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We compare models of computation for partial functions f : R ⇀ R. We consider four 
models: two concrete (Grzegorczyk–Lacombe and tracking computability), one abstract 
(approximability by a While program with “countable choice”) and a new hybrid model: 
multipolynomial approximability. We show that these four models are equivalent, under 
the two assumptions:

(1) the domain of f is the union of an effective exhaustion, i.e. a sequence of “stages”, each 
of which is a finite union of disjoint rational open intervals, and

(2) f is effectively locally uniformly continuous w.r.t. this exhaustion.

These assumptions seem to hold for all unary elementary functions of real analysis, many 
of which are, of course, partial. We make a conjecture with regard to this.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

1.1. Background

In this paper we study computability of partial functions on the reals. We develop and compare a number of models of 
computability for such functions.

Previous work on comparing models of computability (for example, [19,23]) has tended to concentrate on computability 
models for total functions on R. However, many of the well-known functions of elementary real analysis, which would 
certainly be considered as computable, are partial; for example, the rational, log and trigonometric functions. It is therefore 
essential that a study of models of computability on R should include such functions in its considerations.

In fact, we will study partial functions1 f : R ⇀ R, subject to certain assumptions on their domain, which seem to be 
satisfied by all functions of the kind listed above.

Now models of computation on R can generally be divided into two classes: abstract and concrete. Abstract models of 
computation are independent of data representations. Concrete models, on the other hand, depend on a choice of data rep-
resentation, usually constructed from the natural numbers N, so that computation on an algebra is reduced to computation 
on N [20,22,23].
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The abstract models that we consider are based on a high level While imperative programming language [21,22].
There are two familiar concrete models that we investigate: Grzegorczyk–Lacombe (GL) [7,8,12,15] and tracking com-

putability [22,23].
We also consider another class of models: polynomial, or rather, in our case, multipolynomial approximability. This can be 

viewed as a hybrid model.

1.2. Comparison with case of total functions

The present paper can perhaps best be understood against the background of the paper [23]. We first summarize what 
was done in that paper. Five models of computation on R were investigated for total functions:

(i) Grzegorczyk–Lacombe (GL) computability,
(ii) tracking computability,

(iii) effective locally uniform (Q-)polynomial approximability,
(iv) WhileCC approximability on a partial topological algebra R,
(v) local uniform While approximability on a total topological algebra Rt .

First, a brief explanation of these models. (More detailed descriptions will be given below.) Models (i) and (ii) are well 
known concrete models. Model (ii) uses a “tracking function” on N according to a standard enumeration α of the rationals, 
and (hence) an enumeration α of the computable reals. Models (iv) and (v) are abstract computation models, based on 
a While programming language. WhileCC is a nondeterministic extension of While which incorporates countable choice, 
i.e., nondeterministic choice of a natural number satisfying a given predicate. The algebras R and Rt are both topological 
algebras on R: R is a partial algebra, which includes partial equality, order and the inverse operation on the reals as basic 
functions, and Rt is a total algebra, without these partial operations (and with the inverse operation restricted to naturals: 
see Remark 4.9.2).

In [23] all five computation models were shown to be equivalent, for functions f :Rm→R (m > 0) that are (a) total or, 
more generally, defined on a closed interval (or product of intervals, in the case m > 1), and (b) effectively locally uniformly 
continuous.

In the present paper, we attempt to generalize these results to the case that f need not be total. In fact we make two 
global assumptions on f :

(a) Domain exhaustion: The domain U of f is the union of an effective open exhaustion, i.e., an effective sequence of stages
(U0, , U1, U2, . . .), where2 for � = 0, 1, 2, . . . , U� ⊆ U�+1 and U� is a finite union of rational open intervals I�1, . . . , I

�
k�

with disjoint closures, the components of the stage U�; and
(b) Continuity: The function f is effectively locally uniformly continuous with respect to this exhaustion.

So the “totality” assumption of [23] has been replaced by a more general “domain exhaustion” assumption.
These two assumptions appear to hold for all unary elementary functions on R [9]. In Section 5.4 we present this as a 

conjecture.
A weaker version of the domain exhaustion assumption is considered in Section 5.2.
The important thing to note here is that dom( f ) is (in general) no longer connected as a subspace of R, as is guaranteed 

by the totality assumption in [23]. This invalidates, or at least complicates, some of the earlier arguments used in [23] to 
prove the equivalences listed above. We list three significant issues:

(1) Polynomial approximability is no longer an appropriate computation model. Instead we consider (effectively locally 
uniform) multipolynomial approximability, in which each multipolynomial approximant q� is the union of a tuple of 
polynomials (p�

1, . . . , p
�
k�

), where dom(p�
i ) = I�i , the closure of the i-th component of the stage U� (i = 1, . . . , k�).

(2) Since connectedness of dom( f ) is no longer assumed, the proof of equivalence of While(Rt) approximability with the 
other four models listed above fails. (Cf. [23, Lemma 3.2.18], where connectedness of dom( f ) is crucial in the main step 
in the proof of (v) ⇒ (iii).) In fact it is unknown whether equivalence of While(Rt) approximability with these other 
models still holds. In any case, this model (v) is left out of consideration here.

(3) The analogue to the argument (iii) ⇒ (i) in the present paper extends the domains of the multipolynomials q� from the 
(the closure of) stage U� to U using linear interpolation.3 This only works if f is a function of one variable only, i.e., 
f : Rm ⇀ R only for m = 1 (unlike the case in [23]). More fundamentally, even the definition of “effective exhaustion” 
for m > 1 presents a challenge.4

2 V denotes the topological closure of a set V .
3 See proof of Equivalence Lemma 1 in Section 2.5.
4 This has been investigated in [6].
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We must emphasize that the two global assumptions presented here are not intended as definitive characterizations of 
computable partial functions. They are intended rather as a useful generalization of the “totality” assumption of [23], which 
applies (apparently) to all elementary functions (cf. the conjecture in Section 5.4(2)). On the other hand, an investigation of 
the relationship of our models to (say) Weihrauch’s Type Two computable functions on R could well lead to a consideration 
of functions with domains more general than open sets, namely Gδ sets [25, p. 122, Ex. 18(b, c)].

1.3. Overview

Recall that we are considering partial functions f : R ⇀ R, satisfying the domain exhaustion and continuity assumptions 
((a) and (b) in Section 1.2 above). We shall prove, under these two global assumptions, the equivalence of the first four 
models (i)–(iv) listed in Section 1.2, with (in (iii)) polynomial approximability replaced by multipolynomial approximability. 
In other words, we shall prove the

Equivalence Theorem. Given a partial function f : R ⇀ R, and an effective exhaustion (U�) of dom( f ), suppose f is effectively 
locally uniformly continuous w.r.t. (U�). Then the following are equivalent:

(i) f is GL-computable w.r.t. (U�),
(ii) f is tracking computable,

(iii) f is effectively locally uniformly multipolynomially approximable w.r.t. (U�),
(iv) f is WhileCC approximable on R.

We will prove this Equivalence Theorem by means of three Equivalence Lemmas stating the equivalence of pairs of these 
models, as follows: Lemma 1: (i) ⇔ (iii), Lemma 2: (i) ⇔ (ii), and Lemma 3: (ii) ⇔ (iv), as we now discuss in more detail.

In Section 2 we present our first concrete computation model on R: GL (Grzegorczyk–Lacombe) computability. Next we 
define the concept of multipolynomial approximability. This is a new model, not considered in [23], which enables us to 
generalize the equivalence results to functions on R whose domains are not assumed to be connected5 (but satisfy at least 
the domain exhaustion assumption). We prove Equivalence Lemma 1: the equivalence between GL computability and mul-
tipolynomial approximability, and illustrate the multipolynomial approximability given by this proof for some well-known 
GL-computable partial functions on R, using Maple 15.

In Section 3 we present our second concrete model: α-tracking computability. We prove Equivalence Lemma 2, the 
equivalence between the two concrete models: GL and α-tracking computability.

In Section 4, in preparation for our abstract model, we develop basic concepts connected with topological partial algebras, 
and in particular the topological partial algebra R of reals. We then give the basic machinery for our abstract computation 
models on R: the While programming language over R. We also present the WhileCC language, which extends While with 
a nondeterministic “countable choice” command. We further consider an extensions of these languages with auxiliary real 
array variables, to form the languages While∗ and WhileCC∗ . These extensions are convenient for practical programming, but 
inessential from the viewpoint of theoretical computational power,6 and so we will write While(∗) and WhileCC(∗) for the 
language with or without these array variables. The appropriate notion of abstract computability turns out to be WhileCC(∗)

approximability.
We then prove Equivalence Lemma 3: the equivalence of the abstract model (WhileCC(∗) approximability) with the 

concrete model (α-computability). This was actually proved in [22] for a more general class of algebras. It can be viewed as 
a completeness theorem for our abstract model with respect to the concrete model.

By means of these three Equivalence Lemmas, we derive the Equivalence Theorem stated above.
In Section 5, we first (Section 5.1) summarize the results presented here, and discuss some related work. We then 

(Section 5.2) discuss a weak version of the domain exhaustion assumption, essentially the one used in [22,23]. With this 
version, it is possible to prove the equivalence of the models considered here other than multipolynomial approximability, 
even for functions f : Rm ⇀ R for m > 1. Next, in Section 5.3, we prove an invariance result for the global assumption (b) 
(continuity) with respect to assumption (a) (domain exhaustion).

Finally (Section 5.4) some ideas for future work are presented. The most interesting and important one we believe to be 
the extension of our equivalence theorem to functions of more than one argument, as discussed above (Section 1.2(3)).

Another interesting topic in Section 5.4 concerns our conjecture that all unary elementary functions satisfy the two 
global assumptions.

2. Exhaustions; GL computability; multipolynomial approximability; Equivalence Lemma 1

We define the concept of exhaustion, which is crucial for our work. Then we review one well-known concrete computa-
tion model: Grzegorczyk–Lacombe (GL) computability, and introduce a new model, multipolynomial approximability. Finally, 
we give the Equivalence Lemma that connects the above two models.

5 See point (1) in Section 1.2 above.
6 At least for computation on R.
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First, a note on codings.

2.1. Codings; computability of functions and predicates on Q

We can define, in a standard way, surjective numerical codings of the sets N2, N∗ , Z and Q. We write 〈x, y〉 for the code 
of a pair (x, y) ∈N2, 〈x1, . . . , xn〉 for the code of a tuple (x1, . . . , xn) ∈N∗ (n ≥ 0), and more generally, �x� for the code of an 
element x of Z, Q, etc.

A function or predicate of rationals r1, r2, . . . is called computable or effective or decidable if the corresponding function 
or predicate of codes �r1�, �r2�, . . . is computable (or recursive).

A predicate of rationals r1, r2, . . . is called semicomputable if the corresponding predicate of codes �r1�, �r2�, . . . is semi-
computable (or r.e.).

2.2. Exhaustions; local approximability and continuity

Definition 2.2.1 (Exhaustion). Let U be an open subset of R, and (U0, U1, U2, . . .) a sequence of open subsets of R, such that

(1) U =⋃∞
�=0 U� ,

(2) for � = 0, 1, 2, . . . , U� is a finite union of non-empty open finite intervals I�1, I
�
2, . . . , I

�
k�

(k� ≥ 1) whose closures are pairwise 
disjoint,7 and

(3) U� =⋃k�

i=0 I�i ⊆ U�+1 for � = 1, 2, . . . .

Then the sequence (U�) is called an exhaustion of U , and for each �, U� is a stage of the exhaustion, with components
I�1, . . . , I

�
k�

.

Definition 2.2.2 (Effective exhaustion). An exhaustion (U�) of U is called effective if for all �, the components I�i are rational, 
i.e., I�i = (a�

i , b
�
i ), where a�

i , b
�
i ∈Q (i = 1, . . . , k�), and b�

i < a�
i+1 (i = 1, . . . , k� − 1), and the map

� �→ 〈
k�,�a�

1�,�b�
1�, . . . ,�a�

k�
�,�b�

k�
�
〉

which delivers the sequence of stages

U� = I�1 ∪ · · · ∪ I�k�

is recursive.

Remark 2.2.3. From Definition 2.2.1(3) it follows that the components I�i have the following covering property:

∀� ∀i ∈ {1, . . . ,k�} ∃ j ∈ {1, . . . ,k�+1}
(

I�i ⊆ I�+1
j

)
.

Now consider a partial function f :R ⇀R, with domain U , which is the union of an open exhaustion (U�).

Definition 2.2.4 (Local uniform continuity). f is locally uniformly continuous w.r.t. (U�) if ∀� ∀ε > 0 ∃δ > 0 ∀x, y ∈ U�

|x− y|< δ �⇒ ∣∣ f (x)− f (y)
∣∣ < ε.

This definition can be effectivized:

Definition 2.2.5 (Effective local uniform continuity). f is effectively locally uniformly continuous w.r.t. an effective exhaustion 
(U�) if there is a recursive function M: N2→N such that for all k, � and all x, y ∈ U�

|x− y|< 2−M(k,�) �⇒ ∣∣ f (x)− f (y)
∣∣ < 2−k.

Now consider a sequence of functions fn: R ⇀ R, all with the same domain dom( fn) = U , the union of an effective 
exhaustion (U�).

7 I.e., they don’t even have any endpoints in common.
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Definition 2.2.6 (Effectively locally uniformly continuous sequence). The sequence ( fn) is effectively locally uniformly continuous 
w.r.t. (U�) if there is a recursive function M: N3 ⇀N such that for all k, �, n and all x, y ∈ U�

|x− y|< 2−M(k,�,n) �⇒ ∣∣ fn(x)− fn(y)
∣∣ < 2−k.

For the rest of this paper, we investigate the computability properties of functions f : R ⇀ R, satisfying the following 
global assumptions on f :

Global Assumptions. The function f : R ⇀R satisfies:

(a) Domain exhaustion: The domain U of f is a union of an effective exhaustion (U�) (cf. Definition 2.2.2):
(b) Continuity: f is effectively locally uniformly continuous w.r.t. (U�).

2.3. GL-computability

The following six definitions are adapted from [15, Ch. 0], where the domains of f and fn were assumed to be products 
of intervals: Rm or [0, 1]m (m > 0).

We assume below that the functions fn , like f , all have domain U .

Definition 2.3.1 (Computable sequence of reals). A sequence of real numbers (xn) is computable iff there exists a computable 
double sequence of rationals (rnk) such that for all n, k:

|xn − rnk| ≤ 2−k.

Definition 2.3.2 (Sequential computability of function). f is sequentially computable on U if f maps every computable sequence 
of reals xn ∈ U into a computable sequence ( f (xn)) of reals.

Definition 2.3.3 (Sequential computability of sequence of functions). The sequence ( fn) of functions is sequentially computable 
on U if for any computable sequence (xk) of reals in U , the double sequence ( fn(xk)) of reals is computable, i.e. there exists 
a computable triple sequence (rnkj) of rationals, such that for all n, k, j,∣∣rnkj − fn(xk)

∣∣ < 2− j.

Definition 2.3.4 (GL-computability). f is GL-computable w.r.t. (U�) iff:

(1) f is sequentially computable on U , and
(2) f is effectively locally uniformly continuous w.r.t. (U�).

Definition 2.3.5 (GL-computable sequence). The sequence ( fn) is GL-computable w.r.t. (U�) iff:

(1) ( fn) is effectively locally uniformly continuous w.r.t. (U�), and
(2) ( fn) is sequentially computable on U .

Remark 2.3.6 (Definition of GL-computability).

(1) Condition (1) in Definition 2.3.5 is subsumed under the global assumption (b).
(2) Our definition is a modification of the original one [7,8,12,15] which assumes not only totality, but also effective global 

uniform continuity of f .

Definition 2.3.7 (Effective local uniform convergence). The sequence ( fn) converges to f ( fn → f ) effectively locally uniformly 
w.r.t. (U�) iff there is a recursive function M :N2→N such that for all k, �, n and all x ∈ U� ,

n≥ M(k, l) �⇒ ∣∣ fn(x)− f (x)
∣∣ < 2−k.

Lemma 2.3.8 (Closure of GL-computability under effective local uniform convergence). If ( fn) is a GL-computable sequence w.r.t. (U�), 
and fn→ f effectively locally uniformly w.r.t. (U�), then f is GL-computable w.r.t. (U�).

Proof. This adapts the proof in [15, Ch. 0, Thm 4] of the closure of GL-computability under effective uniform convergence 
on closed finite intervals. Note that by Definition 2.2.1, U� ⊆ U�+1 for all �, and so we can apply to the compact stages U� , 
the arguments given in the proof in [15] concerning effective uniform continuity and convergence on the compact domain 
of the functions there. �
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2.4. Multipolynomial approximability

Note that by “polynomial” we will always mean Q-polynomial, i.e. polynomial with rational coefficients.

Definition 2.4.1 (Multipolynomial). Given a finite sequence of polynomials (p1, p2 . . . , pk) and a sequence of open intervals 
(I1, I2 . . . , Ik) with disjoint closures, we define a (Q-)multipolynomial q(x) with domain 

⋃k
i=1 Ii as follows:

q(x)�

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

p1(x) if x ∈ I1

p2(x) if x ∈ I2

...

pk(x) if x ∈ Ik

↑ otherwise.

(Here ‘�’ means that both sides are either defined and equal, or undefined.) We denote this multipolynomial by

q= [p1 � I1, . . . , pk � Ik].

Definition 2.4.2 (Effective sequence of multipolynomials). Given an effective exhaustion (U�) of U , with U� = I�1 ∪ · · · ∪ I�k�
, and 

an effective sequence of tuples of polynomials (p�
1, . . . , p�

k�
) (� = 0, 1, 2, . . .), the sequence (q�), where

q� =
[

p�
1 � I�1, . . . , p�

k�
� I�k�

]
, (2.1)

is called an effective sequence of multipolynomials.

Definition 2.4.3 (Effective local multipolynomial approximability). Given f : R ⇀ R, and an effective exhaustion (U�) of U =
dom( f ), with U� = I�1 ∪ · · · ∪ I�k�

, we say that the effective sequence of multipolynomials (q�) (as in (2.1)) converges to f

(q�→ f ) effectively locally uniformly w.r.t. (U�) if there is a recursive function M: N2 → N such that for all k, �, n, and all 
x ∈ U�:

n≥ M(k, �) �⇒ ∣∣qn(x)− f (x)
∣∣ < 2−k.

We also say: f is effectively locally multipolynomially approximable by (q�) w.r.t. (U�).

Note the difference between effective local uniform approximation by a sequence of functions ( fn) and by a sequence of 
multipolynomials (q�) (Definitions 2.3.7 and 2.4.3): the domains of all the fn are U , whereas the domain of each q� is U � .

2.5. Equivalence between GL-computability and multipolynomial approximability

We present the first of our three Equivalence Lemmas.
Recall the global assumptions of domain exhaustion and continuity on f : R ⇀ R. Let (U�) be an effective exhaustion of 

dom( f ).

Equivalence Lemma 1 (GL-computability and multipolynomial approximability). The following are equivalent:

(i) f is effectively locally uniformly multipolynomially approximable w.r.t. (U�),
(ii) f is GL-computable w.r.t. (U�).

Proof. We first prove (i) ⇒ (ii). So suppose f is effectively locally uniformly multipolynomially approximable by (q�)

w.r.t. (U�).
First we extend each q� to a function f� with domain U , by linear interpolation between the components: Suppose

q� =
[

p�
1 � I�1, . . . , p�

k�
� I�k�

]
,

where I�i = (a�
i , b

�
i ) and b�

i < a�
i+1 for i = 1, . . . , k� − 1. Define

f�(x)�

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

p�
i (x) if x ∈ I�i (i = 0, . . . ,k� − 1)

(p�
i+1(ai+1)−p�

i (bi))(x−bi)

ai+1−bi
+ p�

i (bi) if x ∈ U , b�
i < x < a�

i+1

p�
1(a

�
1) if x ∈ U , x < a�

1

p�
k�

(b�
k�

) if x ∈ U , x > b�
k�
↑ if x /∈ U .
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Fig. 1. Multipolynomial approximation for 1/x (�= 5).

Note the following:

(1) Each f� is GL-computable, and in fact, ( f�) is a GL-computable sequence of functions. This uses a “patching theorem” 
[15, p. 32, Thm. 2].

(2) f�→ f effectively locally uniformly w.r.t. (U�). To prove this, note that for any x ∈ U , there exists � such that x ∈ U� . 
Then ∀n ≥ �, fn � U� = qn � U� , and so fn(x) = qn(x).

Hence by Lemma 2.3.8, f is GL-computable w.r.t. (U�).
Note that the above construction of the approximating functions f� by linear interpolation cannot be extended to an 

obvious way to functions f :Rm ⇀R for m > 1. We return to this in Section 5.4.
Next we prove (ii) ⇒ (i). Here we adapt the proof of the Effective Weierstrass Theorem [15, Ch. 0, Sec. 7] as follows.
Suppose f is GL-computable w.r.t. (U�). For each � and each i = 1, . . . , k� , apply this theorem [15, p. 45] to the closed 

interval I�i , to get a polynomial p�
i which approximates f � I�i uniformly on I�i by ≤ 2−� , i.e.,

∀x ∈ I�i ,
∣∣p�

i (x)− f (x)
∣∣≤ 2−�.

Now define the sequence of multipolynomials (q�) as in (2.1). Then f is effectively locally uniformly multipolynomially 
approximable by (q�) w.r.t., (U�), as desired. �

In the following two examples (illustrated using Maple 15), we adapt the construction of polynomial approximations 
given in [15, Ch. 0, Sec. 7] to the (non-connected) domains U� .

Example 2.5.1 (Multipolynomial approximations). Consider the functions f with domain U , where

(1) f (x) = 1/x, U =R\{0}.
Let

U� =
(

I�1, I�2
)
,

where

I�1 =
(
−�,−1

�

)
, I�2 =

(
1

�
, �

)
, �= 1,2,3, . . .

In Fig. 1 the multipolynomial approximant q� for f is shown for � = 10.
(2) f (x) = tan(πx/2), U = {x ∈R | x �= 2k + 1, k ∈ Z}.

Let

U� =
�⋃ (

2i − 1+ 1

�+ 1
,2i + 1− 1

�+ 1

)
, �= 0,1,2, . . .
i=−�
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Fig. 2. Multipolynomial approx. for tan(πx/2) (�= 1).

In Fig. 2 the multipolynomial approximant q� for f is shown for � = 1.

Remark 2.5.2.

(1) It is clear that polynomial approximability as in e.g. [15] would be inappropriate here, where dom( f ) is not an interval.

(2) We use the polynomial approximation sequences (p�
i ) as defined in [15] for f � I�i . Then, from these p�

i we define the 
multipolynomial sequences q� . Note however that the multipolynomials obtained by the formula in [15] have coeffi-
cients which are (computable, but) not rational. To obtain Q-multipolynomials as required by Equivalence Lemma 1, we 
must further approximate the polynomials p�

i obtained as above by Q-polynomials which approximate them uniformly 
on I�i by 2−� . This is straightforward, and we omit details.

(3) It would be interesting to investigate whether other polynomial sequences commonly used in approximation theory 
would give better results.

3. Tracking computability; Equivalence Lemma

In this section, we present our second concrete computation model: (α-)tracking computability (or just α-computability), 
and prove its equivalence to GL-computability.

This model arose [22–24] as a natural generalization, to not necessarily effective structures, of Mal’cev’s numbering 
theory [13] (see Remark 3.1.7).

3.1. Tracking computability

We fix a standard enumeration of Q, i.e., a bijection α: N ≈Q, under which the field operations on Q are all primitive 
recursive. In order to construct a satisfactory model of concrete computability on R, we must first construct from α an 
enumeration α of a more extensive subset of R than Q, namely the (α-)computational closure of Q, as we now explain.

Definition 3.1.1 (Computable reals). First, we define the α-computational closure of Q, i.e., the set Rc of α-computable reals, 
where

Q⊂Rc ⊂R,

with an enumeration8

α:Ω �Rc.

The set Ω ⊂N consists of codes for Rc , i.e. pairs of numbers c = 〈e, m〉, where

8 ‘�’ denotes a surjection.
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(1) e is an index for a total recursive function {e}: N →N defining a Cauchy sequence

α
({e}(0)

)
, α

({e}(1)
)
, α

({e}(2)
)
, . . . , (3.1)

of elements of Q, and
(2) m is an index for a computable modulus of convergence for this sequence:

∀k, l ≥ {m}(n) : ∣∣α({e}(k)
)− α

({e}(l))∣∣ < 2−n. (3.2)

For any such code c = 〈e, m〉 ∈Ω , α(c) is defined as the limit in R of the Cauchy sequence (3.1), and Rc is the range of α.

Definition 3.1.2 (α-tracking function). Given two functions f : R ⇀ R and ϕ : N ⇀ N, we say that ϕ is an α-tracking function
for f if the following diagram commutes:

Rc

α

f � Rc

ϕ � Ω

Rc

α

Ω Ω�

�

� �

in the sense that for all k ∈Ω ,

(i) f (α(k)) ↓ �⇒ ϕ(k) ↓ ∧ f (α(k)) = α(ϕ(k)), and
(ii) f (α(k)) ↑ �⇒ ϕ(k) ↑.

Definitions 3.1.3 (α-computability and semicomputability).

(a) The function f : R ⇀R is α-computable if it has a recursive α-tracking function.
(b) A subset of R is α-semicomputable if it is the domain of an α-computable function.

Remark 3.1.4 (α-semicomputable sets). It is easy to see that the union of an effective open exhaustion is α-semicomputable. 
Hence also the domain of any function satisfying the domain exhaustion assumption (global assumption (a), Section 2.2) is 
α-semicomputable.

Remark 3.1.5 (Terminology for α-tracking function and α-computability). In [22,23], the concept defined in Definition 3.1.2
was called a “strict α-tracking function”, whereas an “α-tracking function” only had to satisfy condition (i). (“Strict 
α-computability” and “strict α-semicomputability” were defined accordingly.) However, these two concepts coincide for any 
function whose domain is α-semicomputable [22, Lemma 10.2.4], and hence, by Remark 3.1.4, for any function satisfying 
our global assumptions.

Remark 3.1.6 (Fast Cauchy sequences). As explained in [22], we get an equivalent theory if we assume (by effectively taking 
subsequences) that the sequences (3.1) are fast Cauchy sequences, i.e., the modulus of convergence is always the identity 
function on N, so that (3.2) becomes

∀n,∀k > n : ∣∣α({e}(k)
)− α

({e}(n)
)∣∣ < 2−n

and so we can work with “e-codes” instead of “c-codes” as elements of Ω .

Remark 3.1.7 (Mal’cev numberings). From the perspective of Mal’cev’s theory of numberings [13], α is a computable number-
ing, or effective listing, of the structure Q. Moreover, we are extending Mal’cev’s concept of numbering to the enumeration 
α of the structure Rc: it is a numbering, but not computable, as it is not an effective listing of Rc , since the domain Ω of 
α is not decidable. Its effectivity rests on the algorithmic nature of its operations.

3.2. Equivalence between α- and GL-computability

Let U = dom( f ), where f satisfies the global assumptions (Section 2.2).
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Lemma 3.2.1. The predicate9 “Nbd(r, 2−n) ⊆ U�” (for r ∈Q) is computable in r, n and � (cf. Section 2.1).

This is clear.
Next we need some notation. Define

D = {
k ∈N ∣∣ α(k) ∈ U

}
,

E = {
e ∈Ω

∣∣ α(e) ∈ U
}
. (3.3)

Note that by Lemma 3.2.1, D is r.e.
Now suppose x ∈ U ∩Rc . Then there exists e ∈ E such that

α(e)= x.

So putting

rn = α
({e}(n)

)
,

we see that the sequence (rn) of rationals converges to x.
However there is no guarantee that ∀n (rn ∈ U ). To ensure this, we can effectively change the index e to an index ̂e such 

that α(̂e) = α(e) = x, and for all n, α({̂e}(n)) ∈ U , i.e., ̂e(n) ∈ D , as follows.

Lemma 3.2.2. There is a partial recursive function inU : N ⇀ N such that for all e ∈ E, putting ̂e = inU (e), we have ̂e ∈ E and α(̂e) =
α(e) and for all n, ̂e(n) ∈ D.

Proof. Let e ∈ E , x = α(e). Then there exists N such that

Nbd
(
x,2 ∗ 2−N)⊆ U .

Hence

Nbd
(
rN ,2−N)⊆ U (3.4)

and so

∀n≥ N, rn ∈ U . (3.5)

Note that we can effectively find an N satisfying (3.4), and hence (3.5), by searching for some N and � satisfying

Nbd
(
rN ,2−N)⊆ U�,

using Lemma 3.2.1.
Now let ̂e be an index such that for all n,

{̂e}(n)= �rN+n�.
Note that ̂e can be found effectively from e. Hence there is a recursive function inU :N ⇀N with inU (e) = ê, as desired. �

Note that the concept of a computable sequence of reals (Definition 2.3.1) can be reformulated in terms of α-computability:

Lemma 3.2.3. A sequence (xn) of reals is computable (according to Definition 2.3.1) if, and only if, there is a total recursive function 
ψ :N → E such that for all n, α(ψ(n)) = xn.

Proof. By the S-m-n Theorem [11,17]. �
We come to the Equivalence Lemma for our two concrete computation models. Recall our global assumptions (cf. Section 

2.2) on f : R ⇀R. Let (U�) be an effective exhaustion of dom( f ).

Equivalence Lemma 2 (GL- and α-computability). The following are equivalent:

(i) f is GL-computable w.r.t. (U�).
(ii) f is α-computable.

9 Where Nbd(a, δ) is the open neighborhood of a with radius δ.
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Proof. First we prove (ii) ⇒ (i). Suppose f is α-computable. We must show f is GL-computable w.r.t. (U�).
By the Continuity (global assumption (b)), we only have to show that f is sequentially computable on U (cf. Defini-

tions 2.3.2 and 2.3.4).
Take any computable sequence (xn) in U . We must show that the sequence ( f (xn)) is also computable.
By Lemma 3.2.3, there is a recursive function ψ : N →N, such that for all n

xn = α
(
ψ(n)

)
.

Let

S1 = α ◦ψ :N→R.

Then for all n,

xn = S1(n).

Since f is α-computable, there is an α-tracking function ϕ: N ⇀N for f . Put

yn = f (xn),

and let

S2 = α ◦ ϕ ◦ψ :N ⇀ R.

(xn)

R

α

f

ϕ

S2S1

ψ

(yn)

R

α

NN N�

�

��������������������

�
�

�
�

��� � �

Then for all n,

yn = S2(n)= α
(
(ϕ ◦ψ)(n)

)
,

so by Lemma 3.2.3 (yn) is also a computable sequence of reals.
We have proved f is sequentially computable on U , and hence f is GL-computable w.r.t. (U�).
Next, we will prove (i) ⇒ (ii). The idea of the proof is that

(1) sequential computability of f determines its value on the rationals Q ∩ U , a dense subset of U, and
(2) effective local uniform continuity of f then determines its value on the computable reals Rc ∩ U .

So suppose f is GL-computable w.r.t. (U�). We must show that f is α-computable; i.e. we must construct an α-tracking 
function ϕ for f .

By (3.3) and Lemma 3.2.1, D is r.e. Hence there is an effective enumeration or listing of D:

ρ :N≈ D ⊆N,

such that α ◦ ρ is an effective enumeration of Q ∩ U . Putting

rn =df α
(
ρ(n)

) ∈ U (3.6)

we have Q ∩ U = ran(α ◦ ρ) = {rn | n ∈N}.
Also, the inverse function

ρ−1 : D ≈N

is a partial recursive function from N to N. Note that for all q ∈Q ∩ U ,

q= α(�q�)= rρ−1(�q�) (3.7)

(putting n = ρ−1(�q�) in (3.6)). Consider the computable double sequence (rnk) of rationals where for all k,

rnk = rn = α
(
ρ(n)

)
.
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Suppose

f (rn)= un. (3.8)

Since f is sequentially computable, there is computable double sequence (unk) of rationals such that unk → un (and by 
Remark 3.1.6 we may assume fast convergence).

So we can find, effectively in n, and hence in ρ(n), an index en for the sequence (�un0�, �un1�, �un2�, . . .). In other word, 
there is a recursive function ψ such that for all n

ψ
(
ρ(n)

)= en.

Hence for all n, un ∈Rc with

un = α(en)= α
(
ψ

(
ρ(n)

))
. (3.9)

So ψ (or rather ψ ◦ ρ) is a kind of (α,α)-tracking function for f � Q ∩ U :

n
N

rn

Q∩ U

α

f � Q∩ U

ψρ

un

R

α

ρ(n)

D
en

Ωα
� �

�

� �

Now suppose given a computable real x ∈Rc ∩ U , with x = α(e), e ∈Ω . Note that even though x ∈ U , there is no guarantee 
that for all n, {e}(n) ∈ U . We must therefore replace e by ̂e = inU (e), as in Lemma 3.2.2.

Then we have a sequence of rationals α ◦ {̂e}, such that for all n, putting

sn = α
({̂e}(n)

) ∈Q∩ U ,

we have

�sn�= {̂e}(n) ∈ D (3.10)

and

sn→ x. (3.11)

Next, putting

yn = f (sn) (3.12)

we have

yn = f (sn)= f (rρ−1(�sn�)) by (3.7) putting q= sn

= uρ−1(�sn�) by (3.8) with n← ρ−1(�sn�)
= α

(
ψ

(
ρ
(
ρ−1(�sn�)

)))
by (3.9) with n← ρ−1(�sn�)

= α
(
ψ(�sn�)

)
= α

(
ψ

({̂e}(n)
))

by (3.10). (3.13)

Hence yn ∈Rc for all n.
Next, since f is effectively locally uniformly continuous w.r.t. (U�), by (3.12) (yn) is an effective Cauchy sequence. (The 

proof is an effective version of the standard proof that local uniform continuity of a mapping preserves the Cauchy property 
of sequences.) Again (by taking subsequences) we may assume (yn) is a fast Cauchy sequence.

By completeness of R, (yn) has a limit y. So by (3.11), (3.12) and continuity of f ,

f (x)= y.

From (3.13) each yn is a limit of an effective sequence of rationals

tnk = α
({

ψ
({ê}(n)

)}
(k)

)
.
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Let e′ be an index for the diagonal sequence (tkk). Then e′ ∈Ω and

α
(
e′

)= y.

The effective mapping from e to e′ sketched above is a recursive α-tracking function ϕ for f :

x

α sn

f

ϕ

y

αyn

e e′�

�

� �

Hence f is α-computable. �
This Equivalence Lemma, for total f , was stated without proof in [23].
In Section 5.2 we return to this Equivalence Lemma, to show how it holds for functions f : Rm ⇀ R for all m ≥ 1 with a 

weaker domain exhaustion assumption.

4. Abstract models; the topological partial algebra R

This section is devoted to abstract computation on R. To prepare for this, we discuss abstract many-sorted algebras, and 
more particularly, topological partial algebras, illustrated by the topological partial algebra R of reals. We then describe the 
While programming language, and its extensions, such as WhileCC (While with “countable choice”), and hence the concepts 
of While and WhileCC approximability for functions on R. We then state the third Equivalence Lemma, on the equiva-
lence of WhileCC approximability with ᾱ-computability. From this follows the equivalence theorem for our four models of 
computation on R, under our global assumptions.

4.1. Basic concepts: Signatures and algebras

Definition 4.1.1 (Many-sorted signatures). A many-sorted signature Σ is a pair 〈Sort(Σ), Func(Σ)〉 where

(a) Sort(Σ) is a finite set of sorts, written s, s′, . . . , and
(b) Func(Σ) is a finite set of (primitive or basic) function symbols F , each with a type of the form s1×· · ·× sm→ s, written

F : s1 × · · · × sm→ s,

where m ≥ 0 is the arity of F . The case m = 0 corresponds to a constant; we then write F : → s.

Definition 4.1.2 (Product types over Σ). A Σ-product type has the form s1 × · · · × sm (m ≥ 0), where s1, . . . , sm are Σ-sorts. 
Product types are written u, v, . . . .

Definition 4.1.3 (Σ-algebras). A Σ-algebra A has, for each sort s of Σ , a non-empty set As , the carrier of sort s, and for each 
Σ-function symbol F : u → s, where u = s1 × · · · × sm , a (not necessary total) function F A: Au ⇀ As , where

Au =df As1 × · · · × Asm .

The algebra A is total if F A is total for each Σ-function symbol F . Otherwise it is partial.

We will write Σ(A) for the signature of an algebra A.

4.2. Topological algebras

Definition 4.2.1 (Continuity). Given two topological spaces X and Y , a partial function f : X ⇀ Y is continuous if for every 
open V ⊆ Y ,

f −1[V ] =df
{

x ∈ X
∣∣ x ∈ dom( f ) and f (x) ∈ V

}
is open in X .
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Definition 4.2.2 (Topological partial algebra). A topological partial algebra is a partial Σ-algebra with topologies on the carri-
ers such that each of the basic Σ-functions is continuous, and the carriers B and N (if present) have the discrete topology.

Remark 4.2.3 (Continuity of computable functions; the continuity principle). The significance of the continuity of the basic 
functions of a topological algebra A is that it implies continuity of all While computable10 functions on A [20,21].

This is in accordance with the Continuity Principle, which can be expressed as

computability �⇒ continuity.

This principle is discussed in [20,22].

4.3. The algebra R of reals

In this paper, we will work with the following algebra:

algebra R
carriers R, B, N
functions 0 R,1R : →R,

plusR, timesR : R2→R

invR : R⇀R,
0N : →N,
sucN : N→N

tt, ff : → B,
and,or : B2→ B,
not : B→ B,
eqN, lessN: N2→ B

eqR, lessR: R2 ⇀ B

The signature Σ(R), with sorts real, bool, and nat, can be inferred from the above.

Remarks 4.3.1.

(1) R contains three carriers: R, N and B, of sorts real, nat and bool respectively.
(2) R contains (as retracts) the field of reals, the naturals with 0 and successor, and the booleans with their standard 

operations, including equality and order on R and N.
(3) R is a partial algebra, with the following partial basic functions: invR , eqR and lessR , where for x, y ∈R:

invR(x)�
{

1/x if x �= 0

↑ otherwise,

eqR(x, y)�
{↑ if x= y

ff otherwise,

lessR(x, y)�
⎧⎨
⎩

tt if x < y

ff if x > y

↑ if x= y.

By contrast, the boolean functions on N: eqN and lessN , are total.
The reasons for these semantic definitions will now be discussed.

Discussion 4.3.2 (The topological partial algebra R). R is a topological partial algebra when R is given its usual topology, and 
B and N the discrete topology. This motivates our semantic definitions of the partial functions invR , eqR and lessR in R.

Note that the total versions of these functions are not continuous, as can easily be checked. By contrast, the total func-
tions eqN , lessN on N ar trivially continuous, because of the discrete topology on N. Continuity of the basic functions of R, 
and hence of all While-computable functions on R, accords with the Continuity Principle (see Remark 4.2.3).

Note that R is standard in the sense that it contains the booleans with their standard operations. This is clearly important 
for the purpose of programming on R. R is also N-standard in the sense that it contains the naturals (with 0 and successor). 
This is important for considerations of computation on R [21–23].

10 See Section 4.5.
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4.4. The algebra R∗

R∗ is formed from R by adding the carrier R∗ (of sort real∗) consisting of all finite sequences or arrays of reals, together 
with certain standard constants and operations for the empty array, for updating arrays, etc. [20,21,23].

The significance of arrays for computation is that they provide finite but unbounded memory. The reason for introducing 
the starred sort real∗ is the lack of effective coding of finite sequences from R (unlike the case with N and B).

Although the use of R∗ is convenient for computational purposes, it does not affect the computational strength of 
abstract models on R, as we will see (Section 4.8).

We will be using the topological partial algebras R and R∗ in the rest of the paper.

4.5. The While programming language

Our abstract models of computation on R are based on the While programming language and its extensions, applied to 
R [20–23].

We review the syntax of the While language over a standard signature Σ . We use ‘≡’ to denote syntactic identity 
between two expressions:

• Σ-variables: There are variables xs, ... of each Σ-sort s.
• Σ-terms: The set of Σ-terms of sort s, denoted ts, . . . , is generated by

ts ::= xs
∣∣ F

(
ts1

1 , . . . , tsm
m

)
where F is a Σ-function symbol of type s1 × · · · × sm→ s.
We also write t : s to indicate that t is a Σ-term of sort s. More generally, we write t : u if t is a tuple of Σ-terms of 
product type u. We write b, . . . for boolean terms, i.e. terms of sort bool.
• Σ-statements S, . . . are generated by:

S ::= skip | x := t | S1; S2 | if b then S1 else S2 fi | while b do S0 od

where x := t denotes simultaneous assignment, i.e. for some m > 0, x ≡ (x1, . . . , xm) and t ≡ (t1, . . . , tm) are variable 
and term tuples of the same product type, with the condition that xi �≡ x j for i �= j.
• Σ-procedures P , . . . have the form:

P ≡ proc D begin S end

where the statement S is the body and D is the variable declaration of the form

D ≡ in a : u out b : v aux c : w

where a, b and c are tuples of input variables, output variables and auxiliary variables respectively. We stipulate:
(i) a, b and c each consist of distinct variables, and they are pairwise disjoint; and

(ii) every variable in S must be declared in D (among a, b, c).
If a : u and b : v , then P has type u → v , written P : u → v .

Now, for a standard Σ-algebra A, the semantics of the While language over A can be defined in a well-known way [20,
21,23] which will not be repeated here. In particular, the meaning of a While(Σ) procedure P : u → v is a partial function

P A: Au ⇀ Av .

Then we define:

Definition 4.5.1 (While computable function).

(a) A function f : Au ⇀ As is said to be computable on A by a While procedure P : u → s if f = P A .
(b) While(A) is the class of functions While computable on A.

4.6. While approximability

From now on, we restrict our attention to the real algebra R. We consider another paradigm of abstract computability 
related to the While language over R.

Given a procedure P : nat× real→ real, we write for any n,

PR
n =df PR(n, ·):R ⇀ R.

Now let f : R ⇀ R satisfy the two global assumptions, with (U�) an effective exhaustion of U = dom( f ), and let P : nat×
real ⇀ real be a While procedure over R.
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Definition 4.6.1 (Local uniform While approximability). f is locally uniformly While approximable by P over R if

(1) for all n, dom(PR
n ) ⊇ U , and

(2) the sequence (PR
n � U ) converges to f effectively locally uniformly w.r.t. (U�) (cf. Definition 2.3.7).

4.7. While programming with countable choice

We extend the While language over R to the WhileCC language by adding a new assignment statement:

x := choose z : P (z, . . .)

[22,23] where x and the ‘choose’ variable z have sort nat, and P (z, . . .) is a semicomputable predicate of z (and other 
variables), i.e., the halting set of a WhileCC procedure with z among its input variables.

Then ‘choose z : P (z, . . .)’ selects some value k such that P (k, . . .) is true if any such k exists, and is undefined otherwise. 
In the abstract semantics [22], the meaning of ‘choose z : P (z, . . .)’ is the set of all such k’s (hence “countable choice”). Any 
concrete model will select a particular k, according to the implementation.

The abstract semantics for WhileCC associates with a WhileCC procedure P : real→ real a (many-valued) function:

PR :R→ P+ω
(
R↑

)
,

where P+ω (X) is the set of all countable non-empty subsets of X , and R↑ = R ∪ {↑}, where ‘↑’ represents a divergent 
computation.

Next we consider WhileCC approximable computability or WhileCC approximability. Let

P : nat× real→ real

be a WhileCC procedure. Again we write

PR
n =df PR(n, . ):R→ P+ω

(
R↑

)
.

Definition 4.7.1 (WhileCC approximability to a single-valued function). A function f : R ⇀ R is approximable by a WhileCC
procedure P on R iff for all n ∈N and all x ∈R:

(i) x ∈ dom( f ) �⇒ ↑/∈ PR
n (x) ⊆ Nbd( f (x), 2−n), and

(ii) x /∈ dom( f ) �⇒ PR
n (x) = {↑}.

Remark 4.7.2. The concept of WhileCC approximability, unlike that of local uniform While approximability (Definition 4.6.1), 
does not refer to the exhaustion (U�) of dom( f ).

4.8. While∗∗∗ and WhileCC∗∗∗ computability

Recall the definition of the array algebra R∗ with signature Σ∗ (Section 4.4).
A While∗(Σ) procedure is a While(Σ∗) procedure with the restriction that the array variables (i.e. variables of sort real∗) 

are used only as auxiliary variables, not for input or output.
The While∗ language is clearly more convenient than While for writing programs over R. However, it is not (in theory) 

stronger than While for defining functions on R; in fact (writing While∗(R) for the set of functions While∗ definable 
on R):

While∗(R)= While(R)

by [21, §4.7], adapting the proof there to partial algebras.
Similarly we can define the language

WhileCC∗(Σ)= WhileCC
(
Σ∗

)
and again show that

WhileCC∗(R)= WhileCC(R).

Analogously, we can also define the concepts of While∗ and WhileCC∗ approximability on R.
Hence in the rest of the paper, we will write While(∗) and WhileCC(∗) to refer to these languages either with or without 

arrays.
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4.9. Equivalence of abstract and concrete computability

We come now to the third and last Equivalence Lemma, for abstract (WhileCC(∗)(R)) approximability and concrete 
(α-tracking) computability. It can also be viewed as a completeness result for abstract (WhileCC(∗)(R)) vs. concrete (tracking) 
computability.

Recall our global assumptions on f : R ⇀R.

Equivalence Lemma 3 (Abstract and concrete computability). The following are equivalent:

(i) f is α-computable
(ii) f is WhileCC(∗)(R) approximable.

This was proved in [22,23] for complete separable metric algebras.11 It can be seen that the conditions listed in [22, Thm.
C+] and [23, Thm. 4.2.13] are satisfied here. (See also the discussion in Section 5.2 below.)

Remark 4.9.1. Interestingly, the proof of this Equivalence Lemma requires the global (domain exhaustion and continuity) 
assumptions for f , even though the definitions of α-computability and WhileCC(∗) approximability (unlike those of GL 
computability and multipolynomial approximability) do not mention them (cf. Remark 4.7.2).

In Section 5.2 we return to this Equivalence Lemma, to show how it holds for functions f : Rm ⇀ R for all m ≥ 1 with a 
weaker domain exhaustion assumption.

Remark 4.9.2. In [23] it was proved that for total f : R →R, local uniform While approximability of f over Rt corresponds 
to α-computability of f , where Rt is the total topological algebra formed from R by removing the partial operations eqR
and lessR , and replacing invR by the (weaker) inverse operation on N:

invN:N→R,

where

invN(n)=
{

1/n if n �= 0

0 R if n= 0
(4.1)

which is total, but still continuous.
However we have been unable to prove (or disprove) such an Equivalence Lemma for partial functions f (satisfying the 

global assumptions).

5. Conclusion; future work

5.1. Conclusion: equivalence of all models

We have studied four models of computation of partial functions on the real numbers: two concrete, one abstract, and 
one based on multipolynomial approximation.

From the three Equivalence Lemmas (in Sections 2.5, 3.2 and 4.9) follows the Equivalence Theorem for these models 
(Section 1.3), for partial functions satisfying the two global assumptions of domain exhaustion and continuity (Section 1.2).

Over the past decade, as interest in computation on real, metric or other topological spaces, has grown, many models 
of computation have been proposed, developed and compared. To cite one among many examples, Stoltenberg-Hansen 
and Tucker [19] proved the equivalence of different types of concrete models for total functions, all based on effective 
representations by:

• algebraic domains [18],
• continuous domains [3,4],
• type 2 recursion [25],
• effective metric spaces [14], and
• computability structures [15].

One can also take a more radical approach to concrete models of computation. Such models, whatever their motivation, 
and however they are conceived and designed, rest upon numberings, which are mappings from N onto some subset of 
the algebra A, typically dense in A. In these theories, the subsets are considered to be “finitistic” elements of A, precisely 

11 I.e. topological algebras where the topology is given by a metric.
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because they are capable of being numbered. With this simple but fundamental viewpoint, we see that the equivalence 
between different models of computation can be expressed as invariance of computability between different numberings: 
if M1 and M2 are two models over A based on numberings α1 and α2 respectively, then equivalence between α1 and α2
implies that M1 and M2 have the same computable functions. Two interesting studies of the equivalence of numberings 
for familiar topological spaces are by Hertling [10] on the reals, and Blanck, Stoltenberg-Hansen and Tucker [2] on more 
general structures. A more abstract approach to invariance of computational models is given by Bauer and Blanck [1] using 
realizability theory.

5.2. A weaker domain exhaustion assumption

Can our domain exhaustion assumption be weakened? Consider the three Equivalence Lemmas, which together form the 
Equivalence Theorem:

EL1 (Section 2.5) GL-comp. ⇐⇒ multipoly approx.
EL2 (Section 3.2) GL-comp. ⇐⇒ α-tracking comp.
EL3 (Section 4.9) α-tracking comp. ⇐⇒ WhileCC∗ approx.

Note first that EL3 was presented and proved in [22,23] (as a “completeness theorem” for abstract vs concrete computation), 
in the much more general case of functions f on a complete separable metric algebra A, where

(a) the domain U of f is the union of an open exhaustion (U�), i.e., an increasing sequence of open sets, which is
(i) semi-effective, in the sense that the relation{

(x, �) ∈ A ×N
∣∣ x ∈ U�

}
is While∗-semicomputable;

(ii) effectively open, in the sense that there is a While-computable function γ : A × N → N such that for all � and all 
a ∈ U� ,

Nbd
(
a,2−γ (a,�)

)⊆ U�

(b) f is effectively locally uniformly continuous w.r.t. this exhaustion.

Specializing again to the case A =R: assumption (a) is easily seen to be weaker than the domain exhaustion assumption 
given in this paper (Definitions 2.2.1 and 2.2.2), since in the above definition,

• it is not assumed that each U� is a finite union of rational intervals;
• it is not assumed that U� ⊆ U�+1, only that U� ⊆ Ul+1;
• the condition (ii) of effective openness is derivable from the domain exhaustion assumption given in this paper. (That is 

the essence of Lemma 3.2.1, used in the proof of EL2.)

We will call (a) the weak domain exhaustion assumption, and the conjunction of (a) and (b) the weak global assumptions.
Then from the results in [22,23], it follows that the Equivalence Lemma EL3 given here in Section 4.9 can be re-stated 

using the weak global assumptions, and can also be generalized to functions f : Rm ⇀R for m > 1.
Next, considering EL2: note, in this regard, that the definition of GL-computability as given here (Section 2.3) can be 

easily adapted to the case of functions f : Rm ⇀ R for m > 1.12 Then the proof of this equivalence given in Section 3.2 can 
be easily generalized to the case of such functions satisfying the weak global assumptions above.

Combining these versions of EL2 and EL3, we arrive at the following “generalization” of the equivalence theorem: (cf. the 
Equivalence Theorem for all four computation models (i)–(iv) given in Section 1.3):

Generalized equivalence theorem. Suppose f : Rm ⇀R (m > 0) has a domain with an effective exhaustion (U�) which satisfies the
weak domain exhaustion assumption, and f is effectively locally uniformly continuous w.r.t. (U�). Then the following are equivalent:

(i) f is GL-computable w.r.t. (U�),
(ii) f is tracking computable,
(iv) f is WhileCC∗ approximable on R.

This is called a “generalized” equivalence theorem because (a) it applies to functions of arity m ≥ 1, and (b) the domain 
exhaustion assumption here is weaker than that used in this paper (as stated above).

12 Such a definition is given in [15, Ch. 0, Sec. 3] in the case that the domain of f is a closed m-dimensional rectangle.
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Conspicuously absent here, however, is the multipolynomial model:

(iii) f is effectively locally uniformly multipolynomially approximable w.r.t. (U�).

To include this among the equivalences, we seem to need the “strong” effective exhaustion assumption (Definitions 2.2.1(2)), 
and even then it only works for m = 1 (Section 1.2, point (3)).

Remark 5.2.1 (Further generalization of “effective exhaustion”). It seems that the generalized equivalence theorem presented 
above can be generalized even further (still excluding the multipolynomial model), so as to apply to partial functions on 
complete separable metric algebras, as used in proving EL3 (“abstract/concrete completeness”) in [22,23]. It only remains to 
give a generalized definition of GL-computability for such functions, and then generalize the proof of EL2 (Section 3.2) 
accordingly. This seems unproblematic.

Remark 5.2.2 (Consistent generalization of “effective exhaustion”). The generalization of the notion of “effective exhaustion” 
used above does not reduce to the notion developed in this paper when n = 1. It is strictly weaker, as indicated above. 
However, in order to include (for example) the multipolynomial approximability model in an equivalence theorem for func-
tions f : Rm ⇀R with m > 1, we want a notion of “effective exhaustion” in m dimensions that reduces, when m = 1, to the 
one developed in this paper (Definitions 2.2.1 and 2.2.2). To formulate the correct notion for this is a challenging problem.13

5.3. Invariance of continuity assumption

For two of our four models: GL-computability and multipolynomial approximability, the definition of computability of 
a function f with domain U depends on the choice of effective exhaustion (U�) of U , since the global assumption (b) 
(cf. Section 2.2) requires effective local uniform continuity of f with respect to this exhaustion.

It is therefore desirable to have an invariance result of the form that if global assumption (b) holds for any effective 
exhaustion of dom( f ), then it holds for all effective exhaustions of dom( f ). This is given by the following proposition.

Proposition 5.3.1 (Invariance of global assumption (b) w.r.t. (a)). Given f : R ⇀ R with domain U , let (U�) and (V�) be two effective 
exhaustions of U . If f is effectively locally uniformly continuous w.r.t. (U�), then f is also effectively locally uniformly continuous 
w.r.t. (V�).

Proof. Consider any stage V� of the exhaustion (V�). Since V� ⊆ U , which is a union of expanding open sets Um , by 
compactness of V� there exists m such that

V� ⊆ Um. (5.1)

By assumption, f is uniformly continuous on Um , and so by (5.1) f is also uniformly continuous on V� .
Further, m in (5.1) can be effectively found from � (as can be seen from Definition 2.2.2), i.e., m = g(�) for some total 

recursive g . Hence f is effectively locally uniformly continuous w.r.t. (V�), with a modulus M ′ obtainable from the modulus 
M for f w.r.t. (U�) (cf. Definition 2.2.6):

M ′(k, �)= M
(
k, g(�)

)
. �

5.4. Future work

Three interesting problems left open by this paper are:

(1) Generalizing the full Equivalence Theorem (including the effective multipolynomial model) to functions f :Rm ⇀ R for 
m > 1.
Two difficulties here are how to generalize to m > 1:
• the proof in Equivalence Lemma 1 (Section 2.5) of the implication

multipolynomial approx. �⇒ GL computability

which, as it stands, requires extending the domain of the multipolynomial approximants to dom( f ) by linear inter-
polation;
and more fundamentally:
• the definition of the concept of (effective) exhaustion (Definitions 2.2.1 and 2.2.2).14

13 We return to this in Section 5.4.
14 This has recently been accomplished in [6], where (briefly) the rational intervals forming the components of the stages of an exhaustion are replaced 

(for m > 1) by computable open basic semialgebraic sets.
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(2) Investigating the

Conjecture. The two global assumptions are satisfied by all elementary functions on the reals.

Here the elementary functions on R are functions defined by expressions built up from the variable x and constants 
for computable reals, by applying (repeatedly) the four field operations, n-th roots, the exponential and trigonometric 
functions, and their inverses.
This is a very interesting class of functions, investigated by, among others, Hardy [9].15 Richardson [16] proved, for a 
naturally defined subclass C of this class, the unsolvability of the identity problem (for f , g in C , does f = g ?) and the 
integration problem (for f in C , is the integral of f in C ?).
Note that the function n

√
x, for n even, is defined on the interval [0, ∞), which is not open (and hence cannot be the 

union of an open exhaustion). This is easily remedied by defining its value to be 0 for x < 0, resulting in a total, effec-
tively uniformly continuous function. Of course, many elementary functions (e.g. 1/x, log x, tan x) cannot be “totalized” 
in this way.
One can then easily prove that the domains of all elementary functions are open, by induction on the complexity of 
their defining expressions. However the above conjecture remains to be proved.

(3) Determining the status of the While(∗) approximability model:
whether (or under what conditions) it is equivalent to the four models on R studied here. (See Remark 4.9.2.)
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