
Computability of Operators on Continuous and Discrete Time Streams

J.V. Tucker

Department of Computer Science,

Swansea University, Singleton Park, Swansea SA2 8PP, Wales

J.V.Tucker@swansea.ac.uk

J.I. Zucker

Department of Computing and Software,

McMaster University, Hamilton, Ontario L8S 4K1, Canada

zucker@mcmaster.ca

Abstract

A stream is a sequence of data indexed by time. The behaviour of natural
and artificial systems can be modelled by streams and stream transformations.
There are two distinct types of data stream: streams based on continuous time
and streams based on discrete time. Having investigated case studies of both
kinds separately, we have begun to combine their study in a unified theory of
stream transformers, specified by equations. Using only the standard mathe-
matical techniques of topology, we have proved continuity properties of stream
transformers. Here, in this sequel, we analyse their computability. We use the
theory of computable functions on algebras to design two distinct methods for
defining computability on continuous and discrete time streams of data from a
complete metric space. One is based upon low-level concrete representations,
specifically enumerations, and the other is based upon high-level programming,
specifically while programs, over abstract data types. We analyse when these
methods are equivalent. We demonstrate the use of the methods by showing
the computability of an analog computing system. We discuss the idea that
continuity and computability are important for models of physical systems to
be “well-posed”.

Key words and phrases: abstract computability, analog computing, concrete
computability, continuous streams, discrete streams, enumerations, fixed points,
many-sorted algebras, topological algebras, complete metric spaces, stream op-
erators, synchronous concurrent algorithms, ‘while’ programs

2

1 Introduction

1.1 On generalising computability theory and streams

The generalisation of computability theory to arbitrary data types aims at models analys-
ing the computability of functions f : A → B on any sets A and B. At the origins of
the theory are countable sets of discrete data that can be faithfully coded by strings and
natural numbers, since our understanding of algorithms and computability is founded upon
the data types of strings and natural numbers.

However, many applications require us to compute on uncountable sets of continuous
data, including: real and complex numbers; bit streams, signals and waveforms; spatial
objects, scenes and animations; scalar and vector fields; and probability distributions. The
importance of such data types motivates generalisations of computability theory. In our
view,

Each data type requires its own computability theory, one that is capable of (i)
analysing the special nature of computation with the data and (ii) illuminating
the use of the data in applications.

A generalisation of computability theory to arbitrary data types should expand and deepen
our understanding of finite computation, and be a practical tool for developing useful
computability theories for particular data types.

Data distributed in space and time are to be found everywhere. For the examples of
continuous data mentioned, we can expect the custom-made computability theories to have
much in common mathematically. For example, they would involve the approximation of
functions on topological, metric, normed and ordered spaces of various kinds. In many
contexts, one finds that continuous data are represented by functions of the form u : X →
A, where X is a set of points in time or space, and A is a set of data. More specifically,
in some cases the sets X and A have a topology (possibly discrete) and the functions of
interest are those in the set

C[X,A] = {u : X → A | u is a continuous total function}.

Thus, mathematically, we are interested in models of computability for functions of the
form

Φ: Ar × C[X,A]m → C[X,A]n.

Now, a stream is a sequence of data indexed by time. There are two distinct types of
data stream: streams based on continuous time and streams based on discrete time. The
behaviour of systems in time can be modelled by streams and stream transformations.
Continuous time is used in models based on ordinary and partial differential equations
(ODEs and PDEs), and in networks of analog devices. Discrete time is used in cellular
automata, neural nets and other concurrent algorithms, and in approximations to ODEs
and PDEs. Thus, we will concentrate on the special case that X represents time. Although
there are many ways of modelling time, we choose X = T, where T is either the non-
negative reals R≥0 or the non-negative integers N, to represent continuous and discrete
time respectively.

3

In these two cases, the functions u ∈ C[T, A] will be called streams, and C[T, A] will be

called a stream space. We call the streams continuous or discrete, according as T = R≥0

or T = N. In [TZ11] we established a basic theory of the specification of functions Φ on
streams as fixed points of operators with contracting properties; the existence, uniqueness
and continuity of the Φ were proved.

Computability theories for C[T, A] should be useful for developing particular com-
putability theories for all sorts of streams. In general, we have found [TZ04, TZ05, TZ06]
that computability models fall into one of two classes: concrete models, which involve
building a specific representation of the data type; and abstract models, which involve
programming directly with the primitive operations of the data type in ways that are in-
dependent of specific representations. We will consider concrete and abstract computability
models for functions Φ on the data type C[T, A], and compare them. Our choice of con-
crete model is based on enumeration theory. Our choice of abstract model is based upon
high-level programming with ‘while’ programs over algebras.

Let us examine these ideas in more detail.

1.2 Stream transformers as fixed points

Each data type of the form C[T, A] arises typically in some practical situation, and has
its own special features. The algorithmic models that are characteristic of that situation
determine, or at least suggest, a corresponding computability theory. For example, we will
motivate and illustrate our computability theories using these examples:

(i) Analog streams: X is continuous time T = R≥0, the non-negative reals, and the
data are reals A = [0, 1] or A = R or spectra modelled by continuous mappings
from a compact space to the reals.

(ii) Digital streams: X is discrete time T = {0, 1, 2, . . .}, and the data are bits A =
{0, 1}.

We have encountered these data types before: continuous streams processed by analog
networks [TZ07]; discrete streams processed by digital networks [TZ94, TTZ09].

Here, we investigate stream transformers of the form

Φ: Ar ×As × C[T, A]p → C[T, A]m (1.1)

where for tuples of system parameters c ∈ Ar, initial values a ∈ As and input streams
x ∈ C[T, A]p, the value Φ(c,a, x) ∈ C[T, A]m is obtained as the fixed point of a contracting

operator

F,a,x : C[T, A]m → C[T, A]m (1.2)

where
F : Ar × As × C[T, A]p → (C[T, A]m → C[T, A]m)

is represented more conveniently in the uncurried form:

F : Ar ×As × C[T, A]p × C[T, A]m → C[T, A]m,

4

so that F (c,a, x, ·) = F,a,x in (1.2). We assume that F satisfies a causality condition
which is natural in the context of stream processing, because of time, and turns out to be
crucial in the proofs of the theorems.

1.3 Concrete and abstract computability

For a huge range of spaces T and A, we can equip C[T, A] with the compact-open topol-
ogy and consider the partial functions on C[T, A] that are computable or approximably
computable with respect to this topology. In this paper we will develop two computability
models for C[T, A] in the case that A is a complete metric space:

(1) a concrete computability model, in which computations are based on concrete repre-
sentations of the space C[T, A] constructed from N, and

(2) an abstract computability model, independent of representations of the space C[T, A],
in which computations are based on programs from a high level imperative language,
using a suitable set of algebraic operations on C[T, A].

Thus, this paper plays a role in advancing our general theory of computability [TZ00]. In
general, abstract computability implies concrete computability but not conversely [TZ06].
Indeed, the converse is quite subtle even in the case of simple algebras. We have studied
the problem for computable algebras in [TZ06] and, more significantly, for metric algebras
A in [TZ04], and shown that equivalence theorems are possible. One aim of this paper is
to show how to use these general cases to design solutions for the stream space C[T, A].

Designing abstract models capable of capturing concrete models is an important general
problem, one that is surprisingly tricky. It has the general form:

Given a class ConcR(A) of concrete computable functions on a set A via
representation R, find algebraic operations on A to make an algebra A and an
abstract programming language L such that

ConcR(A) = AbsL(A),

where AbsL(A) is the class of L-computable functions overA, or L-approximable
functions over A, assuming A is a metric algebra.

The concrete model of computability for the space C[T, A] is constructed using the
theory of enumerations of countable sets, started by Malcev [Mal71]. The abstract model
of computability for the space C[T, A] is constructed using the theory of ‘while’ programs
over many-sorted algebras. There are dozens of different choices of computability models
for algebras, many of which we have classified [TZ00, TZ99, SHT99].

The high level language we actually used in (2) is a significant expansion of the While

language. It must be equipped with a “countable choice” operation and finite arrays,
and is denoted WhileCC ∗ [TZ04]; and we consider approximability of functions by such
programs. In [TZ04] we proved the equivalence of these imperative and enumeration
models, i.e., the soundness and completeness of the abstract model with respect to the
concrete model over certain algebras.

5

We will first prove concrete computability of Φ, assuming concrete computability of
F , and then, by applying this completeness result to the space C[T, A], prove abstract
computability of Φ, assuming abstract computability of F .

1.4 Outline of paper and results

In Section 2 we review the stream space C[T, A], and summarise the theory and results
from [TZ11], which proves, firstly, the existence and uniqueness, and secondly, continu-
ity of the fixed point function Φ for the contracting operator F , under some reasonable
assumptions, such as continuity of F .

In Section 3 we develop our concrete model of computability on C[T, A], and prove:

Theorem A (Concrete computability): Under some reasonable assumptions, if F is
concretely computable, then so is Φ.

Finally, in Section 4, we develop the abstract model of computability (WhileCC∗ approx-
imability) on C[T, A]. By means of Theorem A, together with the completeness theorem
for abstract vs concrete computability [TZ04], applied to the space C[T, A], we prove

Theorem B (Abstract computability): Under some further reasonable assumptions,
notably effective uniform local continuity of F , if F is WhileCC∗ approximable, then so
is Φ.

One of the aims of this paper is to develop computability theories that can analyse
applications. We wish to consider networks processing continuous and discrete streams —
introduced in [TZ07] and [TTZ09], respectively – from a common standpoint. In Section
5, these applications are illustrated by two examples:

(1) analog networks , with continuous time T = R≥0, using the theory developed in
[TZ07], and specifically the case study of a mass/spring/damper system investigated
there;

(2) synchronous concurrent algorithms (SCAs), with discrete time T=N, using the the-
ory developed in [TTZ09].

These are both archetypal discrete space models, which formally include a huge range of
mathematical models of natural and artificial systems.

This paper is a sequel to [TZ11]. We have tried to minimise its dependence on that
paper with a short review of the latter in §2.1, and also to make it independent of [TZ07,
TTZ09]. However, the motivation and technicalities are best apprehended in the light of
our entire work.

A remark about notation: on the whole it is fairly standard. The symbol ‘⇀’ will denote
a partial function.

Acknowledgments. We thank Jens Blanck (Swansea), Nick James (McMaster Univer-
sity) and Ken Johnson (INRIA, France) and three anonymous referees for many useful
comments and suggestions on earlier drafts of this paper.

6

The research of the second author was supported by a grant from the Natural Sciences
and Engineering Research Council (Canada). The second author also appreciates the
generosity of the Computer Science Department of Swansea University, which has hosted
a number of his visits for the purpose of collaborating with the first author.

2 Background

2.1 Review of the stream space C[T, A]

As in [TZ11], we will investigate the space C[T, A] of continuous or discrete A-valued

streams, i.e., continuous functions from T to A, where T is either R≥0 or N, representing
continuous and discrete time respectively, and (A, dA) is a complete metric space. (Note
that in the case T = N, all functions from T to A are trivially continuous.)

We will also assume that A is separable, which will be relevant for concrete computability
in Section 3.

The stream space C[T, A] is given the local uniform (or compact-open) topology, gener-
ated by the pseudometrics

dT (u, v) = sup
0≤t≤T

dA(u(t), v(t))

for all T ≥ 0, where in fact T can be restricted to ranging over a sequence T0 < T1 <
T2 < . . . of increasing unbounded values, defining a compact exhaustion (Kk) of T, with
Kk = [0, Tk] (k = 0, 1, 2, . . .) [TZ11]. In this paper we will take Tk = kτ , for some fixed
τ > 0, to give the “standard exhaustion” Kk = [0, kτ], and perforce taking τ = 1 whenT = N. (In practice τ will be chosen as the “contraction increment” for a contracting
operator: see Definition 2.2.2 below.)

This topology is metrisable [TZ11, §2.3], with the metric

dC[T,A](u, v) =df

∞
∑

k=0

min
(

dkτ (u, v), 2−k
)

. (2.1)

However it turns out to be easier to take C[T, A] as a “pseudometric algebra” with global
pseudometric function

D : N×T× C[T, A]2 → R
defined by

D(k, τ, u, v) = dkτ (u, v) (2.2)

as basic, rather than the metric dC[T,A]. In any case, dC[T,A] is easily computable from D

by (2.1) and (2.2). We also have an evaluation function for streams

eval : C[T, A]×T → A

eval(u, t) = u(t).where

7

So we gather these functions into a many-sorted topological algebra1 :

algebra C[T, A]
carriers A, T, C[T, A], R, N
functions dA : A2 → R,

dT : T2 → R,
D : N×T× C[T, A]2 → R,
eval : C[T, A] ×T → A

end

(2.3)

where dT and dA are the metrics on T and A respectively.

C[T, A] is a topological algebra, because each of the five carriers has an associated
topology (i.e., the compact open topology for the function space, together with the usual
one for R, and the discrete one for N) with respect to which the basic functions are
continuous. The carrier R is needed for the metric operations on A and T. The carrierN is needed for (i) the domain of the global pseudometric function D, and (ii) the “N-
standardness” of the algebra [TZ04, TZ05, TTZ09] so as to facilitate the completeness
theorem for abstract vs concrete computability on C[T, A] (Theorem 4.4.6).

The signature2 Σ of C[T, A] can be inferred from (2.3). First, corresponding to the five
carriers of C[T, A], there are five sorts in the set Sort(Σ) of Σ-sorts:

• A of data, i.e., points in the metric space A,

• T of instants of time in T,

• C of streams, i.e., elements of C[T, A],

• R of reals R, for the metrics

• N of naturals N, for use in computation.

Next, for each function shown in (2.3), the signature Σ has a function symbol of the
corresponding type. Hence Σ can be displayed as follows:

signature Σ
sorts A, T, C, R, N

functions dA : A2 → R,
dT : T2 → R,
D : N × T × C2 → R,
eval : C × T → A

end

(2.4)

This is quite rudimentary — it ignores the basic functions in the algebraic structures of
A, T, R and N. This is irrelevant for concrete computation on C[T, A], which derives

1 That is, a many-sorted algebra in which the carriers have topologies, relative to which each of

the basic functions is continuous
2 A signature Σ for a many-sorted algebra A consists of a set of Σ-sorts, one for each carrier

of A, and (typed) Σ-function symbols, one for each basic function of A.

8

computational power from tracking functions on N (as we will see). It is relevant for
abstract computation, as studied in the next section, where we will find it necessary to
expand the algebraic structure of C[T, A] (§4.1).

For ease of notation, we will sometimes refer to the five carriers of C[T, A] as Cs for
s ∈ Sort(Σ).

2.2 Causality, contraction and continuity: A review

We briefly review the main definitions and theorems of [TZ11]. First, we define the
concepts of causality and contraction for stream operators [TZ11, §§ 3.2, 3.3] which are
crucial assumptions in all the following theorems. We use the following notation: for
u, v ∈ C[T, A]m and 0 ≤ a ≤ b:

d a,b(u, v) =df sup
a≤t≤b

dA(u(t), v(t)).

Now consider an operator F : C[T, A]m → C[T, A]m.

Definition 2.2.1 (Causality). F is causal if for all u, v ∈ C[T, A]m:

∀T ≥ 0, u↾[0,T) = v↾[0,T) =⇒ F (u)(T) = F (v)(T).

Definition 2.2.2 (Contracting operator). Let 0 < λ < 1 and τ > 0.
F is contracting w.r.t. (λ, τ), or F ∈ Contr(λ, τ), if for all u, v ∈ C[T, A]m:

for all T ≥ 0 u↾T = v↾T =⇒ dT, T+τ (F (u), F (v)) ≤ λ · dT, T+τ (u, v) (2.5)

where we write u↾T for u↾[0,T].

We call λ and τ the contraction modulus and contraction increment respectively.

Note that if F is causal, (2.5) can be rewritten as

for all T ≥ 0 u↾T = v↾T =⇒ dT+τ (F (u), F (v)) ≤ λ · dT+τ (u, v).

Also, if F is causal and F ∈ Contr(λ, τ) and 0 < τ ′ < τ , then F ∈ Contr (λ, τ ′).

Theorem 1 (Fixed point of contracting and causal operator).
Given a stream transformer F : C[T, A]m → C[T, A]m, suppose F ∈ Contr (λ, τ) for
0 < λ < 1 and τ > 0, and F is causal. Then F has a unique fixed point, i.e., there is a
unique u = FP(F) ∈ C[T, A]m such that F (u) = u.

This is proved in [TZ11, §3].

Now, with applications in mind, we consider operators of the form

F : Ar × As × C[T, A]p → (C[T, A]m → C[T, A]m) (2.6)

9

(0 ≤ r, 0 ≤ s ≤ m, p > 0, m > 0) or, in uncurried form,

F : Ar ×As × C[T, A]p × C[T, A]m → C[T, A]m (2.7)

where Ar contains the r system parameters c = (c1, . . . , cr), As contains the s initial
constants a = (a1, . . . , as), and C[T, A]p contains the p input streams x = (x1, . . . , xs).
Think of a as the initial values of the first s of the m non-input stream variables u. Then
for c ∈ Ar, a ∈ As and x ∈ C[T, A]p, F,a,x is the operator

F,a,x = F (c,a, x, ·) : C[T, A]m → C[T, A]m. (2.8)

Next we restrict the parameters (c,a, x) to an open subset U ⊆ Ar × As × C[T, A]p, which
we call the “contraction domain” for F , and assume that we have U -indexed families

of contraction moduli 〈λ,a,x | (c,a, x) ∈ U〉 and increments 〈τ,a,x | (c,a, x) ∈ U〉 such
that F,a,x is contracting with respect to (λ,a,x, τ,a,x), for all (c,a, x) ∈ U . We write
(boldface) ‘λ’ and ‘τ ’ for the functions corresponding to these two families, thus:

λ : Ar × As × C[T, A]p ⇀ R
and τ : Ar × As × C[T, A]p ⇀ T (2.9a)

which are defined (at least) on U , such that for all (c,a, x) ∈ U :

λ(c,a, x) = λ,a,x,
τ (c,a, x) = τ,a,x. (2.9b)

Then, by Theorem 1, for all (c,a, x) ∈ U , F,a,x has a unique fixed point u = FP(F,a,x),
depending on the parameters and inputs (c,a, x). We now want to consider this fixed
point as a function of (c,a, x) ∈ U . Hence we define the fixed point function

Φ: Ar ×As × C[T, A]p ⇀ C[T, A]m (2.10a)

by: dom(Φ) = U , and for (c,a, x) ∈ U ,

Φ(c,a, x) = FP(F,a,x). (2.10b)

We must also define the concepts of shift invariance of operators and closure of domains

under shifts [TZ11, §§4.1, 4.2] which are crucial assumptions in Theorem B. Briefly, a
stream operator F is shift invariant if its behaviour is invariant under time shifts, with
suitable changes made to the initial constants.

More precisely, we first define, for any u ∈ C[T, A]m and T ≥ 0, the shifted stream tuple

shift T (u)(t) =df u(T + t).

We also use the following notation: for u ∈ C[T, A]m, s ≤ m and T ≥ 0, we write us(T)
for the s-tuple (u1(T), . . . , us(T)).

10

Definition 2.2.3 (Shift invariance with updated initial values). An operator F
as in (2.7) is shift invariant if for all (c,a, x,u) ∈ Ar ×As × C[T, A]p × C[T, A]m and
T ≥ 0, if F (c,a, x,u)↾T = u↾T (i.e., u is a T -approximate fixed point of F,a,x), then

(i) us(0) = a (i.e., the inputs are “compatible”), and

(ii) F (c, us(T), shift T (x), shift T (u)) = shift T (F (c,a, x,u)).

This is the “invariance property” of F , subject to the “updating” of the initial values from
us(0) (= a) to us(T).

We conclude this survey of [TZ11] with a theorem on the continuity of the fixed point
function Φ. First we need one more definition.

Definition 2.2.4 (Closure of domain under shifts). Given Φ as in (2.10), with
dom(Φ) = U , we say that U is closed under shifts w.r.t. Φ if for all T > 0 and all (c,a, x):

(c,a, x) ∈ U =⇒ (c, Φ(c,a, x)s(T), shift T (x)) ∈ U.

Theorem 2 (Continuity of FP). Given stream operators F and F,a,x as in (2.7) and
(2.8), an open set U ⊆ Ar × As × C[T, A]p, and U -indexed families of contraction moduli
λ = 〈λ,a,x | (c,a, x) ∈ U〉 and increments τ = 〈τ,a,x | (c,a, x) ∈ U〉, suppose

(i) F,a,x ∈ Contr (λ,a,x , τ,a,x) for all (c,a, x) ∈ U ,

(ii) F,a,x is causal,

(iii) F is shift invariant,

(iv) F is continuous3 on U ,

(v) λ and τ are locally bounded on U , and

(vi) U is closed under shifts w.r.t. Φ,

where Φ is the fixed point function for F as in (2.10), given by Theorem 1.
Then Φ is continuous on U .

3 This continuity assumption is made with respect to the first 3 arguments of F only, i.e.,

(c,a, x) ∈ U ⊆ Ar × As × C[T, A]p. No assumption of continuity need be made for the fourth

(stream) argument.

11

3 Concrete computability in C[T,A]

3.1 Enumerations α; α-tracking functions

The simplest way to make a concrete model is to start with the theory of enumerated
sets begun by Malcev [Mal71]. We have applied this theory to complete separable metric
spaces [TZ04, TZ05], and will now construct an enumeration-based model for the space
C[T, A], and prove concrete computability of the fixed point of a contracting operator.4

We begin with enumerations of elements of the algebra C[T, A]. We fix a family

α = 〈αs | s ∈ Sort(Σ)〉

of enumerations of certain subsets Zs of the carriers Cs of C[T, A], i.e., surjections

αs : Ωα,s ։ Zs ⊆ Cs (s ∈ Sort(Σ))

of some subset Ωα,s of N with Zs. The set Zs is called the (αs-)enumerated subset of Cs.
The elements of Ωα,s can be thought of as codes (via the coding given by the inverse of α)
for the elements of Zs, and Ωα,s is an (α-)code set for Zs.

The family of enumerations α is said to represent A.

Our concrete model (§3.2) will be built from such a family of enumerations α.

Let us consider the nature of these enumerations. To summarise their construction: the
carriers of C[T, A] are the sets

A, T, C[T, A], R, N,
with (respectively) enumerated subsets

ZA, ZT = Q≥0 orN, ZC, ZR = Q, ZN = N.
The enumeration αA will be, typically, a “standard” enumeration of ZA ⊂ A, with code

set Ωα,A a decidable subset of N. For example, if A = R, we can take ZA = Q and αA
to be a standard coding of Q. The mapping αT is a standard enumeration of the non-
negative rationals (if T = R≥0) or the identity (if T = N). The mapping αR is a standard
enumeration of the rationals, and αN is the identity on N.

Suitable enumerations αc of subsets Zs of C[T, A] are not quite so trivial to construct
from αA and αT, especially if density of ZC in C[T, A] is required (see the following defini-
tion).

Definition 3.1.1 (Density of α). The family α of enmerations is dense in C[T, A] if
for all Σ-sorts s, Zs is a dense subset of As.

4 An alternative treatment of concrete computation on C[T,A] in the case that T ⊆ Rm and

A = Rn, also using the compact-open topology, can be found in [Wei00, Ch. 6].

12

The assumption of density is needed to obtain an interesting concrete computability
theory (as described in §3.2). In fact, this assumption is non-trivial only for two sorts: the
data sort A, and the stream sort C.

So A must be chosen to be separable. What about C[T, A]? It can be shown that
separability of C[T, A] follows from separability of T and A. However this is of no use in
constructing an enumerated subset of C[T, A], since we cannot simply use the enumeration
of C[T, A] given by such a proof to construct an enumerated subset of C[T, A], because
the family α of enumerations must satisfy certain effectivity conditions, which will be
needed in Theorem A: effective local uniform continuity of α-streams, and Σ-effectivity of
α (Definitions 3.1.3 and 3.2.8).

Definition 3.1.2 (α-streams). Streams in ZC, i.e., in the range of αc, will be called
α-streams.

Another desirable property of the enumerations α (specifically αc) is effective locally

uniform continuity of α-streams:

Definition 3.1.3 (Effective locally uniform continuity of α-streams). The α-
streams are said to be is effectively locally uniformly continuous if there is a recursive
function µ : N3 → N (an effective locally uniform continuity modulus) such that for all
k, ℓ and n ∈ Ωα,c, writing zn = αc(n):

∀t1, t2 ∈ [0, kτ] : |t1 − t2| < 2−µ(n,k,ℓ) =⇒ dA(zn(t1), zn(t2)) < 2−ℓ,

or, more simply but equivalently: There is a recursive function µ′ : N2 → N such that for
all n, k, writing zn = αc(n):

∀t1, t2 ∈ [0, kτ] : |t1 − t2| < 2−µ′(n,k) =⇒ dA(zn(t1), zn(t2)) < 2−k.

Remark 3.1.4. When T = N, this condition is trivially satisfied, since (by the discrete-
ness of N) all streams are continuous — in fact, effectively globally uniformly continuous.

The value of this assumption of effective locally uniform continuity of α-streams may not
be immediately obvious. Note that the streams are, in any case, continuous by definition,
and hence locally uniformly continuous. The extra assumption here, namely effectivity

of local uniform continuity for the α-streams, is conceptually reasonable5. Its value will
become clearer when we consider α-computability (§3.2), as it will permit proofs of useful
results, such as α-computability of integration in our analog network example (see §5.1).

For convenience, we combine the above two useful conditions on α (density and effective
local uniform continuity of α-streams) into a “regularity” condition for α, which will be
assumed in the rest of the paper; in particular, in Theorems A and B, the Completeness
Theorem 4.4.6, and the discussion in §6.2.

5 This can be compared to clause (ii) in Definition A of computability of functions in [PER89,

p. 25], which is actually an assumption of effective global uniform continuity, since the domain is

compact.

13

Definition 3.1.5 (Regularity of α). The family α of enumerations of C[T, A] is regular

if it satisfies the two conditions:

(a) α is dense in C[T, A] (Definition 3.1.1),

(b) α-streams are effectively locally uniformly continuous (Definition 3.1.3),

We introduce some terminology and notation. For a Σ-product type u = s1 × · · · × sm,
we have the product space

Cu =df Cs1
× · · · × Csm

,

and the product αu-enumeration

αu =df (αs1
, . . . , αsm

) : Ωu
α ։ Zu

(defined in the obvious way) of the subset

Zu =df Zs1
× · · · × Zsm

⊆ Cu

with the product domain

Ωu
α =df Ωα,s1

× · · · × Ωα,sm
⊆ Nm.

Definition 3.1.6 (α-tracking functions6). Let f : Cu ⇀ Cs and ϕ : Nm ⇀ N.

(a) ϕ is a tracking function with respect to α, or α-tracking function, for f , if the
following diagram commutes:

Zu f ↾Zu
- Zs

αu
6 6

αs

Ωu
α

-
ϕ↾Ωu

α

Ωα,s

(3.1)

in the sense that for all k ∈ Ωu
α

f(αu(k)) ↓ =⇒ ϕ(k) ↓ ∧ϕ(k) ∈ Ωα,s ∧ f(αu(k)) = αs(ϕ(k)). (3.2a)

(b) ϕ is a strict α-tracking function for f if in addition, for all k ∈ Ωu
α

f(αu(k)) ↑ =⇒ ϕ(k) ↑ . (3.2b)

Here we use the notation αu(k) = (αs1
(k1), . . . , αsm

(km)), where k = (k1, . . . , km).
(We will sometimes drop the type super- and subscripts.)

6 These are called realizations in [Wei00]

14

Note that we are not concerned with the behaviour – or the (un)definedness – of f off
Zu, or of ϕ off Ωu

α.

We are looking for sufficient conditions for a function on C[T, A] to have an α-tracking
function, and a function on N to be an α-tracking function.

Let f : Cu ⇀ Cs, where u is an m-ary product type, and let ϕ : Nm ⇀ N.

Definition 3.1.7 (α-closedness of functions on C[T, A] and tracking functions).

(a) f is α-closed iff for any x ∈ Zu, if f(x) ↓ then f(x) ∈ Zs, i.e., f ↾Zu : Zu ⇀ Zs.

(b) ϕ is α-closed iff for any k ∈ Ωu
α, if ϕ(k) ↓ then ϕ(k) ∈ Ωα,s. i.e., ϕ↾Ωu

α : Ωu
α ⇀ Ωα,s.

Definition 3.1.8 (α-equivalence).

(a) For k1, k2 ∈ Ωα,s, k1≈
s
αk2 iff αs(k1) = αs(k2).

(b) For k1, k2 ∈ Ωu
α, k1≈

u
αk2 iff αu(k1) = αu(k2).

Note that ≈s
α and ≈u

α are equivalence relations on Ωα,s and Ωu
α respectively.

We will often drop the type symbols ‘s’ and ‘u’ from this notation.

Definition 3.1.9 (α-compatibility7). A function ϕ : Ωu
α ⇀ Ωα,s is compatible with

α, or α-compatible, iff for all k1, k2 ∈ Ωu
α,

k1≈αk2 =⇒ either ϕ(k1) ↓ ∧ ϕ(k2) ↓ ∧ ϕ(k1)≈αϕ(k2)

or ϕ(k1) ↑ ∧ ϕ(k2) ↑ .

Lemma 3.1.10. Suppose ϕ is an α-tracking function for f . Then

(a) f is α-closed,

(b) ϕ is α-closed,

(c) ϕ is α-compatible.

In the other direction:

Lemma 3.1.11.

(a) If f is α-closed, then f has an α-tracking function.

(b) If ϕ is α-compatible and α-closed, then ϕ is an α-tracking function for some function.

7 This is called extensionality in [Wei00]

15

Remark 3.1.12 (Σ-subalgebra generated by α).
Suppose every basic function of C[T, A] is α-closed. (This is the case, for example, with
Example 3.2.12 below.) Then α generates a Σ-subalgebra of C[T, A], based on the family
of α-enumerated sets Z = 〈Zs | s ∈ Sort(Σ)〉 and the restrictions of these functions to
Z:

algebra Z
carriers ZA, ZT, ZC, ZR, ZN
functions dA ↾Z : ZA2 → ZR,

dT ↾Z : ZT2 → ZR,
D↾Z : ZN × ZT × ZC2 → ZR,
eval↾Z : ZC × ZT → ZA

end

3.2 α-computability on C[T, A]

We now turn to considerations of computability with respect to an enumeration α.

First note that typically,

Ωα is a decidable subset of N, and ≈α is a decidable relation, (3.3)

in which case, α can be effectively modified in a standard way so as to further satisfy

Ωα = N and α is 1-1.

Definition 3.2.1 (α-computability). Suppose ϕ is a (strict) α-tracking function for
f , and ϕ is a computable (i.e., recursive) partial function. Then f is said to be (strictly)
α-computable.

The enumerations α satisfying (3.3) are insufficient, in general, to study computability
theory in structures such as R, and stream spaces. For example, a standard enumeration
αR of the rationals Q ⊂ R does not by itself produce a satisfactory model of computation
on the reals. We have to go beyond such enumerated sets to their computational closures,
as we now describe.

We assume Zs is dense in Cs. We can use the elements of Zs to computably approximate
elements of Cs. Those elements of Cs that are approximated in this way are called the α-
computable elements of Cs.

For each Σ-sort s, the α-computational closure of Zs is constructed as the set Cℓα(Zs)
of α-computable elements of Cs, where Zs ⊆ Cℓα(Zs) ⊆ Cs. This will be a countable set
with its own enumeration

α : Ωα,s ։ Cℓα(Zs). (3.4)

16

where the code set Ωα,s ⊆ N is the domain of the enumeration αs, to be defined below.
This gives the enumerated space (Cℓα(Zs), αs) and the picture:

Zs ⊆ Cℓα(Zs) ⊆ Cs

αs

6
αs

6N Ωα,s

(3.5)

The elements of Cℓα(Zs) in (3.4) are the α-computable elements of Cs, i.e., limits in Cs of
α-effective Cauchy sequences (to be defined below) of elements of Zs. Then Ωα,s is the set
of α-codes c of the α-computable elements αs(c) ∈ Cℓα(Zs).

We now describe the construction of the family α = 〈αs | s ∈ Sort(Σ)〉 of enumera-
tions (3.4) of the sets Cℓα(Zs).

First, the metric space A: details of the construction of Cℓα(ZA) and αA can be found
in [TZ04, TZ05]. We repeat them here for the reader’s convenience.

The set Ωα,A ⊆ N consists of codes for Cℓα(ZA) (w.r.t. α), i.e., pairs of numbers
c = 〈e,m〉 where

(i) e is an index for a total computable function {e} defining a Cauchy sequence
αA ◦ {e} : N→ ZA, i.e., the sequence

αA({e}(0)), αA({e}(1)), αA({e}(2)), . . . , (3.6)

of elements of Zs,

(ii) m is an index for a computable modulus of convergence for this sequence:

∀k, l ≥ {m}(n) : d(αA({e}(k)), αA({e}(l))) < 2−n. (3.7)

For any such code c = 〈e,m〉 ∈ Ωα, α(c) is defined as the limit in A of the Cauchy
sequence (3.6), and Cℓα(ZA) is the range of αA, as shown in diagram (3.5).

Remark 3.2.2 (Fast Cauchy sequences). We may assume, when convenient, that the
modulus of convergence for a given code is the identity , i.e., replace (3.7) by the simpler

∀k, l ≥ n : ds(αA({e}(k)), αA({e}(l))) < 2−n

or, equivalently,
∀k > n : ds(αA({e}(k)), αA({e}(n))) < 2−n (3.8)

because any code c = 〈e,m〉 satisfying (3.7) can be effectively replaced by a code for
the same element of Cℓα(ZA) satisfying (3.8), namely c′ = 〈e′, m1〉, where m1 is a stan-
dard code for the identity function on N, and e′ = comp(e,m), where comp(x, y) is a
primitive recursive function for “composition” of (indices of) computable functions, i.e.,
{ comp(e,m) }(x) ≃ { e }({m }(x)). In the case of a code c = 〈e,m1〉 satisfying (3.8), the

17

sequence (3.6) is called a fast (α-effective) Cauchy sequence. We may then, for simplicity,
call e itself the “code”, and the argument of αA. So we can shift between “c-codes” and
“e-codes” as convenient.

Lemma 3.2.3 (Closure of α-computability operation). The enumerated subset
(Cℓα(Z), α) is “computationally closed in A”, in the sense that the limit of a (fast) α-
effective Cauchy sequence of elements of Cℓα(Zs) is again in Cℓα(Zs), i.e.,

Cℓα(Cℓα(Zs)) = Cℓα(Zs).

The proof uses the well-known technique of taking “diagonal approximating sequences”
from double sequences.8

We turn to the definitions of αs and αs for the other sorts s in Σ, i.e., s ∈ {R, N, T, C }.

For the reals R: αR is a standard enumeration of the rationals ZR = Q, and the
computational closure of Q in R (defined as for A) is the set Cα(Q) of computable reals.

For the naturals N: the enumerations αN and αN are both taken to be simply the
identity enumeration. Hence any function from Nm to N has itself as a tracking function.

For the time line T: The enumerations αT and αT resemble one of the previous two
cases, depending on whether T = R≥0 or T = N.

Finally, for the stream space C[T, A] with its enumerated subset (ZC, αc), we first define9

a sequence (un) of elements of C[T, A] to be locally uniformly Cauchy if

∀T ∀ǫ > 0 ∃N ∀m,n ≥ N : dT (um, un) ≤ ǫ.

Now let
Cα(T, A) =df Cℓα(ZC) ⊂ C[T, A]

be the set of all limits in C[T, A] of α-effectively locally uniform Cauchy sequences of
elements of ZC (i.e., effective in their αc-codes) — such limits always existing by the (local
uniform) completeness of C[T, A]10 — and let Ωα,c ⊂ N be the set of α-codes for elements
of Cα(T, A). More precisely, Ωα,c consists of pairs of numbers c = 〈e,m〉 where

(i) e is an index for a total recursive function defining a sequence

z0, z1, z2, . . . (3.9)

of elements of ZC, where zn = α({e}(n)), having a limit z ∈ C[T, A], and

(ii) m is an index for a modulus of local uniform convergence for this sequence; i.e., for
all k:

∀n, p ≥ {m}(k), dkτ (zn, zp) ≤ 2−k. (3.10)

8 See, e.g., [PER89, p. 20, Prop. 1]
9 [TZ11, Definition 2.2.4]

10 [TZ11, Lemma 2.2.5]

18

For any such code c, αc(c) is defined as the limit z ∈ C[T, A] of the sequence (3.9). This
defines (cf. (3.4), with s = C) the function

αc : Ωα,c ։ Cα(T, A).

Definition 3.2.4 (α-streams). The elements of Cα(T, A), i.e. streams in the range of
αc, are called α-computable streams or α-streams (cf. Definition 3.1.2: α-streams).

Note that since α, like α, is an enumeration of a countable set, the basic properties of α
in §3.1 apply also to α. However, the code sets Ωα are not generally decidable, in contrast
with Ωα (cf. (3.3)).

Definitions 3.2.5 (α-tracking functions and α-computability). The concepts
of (strict) α-tracking function and (strict) α-computability are defined analogously to the
corresponding concepts for α (Definitions 3.1.6 and 3.2.1), by replacing ‘α’ by ‘α’ in (3.1)
and (3.2).

Remark 3.2.6 (Value of τ). Recall that τ (occurring in (3.10)) is a fixed positive
real, defining a standard exhaustion of T (cf. §2.1). We will assume from now on that ifT = N then τ = 1, and if T = R≥0 then τ is some α-computable real, which we can take
to be (in Theorem A) the value of the contraction increment τ,a,x, or (in Theorem 2 and
Theorem B) a local minimum for that value. Note that notwithstanding the appearance
of ‘τ ’ in (3.10), the concept of “α-stream” is independent of the choice of value for τ , as
can easily be checked.11

Remark 3.2.7 (Locally fast Cauchy sequences). We may assume, when convenient,
that the modulus of convergence for a given code is the identity , i.e., replace (3.10) by the
simpler

∀n, p ≥ k : dkτ (zn, zp) < 2−k,

or equivalently,
∀n > k : dkτ (zn, zk) < 2−k,

by an argument similar to the one in Remark 3.2.2.

Another desirable property of a family of enumerations α is:

Definition 3.2.8 (Σ-effectivity of α). α is (strictly) Σ-effective if the basic functions
of the Σ-algebra C[T, A], namely dT, dA, D, and eval, are (strictly) α-computable.

Notation 3.2.9 (α-enumerated subsets of carriers). We use the notation

• Aα for Cℓα(ZA), the set of α-computable points in A,

• Tα for Cℓα(ZT), the set of α-computable time instants,

• Cα(T, A) for Cℓα(ZC), the set of α-computable streams, and

11 Cf. Lemmas 3.1.3 and 3.2.11 in [TZ11], which hold for any compact exhaustion (Kk).

19

• Rα for Cℓα(ZR), the set of α-computable reals.

(Recall that Cℓα(ZN) = ZN = N.)

Remark 3.2.10 (Computable subalgebra generated by α). (Cf. Remark 3.1.12.)
The family of enumerations α is said to generate a computable subalgebra of the Σ-algebra
C[T, A] if the family of α-enumerated subsets of the carriers of C[T, A] (at all Σ-sorts)
forms a Σ-subalgebra of C[T, A]:

algebra Cα(T, A)
carriers Aα, Tα, Cα(T, A), Rα, N
functions dA,α : A 2

α → Rα,

dT,α : T 2
α → Rα,

Dα : N×Tα × Cα(T, A)2 → Rα,
evalα : Cα(T, A) ×Tα → Aα

end

A sufficent condition for α to generate a computable subalgebra is given by

Lemma 3.2.11. If α is Σ-effective (Definition 3.2.8), then α generates a computable
subalgebra of C[T, A].

This follows immediately from Lemma 3.1.10(a) applied to α.

Example 3.2.12 (Computable streams). As a simple example of a computable sub-

algebra of a stream algebra: take T = R≥0 and A = R, and let αA be a standard
enumeration of Q ⊂ R. For a countable, dense and effectively locally uniformly continu-
ous subset of C[R≥0,R], we can take ZC = ZZ, the set of all continuous rational “zigzag

functions” from R≥0 to R with finite support , a typical example of which is shown in
Figure 1, where we require that the starting and turning points (p1, . . . , p7 in the figure)
have rational coordinates, and which are zero from some point on (p7 in the figure).

We let αc be some standard enumeration of ZZ. This enumeration is easily seen to be
regular (Definition 3.1.5).

We could also have used, as our starting point ZC, the set of polynomial functions of t
with rational coefficients, which is dense in C[R≥0,R], by Weierstrass’s theorem [Sim63].

This would produce the same set Cα[R≥0,R] of computable elements of C[R≥0,R]. (This
is easily proved by showing that the basic functions in each of these two systems — rational
zigzag functions and rational polynomial functions — are effective local uniform limits of
basic functions in the other system.)

This example will be used again in §5.2, Example 1(i), dealing with analog networks.

The following lemma is used in the proof of Theorem A.

20

0 t

p2

p3

p4 p5

p6

p7

p1

Figure 1: Zigzag function (points p1, . . . , p7 are rational)

Lemma 3.2.13. If effective locally uniform continuity (Definition 3.1.3) holds for α-
streams, then it also holds for α-streams.

This is proved by adapting the proof for preservation of effective (globally) uniform
continuity under effective (globally) uniform convergence in [PER89, Ch. 0, Thm 4].

We are ready for the first of the two main theorems of this paper.

Theorem A (α-computability of FP).
Suppose the Σ-algebra C[T, A] is represented by an enumeration α such that

(i) α is regular (Definition 3.1.5), and

(ii) α is Σ-effective (Definition 3.2.8).

Given stream operators F and F,a,x as in (2.7) and (2.8), open U ⊆ Ar+s × C[T, A]p,
and (as in (2.9)) families of contraction moduli λ = 〈λ,a,x | (c,a, x) ∈ U〉 and increments
τ = 〈τ,a,x | (c,a, x) ∈ U〉, suppose for all (c,a, x) ∈ U

(iii) F,a,x ∈ Contr(λ,a,x , τ,a,x),

(iv) F,a,x is causal,

(v) F is α-computable,

(vi) λ and τ are α-computable.

Let
Φ: Ar ×As × C[T, A]p ⇀ C[T, A]m (3.11a)

be the unique fixed point function for F given by Theorem 1 with dom(Φ) = U , so that
for all (c,a, x) ∈ U ,

Φ(c,a, x) = FP(F,a,x). (3.11b)

Then Φ is α-computable.

21

Proof (outline): It is a lengthy but straightforward exercise to show that the fixed point of
F , constructed according to the proof of Theorem 1 [TZ11, §3], is computable in (c,a, x),
under the given assumptions on the α-computability of F , λ and τ , and assuming we

begin with an α-computable stream tuple u 0 such that v
(0)
1 = F,a,x(u 0). The important

thing to show is that the double sequence of stream tuples v
(n)
k is computable in k and n,

as well as (c,a, x). At kτ -approximate limits (τ = τ,a,x, k = 1, 2, . . .) we take effective
“diagonal approximating sequences” as in the proof of Lemma 3.2.3, to show that Φ is
α-computable. Some details are given in [TZ07] (for a stronger definition of contracting
operators).

One point worth noting is that we have to check that α-computability , as well as effective

local uniform continuity , are preserved by these iterated sequences and their limits. For this
we must use a property of sequences of streams stronger than local uniform convergence,
namely effective local uniform convergence of α-computable streams. �

Remark 3.2.14 (Type of F for α-computability). The assumption of α-computabi-
lity of F in Theorem A and elsewhere is with respect to the uncurried typing in (2.7). (Cf.
[TZ11, Remark 4.1.1].)

Corollary 3.2.15. If, in Theorem A, we add the assumption:

(vii) U is α-semicomputable,

then the conclusion can be strengthened to:

Then Φ is strictly α-computable.

Proof: The distinction between α-computability and strict α-computability of f vanishes
in the case that dom(f) is α-semicomputable, i.e., the domain of a strictly α-computable
function [TZ04, Lemma 10.2.4]. �

3.3 Relative α-computability

We want to develop a concept of “relative α-computability”, so that Theorem A could
have a more general form, in which assumption (v) is deleted , (vi) is replaced by (something
like)

(v′) λ and τ are α-computable relative to F ,

and the conclusion is changed to (something like)

Then Φ is α-computable relative to F .

In order to do this, we must re-define the objects of our computation theory so that
the α-tracking functions are made explicit. (The reason for this will emerge below — see
Remark 3.3.4.) So we define:

22

Definition 3.3.1 (α-tracked function).

(a) An (α-)tracked function on C[T, A] is a pair (f, ϕ) where f is a function on C[T, A]
and ϕ is a tracking function for f .

(b) A strictly (α-)tracked function is defined similarly, with the added condition that ϕ
is a strict tracking function for f .

Suppose (f, ϕ) is an α-tracked function on C[T, A]. We can think of ϕ as a concrete

implementation of f (whether computable or not). Hence the objects of our study here
are not simply functions f on C[T, A], but rather functions-together-with-implementations
(f, ϕ).

Note also that although f is uniquely determined by ϕ, ϕ is not uniquely determined
by f . In fact (assuming dom(f) is infinite and ignoring considerations of computability
of ϕ) if f has one tracking function then it has uncountably many (even strict) tracking
functions.

Definition 3.3.2 (Relative α-computability). Given two α-tracked functions (f, ϕ)
and (g, ψ) on C[T, A], we say that (f, ϕ) is α-computable in (or relative to) (g, ψ) if ϕ is
computable in ψ.

Lemma 3.3.3 (Transitivity of relative α-computability).
Suppose (f, ϕ) and (g, ψ) are α-tracked functions on C[T, A].

(a) If (f, ϕ) is α-computable in (g, ψ), and (g, ψ) is α-computable in (h, θ), then (f, ϕ) is
α-computable in (h, θ).

(b) If (f, ϕ) is α-computable in (g, ψ), and (g, ψ) is α-computable, (f, ϕ) is α-computable.

Remark 3.3.4. The need to prove this transitivity lemma is the reason we formulated
our α-computability theory in terms of α-tracked functions.

Theorem A can then be re-formulated in terms of relative computability:

23

Theorem Arel (Relative α-computability of FP).
Suppose the Σ-algebra C[T, A] is represented by an enumeration α such that

(i) α is regular (Definition 3.1.5), and

(ii) α is Σ-effective (Definition 3.2.8).

Given stream operators F as in (2.7) with α-tracking function ϕ, and F,a,x as in (2.8),
open U ⊆ Ar+s × C[T, A]p, and (as in (2.9)) families of contraction moduli
λ = 〈λ,a,x | (c,a, x) ∈ U〉 and increments τ = 〈τ,a,x | (c,a, x) ∈ U〉, with α-tracking
functions ψ and θ respectively, suppose for all (c,a, x) ∈ U

(iii) F,a,x ∈ Contr(λ,a,x , τ,a,x),

(iv) F,a,x is causal,

(v) (λ, ψ) and (τ , θ) are α-computable in (F, ϕ).

Let
Φ: Ar ×As × C[T, A]p ⇀ C[T, A]m

be the unique fixed point function for F given by Theorem 1, with dom(Φ) = U , so that
for all (c,a, x) ∈ U ,

Φ(c,a, x) = FP(F,a,x).

Then Φ (together with a suitable α-tracking function) is α-computable in (F, ϕ).

We omit the proof, which is a “relativised” version of the proof of Theorem A.

Theorem A follows immediately from this, by Lemma 3.3.3(b).

Similarly, there is a relativised version of the “strictly α-computable” version of Theorem
A (Corollary 3.2.15).

24

4 Abstract computability in C[T,A]

In this section we investigate abstract computability in C[T, A], using the imperative
programming language WhileCC∗ over the algebra C[T, A].

At the heart of all our abstract models of computability are algebraic structures. The ab-
stract models esentially schedule the basic operations and relations of these algebraic struc-
tures in ways that are independent of the representation of the data and the implementation
of these operations and relations. In the case of an imperative abstract model, algebraic
terms are evaluated by assignments and control structures such as ‘while’. In topological
algebras, abstract models typically do not compute directly all the concretely computable
functions; rather they effectively approximate them to arbitrary precision [TZ99].

In [TZ04, TZ05] we investigated, and compared, abstract and concrete models of com-
putability on metric algebras. The concrete model considered was α-computability, as de-
scribed in the previous section, and the abstract model was approximable WhileCC ∗(Σ)
computability (for the appropriate signature Σ), to be described below. A completeness
theorem was proved, asserting their equivalence under quite general conditions.

In the previous section we proved (Theorem A) concrete computability of the fixed point
FP(F) of a stream transformer F , assuming concrete computability of F . From this, and a
version of the completeness theorem in [TZ04], we will in turn infer (Theorem B) abstract

computability of FP(F), assuming abstract computability of F .

4.1 Expanding the stream algebra C[T, A] to C[T, A](αc)

Recall the definitions of the stream algebra C[T, A] (2.3) and its signature Σ (2.4).

In order to have a satisfactory abstract model of computing on C[T, A], which will
satisfy the completeness theorem for abstract vs concrete computability, we must expand
its algebraic structure and signature. This is done in three ways:

(1) Since the boolean datatype B is needed for abstract computation models, specifically
boolean tests in high level programming languages, we adjoin to Σ the boolean sort
B and the standard boolean operations (∧, ∨, ¬) as well as equality on some of the
sorts, such as N. Correspondingly, we adjoin to C[T, A] the set B of booleans and
the boolean operations.

(2) We add operations and constants at each sort. This will be explained in detail in
Discussion 4.4.8.

(3) We add the enumeration function αc : N→ C[T, A] as a basic algebraic operation.

The motivations for these expansions to C[T, A], with an example, will be given in Discus-
sion 4.4.8.

We will denote the expanded algebra by C[T, A](αc), with signature Σ(αc).

25

4.2 WhileCC∗(αc) computability

The syntax and semantics of the WhileCC∗ programming language are discussed in
detail in [TZ04, TZ05]. To give a brief review: it extends the While∗ language (i.e., the
‘while’ programming language with arrays) with a new ‘choose’ assignment construct to
model nondeterministic countable choice.

The syntax of the WhileCC∗ statements is defined essentially (following the version
in [TZ05]) by extending the assignment statement with a new case:

x := choose z : P (z, . . .)

where x and z are variables of sort nat, and P (z, . . .) is a semicomputable predicate of z
(and other variables), i.e., the halting set of a WhileCC∗ boolean-valued procedure with
z among its input variables.

Intuitively, ‘choose z : P ’ selects some value n such that P (n, . . .) is true, if any such
n exists (and is undefined otherwise). Any concrete model will select a particular such
n, according to the implementation. In our abstract semantics, the meaning is given as
the set of all possible such n’s (hence “countable choice”), together (possibly) with the
divergence symbol ‘↑’.

We then write WhileCC ∗(αc) computability to mean WhileCC∗ computability on
C[T, A](αc).

4.3 WhileCC∗(αc) approximability

The basic notion of abstract computability that we will be working with, for the sake
of comparison with concrete computability on C[T, A], is WhileCC ∗ approximable com-

putability , or WhileCC∗ approximability , on C[T, A](αc), which we now define.

Here we write C for any Σ-algebra, with carriers Cs for the Σ-sorts s, and product
spaces C u = Cs1

× · · · × Csm
for product types u = s1 × · · · × sm. Thereafter we will

apply these definitions to the special case C = C[T, A](αc).

Let u be a Σ-product type and s a Σ-sort. Let P : nat × u → s be a WhileCC ∗

procedure. Then the semantics of P is given by the multivalued function

P C
n =df P C(n, ·) : C u ⇉ C↑

s

where C↑
s =df Cs ∪ {↑} and ‘⇉’ means that P C

n is multivalued, i.e., for all x ∈ C u,
P C

n (x) is a (non-empty) countable subset of C↑
s . Now let f : C u ⇀ Cs be a single-valued

partial function on C. Then we define:

(a) f is WhileCC∗ approximable by P on C iff for all n ∈ N and all x ∈ C u:

x ∈ dom(f) =⇒ ↑ /∈ P C
n (x) ⊆ B(f(x), 2−n)

where the open ball B(· , ·) is defined with respect to the metric on Cs.

26

(b) f is strictly WhileCC ∗ approximable by P on C iff in addition to (a),

x /∈ dom(f) =⇒ P C
n (x) = {↑}.

Now, in the particular case that C = C[T, A](αc), we write WhileCC∗(αc) approxima-
bility to mean WhileCC∗ approximability on C[T, A](αc).

Remark 4.3.1 (Equivalence of ordinary and strict WhileCC∗ approximability).
The distinction between WhileCC ∗(αc) approximability and strict WhileCC∗(αc) ap-
proximability of f vanishes in the case that dom(f) is WhileCC∗(αc) semicomputable
[TZ04, §9.3]. This is again the case in our analog network example (cf. Corollary 3.2.15).

4.4 Concrete and abstract computability compared; Completeness theorem

We are ready to make the connection between concrete and abstract computability on
stream algebras.

We will re-state the completeness theorem of [TZ04] as it applies to the stream algebra
C[T, A]. For this we need an important concept.

Definition 4.4.1 (Open exhaustion). Let U be an open subset of Ar ×As × C[T, A]p.
An open exhaustion of U is a sequence (Uℓ) of open subsets of Ar ×As × C[T, A]p such
that

U1 ⊆ U2 ⊆ U3 ⊆ . . . and
∞
⋃

ℓ=1

Uℓ = U.

We also need an effective notion of open exhaustion.

Definition 4.4.2 (WhileCC∗(αc)-effective open exhaustions). An open exhaus-
tion (Uℓ) of U ⊆ Ar ×As × C[T, A]p is WhileCC ∗(αc)-effective in C[T, A] if it satisfies
the following two conditions:

(a) (WhileCC∗(αc)-effective Archimedean property of (Uℓ) in U .)
There is a WhileCC ∗(αc) procedure

Ploc : Ar × As × C[T, A]p ⇉ N↑

which, given (c,a, x) ∈ U , produces some ℓ which “locates” (c,a, x) ∈ Uℓ; more pre-
cisely:

Ploc(c,a, x) =

{

{ ℓ | (c,a, x) ∈ Uℓ } if (c,a, x) ∈ U

{ ↑ } otherwise.

Typically, the procedure Ploc(c,a, x) is realised in the form of a construct

choose ℓ : “(c,a, x) ∈ Uℓ”.

27

(b) (WhileCC∗(αc)-effective openness of (Uℓ).)
There is a WhileCC ∗(αc) computable function

γ : N×T× Ar × As × C[T, A]p ⇀ N
such that for all ℓ ∈ N, τ ∈ T and (c,a, x) ∈ Uℓ,

γ(ℓ, τ, c,a, x) ↓ k for some k such that Nkτ ((c,a, x), 2−k) ⊆ Uℓ

where Nkτ (. . .) is the open neighbourhood of (c,a, x) determined by the pseudo-
metric dkτ in C[T, A].

Remark 4.4.3. If U has a WhileCC ∗(αc)-effective open exhaustion, then U is
WhileCC∗(αc) semicomputable [TZ04].

Now we want to define the concept of local uniform continuity with respect to some
open exhaustion, as well as an effective version of this. The most suitable form of these
definitions for our purposes is in terms of the pseudometrics dkτ (k = 0, 1, 2, . . .). (See
Remark 3.2.6 concerning the value of τ .)

For the rest of this subsection, assume

f : Ar × As × C[T, A]p ⇀ C[T, A]m

and let (Uℓ) be a WhileCC ∗(αc)-effective open exhaustion of U = dom(f). It follows
from Remarks 4.3.1 and 4.4.3 that WhileCC ∗(αc)-approximability of f is equivalent to
strict WhileCC∗(αc)-approximability of f .

Definition 4.4.4 (Local uniform continuity). f is locally uniformly continuous with
respect to (Uℓ) iff for all ℓ, n, τ there exists j such that for all (c,a, x), (c ′,a ′, x ′) ∈ Uℓ,

djτ ((c,a, x), (c ′,a ′, x ′)) < 2−j =⇒ dnτ (f(c,a, x), f(c ′,a ′, x ′)) < 2−n.

This concept is made effective by taking j to be recursive in ℓ, n.

Next, we use a modified version of [TZ11, Lemma 3.2.10] as a test for local uniform
continuity:

Lemma 4.4.5 (Test for local uniform continuity). Suppose f is causal, and for all
u ∈ C[T, A]m and all k, ℓ, n, τ there exists j such that for all (c,a, x), (c ′,a ′, x ′) ∈ Uℓ

dkτ ((c,a, x), (c ′,a ′, x ′)) < 2−j =⇒ dkτ (f(c,a, x), f(c ′,a ′, x ′)) < 2−n.

Then f is locally uniformly continuous w.r.t. (Uℓ).

This test is made effective by taking j to be recursive in k, ℓ, n.

We are ready for the completeness theorem.

28

Theorem 4.4.6 (Completeness for abstract vs concrete computability on C[T, A]).
Suppose the Σ-algebra C[T, A] is represented by an enumeration α such that

(i) α is regular (Definition 3.1.5),

(ii) α is Σ(αc)-effective (Definition 3.2.8), and

(iii) for all12 sorts s, αs is WhileCC ∗(αc) approximable on C[T, A].

Let (Uℓ) be an open exhaustion of U = dom(f) such that

(iv) (Uℓ) is WhileCC ∗(αc)-effective (Definition 4.4.2), and

(v) f is effectively locally uniformly continuous w.r.t. (Uℓ) (Definition 4.4.4).

Then

f is WhileCC∗(αc) approximable on C[T, A] ⇐⇒ f is α-computable on C[T, A].

Proof: From Theorem C in [TZ04, §10]. �

Remark 4.4.7 (Use of assumptions (ii) and (iii) in the completeness theorem).
Assumptions (ii) and (iii) are each crucial in proving one of the two directions of the
completeness theorem. Assumption (ii) (Σ(αc)-effectivity of α) means, roughly, that the
enumerations α are “strong” enough to compute the basic functions of C[T, A](αc), and
hence also functions WhileCC∗(αc) approximable in them:

WhileCC ∗(αc) approx. =⇒ α-comp.

Assumption (iii) (WhileCC∗(αc) approximability of α) means, conversely, that WhileCC∗

approximability w.r.t. the basic functions of C[T, A](αc) is “strong” enough to compute
the enumerations αs : N→ Cs, and hence also α-computable functions:

WhileCC∗(αc) approx. ⇐= α-comp.

Discussion 4.4.8 (Expanding C[T, A] to C[T, A](αc): Explanation and example).
In connection with the completeness theorem above, let us return to the three points listed
in §4.1, and consider each of them in turn.

(1) As stated above, the boolean datatype B is needed in order to include boolean tests
in WhileCC ∗ programs.

(2) The point here is to expand the algebraic structures at the various sorts s by adding
enough basic functions to ensure that the enumerations αs of Cs are WhileCC∗(αc)
approximable (assumption (iii)). In more detail, we add the following:

• For A: this depends on the set A. Let us take the most important case for our examples,
namely A = R. We then adjoin the following constants and operations over the reals:
0, 1, +, −, ×, as well as the (continuous, partial) inverse invR : R→ R, where

invR(x) =

{

1/x if x 6= 0

↑ if x = 0,

12 Actually here we only need sorts s 6= C, since αc is trivially a basic operation of C[T, A](αc).

29

and the (continuous, partial) equality and order operations eqR, lessR : R2 ⇀ B where

eqR(x, y) =

{

↑ if x = yf if x 6= y,
and lessR(x, y) =

t if x < yf if x > y

↑ if x = y.

The significance of these partial inverse, equality and order operations, in connection
with computability and continuity, is discussed in [TZ04].

Note also that in connection with the use of this structure on the reals in the complete-
ness theorem and Theorem B, we could just as well replace the (partial) real inverse
operation invR by the (total) natural inverse operation invN : N→ R, where

invN(n) =

{

1/n if n 6= 0

0 if n = 0.

which is continuous, like any function on the discrete space N.

• For R: this datatype is expanded in exactly the way described above for A (assuming
A = R).

• For N: 0 and successor, and (continuous, total) equality and order on N:

eqN(m,n) =

{ t if m = nf otherwise,
and lessN(m,n) =

{ t if m < nf otherwise.

• For T: this is expanded either like R (assumingT = R≥0)13 or like N (assuming T = N).

(3) In our first example (Example 3.2.12 above, which we will revisit in §5.2), withT = R≥0 and A = R, the enumeration αc (see Figure 1) is easily seen to satisfy the
regularity condition (i) in the completeness theorem. However, αc itself is not WhileCC ∗

computable (or even approximable).14 In fact, none of the streams in this algebra is
WhileCC∗ computable, not even the zigzag streams, nor even the stream with constant
value 0 ! That is why we have to include αc as one of the primitive operators on C[T, A],
i.e., work with WhileCC∗(αc) instead of WhileCC∗ computability on C[T, A] here and
in Theorem B below.

4.5 Abstract computability of FP of contracting operator

We can now prove a theorem on abstract computability of the FP of a contracting stream
space operator by combining the corresponding theorem for concrete computability (The-
orem A) with the above completeness theorem.

13 modified suitably for R≥0, e.g., redefining x −y as max(x −y, 0)
14 Note that the cartesian form cart (α) : N × T → R of α : N → C[T,R] is While∗

computable on the field R. This is discussed further in Section 6.

30

Theorem B (Approximable WhileCC∗(αc) computability of FP).
Suppose the Σ-algebra C[T, A] is represented by an enumeration α such that

(i) α is regular (Definition 3.1.5),

(ii) α is Σ(αc)-effective (Definition 3.2.8), and

(iii) for all sorts s, αs is WhileCC∗(αc) approximable on C[T, A].

Given stream operators F and F,a,x as in (2.7) and (2.8), U ⊆ Ar ×As × C[T, A]p,
and families of contraction moduli λ = 〈λ,a,x | (c,a, x) ∈ U〉 and increments τ =
〈τ,a,x | (c,a, x) ∈ U〉 as in (2.9), such that for all (c,a, x) ∈ U

(iv) F,a,x ∈ Contr(λ,a,x, τ,a,x),

(v) F,a,x is causal,

(vi) F is WhileCC ∗(αc) approximable,

(vii) F is shift invariant (Definition 2.2.3),

(viii) λ and τ are WhileCC∗(αc) approximable, and

(ix) λ and τ are continuous, with WhileCC∗(αc)-computable moduli of continuity.

Let (Uℓ) be an open exhaustion of U such that

(x) (Uℓ) is WhileCC ∗(αc) effective (Definition 4.4.2), and

(xi) F is effectively locally uniformly continuous15 w.r.t. (Uℓ) (Definition 4.4.4).

Let Φ be the fixed point function for F as in (2.10), given by Theorem 2, and suppose also

(xii) U is closed under shifts w.r.t. Φ (Definition 2.2.4).

Then Φ is strictly WhileCC∗(αc) approximable.

Proof: The main idea is to apply the α-computability theorem for the FP (Theorem
A), together with the completeness theorem for stream spaces (Theorem 4.4.6) in both
directions, to obtain the result. The main problem here is in applying the completeness
theorem to Φ in the direction

Φ is α-computable =⇒ Φ is WhileCC∗(αc) approximable,

where we need the condition that Φ is (not just continuous, but) effectively locally uniformly

continuous w.r.t. a suitable WhileCC∗(αc)-effective open exhaustion of U .

We prove this by assuming that F is effectively locally uniformly continuous w.r.t.
an open exhaustion (Uℓ), and using this to show that Φ is effectively locally uniformly
continuous w.r.t. (not necessarily (Uℓ), but) some refinement of (Uℓ). This is done by a
careful analysis, and adaptation, of the proof of continuity of Φ in Theorem 2 [TZ11, §4].

The main point is to control the variation of the contraction modulus λ,a,x and incre-

15 This assumption of effective local uniform continuity of F is made w.r.t. the first 3 arguments

of F only, i.e., (c,a, x) ∈ U ⊆ Ar × As × C[T, A]p. No continuity assumption need be made

for the fourth (stream) argument. (Cf. the footnote for condition (iv) in Theorem 2 in §2.2.)

31

ment τ,a,x for (c,a, x) ∈ U , as well as the value of

D,a,x =df D1 = dτ (v
(0)
1 , v

(1)
1)

= dτ (F,a,x(u 0), F,a,x(F,a,x(u 0)))
(4.1)

(for a fixed u 0) [TZ11, (4.16)]. So, defining the function

D =df 〈D,a,x | (c,a, x) ∈ U〉,

we note that by assumptions (viii) and (ix) on λ and τ , and (vi) and (xi) on F ,

the functions λ, τ and D are all WhileCC∗(αc) approximable and continuous,

with a WhileCC∗(αc) computable modulus of continuity.
(4.2)

Further, for each (c,a, x) ∈ U there is some ℓ ∈ N such that

λ,a,x < λℓ =df 1 − 1/ℓ (4.3a)

and also
τ,a,x > τℓ =df 1/ℓ (4.3b)

and also
D,a,x < Dℓ =df ℓ. (4.3c)

So we define the exhaustion
(V1, V2, V3, . . .) (4.4a)

of U , where

Vℓ =df {(c,a, x) ∈ U | λ,a,x < λℓ and τ,a,x > τℓ and D,a,x < Dℓ}. (4.4b)

From (4.2) it follows that this exhaustion of U is open, and moreover, WhileCC∗(αc)
effective (Definition 4.4.2).

Now in applying the proof of continuity of Φ in Theorem 2 in [TZ11] to the present
proof of effective local uniform continuity of Φ (as stated above), note the following:

(1) In the inductive proof of in [TZ11, (4.14)], in the base case, λ,a,x, τ,a,x and D,a,x
(=D1) can be replaced, respectively, by λℓ, τℓ and Dℓ (4.3), which are constant over Vℓ.
Note we can also take τℓ for the value of τ in ‘dτ ’ in (4.1).

(2) The choice of N in the inequality [TZ11, (4.17)] depends on the values of λ and D1,
which (as we have seen) can be taken as constant over Vℓ, and hence N can also be taken
as constant over Vℓ.

(3) In the inductive step [TZ11, (4.25), (4.26)] δ1 and δ2 can also be taken as constant
over Vℓ (the latter by induction hypothesis).

32

Next, define the open exhaustion

(W1, W2, W3, . . .)

of U as the common refinement of the open exhaustions (Uℓ) and (Vℓ) of U (4.4), i.e.,

Wℓ =df Uℓ ∩ Vℓ

for ℓ = 1, 2, Then by assumption (xi), F is effectively locally uniformly continuous
w.r.t. (Uℓ), and hence w.r.t. (Wℓ). Hence (in the notation in the proof of Theorem 2 in
[TZ11]) we can show, by induction on k, that Φk is effectively locally uniformly continuous
w.r.t. (Wℓ), with modulus of continuity computable in k.

Next we apply the test in Lemma 4.4.5 to show that Φ is effectively locally uni-
formly continuous w.r.t. (Wℓ). Now we apply the completeness theorem to infer that
Φ is WhileCC∗(αc) approximable. Finally, with the help of Remarks 4.3.1 and 4.4.3, we
conclude that Φ is strictly WhileCC∗ approximable. �

Remark 4.5.1 (Type of F for WhileCC ∗(αc) approximability). The assumption
of WhileCC∗(αc) approximability of F in Theorem B and elsewhere is with respect to
the uncurried typing in (2.7). (Cf. Remark 3.2.14.)

Remark 4.5.2 (Continuity assumption for λ and τ). The list of assumptions in
Theorem B includes a continuity assumption (vii) for λ and τ . (Cf. [TZ11], Remark 4.2.9
and Theorem 2, where the weaker assumption of local boundedness was made for λ and τ .)
This continuity assumption is used to show that the exhaustion (Vℓ) is open (see (4.4)).
In fact we could replace (ix) here by a boundedness assumption:

(vii′) λ and τ are effectively locally uniformly bounded w.r.t. (Uℓ)

where this concept is defined in the obvious way. Such an assumption would actually
simplify the proof of Theorem B, by obviating the need for a refinement of the given
exhaustion (Uℓ) of U . The problem would, however, then be shifted to finding, in any
particular application, an open exhaustion (Uℓ) of U which would have all the required
properties at the outset. (See also the discussion in Example 1(ii) in §5.2 below.)

Remark 4.5.3 (Relative abstract computability: Conjecture). A stronger for-
mulation of Theorem B results from deleting assumption (vi), replacing (viii) by

(viii′) λ and τ are WhileCC∗(αc) approximable relative to F ,

and changing the conclusion to:

Then Φ is WhileCC∗(αc) approximable relative to F .

(Compare Theorem Arel in §3.3.) We conjecture that this formulation is true. One pos-
sible proof would depend on a relativised version of the abstract/concrete Completeness
Theorem 4.4.6.

33

5 Examples

Recall that in [TZ11] we used two running examples to illustrate the theory: analog
networks and synchronous concurrent algorithms (SCAs).16 We continue with these two
examples. We first note that both these examples involve networks N , with modules and
channels, and make a few general remarks about module functions, and their relationship
to the network state functions FN .

5.1 Networks and modules: Some remarks

We will assume that the module functions, and (hence) the network state function F , are
total , so as to ensure the Network Determinacy Assumption :

For a certain domain of system parameters, initial stream values and input
streams, there is a well-determined value for the stream on each channel at all
times.

This implies the totality of the network state function and hence of the module functions,
and hence the totality of the streams. This is the case (for now) with all our examples
below.

It would be interesting to consider the consequences of dropping thes totality assump-
tions. We will revisit this point in §6.3(3).

For convenience, we repeat Remark 4.1.6 in [TZ11].

Remark 5.1.1 (Network state function just vectorisation of module functions).
In the case of an analog network N , the fact that the network state function FN is formed
from the module functions of N by simple vectorisation means that many interesting
properties of the module functions, such as continuity and computability, are easily seen
to be inherited by FN .

We now give two applications of this remark to Theorems A and B.17

Remark 5.1.2 (Theorems A and B in terms of module functions).
Suppose F is the network state function for a network N . Then

(a) Theorem A holds if assumption (v) is replaced by:
(v′) the module functions of N are α-computable.

(b) Theorem B holds if in any of assumptions (v), (vi) and (vii), “F” is replaced by
“the module functions of N”.

Similarly, the “relativised” versions of Theorems A and B (cf. Theorem Arel in §3.3 and
Remark 4.5.3) could (presumably) be re-formulated in terms of module functions.

16 See §§2.1.1, 4.4.4 and 5.2.13 in [TZ11].
17 See Remark 5.2.11 in [TZ11] for an application to Theorem 2.

34

5.2 Two examples

• Example 1: Analog networks

In this example, F represents a state function for a network with r parameters c ∈ Ar, s
initial values a ∈ As, p input channels with input streams x ∈ C[T, A]p, and m modules.
The output channels of the network will form a subset of the m module output channels.
For simplicity, we can assume that all the module output channels are also network output
channels. The input/output function for the network, or network function, will then be
the fixed point function Φ (2.10).

(i) Concrete computability; Applying Theorem A

Here T = R≥0, with the standard exhaustion Kk = [0, kτ], where τ is the relevant value of
the contraction increment τ,a,x. Suppose also A = R and αA is a standard enumeration ofQ ⊂ R. The construction of a countable, dense and effectively locally uniformly continuous
subset ZC of C[R≥0,R] was described above in Example 3.2.12.

As a particular case of this example, consider (Figure 2) the mass/spring/damper case
study described in [TZ07], with the “improved” network N2 constructed in [JZ12, §3.1.2]
(cf. also [TZ11, Example 3.3.5(1)]18).

����������������������
����������������������
����������������������

����������������������
����������������������
����������������������

��

����������������
����
����
����
����K D

x

f

M

Figure 2: Case Study: Mass/spring/damper system

Regarding the assumptions of Theorem A: assumption (i) (regularity of α) was noted
in Example 3.2.12. Assumption (ii) (Σ-effectivity of α) amounts to α-computability of the
basic functions (dT, dA, D, eval) of the Σ-algebra C[T, A], which can easily be checked.

18 Note that on p. 3390, line 10 of [TZ11], the reference should be to eqn (3.9c), not (3.9a).

35

Assumption (iii) (the contracting property) was proved for this case in [TZ11, Example
4.2.13(1)]. Regarding assumptions (iv) and (vi): causality is discussed in [TZ11, Example
3.4.9(1)], and α-computability of λ and τ is obvious from their definitions [TZ11, (4.27)].

For assumption (v): The α-computability of the module functions used in this case
study (pointwise addition, scalar multiplication and integration) is proved in [TZ07, Sec. 5].
Note that effective locally uniform continuity of (ZC, αc) (part of assumption (ii)) is used
to prove α-computability of integration19. This gives assumption (v) — or, more simply,
assumption (v′) (see Remark 5.1.2).

Hence Theorem A, as well as Theorem 2 (as discussed in [TZ11, Example 4.2.13(1)])
can be applied to the system shown in Figure 2, to give:

Proposition 1. In the system in Figure 2, the displacement x is continuous and α-
computable as a function of the mass M , spring constant K, damping constant D, initial
displacement x0, initial velocity v0, external force f and time t.

Note that the “function” referred to in the statement of this proposition is essentially
the cartesian form of the fixed point function Φ (2.10, 3.11) constructed in Theorems 2
and A, where if

Φ: U → C[T, A]m

then

cart (Φ) : U ×T → Am (5.1a)

is defined by

cart (Φ)(c,a, x, t) = Φ(c,a, x)(t). (5.1b)

This is discussed further in §6.2 below.

We return to the subject of cartesian forms in considering abstract computability for
this example (below), as well as in Example 2 (SCAs), and in Section 6.

The second case study from [TZ07], for an iterated mass/spring/damper system, can
be handled similarly.

(ii) Abstract computability: Applying Theorem B

Most of the conditions in Theorem B have already been checked in part (i) above for
Theorem A. The “new” conditions (ii) (Σ(αc)-effectivity of α), (iii) (WhileCC∗(αc) ap-
proximability of α), (vii) (shift invariance), and (ix) (closure of U under shifts) can easily
be checked.

The important thing to check in our list of assumptions in Theorem B turns out to be
(xi): the effective local uniform continuity of the network state function F with respect to
a suitable open exhaustion (Uℓ) of U ⊆ Ar ×As × C[T, A]p, since we must find an open
exhaustion (Uℓ) which works correctly for the particular network under consideration. We
return to this below.

19 Cf. the proof of Theorem 5 in [PER89, Ch. 0]

36

Now if all the module functions are effectively globally uniformly continuous, then so is
F by Remark 5.1.1, and there is no problem.

However the assumption of global uniform continuity does not always hold. Consider
the functions associated with the three classical examples of modules in our two case
studies : addition, scalar multiplication and integration. Of these, the first and third are
(effectively) globally uniformly continuous. However scalar multiplication of a function:

F : R>0× C[T,R] → C[T,R]

with F(c, u)(t) = c · u(t), is (just like multiplication of reals on R) not globally uniformly
continuous on its domain. It is locally uniformly continuous with respect, e.g., to the
exhaustion (Uℓ) of R>0× C[T,R], where Uℓ =df { x ∈ R>0 | x < ℓ } × C[T,R].

These considerations motivate the following, in the general case for Example 1. Let
U ⊆ Ar ×As × C[T, A]p, and let F and F,a,x be as in equations (2.7) and (2.8).

To ensure local uniform continuity of F with respect to a suitable open exhaustion, we
try to construct, by inspection, such an exhaustion

(U1, U2, U3, . . .)

of Ar+s × C[T, A]p, where

Uℓ =df Aℓ,1 × · · · ×Aℓ,r+s × C[T, A]p ⊆ Ar+s × C[T, A]p

for suitable Aℓ,i ⊆ A.

Returning to the special case of the mass/spring/damper problem (Figure 2) with net-
work N2 [TZ11, Example 3.3.5(1)]: we have A = R and the network state function has
the form

F = FN2 : (R>0)3 ×R2 × C[T,R] × C[T,R]2 → C[T,R]2

where we will use the notation

F (M, K, D, x0, v0, f , x, v) = (y, w)

with the system parameters M (mass), K (spring constant) and D (damping constant);
initial values x0 (initial displacement) and v0 (initial velocity); input stream f (external
force), and remaining streams x (displacement) and v (velocity), with corresponding out-
puts y and w respectively. Each of the last two is produced [TZ11, eqns (3.11)] by one of
the module functions:

y(t) = Fx(x0, v)(t) =

∫ t

0

v(s)ds + x0 (5.2a)

w(t) = Fv(M,K,D, v0, f, x, v)(t) =
1

M

∫ t

0

(f(s) −Kx(s) −Dv(s))ds + v0. (5.2b)

37

For convenience, we will use, for now, the word “parameters” to refer to the system pa-
rameters M,K,D, initial values x0, v0 and input stream f .

In calculating the contraction domain U in this example, the system of equations orig-
inally used for this example in [TZ07] produced a contraction domain

U = { (M, K, D, x0, v0, f) ∈ (R>0)3 ×R3 |M > max(K, 2D) }.

In [Jam12, JZ12], it was shown how, by changing the system of equations to the form shown
in (5.2) above (by eliminating the acceleration parameter), the result could be improved
to produce a contraction domain of

U = (R>0)3 ×R3.

(Some details are given in [TZ11, Example 3.3.5(1)].)

We must still show that F is effectively locally uniformly continuous as a function from
the parameters (only!) (M, K, D, x0, v0, f), to the outputs (y, w).20 In the following
computation, therefore, we must consider other values of the parameters (M ′, K ′, D′, x′0,
v′0, f

′), with corresponding outputs (y′, w′), and changes in their values δM = |M ′−M |,
δx0 = |x′0 − x0|, δf = |f ′ − f |, etc. (meaning, in the last case, pointwise subtraction).

However we hold x and v fixed, i.e., δx = δv = 0.

Hence, for any T > 0, writing ‖u‖T = supt≤T |u(t)| for the pseudonorm [Roy63] corre-
sponding to the pseudometric dT , we have from (5.2):

‖δy‖T = δx0 (5.3a)

‖δw‖T .
T

M

(

‖δf‖T + ‖x‖T δK + ‖v‖T δD
)

+

+ T ·
δM

M2

(

‖f‖T + K‖x‖T + D‖v‖T

)

(5.3b)

since δx = δv = 0, and δ(
1

M
) ≈

δM

M2
, and using the general formula δ(a·b) ≈ a·δb+b·δa.

It follows immediately from (5.3a) that Fx is (globally) uniformly continuous.

What about Fv? Since the tuple of parameters and input stream

(M, K, D, x0, v0, f)

is in the region

U = (R>0)3 ×R2 × C[T,R]

it follows from (5.3b) that Fv is not uniformly continuous in the arguments M , K, D and
f , since 1

M
, K, D and f can be made arbitrarily large.

20 See footnote to condition (xi) in Theorem B

38

We therefore construct an exhaustion (U1, U2, . . .) of (R>0)3 × R2 × C[T,R], the
individual members of which constrain M from below, and K, D and f from above:

Uℓ =df Rℓ ×R2 × C[T,R]ℓ ⊆ (R>0)3 ×R2 × C[T,R]

(ℓ = 1, 2, . . .), whereRℓ =df { (M,K,D) ∈ (R>0)3 |M > 1/ℓ, K < ℓ, D < ℓ },

C[T,R]ℓ =df { f ∈ C[T,R] | ‖f‖T < ℓ }.

Then, by Lemma 4.4.5, the module functions Fv and (of course) Fx are both effectively
locally uniformly continuous on each Uℓ. Hence so is the network state function F , by the
reasoning in Remark 5.1.1.

Hence Theorem B, applied to the system in Figure 2, gives us:

Proposition 2. In the system in Figure 2, the displacement x is WhileCC∗(αc)
approximable as a function of the mass M , spring constant K, damping constant D,
initial displacement x0, initial velocity v0, external force f and time t.

Again, we are using the cartesian form of the function Φ in Theorem B.

The reasoning for the second case study (iterated mass/spring/damper system) is sim-
ilar.

Remark 5.2.1. The rather formidable list of assumptions in Theorem B is satis-
fied by both our examples (this one, and Example 2 below), and in particular these two
mass/spring/damper case studies, which have acted as a “reality check” for much of the
research described in this and related papers [TZ07, TZ11].21

• Example 2: Synchronous concurrent algorithms (SCAs)

These were investigated in [TTZ09], where it was shown how the network stream trans-
former Φ could be obtained by a simultaneous primitive recursion, and again (from the
present viewpoint) in [TZ11], where it was shown [TZ11, Examples 3.3.5(2) and 3.4.9(2)]
how Φ could also be obtained as the fixed point of a contracting stream transformer.
Continuity of Φ followed [TZ11, Example 4.2.13(2)] as a simple special case of Theorem 2.

(i) Concrete computability: Applying Theorem A

We turn to the question of concrete computability of Φ.

Now T = N, with the standard exhaustion Kk = {0, 1, . . . , k}. For ZC we can take, for
example, the set of functions u such that for all i, u(i) ∈ ZA, and further, for some fixed
z0 ∈ ZA, u(i) = z0 for i sufficiently large. Then ZC is countable and dense in C[N, A]
[TTZ09]. We let αc be some “standard” enumeration of ZC, based on the enumeration αA
of ZA. This enumeration is easily seen to be regular: density and Σ-effectivity of α are
clear, while effective local uniform continuity of (ZC, αc) is not an issue (Remark 3.1.4).

21 The book [Hyn70] by D.E. Hyndman was very helpful as the source of these two case studies.

39

Again we have a very simple special case of Theorem A:

Theorem A′. Suppose a Σ-algebra C[T, A], based on an SCA network N , is represented
by a regular enumeration α. If the module functions of N are α-computable, then so is
the network function Φ.

This is because Φ is defined from the module functions by PR (primitive recursion),
which preserves α-computability. The latter fact follows, for example, from the sequence
of results

PR computability =⇒ While∗ computability

=⇒ WhileCC ∗(αc) computability

⇐⇒ α-computability.

Caution! It is actually the cartesian form of Φ, cart (Φ), that is defined by PR, and
hence α-computable (cf. [TZ11, Example 4.2.13(2)].) However, as we will see in §6.2
(Lemma 6.2.5),

cart (Φ) α-computable =⇒ Φ α-computable, (5.5)

at least in the case that T = N.

(ii) Abstract computability: Applying Theorem B

We turn to the question of abstract computability of SCAs.

Here we can simplify the statement of Theorem B slightly, by recalling (from [TZ11,
Example 3.3.5(2)]) that F,a,x is automatically causal and contracting for all (c,a, x) ∈
dom(F), with constant contraction modulus and increment. Hence assumptions (iv), (v),
(viii) and (ix) are redundant.

The attentive reader may ask: why can’t we drastically simplify Theorem B in this case,
along the lines of Theorem A′ above in the case of α-computability, by noting simply that
Φ is defined from the module functions by primitive recursion, which preserves WhileCC ∗

(and, for that matter, While∗) computability? The answer (as pointed out in the caution-
ary comment above) is that actually it is not Φ, but cart (Φ), that is defined by primitive
recursion, and we do not have a result analogous to (5.5) for abstract computability. In
fact, the analogous assertion is known to be false for While∗ computability [TZ94]. What
about WhileCC∗ computability? This is discussed further in Section 6 (Lemma 6.2.6).

Hence the only proof of Theorem B that we have at present, even in the case of SCA net-
works, proceeds via α-computability and the completeness theorem for abstract/concrete
computability.

40

6 Concluding remarks

Stream processing occurs everywhere, often without being recognised as such. There
are many occasions where a theoretical analysis of a computation has led to a model
of stream processing [Ste97]. We have used basic topological notions to model stream
processing in continuous and discrete time, in a uniform way, and applied our general
models of concrete and abstract computability [TZ04] to establish the computability of
stream processing. We have used, as examples, two simple, commonly found paradigms of
stream processing: analog networks and synchronous concurrent algorithms (SCAs) which
we previously studied independently [TZ07, TTZ09].

There are many further examples of discrete space stream processing (such as dataflow
networks, networks of sensors, coupled map lattices, finite element modelling) and many
other relevant computability models (such as TTE, higher type computability) waiting
to be combined and investigated. First (§6.1) we will elaborate on the idea that discrete
space models of natural and artificial systems lead directly to the study of continuous
and computable discrete and continuous time stream processing. Secondly (§6.2) we will
comment on some technical issues in our formulation of stream transformers and their
computability, and then (§§ 6.3, 6.4) note some topics for future research.

6.1 Modelling systems by continuous and computable stream transformers

The source of much computation lies in mathematical models of natural and artificial
systems. The architectures of these systems are described in terms of components dis-
tributed in space. The properties of these systems are measured by data assigned to the
components. The dynamic behaviours of these systems are described in terms of processes
in which the data measuring the state of the components change in time. In general,
models of systems can be classified by choosing each of space, time and data to be either
discrete or continuous (8 possibilities). In the case of systems made from components, the
existence of a system architecture requires discrete space only. Thus the models can use
either discrete or continuous time T and discrete or continuous data A (4 possibilities).
Specifically, the points of the discrete space are assigned components — such as units,
cells, neighbourhoods, etc. — which are observed or measured by data that changes in
time. Thus, the local behaviour of a model at a point is given by a stream of data from A
timed by T, i.e., an element of C[T, A]. These observations lead us to propose the following
thesis:

Any discrete space model of system behaviour in time can be represented by a
family of stream transformers indexed by an architecture.

A consequence of this thesis is that whenever we find a discrete space mathematical model
based on equations, we can reformulate it as a system of equations for defining stream
transformers.

In [TZ11] we showed (using the notation of §1.2):

If F is contracting and causal, then Φ exists and is unique. If, in addition, F is
continuous, then so is Φ.

As discussed in [TZ11], continuity has long been recognised as a fundamental property of

41

models because continuity implies the physical stability of the fixed point solution Φ to
the specification given by F . For example, repeating an experiment to observe a physical
process requires this stability since initial conditions and other parameters can never be
exactly determined or, therefore, reproduced. Hadamard [Had52, Had64], Courant and
Hilbert [CH53] and others required that for a scientific problem to be “well posed”, the
solution should depend continuously on the parameters; or, in another formulation suitable
for our present purposes:

For a model of a physical system to be well posed, its behaviour should depend
continuously on the data.

This can be viewed as motivating our investigation in [TZ11], by requiring that Φ be
continuous in the data.

Another necessary condition for a model to serve a useful purpose is that system be-
haviour can be simulated. This leads to a further, related, desideratum:

For a model of a physical system to be well posed, its behaviour should be

computable in the data.
(6.1)

Kreisel has explored this idea in [Kre74]. Interestingly, he uses Hadamard’s principle there
in order to reject certain proposed physical experiments aimed at refuting (6.1). It can,
likewise, be viewed as motivating the present investigation. In the present context, it
amounts to requiring that Φ be computable in the data.

Although for some models computability implies continuity [KLS59, Tse59, Tse62] the
properties of computability and continuity are conceptually quite distinct, and should be
considered separately.

6.2 Computability of cartesian forms of stream-valued functions

An essential technique throughout this paper and [TZ11] has been to reduce higher type
definitions to lower type, by an “uncurrying” process (see Remarks 3.2.14 and 4.5.1, and
[TZ11, Remark 4.1.1]). This allows us to use (relatively) elementary technical concepts
from topology and computability theory.

Another form of type reduction (or uncurrying) that we find ourselves working with
repeatedly is in the construction of the cartesian forms of stream operators: cf. the cau-
tionary comment in §5.2, Example 2(i).

In order to investigate this situation more systematically, we first consider the general
phenomenon of a “mismatch” between concrete and abstract computability on stream
algebras. As an example, take a simple stream-valued function

f : Aq × C[T, A]p → C[T, A] (6.2)

where for any input data a ∈ Aq and u = (u1, . . . , up) ∈ C[T, A]p, f(a,u) is (to take
some simple examples) the pointwise doubling of u1, or the pointwise sum of u1 and u2,
or the constantly zero stream. Now any of these operations is easily seen to be concretely

42

computable; however, none of them is While∗ computable. The only While∗ computable
function of the form (6.2) is the input dependent stream projection

f(a,u) = uf0(a,u)

for some (computable) f0 : Aq × C[T, A]p → {1, . . . , p}. This is proved by the subalgebra

property [TZ00]: the value f(a,u) must lie in the subalgebra generated by the inputs,
which consists only of u. Further discussion of this, in the case T = N, can be found
in [TZ94, TTZ09], where we worked mainly with primitive recursive computability over
C[T, A].

Now let f be a (partial) stream-valued function on C[T, A], say

f : D ⇀ C[T, A]m (6.3)

where D is some product of carriers in the stream algebra C[T, A]. Note that although f in
(6.3) may be partial, all streams, i.e., elements of C[T, A], are still total (and continuous,
by definition). Hence, for any x ∈ D, if f(x)↓, then for all t ∈ T, f(x)(t)↓.

Recall the definition of the cartesian form of f (cf. (5.1)):

cart (f) : D ×T ⇀ Am (6.4)

where for all x ∈ D and t ∈ T,

cart (f)(x, t) ≃ f(x)(t)

where ‘≃’ is “Kleene equality”: the two sides are either both defined and equal, or both
undefined.

Unlike the type transformation (2.6) ⇒ (2.7) (cf. Remarks 3.2.14 and 4.5.1), the ‘cart ’
operation is not, strictly speaking, an uncurrying operation, for two reasons:

(1) The type of the curried form of (6.4) is not D ⇀ C[T, A]m as in (6.3), but
D ⇀ C[T, Am]. However, these two function spaces are homeomorphic [TZ11,
Cor. 2.5.2].

(2) More interestingly, the type shown in (6.3) is actually a subtype of the curried form
of (6.4), since it consists only of functions of that type which are continuous in the
second argument (by continuity of streams).

In any case, like the transformation (2.6) ⇒ (2.7), ‘cart ’ is a very useful “type lowering”
technique.

Now, given a model of computability M(C[T, A]) on the stream algebra C[T, A], we
define the model Mcart(C[T, A]) by

f ∈ Mcart(C[T, A]) ⇐⇒df cart (f) ∈ M(C[T, A]).

It is easy to see that the stream operations listed above (pointwise doubling etc.) are all
in Whilecart(C[T, A]). This suggests that Whilecart, While∗

cart, etc., are better models
of computation on C[T, A] than (respectively) While,While∗, etc.

43

In general we have M(C[T, A]) ⊆ Mcart(C[T, A]), i.e.,

f is M-computable =⇒ cart (f) is M-computable.

We have seen that the reverse implication

cart (f) is M-computable =⇒ f is M-computable (6.5)

fails for deterministic abstract models like While∗ , because of the subalgebra property of
these models. What about concrete computability? In other words, under what conditions
does the implication

cart (f) is α-computable =⇒ f is α-computable (6.6)

(effectively in α-codes) hold for all stream transformers f on C[T, A]?

This turns out to be linked to the following problem. Note first that a stream can be
“computable” in two senses: as a function from T to A, or as a point in the stream space,
i.e., in the range of αc. What is the relation between these two notions of computability
for streams? This is problem is formalised by the concept of functional adequacy , which
says that every computable function from T to A can be “represented” by a computable
stream:

Notation 6.2.1. Given a stream u ∈ C[T, A], let

fun(u) : T → A

be the “corresponding” function, i.e., for all t ∈ T,

fun(u)(t) = eval(u, t).

Definition 6.2.2 (Functional adequacy of α).

(a) The family of enumerations α of C[T, A] is functionally adequate if for any stream
u ∈ C[T, A], if fun(u) is α-computable (as a function), then u is an α-stream (i.e., a
stream in the range of αc (Def. 3.2.4)).

(b) α is effectively functionally adequate if (a) holds, effectively in α-codes.

Note that the converse of functional adequacy, i.e., “for every α-stream u, fun(u) is α-
computable ”, is trivially true.

For the rest of §6.2, we assume α is a regular enumeration of C[T, A] (Definition 3.1.5),
and so α-streams, and hence also α-streams, are effectively locally uniformly continuous
(by Lemma 3.2.13).

44

Lemma 6.2.3.

(a) If α is effectively functionally adequate then the implication (6.6) holds for every
stream transformer f on C[T, A].

(b) Conversely, if (6.6) holds for every f , then α is functionally adequate.

The proof of (a) uses the S-m-n theorem [Kle52, Rog67] on the tracking function for
cart (f) to construct a tracking function for f . The proof of (b) follows easily from the
definitions.

Examples 6.2.4 (Functional adequacy). We continue with our two examples from
Section 5.

• Example 1: Analog networks . Here T = R≥0. Assume (continuing with Example
1 in §5.2) that A = R. Now the α-computable functions from T to R are continuous
by the Kreisel-Lacombe-Shoenfield-Tseitin theorem [KLS59, Tse59, Tse62]22, and hence
(classically) locally uniformly continuous. However, this does not imply that they are
effectively locally uniformly continuous. In fact a counterexample is given by M. Beeson
in [Bee85, p. 71, Exc. 2]. This function23 uB : T → R is α-computable as a function, but
not effectively locally uniformly continuous, and hence not an α-stream. This function
uB then also provides a counterexample to functional adequacy for α. Hence, by Lemma
6.2.3(b), (6.6) fails.

• Example 2: SCAs . Here T = N, and so (by Remark 3.1.4) all functions on T are
automatically continuous — in fact effectively globally uniformly continuous. From this
it is easy to prove effective functional adequacy of α: Given an α-computable f : N→ A,
we can define an effective sequence of elements of ZC (see Example 2(i) in §5.2) which
approaches f effectively locally uniformly, and hence forms an effectively locally uniform
Cauchy sequence, which has a limit u in Cα(T, A) (see §3.2) (all effective in codes). Clearly,
u is extensionally equivalent to f . Hence by Lemma 6.2.3(a) we have:

Lemma 6.2.5. (6.6) holds for SCAs.

This result was used in Section 5 (in the form (5.5)) to give a simple proof of α-
computability of the network function Φ of an SCA, assuming α-computability of the
network module functions (Theorem A′ in §5.2, Example 2).

Next, we can ask whether (6.5) holds in the case that M is WhileCC ∗(αc) approx-
imability, i.e., whether (or under what circumstances)

cart (f) is WhileCC∗(αc) approx. =⇒ f is WhileCC∗(αc) approx. (6.7)

But this follows from Lemma 6.2.5 and the Completeness Theorem:

Lemma 6.2.6. Under the assumptions of the Completeness Theorem 4.4.6, (6.7) holds
for SCAs.

22 For expositions of this theorem, see [Bee85, pp. 61–62] and [TvD88, Vol. 1, pp. 321–322]
23 Actually Beeson’s counterexample has domain [0, 1], but that can be easily modified.

45

More on the ‘cart ’ operation on stream-valued functions, and its relation to models of
(deterministic, abstract) computation, can be found in [TZ94].

6.3 Future research on stream spaces

The study of computation on stream algebras provides a rich source of topics for future
research. We mention four such topics here:

(1) Relative computability of fixed point. In §3.3 we proved a relativised version
(Theorem Arel) of Theorem A, on concrete (α-)computability of the fixed point Φ of the
contracting stream operator F . However we were unable to prove an analogous relativised
version of Theorem B, on abstract computability of the FP (see Remark 4.5.3).

Two possible approaches to such a proof would be (i) proving a relativised version of
the completeness theorem (4.4.6), and then using Theorem Arel, by analogy with our proof
of Theorem B; or (ii) finding a direct proof of the result, not relying on the completeness
theorem or Theorem A. In the latter case, we would not need to work with WhileCC ∗

approximability as our model of abstract computation. This brings us to another point:

(2) Other models of abstract computability. Our use of WhileCC ∗ approximability
in Section 4 was motivated by the proof method of Theorem B, which used the com-
pleteness theorem (4.4.6). Now WhileCC∗ computability (or approximability) is clearly
nondeterministic, which is a valuable property in investigating computation on topological
models in general [TZ04, TZ05], but may be less appropriate with the analog networks
studied in this paper (cf. the Network Determinacy Assumption in §5.1).24

Since the FP is computed by a system of (determinisitic) approximations, a more ap-
propriate abstract computability model (in the present context) might be While∗ approx-
imability.

(3) Partial and nondeterministic module functions. As noted above, from con-
siderations of continuity , we are nevertheless led to consider module functions that are
nondeterministic (or many-valued) and partial [TZ04, TZ05].

These features (which imply discarding our Network Determinacy Assumption in §5.1)
will complicate the theory considerably — for example, in the case of SCAs, they would
require replacing a single global clock by a system of local clocks [TTZ09, §8.2(1)]. How-
ever, they constitute an important generalisation, because of the desirability of continuity
by Hadamard’s principle [TZ11, Discussion 4.2.14].

Continuity considerations are especially significant with hybrid systems, at analog/digi-
tal interfaces [NK93].

(4) Generalisation of stream concept. The considerations in (3) will lead to the
investigation of streams which are also partial and nondeterministic. Note again that the
Network Determinacy Assumption will no longer hold.

The use of piecewise continuous streams (in the case T = R≥0) forms another important

24 But see (3) and (4) below!

46

generalisation of the stream concept. For example, points of discontinuity in such streams
could correspond to boundaries in phase space.

6.4 Future research on computability of spatial objects

Returning to the general ideas of the Introduction, each data type of the form C[X,A]
arises typically in some practical situation, and has its own special features. The algo-
rithmic models that are characteristic of that situation determine, or at least suggest, a
corresponding computability theory. We have considered the case that X is time, but
alternatively, the case of space is also fundamentally important:

(i) Graphic scenes: In 3-dimensional volume graphics, X can be continuous space, X =R3, and data are attributes of spatial objects, such as colour or opacity, measured
by A = {0, 1}k or A = [0, 1].

(ii) Machine states: In machine states, X could be a 2-dimensional discrete address
space, X = Z2, and data are k-bit words A = {0, 1}k.

(iii) Analog fields: Quite generally, X can be a continuous space modelled by a manifold,
and data can be measurements from a normed vector space.

We have encountered some of these data types before. In particular, we have consid-
ered spatial objects in volume graphics and there arise several interesting open graphics
questions involving computability [CT00, BSHT98, Joh06, JT11].

Do the mathematical methods we have used to study streams apply to spatial objects?
On the face of it, much of our mathematics ought to apply to arbitrary function spaces
C[X,A]. Interestingly, this does not seem to be the case. For example, in the data type
of spatial objects, the important notion of causality does not seem to have a natural
counterpart.

Even in simple geometric spaces such as X = Rn, the theory of spatial objects and their
specifications by operations and equations raises several questions where an appropriate
computability theory is necessary for the answer. One such question, raised in [JT11,
Sec. 8], is the following: For a given set of basic spatial objects, and high level operations

on them, is every computable spatial object effectively approximable by objects built up from

these basic objects by these operations?

Some interesting work in generalising the concept of causality for spaces C[X,A] where
X is an arbitrary σ-compact space, has been done in [Jam12, Ch. 4].

References

[Bee85] M. Beeson. Foundations of Constructive Mathematics. Springer-Verlag, 1985.

[BSHT98]J. Blanck, V. Stoltenberg-Hansen, and J.V. Tucker. Streams, stream transformers and

domain representations. In B. Möller and J.V. Tucker, editors, Prospects for hardware

foundations, volume 1546 of Lecture Notes in Computer Science. Springer-Verlag, 1998.

[CH53] R. Courant and D. Hilbert. Methods of Mathematical Physics, Vol. II. Interscience, 1953.

Translated and revised from the German edition [1937].

47

[CT00] M. Chen and J.V. Tucker. Constructive volume geometry. Computer Graphics Forum,

19:281–293, 2000.

[Had52] Jacques Hadamard. Lectures on Cauchy’s Problem in Linear Partial Differential Equations.

Dover, 1952. Translated from the French edition [1922].

[Had64] J. Hadamard. La Théorie des Équations aux Dérivées Partielles. Éditions Scientifiques,

1964.

[Hyn70] D.E. Hyndman. Analog and Hybrid Computing. Pergamon Press, 1970.

[Jam12] N. James. Existence, Continuity and Computability of Unique Fixed Points in Analog Net-

work Models. Ph.D. Thesis, Department of Computing & Software, McMaster University,

2012.

[Joh06] K. Johnson. Algebraic Specifications of Spatial Data Types with Applications to Construc-

tive Volume Geometry. PhD thesis, Department of Computer Science, Swansea University,

Swansea, Wales, 2006.

[JT11] K. Johnson and J.V. Tucker. The data type of spatial objects. Formal Aspects of Computing,

2011. DOI: 10.1007/s00165-011-0182-7.

[JZ12] Nick D. James and Jeffery Zucker. A class of contracting stream operators. The Computer

Journal, 2012. DOI: 10.1093/comjnl/bxs054.

[Kle52] S.C. Kleene. Introduction to Metamathematics. North Holland, 1952.

[KLS59] G. Kreisel, D. Lacombe, and J. Shoenfield. Partial recursive functions and effective opera-

tions. In A. Heyting, editor, Constructivity in Mathematics: Proceedings of the Colloqium

in Amsterdam, 1957, pages 290–297. North Holland, 1959.

[Kre74] G. Kreisel. A notion of mechanistic theory. Synthese, 29:11–26, 1974.

[Mal71] A.I. Mal’cev. Constructive algebras I. In The metamathematics of algebraic systems. A.I.

Malcev, Collected papers: 1936–1967, pages 148–212. North Holland, 1971.

[NK93] A. Nerode and W. Kohn. Models for hybrid systems: Automata, topologies, controllability,

observability. In R.L. Grossman, A. Nerode, A.P. Ravn, and H. Rischel, editors, Hybrid

Systems, volume 736 of Lecture Notes in Computer Science, pages 317–356. Springer-Verlag,

1993.

[PER89]M.B. Pour-El and J.I. Richards. Computability in Analysis and Physics. Springer-Verlag,

1989.

[Rog67] H. Rogers, Jr. Theory of Recursive Functions and Effective Computability. McGraw-Hill,

1967.

[Roy63] H.L. Royden. Real Analysis. Macmillan, 1963.

[SHT99] V. Stoltenberg-Hansen and J.V. Tucker. Concrete models of computation for topological

algebras. Theoretical Computer Science, 219:347–378, 1999.

[Sim63] G.F. Simmons. Introduction to Topology and Modern Analysis. McGraw-Hill, 1963.

[Ste97] R. Stephens. A survey of stream processing. Acta Informatica, 34:491–541, 1997.

48

[Tse59] G.S. Tseitin. Algebraic operators in constructive complete separable metric spaces. Doklady

Akademii Nauk SSSR, 128:49–52, 1959. In Russian.

[Tse62] G.S. Tseitin. Algebraic operators in constructive metric spaces. Tr. Mat. Inst. Steklov,

67:295–361, 1962. In Russian. Translated in AMS Translations (2) 64:1–80. MR 27#2406.

[TTZ09] B.C. Thompson, J.V. Tucker, and J.I. Zucker. Unifying computers and dynamical systems

using the theory of synchronous concurrent algorithms. Applied Mathematics and Compu-

tation, 215:1386–1403, 2009.

[TvD88] A.S. Troelstra and D. van Dalen. Constructivism in Mathematics: An Introduction, Vols I

and II. North Holland, 1988.

[TZ94] J.V. Tucker and J.I. Zucker. Computable functions on stream algebras. In H. Schwichten-

berg, editor, Proof and Computation: NATO Advanced Study Institute International Sum-

mer School at Marktoberdorf, 1993, pages 341–382. Springer-Verlag, 1994.

[TZ99] J.V. Tucker and J.I. Zucker. Computation by ‘while’ programs on topological partial alge-

bras. Theoretical Computer Science, 219:379–420, 1999.

[TZ00] J.V. Tucker and J.I. Zucker. Computable functions and semicomputable sets on many-

sorted algebras. In S. Abramsky, D. Gabbay, and T. Maibaum, editors, Handbook of Logic

in Computer Science, volume 5, pages 317–523. Oxford University Press, 2000.

[TZ04] J.V. Tucker and J.I. Zucker. Abstract versus concrete computation on metric partial alge-

bras. ACM Transactions on Computational Logic, 5:611–668, 2004.

[TZ05] J.V. Tucker and J.I. Zucker. Computable total functions, algebraic specifications and dy-

namical systems. Journal of Logic and Algebraic Programming, 62:71–108, 2005.

[TZ06] J.V. Tucker and J.I. Zucker. Abstract versus concrete computability: The case of countable

algebras. In V. Stoltenberg-Hansen and J. Väänänen, editors, Logic Colloquium ’03, Pro-

ceedings of the Annual European Summer Meeting of the Association for Symbolic Logic,

held in Helsinki, Finland, August 14–20, 2003, volume 24 of Lecture Notes in Logic, pages

377–408. Association for Symbolic Logic, 2006.

[TZ07] J.V. Tucker and J.I. Zucker. Computability of analog networks. Theoretical Computer

Science, 371:115–146, 2007.

[TZ11] J.V. Tucker and J.I. Zucker. Continuity of operators on continuous and discrete time

streams. Theoretical Computer Science, 412:3378–3403, 2011.

[Wei00] K. Weihrauch. Computable Analysis: An Introduction. Springer-Verlag, 2000.

