
Assignment Calculus:
A Pure Imperative Reasoning Language

A dissertation by Marc Bender

Abstract

What is a pure imperative language? A careful attempt to answer this ques-
tion leads to many interesting questions about programming languages. This
dissertation presents and pursues one possible definition: an imperative lan-
guage is one whose operators are fundamentally referentially opaque; in sim-
ple terms, they make substitution problematic. In particular, we develop a
new language, Assignment Calculus (AC), which we claim is a core language
for imperative reasoning.

We begin the dissertation with a primarily philosophical, but example-
driven, discussion of the above definition of pure imperative language. We
also give a definition of a reasoning language, which we identify by several
desirable properties that such a language should have. The principle of sub-
stitutivity (following Leibniz), referential opacity (Quine), and intensionality
(Carnap) are introduced and discussed. Starting with some natural-language
examples, we show the usefulness of Richard Montague’s intension operator
for handling certain types of problems, and then demonstrate that these
problems are inherent to imperative programming languages. In fact we go
much further and posit that intension — along with its dual, extension —
are fundamental parts of imperative reasoning.

The main subject, our pure imperative reasoning language AC , is intro-
duced next. The formal syntax and operational semantics of AC is given.
We define and derive some of its important properties. Next, the compo-
sitional denotational semantics of AC terms is given. Of note here is the
interpretation of the domain of possible worlds or states as a reflexive do-
main; this allows for the storage of procedures in the state. A term rewriting
system for AC is then presented.

The central result of the dissertation follows: we bind these three inter-
pretations together by proving their equivalence.

Finally, taking AC as a starting point, we explore various extensions
and variants. The core of AC , when slightly enriched, is shown to be a
self-contained Turing complete language. This bolsters our claim that AC
is a core language for pure imperative reasoning.


