cf. Definition 3.13. For our purpose, the form of the divergent set of b, DS(b), is unimportant.

NOTIONS OF SEMICOMPUTABILITY IN TOPOLOGICAL ALGEBRAS OVER THE REALS 15

Before giving the proof, we consider some examples of positive and negative sets in R2.

Examples 4.3 (Positive and negative sets in R2). These examples are of interest because
our counterexample to the closure of semicomputable sets under union will build on them.

Consider the polynomials p1 ≡ −x21−x22 +1 and p2 ≡ −(x1−1)2−x22 +1, and the booleans
b1 ≡ p1(x1, x2) > 0 and b2 ≡ p2(x1, x2) > 0. Define:

B1 = PS(b1) = {(x1, x2) ∈ R2 | p1(x1, x2) > 0}
B2 = PS(b2) = {(x1, x2) ∈ R2 | p2(x1, x2) > 0}

Figure 4.1. B1 = PS(b1) and B2 = PS(b2)

−2

−2

−1

−1

1

1

2

2

−2

−2

−1

−1

1

1

2

2

B1 and B2 are basic sets, and can be easily seen to be While(R) semicomputable. They
are pictured in Figure 4.1.

Figure 4.2. PS(b1
c
∨ b2) and PS(b1 ∨ b2)

−2

−2

−1

−1

1

1

2

2

−2

−2

−1

−1

1

1

2

2

The sets PS(b1
c
∨ b2) and PS(b1 ∨ b2), pictured in Figure 4.2, are also easily seen to be

While(R) semicomputable. These sets can be represented as the union of two and three

16 NOTIONS OF SEMICOMPUTABILITY IN TOPOLOGICAL ALGEBRAS OVER THE REALS

disjoint basic sets respectively11:

PS(b1
c
∨ b2) = {(x1, x2) ∈ R2 | p1(x1, x2) > 0}

∪ {(x1, x2) ∈ R2 | p1(x1, x2) > 0, p2(x1, x2) < 0}

PS(b1 ∨ b2) = {(x1, x2) ∈ R2 | p1(x1, x2) > 0, p2(x1, x2) > 0}
∪ {(x1, x2) ∈ R2 | p1(x1, x2) > 0, p2(x1, x2) < 0}
∪ {(x1, x2) ∈ R2 | p1(x1, x2) < 0, p2(x1, x2) > 0}

Proof of the Partition Lemma. This is by structural induction on R-booleans with vari-
ables in x ≡ (x1, x2), which we assume are in canonical form.

• Base case: b ≡ p(x) = 0 or p(x) > 0. Immediate from Remark 3.12. In each case
there is a single basic set for each positive and negative set.
• Induction step: In what follows, suppose:

PS(b1) =

k1⋃
i=1

B+
1i

NS(b1) =

l1⋃
i=1

B−1i

PS(b2) =

k2⋃
j=1

B+
2j

NS(b2) =

l2⋃
j=1

B−2j

Now we consider the various cases based on the major operator of b:
(i) b ≡ ¬b1. Just exchange the positive and negative sets of b1; since all three

properties hold for both, they still hold after switching.

11The proof of the Partition Lemma serves as an algorithm for constructing such representations.

NOTIONS OF SEMICOMPUTABILITY IN TOPOLOGICAL ALGEBRAS OVER THE REALS 17

(ii) b ≡ b1 ∨ b2. Then let

PS1 =

k1⋃
i=1

k2⋃
j=1

(B+
1i ∩B+

2j)

PS2 =

k1⋃
i=1

l2⋃
j=1

(B+
1i ∩B−2j)

PS3 =

l1⋃
i=1

k2⋃
j=1

(B−1i ∩B+
2j)

Then:

PS(b) = PS1 ∪ PS2 ∪ PS3

NS(b) =

l1⋃
i=1

l2⋃
j=1

(B−1i ∩B−2j)

The sets PS1, PS2 and PS3 are disjoint, because for any i and j, B+
1i ∩B−1j = ∅

and B+
2i ∩ B−2j = ∅. Further, the sets Ba

1i ∩ Bb
2j (a, b ∈ {+,−}) are all mutually

disjoint, because B+
ni1
∩B+

ni2
= ∅ for i1 6= i2 and n ∈ {1, 2}, and B−nj1 ∩B

−
nj2

= ∅
for j1 6= j2 and n ∈ {1, 2}. So PS(b) and NS(b) are finite unions of disjoint
basic sets (by Remark 3.11).

(iii) b ≡ b1 ∧ b2. Then

PS(b) =

k1⋃
i=1

k2⋃
j=1

(B+
1i ∩B+

2j)

NS(b) = (

l1⋃
i=1

l2⋃
j=1

(B−1i ∩B−2j)) ∪ (

k1⋃
i=1

l2⋃
j=1

(B+
1i ∩B−2j)) ∪ (

l1⋃
i=1

k2⋃
j=1

(B−1i ∩B+
2j))

Similar to case (ii).

(iv) b ≡ b1
c
∨ b2. Then

PS(b) =

k1⋃
i=1

B+
1i ∪ (

l1⋃
i=1

k2⋃
j=1

(B−1i ∩B+
2j))

NS(b) =

l1⋃
i=1

l2⋃
j=1

(B−1i ∩B−2j)

Again, similar to case (ii).

18 NOTIONS OF SEMICOMPUTABILITY IN TOPOLOGICAL ALGEBRAS OVER THE REALS

(v) b ≡ b1
c
∧ b2. Then

PS(b) =

k1⋃
i=1

k2⋃
j=1

(B+
1i ∩B+

2j)

NS(b) =

k1⋃
i=1

B−1i ∪ (

k1⋃
i=1

l2⋃
j=1

(B+
1i ∩B−2j))

Again, similar to (ii).

�

Remark 4.4. The Partition Lemma for booleans in Bool(R)(x) does not hold for booleans
in Bool(ROR)(x) because, given any two booleans b1, b2 ∈ Bool(ROR)(x), the positive set of
b1∇b2 cannot necessarily be reduced to a disjoint union of basic sets, as we will see in §4.3.

4.2. Structure Theorem for While(R) semicomputability.

Theorem 1 (Structure Theorem for While(R)). For subsets of R2,

While(R) s/comp ⇐⇒ union of disjoint eff. seq. of basic sets.

Proof. For the ‘=⇒’ direction: If R ⊆ R2 is While(R) semicomputable, then by Engeler’s
Lemma (Lemma 3.5), for all x ∈ R2,

x ∈ R ⇐⇒
∞∨
k=0

bk[x]

for some semantically disjoint effective sequence (bk) of Σ-booleans in Bool(R)(x).12 By
the Partition Lemma, each bk defines a finite union of disjoint basic sets. Also since (bk) is
semantically disjoint, the positive sets for different bk’s are disjoint.

Hence (bk) is a disjoint effective sequence of basic sets as desired.

12Recall Remark 3.4.

NOTIONS OF SEMICOMPUTABILITY IN TOPOLOGICAL ALGEBRAS OVER THE REALS 19

For the ‘⇐=’ direction: Given an effective encoding of basic sets (we write pBq for the
code of B), there is a While(R) computable function

in : nat× real2 ⇀ bool

such that for any basic set B,

in(pBq, x1, x2) =

tt if (x1, x2) ∈ B
ff if (x1, x2) 6∈ B
↑ o/w, i.e. (x1, x2) is on the boundary of B.

where B is the closure of B.
This is clear from the definition of basic sets.
Then the disjoint effective sequence (Bi) of basic sets gives us a total recursive function

f : N→ N such that f(n) is the code of the nth basic set. Hence the countable union of (Bi)
is the halting set of the While(R) procedure

proc
in x1, x2 : real;
aux i nat;
begin
i := 0;
while not(in(f(i), x1, x2))
do i := i + 1 od

end

�

Remark 4.5. An incomplete version of our structure theorem for While(R) semicom-
putability was given in [Fu14, §4.6]; for subsets of R2:

While(R) s/comp =⇒ union of disjoint eff. seq. of finite unions of basic sets

While(R) s/comp ⇐= union of disjoint eff. seq. of basic sets

4.3. Failure of closure of While(R) semicomputable sets under union.
For total standard algebras, we have the following proposition [TZ00, §5.2], [TZ15, §6.1]:

Proposition 4.6 (Closure of While semicomputable sets under union for total
standard algebras). For any total standard algebra A, the class of While(A) semicom-
putable sets is closed under finite unions.

We now use the Structure Theorem for While(R) (Theorem 1) to give a counterexample
to the closure of semicomputable sets under finite union in our partial algebra on the reals.

20 NOTIONS OF SEMICOMPUTABILITY IN TOPOLOGICAL ALGEBRAS OVER THE REALS

This follows simply from:

Example 4.7 (A union of two basic sets which is not basic). Consider the overlapping
basic sets (cf. Examples 4.3):

B1 = {(x1, x2) | −x21 − x22 + 1 > 0},
B2 = {(x1, x2) | −(x1 − 1)2 − x22 + 1 > 0}.

Their union is clearly semi-algebraic, but not basic.
This follows from a more general result [ABR96]: if the boundaries of two semi-algebraic

subsets of R2 intersect transversally at some point, then their union is never basic13.

Theorem 2 (Failure of closure of While(R) semicomputable sets under union).
The class of While(R) semicomputable sets on R2 is not closed under finite unions.

Figure 4.3. B1 ∪B2 = PS(b1∇b2)

−2

−2

−1

−1

1

1

2

2

Proof. Recall the sets B1 and B2 from Example 4.7. Consider B1 ∪ B2 = PS(b1∇b2),
pictured in Figure 4.3. It is a union of two semicomputable sets (pictured in Figure 4.1).
If it is semicomputable, then by the Structure Theorem for While(R) it is a union of a
disjoint effective sequence of basic sets. However, since it is open and connected, it must in
fact be equal to a single basic set. This contradicts the conclusion of Example 4.7. �

Note that with respect to WhileOR(R) and While EN(R), the set PS(b1∇b2) is trivially
semicomputable (cf. Remark 4.4).

5. Classes of subsets of R semicomputable sets by models based on the
While language

In this section we consider the equivalence or inequivalence of the classes of While(R),
WhileOR(R) and While EN(R) semicomputable sets, as well as the projectively semicom-
putable sets for these languages.

13We thank Professor Bröcker (Münster) for pointing this out (personal communication).

NOTIONS OF SEMICOMPUTABILITY IN TOPOLOGICAL ALGEBRAS OVER THE REALS 21

5.1. A set which is projectively While(R) semicomputable but not While(R)
semicomputable.

We will show, by means of an example, that the concept of projective While(R) semi-
computability is strictly broader than While(R) semicomputability on R2.

Figure 5.1. Domain of f0(x1, x2, y).

y

x1

x2

Example 5.1. Consider the three-dimensional function f0 : R3 → B, where:

f0(x1, x2, y) '

tt if y > 1 ∧ x21 + x22 < 1

tt if y < −1 ∧ (x1 − 1)2 + x22 < 1

↑ o/w

the domain of which is pictured in Figure 5.1.
The domain of f0 is easily seen to be While(R) semicomputable, and so its projection

off the third argument:

{(x1, x2) | ∃y ∈ R, (y > 1 ∧ x21 + x22 < 1) ∇ (y < −1 ∧ (x1 − 1)2 + x22 < 1)}
is projectively While(R) semicomputable.

We have met this set previously in Figure 4.3, and we have seen that it is not While(R)
semicomputable (in the proof of Theorem 2), as it is not a union of disjoint basic sets.

22 NOTIONS OF SEMICOMPUTABILITY IN TOPOLOGICAL ALGEBRAS OVER THE REALS

From this example, we have:

Theorem 3. For subsets of R2,

While(R) s/comp =⇒
6⇐= proj-While(R) s/comp

5.2. Inequivalence of While(R), WhileOR(R) and While EN(R) semicomputability.
In [Fu14, §4.6], structure theorems for WhileOR(R) and While EN(R) semicomputability

over R2 were given. Along with the structure theorem for While(R) given in §4.2, this gives
us the following:

Semicomputability Structure Theorems for R2. For subsets of R2,

While(R) s/comp ⇐⇒ union of disj. eff. seq. of basic sets

WhileOR(R) s/comp ⇐⇒ union of disj. eff. seq. of finite unions of basic sets

While EN(R) s/comp ⇐⇒ union of eff. seq. of basic sets.

The above three structure theorems will be used (in Theorems 4 and 5 below) to show
the inequivalence between While(R), WhileOR(R) and While EN(R) semicomputability
on R2. This will be done by providing two examples: a subset of R2 which is WhileOR(R)
but not While(R) semicomputable, and one which is While EN(R) but not WhileOR(R)
semicomputable.

For the first example, we return to our working example, B1 ∪B2, pictured in Figure 4.3.
As discussed, this set is not While(R) semicomputable. However, from its definition and
from the WhileOR(R) structure theorem, it is clearly WhileOR(R) semicomputable. So we
have:

Theorem 4. For subsets of R2,

While(R) s/comp =⇒
6⇐= WhileOR(R) s/comp

�

For the second example, consider a sequence of polynomials

pi ≡ (x1 − 2i)2 + x22 < 1

and booleans

bi ≡ pi(x1, x2) > 0

(i = 0, 1, 2, ...). Let

Bi = PS(bi) = {(x1, x2) ∈ R2 | pi(x1, x2) > 0}.
and let

(5.2) B =
⋃
i

Bi = {(x1, x2) | pi(x1, x2) > 0 for some i = 0, 1, 2, ...}.

B is partially pictured in Figure 5.2, for −1 ≤ x1 ≤ 4.

NOTIONS OF SEMICOMPUTABILITY IN TOPOLOGICAL ALGEBRAS OVER THE REALS 23

Figure 5.2. g(x1, x2).

−2

−1

1

2

−2 −1 1 2 3 4

(Bi) is an effective sequence of basic sets, and so their union B is While EN(R) semicom-
putable, by the While EN(R) structure theorem.

Now consider whether B is WhileOR(R) semicomputable. By the WhileOR(R) structure
theorem, that would mean B is a union of a disjoint sequence of finite unions of basic sets. On
the other hand, because B is connected, it must be a (single) finite union of basic sets, and
(hence) a single semi-algebraic set. But that cannot be the case, for in (5.2), by substituting
0.9 for x2, we get the 1-dimensional “slice” of B:

{x ∈ R | pi(x, 0.9) > 0 for some i = 0, 1, 2, ...}}.
If B were semi-algebraic, then this set would also be semi-algebraic. However, this set

is a union of infinitely many disjoint intervals (the intervals on which the horizontal line at
x2 = 0.9 intersects the “tops” of the discs), and therefore cannot be semi-algebraic, since a
semi-algebraic subset of R can have at most finitely many components.

So B is not semi-algebraic, and therefore not WhileOR(R) semicomputable. Hence we
have:

Theorem 5. For subsets of R2,

WhileOR(R) s/comp =⇒
6⇐= While EN(R) s/comp.

�

5.3. Equivalence of projective While(R) and While EN(R) semicomputability.
The following was proved in [XFZ15, §5.6].

Lemma 5.3. For subsets of R2,

proj-While EN(R) s/comp ⇐⇒ While EN(R) s/comp.

�

Essentially, this involves replacing a projection onto a real plane, i.e. existential quantifica-
tion over R, by existential quantification over a countable dense subset Q ⊂ R, by continuity

24 NOTIONS OF SEMICOMPUTABILITY IN TOPOLOGICAL ALGEBRAS OVER THE REALS

considerations, and (hence, by coding rationals as naturals) by existential quantification over
N.

We want to show further:

Lemma 5.4. For subsets of R2,

proj-While(R) s/comp ⇐⇒ While EN(R) s/comp.

Proof. The ‘=⇒’ direction is obvious.
For the ‘⇐=’ direction: Consider any While EN(R) semicomputable set in R2. This is the

halting set of some While EN program P over R2.
We will construct a While(R) program P0 over R3 such that the projection of the halting

set of P0 off R is equal to the halting set of P .
We construct P0 from P by replacing each statement of the form:

xB := En Q(t, n)

by the two statements:

xB := Q(t, item[floor(z), i]);
i := i + 1

where z : real is the new argument for P0, i : nat is a new auxiliary variable which is initialized
to 0 at the start of the program, item is a function for fetching the ith item from a list of
naturals encoded as a single natural, and floor : R⇀ N is defined as

floor(z) '

{
the greatest n ∈ N s.t. n < z if z ∈ R\N
↑ o/w

,

which is easily seens to be While(R) semicomputable.
Then suppose that for some input values x1, x2 ∈ R2, P (x1, x2) halts. Then since P

halted in finitely many steps, there exists a finite list of natural numbers i1, ..., in which are
existentially quantified corresponding to the ‘xB := EnQ(t, n)’ nodes in the halting branch of
the computation tree for P .14 This gives a list of naturals which may be encoded as a single
natural i. Then if i < z < i+ 1, P0(x1, x2, z) halts15. So the set While EN(R) semicomputed
by P is also a projection {(x1, x2) | ∃P0(x1, x2, z)} of the While(R) semicomputable set
P0. �

14See [TZ00, TZ15] for information about computation trees.
15Note that the order of the naturals used in the existential quantification steps may have no relation to the order of

the xB := En P(t, n) lines in the code, due to loops and branches.

NOTIONS OF SEMICOMPUTABILITY IN TOPOLOGICAL ALGEBRAS OVER THE REALS 25

5.4. Classes of sets semicomputable by models based on the While language.
We now compare the classes of subsets of R2 semicomputable by the While , WhileOR

and While EN languages, and their projective versions.
We begin by combining the results discussed in the previous subsection:

Theorem 6. For subsets of R2,

proj-While(R) s/comp ⇐⇒ proj-WhileOR(R) s/comp

⇐⇒ proj-While EN(R) s/comp

⇐⇒ While EN(R) s/comp

Proof. This follows from

proj-While(R) s/comp =⇒ proj-WhileOR(R) s/comp

=⇒ proj-While EN(R) s/comp

=⇒ While EN(R) s/comp by Lemma 5.3

=⇒ proj-While(R) s/comp. by Lemma 5.4.

�

We have thus established the existence of three distinct classes of subsets of R2, as shown
in the following diagram:

While(R) s/comp

⇐
= 6=⇒

(Theorem 4)

WhileOR(R) s/comp

⇐
= 6=⇒

(Theorem 5)

While EN(R) s/comp

⇐
⇒

proj-While(R) s/comp

⇐
⇒

proj-WhileOR(R) s/comp

⇐
⇒

proj-While EN(R) s/comp

(Theorem 6)

26 NOTIONS OF SEMICOMPUTABILITY IN TOPOLOGICAL ALGEBRAS OVER THE REALS

We further have the equivalence of each model in the above diagram with its respective
starred version (as shown in Appendix B).

6. Conclusion and future work

6.1. Conclusion.
In this paper, we investigated the possible generalisation of two results from classical

computability theory to the context of topological partial algebras on the reals: closure
of semicomputable sets under finite union, and the equivalence of semicomputable sets to
projectively (semi)computable sets. Both results were shown not to hold over R2 (Theorems
2 and 3 respectively).

In the process we also developed a Structure Theorem for While(R) semicomputability
over R2 (Theorem 1), and distinguished the classes of sets semicomputed by While(R),
WhileOR(R) and While EN(R) programs and their projective versions (again over R2) (§5.4).

In Appendix A, we give an adaptation of our (in)equivalence results to the 1-dimensional
case over R.

In Appendix B, we outline a proof of the equivalence of While(R) with its starred version.
In Appendix C, we show that another result from classical computability theory, Post’s

Theorem, holds in the case of While computation on R.

6.2. Future work.
We have compared various classes of subsets of R2 with respect to semicomputability by

abstract models based on the While language (§5.4). Similarly, we would like to investigate
concrete models of computability (§1.1), and compare them amongst themselves and with
abstract models with respect to computable functions and semicomputable sets. Equiva-
lences have been shown between various concrete and abstract models of computability16

over the reals [TZ04, TZ05, Fu14]. However, important questions remain regarding equiva-
lences between digital (abstract and conrete) and analog models, such as suitable extensions
of Shannon’s GPAC [Sha41]. Some interesting results have been obtained in this direction
[GC03, BCGH07, BGP17a, BGP17b, Poç17], but much remains to be done.

References

[ABR96] C. Andradas, L. Bröcker, and J. Ruiz. Constructible Sets in Real Geometry. Springer, 1996.
[AO91] K.R. Apt and E.-R. Olderog. Verification of Sequential and Concurrent Programs. Springer-

Verlag, 1991.

16See §1.2

NOTIONS OF SEMICOMPUTABILITY IN TOPOLOGICAL ALGEBRAS OVER THE REALS 27

[Arm15] Mark Armstrong. Notions of semicomputability in topological algebras over the reals. MSc The-
sis, Department of Computing & Software, McMaster University, 2015. Archived in DSpace at
http://hdl.handle.net/11375/18334.

[BCGH07] O. Bournez, M.L. Campagnolo, D.S. Graça, and E. Hainry. Polynomial differential equations
compute all real computable functions. Journal of Complexity, 23:317–335, 2007.

[BGP17a] O. Bournez, D. Graça, and A. Pouly. On the functions generated by the general purpose analog
computer. Information and Computation, 257:34–57, 2017.

[BGP17b] O. Bournez, D. Graça, and A. Pouly. Polynomial time corresponds to solutions of polynomial
ordinary differential equations. Journal of the Association for Computing Machinery, 64(6):38:1–
38:76, 2017. DOI: 10.1145/3127496.

[CH53] R. Courant and D. Hilbert. Methods of Mathematical Physics, Vol. II. Interscience, 1953. Trans-
lated and revised from the German edition [1937].

[Chu36] A. Church. An unsolvable problem of elementary number theory. American Journal of Mathe-
matics, 58:345–363, 1936.

[dB80] J.W. de Bakker. Mathematical Theory of Program Correctness. Prentice Hall, 1980.
[DF91] D.S. Dummit and R.M. Foote. Abstract Algebra. John Wiley and Sons, 1991.
[Eng68] E. Engeler. Formal Languages: Automata and Structures. Markham, 1968.
[Fu07] Ming Quan Fu. Models of computability of partial functions on the reals. MSc Thesis, Department

of Computing & Software, McMaster University, 2007. Technical Report CAS-08-01-JZ, January
2008.

[Fu14] Ming Quan Fu. Characterizations of Semicomputable Sets, and Computable Partial Functions,
on the Real Plane. PhD Thesis, Department of Computing & Software, McMaster University,
2014. Archived in DSpace at http://hdl.handle.net/11375/16066.

[FZ15] M.Q. Fu and J.I. Zucker. Models of computation for partial functions on the reals. Journal of
Logical and Algebraic Methods in Programming, 2015.

[GC03] D.S. Graça and J.F. Costa. Analog computers and recursive functions over the reals. Journal of
Complexity, 19:644–664, 2003.

[Grz55] A. Grzegorczyk. Computable functions. Fundamenta Mathematicae, 42:168–202, 1955.
[Grz57] A. Grzegorczyk. On the defintions of computable real continuous functions. Fundamenta Math-

ematicae, 44:61–71, 1957.
[Had52] Jacques Hadamard. Lectures on Cauchy’s Problem in Linear Partial Differential Equations.

Dover, 1952. Translated from the French edition [1922].

[Had64] J. Hadamard. La Théorie des Équations aux Dérivées Partielles. Éditions Scientifiques, 1964.
[Kle36] S.C. Kleene. General recursive functions of natural numbers. Mathematische Annalen, 112:727–

742, 1936.
[Kle52] S.C. Kleene. Introduction to Metamathematics. North Holland, 1952.
[Lac55] D. Lacombe. Extension de la notion de fonction récursive aux fonctions d’une ou plusieurs vari-

ables réelles, I, II, III. C.R. Acad. Sci. Paris, 1955. 240:2470–2480, 241:13–14,151–153.
[PER89] M.B. Pour-El and J.I. Richards. Computability in Analysis and Physics. Springer-Verlag, 1989.
[Poç17] D. Poças. Analog Computability in Differential Equations. PhD Thesis, Department of Mathe-

matics & Statistics, McMaster University, 2017. In progress.
[Sha41] C. Shannon. Mathematical theory of the differential analyser. Journal of Mathematics and

Physics, 20:337–354, 1941.
[SHT99] V. Stoltenberg-Hansen and J.V. Tucker. Concrete models of computation for topological algebras.

Theoretical Computer Science, 219:347–378, 1999.

28 NOTIONS OF SEMICOMPUTABILITY IN TOPOLOGICAL ALGEBRAS OVER THE REALS

[SHT03] V. Stoltenberg-Hansen and J.V. Tucker. Computable and continuous homomorphisms on metric
partial algebras. Bulletin of Symbolic Logic, 9:299–334, 2003.

[Tur36] A.M. Turing. On computable numbers, with an application to the Entscheidungsproblem. Pro-
ceedings of the London Mathematical Society, 42:230–265, 1936. With correction, ibid., 43, 544–
546, 1937. Reprinted in The Undecidable, M. Davis, ed., Raven Press, 1965.

[TZ99] J.V. Tucker and J.I. Zucker. Computation by ‘while’ programs on topological partial algebras.
Theoretical Computer Science, 219:379–420, 1999.

[TZ00] J.V. Tucker and J.I. Zucker. Computable functions and semicomputable sets on many-sorted
algebras. In S. Abramsky, D. Gabbay, and T. Maibaum, editors, Handbook of Logic in Computer
Science, volume 5, pages 317–523. Oxford University Press, 2000.

[TZ04] J.V. Tucker and J.I. Zucker. Abstract versus concrete computation on metric partial algebras.
ACM Transactions on Computational Logic, 5:611–668, 2004.

[TZ05] J.V. Tucker and J.I. Zucker. Computable total functions, algebraic specifications and dynamical
systems. Journal of Logic and Algebraic Programming, 62:71–108, 2005.

[TZ15] J.V. Tucker and J.I. Zucker. Generalizing computability theory to abstract algebras. In G. Som-
maruga and T. Strahm, editors, Turing’s Revolution. The Impact of his Ideas about Computabil-
ity, pages 127–160. Birkhauser/Springer Basel, 2015.

[Wei00] K. Weihrauch. Computable Analysis: An Introduction. Springer, 2000.
[XFZ15] Bo Xie, Ming Quan Fu, and Jeffery Zucker. Characterizations of semicomputable sets of real

numbers. Journal of Logic and Algebraic Programming, 84:124–154, 2015.

Appendix A. Inequivalence results for 1 dimension

The Semicomputability Structure Theorems (§5.1) were formulated for the case n = 2
(computation on R2). As pointed out in the introduction, these theorems, as well as the
inequivalences (Theorems 4, 5) generalize readily to Rn for all n ≥ 2.

For the case n = 1, these Structure Theorems also hold. However there are two problems
with their formulation:

(1) In 1 dimension, such structure theorems are formulated most naturally and perspic-
uously, not in terms of basic sets, but in terms of rational or algebraic intervals17 in
R:

Semicomputability Structure Theorems for R [XFZ15]. For subsets of R,

While(R) s/comp =⇒ union of eff. seq. of rational intervals

While(R) s/comp ⇐= union of disjoint eff. seq. of rational intervals

WhileOR(R) s/comp ⇐⇒ union of disjoint eff. seq. of algebraic intervals

While EN(R) s/comp ⇐⇒ union of eff. seq. of algebraic intervals.

The relationship between these results and the formulations in terms of basic sets
is unclear. It is not even obvious how to test, given an algebraic interval, whether it
is also a basic set (or even a finite union of basic sets) or not.

17i.e. open intervals with rational or algebraic end-points respectively

NOTIONS OF SEMICOMPUTABILITY IN TOPOLOGICAL ALGEBRAS OVER THE REALS 29

(2) Furthermore, the inequivalence results (Theorems 4, 5) although holding in one di-
mension, require quite different proofs, using different counterexamples, in the lan-
guage of algebraic intervals instead of basic sets: cf. Theorem 7, to which we now
turn.

Theorem 7. For 1-dimensional computation over R,

While(R) s/comp =⇒
6⇐= WhileOR(R) s/comp.

To prove Theorem 7, we need some facts about algebraic intervals and algebraic numbers.

Proposition A.1. Let α be any algebraic number. Then there exists a polynomial p of min-
imum degree such that p(α) = 0 and for all polynomials q, q(α) = 0 =⇒ p is a factor of q.

In other words, the set of polynomials over Z forms a principle ideal domain18.

Proposition A.2. Suppose U is a finite union of basic sets, say

U = {x ∈ R |
∨k

i=1

∧li
j=1(pij(x) > 0)},

so that U has the form
⋃n

i=1 Ii, where the Ii’s are disjoint algebraic intervals.
If α is an endpoint of any Ii, then α is a root of some pij.

Proof. By induction on the construction of
∨k

i=1

∧l
j=1(pij(x) > 0). �

Proof of Theorem 7.
Consider I = (−

√
2,∞) = {x | x2 < 2 ∨ x > 0}.

By the Semicomputability Structure Theorem for WhileOR(R) over R, I is WhileOR(R)
semicomputable.

Now suppose I is While(R) semicomputable. Then by the Semicomputability Structure
Theorem for While(R) (Theorem 1) over R2, which also applies to 1-dimensional computa-

tion over R, I must be a finite union of basic sets, i.e. of the form {x |
∨k

i=1

∧li
j=1(pij(x) > 0}.

Then by Proposition A.2, −
√

2 is a root of some polynomial pij, call that polynomial p.

The minimum degree polynomial for −
√

2 is x2 − 2. Hence by Proposition A.1, x2 − 2 is
a factor of p, so

√
2 is also a root of p. But then p(

√
2) 6> 0, so

√
2 6∈ I.

Hence I is not While(R) semicomputable. �

We may now show, by another example, that

Theorem 8. For 1-dimensional computation over R,

WhileOR(R) s/comp =⇒
6⇐= While EN(R) s/comp.

Proof. Consider I = (0, π).
Since I is a single interval, if it were WhileOR(R) semicomputable, it would have to be

an algebraic interval, but it is not.

18See e.g. [DF91].

30 NOTIONS OF SEMICOMPUTABILITY IN TOPOLOGICAL ALGEBRAS OVER THE REALS

However, it is While EN(R) semicomputable, since it is the union of the (non-disjoint)
effective sequence of intervals (In) where In = (0, rn) and (rn) is an increasing sequence of
rational numbers converging to π. �

Remark A.3. It is interesting to note that the counterexample used in the proof of Theorem
8 generalises easily to the case of R2 by taking the product of the intervals (In) with the unit
interval.

However, the counterexamples used earlier in the paper for R2 do not reduce to R.

Appendix B. The equivalence of While(R) and While∗(R)

We wish to justify our claims that the While(R) and While∗(R) are equivalent in terms
of computing power.

A similar result was shown in [TZ00, §4] for a total algebra Rt on the reals19, by showing
that:

(1) Rt has the term evaluation property (defined below);
(2) for any N-standard total algebra A with the term evaluation property, a universal

While(A) procedure may be constructed for While∗(A);
(3) hence, for any N-standard total algebraA with the term evaluation property, While(A) =

While*(A).

We may use the same technique to show that While(R) = While∗(R) (and similarly
for WhileOR and While EN and their starred versions). Steps (2) and (3) can be easily
inferred from the respective proofs for Rt in [TZ00, §4], as most of the proofs of those facts
involve primitive recursive operations on the syntax of the While language, and so the
partiality of R is irrelevant. In these proofs, the only step that involves semantics is the use
of term evaluation to traverse a “computation tree” for the universal While(A) procedure
for While∗(A) programs. In that step, however, if a term which is evaluated diverges, the
While∗(A) program being simulated by the universal procedure would diverge as well, and
so the universal procedure behaves as expected.

So we proceed with a proof of Step (1), i.e. that R has the term evaluation property (cf.
[TZ00, Example 4.5]).

In this proof, we must work with encodings of the syntactic expressions used in the While
language. We assume given a family of effective numerical codings for each of the classes of
syntactic expressions over Σ. We write pEq for the code of an expression E. We assume
the we can go primitive recursively from codes of expressions to codes of their immediate
subexpressions and vice versa; thus, for example, pt1q and pt2q are primitive recursive in
pt1 + t2q, and conversely. In short, we can primitive recursively simulate all operations
involved in processing the syntax of the programming language.

19Rt is equivalent to R except for the definitions of eqR and lessR, which are taken to have their standard, total

meaning. It was simply called R in [TZ00, §4].

NOTIONS OF SEMICOMPUTABILITY IN TOPOLOGICAL ALGEBRAS OVER THE REALS 31

For the remainder of this Appendix, let A be any N-standard (possibly partial) algebra,
let u and v be product types of A, let x be a u-tuple of variables, let Tmx(Σ) be the set of
all Σ-terms with variables among x only, and for all sorts s or Σ, let Tmx,s(Σ) be the class
of such terms of sort s.

We define the term evaluation function on A relative to x

TEA
x,s : Tmx,s(Σ)× State(A) ⇀ As

by

TEA
x,s(t, σ) ' JtKAσ.

This term evaluation function on A relative to x is then represented by the function

teA
x,s : pTmx,s(Σ)q× Au ⇀ As

defined by

teA
x,s(ptq, a) ' JtKAσ,

where σ is any state on A such that σ[x] = a.20

Definition B.1. An algebra A has the term evaluation property (TEP) if for all x and s,
teA

x,s is While(A) computable.

Lemma B.2. R has the TEP.

Proof (outline).
The definition of teRx,s can be given by a series of primitive recursive clauses, e.g. in the case
of boolean terms:

teRx,bool(pts compB rsq, a) ' teRx,s(ptsq, a) compB teRx,s(prsq, a)

teRx,bool(pnotB(b1)q, a) ' notB(teRx,bool(pb1q, a))

teRx,bool(pb1 opB b2q, a) ' teRx,bool(pb1q, a) opB teRx,bool(pb2q, a)

where sort s is either nat or real, b1 and b2 are terms of sort bool, comp is a comparison
operator on s (one of eqN, lessN, eqR or lessR), and op is a binary boolean operator.

Similarly for the cases s ≡ real and s ≡ nat. �

The equivalence of While(R) and While∗(R) now follows from the preceding discussion.

Appendix C. Post’s Theorem for the partial algebra R

For total standard algebras, we have the following theorem [TZ00, §5.2], [TZ15, §6.1]:

Theorem (Post’s theorem for While semicomputability on total standard alge-
bras). For any relation R on a total standard algebra A,

R is While(A) comp ⇐⇒ R and Rc are While(A) s/comp.

20This is well defined by the Functionality Lemma [TZ00, Lemma 3.4]

32 NOTIONS OF SEMICOMPUTABILITY IN TOPOLOGICAL ALGEBRAS OVER THE REALS

For partial algebras, Post’s Theorem does not always hold [Arm15]. However it holds
trivially on R, since semicomputable sets are open by the Structure Theorem for While(R),
and the only clopen subsets of Rn (n ≥ 1) are Rn and ∅.

