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To the memory of Sol Feferman, who, with his unfailing kindness,

patience and good humour, was a constant source of inspiration to

me, ever since his supervision of my graduate studies at Stanford

Abstract. Solomon Feferman has left his mark on computability theory, as

on many other areas of foundational studies. The purpose of this chapter is,
by means of reviewing a selected few of his many papers in this area, to give
an idea of his impressive insights and developments in this field.

Introduction

Classical computability theory (or recursion theory) investigates the computability
of functions on the domain of natural numbers N, or (equivalently) strings over
a finite alphabet. This study can be generalized in two directions: investigating
(i) functionals of higher types over N, and/or (ii) function(al)s over more general
domains, such as the reals, with their distinctive topological and other properties.
Over a period of about four decades, Sol Feferman (hereinafter SF) carried out
highly significant investigations in both directions. The aim of this chapter is not
to give a complete survey of his work in this area, which would be very difficult
because of the profusion of his writings, but to examine a few of his more noteworthy
papers spanning this period, so as to get a taste of his research here.

We will investigate four of SF’s papers, spanning this period:

1. “Inductive Schemata and Recursively Continuous Functionals” (1977) [Fef77b],

2. “A New Approach to Abstract Data Types”, Parts I and II (1992)
[Fef92a, Fef92b],

3. “Computation on Abstract Data Types: The Extensional Approach, with an
Application to Streams” (1996) [Fef96], and

4. “About and Around Computing over the Reals” (2013) [Fef13].

A section is devoted to each of these papers below.
It is hoped that the summaries given here will encourage researchers, students

and historians to read the original papers. In such cases, one will be impressed not
only by the contents, but by the clarity and elegance of SF’s scientific literary style.
For the same reason, as will be seen, I have frequently taken to quoting directly
from these papers, since I often found that to be the best way to convey SF’s ideas.1

Thanks to Wilfried Sieg and an anonymous referee for helpful comments on an earlier draft,
and to the Natural Sciences and Engineering Research Council (Canada) for support.

1 To avoid confusion, sections in SF’s papers are referred to as Section 1, etc., and
sections in the present article as §1, §2, etc.
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1. Inductive Schemata and Recursively Continuous Functionals

The first paper to be reviewed here is [Fef77b]. Its topic is a particular approach
to generalized recursion theory (g.r.t), based on monotone inductive schemata over
arbitrary structures. It has 9 sections, and is moreover divided into two main parts.

Part I is an informal introduction to this theory. To quote SF: “the ideas . . . are
due independently to Moschovakis and the author, but the detailed development is
due almost entirely to Moschovakis. A principal source for these ideas is in Platek’s
work on fixed-point schemata”. This refers to Richard Platek’s PhD thesis [Pla66]
written under SF’s supervision at Stanford2.

Section 2 (still in Part I) gives a review of Platek’s work, and how it was modified
and expanded for the present purpose. As SF puts it, Platek’s main idea was that
the central feature of recursion theory which makes sense for arbitrary structures
A = 〈A, . . .〉 is the process of recursion itself, i.e., the definition of a function ϕ as
the least fixed point of an equation ϕ = Φ(ϕ); or, equivalently, FP(Φ) is the least
ϕ “closed under” Φ: Φ(ϕ) ⊆ ϕ. For this to make sense, we must assume that the
functional Φ is a monotonic operator on partial functions on A. Platek introduced
a structure of hereditarily monotonic functionals3 of finite type over A, denoted
Ã = 〈Ãτ 〉τ , where τ ranges over all finite types.

Next, for any class F of functionals in Ã , let Ind(F) be the class of functionals
inductively defined from F , obtained by closing under explicit definition and FP
at all types.

Two of the main results of [Pla66] are:

• If every member of F has type level ≤ n + 1 and ϕ ∈ Ind(F) has type level
≤ n then we can get ϕ from F by explicit definition and the FP scheme at type
levels ≤ n only. In particular, with the structure A = (A,F), if F has only
total functions of level 1, we need only use Φ of type level 2.

• The system of functionals given by Kleene’s schemata S1–S9 [Kle59b]4 on the
maximal type structure over N, i.e. N = (Nn)n∈N (where N0 = N and Nn+1 =

N
Nn), is equivalent to Ind(0, Sc)5, in the sense that there is an embedding of

N into Ñ such that Φ on N is Kleene partial recursive (i.e., derivable from

S1–S9) iff its image in Ñ is in Ind(0, Sc).

We should note that Platek makes some special assumptions on the structure
〈A,F〉, namely that F (or Ind(F)) contains pairing and projection functions, and
distinct elements 0,1 of A. With these special assumptions on a level 1 structure
〈A,F〉, the functions in Ind(F) turn out to be the same as the prime computable
functions of Moschovakis [Mos69] on 〈F ,=A〉.

SF then notes certain limitations on Platek’s theory:

(1) These special assumptions effectively introduce N as a substructure of A, and
hence ordinary recursion theory as part of Ind(F). SF argues against this (in
Section 4, as we will see).

2 and regrettably never published, but with a far-ranging influence, as we will see in
some of the other papers investigated here.

3 This terminology is SF’s.
4 Kleene’s notion of partial recursive functional, given by his schemata S1–S9 [Kle59b] or

(equivalently for type levels ≤ 2) as in [Kle52, p. 326], will feature in every one of the four
articles discussed here.

5 where ‘Sc’ is the successor function on N.
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(2) It does not generalize recursion theories based on relations, such as Post-
Smullyan systems [Smu61] or search computability [Mos69]).

(3) Recursion on N is derived indirectly, from embedding into Ñ , which is “messy”.
It would be preferable, conceptually, to identify the S1–S9 functionals over
N with Ind(F) over the ground domain system 〈Nn〉n for suitable F , i.e.,
more generally, associate a suitable recursion theory with any ground struc-
ture 〈〈Ai〉i ∈ I , F〉, for which recursion on 〈Nn〉n would be one example.

Section 3 of this paper presents SF’s general theory of monotone inductive defini-
tions which overcomes these three limitations. SF found that there was a large over-
lap of his theory with that of Moschovakis, which had been developed independently
(and also included a theory of non-monotone inductive definitions) [Mos76, KM77].

Briefly: Suppose given a domain system 〈Ai〉i ∈ I and a collection X of relations
on these, closed under unions of chains. Assume each X ∈ X has an arity ν =
(ν(1), . . . , ν(m)), with X ⊆ Aν(1)×· · ·×Aν(m). A monotone schema is a functional
Φ: X ν(1) × · · · × X ν(m) → X µ which is monotonic, in the sense that

Xi ⊆ X ′
i (1 ≤ i ≤ m) =⇒ Φ(X1, . . . , Xm) ⊆ Φ(X ′

1, . . . , X
′
m).

With each such Φ we can associate a least fixed point FP(Φ). Then, given a
collection F of schemata, we take Ind(F) to be the smallest collection of schemata
containing F and closed under explicit definition and FP.

Given a domain system 〈Ai〉i ∈ I , there are two principal choices for X : (i) all re-
lations on 〈Ai〉i ∈ I , and (ii) all partial functions on 〈Ai〉i ∈ I . These give rise to (re-
spectively) relational and functional inductive theories. From these Moschovakis’s
prime computability and search computability [Mos69] can easily be constructed on
an arbitrary A (or rather the closure of A ∪ {0} under pairing).

Another example is recursion on the maximal type structure N = 〈Nn〉n over N.
Here we take the class Ind(F) where F contains 0, successor, some basic functions
and two schemata for application and abstraction at all types. Now we can derive, in
Ind(F), Kleene’s [Kle59b] schema S8 (higher order function abstraction, combined
with application) and an “enumeration” schema S9:

ϕ(~α, z) ≃ {z}(~α).

where z is a number variable, and ‘≃’ means that the l.h.s. is defined iff the r.h.s.
is. In fact Ind(F) is equivalent to Kleene’s S1–S9, since the FP schema can be
obtained from the functional form of Kleene’s recursion theorem.

SF ends this section by posing the question: Is there an interesting relational
inductive theory over N – or rather over S = 〈Sn〉n, where S0 = N and Sn+1 is the
power set of Sn?

In Section 4, SF briefly considers what he calls axiomatic enumerative g.r.t.,
characterized by an axiomatic approach to Kleene’s S9, and developed by Wagner
and Strong [Str71], Moschovakis [Mos71], Fenstad [Fen74], Hyland [Hyl75] and
others. It is shown in [KM77] that under quite general hypotheses a theory Ind(F)
is an enumerative g.r.t. SF remarks on what he considers two defects of such
enumerative approaches: (1) the ad hoc character of such codings, and (2) the
necessity to incorporate N as part of the structure.

Section 5 gives some ideas (“which remain to be developed”) for more restricted
kinds of inductive schemata given by syntactic closure conditions or inference rules,
where the course of the induction can be represented by a derivation or computation
tree.
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To take an example, consider syntactic closure conditions, and the relational
case. We take a formula Γ in a language L over a structure A = 〈〈Ai〉i ∈ I , . . .〉
augmented by relation parameters which occur only positively in Γ. This gives a
monotone schema ΦΓ with a (least) fixed point, defining a function from tuples of
relations (of the correct arity) to relations. We can then identify F with the class
of such formulas Φ, and so Ind(F) is the set of functions so defined. SF gives two
examples.

(1) Let A = (N, 0, Sc), and let F be the class of existential formulas (positive in
their relational parameters). Then Ind(F) is the class of all r.e. relations; cf.
the Post-Smullyan approach [Smu61].

(2) Let A be any structure, L the corresponding full first order language, and F
all formulas positive in their relation parameters. Then Ind(F) is the set of
relations inductively definable over A in the sense of Moschovakis [Mos74].

As another example, we can associate, with certain inductive definitions, rules of
inference and derivation trees. The inductive definition has the form: X is the least
solution of Φ(X) ⊆ X, i.e. the least set such that ∀~x

[
Γ(~x,X) → ~x ∈ X

]
, where

elements that are put into X at any stage are related by elementary conditions
(given by Γ) to elements already in X. We can write such a closure condition as an
inference rule Γ(~x,X)/X(~x). Such inference rules give rise to a (possibly infinite)
derivation tree for generating membership of X.

We turn to Part II (and Section 6), which deals with recursion on structures of
continuous functionals over N . SF sketches two similar constructions by Kleene
[Kle59a] and Kreisel [Kre59] of a finite type structure C = 〈Cn〉n of hereditarily

(total) continuous functionals over C0 = N. (Another approach: the structure C `

of hereditarily partial continuous functionals, developed by Ershov, will be discussed
below shortly.)

The principal question now is: are the resulting theories equivalent to those given
by inductive schemata?

Considering first, total continuous (or “countable”, to use Kleene’s terminology)
functionals: we consider functionals αn of type n, where the value of αn+1 at
any βn is given by a finite amount of information Un about β, given by “formal
neighborhoods” which can be coded as natural numbers. The details are available
in SF’s paper, and, of course, in [Kle59a, Kre59]. Hence for all n, any such αn can
be represented by a type-one “associate” denoted by α(n+1) or (here) by pαq.

The main difference between Kleene’s and Kreisel’s approach is that αn+1(βn)
makes sense for all βn ∈ Nn in Kleene’s approach, but only for βn ∈ Cn in Kreisel’s.

A functional ϕ ∈ C is said to be recursively continuous (or recursively countable)
if it has a (total) recursive associate pϕq. With Kleene’s identification of Cn with
part of Nn, a central problem was to find the relationship between recursively
continuous functionals and those generated by Kleene’s schemata S1–S9.

In one direction: Kleene showed [Kle59a] that if ϕ is generated by his schemata,
and if ϕ is total on C, then ϕ (restricted to arguments in C) is recursively continuous.

The question was raised by Kreisel [Kre59] if the converse holds, in the sense that
every recursively continuous function on C is the restriction of a function generated
by S1–S9. A counterexample was found by Tait (unpublished), namely a modulus
of uniform continuity functional at type level 3.

The situation with K-K (Kleene-Kreisel) recursiveness is thus not satisfactory as
in stands. In Section 7, SF points to a possible way forward, by turning to a more
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general theory of higher-order partial recursion, which would reduce to the theory
of K-K recursiveness in the special case of total functions.

The problem here is that even a definition for such a concept is problematic. He
presents one proposed by Robert Winternitz, a former student of his at Stanford.
(We omit details, but urge the reader to consult this paper.) This definition satisfies
(among other good properties) an enumeration or universality property at all types.

Also important in the further development of the theory is the concept of poten-
tial partial recursiveness, which is satisfied by a function ϕ if there is some partial
recursive continuous ψ ⊇ ϕ. With this definition, Kleene’s partial positive result
above can be can be re-cast in the form: Each ϕ which is (S1–S9) partial recursive
on N has its restriction to C potentially partial recursive. (But see below.)

SF writes here: “I consider the main defect of this work on schemata to be taking
N as the point of departure, rather than working entirely in the context of C”. This
makes a difference in interpreting Kleene’s schema S8:

ϕ(αn+2, ~γ) ≃ α(λβn · ψ(α, β,~γ))

in which even though αn+2 and ~γ range over C, the “abstracted” variable βn is taken
to range over all of N (of the appropriate type). It would be more appropriate to
have βn ranging over C. This would make the r.h.s. (and hence the l.h.s.) of this
equation definable in more cases. (The other schemata, S1–S7 and S9, are not
affected by such re-interpretation.) Then, as before, every functional generated by
S1–S9 in this new interpretation on C is potentially partially recursive, and we can
again inquire about the converse. However the uniform continuity functional at
type level 3 still provides a counterexample.6

Section 8 deals with the other approach to computation on higher types noted
above, based on the structure C ` = (C `

n )n of hereditarily partial continuous func-

tionals developed by Ershov [Ers72]. Here C `

0 = N, and C `

n+1 is the set of continu-

ous partial functions from C `

n to N (suitably defined). Then Cn can be successively
mapped into C `

n [Ers74]. To quote SF again: “Now there is also a natural def-
inition of partial recursive functional on C `. I studied the schematic generation
of these functionals in [Fef77a], centering attention on so-called “search” operators
introduced in Moschovakis [Mos69], namely νx[ψ(x, ~α) ≃ 0] which is interpreted
as ‘an x such that ψ(x, ~α) ≃ 0’. By S10 we mean the scheme

ϕ(~α) ≃ νx[ψ(x, ~α) ≃ 0]

which, without further restriction, must lead to multivalued functions . . . ” Single-
valuedness can be recovered by a suitable restriction in the use of this scheme,
resulting in a scheme (S10 !).

The main results of [Fef77a] were that the multi-valued partial recursively con-

tinuous functionals over C ` are exactly those generated by (S1-S8) + (S10), and
the single-valued ones are those generated by (S1-S8) + (S10 !). However this is
not completely satisfactory, since (S10 !) is not a monotone scheme.

This result was improved by Winternitz, by incorporating the “strong or” oper-
ator introduced in [Pla66]7:

OR+(ϕ1, ϕ2) ≃ 0 ⇐⇒ ϕ1(0) = 0 ∨ ϕ2(0) = 0. (1.1)

6 Gandy to SF, personal communication.
7 The notation and presentation have been changed here to match that in [Fef96],

discussed in §3 below.
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Winternitz showed that

at type level 2, the functionals generated by (S1–S9)+OR+ are exactly

the partial recursive functionals over C `.

However the result does not hold at higher type levels. The solution turns out to
come from work of Sazonov [Saz76] who introduced the functional ∃3, defined by

∃
3(α2) ≃

{
0 if α(Λ1) ≃ 0

1 if α(δn) ≃ 1 for some n

where Λ1 is the completely undefined function at level 1, and δn(x) ≃ z ⇐⇒
x = 0 ∧ z = n. Sazonov’s result can then be formulated (in this framework) as:

A (partial) functional is partial recursively continuous over C ` iff

it is generated by the schemata (S1–S9) + OR+ + ∃
3.

This shows that partial recursion over C ` is equivalent to a monotonic inductive
schematic theory.

Ershov’s work is discussed again below in §3, in connection with SF’s providing
recursion-theoretic interpretations for abstract computational procedures over his
stream algebras.

In Section 9 SF makes some concluding remarks:

By [Ers74] the recursively continuous functions over C are restrictions to
C of those over C `, and hence just those functionals total on C generated
by the above schemata. However there remains the question of whether
we can generate these functionals directly over C. What we are really
after are monotone schemata . . .

Now it might at first be thought that a non-monotone theory could be found, for
example (S1–S8) + (S10 !). However, as Winternitz showed, although the partial
recursively continuous functionals on C are closed under (S1–S7) and (S10 !), they
are not closed under (S8), even when abstracting over types 0 and 1 only. SF
continues:

With this we can complete our remark in Section 7 about Kleene’s partial
positive result . . . [for] the statement of closure under (S1–S9) given in
Section 7 above involves potential partial recursiveness in an essential
way. . . . The main question with which we are left is the following.

Question. Is there a natural monotone collection F over C such that the partial
recursively continuous functionals over C are exactly those generated by Ind(F)?

SF concludes this fascinating paper with the remark:

As long as this question remains unsettled, the inductive schematic ap-
proach to g.r.t. is not completely vindicated. But I hope that the con-
siderations in this paper combined with the detailed work of [KM77] and
[Mos76], which demonstrate its scope otherwise, will lead one to give
serious attention to this program.

2. A new approach to abstract data types, parts I and II

In this pair of papers [Fef92a, Fef92b], SF switches gears, and focuses on compu-
tation not on the classical structures (such as naturals or ordered reals, and higher
types on these) but on abstract data types, which can be taken (for now) as classes
of algebras of a given signature Σ, closed under Σ-isomorphism. SF motivates the
topic by saying: “The concept of abstract data types (ADTs) has emerged in the



FEFERMAN ON COMPUTABILITY 7

last fifteen years or so as one of the major programming design tools, with the
emphasis on modular construction of large-scale programs.”

The first paper (Part I) is an informal introduction to ADTs, while the second
gives a more formal development, with the emphasis again on computation over
these. We thus give a very brief overview of Part I, as an introduction to Part II,
which is our main concern.

SF begins Part I by stating:

[J]ust as in mathematics generally, one is concerned in computational
practice with general algebraic notions such as orderings, rings, fields,
polynomials, etc. There is additional concern in computer science with
other kinds of ADTs such as lists, stacks, trees, records, arrays, streams,
etc. A coherent account of how these are all to be treated for computa-
tional purposes requires answers to such questions as:

Q1. What are ADTs and how may they be specified?

Q2. What does it mean to implement an ADT?

Q3. How can we construct new ADTs from old ones?

Q4. What does it mean to compute with ADTs?

SF’s aim is to answer the above four questions, especially Q4, in the course of this
and the following paper. Since this paper gives only a semi-formal development,
we discuss it very briefly, before turning to Part II for a more detailed account.

SF refers to previous foundational approaches: algebraic [GTWW77], computa-
tional or recursion-theoretic [BT83, TZ88] and type-theoretic [MP85]. He argues
that all previous foundational approaches fail in certain cases.

A new, constructively based, approach is proposed here to provide a
sufficiently general account . . . within the conceptual framework of the
school of constructive mathematics associated with Bishop . . . [Bis67].
The formal foundations will be provided by theories of operations and
classes in which that style of constructive mathematics can be formalized
. . . [T]hese will be taken up in Part II.

SF gives some examples of ADTs, noting that “there is a basic division into
those structures whose objects are described or generated in a finitary way, and
those whose description is infinitary.” Examples of finitary ADTs dicussed are:
lists over arbitrary types; lists over preordered types; binary and finitely branching
trees; and finite sets. Examples of infinitary ADTs are infinite streams and infinite
precision reals – the latter following Bishop’s implementation [BB85, pp. 18–19].

We turn to Part II. As SF says in the opening sentence, the main purpose of
this paper is to give a precise definition of abstract computation procedures 8 F on
ADTs, with interpretations FA over structures

A = (A0, . . . , An, =A0
, . . . , =An

, F0, . . . , Fm) (2.1)

of signature Σ, say, where =Ai
is an “equality” relation9 on Ai (i = 0, . . . , n),

A0 is the boolean type B = {tt, ff}, =A0
is the identity on B, and Fj is either a

constant (0-ary function), partial (level 1) function or partial (level 2) functional
over A of a specified arity. The constants of A include tt and ff, and the functions
and functionals among Fj preserve equality and are monotonic.

The aim here is to clarify the concept of abstract computational procedure F

satisfying, for any A as above, the following criteria:

8 Written ‘π’ in [Fef92a]. Notation changed here to match [Fef96]; cf. §3 below.
9 I.e. an equivalence relation w.r.t. the Fk’s.
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C1. F associates with A an object FA of specified arity over A.

C2. FA is determined by the (individual, function and functional) constants of A.

C3. The map A 7→ FA preserves Σ-isomorphism.

C4. FA preserves the equality relations on A.

C5. For domains Ai of A contained in N, FA reduces to an ordinary computational
procedure (see Remark 2 below).

SF explains:

These requirements are met here by a generalized recursion theory10

(g.r.t.) which provides a notion of computability over arbitrary struc-
tures of the kind described above. In order to satisfy C3 we must insure
that whenever an object is defined by recursion it is uniquely specified.
For (partial) functions this will be as a least fixed point (LFP) of a suit-
able monotonic functional. There are two forms of g.r.t. available in the
literature which feature LFP as a central scheme . . . namely those of
Moschovakis [Mos84, Mos89] and the earlier Platek [Pla66].11

In both of these definition by recursion is implemented as the least fixed point of a
suitable monotonic functional. SF adapts Moschovakis’s version, but with schemata
like Kleene’s S1–S9 [Kle59b], with S9 replaced by a simple LFP recursion.

SF continues:

The g.r.t. developed here . . . applies to a wide variety of data universes
V, with weak closure conditions on the classes of partial functions and
functionals over V . There are two extremes of interpretation: (i) V

is the full cumulative hierarchy and “all” functions and functionals are
admitted; (ii) V = ω 12, and we only admit partial recursive functions
and functionals. The setting (i) is the usual one for g.r.t., while the
setting (ii) serves for the precise formulation of the criterion C5; the
statement of that is the main new conribution of this paper.

Remarks.

(1) We need only consider structures as in (2.1) with function(al)s up to type level
2, because of Platek’s result given in §1 above.

(2) By “ordinary computation procedure”, SF means the structure constructed by
Kleene over N in [Kle59b]. Also recall footnote 4 for the concept of partial
recursive functional.

A structure A has a “data universe”: an underlying universe V containing the
data objects a, b, . . . , x, y, . . . , a collection DT of subsets A,B, . . . ,X, Y, . . . of V ,
called data types, containing B, N and V , and closed under Cartesian product.

There is a collection PFn of partial functions ϕ,ψ, . . . on V , and more specifi-
cally, collections of partial functions13 ϕ : A

∼
→ B between the various data types.

A has (as in (2.1) above) basic domains A0, . . . , An, with A0 = B. We let i, j, k
range over {0, . . . , n} and ı̄, . . . , over finite (possibly empty) sequences of these.
For ı̄ = (i1, . . . , iν), put Aı̄ = Ai1 × · · · ×Aiν . Then a partial function ϕ on A has

arity ı̄→ j if ϕ : Aı̄
∼
→ Aj . We let σ, τ , . . . range over arities of partial functions

10 Emphasis added. The meaning of this phrase is discussed below.
11 As noted in §1 above.
12 Below I use ‘N’ for ‘ω’.
13 This notation ‘

∼

→ ’ for partial functions is not the same as SF’s here, but is used for
consistency with his notation in the paper [Fef96] discussed in §3 below.
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on A. For σ̄ = σ1, . . . , σµ, put Aσ̄ = Aσ1
× · · · ×Aσµ

. Then a partial functional

F on A has arity (σ̄, ı̄) → j if F : Aσ̄ × Aı̄
∼
→ Aj . When ϕ = (ϕ1, . . . , ϕµ) and

x = (x1, . . . , xν), we write F (ϕ, x) for F (ϕ1, . . . , ϕµ, x1, . . . , xν). Generally F has
type level 2, but when µ = 0, ν > 0 then F is a partial function on A of level 1,
and when µ = ν = 0 then F is a constant of sort j of level 0.

Suppose A (as in (2.1) above) has the basic functionals

Fk : Aσ̄k
×Aı̄k → Ajk (k = 1, . . . , n).

Then A has the signature Σ(A) =
(
n, 〈σ̄k, ı̄k, jk〉1≤k≤m

)
.

In Section 4, four interpretations of the structure are presented, which we de-
scribe here, (mainly in SF’s own words). For convenience I refer to these as four
“models”.

Model 1: The full set-theoretic interpretation.
“Here V is the class of all sets in the cumulative hierarchy. The types range over all
sets in V . . . Functionals are just those partial functions in V of the form F (ϕ, x)
where the ϕk’s are partial functions in V .”

Model 2: The set-theoretic interpretation on computational data.
“For computational purposes, all data should be represented in in finite symbolic
form; without loss of generality, we can take the universe to be V = N. . . . The
partial functions here are arbitrary ϕ : N

∼
→ N . . . Partial functionals F (ϕ, x) in

this interpretation take arbitrary partial function arguments14 ϕ on N. Special
interest attaches below to those F which are partial recursive (p.r.) or have a
p.r. extension. Note that p.r. functionals are not closed under abstraction when the
remaining function arguments are not p.r.”

Model 3: The recursion-theoretic interpretation, extensional form.
“Here again we take V = N . . . . The types . . . range over arbitrary subsets of N
(or, more generally, over any collection of subsets closed under arithmetical defin-
ability). The collection PFn is taken to be the p.r. functions on N, and PFnl the
p.r. functionals of p.r. function arguments15. Thus we have closure under abstrac-
tion in this case.”

Model 4: The recursion-theoretic interpretation, intensional form.
This is like model 3, except that PFn consists of Gödel numbers or indices e of
p.r. functions, with application given by e x = {e}x. Now PFnl coincides with
PFn, but with the emphasis on indices which are “extensional” or “effective” in
the recursion-theoretic sense.

Models (2)–(4) are the main ones considered in this paper.
Returning to a general structure A (as in (2.1)), SF defines a partial order on

PFn: for ϕ,ψ of arity ı̄→ j on A:

ϕ⊆A ψ ⇐⇒ ∀x ∈ Aı̄

[
ϕ(x) ↓ =⇒ ψ(x) ↓ = ϕ(x)

]
. (2.2)

A partial functional F of arity (σ̄, ı̄) → j is A-monotonic if

∀ϕ,ψ ∈ Aσ̄, ∀x ∈ Aı̄

[
F (ϕ, x) ↓ ∧ ϕ⊆A ψ =⇒ F (ψ, x) ↓ = F (ϕ, x). (2.3)

Next, for partial functionals F1, F2 of arity (σ̄, ı̄) → j on A, we define

F1 ⊆A F2 ⇐⇒ ∀ϕ ∈ Aσ̄∀x ∈ Aı̄

[
F1(ϕ, x) ↓ =⇒ F2(ϕ, x) ↓ = F1(ϕ, x). (2.4)

14,15Emphasis added. This gives the essential difference between models 2 and 3.
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Next, in order to determine the least fixed point of a functional G : Aσ×Aı̄ → Aj ,

where σ = (̄ı → j), we define Ĝ : Aσ → Aσ by (Ĝϕ)x = G(ϕ, x) (i.e. a “curried”

version of G). Then, supposing G is A-monotonic, so is Ĝ, and further, a (unique)

least fixed point LG of G can be found from Ĝ, as follows.
First, L is called an LFP operator on A if for any σ = ı̄→ j and A-monotonic

G : Aσ ×Aı̄
∼
→ Aj , we have:

(i) LG ∈ Aσ and Ĝ(LG)⊆A LG;

(ii) whenever ψ ∈ Aσ and Ĝ(ψ)⊆A ψ then LG⊆A ψ;

(iii) For A-monotonic G1, G2 of the same arity, G1 ⊆AG2 =⇒ L(G1)⊆A L(G2).

The question of the existence of LFP operators in the various interpretations
must still be discussed (see below).

Recall (2.1) we are assuming each domain Ai has an “equality” relation. Next
SF defines the relation of A-equality between partial functions:

ϕ =A ψ ⇐⇒ ϕ⊆A ψ ∧ ψ⊆A ϕ

and hence the concept of a functional F preserving A-equalities. Then F is said to
be strongly A-monotonic if it is A-monotonic and also preserves A-equalities.

We come to schemata for abstract computation procedures (ACPs) over
Σ. Suppose given a Σ-structure A, with basic functionals F1, . . . , Fm, where each
Fk has a specified arity σ̄k × ı̄k → jk. We make some general assumptions:

(i) A0 = B = {tt, ff}, where =A0
is the identity relation, and

(ii) tt and ff are themselves in Σ.

A formal language of computational procedures over Σ is defined, with variables
a, . . . , x, . . . of all Σ-sorts, partial function varables ϕ,ψ, . . . of each arity, and
functional symbols F,G,H, . . . of each appropriate arity. It is further assumed:

(iii) For each A, LA is an operator from A-functionals of arity σ × ı̄ → j, where
σ = ı̄→ j, to Aσ-partial functions (for each ı̄, j).

Note that at this stage L
A is not yet assumed to be an LFP operator on A.

There follows a list of schemata (for Σ):

I (Initial fns) F(ϕ, x) ≃ Fk(ϕ, x) (k = 0. . . . ,m)

II (Identity) F(x) = x

III (Application) F(θ, x) ≃ θ(x)

IV (Conditional) F(ϕ, x, v) ≃ [if v = tt then G(ϕ, x) else H(ϕ, x)]

V (Structural) F(ϕ, x) ≃ G(ϕf , xg)

VI (Indiv. subst.) F(ϕ, x) ≃ G
(
ϕ, x,H(ϕ, x)

)

VII (Func. subst.) F(ϕ, x) ≃ G
(
ϕ, λu.H(ϕ, x, u), x

)

VIII (LFP) F(ϕ, x, u) ≃
[
L(λθ,w.G(ϕ, θ, x, w))

]
(u)

In the above schemata, ϕ and x are (respectively) tuples of function and individual
variables; in schema IV v is boolean variable; in schema V, f and g are (respectively)
mappings of the indices of the variable tuples ϕ and x, and ϕf and xg are the
corresponding mappings of these tuples.

An ACP for Σ is then a partial functional F generated by the above schemata.
Note the resemblance of the above schemata (other than VIII) to Kleene’s

schemata [Kle59b] apart from S5 (primitive recursion on the integers) and S9 (enu-
meration).
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So for each Σ-structure A and each ACP F generated by the schemata, there is
an associated partial functional FA, where the intended semantics is clear. Here we
must make one more general assumption:

(iv) L
A is an LFP operator on A.

SF then states and proves his two main theorems:

Theorem 1 (Preservation of strong monotonicity).

If each Fk (k = 1, . . . ,m) is strongly monotonic, then so is FA for every ACP F

generated by the schemata I–VIII.

The proof amounts to showing that the property of strong monotonicity is pre-
served by an application of any of the schemata, including notably the LFP schema
VIII.

Theorem 2 (Invariance under isomorphism).
For any Σ-ACP F, an isomorphism between two Σ-structures A and A′ induces an

isomorphism between FA and FA′

.

Note that Theorems 1 and 2 imply (respectively) criteria C4 and C3 of the five
criteria listed above.

Next (in Section 10) we suppose given an A-monotonic functional G : Aσ×Aı̄
∼
→

Aj , with σ = (̄ı → j). The construction of the LFP operator L
A(G) is shown for

each of the four types of interpretation A considered in Section 4 (see above).

Briefly: in the case of all four models, LA(G) is constructed as the union of a
transfinite sequence of approximations from below. In the case of model 4, the
Myhill-Shepherdson Theorem [MS55] is needed.

We come now to the final important result of the paper (in Section 11), which
shows how computation on ADTs can reduce (under certain conditions) to ordinary
computation.

SF restricts consideration to models with V = N, and the extensional version of
the recursion-theoretic interpretation (model 3). So we assume that all the domains
of A are contained in N, and all the Fk are strongly A-monotonic. SF then shows
(Theorem 3) that for each ACP F, FA can be taken as the p.r. functional FV on A.

Hence FA satisfies criterion C5, and thus all the desired criteria C1–C5 for ACPs.
Another version of this theorem will be encountered as Theorem 6 in [Fef96],

discussed in §3 below.
In a concluding section, SF presents some applications of this theory, revisiting

some of his examples in Part 1. As he says:

[A]ll the standard finitary examples of ADTs, such as lists, trees, sets,
etc., as described in Part I of this paper . . . have implementations whose
Fk are simply partial recursive functions.

“Infinitary” data types, such as infinite streams and infinite precision reals, are
discussed briefly. In the case of infinite streams over a structure (A,=A), SF uses
the following structure, first defined in Part 1 above:16

Stream(A) = (S, A, N, =S , =A, =N, . . . , Cons, Hd , Tℓ, Sim) (2.5)

This has three domains, A, S and N for data, streams of data and naturals respec-
tively; the standard operations on N, shown here as ‘. . . ’, and the stream operations

16 The notation here has been modified to conform to that in [Fef96], cf. §3 below.
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Cons : A× S → S, Hd : S → A and Tℓ : S → S, where (informally)

Cons (b, 〈a0, a1, a2. . . .〉) = 〈b, a0, a1, a2, . . . 〉

Hd 〈a0, a1, a2, . . .〉 = a0,

Tℓ 〈a0, a1, a2, . . .〉 = 〈a1, a2, . . .〉.

In order to characterize infinite stream structures up to isomorphism, we also need
a second order “simulating” functional Sim : (N → A) → S which is a bijection
from the set of “all” functions f : N → A onto S. (Without this, we can only ensure
the existence of eventually constant streams.)

SF comments: “Here, it seems, only the intensional recursion-theoretic interpre-
tation17 is appropriate.” This is accomplished by interpreting S as the set of all
indices of total recursive functions from N to N, and Sim as the identity on N.

The ADT of infinite precision reals is likewise given an intensional recursion-
theoretic interpretation, in which the reals are interpreted as indices of effective
Cauchy sequences.

This perspective will shift quite dramatically in the following paper [Fef96], with
the investigation of higher order (“extensional”) models of streams, and a second
order ‘Sim ’ operator.

3. Computation on ADTs: the extensional approach

This paper carries the dedication “With profound gratitude to Stephen C. Kleene”
(then recently deceased) with the footnote “Kleene was not my mentor, official or
otherwise, but through his exceptional development of our subject I learned as
much from him as if he had been.”

I quote from the introduction:

This paper is a continuation of the work of Feferman [Fef92a, Fef92b]
which initiated an approach through a form of generalized recursion the-

ory (g.r.t.) to computation on abstract data types (ADT s), including
intensionally presented types . . .

[W]e separate out the extensional part of the theory and show how
it may be applied to computation on streams as an ADT. One of the
main new contributions here is an explanation of how this is to be done
for finite “nonterminating” streams as well as infinite streams, and even
more general partial (“gappy”) streams.

Logically (as stated in the previous section) an ADT is just a class of structures
closed under isomorphism. “[O]ne is mainly interested in structures determined by
categorical or relatively categorical conditions.” Paradigmatic examples considered
are, for any data set A: A-lists and A-streams.

Continuing with the framework of the previous paper (§2 above). the general
theory in this paper applies, for a given signature Σ, to many-sorted Σ-structures

A = (A0, . . . , An, F1, . . . , Fm) (3.1)

where A0 = B = {tt, ff}, and each Fj is a partial functional (or function, or constant,
including tt and ff) of type level ≤ 2. It will also be assumed that each Fj is A-
monotonic.

17 That is, model 4 described above.
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As SF says, “computation on streams is subsumed under a general theory of
computation for arbitrary structures18.”

Remark (Treatment of equality). Note the difference between the structures
displayed here (3.1) and in (2.1): here an (“intensional”) equality predicate is not
automatically assumed at each sort. In fact, infinite stream equality is generally
non-computable. SF turns to this issue later in the paper.

In Section 3 a system of formal schemata for a given signature Σ is presented.
This is the same as the system of schemata (I–VIII) given in [Fef92b] and shown
above (§2); and, as before, with each Σ-structure A and each ACP F generated

by the schemata, is associated a partial functional (or function, or constant) FA of
type level ≤ 2.

As shown in [Fef92b] (cf. §2 above), an A-monotonic functional has an associ-
ated least fixed point (LFP), which is also monotonic, by the LFP Monotonicity

Lemma19. Hence for schema VIII to make sense on A, it must be verified that FA

is A-monotonic. More generally, it is shown (Monotonicity Lemma20) that the
ACPs generated by all the schemata are A-monotonic, assuming that the initial
functionals F1, . . . , Fm are.

Remarks (Extensionality). The assumption of extensionality in this paper leads
to two interesting divergences from the theory developed in the previous paper
[Fef92b] (§2), with intensional equality:

(1) In [Fef92b] the significant property of ACPs was strong monotonicity, i.e.,
monotonicity plus equality-preservation. Here it is simply monotonicity.

(2) In [Fef92b] the existence of the LFP operator had to be explicitly assumed
(“General assumption (iv)” at the beginning of Section 8) and proved for the
four types of interpretations (“Models 1–4”). Here the construction of the
LFP operator (the LFP Monotonicity Lemma) can be shown quite generally
as a consequence of the more general Monotonicity Lemma21. Again, it is con-
structed as the union of a transfinite sequence of approximations from below.

Back to Section 3: It is next shown that the schemata are invariant under
isomorphism, i.e., if A and A′ are Σ-isomorphic, then so are FA and FA′

for all F
generated by the schemata. This justifies the terminology “abstract computation
procedures”, and the notation ACP(Σ) for the collection of ACPs generated by

the schemata over Σ, and ACP(A) for the collection of all FA for any Σ-structure
A.

Next (Section 4) this paper deals with an important substructure property of
Σ-structures.

First, some definitions. Suppose given a Σ-structure A as in (3.1) above, and
subsets Bi ⊆ Ai for i = 1, . . . , n. Write A = (A0, . . . , An) and B = (B0, . . . , Bn).

For a level-1 partial function ϕ over A, the restriction ϕ↾B and the concept “B
is closed under ϕ” are defined in the standard way.

18 as in (3.1).
19,20My terminology.

21Or more accurately, simultaneously with this lemma.
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For a level-2 partial functional F : Aσ̄ × Aı̄ → Aj , the restriction F ↾B means
the function λϕ ∈ Bσ̄ · λx ∈ Bı̄ · F (ϕ, x), and B is said to be closed under F if 22

∀ϕ ∈ Aσ̄, ∀x ∈ Bı̄

[
B closed under ϕ ∧ F (ϕ, x) ↓ =⇒

F (ϕ, x) ∈ Bj ∧ F (ϕ↾B, x) = F (ϕ, x)
]
.

We then say that B determines a substructure of A if B0 = A0 = B and B is
closed under Fk for k = 1, . . . ,m.

SF then states and proves his

Substructure Theorem (Theorem 1 + Corollary).
Suppose B determines a substructure of A. Then putting

B = (B0, . . . , Bn, F1 ↾B, . . . , Fm ↾B),

B is closed under FA for each Σ-ACP F, and

FB = FA
↾B.

This result turns out to be very useful for the rest of the paper, as we will see.
Next (Section 5) the paper deals with continuity of functionals. A functional F

on A = (A0, . . . , An) of type level 2 is said to be continuous if for any ϕ, x, y,

F (ϕ, x) ≃ y =⇒ ∃ finite ϕ̃ ⊆ φ : F (ϕ̃) ≃ y.

SF next states and proves the

Continuity Theorem (Theorem 2). If each basic functional Fk ofA is continuous,

then for each ACP F, FA is continuous.

The proofs of the Substructure and Continuity Theorems are (as one would
expect) by induction on the generation of F by the schemata. However they are far
from routine.

Next there is a small section (Section 6) on computation on first-order structures.
A signature Σ =

(
n, 〈σ̄k, ı̄k, jk〉1≤k≤m

)
is said to be first-order if σ̄k is empty

for k = 1, . . . ,m. In that case Σ-structures A = (A0, . . . , An, F1, . . . , Fm) are
first-order in the sense that each Fk has type level 1 or 0.

In that case also, all the Fk are vacuously monotonic and continuous, and so (by
the Monotonicity Lemma and Continuity Theorem) all ACPs over A are monotonic
and continuous.

Further, for computation on first-order structures, schema VII (for function sub-
stitution) can be omitted, since (as SF shows) if Σ is a first-order signature, then
the system ACP0(Σ) of ACPs over Σ obtained by omitting schema VII is closed
under that schema.

As an example, consider the “ur-structure for recursion theory”

N = (N, Sc, Pd , 0, Eq 0). (3.2)

where the booleans are coded as {0, 1}, Pd is the predecessor function withPd(0) =
0, and Eq 0 tests for equality with 0.

SF then states and proves the following interesting theorem. (For the concept
of “partial recursive (p.r.) functional”, see footnote 4.)

Theorem 5 (Characterizing ACP(N )).

22 As SF points out, this implies that F ↾B : Bσ̄ ×Bı̄
∼

→ Bj , but not conversely.
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(i) The ACPs of type level 1 over N are exactly the p.r. functions.
(ii) The ACPs of type level 2 overN are exactly the p.r. functionals when restricted

to total function arguments.
(iii) Every ACP of type level 2 over N is p.r. on partial function arguments, but

not conversely.

A counterexample for the failure of the converse for (iii) is given by the “strong or”

functional OR+ (cf. (1.1)) as shown by Platek [Pla66]. In fact, the equivalence

ACP(N ) + OR+ ⇐⇒ p.r. on PFn(N )

for level 2 functionals was proved by Winternitz.23

Next, SF defines the concept of partial recursive structure in N. This is a
structure of the form

(i) A = (A0, . . . , An, F1, . . . , Fm), where
(ii) each Ai ⊆ N, A0 = B = {0, 1}.
(iii) each Fk is the restriction to A = (A0, . . . , An) of a p.r. functional F ∗

k on N,
under which A is closed.

Using the Substructure Theorem, SF then derives:

Theorem 6 (ACPs of p.r. structures in N). Suppose A is a p.r. structure in

N of signature Σ. Then for each F in ACP(Σ), FA is the restriction to A of a p.r.
functional F ∗, and is (therefore) continuous.

This provides another version of Theorem 3 in [Fef92b, Sec. 11] (cf. §2 above).
To convey the significance of this result (and of the Substructure Theorem), let me
quote SF here:

Most examples of abstract data types . . . which contain partial recursive
structures are those whose domains are generated by finitely many fini-
tary operations, or are obtained from such by restriction, such as lists,
finites sets, finite trees, records, etc. . . .
[I]f A = {a0, a1, . . . , an, . . . } is any countable set, we can realize lists-
of-A’s as a partial recursive structure, no matter how A is identified as
a subset of N . . . For example, . . . A might be a nonrecursive subset
of N, such as the set of Gödel numbers of total recursive functions . . .
That is why no restriction was made on the Ai’s in the definition [of
p.r. structures in N] other than that they be subsets of N.

The next section (8) illustrates the theory of Section 7 with the ADT of lists over
a structure A. To quote SF: “The case of abstract computational procedures on
(relativized) list structures is paradigmatic for finitary data types in many respects,
and is useful for comparison with computation on infintary data types, of which
streams form the main example in this paper.”

SF shows how all the standard list operations can be defined as ACPs. He
presents a number of formulations of definition by list recursion, and demonstrates
the use of the Substructure Theorem in the case of p.r. list structures.

We will not describe this development in detail, moving rather on to the next
section (9) dealing with the infinitary data type of streams.

This (together with the following sections) is the most interesting part of the
paper. It deals with A-streams, or (potentially) infinite sequences of members of A.

23 This has already been discussed in [Fef77b] (cf. §1 above).
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Keeping to the framework of computation on ADTs, SF develops and investigates
the structure S of A-streams with basic sets A and S.

To quote SF: “[T]hough a standard interpretation of S consists of second-order
objects, in the present approach they are to be treated as first-order objects in S.”

However, treating streams as first-order objects, like lists, leads to trouble. For
consider an axiomatization of a first-order structure of streams:24

S(1) = (A, S, Cons, Hd , Tℓ) (3.3)

(the superscript “1” indicating a first-order structure) where

(i) A 6= ∅
(ii) Cons : A× S → S, Hd : S → A, Tℓ : S → S,
(iii) ∀a ∈ A∀s ∈ S

[
Hd(Cons(a, s)) = a ∧ Tℓ(Cons(a.s)) = s

]
.

As SF writes: “The main point against this is that these (and similar) conditions

do not uniquely determine S(1) up to isomorphism, given A. Two nonisomorphic
structures are obtained by interpreting S in the first instance to be the set (N → A)

of all functions from N to A, and in the second instance to be the subset (N
fin
→ A)

. . . of eventually constant functions.”

These two structures will be denoted here, respectively, by S(1)[N → A] and

S(1)[N
fin
→ A], the latter clearly a substructure of the former.

The second problem with this approach is that these conditions do not guarantee
closure under some standard computation procedures, such as recursion on streams.
One can easily find examples of recursively defined functions from N to A which are

are not in S(1)[N
fin
→ A], and hence (by the Substructure Theorem) also not ACPs

in S(1)[N → A].
The answer is to work with second-order stream structures. It will be shown

how to obtain functionals for (e.g.) recursion schemes for streams as ACPs on

second order stream structures S(2). It turns out that the simplest effective way to
construct such a structure is to adjoin to the stream signature a level 2 functional
Sim : (N → A) → S which simulates every function ϕ : N → A as a level 0 object
Sim(ϕ) ∈ S.

The next step is to extend the domain of Sim to include potentially infinite
streams. As SF says: “These arise naturally both from mathematical computations
and physical phenomena.” An example of the first kind is obtained by filtering an
infinite stream according a suitable condition on the items, where we may not know
in advance whether the condition applies to finitely or infinitely many items in the
stream. An example of the second kind is provided by irregularly received signals
from an extraterrestial source, where we do not know at any point whether there
will be any further signals.

Actually, the simplest and most elegant theory is obtained by allowing the do-
main of Sim to include all partial functions on N, giving rise to “gappy” streams,
from which the ACPs for potentially infinite streams can be obtained as a special
case. This leads to second-order structures of the form

S = (A, S, Cons, Hd , Tℓ, Sim , N ) (3.4)

where N is as in (3.2) and

(i) A 6= ∅,

24 Note that this is the stream structure (2.5) without the equalities.
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(ii) Cons : A× S → S, Hd : S
∼
→ A, Tℓ : S → S, Sim : (N

∼
→ A) → S,

(iii) ∀a ∈ A∀s ∈ S
[
Hd(Cons(a, s)) = a ∧ Tℓ(Cons(a.s)) = s

]
,

(iv) ∀ϕ ∈ (N
∼
→ A) ∀n ∈ N

[
Hd(Tℓn(Sim(ϕ))) ≃ ϕ(n)

]
, and

(v) s, s′ ∈ S ∧ ∀n
[
Hd(Tℓn(s)) ≃ Hd(Tℓn(s′))

]
=⇒ s = s′.

Let P-STREAM (“P” for “partial”) be the ADT of all such structures.

This is the starting point for the analysis of computation on streams in Section 10.
Since we are working with partial streams, a more refined concept of monotonicity
is required than that given earlier in this paper (Section 2), namely hereditary
monotonicity 25, requiring chain-completeness 26 of the partial orderings ⊆i on all
basic domains Ai.

Notation. For S as in (3.4), and s ∈ S, n ∈ N, a ∈ A, we write

• (s)n for Hd(Tℓn(s)),

• 〈a; s〉 for Cons(a, s), and

• s→ for Tℓ(s).

Then the partial ordering on the basic domains of S is defined by:

(i) s⊆S s
′ for ∀n[(s)n ↓ =⇒ (s′)n ↓ = (s)n].

(ii) ⊆A and ⊆N are equality on A and N.

This makes all three basic orderings in S chain-complete.
Now consider the general situation of a structure A as in (3.1) where all the basic

domains Ai (i = 1, . . . , n) have chain-complete partial orderings ⊆ i. We define, for
certain function types σ, the domains, orderings, and concepts of monotonicity for
that type.

First, taking σ = (̄ı
∼
→ j), Aσ is the set of all ϕ : Aı̄

∼
→ Aj which are monotonic,

in the sense that

∀x, y ∈ Aı̄,
[
ϕ(x) ↓ ∧ x⊆ı̄ y =⇒ ϕ(y) ↓ ∧ ϕ(x)⊆j ϕ(y)

]

(where the orderings ⊆ik on Aik are extended termwise to orderings ⊆ı̄ on Aı̄ in
the obvious way). Then the ordering ⊆σ on Aσ is defined by: for all ϕ,ψ ∈ Aσ:

ϕ⊆σ ψ ⇐⇒ ∀x ∈ Aı̄

[
ϕ(x) ↓ =⇒ ψ(x) ↓ ∧ ϕ(x)⊆j ψ(x)

]
. (3.5)

Next, monotonicity of level 2 functionals is defined by: F : Aσ̄ × Aı̄
∼
→ Aj is

monotonic if

∀ϕ,ψ ∈ Aσ̄ ∀x, y ∈ Aı̄

[
F (ϕ, x) ↓ ∧ ϕ⊆σ̄ ψ ∧ x⊆ı̄ y =⇒

F (ψ, y) ↓ ∧ F (ϕ, x)⊆j F (ψ, y)
]
. (3.6)

Note that the basic function(al)s of S are all monotonic.

Then for a level 2 type τ = σ× ı̄
∼
→ j, we can define the domain Aτ of monotonic

(partial) functionals of type τ , with the ordering27

F1 ⊆τ F2 ⇐⇒

∀ϕ ∈ Aσ̄ ∀x ∈ Aı̄

[
F1(ϕ, x) ↓ =⇒ F2(ϕ, x) ↓ ∧ F1(ϕ, x)⊆τ F2(ϕ, x)

]
. (3.7)

25 As in Platek’s finite type structures [Fef77b] (cf. §1 above and footnote 3).
26 I.e., any linearly ordered subset of Ai has a l.u.b in Ai.
27 Not given explicitly in [Fef92b].
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Note the similarity – and difference! – between the definitions given here ((3.5),
(3.6), (3.7)) and those in [Fef92b] (§2 above): ((2.2), (2.3), (2.4)), where (essentially)
it was assumed that the partial order on each basic domain is the identity.

Note also that the orderings defined in this way on these higher level domains
are chain-complete (assuming the basic orderings are). So the technique used in
§2 to construct LFPs and (hence) ACPs can be adapted to structures of the form
(3.1) with chain-complete basic orderings and monotonic basic functionals Fi. This
forms the basis of a least fixed point semantics for partial stream structures, using
a version of the LFP Monotonicity Lemma of Section 3.

In particular, this theory can be applied to P-STREAM , providing a justifica-
tion for the recursive schemes for defining ACPs on partial stream structures given
in Section 10, to which we turn below.

Discussion: Why a partial structure on streams?
There are two points here.

(1) We note above that the theory of LFPs is simpler when each basic domain has
the identity as (trivial) partial order, as was done in §2. But that would make
the basic functional Sim not monotonic.

(2) We could recover monotonicity for Sim by having total streams only in the
stream domain S. However, this would complicate the theory of recursion
schemes on streams. As SF says: “[T]he recursion schemata for partial streams
(such as needed for the Filter operation) come out much more simply than they
do for total streams.”28

First, we note that the ‘Sim ’ functional characterizes stream structures up to
isomorphism:

Categoricity Theorem for P-STREAM (Theorem 8).
Suppose structures S = (A, . . . ) and S ′ = (A′, . . . ) both satisfy conditions (i)–(v).
Then an isomorphism A ∼= A′ can be extended to an isomorphism S ∼= S ′.

Now SF turns to the problem of a general formulation of stream recursion. He
begins by stating: “By stream recursion we mean any general computational scheme
for producing streams as values.”

He does not attempt a single “most general” form (assuming that is even possi-
ble), but presents a number of schemes which have good practical applications, of
which I’ll give one example.

Note first that partialness (or “gappiness”) of streams is sometimes a looser
condition than we want. A more useful concept may be potential infiniteness,
where a stream s ∈ S is said to be potentially infinite (or “non-gappy”) if

∀n,m
[
(s)n ↓ ∧ m < n =⇒ (s)m ↓

]
.

We denote by Spotinf the subset of S consisting of these.

Let S+ = (S, . . . ) be an expanded structure with S ∈ P-STREAM .

Recursion Scheme (Theorem 10). Let C be a subset of one of the basic domains
in S+. Given ACPs G : C → A, H0, H1 : C → C and D : C → B over S+, we can
find an ACP F over S+ satisfying

(i) F : C → Spotinf,

(ii) F (c) =
[
if D(c) = tt then 〈G(c);F (H0c)〉 else F (H1c)

]
for all c ∈ C, and

28 As we will see with the recursion scheme shown below.
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(iii) if F ′ : C → Spotinf is any function satisfying (ii) then F (c) ⊆ F ′(c) for all c ∈ C.

As SF points out29: “While F solves a fixed-point equation (ii), it cannot be
described as its LFP, since that is the completely undefined function. Here, in
contrast, F is total and is characterized by (iii) among all total solutions of (ii) as
the one which is least pointwise in C.”

An interesting application of this scheme is the filtering operation with respect
to a predicate ϕ : A→ B, where

Filter : (A→ B)× Sinf → Spotinf

is defined by

Filter(ϕ, s) =

{
〈(s)0;Filter(ϕ, s

→)〉 if ϕ((s)0) = tt

Filter(ϕ, s→) otherwise.

This produces, from an infinite stream, a potentially infinite stream, which may
or may not actually be finite (“extensionally” speaking).

We turn to Section 11, dealing with the recursion-theoretic interpretation of
computation on stream structures over N – more precisely, structures for A-streams,
where A ⊆ N.

The standard realization for these takes S(A) = (N
∼
→ A). In particular, the

standard realization for A = N is

S(N) = (N, S(N), . . . )

as in (3.4) with A replaced by N, and Sim being the identity on (N
∼
→ N).

The substructure of S(N) induced by A ⊆ N is then

S(A) = (A, S(A), . . . )

with Sim the identity on (N
∼
→ A).

By the Categoricity Theorem forP-STREAM, every member S of P-STREAM

on A has S ∼= S(A). Further, applying the Substructure Theorem in Section 4 to
S(A), we have:

Substructure Theorem for S(A).

For each ACP F in Σ(P-STREAM ), S(A) is closed under FS(N), and

FS(N)
↾S(A) = FS(A).

Thus, for any A ⊆ N, a recursion-theoretic description of any ACP over S(A) is
obtainable simply as the restriction of that ACP over S(N). To clarify this: replace
S(N) by the structure

E(N) = (N, S(N), Eval , Sim , Sc, Pd , 0, Eq0).

where Eval : S(N) × N
∼
→ N is given by Eval(s, n) ≃ s(n). This structure is

easily seen to be equivalent to S(N), in the sense that every ACP over S(N) is
obtainable as one over E(N), and conversely.

Note that E(N) has two basic domains: A0 = N and A1 = S(N), of type levels
0 and 1 respectively. This suggests a straightforward interpretation of E(N) into
the finite type structure over N (cf. (3.2)), which contains only one basic domain,
A0 = N of level 0. By this interpretation, monotonic partial functionals over S(N)

29 In connection with another recursion scheme, but it is still appropriate here.
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(or E(N)) of type level 2 (or less) are identified with monotonic partial functionals
of type level 3 (or less) over N .

Hence, for a recursion-theoretic interpretation of ACPs over S(N), we need an
extension of the notion of partial recursiveness to functionals of type level 3 over
N .

This was provided by Ershov [Ers72] (as outlined in §1 above) in a structure
C ` = (C `

n )n with a notion of partial recursiveness for functionals of arbitrary

finite type, with hereditarily partial continuous arguments over C `

0 = N, based on
an abstract theory of f -spaces (a special kind of topological space).

This theory was then simplified by SF [Fef77b, Fef77a] to a “concrete” theory
PR/C ` of partial recursive continuous functionals of finite type, analogous to func-
tionals of hereditarily total continuous arguments [Kle59a, Kre59], using (again) a
system of formal neighbourhoods. The precise definitions are given in the paper.
The following result can then be obtained via Ershov’s theory of f -spaces [Ers72].
A simpler, direct proof 30 is possible via SF’s version of the theory indicated above.

Theorem (Closure of PR/C ` under ACP).
PR/C ` is closed under the extension of ACP schemata to arbitrary finite types.

It follows that ACPs over S(N) of level ≤ 2 can be re-interpreted as partial
recursive continuous functionals over N of level ≤ 3.

The paper has three appendices. I will only remark on Appendix B: Comparison
with the work of Tucker and Zucker. This concerns research that John Tucker and
I have done in a series of publications31 on many-sorted models of computation A.
One model over A that we have investigated is µPR∗(A), consisting of schemes
for primitive recursion over A∗ plus µ (the “constructive least number operator”),
where A∗ is formed by adding, to each carrier set A of A, a set A∗ of all finite
sequences from A (with associated basic operations). Note that to formulate this
model, we must assume that A includes, as a subalgebra, the algebra N of naturals
— or add it on. This model also forms a basis for a Generalized Church-Turing
Thesis 32.

SF noted that for first-order functions on A, µPR∗(A) ⊆ ACP(A∗). He con-
jectured the reverse inclusion, leading to the equality

µPR∗(A) = ACP(A∗).

This was proved in [XZ04], assuming a modification of SF’s LFP schemes (cf. §2
above) formed by replacing the simple LFP scheme (VIII) by a simultaneous LFP.
This is discussed further in the last of our four papers by SF (§4 below), to which
we now turn.

4. About and around computing over the reals

An overview of this paper is provided by the first section, in which SF sets
the stage by referring to a “very interesting and readable” article by Lenore Blum
[Blu04], which explains the so-called BSS model of computation over the reals due
to Blum, Shub and Smale [BSS89], expounded also in the well-known book by
Blum, Cucker, Shub and Smale [BCSS98].

30 Unfortunately never published (personal communication by SF).
31 See e.g. [TZ15] and the references therein.
32 Discussed further in §4 below.
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Blum claimed that the BSS model of computation on reals is the appropriate
foundation for scientific computing.

Braverman and Cooke [BC06] argued rather for a bit computation model, prima
facie incompatible with the BSS model. This goes back to ideas of Banach and
Mazur in the 1930s, improved by Grzegorczyk and Lacombe (independently, in
the 1950s). SF proposes rather to name these “effective approximation ” models of
computation. Later in this paper he discusses such models further (see below).

We should note that there are functions computable in each of these two models
which are not computable in the other.

We note also that the bit-computable model only computes continuous functions.
I consider this a positive rather than a negative property of the model, in keeping
with the continuity principle:

computability =⇒ continuity. (4.1)

This is related to Hadamard’s principle [Had52] which, as (re-)formulated by Courant
and Hilbert ([CH53, pp. 227ff.],[Had64]) states that for a scientific problem to be
well posed, the solution must (apart from existing and being unique) depend con-
tinuously on the data.33

On the topic of comparing models, I now quote SF extensively. He asks:

Despite their incompatibility, is there any way that these can both be
considered to be reasonable candidates for computation on the real num-
bers?

— and gives an “obvious answer”:

[T]he BSS model may be considered to be given in terms of computation
over the reals as an algebraic structure, while . . . the effective approxi-
mation model can be given . . . as a topological structure of a particular
kind, or alternatively as a second order structure over the rationals. But
all such explanations presume a general theory of computation over an

arbitrary structure.

He continues:

After explaining the BSS and effective [approximation] models respec-
tively in sections 2 and 3 below, my main purpose here is to describe
three theories of computation over (more or less) arbitrary strutures in
sections 4 and 5, the first due to Harvey Friedman, the second due to
John Tucker and Jeffery Zucker, and the third due to the author, adapt-
ing to earlier work of Richard Platek and Yannis Moschovakis. Finally,
and in part as an aside, I shall relate the effective approximation ap-
proach to the foundations of constructive analysis in its groundbreaking
form due to Errett Bishop.

SF concludes the Introduction by touching on the relevance of these structures to
scientific computation (or “numerical analysis”):

The justification for particular techniques varies with the areas of appli-
cation but there are common themes that have to do with identifying the
source and control of errors and with efficiency of computation. How-
ever, there is no concern in the literature on scientific computation with
the underlying nature of computing with the reals as exact objects. For,
in practice, those computations are made in “floating point arithmetic”

33 These issues are discussed in [TZ15, §7],[TZ11, §4.2.14].
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using finite decimals with relatiely few significant digits, for which com-
putation per se reduces to computation with rational numbers.

He also notes:

Besides offering a theory of computation on the real numbers, the main
emphasis in the articles [Blu04, BC06] and the book [BCSS98] is on the
relevance to the subject of scientific computation in terms of measures

of complexity . . . While complexity issues must certainly be taken into
account in choosing between the various theories of computation over the
reals on offer as a foundation for scientific computation, I take no position
as to which of these is most appropriate for that purpose. Rather, my
main aim here is to compare them on purely conceptual grounds.34

Section 2 provides a quick survey of BSS-type models. SF refers to [Blu04],
“a brief but informative description”, and to the more detailed description in
[BCSS98].

The BSS definition makes sense for any ring or field, including R, C, Rn, etc.,
making it an “algebraic conception of computability”:

This is reflected in the fact that inputs to a machine for computing a
given algorithm are unanalyzed entities in the algebra A, and that a
basic admitted step in a computation procedure is to test whether two

machine contents x and y are equal or not . . . [and] in case A is ordered,
. . .whether x < y or not.35

There are finite and infinite dimensional versions. An example of an algorithm
in this formalism in the finite-dimenional case is the Newton algorithmn for R or
C. An example for the infinite-dimensional case is testing whether a finite set of
polynomials over C have a common zero; this is related to the Hilbert Nullstellen-
satz.

It is pointed out in [BCSS98] that in the finite-dimensional case, a BSS algorithm
can be implemented as a form of register machine, and in the infinite-dimensional
case, as a form of Turing machine with 2-way infinite tapes. In the case of rings
and fields, only piecewise polynomial and rational functions (respectively) are com-
putable.

In the opposite direction, one may ask what BSS algorithms can actually
be carried out on a computer. Here Tarski’s decision procedure for the
algebra of real numbers is relevant, as it reduces a question of the Hilbert
Nullstellensatz type, concerning common roots of a set of polynomials,
to a quantifier-free condition on the their coefficients. On the face of it,
Tarski’s procedure runs in time complexity as a tower of exponentials.

This can be improved to doubly exponential upper bounds by the method of cylin-
drical algebra decomposition [CJ98].

In Section 3 , SF turns to effective approximation (EA) models. We consider
functions f : I → R, where I is a (finite or infinite) real interval.

There are two main approaches here:

(1) S-effective approximation: working with sequencess of approximating argu-
ments and values;

34 Emphasis added. Following SF, I shall focus on the real-computability aspect of
the various models, rather than their complexity-theoretical or scientific-computational
aspects.

35 Emphasis added.
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(2) P -effective approximation: approximating functions by polynomials.

To illustrate (1): Suppose f(x) = y. We work with a sequential representation
of x, i.e., a Cauchy sequence of rationals 〈qn〉 with limit x, to effectively determine
a Cauchy sequence 〈rn〉 of rationals with limit y. We may also assume the Cauchy
sequences are “fast”, i.e., |qn − x| ≤ 2−n. With the sequences 〈qn〉 and 〈rn〉 coded
as functions ϕ,ψ : N → N in a standard way, the S-effective approximation com-
putability of f reduces to finding an effectively computable functional F : NN → N

N

of type level 2 over N.
Writing P and T for the classes of partial and total functions (respectively) from

N to N: for “effective computability” of functionals F : P → P we can use Kleene’s
notion of partial recursiveness of functionals – as has already been done above in all
three previous papers.36 This definition ensures that F is monotonic and continuous
on P, and hence, as SF writes, “computable functionals F : T → T may be defined
as those partial recursive functionals whose value for each total function ϕ is a total
function F (ϕ).”

SF continues: “[T]here are several other ways of defining which are the com-
putable functionals F : T → T without appealing to the notion of partial recursive
functionals.” For example, Grzegorczyk [Grz55] used a generalization of Kleene’s
schemata [Kle52] for general recursive functions with both primitive recursion and
the least number operator.

In fact this notion of computable real function was shown by Grzegorczyk [Grz57]
to be equivalent to one formulated by him and Lacombe [Lac55] independently. In
the simple version stated in [PER89], this says (roughly) that a function from the
reals to the reals is computable if (i) it maps computable sequences of points to
computable sequences of points; and (ii) it satisfies an effective locally uniform
continuity condition. We call this Grzegorczyk/Lacombe (GL) computability. This
turns out to be equivalent to Weihrauch’s Type-2 Theory of Effectivity (TTE)
[Wei00]. To quote SF:

In my view, Kleene’s notion of partial recursive functional is the funda-
mental one, in that it specializes to Grzegorczyk’s (or Weihrauch’s) in
the following sense: if F is a partial recursive functional F : P → P, and
F |T , the restriction of F to T , maps T to T , then F |T is definable by
the Grzegorczyk schemata, as may easily be shown.

SF continues:

It is a consequence of the continuity of partial recursive functionals that
if F effectively represents a real-valued function f on its domain I, then
f is continuous at each point of I. . . . Thus, unlike the BSS model, the
order relation on R is not computable.

To formulate essentially the same phenomenon differently: In all versions of the
S-effective and P-effective computation theories on the reals considered here (GL,
Weihrauch, etc., and see the next section), and in contrast to the BSS model,
order and equality on the reals is not computable – specifically, equality on R is
co-semicomputable.

In Section 4 : The view from generalized recursion theory (g.r.t.) SF
considers two generalizations of recursion theory to arbitrary structures.

36 See footnote 4.
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First, there is Harvey Friedman’s adaptation of the register machine approach
[Fri71]. He dealt with structures of the form

A = (A, c1, . . . , cj , f1, . . . , fk, R1, . . . , Rm)

Comparing this to the stucture in (3.1) above, we note that (unlike the latter) there
is here only one domain A (to be changed later); and further (as in (3.1)) equality
is not necessarily assumed as a basic operation on A.

A finite algorithmic procedure (fap) π on A is given by a finite list of instructions
I1, . . . , It. There are also register names r0, r1, r2, . . . (functioning as variables),
with r0 reserved for output. The instructions include assignments to the ri and
branching on a conditional given by one of the Ri. The class of fap computable
functions is denoted by FAP(A).

For the structure N of naturals (as in (3.2)) FAP(N ) is equal to the partial
recursive functions.

This notion can be generalized to many-sorted structures A as in (3.1).
Friedman also introduced the class FAPC(A) (faps with counting over A), cor-

responding to FAP(A,N ), where (A,N ) denotes A augmented by N .
A further extension was made by Moldestad, Stoltenberg-Hansen and Tucker

[MSHT80b, MSHT80a] to incorporate stack registers in the model, producing the
structure FAPS(A) of faps with stacks over A, and FAPCS(A) of faps with count-
ing and stacks over A.

To bring this into the realm of the main concern of this article, consider the
structure of the reals

R = (R, 0, 1, +, −, ×, −1, =, < )

(with decidable equality and order). Friedman and Mansfield [FM92] showed the
equivalence of FAPS(R) to the BSS model.

SF also discusses my collaborative work with John Tucker (see, e.g., the lengthy
survey paper [TZ00] or the more recent [TZ15]) dealing with a high level ‘while’
programming language over abstract many-sorted algebras 37. It is assumed that
such an algebra A, of sort Σ, is standard in the sense of containing the sort of
booleans, with the standard boolean operations.

We also consider expansions of A: AN , which includes the algebra N of naturals,
and A∗, which includes (further) for each basic domain Ai of A, also a domain A

∗

i of
finite sequences of elements of A, with associated basic operations, having signatures
ΣN and Σ∗ respectively. For a signature Σ of such an algebra, we consider the
class of While(Σ) program statements generated by:

S ::= skip | x := t | S1 ;S2 | if b then S1 else S2 fi | while b do S0 od

where the variable x and term t have the sameΣ-sort. ThenWhile(A),WhileN (A)
and While∗ (A) are the classes of (partial) functions on A definable (respec-

tively) by While(Σ), While(ΣN ) and While(Σ∗) procedures. It follows from

37 We use “algebra” rather than “structure” to indicate that their signatures contain
function (and constant) but not relation symbols.
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[MSHT80a, TZ00] that for any standard algebra A,

While(A) = FAP(A)

WhileN (A) = FAPC(A)

While∗ (A) = FAPCS(A).

On the basis of this and other results, John Tucker and I have presented a gen-
eralized Church-Turing thesis for algebraic computability on standard many-sorted
algebras A involving While∗ computability on A [TZ15].

Remark (Compatibility between algebraic and EA models).
Recall the two approaches to computability on the reals signalled by SF at the
beginning of this article: algebraic (as exemplified by the BSS model) and effective
approximability (EA) (e.g., Grzegorczyk-Lacomb or Weierstrass). Our While∗

model would fall into the “algebraic” class. Let us call this approach to com-
putability on the reals “abstract”, and the EA approach “concrete”. There would
seem to be an incompatibility between the abstract and concrete approaches, since
in e.g. the BSS model, but not in the topological models, equality and order on the
reals are total and (hence) not continuous, but nonetheless computable. In the EA
(but not the BSS) models, equality and order are given as partial (boolean-valued)
operations, which are continuous, and also computable. This is in accordance with
the continuity principle discussed above (cf. (4.1)).

The point here is that by considering topological partial algebras on the reals, in
which the basic operations may be partial and are all continuous, we can recover
compatibility between abstract and concrete models.

In fact, in [TZ04] we proved the equivalence of abstract (computable) approx-
imability by While∗ programs augmented by a “countable choice” operator, and
concrete computability, on metric partial algebras, under restrictions of effective lo-
cally uniform continuity. This result applies, for example, to algebras such as a
partial version Rp of R.

In Section 5: The higher type approach , SF applies his theory ACP(A)
developed in [Fef92b, Fef96] (§§2,3 above) of abstract computation procedures over
many-sorted higher order algebras A to the special case A = N . Recall that
these ACPs are monotonic, continuous, partial functionals generated by schemata,
including (notably) a schema for the least fixed point functional. Further, the sets
ACP1(N ) and ACP2(N ) of ACPs of levels 1 and 2 over N correspond to Kleene’s
partial recursive functions and functionals at these levels.38

The interesting point here is that the reals are taken, not as elements of one of
the basic domains Ai, but as functions of type level 1, f : N → N, representing
effective Cauchy sequences of rationals (under suitable coding).

Let us write Rep for the class of such functions f, g, . . . . Under this representa-
tion, the computable functions over the reals can be identified with those functionals
in ACP2(N ) which map Rep to Rep, preserving the ‘≡’ relation on Rep, where
f ≡ g means that their corresponding Cauchy sequences have the same limit. To
quote SF again:

So now the S-approximation theory of effective computability of func-
tions of real numbers is explained essentially as in sec. 3 above in terms

38 See footnote 4.
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of total recursive functionals in ACP
2(N ). . . . Thus abstract computa-

tion procedures provide another way of subsuming the two approaches
to computation over the real numbers at a basic conceptual level. Of
course, this in no way adjudicates the dispute over the proper way to
found scientific computation on the real numbers or to deal with the
relevent questions of complexity.

SF makes one more important point in this section: how the above illustrates
the difference between extensional and intensional aspects of computation.

On the face of it, the BSS approach is extensional, while that of S-
effective approximation theory is intensional in its essential use of Rep

and ≡ on Rep. But there is an even more basic difference . . . Namely,
functions f, g, h, . . . there are tacitly understood in the usual set-theoretic
sense for which the extensionality principle . . . holds, i.e., if f(n) = g(n)
for all n in N, then f = g. By the intensional recursion-theoretic in-

terpretation of ACP(N ) I mean what one gets by taking the function
variables f, g, h, . . . to range instead over indices of partial recursive func-
tions . . . . Now one proves inductively for this interpretation that each
F in ACP

2(N ) preserves extensional equality and hence is an effective
operator in the sense of Myhill and Shepherdson (1955), i.e., if f ≡ g

then F (f) ≡ F (g). . . . . In the end, when speaking about actual com-
putation, we have intensionality throughout, since computers only work
with finite symbolic representations of the objects being manipulated.

Finally, Section 6: the Bishop approach to constructive analysis is in-
teresting, in that it is the only approach to computing on the reals discussed in this
paper which is based on an informal notion of computation. This comes from an
investigation into the concept of constructive analysis carried out by Errett Bishop
in his book [Bis67] and his book with Douglas Bridges [BB85]. SF gives a good
summary of the philosophical and technical aspects of this program, the details of
which I omit here.

Briefly, the point of Bishop’s constructive mathematics (hereinafter BCM) is
that existential assertions must produce witnesses of an existential claim. These
witnesses then provide a constructive function of the other parameters of the prob-
lem. The problem, however, is (to quote SF again in extenso):

What is not clear from Bishop’s [Bis67] or that of Bishop and Bridges
[BB85] is how the computational content of the results obtained is to
be accounted for in recursion-theoretic terms, in the sense of ordinary
or generalized recursion theory as discussed in secs. 3–5 above. From
the logical point of view, this may be accomplished by formalizing the
work of [BB85] (and BCM more generally) in a formal system T that
has recursive interpretations. A variety of such systems were proposed
in the 1970s, first by Bishop himself and then by Nicholas Goodman,
Per Martin-Löf, John Myhill, Harvey Friedman and me, and surveyed in
[Fef79] . . . (cf. also [Bee85]).

About these formal systems, SF continues:

Roughly speaking, those account for the computational content of [Bis67]
in two different ways: the first treats witnessing information implicitly
and depends for its extraction on the fact that the systems are formalized
in intuitionistic logic, while the second kind treats witnessing informa-
tion explicitly as part of the package explaining each notion and does
not require the logic to be intuitionistc. For the first kind of system,
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the method of extraction is by . . . the method of recursive realizability
introduced by Kleene or by the use of (recursive) functional interpreta-
tions originated by Gödel. Only the system T0 of Explicit Mathematics
introduced in [Fef75], and applied to BCM in [Fef79] is of the second
kind . . .

I omit a description of T0 except to say that it has variables of two kinds, for
individuals and classes, and the basic relation between individuals, besides identity,
is the 3-place relationApp(x, y, z), with the meaning {x}y ≃ z in ordinary recursion
theory.

Then case studies of typical arguments in BCM show that it can be formalized
in a subsystem of T0 of the same strength as Peano Arithmetic [Fef79]; in fact,
work of Feng Ye [Ye00] suggests that this can already be done in a subsystem of
the strength of Primitive Recursive Arithmetic.

Turning finally to the issue of feasibility, let SF have the last word on BCM:

[T]he practice of Bishop style constructive analysis needs to be examined
directly for turning its results that predict computability in principle to
ones that demonstrate computability in practice. Presumably all of the
specific methods of scientific computation are subsumed under Bishop
style constructive mathematics. Assuming that is the case, here is where
a genuine connection might be made between constructive mathemat-
ics, the theory of computation, and scientific computation, which puts
questions of complexity up front.

Conclusion

This brings to a close my view of SF’s groundbreaking work in generalized com-
putability theory, by means of a close look at four of his papers through the years.

Lack of time and space have prevented discussion of more papers. Let me at least
recommend one of his last papers [Fef15], in which he considered various proposals
for generalizing the Church-Turing Thesis to concrete and abstract structures.
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