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Abstract

We consider the semantics of networks processing streams of data from a com-
plete metric space. We consider two types of data streams: those based on
continuous time (used in networks of physical components and analog devices),
and those based on discrete time (used in concurrent algorithms). The net-
works are both governed by global clocks and together model a huge range of
systems. Previously, we have investigated these two types of networks sepa-
rately. Here we combine their study in a unified theory of stream transformers,
given as fixed points of equations. We begin to develop this theory by using
the standard mathematical techniques of topology to prove certain computa-
tionally desirable properties of these semantic functions, notably continuity,
which is significant for models of a physical system, according to Hadamard’s
principle.

Key words and phrases: analog computing, analog networks, compact open topology,
continuous stream operations, continuous time streams, discrete time streams, fixed points,
Hadamard’s principle, synchronous concurrent algorithms, topological algebras.
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1 Introduction

Computation is a general phenomenon that involves data, specifications, programs, sys-
tems and devices. Whilst the diversity of these components seems unlimited there are
common factors that can characterise computation, for example: data representation and
coding; levels of abstraction defined by operations; semantic models and logics for reason-
ing about behaviour; subcomponents and architecture; modularity and compositionality;
and physical properties such as time and space. Some taxonomic order can be attempted
by first classifying the nature of the data.

In digital computation, at the heart of our theoretical understanding are countable
sets of discrete data that can be faithfully coded by strings and natural numbers, since
the classical theory of computability and complexity is founded upon the data types of
strings and natural numbers. However, from earliest times, many computations concern
analog processes involving physical quantities; streams of messages and signals in time;
and objects and scenes in 3-dimensional space. Physical models of data, distributed in
time and space, can be found in hybrid embedded systems, analog computers of the first
half of the twentieth century [Sma01, Cla10], and new and unconventional technologies
for computation that involve (for example) quantum or DNA systems. We must compute
on uncountable sets of continuous data, modelled and represented by constructions with
real and complex numbers, on scalar and vector fields. Computations with continuous
data require special computability theories, involving the approximation of functions on
topological, metric, normed and ordered spaces of various kinds.

The generalisations of computability theory to arbitrary data aims at models analysing
the computability of functions f : A → B on any sets A and B. In general, models of
computation fall into one of two classes: concrete models, which involve building a repre-
sentation of the data type; and abstract models, which involve programming directly with
the primitive operations of the data type [TZ04]. Some very general theories are possible
that can deal essentially with any sets A and B [TZ00, TZ05, TZ06] and they provide a
starting point and mathematical tools for analysing any computational phenomena. How-
ever, we have found that certain general classes of data types also require a specialised
analysis and a customised theory.

In many computations, one finds that continuous or analog data are represented by
functions of the form u : X → A, where X is a set of points in time or space, and A is a
set of data. More specifically, in some cases the sets X and A have a topology (possibly
discrete) and the functions of interest are those in the set

C[X,A] = {u : X → A | u is a continuous total function}.

Thus, we are interested in models of computation for functions of the form

Φ: Ar × C[X,A]m → C[X,A]n.

In this paper we will study how functions Φ are specified as fixed points and computed
by topological methods. Typically we deal with fixed points of operators with contracting
properties that are derived from equations describing a system. In a companion paper
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[TZ11] we will study concrete and abstract computability models for functions Φ on the
data type C[X,A], and compare them.

1.1 Examples of data in time and space

Each data type of the above form C[X,A] arises typically in some practical situation, and
has its own special features. The algorithmic models that are characteristic of that situation
determine, or at least suggest, a corresponding computability theory. For example, in the
case that X is time, we have:

(i) Analog streams: For signal processing, X is continuous time T = R≥0 (the non-
negative reals), and the space A of data may be the realsR or [0, 1], or even continuous
mappings from a compact space to R.

(ii) Digital (bit) streams: For bit processing, X is discrete time T = {0, 1, 2, . . . }, and
the data are bits A = {0, 1}.

Alternatively, in the case of space, we have:

(iii) Graphic scenes: In 3-dimensional volume graphics, X can be continuous space, X =R3, and data are attributes of spatial objects, such as colour or opacity, measured
by A = {0, 1}k or A = [0, 1].

(iv) Machine states: In machine states, X could be a 2-dimensional discrete address
space, X = Z2, and data are k-bit words A = {0, 1}k.

(v) Analog fields: Quite generally, X can be a continuous space modelled by a manifold,
and data can be measurements from a normed vector space.

We have encountered computability theories for some of these data types before: discrete
streams processed by digital networks [TZ94, TTZ09]; continuous streams processed by
analog networks [TZ07], and spatial objects in volume graphics [CT00, BSHT98, Joh06].
The mathematical question arises: How much do these data types and their computability
theories have in common?

1.2 Some general models for time

For a huge range of spaces X and A, we can equip C[X,A] with the compact-open topol-
ogy and consider the partial functions on C[X,A] that are computable or approximably
computable with respect to the topology.

First, we consider the general case of the data type C[X,A]. In Section 2, we study the
local uniform topology on C[X,A], which is generated by the family of pseudometrics

dK(u, v) =df sup { d(u(t), v(t)) | t ∈ K }

for all compact K ⊆ X. This is the same1 as the topology generated by the inverse limit
representation

C[X,A] = lim←−{C(K,A) | K compact ⊆ X }.

1 Details in §2.1.
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Next we consider the notion of compact exhaustion of X. We note how, with the assumption
of σ-compactness of X, the above topology of C[X,A] is metrisable.

However, it seems to matter whether or not X is thought of as modelling time or space.
From Section 3 onwards, we concentrate on the special case that X represents time, i.e.,
X = T, where T is either R≥0 or N, representing (respectively) continuous and discrete
time. In these two cases the functions u ∈ C[T, A] are called “streams”, and C[T, A] is
called a “stream space”. These cases will be supported by two running examples, taken
from our earlier work:

(1) analog networks, with continuous time T = R≥0, using the theory developed in
[TZ07], and especially the case study of a mass/spring/damper system investigated
there;

(2) synchronous concurrent algorithms (SCAs), with discrete time T=N, using the the-
ory developed in [TTZ09].

One of the main aims of this paper is to develop the two theories that analyse properties
of networks processing digital and analog streams, introduced in [TZ07, TTZ09], from a
common standpoint.

1.3 Results on operations on streams

The study of networks of processors lead us to stream transformers of the form

Φ: Ar ×As × C[T, A]p → C[T, A]m

where for tuples of system parameters c ∈ Ar, initial values a ∈ As and input streams
x ∈ C[T, A]p,

Φ(c,a,x) ∈ C[T, A]m

is obtained as the fixed point of a contracting operator

F,a,x : C[T, A]m → C[T, A]m (1.1)

where
F : Ar ×As × C[T, A]p → (C[T, A]m → C[T, A]m)

is represented more conveniently in the uncurried form:

F : Ar ×As × C[T, A]p × C[T, A]m → C[T, A]m,

so that F (c,a,x, · ) = F,a,x in (1.1).

We assume that F satisfies a causality condition (discussed in Section 3), which is
natural in the context of stream processing and turns out to be crucial in the proofs of the
following theorems.2 First, we establish:

2 Interestingly, it is not clear how to define (or even make sense of) the concept of causality in

the general case for X (taking, for example, X = Z2 or R3).
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Theorem 1 (Existence and uniqueness): If F is contracting and causal, then Φ exists
and is unique.

Next, in Section 4, we verify

Theorem 2 (Continuity): If F is contracting, causal and continuous, then Φ is contin-
uous.

1.4 Physical interpretation of the results

The significance of Theorems 1 and 2 is that continuity implies the stability of the fixed
point solution Φ to the specification given by F with respect to the system parameters,
initial values and input streams. This means that small changes in tuples of system pa-
rameters c ∈ Ar, initial values a ∈ As and input streams x ∈ C[T, A]p will result in small
changes in the behaviour of the systems as defined by Φ(c,a,x) ∈ C[T, A]m. Here “small”
is measured by any topology chosen for the task in hand.

The significance of continuity is expressed in Hadamard’s principle [Had52] which, in
the present context, can be (re-)formulated in the form [CH53, Had64]:

for a model of a physical system to be acceptable, the behaviour of the model
must depend continuously on the data.

This principle formalises the fact that if the system’s behaviour depends significantly on
small perturbations in its data, then it cannot behave in a stable fashion and its physical
observation cannot be reliable. This is because, for example, repeating an experiment
or computation will involve small variations of physical data, and for the system to be
observable the corresponding variation in behaviour must also be small. Here observation
is a form of classical measurement, of course. (See also Discussion 4.2.14.)

Simpler forms of Theorems 1 and 2 were proved in [TZ07] for a stronger notion of
contraction of the operator F . The proofs here (especially of Theorem 2) are much more
intricate. The notion used here (unlike the stronger one) is satisfied by the case study
associated with our running example of analog networks.

Thus, Theorems 1 and 2 are the basis for a general method of giving semantics to
interesting classes of analog networks. The freedom to choose topologies appropriate to
the physics of the problem, and work with conventional approximation methods, is an
attractive feature of this method, which, we feel, makes up for the previous apparent
neglect of suitable semantics for analog networks.

This paper seeks to compare, and partially unify, theories of stream transformers on
C[T, A] for discrete and continuous time T. It is motivated by models of network stream
processing in [TZ07, TTZ09]. The methods are those of [TZ04, TZ05, TZ07, TTZ09]. We
have tried to make this paper independent of these articles; however, the motivation and
technicalities are best apprehended in the light of our entire work.

Acknowledgments. We thank Jens Blanck (Swansea), Nick James (McMaster Univer-
sity), Ken Johnson (INRIA, France) and two anonymous referees for many useful comments
and suggestions with earlier drafts of this paper.
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2 Function spaces

One aim of this paper is to use basic topology to model stream processing. The standard
ideas and methods of topology constrain our models to streams that are continuous, and
also (for now) total and deterministic.3. However, even under these constraints, there is
no shortage of interesting examples and applications.

Most of the definitions and results we need can be found in standard topology texts
such as [HY61, Kel55, Eng89, Sim63].

2.1 Topology of uniform convergence

Let (X, dX) and (A, dA) be two metric spaces. Let C[X,A] be the set of continuous
functions from X to A.

Examples 2.1.1 (Two running examples). The theory of this paper will be applied
to the following two cases, which will form running examples throughout.

• Example 1: Analog networks [TZ07]. Here X is the set R≥0 of non-negative reals,
modelling continuous time, and A is typically (though not necessarily) Euclidean n-spaceRn.

• Example 2: Synchronous concurrent algorithms (SCAs) [TT91, TTZ09]. Here
X is the set N of non-negative integers, modelling discrete time, and A is typically Rn or
[0, 1]n.

Elements of C[X,A] will be denoted u, v, . . . . From Section 3 onwards, where X is assumed
to model either continuous or discrete time, these elements of C[X,A] will be called streams,
and C[X,A] will be called a stream space.

Assume, first, that X is a compact set K. Then C[K,A] is easily metrisable, with the
metric

dC(u, v) =df sup
x∈K

dA(u(x), v(x)).

The resulting topology is the topology of uniform convergence on C[K,A].

We will always use K,K ′, . . . for compact sets.

Lemma 2.1.2. If K is compact and A is complete, then C[K,A] is complete.

Proof: Let (un) be a Cauchy sequence in C[K,A], i.e., a uniform Cauchy sequence on K.
By completeness of A, it has a pointwise limit u, i.e., for all x ∈ K, u(x) = limn un(x). By

3 But see §5.2(2) below.
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a standard argument [Rud76], u is continuous, and also the uniform limit of the sequence
(un), i.e., the limit in C[K,A]. �

Without the assumption that X is compact, C[X,A] is still “locally metrisable”, with
the topology of uniform convergence on compacta, or the local uniform topology , which is
generated by neighbourhoods of points u ∈ C[X,A] of the form

NK(u, ǫ) =df { v ∈ C[X,A] | dK(u, v) < ǫ } (2.1)

for all compact K ⊆ X and ǫ > 0, where dK is the pseudometric defined by

dK(u, v) =df sup
x∈K

dA(u(x), v(x)). (2.2)

In fact, in the case that X is σ-compact (see §2.3), the space C[X,A], with the local
uniform topology, is metrisable (Metrisability Lemma 2.3.11).

Another characterisation of this topology on C[X,A] can be given using the notions of
an inverse system of topological spaces, and the inverse limit of such a system [HY61,
Eng89]. So consider the inverse system consisting of the family of topological spaces

〈C[K,A] | K ⊆ X〉 (2.3a)

each with the topology of uniform convergence, directed by the partial order

C[K,A] ≤ C[K ′, A] ⇐⇒df K ⊆ K ′ (2.3b)

with maps
ιK′,K : C[K ′, A]→ C[K,A] (K ⊆ K ′) (2.3c)

where ιK′,K is the restriction: ιK′,K(u) = u↾K .

The inverse limit of this family is the space C[X,A], with the topology generated by
the family of maps

ιK : C[X,A] → C[K,A] (K ⊆ X),

i.e., the “least” topology on C[X,A] which makes these maps continuous, where ιK is the
restriction: ιK(u) = u↾K .

The following lemma can be easily checked.

Lemma 2.1.3. The inverse limit topology on C[X,A], as defined above, is the same as
the local uniform topology.

A third characterisation of the topology on C[X,A] can be given, as the compact-open
topology [Eng89, §3.4], which is defined as having subbasic open sets of the form

M(K,U) =df {u ∈ C[X,A] | ∀x ∈ K : u(x) ∈ U } (2.4)

for all compact subsets K of X and open subsets U of A.
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For a point x in any metric space, let N(x, r) and N[x, r] denote, respectively, the open
and closed neighbourhoods of x with radius r.

Lemma 2.1.4. On C[X,A], the compact-open topology is the same as the local uniform
topology.

Proof: For the sake of completeness we give a proof here. (Proofs for spaces more general
than metric spaces can be found in [Kel55, Ch. 7], [Eng89, 8.2.6].) Let U, . . . range over
open subsets of A.

(i) To show the local uniform topology is at least as fine as the compact open topology:
Let u ∈M(K,U). We must find some ǫ > 0 such that

NK(u, ǫ) ⊆ M(K,U). (2.5)

For all x ∈ K, u(x) ∈ U , and so, since U is open, there exists ǫx > 0 such that N(u(x), ǫx) ⊆
U . Further, by continuity of u, for all x ∈ K there exists δx > 0 such that for all
x′ ∈ N(x, δx), d(u(x), u(x′)) < ǫx/2, and hence N(u(x′), ǫx/2) ⊆ U .

By compactness of K, there exists a finite number of points x1, x2, . . . , xN in K such

that K ⊆
⋃N

i=1 N(xi, δxi
). Let

ǫ = min(
ǫx1

2
, . . . ,

ǫxN

2
).

Then ǫ satisfies (2.5).

(ii) To show that the compact open topology is at least as fine as the local uniform
topology: Given K and u, consider a neighbourhood NK(u, ǫ) of u. By continuity of u,
for all x ∈ K there exists δx > 0 such that

∀y ∈ N[x, δx] : d(u(x), u(y)) < ǫ/2. (2.6)

Hence
∀x ∈ K : ∀y ∈ N[x, δx] : N(u(x), ǫ/2) ⊆ N(u(y), ǫ). (2.7)

By compactness of K, there exists a finite number of points x1, x2, . . . , xN in K such that

K ⊆

N⋃

i=1

N(xi, δxi
).

Let Ci = N[xi, δxi
] ∩ K for i = 1, . . . , N . Then each Ci is a closed subset of K, hence

compact, and K =
⋃N

i=1 Ci. Now put Ui = N(u(xi), ǫ/2). By (2.6) and (2.7), for
i = 1, . . . , N

u ∈M(Ci, Ui) ⊆ NCi
(u, ǫ).

Hence

u ∈
N⋂

i=1

M(Ci, Ui) ⊆ NK(u, ǫ).
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�

Corollary 2.1.5. On C[X,A], the following three topologies are equivalent: the compact-
open topology, the local uniform topology and the inverse limit topology.

Proof: From Lemmas 2.1.3 and 2.1.4. �

Later we will see another equivalent formulation of this topology, in terms of a metric,
in the case of σ-compactness of X (Metrisability Lemma 2.3.11).

2.2 Limits and Cauchy sequences in C[X,A]

The space C[X,A] is “locally metrisable” by the pseudometrics dK defined by (2.2). There
are also “local” concepts of limit and Cauchy sequence.

Definition 2.2.1 (Local uniform convergence of a sequence in C[X,A]).
A sequence (un) of elements of C[X,A] is said to converge locally uniformly to a limit
u ∈ C[X,A] if

∀K ⊆ X ∀ǫ > 0∃N ∀n ≥ N : dK(un, u) ≤ ǫ.

Such a limit (if it exists) is easily seen to be unique:

Lemma 2.2.2. If the sequence (un) converges locally uniformly to u and to v in C[X,A],
then u = v.

Lemma 2.2.3. A point u ∈ C[X,A] is in the closure of a set U ⊆ C[X,A] if, and only
if, there is a sequence of elements of U which converges locally uniformly to u.

Definition 2.2.4 (Locally uniform Cauchy sequence). A sequence (un) of elements
of C[X,A] is locally uniformly Cauchy if

∀K ∀ǫ > 0∃N ∀m,n ≥ N : dK(um, un) ≤ ǫ,

Lemma 2.2.5 (Local uniform completeness of C[X,A]). Suppose A is complete.
Then C[X,A] is locally uniformly complete, in the sense that a locally uniform Cauchy
sequence in C[X,A] converges locally uniformly to a limit.

Proof: Let (un) be a locally uniform Cauchy sequence in C[X,A]. For any K, the sequence
u0↾K , u1↾K , . . . is a uniform Cauchy sequence in the space C[K,A], and so, by completeness
of C[K,A] (Lemma 2.1.2), has a (unique) limit u(K) in C[K,A]. By uniqueness of limits
(Lemma 2.2.2), these limits are compatible, in the sense that for any K,K ′ u(K)↾K∩K′=

u(K′)↾K∩K′ . The desired limit u can then be defined as the common extension on X of all
the u(K). �
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2.3 σ-compact spaces; compact exhaustions.

Definition 2.3.1 (σ-compactness; compact exhaustions).

(a) A topological space X is σ-compact if it is a union of an increasing sequence of
compact subsets (Kk):

X =

∞⋃

k=0

Kk where K0 ⊆ K1 ⊆ K2 ⊆ . . . .

(b) Further, this sequence (Kk) is called a compact exhaustion of X if for each compact
K ⊆ X there exists k such that K ⊆ Kk.

Remark 2.3.2. Not every σ-compact space has a compact exhaustion; i.e., condition
(b) in Definition 2.3.1 is not redundant. For a counterexample, take X = [0, 1], the unit
real interval, and let Kk = {0} ∪ [ 1

k
, 1] (k = 1, 2, . . . ). Then

⋃
k Kk = X, but X itself,

which is compact, is not contained in any Kk.

If we want an example in which the space X is not compact, we can modify the above
example by taking X = [0,∞) and Kk = {0}∪ [ 1

k
, k]. Then the compact subset [0, 1] ⊆ X

is not contained in any Kk.

Examples 2.3.3 (Compact exhaustions). Consider the space X in our two running
examples (Examples 2.1.1).

• Example 1: Analog networks (X = R≥0). A compact exhaustion of X is given by
Kk = [0, k], or, more generally, Kk = [0, k · τ ] for some fixed τ > 0.

• Example 2: SCAs (X = N). A compact exhaustion of X is given by taking Kk =
{0, 1, . . . , k}.

Remark 2.3.4. The fact that (Kk) forms a compact exhaustion of X in Example 2.3.3(1)

follows from the Heine-Borel Theorem: a subset of R≥0 (or of Rn) is compact if, and only
if, it is closed and bounded [Rud76]. As for Example 2, a subset of N is compact if, and
only if, it is finite.

For the rest of this paper we assume:

Assumption 2.3.5 (σ-compactness). The space X is σ-compact, with compact
exhaustion (Kk).

As we have seen, this applies to our two running examples, with X = R≥0 and X = N.

Now much of the work in §§2.1 and 2.2 remains valid when one restricts attention to
the compact sets in the particular compact exhaustion (Kk). (See Lemmas 2.3.6, 2.3.7,
2.3.9 and 2.3.10 below. But see also Remark 2.3.8.)

Lemma 2.3.6. The local uniform topology on C[X,A] (cf. equation (2.1)) is the same
as that generated by the neighbourhoods

NKk
(u, ǫ) = { v ∈ C[X,A] | dKk

(u, v) < ǫ }
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for k = 0, 1, 2, . . . and ǫ > 0.

The main step in proving this is to show that for any neighbourhood NK(u, ǫ) in the
local uniform topology there is a k such that

u ∈ NKk
(u, ǫ) ⊆ NK(u, ǫ).

This follows by choosing k such that K ⊆ Kk, which is possible by property (b) in the
definition (2.3.1) of σ-compactness.

From this follows also (cf. equations (2.3) and Lemma 2.1.3):

Lemma 2.3.7. The inverse limit topology on C[X,A] is the same as that generated by
the inverse system consisting of the family 〈C[Kk, A] | k ∈ N〉 directed by the (total) order

C[Kk, A] ≤ C[Kl, A] ⇐⇒df k ≤ l

with the restriction maps ιl,k : C[Kl, A] → C[Kk, A] (k ≤ l) as before.

Remark 2.3.8. However, the compact-open topology on C[X,A] cannot be re-defined
by having subbasic open sets only of the form M(Kk, U) (cf. (2.4)).

Next, we give equivalent formulations of the concepts in §2.2 (limits, Cauchy sequences)
which refer only to the compact sets (Kk) of the given exhaustion, using Lemma 2.3.6.
(Compare Definitions 2.2.1 and 2.2.4).

Lemma 2.3.9. Let (un) be a sequence of elements of C[X,A] and let u ∈ C[X,A]. The
following are equivalent:

(a) The sequence (un) converges locally uniformly to u,

(b) ∀k ∀ǫ > 0∃N ∀n ≥ N : dKk
(un, u) ≤ ǫ,

(c) ∀k ∃N ∀n ≥ N : dKk
(un, u) ≤ 2−k.

Lemma 2.3.10. Let (un) be a sequence of elements of C[X,A]. The following are
equivalent:

(a) The sequence (un) is locally uniformly Cauchy,

(b) ∀k ∀ǫ > 0∃N ∀m,n ≥ N : dKk
(um, un) ≤ ǫ,

(c) ∀k ∃N ∀n ≥ N : dKk
(un, u) ≤ 2−k.

Next, under the σ-compactness assumption, C[X,A] is metrisable, as follows. Define

dC(u, v) =df

∞∑

k=1

min
(
dKk

(u, v), 2−k
)
. (2.8)
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In connection with this metric, we use the following notation. For u ∈ C[X,A], the open
ball with centre u and radius ǫ is

B(u, ǫ) =df { v ∈ C[X,A] | dC(u, v) < ǫ }.

Lemma 2.3.11 (Metrisability). dC is a metric on C[X,A] which produces the inverse
limit topology. Furthermore, if (un) is a sequence of elements of C[X,A], and u ∈ C[X,A],
then

(a) (un) is locally uniformly Cauchy iff (un) is Cauchy w.r.t. dC,
(b) un converges locally uniformly to u iff un converges to u w.r.t. dC,
(c) if A is complete, then C[X,A] is complete w.r.t. dC.

Proof: First note the following (easily proved):

(1) for any k, if dKk
(u, v) ≤ 2−k, then dC(u, v) ≤ (k + 1) · 2−k,

(2) for any k, if dKk
(u, v) ≥ 2−k, then dC(u, v) ≥ 2−k+1.

From (1) follows
NK2k

(u, 2−2k) ⊆ B(u, 2−k)

(for k > 2), and from (2):

B(u, 2−(k+1)) ⊆ NKk
(u, 2−k).

From these follows the equivalence of the two topologies, and also parts (a) and (b). Part
(c) follows from (a) and (b). �

2.4 Product spaces

The product space C[X,A]m has the product topology, which, by definition, is the topology
generated by the projections

πi : C[X,A]m → C[X,A].

where
πi(u1, . . . , um) = ui (i = 1, . . . ,m).

We denote the members of C[X,A]m, or function tuples, by u = (u1, . . . , um).

Lemma 2.4.1. The product topology on C[X,A]m can be characterised as any one of
the following:

(i) the topology generated by the products of the basic open sets of C[X,A]:

m∏

i=1

NKi
(ui, ǫi) (2.9)
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for all compact Ki ⊆ X, ǫi > 0 and ui ∈ C[X,A] (i = 1, . . . ,m);

(ii) the topology generated by the following:

m∏

i=1

NK(ui, ǫ) (2.10)

for all compact K ⊆ X, ǫ > 0 and ui ∈ C[X,A];

(iii) the topology given by the pseudometrics

d
m
K(u, v) =df

( m∑

i=1

dK(ui, vi)
p

) 1

p

(2.11)

(where u = (u1, . . . , um) and v = (v1, . . . , vm)) for any fixed p (1 ≤ p ≤ ∞) and
all compact K ⊆ X.

Note that two common special cases of (2.11) are formed by taking p = 1:

d
m
K(u, v) =

m∑

i=1

dK(ui, vi)

and p =∞:

d
m
K(u, v) =

m
max
i=1

dK(ui, vi). (2.12)

which corresponds exactly to (ii), in the sense that the neighbourhood (2.10) is just
{ v | dm

K(u, v) < ǫ }.

We omit proofs, except to remark that the equivalence of the systems of open bases in
(i) and (ii) can be seen by observing that any neighbourhood of a function tuple u of the
form (2.9) contains a neighbourhood of u of the form (2.10), formed by defining

K = K1 ∪ · · · ∪Km and ǫ = min(ǫ1, . . . , ǫm),

and the equivalence of this topology with (iii) follows from the Hölder inequality [Rud76,
Roy63].

We will usually drop the superscript ‘m’ from d
m
K .

Corollary 2.4.2. C[X,A]m is homeomorphic to C[X,Am], under the mapping

u = (u1, . . . , um) 7→ û (2.13)

where for all x ∈ X,
û(x) = (u1(x), . . . , um(x)).

Proof: Under the mapping (2.13), and using the “p = ∞” pseudometric (2.12), the
neighbourhood (2.10) can be rewritten as NK(û, ǫ). �

Hence C[X,A]m can, for all practical purposes, be identified with C[X,Am]. In this way,
many of our results for spaces C[X,A] can be easily seen to hold for C[X,A]m.
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3 Stream spaces; Contracting operators and fixed points

3.1 Basic assumptions: continuous and discrete time

The work in this and the following sections applies to the cases where X represents time,
either continuous time X = R≥0 or discrete time X = N. Each of these cases includes
one of our two running examples (Examples 2.1.1).

We will therefore henceforth write ‘T’ for X, with elements t, t′, . . . , T, . . . . The space
C[T, A] is then the space of (respectively) continuous or discrete A-valued streams.

Note that in the discrete case T = N, any function from T to A is continuous, since T
is discrete; hence C[T, A] = [T→ A], the set of all functions from T to A.

Note also that in both cases (T = R≥0 and T = N), T is σ-compact (Assumption
2.3.5), with standard exhaustions, as we now specify:

Assumption 3.1.1 (Standard compact exhaustions).
As compact exhaustions of T, we take, for k = 0, 1, 2, . . . :

(1) in the continuous case T = R≥0, Kk = [0, k · τ ] for some fixed τ > 0; and

(2) in the discrete case T = N, Kk = {0, 1, . . . , k}.

From now on, we use only the above standard exhaustions of T.

By the metrisability lemma (2.3.11), C[T, A] is metrisable. We also assume, from now
on:

Assumption 3.1.2 (Completeness of A). A is a complete metric space.

Remark 3.1.3 (Completeness of C[T, A]). It follows, by Lemmas 2.2.5 and 2.3.11(c),
that C[T, A] is locally uniformly complete, and also (metrically) complete.

We will consider operators on the function space C[T, A], mainly the form

F : Aq × C[T, A]p → (C[T, A]m → C[T, A]m) (3.1)

For convenience, we usually representing F in the uncurried form

F : Aq × C[T, A]p × C[T, A]m → C[T, A]m. (3.2)

Then for a ∈ Aq and x ∈ C[T, A]p, Fa,x is the operator

Fa,x = F (a,x, · ) : C[T, A]m → C[T, A]m. (3.3)

Examples 3.1.4 (Network stream transformers). Operators of the form (3.1) arise
naturally in modelling networks of modules or processors, operating in either continuous
or discrete time, as in our two running examples (2.1.1) of analog networks and SCAs,
where Aq is the space of parameters from A, and C[T, A]p as the space of input streams.
In fact these examples have a common form: the semantics of the network N is given by
a network stream transformer ΦN . This is obtained in two different ways in these two
examples:
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• Example 1: Analog networks. Here ΦN : Aq × C[T, A]p → C[T, A]m is obtained
with ΦN (a,x) given as the fixed point of the network state function FN (= F in (3.1);
cf. Theorem 1 below), under certain conditions (notably “contraction” and “causality”
properties of FN ). The network state function FN is formed from the module functions
of N by simple vectorisation [TZ07].

• Example 2: SCAs. Here ΦN can be obtained directly from the module functions by
simultaneous primitive recursion [TTZ09].

Both examples are discussed in greater detail in Examples 3.3.5 below.

Remark 3.1.5 (Network module functions in the two examples). The difference
of approach between the two running examples in constructing ΦN can be understood by
noting that whereas the module functions of an analog network have the form (3.2), i.e.,
they are stream transformers, the module functions of an SCA have the form F : Am → A,
i.e., they operate from tuples of data to data.

Note also, however, that the network stream transformer ΦN of an SCA network can
also be obtained as a fixed point of a contracting operator! See Example 3.3.5(2) below.

Remark 3.1.6 (Network state function just vectorisation of module functions).
In the case of an analog network N , the fact that the network state function FN is formed
from the module functions of N by simple vectorisation means that many interesting
properties of the module functions, such as continuity or computability are easily seen to
be inherited by FN . (See Remark 4.2.11 and corresponding remarks in [TZ11].)

3.2 Causality of operators

We discuss two properties of operators that are important in application areas such as
control theory [Son90, OW97].

An operator F as in (3.1) is said to satisfy causality if the output is “causally” related
to the inputs, in the sense that the output at any time depends only on the inputs up to
that time. We will give an exact definition below.

Discussion 3.2.1 (Causality and restriction to stream spaces). As we will
see, causality of the contracting operator is a significant and natural assumption in our
modelling, and in the proofs of our theorems. Interestingly, there does not seem to be
an obvious generalisation of this property to functions with spatial domains (cf. Examples
(iii)–(v) in §1.1). In the case X = R3, for example, it is not at all clear how one would
define the concept of causality, or indeed what such a concept would mean here.

The same remarks apply to the concept of shift invariance (to be defined later, in §4.1),
which is crucial in the proofs of Theorem 2.

Notation 3.2.2. For 0 ≤ a < b and T > 0, we write

(a) d a,b(u, v) =df supa≤t≤b dA(u(t), v(t)).

(b) dT (u, v) =df d0,T (u, v) = sup0≤t≤T dA(u(t), v(t)).
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Note that d0(u, v) = dA(u(0), v(0)).

Notation 3.2.3. For u, v ∈ C[T, A]m and T ≥ 0, we write

(a) u↾T =df u↾[0,T ]

(b) u↾<T =df u↾[0,T )

(c) With each u ∈ C[[0, T ], A]m we associate the element extT (u) of C[T, A]m that
extends u with a constant value equal to u(T ), i.e.,

extT (u)(t) =






u(t) if t ≤ T

u(T ) if t > T .

(d) With each operator F as in (3.2), we can associate an operator

F↾T : Aq × C[T, A]p × C[[0, T ], A]m → C[[0, T ], A]n,

by
F↾T (a,x,u) = F (a,x, extT (u))↾T .

Let F be as in (3.2).

Definition 3.2.4 (Causality). F is causal , or satisfies Caus, if for all (a,x) ∈
Aq × C[T, A]p and u, v ∈ C[T, A]m

∀T ≥ 0, u↾<T = v↾<T =⇒ Fa,x(u)(T ) = Fa,x(v)(T ). (3.4)

Remarks 3.2.5. (a) Causality of F implies for all a,x,u, v:

Fa,x(u)(0) = Fa,x(v)(0)

by putting T = 0 in (3.4), since the antecedent of the implication is then trivially satisfied.

(b) Clearly, (3.4) is equivalent to the condition:

∀T ≥ 0, u↾<T = v↾<T =⇒ Fa,x(u)↾T = Fa,x(v)↾T . (3.5)

(c) IfT = R≥0 (analog network example), then this in turn is equivalent to the (apparently
weaker) pair of conditions

∀T > 0 u↾T = v↾T =⇒ Fa,x(u)↾T = Fa,x(v)↾T , (3.6a)

and Fa,x(u)(0) = Fa,x(v)(0) (3.6b)
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since, by continuity, for T > 0

u↾<T = v↾<T =⇒ u↾T = v↾T .

This is not the case when T = N (SCA example), where (3.6) is strictly weaker than (3.4)
or (3.5).

Lemma 3.2.6. If F is causal, then we can characterise the operator F↾T on C[[0, T ], A]
by

F↾T (a,x,u↾T ) = F (a,x,u)↾T .

Lemma 3.2.7. For any T > 0,

(a) the injection ιmT : C[[0, T ], A]m → C[T, A]m, defined by ιmT (u) = extT (u), is con-
tinuous;

(b) the projection πn
T : C[T, A]n → C[[0, T ], A]n, defined by πn

T (u) = u ↾T , is continu-
ous.

We need the following lemma for Theorem 2.

Lemma 3.2.8. (a) If F is continuous, then so is F↾T for all T > 0.

(b) Conversely: Assume F is causal.

(i) If F↾T is continuous for all T > 0, then F is continuous.

(ii) Given any unbounded sequence 0 < T1 < T2 < . . . , if F ↾Ti
is continuous for

i = 1, 2, . . . , then F is continuous.

Proof: For (a), use Lemmas 3.2.6 and 3.2.7, and the fact that F↾T = πn
T ◦ F ◦ ιmT .

For (b), use Lemma 3.2.6. �

Remark 3.2.9 (Counterexample). Here is a counterexample to show that Lemma
3.2.8(b) needs the assumption Caus. First we need some notation. For any a ∈ A, let
const (a) be the stream with constant value a. Also, for u ∈ C[T,R] and X ⊆ T, let
supX(u) =df supt∈X u(t). Now let A = R, and define F : C[T, A]→ C[T, A] by

F (u) =






const (supT(u)) if u is bounded above on T
const (0) otherwise.

Then clearly F does not satisfy causality. Also F is not continuous. For consider the
sequence of streams

un(t) =

{
t if t ≤ n

n if t > n.

Then (un) has a (pointwise, and locally uniform) limit v, where

v(t) = t for all t ≥ 0.
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Note that for all n, un is bounded, but v is unbounded. Further, F (un) = const (n),
which does not have the limit F (v) = const (0). However, for all T > 0, F↾T is continuous,
since for any stream u, sup[0,T ](u) exists, and, as is easily seen, for any two streams u1

and u2,

|sup[0,T ](u1)− sup[0,T ](u2)| ≤ dT (u1, u2).

By checking the proof of Lemma 3.2.8(b), we can see that it also holds if “continuous”
is replaced throughout by “uniformly continuous”. Hence we have, for use in Section 6,
the following

Lemma 3.2.10 (Test for uniform continuity). Suppose F satisfies Caus, and
for all T > 0:

∀ǫ > 0 ∃δ > 0 ∀u, v ∈ C[T, A]m
[
dT (u, v) < δ =⇒ dT (F (u), F (v)) < ǫ

]
.

Then F is uniformly continuous.

Note that there is also a version of this lemma that uses discrete increments T1, T2, . . .
instead of all T > 0, where we use part (ii) of Lemma 3.2.8(b).

3.3 Contracting operators

In this and the next few subsections we consider operators on C[T, A] of the special form

F : C[T, A]m → C[T, A]m. (3.7)

This can be viewed either as a special case of (3.1), where q = p = 0, or (equivalently) as
a case of (3.3), where we write ‘F ’ instead of ‘Fa,x’ for simplicity.

Definition 3.3.1 (Contracting operator w.r.t. modulus and fixed increment).
Let 0 < λ < 1 and τ > 0. F is contracting w.r.t. (λ, τ) if for all u, v ∈ C[T, A]m:

for all T ≥ 0 u↾T = v↾T =⇒ dT, T+τ (F (u), F (v)) ≤ λ · dT, T+τ (u, v). (3.8)

We then say that F ∈ Contr(λ, τ), and call λ and τ the contraction modulus and
contraction increment respectively.

Remark 3.3.2. Assuming F is causal, note that

u↾T = v↾T =⇒ F (u)↾T = F (v)↾T

=⇒ dT+τ (F (u), F (v)) = dT, T+τ (F (u), F (v)).

Hence (3.8) can be rewritten as

for all T ≥ 0 u↾T = v↾T =⇒ dT+τ (F (u), F (v)) ≤ λ · dT+τ (u, v). (3.8 ′)
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Lemma 3.3.3. If F is causal, F ∈ Contr(λ, τ) and 0 < τ ′ < τ , then F ∈ Contr(λ, τ ′).

Proof: Similar to the proof of [TZ07, Lemma 2.3.9], part (ii). (Warning! Note that
“contracting” in [TZ07] means what we call “strongly contracting” in this paper: see
Remark 3.3.7 below. Hence the proof is “similar”, not identical.) �

Remark 3.3.4 (Modulus of contraction as a family). A modulus of contraction
could be given, more generally, as a family of reals 〈λT | T ≥ 0〉 with 0 < λT < 1 for all
T ≥ 0, such that, for example, (3.8) would become

for all T ≥ 0 u↾T = v↾T =⇒ dT, T+τ (F (u), F (v)) ≤ λT · dT, T+τ (u, v).

Thus we have a family of contraction moduli λT depending on time T (but a constant
contraction modulus τ). Equivalently, we could consider a family 〈λk | k ∈ N〉 such that

for k = 0, 1, 2, . . . u↾kτ = v↾kτ =⇒ dkτ, (k+1)τ (F (u), F (v)) ≤ λk · dkτ, (k+1)τ (u, v).

All the results obtained below still hold.

However we chose not to incorporate this generalisation in the exposition below, as it
would lead to a surfeit of subscripts.4

Examples 3.3.5 (Contracting operators).

• Example 1: Two analog networks.

Let us consider a practical example. In [TZ07] we analysed two case studies of
mass/spring/damper systems (a simple and an iterated system, respectively). In this paper
we reconsider the first of these (see Figure 1).

Here A = R, and an analog network N1 is constructed for this system [TZ07, Fig. 7]
with the corresponding state function

FN1 : C[T,R]3 → C[T,R]3

where, putting
FN1(x, v, a) = (x′, v′, a′)

we have, for t ≥ 0:

x′(t) =

∫ t

0

v(s)ds + x0 (3.9a)

v′(t) =

∫ t

0

a(s)ds + v0 (3.9b)

a′(t) =

{ 1
M

(f(t)−Kx(t)−Dv(t)) if t > 0
1
M

(f(t)−Kx0 −Dv0) if t = 0
(3.9c)

4 As it is, the modulus of contraction for our network functions will be a family indexed by the

stream inputs and network parameters (as in §4.2).
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Figure 1: Case study: Mass/spring/damper system

with the system parameters M (mass), K (spring constant), D (damping constant); initial
values x0 (initial displacement), v0 (initial velocity); input stream f (external force) and
remaining streams x (displacement), v (velocity) and a (acceleration). (For now, the
system parameters K,D,M and the initial values x0, v0 are taken as constant.)

The reason for form of the equational definition for a′(t) given in (3.9c) instead of the
simpler and (apparently) equivalent

a′(t) =
1

M
(f(t)−Kx(t)−Dv(t)) for t ≥ 0 (3.9c ′)

is that the latter formulation violates causality for FN1 . This is discussed further in [JZ11].

Now assume
M > max(K, 2D). (3.10)

Then, putting

λ =df

max(K, 2D)

M
,

τ =df

D

M

it is shown in [TZ07] that

FN1 ∈ Contr(λ, τ).

Now in [JZ11] another analog network N2 is constructed from the same mass/spring/
damper system (Figure 1) by eliminating the “acceleration” stream a from the network
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N1, using the fact that this stream can be defined as a linear combination of f , x and v
(3.9a). So N2 contains only two streams x, v (other than the input stream f) and network
state function FN2 : C[T,R]2 → C[T,R]2 where, putting

FN2(x, v) = (x′, v′)

we have

x′(t) =

∫ t

0

v(s)ds + x0, (3.11a)

v′(t) =
1

M

∫ t

0

(f(s)−Kx(s)−Dv(s))ds + v0. (3.11b)

This is a particular case of network state functions of the form

F : C[T,R]m → C[T,R]m

(m > 0) where

F (u)(t) = A

∫ t

0

u(s)ds + x(t) (3.12)

where A ∈ Rm×m (A nonzero) and u,x ∈ Rn. In [JZ11] it is shown that for operators F
of this kind,

F ∈ Contr(λ, τ) for 0 < λ < 1 and τ ≤
λ

‖A‖
(3.13)

where ‖A‖ is the matrix norm of A. (For convenience, we use the ‘max’ norm ‖ · ‖∞.)
Applying this to the equations (3.11) for our first case study, we find that (3.13) holds,
with

A =

(
−K

M
− D

M
,

0 1

)
and hence ‖A‖ = max

(K + D

M
, 1

)
(3.14)

for all (positive) values of K,D,M, and all v0, x0 [JZ11].

A similar analysis applies to the second case study in [TZ07], involving an iterated
mass/spring/damper system. We omit details.

• Example 2: SCAs. Here the network stream transformer ΦN is defined by simulta-
neous primitive recursion, [TTZ09, §7.1]. It can (hence) also be defined as the fixed point
of a contracting operator, as we now show. Consider a function

f : Am × [T→ A]p ×T → Am

with the primitive recursive definition [TTZ09, §4.4]

f(a,x, 0) = g(a,x)

f(a,x, t + 1) = h(a,x, t, f(a,x, t))
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where
g : Am × [T→ A]p → Am

h : Am × [T→ A]p ×T×Am → Am

Note that this is a simple recursion for an Am-valued function, equivalent to the (m-fold)
simultaneous recursion defining m A-valued functions given in [TTZ09, §4.4].

Now if we rewrite f in curried form

fa,x(t) =df f(a,x, t)

then fa,x is a stream, or rather a stream m-tuple, and in fact, the unique fixed point of
the contracting operator

Fa,x : [T→ A]m → [T→ A]m

defined by
Fa,x(u) = v

where
v(0) = g(a,x)

and for t > 0 v(t + 1) = h(a,x, t, v(t)).

To show that Fa,x is contracting, we note that for all T ∈ T and u, v ∈ [T→ A]m,

u↾T = v↾T =⇒ Fa,x(u)↾T+1 = Fa,x(v)↾T+1 . (3.15)

Hence by (3.15):

(i) Fa,x ∈ Contr(λ, 1) for all λ ∈ (0, 1), and for all (a,x) ∈ Am × [T→ A]p;

(ii) Fa,x is causal.

And so the existence of the network stream transformer for SCAs with unit delay [TTZ09,
§4.4], which is defined there by a simple (simultaneous) primitive recursion, can be justified
by, or reduced to, the theory of the present paper, using a fixed point construction based
on contracting operators (see Theorem 1 below). However, this is not really necessary!
The primitive recursive definition of the network stream transformer in [TTZ09, §4.4] is
surely sufficient justification on its own for this function’s existence.

Be that as it may, our fixed point construction applied to SCAs is along the lines of
Kleene’s construction in the proof of his first recursion theorem [Kle52, Thm XXVI], which
in fact gives a justification of definition by recursion. Note, however, that this is obtained
as the limit of a sequence of partial streams, starting with the empty stream, whereas
the fixed point in our proof of Theorem 1 is obtained as a limit of a sequence of total
streams, starting with an arbitrary stream. (At stage n, the approximations by these two
methods give identical values at the first n places.) Thus, Kleene’s framework involves
partial functions, unlike the framework here and in [TTZ09]. See, however, Section 5.

Remark 3.3.6 (Strongly contracting operators). We can give a stronger contraction
condition on operators, by removing the antecedent of (3.8) in Definition 3.3.1:
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For 0 < λ < 1 and τ > 0, an operator F on C[T, A] is said to be strongly contracting

w.r.t. (λ, τ), or in SContr(λ, τ), if for all u, v ∈ C[T, A]m:

for all T ≥ 0 dT, T+τ (F (u), F (v)) ≤ λ · dT, T+τ (u, v).

We could then develop a theory of fixed points of strongly contracting operators, which
would in fact lead to much simpler proofs of Theorems 1 and 2 below (existence and
continuity of fixed points).

However the concept of contracting operators, as we have defined it, seems more useful
in practice. For instance, the stream transformers in the two case studies analysed in
[TZ07, §4] for our analog network example (see [...]), as well as stream transformers in
our SCA example (Example 3.3.5(2)), are all contracting, but (apparently) not strongly
contracting.

Remark 3.3.7 (Different terminologies for contracting operators). In [TZ07] we
used the terminology “weakly contracting” and “contracting”, in place of (respectively)
the present “contracting” and “strongly contracting”. Our current terminology seems
preferable, on the grounds of practical applicability, as explained in the previous remark.

3.4 Fixed point of contracting operator

We will prove the fixed point theorem (FPT) for contracting operators satisfying Caus.

Remark 3.4.1. In fact, there is a simple direct proof of the FPT for strongly contracting
operators (see Remark 3.3.6) without assuming causality [TZ07, Theorem 1].

Definitions 3.4.2. Let T ≥ 0.

(a) u and v are T -equivalent if u↾T = v↾T .

(b) u is a T -approximate fixed point of F if F (u)↾T = u↾T ,

(c) v is a T -approximate uniform limit of a sequence (u0,u1,u2, . . . ) if v↾T is a uniform
limit of the sequence (u0↾T , u1↾T , u2↾T , . . . ) in C[[0, T ], A].

Lemma 3.4.3. If F is causal and u is a T -approximate fixed point of F , then F (u) is
also a T -approximate fixed point of F .

Proof: Since F (u)↾T = u↾T , by causality F (F (u))↾T = F (u)↾T . �

Lemma 3.4.4. If F is causal, then any stream in the range of F is a 0-approximate
fixed point of F .

Proof: Let v ∈ ran(F )5, say v = F (u). Then

v(0) = F (u)(0)

= F (v)(0)

5 i.e., the range of F
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by Remark 3.2.5(a). �

Some intuition for Lemma 3.4.4 (in the case of our analog network example) is given by
the following consideration. If v is a fixed point, or at least 0-approximate fixed point, of
F , then v(0) is the “initial value” of the solution of the network equations. If, for example,
F is a definite integral, or tuple of definite integrals, then v(0) is the tuple of constants of
integration, which give this initial value. For an example of this, see Remark 4.1.7(f).

Theorem 1 (Fixed point of contracting and causal operator).
Given a stream transformer F as in (3.7), suppose F ∈ Contr(λ, τ) for some λ < 1
and τ > 0, and F is causal. Then F has a unique fixed point, i.e., there is a unique
u ∈ C[T, A]m such that F (u) = u.

Proof: 1. Uniqueness:

We will first prove: for all k > 0, a kτ -approximate fixed point of F is unique up to
kτ -equivalence, i.e.,

F (u)↾kτ = u↾kτ ∧ F (v)↾kτ = v↾kτ =⇒ u↾kτ = v↾kτ (3.16)

by induction on k. For k = 1 this follows by noting that if F (u)↾τ = u↾τ and F (v)↾τ = v↾τ

then

dτ (u, v) = dτ (F (u), F (v))

≤ λ · dτ (u, v)

by (3.8) with T = 0 (since F (u)(0) = F (v)(0), by causality of F and Remark 3.2.5(a)) and
hence (since λ < 1) dτ (u, v) = 0, i.e., u↾τ = v↾τ .

For the induction step, assume (3.16) holds for k, and suppose F (u)↾(k+1)τ = u↾(k+1)τ

and F (v)↾(k+1)τ = v↾(k+1)τ . Then by (3.16) u↾kτ = v↾kτ , and so

d(k+1)τ (u, v) = d(k+1)τ (F (u), F (v))

≤ λ · d(k+1)τ (u, v)

by (3.8′), and hence (since λ < 1) d(k+1)τ (u, v) = 0, i.e., u↾(k+1)τ = v↾(k+1)τ .

Interestingly, causality of F is not used in the inductive step.

This concludes the proof by induction of (3.16). Finally, if F (u) = u and F (v) = v,
then by (3.16) u↾kτ = v↾kτ for all k, and so u = v.

2. Existence:

We use the notation Ck =df C[[0, kτ ], A]m and

Fk =df F↾kτ : Ck → Ck.
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Note that by Lemma 2.1.2, Ck is complete. Also, by causality of F and Lemma 3.2.6, for
all u ∈ C[T, A]m,

Fk(u↾kτ ) = F (u)↾kτ . (3.17)

We will construct a solution, namely a fixed point v of F , in stages. At stage k we will
have a kτ -approximate fixed point, i.e., a stream v k such that

F (v k)↾kτ = v k ↾kτ (3.18a)

and for all l

l < k =⇒ v k ↾lτ = v l ↾lτ . (3.18b)

Stage k = 1: Define the sequence

v
(0)
1 , v

(1)
1 , v

(2)
1 , . . . , v

(n)
1 , . . .

by: v
(0)
1 is any stream in ran(F ), and for all n

v
(n+1)
1 = F (v

(n)
1 ).

Note that for all n

v
(n)
1 (0) = v

(0)
1 (0).

by Lemma 3.4.4 and induction on n. Hence, putting

D1 =df dτ (v
(0)
1 , v

(1)
1 )

it follows from the contraction property of F and induction on n that

dτ (v
(n)
1 , v

(n+1)
1 ) ≤ λn ·D1. (3.19)

Next consider the sequence

w
(0)
1 , w

(1)
1 , w

(2)
1 , . . . (3.20)

of streams in C1, defined by

w
(n)
1 =df v

(n)
1 ↾τ .

By (3.17) with k = 1, it follows that for n = 0, 1, 2, . . .

F1(w
(n)
1 ) = w

(n+1)
1 .

The sequence (3.20) can be seen to be Cauchy, by choosing (for any ǫ > 0) N such that

λN <
(1− λ) · ǫ

D1
, (3.21)
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assuming D1 > 0 (otherwise v
(0)
1 is a τ -approximate fixed point, and we can simply put

v 1 = v
(0)
1 ). For then, for m > n ≥ N ,

dτ (w
(n)
1 ,w

(m)
1 ) ≤ dτ (w

(n)
1 ,w

(n+1)
1 ) + . . . + dτ (w

(m−1)
1 ,w

(m)
1 )

≤ (λn + λn+1 + . . . + λm) ·D1 by (3.19)

<
λn

(1− λ)
D1

≤
λN

(1− λ)
D1

< ǫ by (3.21)

Hence, by the completeness of C1, the sequence (3.20) converges to a limit w 1 ∈ C1. Hence,
also, the sequence

F1(w
(0)
1 ), F1(w

(1)
1 ), F1(w

(2)
1 ), . . . (3.22)

converges to F1(w 1), since by the contraction property of F ,

dτ (F1(w
(n)
1 ), F1(w 1)) ≤ λ · dτ (w

(n)
1 , w 1).

Since (3.22) is actually the sequence (3.20) shifted by 1, it follows that it also converges to
w 1, and so

F1(w 1) = w 1.

Hence if we define
v 1 =df extτ (w 1)

(see Notation 3.2.3(c)), it follows that v 1 is a τ -approximate fixed point of F .

Stage k + 1: Now suppose we have a kτ -approximate fixed point v k. Define the sequence

v
(0)
k+1, v

(1)
k+1, v

(2)
k+1, . . . , v

(n)
k+1, . . . (3.23)

v
(0)
k+1 = v kby

v
(n+1)
k+1 = F (v

(n)
k+1).and for all n

Note that for all n, v
(n)
k+1 is kτ -equivalent to v k and is a kτ -approximate fixed point of F ,

by Lemma 3.4.3 and induction on n. (Here causality of F is used again.) Putting

Dk+1 =df d(k+1)τ (v
(0)
k+1 , v

(1)
k+1),

we can prove from the contraction property of F , by induction on n:

d(k+1)τ (v
(n)
k+1 , v

(n+1)
k+1 ) ≤ λn ·Dk+1.
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Next consider the sequence

w
(0)
k+1 , w

(1)
k+1 , w

(2)
k+1 , . . . (3.24)

of streams in Ck+1, defined by

w
(n)
k+1 =df v

(n)
k+1 ↾(k+1)τ .

By (3.17) again, it follows that for n = 0, 1, 2, . . .

Fk+1(w
(n)
k+1) = w

(n+1)
k+1 .

The sequence (3.24) can be seen to be Cauchy, by choosing (for any ǫ > 0) N such that

λN <
(1− λ) · ǫ

Dk+1
, (3.25)

assuming Dk+1 > 0 (otherwise v
(0)
k+1 is a (k + 1)τ -approximate fixed point, and we can

simply put v k+1 = v
(0)
k+1). For then, for m > n ≥ N , we can show, as with Stage 1, that

d(k+1)τ (w
(n)
k+1, w

(m)
k+1) ≤

λN

(1− λ)
Dk+1

< ǫ by (3.25)

Hence, by the completeness of Ck+1, the sequence (3.24) converges to a limit w k+1 ∈ Ck+1.
Hence, also, the sequence

Fk+1(w
(0)
k+1), Fk+1(w

(1)
k+1), Fk+1(w

(2)
k+1), . . . (3.26)

converges to Fk+1(w k+1), since by the contraction property of F ,

d(k+1)τ (Fk+1(w
(n)
k+1), Fk+1(w k+1)) ≤ λ · d(k+1)τ (w

(n)
k+1, w k+1).

Since (3.26) is actually the sequence (3.24) shifted by 1, it follows that it also converges to
w k+1, and so

Fk+1(w k+1) = w k+1.

Hence if we define
v k+1 =df ext(k+1)τ (w k+1),

it follows that v k+1 is a (k + 1)τ -approximate fixed point of F . Further, since for all n,

v
(n)
k+1↾kτ= v k↾kτ ,

it follows (using the fact that a uniform limit is also a pointwise limit) that

v k+1↾kτ = v k↾kτ .
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Hence we have a sequence of streams

v0, v1, v2, . . .

satisfying (3.18). Finally, we can specify the required fixed point of F as the unique stream
v such that for all k

v↾kτ = v k↾kτ .

To conclude the proof, we must consider one more point: is the fixed point v constructed
above actually a stream? In other words, is it continuous as a function from T to Am? But
this follows from the above construction of v, as an iterated limit of sequences of sequences
of approximations, all of which converge locally uniformly, and hence preserve continuity
(in fact local uniform continuity), as does the end result v. �

The network stream transformers in our two running examples are contracting, as we
have seen (Examples 3.3.5). What about causality? To investigate this, we first define a
related concept. Let, again, F be as in (3.1).

Definition 3.4.5 (Causality and weak causality). Let T ≥ 0.

(a) F is causal w.r.t. T , or satisfies Caus(T ), if for all (a,x) ∈ Aq × C[T, A]p and
u, v ∈ C[T, A]m

u↾<T = v↾<T =⇒ Fa,x(u)(T ) = Fa,x(v)(T ).

(b) F is weakly causal w.r.t. T , or satisfies WCaus(T ), if for all (a,x) ∈ Aq × C[T, A]p

and u, v ∈ C[T, A]m

u↾T = v↾T =⇒ Fa,x(u)(T ) = Fa,x(v)(T ).

(Compare Definition 3.2.4.)

Remarks 3.4.6. (a) For T = N, WCaus(T ) is clearly weaker than Caus(T ).

(b) For T = R, WCaus(T ) is equivalent to Caus(T ) if T > 0, by continuity.

(c) However WCaus(0) is strictly weaker than Caus(0) (see Remark 3.2.5(c)).

Now let N be an analog network, as in our first running example, and FN the corre-
sponding network state function (Example 3.1.4(1)).

Lemma 3.4.7. For an analog network N :

(a) For T ≥ 0, if all the module functions of N are weakly causal w.r.t. T , then so is FN .

(b) Same, with “weakly causal” replaced by “causal”.

Proof: For (a): Note that the composition of two weakly causal functions is weakly
causal. The result follows by induction on the number of modules in N . Similarly for (b).
�
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Remark 3.4.8. In the case of an SCA network, we cannot use the above argument,
since the module functions are not stream transformers, but functions from data tuples to
data (see Remark 3.1.5), and so the concept of causality does not apply to them. But in
any case the network state function is clearly causal, by (3.15) (Example 3.3.5(2)).

Examples 3.4.9 (Fixed point; Applying Theorem 1).

• Example 1: Analog networks. The module functions of the standard modules used
in the two case studies (see Examples 3.3.5(1)): pointwise addition, scalar multiplication,
and integration [TZ07, §4], are all weakly causal with respect to any T ≥ 0. Hence
(considering first the network N1) the network state function FN1 (cf. equations (3.9))) is
weakly causal. By Remark 3.4.6(b), FN1 is then causal with respect to any T > 0.

Caus(0) follows by inspection of equations (3.9). Note that in this case Caus(0) fails
if equation (3.9c ′) is used instead of (3.9c) in the specification of FN1 .

Hence Theorem 1 can be applied to show the existence of a fixed point of FN1 for
all values of the system parameters M,K,D for which M > max(K, 2D), and all initial
values x0, v0.

Theorem 1 can be similarly applied to the network N2, to show the existence of a fixed
point of FN2 for all positive values of M,K,D, and all initial values x0, v0 [JZ11].

The second case study of [TZ07] (the iterated mass/spring/damper system) can be
handled by similar considerations.

• Example 2: SCAs. As stated above (Example 3.3.5(2)), causality, as well as contrac-
tion, apply automatically to the SCA network state function FN , and so the existence
of the network stream transformer ΦN can be justified by the fixed point construction of
Theorem 1. However this use of Theorem 1 is not necessary, since ΦN can be constructed
directly from the module functions simply by a simultaneous primitive recursion (see the
discussion in Example 3.3.5(2)).
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4 Continuity of fixed point of contracting operators

In preparation for the investigation of the continuity of the fixed point in this section, we
consider another property of operators: invariance under time shift.

4.1 Shift invariance of operators

The common analog modules, such as those treated in [TZ07], satisfy a modified version
of (the usual notion of) invariance, i.e., invariance relative to initial values. First, we must
divide our parameters into two classes: the “system parameters” and “initial constants”.
The latter can be thought of as initial values of (some of) the stream variables, and
appear typically as constants of integration. Unlike the system parameters, they appear
in “updated form” in the formulation of the invariance property (Definition 4.1.3 below).

For example, in case study 1 in [TZ07], with the network N1 (Example 3.3.5(1)) there
are 1 input stream variable, 3 non-input stream variables a, v, x (acceleration, velocity and
displacement respectively), 3 system parameters M,K,D, and 2 initial constants x0, v0

associated with x, v respectively. Note that there is no initial constant associated with the
acceleration a. The network N2 for the same system (Example 3.3.5(1) again) is similar,
except that it has only 2 non-input stream variables x, v (each with its associated initial
value). Hence, in general:

supposing there are m stream variables u1, . . . , um, we assume there are also
s initial parameters a1, . . . , as for some s, 0 ≤ s ≤ m, where ai is associated
with ui for i = 1, . . . , s.

We will denote system parameters by c, . . . and initial constants by a, . . . .

So assume, from now on, that our operators have the form

F : Ar ×As × C[T, A]p → (C[T, A]m → C[T, A]m) (4.1)

(0 ≤ r, 0 ≤ s ≤ m, p > 0, m > 0) or, in uncurried form,

F : Ar ×As × C[T, A]p × C[T, A]m → C[T, A]m (4.2)

where Ar contains the r system parameters6 c = (c1, . . . , cr), As contains the s initial
constants a = (a1, . . . , as), and C[T, A]p contains the p input streams x. We think of
a as the initial values of the first s of the m non-input stream variables u. Then for
c ∈ Ar, a ∈ As and x ∈ C[T, A]p, F,a,x is the operator

F,a,x = F (c,a,x, · ) : C[T, A]m → C[T, A]m. (4.3)

These operators are essentially of the same form as those shown in (3.1)–(3.3); they differ
only in that the space of parameters Aq shown there is divided here into the spaces Ar

and As of system parameters and initial constants respectively (q = r + s).

6 More generally, the system parameters may range over subspaces of A; see, e.g., Example

4.2.13(1) where A = R, and the parameters range over R>0. We are ignoring that innocuous

complication here for the sake of simplicity.
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Remark 4.1.1 (Continuity of F ). The assumption of continuity of the operator F
in Theorem 2 and elsewhere is made with respect to the typing of F in (4.2). In fact, as
a study of the proofs of Theorems 2 and 4 will show, we need only assume continuity (or
uniform continuity) of F for the first 3 arguments, i.e., for (c,a,x) ∈ Ar ×As × C[T, A]p.

Notation 4.1.2. For u ∈ C[T, A]m and s ≤ m we write us for the s-tuple of streams
(u1, . . . , us), and then for T ≥ 0 we write us(T ) for the s-tuple (u1(T ), . . . , us(T )).

Definition 4.1.2 (Compatibility of non-input streams with initial parameters).
A tuple (c,a,x,u) ∈ Ar ×As × C[T, A]p × C[T, A]m is said to be compatible, or u is said
to be compatible with a, if us(0) = a.

Now an operator F (as in (4.2)) is said to be shift invariant if its behaviour is invariant
under time shifts, with suitable changes made with the initial parameters. More precisely:

Definition 4.1.4 (Shifted stream tuple). For any u ∈ C[T, A]m and T ≥ 0, we
define the shifted stream tuple shift T (u) by

shift T (u)(t) =df u(T + t).

Remark 4.1.5. For use in the proof of Theorem 2, we note that

dτ (shift T (u), shift T (v)) = dT, T+τ (u, v).

Definition 4.1.6 (Shift invariance with updated initial values). An operator F as
in (4.2) is shift invariant , or satisfies Invar , if for all (c,a,x,u) ∈ Ar ×As × C[T, A]p ×
C[T, A]m and T ≥ 0, if

F (c,a,x,u)↾T = u↾T , (4.4)

then

(i) us(0) = a, and

(ii) F (c, us(T ), shift T (x), shift T (u)) = shift T (F (c,a,x,u)).

Remarks 4.1.7. (a) Equation (4.4) says that u is a T -approximate fixed point of
F,a,x. (Note that the usual definition of shift invariance of operators makes no reference
to approximate fixed points.)

(b) Clause (i) says that the inputs are compatible (Definition 4.1.3).

(c) Clause (ii) is the “invariance property” of F , subject to the “updating” of the initial
values from us(0) (= a) to us(T ).

(d) In the special case T = 0, the shift invariance condition says that F,a,x(u)(0) = u(0)
only if us(0) = a, i.e., u can be a 0-approximate fixed point of F,a,x only if u is
compatible with a.
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(e) The network state functions of case studies 1 and 2 are shift invariant.

(f) Note that in case study 1, with network N1, the input stream is f , the remaining
streams are (x, v, a), and the initial parameters are (x0, v0). Compatibility of inputs here
means that x(0) = x0 and v(0) = v0, but a(0) can be arbitrary. Applying FN1

to
(x, v, a) gives (x′, v′, a′) where, again, x′(0) = x0 and v′(0) = v0, but now a′(0) =
(f(0)−Kx0 −Dv0)/M . Applying F to (x′, v′, a′) leads to the same 0-values, i.e.,

(x0, v0, (f(0)−Kx0 −Dv0)/M))

is a 0-fixed point of FN0 . With network N2, the situation is simpler: there are only two
non-input streams (x, v), with initial values (x0, v0), which form a 0-fixed point of FN2 .
Compatibility of inputs here simply means that x(0) = x0 and v(0) = v0.

4.2 Continuity of fixed point

Consider a (total) operator F as in (4.1) satisfying causality. Let U ⊆ Ar ×As × C[T, A]p

be such that F,a,x : C[T, A]m → C[T, A]m is contracting, with modulus λ,a,x and
increment τ,a,x, for all (c,a,x) ∈ U .

Remark 4.2.1 (Openness of U). We will assume, for convenience, that U is open.
Although the theory could be (re-)formulated without this assumption (by referring to
the interior of U , when necessary), it is a reasonable assumption which smoothes the
exposition.

Then by Theorem 1, for all (c,a,x) ∈ U , F,a,x has a unique fixed point FP(F,a,x).
Define

Φ: Ar ×As × C[T, A]p ⇀ C[T, A]m (4.5a)

by: dom(Φ) = U , and for (c,a,x) ∈ U ,

Φ(c,a,x) = FP(F,a,x). (4.5b)

In our analog network example, F represents a state function for a network with r constants
c ∈ Ar, s initial values a ∈ As, p input channels with input streams x ∈ C[T, A]p, and m
modules. The output channels of the network will form a subset of the m module output
channels. For simplicity, we can assume that all the module output channels are also
network output channels, with output streams y ∈ C[T, A]m. The input/output function
for the network, or network function, will then be the stream transformer Φ.

Remark 4.2.2 (Families of contraction moduli and increments). We assume that
the contraction modulus and increment vary with the constants, initial values and input
streams (c,a,x) ∈ U . Thus we have families of contraction moduli 〈λ,a,x | (c,a,x) ∈ U〉
and increments 〈τ,a,x | (c,a,x) ∈ U〉 such that F,a,x is contracting with respect to
(λ,a,x, τ,a,x), for all (c,a,x) ∈ U . For later use, in formulating our theorems, we will
write (boldface) ‘λ’ and ‘τ ’ for the functions corresponding to these two families, i.e.,

λ : Ar ×As × C[T, A]p ⇀ R
and τ : Ar ×As × C[T, A]p ⇀ T (4.6a)
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which are defined (at least) on U , such that for all (c,a,x) ∈ U :

λ(c,a,x) = λ,a,x,

τ (c,a,x) = τ,a,x.
(4.6b)

From Theorem 1 we know of the existence of the fixed point function Φ as in (4.5). In
this section we investigate the continuity of Φ. We will need further assumptions, namely
continuity of F , local boundedness of λ and τ , causality of F (as in Theorem 1), and also
its shift invariance.

Two lemmas (4.2.3 and 4.2.6) follow, showing how the properties of causality and shift
invariance are inherited from F to the fixed point function Φ.

Lemma 4.2.3 (Causality of fixed point). If F is causal, then so is its fixed point
function Φ.

Proof (outline): Show, by induction on k, that the kτ -initial segment of the kτ -approxi-
mate fixed point, as constructed in the proof of Theorem 1, depends only on the kτ -initial
segment of the input, using causality of F . Note also that this property (i.e., that the
kτ -initial segment depends only on the kτ -initial segment of the input) is preserved by
kτ -approximate uniform limits. �

Definition 4.2.4 (Closure of domain under shifts). Given Φ as in (4.5a), with
dom(Φ) = U , we say that U is closed under shifts w.r.t. Φ if for all T > 0 and all (c,a,x):

(c,a,x) ∈ U =⇒ (c, Φ(c,a,x)s(T ), shift T (x)) ∈ U.

Remark 4.2.5. This closure condition is satisfied trivially if U is of the form

U = V ×As × C[T, A]p

for some V ⊆ Ar. This is, in fact, the case with the two case studies.

Lemma 4.2.6. Suppose F is shift invariant, and F,a,x has a fixed point Φ(c,a,x) for
all (c,a,x) ∈ U , and U is closed under shifts w.r.t. Φ. Then Φ is shift invariant on U , in
the sense that for all T > 0, and all (c,a,x) ∈ U , if Φ(c,a,x) = v, then

Φ(c, vs(T ), shift T (x)) = shift T (v). (4.7)

Proof: For (c,a,x) ∈ U , and T > 0, since F (c,a,x, v) = v, we have, by invariance of
F ,

F (c, vs(T ), shift T (x), shift T (v)) = shift T (v). (4.8)

By shift closure of U w.r.t. Φ,

(c, vs(T ), shift T (x)) ∈ U.
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Hence, and by (4.8), (4.7) follows. �

Notation 4.2.7 (Basic open sets of C[T, A]m).
Given T > 0, ǫ > 0 and u ∈ C[T, A]m, we write

NT (u, ǫ) =df { v ∈ C[T, A]m | dT (v,u) < ǫ }.

The collection of such neighbourhoods forms an open base for the topology on C[T, A]m.
In fact, we could restrict ǫ to be (for example) of the form 2−n for n = 1, 2, . . . , and restrict
T to vary over positive integers, or positive integral multiples of some real τ > 0.

More generally, we can define an open base for, e.g., the space Ar × C[T, A]m by

NT ((a,u), ǫ) =df { (b, v) ∈ C[T, A]m | dA(a, b) < ǫ ∧ dT (u, v) < ǫ }

for all (a,u) ∈ Ar × C[T, A]m, T > 0 and ǫ > 0.

As further preparation for Theorem 2, we also define two conditions on the families of
contraction moduli and increments, weaker than continuity.

Definition 4.2.8 (Local boundedness of contraction moduli and increments).

(a) The family 〈λ,a,x | (c,a,x) ∈ U〉 is locally bounded at (c,a,x) ∈ U if there exists
λ0 < 1 such that for all (c ′,a ′,x ′) sufficiently near (c,a,x), λ ′

,a ′
,x ′ < λ0.

(b) The family 〈τ,a,x | (c,a,x) ∈ U〉 is locally bounded at (c,a,x) ∈ U if there exists
τ0 > 0 such that for all (c ′,a ′,x ′) sufficiently near (c,a,x), τ ′

,a ′
,x ′ > τ0.

Remark 4.2.9. Clearly, continuity of λ or τ implies local boundedness.

Theorem 2 (Continuity of FP). Given stream operators F and F,a,x as in (4.1) and
(4.3), an open set U ⊆ Ar ×As × C[T, A]p, and families of contraction moduli
λ = 〈λ,a,x | (c,a,x) ∈ U〉 and increments τ = 〈τ,a,x | (c,a,x) ∈ U〉, suppose

(i) F,a,x ∈ Contr(λ,a,x , τ,a,x) for all (c,a,x) ∈ U ,

(ii) F is causal,

(iii) F is shift invariant,

(iv) F is continuous on U ,

(v) λ and τ are locally bounded on U , and

(vi) U is closed under shifts w.r.t. Φ,

where Φ is the fixed point function for F as in (4.5), given by Theorem 1.
Then Φ is continuous on U .

Proof: Choose any (c,a,x) ∈ U . Note first that we can assume without loss of generality
that λ,a,x can be (re-)defined so as to be constant near (c,a,x), since, by the local
boundedness assumption (v), λ,a,x is less than some λ < 1 near (c,a,x). We can then
take this λ to be the modulus of contraction at and near (c,a,x).
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Similarly, we can assume that the contraction increment τ,a,x is constant near (c,a,x),
since, by local boundedness again, its value is greater than some τ > 0 near (c,a,x). By
Lemma 3.3.3, we can take this τ to be the contraction increment at and near (c,a,x).

We continue (from the proof of Theorem 1) with the notation Ck =df C[[0, kτ ], A]m,
Fk =df F ↾kτ and Φk =df Φ↾kτ .

Recall that

v =df Φ(c,a,x) = FP(F,a,x) (4.9)

is obtained as the limit of a sequence

v1, v2, . . . , vk, . . . (4.10)

where for each k, vk is a kτ -approximate fixed point of F,a,x, where, in turn,
(i) v 1 is a τ -approximate limit of a sequence of 0-approximate fixed points

v
(0)
1 , v

(1)
1 , v

(2)
1 , . . . , v

(n)
1 , . . . (4.11)

with v
(0)
1 any stream in ran(F,a,x), say

v
(0)
1 = F,a,x(u 0) (4.12)

for any u 0 (cf. Lemma 3.4.4), and v
(n+1)
1 = F,a,x(v

(n)
1 );

(ii) v k+1 is a (k + 1)τ -approximate limit of a sequence of kτ -approximate fixed points
(repeating (3.23)):

v
(0)
k+1, v

(1)
k+1, v

(2)
k+1, . . . , v

(n)
k+1, . . . (4.13)

with v
(0)
k+1 = v k and v

(n+1)
k+1 = F,a,x(v

(n)
k+1).

We will show that for all k, Φk is continuous. The result follows from Lemmas 3.2.8(b)(ii)
(putting F = Φ and Tk = kτ) and 4.2.3.

First, some notation. For any (c ′,a ′,x ′) ∈ U , we write (parallelling the notation of
(4.9)–(4.13)):

v ′ =df Φ(c ′,a ′,x ′) = FP(F ′
,a ′

,x ′) (4.9′)

which is the limit of the sequence

v ′

1, v ′

2, . . . , v ′

k, . . . (4.10′)

where v ′

1 is a τ -approximate limit of the sequence

v
′ (0)
1 , v

′ (1)
1 , v

′ (2)
1 , . . . , v

′ (n)
1 , . . . (4.11′)

with

v
′ (0)
1 = F ′

,a ′
,x ′(u 0), (4.12′)
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(the same u 0 as in (4.12)), and v
′ (n+1)
1 = F ′

,a ′
,x ′(v

′ (n)
1 ); and v ′

k+1 is a (k + 1)τ -
approximate limit of the sequence

v
′ (0)
k+1 , v

′ (1)
k+1 , v

′ (2)
k+1 , . . . , v

′ (n)
k+1 , . . . (4.13′)

with v
′ (0)
k+1 = v ′

k and v
′ (n+1)
k+1 = F ′

,a ′
,x ′(v

′ (n)
k+1 ).

We will show that for all k = 1, 2, . . . , Φk is continuous at (c,a,x), i.e.,

for (c ′,a ′,x ′↾kτ ) sufficiently “close to” (c,a,x↾kτ ), v ′

k ↾kτ is “close to” v k ↾kτ .
(4.14)

The proof is by induction on k.

Basis: k = 1. By assumption F is continuous, and so

for any fixed n, v
(n)
1 depends continuously on (c,a,x). (4.15)

Choose ǫ > 0. Then, putting

D1 =df dτ (v
(0)
1 , v

(1)
1 ), (4.16)

and assuming D1 > 0 (otherwise v
(0)
1 ↾τ = v

(1)
1 ↾τ = v

(2)
1 ↾τ = . . . = v 1 ↾τ , and the

argument becomes much simpler), choose N such that

λN <
(1− λ)ǫ

9D1
(4.17)

and choose δ > 0 such that (1) Nτ ((c,a,x), δ) ⊆ U , (2) the contraction modulus and
increment have constant values λ and τ in Nτ ((c,a,x), δ) (already used in (4.17) and
(4.16)!), and for all (c ′,a ′,x ′) ∈ Nτ ((c,a,x), δ), we have: (3)

dτ (v
′ (0)
1 , v

(0)
1 ) < D1 (4.18)

(by (4.15), with n = 0), and (4)

dτ (v
′ (1)
1 , v

(1)
1 ) < D1 (4.19)

(again by (4.15), with n = 1), and finally (5)

dτ (v
′ (N)
1 , v

(N)
1 ) < ǫ/3 (4.20)

(again by (4.15) with n = N). Then

dτ (v
′ (0)
1 , v

′ (1)
1 ) ≤ dτ (v

′ (0)
1 , v

(0)
1 ) + dτ (v

(0)
1 , v

(1)
1 ) + dτ (v

(1)
1 , v

′ (1)
1 )

< 3 ·D1 (4.21)



37

by (4.16), (4.18) and (4.19). Further, for all n > N ,

dτ (v
(N)
1 , v

(n)
1 ) ≤ dτ (v

(N)
1 , v

(N+1)
0 ) + . . . + dτ (v

(n−1)
0 , v

(n)
0 )

≤ (λN + λN+1 + . . . + λn) ·D1 by (3.19)

<
λN

(1− λ)
·D1

< ǫ/9 by (4.17)

and so (letting n→∞)

dτ (v
(N)
1 , v 1) ≤ ǫ/9 < ǫ/3. (4.22)

Similarly, for all n > N ,

dτ (v
′ (N)
1 , v

′ (n)
1 ) < λN · (1− λ)−1 · dτ (v

′ (0)
1 , v

′ (1)
1 )

< λN · (1− λ)−1 · 3 ·D1 by (4.21)

< ǫ/3 by (4.17)

and so (letting n→∞)

dτ (v
′ (N)
1 , v ′

1) ≤ ǫ/3. (4.23)

Hence

dτ (v ′

1, v 1) ≤ dτ (v ′

1, v
′ (N)
1 ) + dτ (v

′ (N)
1 , v

(N)
1 ) + dτ (v

(N)
1 , v 1)

< ǫ/3 + ǫ/3 + ǫ/3 by (4.23), (4.20), (4.22)

= ǫ,

proving the continuity of Φ1 at (c,a,x).

Induction step: Assume Φk is continuous. We must show that Φk+1 is continuous, i.e.,
prove (4.14) for k ← k + 1. Put

a k =df vs(kτ)

a ′

k =df v ′s(kτ).

From closure under shifts of U follows

(c, a k, shift kτ (x)) ∈ U and (c ′, a ′

k, shift kτ (x ′)) ∈ U.

Further, from causality of F follows causality of Φ by Lemma 4.2.3, and from shift invari-
ance of F follows shift invariance of Φ by Lemma 4.2.6; hence (by Lemma 3.2.6)

Φ1(c, a k, shift kτ (x)↾τ ) = shift kτ (v)↾τ

Φ1(c
′, a ′

k, shift kτ (x ′)↾τ ) = shift kτ (v ′)↾τ .
(4.23)
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Now by continuity of Φ1 (proved above), and of shift kτ (easily shown), given ǫ > 0 there
exists δ1 > 0 such that for all (c ′,a ′,x ′) ∈ U ,

dτ

(
(c ′, a ′

k, shift kτ (x ′)), (c, a k, shift kτ (x)
)

< δ1

=⇒ dτ

(
shift kτ (v ′), shift kτ (v)

)
< ǫ

and so, by Remark 4.1.5:

dkτ, (k+1)τ ((c ′,a ′,x ′), (c,a,x)) < δ1 =⇒ dkτ, (k+1)τ (v ′, v) < ǫ. (4.24)

Now by the induction hypothesis (i.e., (4.14) for k), there exists δ2 > 0 such that

dkτ ((c ′,a ′,x ′), (c,a,x)) < δ2 =⇒ dkτ (v ′, v) < ǫ. (4.25)

Taking δ = min(δ1, δ2) and combining (4.25) and (4.24), we obtain

d(k+1)τ ((c ′,a ′,x ′), (c,a,x)) < δ =⇒ d(k+1)τ (v ′, v) < ǫ,

proving continuity of Φk+1, as desired. �

Remark 4.2.10 (Strongly contracting operators). If assumption (i) is replaced by:

(i′) F,a,x ∈ SContr(λ,a,x , τ,a,x)

(cf. Remark 3.3.6) then the proof of Theorem 2 becomes much easier (see [TZ07], proof of
Theorem 2(b)).

Remark 4.2.11 (Theorem 2 in terms of module functions). Suppose F is the
network state function for an analog network N . Then Theorem 2 holds if assumption (iv)
is replaced by:

(iv′) the module functions of N are continuous.

This follows from Remark 3.1.6.

Remark 4.2.12 (Assumption of shift invariance). Nicholas James (personal com-
munication) has succeeded in proving Theorem 2 without the assumptions of shift invari-
ance (iii) and closure of U under shifts (vi). Details will be given in a future publication.
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Examples 4.2.13 (Continuity; Applying Theorem 2).

• Example 1: Analog networks. We return to case study 1, the mass/spring/damper
system, discussed in Example 3.3.5(1) and 3.4.9(1). From now on we will only consider
network N2 for this system, with state function

F = FN2 : U × C[T,R]2 → C[T,R]2

where
U =df (R>0)3 ×R2 × C[T,R],

with
F(M, K, D), (x0, v0),f : C[T,R]2 → C[T,R]2

given by
F(M, K, D), (x0, v0),f (x, v) = F

(
(M, K, D), (x0, v0), f , (x, v)

)

for any ((M, K, D), (x0, v0), f) ∈ U . Then taking any (fixed) λ0 < 1 and

τM,K,D = λ0 · min

(
M

K + D
, 1

)
, (4.26)

it follows from the considerations in Example 3.3.5(1) (cf. (3.13), (3.14)) that

F(M, K, D), (x0, v0),f ∈ Contr(λ0, τM,K,D).

and hence, by Theorem 1, F has a fixed point function Φ: U → C[T,R]2 with

Φ((M, K, D), (x0, v0), f) = FP(F(M, K, D), (x0, v0),f )

for all ((M, K, D), (x0, v0), f) ∈ U . Further, since each of the module functions (pointwise
addition, scalar multiplication and integration) is continuous, so is F , from Remark 3.1.6
(and cf. Remark 4.2.11). Moreover, U is clearly closed under shifts, by Remark 4.2.5,
and λ0 (being constant) and τM,K,D are clearly locally bounded on U . Further, from
equations (3.11) F can be seen to be shift invariant.

Hence Theorem 2 can be applied to prove the continuity of Φ on U .

Theorem 2 can similarly be applied to the second case study in [TZ07] (an iterated
mass/spring/damper system). We omit details.

• Example 2: SCAs. Here we have a very simple special case of Theorem 2:

Theorem 2 ′. If the module functions of an SCA network are continuous, then so is the
network function Φ.

This is because Φ is defined from the module functions by primitive recursion, which
preserves continuity [TTZ09, Lemma 7.1.1].

Note that in this case Φ is total, i.e., if

F : Ar ×Am × C[T, A]p × C[T, A]m → C[T, A]m
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(putting s = m in (4.2)), then

U = dom(Φ) = Ar ×Am × C[T, A]p.

Caution! It is actually the cartesian form of Φ, cart (Φ), that is defined by primitive
recursion, and hence continuous, where if

Φ: U → C[T, A]m

then
cart (Φ): U ×T → Am

is defined by
cart (Φ)(c,a,x, t) = Φ(c,a,x)(t).

However one can check that for any stream-valued function f ,

cart (f) continuous =⇒ f continuous, (4.27)

at least in the case that T = N.

Discussion 4.2.14 (Hadamard’s principle; the significance of continuity). As
explained in the Introduction (§1.4), the reason for the importance of establishing continu-
ity of the fixed point function under the conditions given in Theorem 2, is that it implies
stability of the fixed point Φ, as the solution to the specification

F (c,a,x, Φ(c,a,x)) = Φ(c,a,x)

under the stated conditions. The significance of this is related to Hadamard’s principle
[Had52] which, as (re-)formulated by Courant and Hilbert ([CH53, pp. 227ff.],[Had64])
states that for a scientific problem to be well posed, the solution must (apart from existing
and being unique) depend continuously on the data.

An important aspect of Hadamard’s principle is that it can be viewed as making clas-
sical experimental physics possible. Suppose, for example, that one wants to verify any
of the well-known relations of classical physics — Hooke’s Law or Charles’s Law, for ex-
ample — by taking measurements and drawing a graph of the relationship between the
“independent” and “dependent variables” — force vs displacement of a spring in the first
example, and temperature vs volume of a gas (at constant pressure) in the second. (The
first of these two examples was used implicitly in our first case study.) The experimental
results, and consequent graph, only make sense on the assumption that the function that
one is attempting to plot is continuous, so that small discrepancies or inaccuracies in the
inputs produce only small variations in the outputs. Moreover, this is needed to guarantee
repeatability of experiments. The stability of measurements in the presence of noise is an
essential feature for a physical system to qualify as an analog computer.

Actually, in the formulation of Hadamard’s principle, “continuously” should perhaps be
replaced by “piecewise continuously”, to accommodate discontinuities at phase changes,
for example, the gas/liquid interface in connection with Charles’s Law.

Further discussions on this topic, from different perspectives, have been given by Beeson
[Bee85, p. 368] and Myrvold [Myr95].
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5 Concluding remarks

Stream processing occurs everywhere, often without being recognised as such. There are
many occasions where a theoretical analysis of computation has led to models of stream
processing [Ste97].

In this paper we have used standard topological notions to model stream processing
in continuous and discrete time, in a uniform way. An essential technique in this paper
has been to lower the type of higher order stream operators by an “uncurrying” process
(see Remark 4.1.1, and the comment at the end of Example 4.2.13(2)). This allows the
use of standard and relatively elementary technical concepts from topology and (in future
work) computability theory. We have used, as running examples, two simple, commonly
found paradigms of stream processing, which we previously studied independently [TZ07,
TTZ09].

The basic mathematical theory of stream processing raises some intriguing questions
about the role of natural assumptions on stream operators such as continuity, causality
and shift invariance. The theory presented is designed to be close to examples of systems
which are rich in physical properties.

Clearly, the semantic modelling of analog systems benefits most from our approach, as
analog computers are both complicated and neglected. Of course, there are many further
examples of stream processing (such as dataflow networks and hybrid embedded systems)
to be investigated.

5.1 Computability of operations on streams

At the heart of our theory are questions about the computability of stream process-
ing. There are several different approaches to computability on topological spaces, which
converge [SHT99]. In a companion paper [TZ11] we will address the question of the com-
putability of Φ. We consider two models of computability on A, and hence on C[T, A]:
concrete, based on representations constructed fromN, and abstract , independent of repre-
sentations, and based on effective approximability by a high level imperative programming
language WhileCC ∗ (that is, the While language with a “countable choice” operator and
finite arrays). The equivalence between these was established in [TZ04]. With Theorems
1 and 2 in mind we prove:

Theorem (Concrete computability): If, in addition to the assumptions in Theorem 2
(and under some further reasonable assumptions), F is concretely computable, then so is
Φ.

We then use the equivalence between abstract and concrete computability discussed above
to prove:

Theorem (Abstract computability): If, in addition to the assumptions in Theorem
2 (and under some further reasonable assumptions), F is WhileCC ∗ approximably com-
putable, then so is Φ.
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5.2 Future research

The study of continuity of stream operators (and their computability [TZ11]) provides a
rich source of topics for future research. We mention two such topics here.

(1) Partial and nondeterministic module functions. From considerations of conti-
nuity , we are led to consider module functions that are nondeterministic (or many-valued)
and partial [TZ04, TZ05].

These features will complicate the theory considerably — for example, in the case of
SCAs, it would require replacing a single global clock by a system of local clocks [TTZ09,
§8.2(1)]. However, they constitute an important generalisation, because of the desirability
of continuity by Hadamard’s principle (see the Introduction and Discussion 4.2.14).

Continuity considerations are especially significant with hybrid systems, at analog-
digital interfaces [NK93].

(2) Generalisation of stream concept. The considerations in (1) will lead to the
investigation of streams which are also partial and nondeterministic.

The use of piecewise continuous streams (in the case T = R≥0) forms another important
generalisation of the stream concept.
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