
Journal of Logical and Algebraic Methods in Programming 84 (2015) 218–237
Contents lists available at ScienceDirect

Journal of Logical and Algebraic Methods in

Programming
www.elsevier.com/locate/jlamp

Models of computation for partial functions on the reals ✩

Ming Quan Fu, Jeffery Zucker ∗

Department of Computing and Software, McMaster University, Hamilton, Ontario L8S 4K1, Canada

a r t i c l e i n f o a b s t r a c t

Article history:
Received 20 November 2012
Received in revised form 3 November 2014
Accepted 3 November 2014
Available online 12 November 2014

Keywords:
Generalized computability
Computability on topological algebra
Computability on the reals
Grzegorczyk–Lacombe computability

We compare models of computation for partial functions f : R ⇀ R. We consider four
models: two concrete (Grzegorczyk–Lacombe and tracking computability), one abstract
(approximability by a While program with “countable choice”) and a new hybrid model:
multipolynomial approximability. We show that these four models are equivalent, under
the two assumptions:

(1) the domain of f is the union of an effective exhaustion, i.e. a sequence of “stages”, each
of which is a finite union of disjoint rational open intervals, and

(2) f is effectively locally uniformly continuous w.r.t. this exhaustion.

These assumptions seem to hold for all unary elementary functions of real analysis, many
of which are, of course, partial. We make a conjecture with regard to this.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

1.1. Background

In this paper we study computability of partial functions on the reals. We develop and compare a number of models of
computability for such functions.

Previous work on comparing models of computability (for example, [19,23]) has tended to concentrate on computability
models for total functions on R. However, many of the well-known functions of elementary real analysis, which would
certainly be considered as computable, are partial; for example, the rational, log and trigonometric functions. It is therefore
essential that a study of models of computability on R should include such functions in its considerations.

In fact, we will study partial functions1 f : R ⇀ R, subject to certain assumptions on their domain, which seem to be
satisfied by all functions of the kind listed above.

Now models of computation on R can generally be divided into two classes: abstract and concrete. Abstract models of
computation are independent of data representations. Concrete models, on the other hand, depend on a choice of data rep-
resentation, usually constructed from the natural numbers N, so that computation on an algebra is reduced to computation
on N [20,22,23].

✩ Research supported by a grant from the Natural Sciences and Engineering Research Council of Canada.

* Corresponding author.
E-mail addresses: fumq@mcmaster.ca (M.Q. Fu), zucker@mcmaster.ca (J. Zucker).

1 ‘⇀’ denotes a partial function.
http://dx.doi.org/10.1016/j.jlamp.2014.11.001
2352-2208/© 2014 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jlamp.2014.11.001
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jlamp
mailto:fumq@mcmaster.ca
mailto:zucker@mcmaster.ca
http://dx.doi.org/10.1016/j.jlamp.2014.11.001
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jlamp.2014.11.001&domain=pdf

M.Q. Fu, J. Zucker / Journal of Logical and Algebraic Methods in Programming 84 (2015) 218–237 219
The abstract models that we consider are based on a high level While imperative programming language [21,22].
There are two familiar concrete models that we investigate: Grzegorczyk–Lacombe (GL) [7,8,12,15] and tracking com-

putability [22,23].
We also consider another class of models: polynomial, or rather, in our case, multipolynomial approximability. This can be

viewed as a hybrid model.

1.2. Comparison with case of total functions

The present paper can perhaps best be understood against the background of the paper [23]. We first summarize what
was done in that paper. Five models of computation on R were investigated for total functions:

(i) Grzegorczyk–Lacombe (GL) computability,
(ii) tracking computability,

(iii) effective locally uniform (Q-)polynomial approximability,
(iv) WhileCC approximability on a partial topological algebra R,
(v) local uniform While approximability on a total topological algebra Rt .

First, a brief explanation of these models. (More detailed descriptions will be given below.) Models (i) and (ii) are well
known concrete models. Model (ii) uses a “tracking function” on N according to a standard enumeration α of the rationals,
and (hence) an enumeration α of the computable reals. Models (iv) and (v) are abstract computation models, based on
a While programming language. WhileCC is a nondeterministic extension of While which incorporates countable choice,
i.e., nondeterministic choice of a natural number satisfying a given predicate. The algebras R and Rt are both topological
algebras on R: R is a partial algebra, which includes partial equality, order and the inverse operation on the reals as basic
functions, and Rt is a total algebra, without these partial operations (and with the inverse operation restricted to naturals:
see Remark 4.9.2).

In [23] all five computation models were shown to be equivalent, for functions f :Rm→R (m > 0) that are (a) total or,
more generally, defined on a closed interval (or product of intervals, in the case m > 1), and (b) effectively locally uniformly
continuous.

In the present paper, we attempt to generalize these results to the case that f need not be total. In fact we make two
global assumptions on f :

(a) Domain exhaustion: The domain U of f is the union of an effective open exhaustion, i.e., an effective sequence of stages
(U0, , U1, U2, . . .), where2 for � = 0, 1, 2, . . . , U� ⊆ U�+1 and U� is a finite union of rational open intervals I�1, . . . , I

�
k�

with disjoint closures, the components of the stage U�; and
(b) Continuity: The function f is effectively locally uniformly continuous with respect to this exhaustion.

So the “totality” assumption of [23] has been replaced by a more general “domain exhaustion” assumption.
These two assumptions appear to hold for all unary elementary functions on R [9]. In Section 5.4 we present this as a

conjecture.
A weaker version of the domain exhaustion assumption is considered in Section 5.2.
The important thing to note here is that dom(f) is (in general) no longer connected as a subspace of R, as is guaranteed

by the totality assumption in [23]. This invalidates, or at least complicates, some of the earlier arguments used in [23] to
prove the equivalences listed above. We list three significant issues:

(1) Polynomial approximability is no longer an appropriate computation model. Instead we consider (effectively locally
uniform) multipolynomial approximability, in which each multipolynomial approximant q� is the union of a tuple of
polynomials (p�

1, . . . , p
�
k�

), where dom(p�
i) = I�i , the closure of the i-th component of the stage U� (i = 1, . . . , k�).

(2) Since connectedness of dom(f) is no longer assumed, the proof of equivalence of While(Rt) approximability with the
other four models listed above fails. (Cf. [23, Lemma 3.2.18], where connectedness of dom(f) is crucial in the main step
in the proof of (v) ⇒ (iii).) In fact it is unknown whether equivalence of While(Rt) approximability with these other
models still holds. In any case, this model (v) is left out of consideration here.

(3) The analogue to the argument (iii) ⇒ (i) in the present paper extends the domains of the multipolynomials q� from the
(the closure of) stage U� to U using linear interpolation.3 This only works if f is a function of one variable only, i.e.,
f : Rm ⇀ R only for m = 1 (unlike the case in [23]). More fundamentally, even the definition of “effective exhaustion”
for m > 1 presents a challenge.4

2 V denotes the topological closure of a set V .
3 See proof of Equivalence Lemma 1 in Section 2.5.
4 This has been investigated in [6].

220 M.Q. Fu, J. Zucker / Journal of Logical and Algebraic Methods in Programming 84 (2015) 218–237
We must emphasize that the two global assumptions presented here are not intended as definitive characterizations of
computable partial functions. They are intended rather as a useful generalization of the “totality” assumption of [23], which
applies (apparently) to all elementary functions (cf. the conjecture in Section 5.4(2)). On the other hand, an investigation of
the relationship of our models to (say) Weihrauch’s Type Two computable functions on R could well lead to a consideration
of functions with domains more general than open sets, namely Gδ sets [25, p. 122, Ex. 18(b, c)].

1.3. Overview

Recall that we are considering partial functions f : R ⇀ R, satisfying the domain exhaustion and continuity assumptions
((a) and (b) in Section 1.2 above). We shall prove, under these two global assumptions, the equivalence of the first four
models (i)–(iv) listed in Section 1.2, with (in (iii)) polynomial approximability replaced by multipolynomial approximability.
In other words, we shall prove the

Equivalence Theorem. Given a partial function f : R ⇀ R, and an effective exhaustion (U�) of dom(f), suppose f is effectively
locally uniformly continuous w.r.t. (U�). Then the following are equivalent:

(i) f is GL-computable w.r.t. (U�),
(ii) f is tracking computable,

(iii) f is effectively locally uniformly multipolynomially approximable w.r.t. (U�),
(iv) f is WhileCC approximable on R.

We will prove this Equivalence Theorem by means of three Equivalence Lemmas stating the equivalence of pairs of these
models, as follows: Lemma 1: (i) ⇔ (iii), Lemma 2: (i) ⇔ (ii), and Lemma 3: (ii) ⇔ (iv), as we now discuss in more detail.

In Section 2 we present our first concrete computation model on R: GL (Grzegorczyk–Lacombe) computability. Next we
define the concept of multipolynomial approximability. This is a new model, not considered in [23], which enables us to
generalize the equivalence results to functions on R whose domains are not assumed to be connected5 (but satisfy at least
the domain exhaustion assumption). We prove Equivalence Lemma 1: the equivalence between GL computability and mul-
tipolynomial approximability, and illustrate the multipolynomial approximability given by this proof for some well-known
GL-computable partial functions on R, using Maple 15.

In Section 3 we present our second concrete model: α-tracking computability. We prove Equivalence Lemma 2, the
equivalence between the two concrete models: GL and α-tracking computability.

In Section 4, in preparation for our abstract model, we develop basic concepts connected with topological partial algebras,
and in particular the topological partial algebra R of reals. We then give the basic machinery for our abstract computation
models on R: the While programming language over R. We also present the WhileCC language, which extends While with
a nondeterministic “countable choice” command. We further consider an extensions of these languages with auxiliary real
array variables, to form the languages While∗ and WhileCC∗ . These extensions are convenient for practical programming, but
inessential from the viewpoint of theoretical computational power,6 and so we will write While(∗) and WhileCC(∗) for the
language with or without these array variables. The appropriate notion of abstract computability turns out to be WhileCC(∗)

approximability.
We then prove Equivalence Lemma 3: the equivalence of the abstract model (WhileCC(∗) approximability) with the

concrete model (α-computability). This was actually proved in [22] for a more general class of algebras. It can be viewed as
a completeness theorem for our abstract model with respect to the concrete model.

By means of these three Equivalence Lemmas, we derive the Equivalence Theorem stated above.
In Section 5, we first (Section 5.1) summarize the results presented here, and discuss some related work. We then

(Section 5.2) discuss a weak version of the domain exhaustion assumption, essentially the one used in [22,23]. With this
version, it is possible to prove the equivalence of the models considered here other than multipolynomial approximability,
even for functions f : Rm ⇀ R for m > 1. Next, in Section 5.3, we prove an invariance result for the global assumption (b)
(continuity) with respect to assumption (a) (domain exhaustion).

Finally (Section 5.4) some ideas for future work are presented. The most interesting and important one we believe to be
the extension of our equivalence theorem to functions of more than one argument, as discussed above (Section 1.2(3)).

Another interesting topic in Section 5.4 concerns our conjecture that all unary elementary functions satisfy the two
global assumptions.

2. Exhaustions; GL computability; multipolynomial approximability; Equivalence Lemma 1

We define the concept of exhaustion, which is crucial for our work. Then we review one well-known concrete computa-
tion model: Grzegorczyk–Lacombe (GL) computability, and introduce a new model, multipolynomial approximability. Finally,
we give the Equivalence Lemma that connects the above two models.

5 See point (1) in Section 1.2 above.
6 At least for computation on R.

M.Q. Fu, J. Zucker / Journal of Logical and Algebraic Methods in Programming 84 (2015) 218–237 221
First, a note on codings.

2.1. Codings; computability of functions and predicates on Q

We can define, in a standard way, surjective numerical codings of the sets N2, N∗ , Z and Q. We write 〈x, y〉 for the code
of a pair (x, y) ∈N2, 〈x1, . . . , xn〉 for the code of a tuple (x1, . . . , xn) ∈N∗ (n ≥ 0), and more generally, �x� for the code of an
element x of Z, Q, etc.

A function or predicate of rationals r1, r2, . . . is called computable or effective or decidable if the corresponding function
or predicate of codes �r1�, �r2�, . . . is computable (or recursive).

A predicate of rationals r1, r2, . . . is called semicomputable if the corresponding predicate of codes �r1�, �r2�, . . . is semi-
computable (or r.e.).

2.2. Exhaustions; local approximability and continuity

Definition 2.2.1 (Exhaustion). Let U be an open subset of R, and (U0, U1, U2, . . .) a sequence of open subsets of R, such that

(1) U =⋃∞
�=0 U� ,

(2) for � = 0, 1, 2, . . . , U� is a finite union of non-empty open finite intervals I�1, I
�
2, . . . , I

�
k�

(k� ≥ 1) whose closures are pairwise
disjoint,7 and

(3) U� =⋃k�

i=0 I�i ⊆ U�+1 for � = 1, 2,

Then the sequence (U�) is called an exhaustion of U , and for each �, U� is a stage of the exhaustion, with components
I�1, . . . , I

�
k�

.

Definition 2.2.2 (Effective exhaustion). An exhaustion (U�) of U is called effective if for all �, the components I�i are rational,
i.e., I�i = (a�

i , b
�
i), where a�

i , b
�
i ∈Q (i = 1, . . . , k�), and b�

i < a�
i+1 (i = 1, . . . , k� − 1), and the map

� �→ 〈
k�,�a�

1�,�b�
1�, . . . ,�a�

k�
�,�b�

k�
�
〉

which delivers the sequence of stages

U� = I�1 ∪ · · · ∪ I�k�

is recursive.

Remark 2.2.3. From Definition 2.2.1(3) it follows that the components I�i have the following covering property:

∀� ∀i ∈ {1, . . . ,k�} ∃ j ∈ {1, . . . ,k�+1}
(

I�i ⊆ I�+1
j

)
.

Now consider a partial function f :R ⇀R, with domain U , which is the union of an open exhaustion (U�).

Definition 2.2.4 (Local uniform continuity). f is locally uniformly continuous w.r.t. (U�) if ∀� ∀ε > 0 ∃δ > 0 ∀x, y ∈ U�

|x− y|< δ �⇒ ∣∣ f (x)− f (y)
∣∣ < ε.

This definition can be effectivized:

Definition 2.2.5 (Effective local uniform continuity). f is effectively locally uniformly continuous w.r.t. an effective exhaustion
(U�) if there is a recursive function M: N2→N such that for all k, � and all x, y ∈ U�

|x− y|< 2−M(k,�) �⇒ ∣∣ f (x)− f (y)
∣∣ < 2−k.

Now consider a sequence of functions fn: R ⇀ R, all with the same domain dom(fn) = U , the union of an effective
exhaustion (U�).

7 I.e., they don’t even have any endpoints in common.

222 M.Q. Fu, J. Zucker / Journal of Logical and Algebraic Methods in Programming 84 (2015) 218–237
Definition 2.2.6 (Effectively locally uniformly continuous sequence). The sequence (fn) is effectively locally uniformly continuous
w.r.t. (U�) if there is a recursive function M: N3 ⇀N such that for all k, �, n and all x, y ∈ U�

|x− y|< 2−M(k,�,n) �⇒ ∣∣ fn(x)− fn(y)
∣∣ < 2−k.

For the rest of this paper, we investigate the computability properties of functions f : R ⇀ R, satisfying the following
global assumptions on f :

Global Assumptions. The function f : R ⇀R satisfies:

(a) Domain exhaustion: The domain U of f is a union of an effective exhaustion (U�) (cf. Definition 2.2.2):
(b) Continuity: f is effectively locally uniformly continuous w.r.t. (U�).

2.3. GL-computability

The following six definitions are adapted from [15, Ch. 0], where the domains of f and fn were assumed to be products
of intervals: Rm or [0, 1]m (m > 0).

We assume below that the functions fn , like f , all have domain U .

Definition 2.3.1 (Computable sequence of reals). A sequence of real numbers (xn) is computable iff there exists a computable
double sequence of rationals (rnk) such that for all n, k:

|xn − rnk| ≤ 2−k.

Definition 2.3.2 (Sequential computability of function). f is sequentially computable on U if f maps every computable sequence
of reals xn ∈ U into a computable sequence (f (xn)) of reals.

Definition 2.3.3 (Sequential computability of sequence of functions). The sequence (fn) of functions is sequentially computable
on U if for any computable sequence (xk) of reals in U , the double sequence (fn(xk)) of reals is computable, i.e. there exists
a computable triple sequence (rnkj) of rationals, such that for all n, k, j,∣∣rnkj − fn(xk)

∣∣ < 2− j.

Definition 2.3.4 (GL-computability). f is GL-computable w.r.t. (U�) iff:

(1) f is sequentially computable on U , and
(2) f is effectively locally uniformly continuous w.r.t. (U�).

Definition 2.3.5 (GL-computable sequence). The sequence (fn) is GL-computable w.r.t. (U�) iff:

(1) (fn) is effectively locally uniformly continuous w.r.t. (U�), and
(2) (fn) is sequentially computable on U .

Remark 2.3.6 (Definition of GL-computability).

(1) Condition (1) in Definition 2.3.5 is subsumed under the global assumption (b).
(2) Our definition is a modification of the original one [7,8,12,15] which assumes not only totality, but also effective global

uniform continuity of f .

Definition 2.3.7 (Effective local uniform convergence). The sequence (fn) converges to f (fn → f) effectively locally uniformly
w.r.t. (U�) iff there is a recursive function M :N2→N such that for all k, �, n and all x ∈ U� ,

n≥ M(k, l) �⇒ ∣∣ fn(x)− f (x)
∣∣ < 2−k.

Lemma 2.3.8 (Closure of GL-computability under effective local uniform convergence). If (fn) is a GL-computable sequence w.r.t. (U�),
and fn→ f effectively locally uniformly w.r.t. (U�), then f is GL-computable w.r.t. (U�).

Proof. This adapts the proof in [15, Ch. 0, Thm 4] of the closure of GL-computability under effective uniform convergence
on closed finite intervals. Note that by Definition 2.2.1, U� ⊆ U�+1 for all �, and so we can apply to the compact stages U� ,
the arguments given in the proof in [15] concerning effective uniform continuity and convergence on the compact domain
of the functions there. �

M.Q. Fu, J. Zucker / Journal of Logical and Algebraic Methods in Programming 84 (2015) 218–237 223
2.4. Multipolynomial approximability

Note that by “polynomial” we will always mean Q-polynomial, i.e. polynomial with rational coefficients.

Definition 2.4.1 (Multipolynomial). Given a finite sequence of polynomials (p1, p2 . . . , pk) and a sequence of open intervals
(I1, I2 . . . , Ik) with disjoint closures, we define a (Q-)multipolynomial q(x) with domain

⋃k
i=1 Ii as follows:

q(x)�

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

p1(x) if x ∈ I1

p2(x) if x ∈ I2

...

pk(x) if x ∈ Ik

↑ otherwise.

(Here ‘�’ means that both sides are either defined and equal, or undefined.) We denote this multipolynomial by

q= [p1 � I1, . . . , pk � Ik].

Definition 2.4.2 (Effective sequence of multipolynomials). Given an effective exhaustion (U�) of U , with U� = I�1 ∪ · · · ∪ I�k�
, and

an effective sequence of tuples of polynomials (p�
1, . . . , p�

k�
) (� = 0, 1, 2, . . .), the sequence (q�), where

q� =
[

p�
1 � I�1, . . . , p�

k�
� I�k�

]
, (2.1)

is called an effective sequence of multipolynomials.

Definition 2.4.3 (Effective local multipolynomial approximability). Given f : R ⇀ R, and an effective exhaustion (U�) of U =
dom(f), with U� = I�1 ∪ · · · ∪ I�k�

, we say that the effective sequence of multipolynomials (q�) (as in (2.1)) converges to f

(q�→ f) effectively locally uniformly w.r.t. (U�) if there is a recursive function M: N2 → N such that for all k, �, n, and all
x ∈ U�:

n≥ M(k, �) �⇒ ∣∣qn(x)− f (x)
∣∣ < 2−k.

We also say: f is effectively locally multipolynomially approximable by (q�) w.r.t. (U�).

Note the difference between effective local uniform approximation by a sequence of functions (fn) and by a sequence of
multipolynomials (q�) (Definitions 2.3.7 and 2.4.3): the domains of all the fn are U , whereas the domain of each q� is U � .

2.5. Equivalence between GL-computability and multipolynomial approximability

We present the first of our three Equivalence Lemmas.
Recall the global assumptions of domain exhaustion and continuity on f : R ⇀ R. Let (U�) be an effective exhaustion of

dom(f).

Equivalence Lemma 1 (GL-computability and multipolynomial approximability). The following are equivalent:

(i) f is effectively locally uniformly multipolynomially approximable w.r.t. (U�),
(ii) f is GL-computable w.r.t. (U�).

Proof. We first prove (i) ⇒ (ii). So suppose f is effectively locally uniformly multipolynomially approximable by (q�)

w.r.t. (U�).
First we extend each q� to a function f� with domain U , by linear interpolation between the components: Suppose

q� =
[

p�
1 � I�1, . . . , p�

k�
� I�k�

]
,

where I�i = (a�
i , b

�
i) and b�

i < a�
i+1 for i = 1, . . . , k� − 1. Define

f�(x)�

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

p�
i (x) if x ∈ I�i (i = 0, . . . ,k� − 1)

(p�
i+1(ai+1)−p�

i (bi))(x−bi)

ai+1−bi
+ p�

i (bi) if x ∈ U , b�
i < x < a�

i+1

p�
1(a

�
1) if x ∈ U , x < a�

1

p�
k�

(b�
k�

) if x ∈ U , x > b�
k�
↑ if x /∈ U .

224 M.Q. Fu, J. Zucker / Journal of Logical and Algebraic Methods in Programming 84 (2015) 218–237
Fig. 1. Multipolynomial approximation for 1/x (�= 5).

Note the following:

(1) Each f� is GL-computable, and in fact, (f�) is a GL-computable sequence of functions. This uses a “patching theorem”
[15, p. 32, Thm. 2].

(2) f�→ f effectively locally uniformly w.r.t. (U�). To prove this, note that for any x ∈ U , there exists � such that x ∈ U� .
Then ∀n ≥ �, fn � U� = qn � U� , and so fn(x) = qn(x).

Hence by Lemma 2.3.8, f is GL-computable w.r.t. (U�).
Note that the above construction of the approximating functions f� by linear interpolation cannot be extended to an

obvious way to functions f :Rm ⇀R for m > 1. We return to this in Section 5.4.
Next we prove (ii) ⇒ (i). Here we adapt the proof of the Effective Weierstrass Theorem [15, Ch. 0, Sec. 7] as follows.
Suppose f is GL-computable w.r.t. (U�). For each � and each i = 1, . . . , k� , apply this theorem [15, p. 45] to the closed

interval I�i , to get a polynomial p�
i which approximates f � I�i uniformly on I�i by ≤ 2−� , i.e.,

∀x ∈ I�i ,
∣∣p�

i (x)− f (x)
∣∣≤ 2−�.

Now define the sequence of multipolynomials (q�) as in (2.1). Then f is effectively locally uniformly multipolynomially
approximable by (q�) w.r.t., (U�), as desired. �

In the following two examples (illustrated using Maple 15), we adapt the construction of polynomial approximations
given in [15, Ch. 0, Sec. 7] to the (non-connected) domains U� .

Example 2.5.1 (Multipolynomial approximations). Consider the functions f with domain U , where

(1) f (x) = 1/x, U =R\{0}.
Let

U� =
(

I�1, I�2
)
,

where

I�1 =
(
−�,−1

�

)
, I�2 =

(
1

�
, �

)
, �= 1,2,3, . . .

In Fig. 1 the multipolynomial approximant q� for f is shown for � = 10.
(2) f (x) = tan(πx/2), U = {x ∈R | x �= 2k + 1, k ∈ Z}.

Let

U� =
�⋃ (

2i − 1+ 1

�+ 1
,2i + 1− 1

�+ 1

)
, �= 0,1,2, . . .
i=−�

M.Q. Fu, J. Zucker / Journal of Logical and Algebraic Methods in Programming 84 (2015) 218–237 225
Fig. 2. Multipolynomial approx. for tan(πx/2) (�= 1).

In Fig. 2 the multipolynomial approximant q� for f is shown for � = 1.

Remark 2.5.2.

(1) It is clear that polynomial approximability as in e.g. [15] would be inappropriate here, where dom(f) is not an interval.

(2) We use the polynomial approximation sequences (p�
i) as defined in [15] for f � I�i . Then, from these p�

i we define the
multipolynomial sequences q� . Note however that the multipolynomials obtained by the formula in [15] have coeffi-
cients which are (computable, but) not rational. To obtain Q-multipolynomials as required by Equivalence Lemma 1, we
must further approximate the polynomials p�

i obtained as above by Q-polynomials which approximate them uniformly
on I�i by 2−� . This is straightforward, and we omit details.

(3) It would be interesting to investigate whether other polynomial sequences commonly used in approximation theory
would give better results.

3. Tracking computability; Equivalence Lemma

In this section, we present our second concrete computation model: (α-)tracking computability (or just α-computability),
and prove its equivalence to GL-computability.

This model arose [22–24] as a natural generalization, to not necessarily effective structures, of Mal’cev’s numbering
theory [13] (see Remark 3.1.7).

3.1. Tracking computability

We fix a standard enumeration of Q, i.e., a bijection α: N ≈Q, under which the field operations on Q are all primitive
recursive. In order to construct a satisfactory model of concrete computability on R, we must first construct from α an
enumeration α of a more extensive subset of R than Q, namely the (α-)computational closure of Q, as we now explain.

Definition 3.1.1 (Computable reals). First, we define the α-computational closure of Q, i.e., the set Rc of α-computable reals,
where

Q⊂Rc ⊂R,

with an enumeration8

α:Ω �Rc.

The set Ω ⊂N consists of codes for Rc , i.e. pairs of numbers c = 〈e, m〉, where

8 ‘�’ denotes a surjection.

226 M.Q. Fu, J. Zucker / Journal of Logical and Algebraic Methods in Programming 84 (2015) 218–237
(1) e is an index for a total recursive function {e}: N →N defining a Cauchy sequence

α
({e}(0)

)
, α

({e}(1)
)
, α

({e}(2)
)
, . . . , (3.1)

of elements of Q, and
(2) m is an index for a computable modulus of convergence for this sequence:

∀k, l ≥ {m}(n) : ∣∣α({e}(k)
)− α

({e}(l))∣∣ < 2−n. (3.2)

For any such code c = 〈e, m〉 ∈Ω , α(c) is defined as the limit in R of the Cauchy sequence (3.1), and Rc is the range of α.

Definition 3.1.2 (α-tracking function). Given two functions f : R ⇀ R and ϕ : N ⇀ N, we say that ϕ is an α-tracking function
for f if the following diagram commutes:

Rc

α

f �Rc

ϕ � Ω

Rc

α

Ω Ω�

�

� �

in the sense that for all k ∈Ω ,

(i) f (α(k)) ↓ �⇒ ϕ(k) ↓ ∧ f (α(k)) = α(ϕ(k)), and
(ii) f (α(k)) ↑ �⇒ ϕ(k) ↑.

Definitions 3.1.3 (α-computability and semicomputability).

(a) The function f : R ⇀R is α-computable if it has a recursive α-tracking function.
(b) A subset of R is α-semicomputable if it is the domain of an α-computable function.

Remark 3.1.4 (α-semicomputable sets). It is easy to see that the union of an effective open exhaustion is α-semicomputable.
Hence also the domain of any function satisfying the domain exhaustion assumption (global assumption (a), Section 2.2) is
α-semicomputable.

Remark 3.1.5 (Terminology for α-tracking function and α-computability). In [22,23], the concept defined in Definition 3.1.2
was called a “strict α-tracking function”, whereas an “α-tracking function” only had to satisfy condition (i). (“Strict
α-computability” and “strict α-semicomputability” were defined accordingly.) However, these two concepts coincide for any
function whose domain is α-semicomputable [22, Lemma 10.2.4], and hence, by Remark 3.1.4, for any function satisfying
our global assumptions.

Remark 3.1.6 (Fast Cauchy sequences). As explained in [22], we get an equivalent theory if we assume (by effectively taking
subsequences) that the sequences (3.1) are fast Cauchy sequences, i.e., the modulus of convergence is always the identity
function on N, so that (3.2) becomes

∀n,∀k > n : ∣∣α({e}(k)
)− α

({e}(n)
)∣∣ < 2−n

and so we can work with “e-codes” instead of “c-codes” as elements of Ω .

Remark 3.1.7 (Mal’cev numberings). From the perspective of Mal’cev’s theory of numberings [13], α is a computable number-
ing, or effective listing, of the structure Q. Moreover, we are extending Mal’cev’s concept of numbering to the enumeration
α of the structure Rc: it is a numbering, but not computable, as it is not an effective listing of Rc , since the domain Ω of
α is not decidable. Its effectivity rests on the algorithmic nature of its operations.

3.2. Equivalence between α- and GL-computability

Let U = dom(f), where f satisfies the global assumptions (Section 2.2).

M.Q. Fu, J. Zucker / Journal of Logical and Algebraic Methods in Programming 84 (2015) 218–237 227
Lemma 3.2.1. The predicate9 “Nbd(r, 2−n) ⊆ U�” (for r ∈Q) is computable in r, n and � (cf. Section 2.1).

This is clear.
Next we need some notation. Define

D = {
k ∈N ∣∣ α(k) ∈ U

}
,

E = {
e ∈Ω

∣∣ α(e) ∈ U
}
. (3.3)

Note that by Lemma 3.2.1, D is r.e.
Now suppose x ∈ U ∩Rc . Then there exists e ∈ E such that

α(e)= x.

So putting

rn = α
({e}(n)

)
,

we see that the sequence (rn) of rationals converges to x.
However there is no guarantee that ∀n (rn ∈ U). To ensure this, we can effectively change the index e to an index ̂e such

that α(̂e) = α(e) = x, and for all n, α({̂e}(n)) ∈ U , i.e., ̂e(n) ∈ D , as follows.

Lemma 3.2.2. There is a partial recursive function inU : N ⇀ N such that for all e ∈ E, putting ̂e = inU (e), we have ̂e ∈ E and α(̂e) =
α(e) and for all n, ̂e(n) ∈ D.

Proof. Let e ∈ E , x = α(e). Then there exists N such that

Nbd
(
x,2 ∗ 2−N)⊆ U .

Hence

Nbd
(
rN ,2−N)⊆ U (3.4)

and so

∀n≥ N, rn ∈ U . (3.5)

Note that we can effectively find an N satisfying (3.4), and hence (3.5), by searching for some N and � satisfying

Nbd
(
rN ,2−N)⊆ U�,

using Lemma 3.2.1.
Now let ̂e be an index such that for all n,

{̂e}(n)= �rN+n�.
Note that ̂e can be found effectively from e. Hence there is a recursive function inU :N ⇀N with inU (e) = ê, as desired. �

Note that the concept of a computable sequence of reals (Definition 2.3.1) can be reformulated in terms of α-computability:

Lemma 3.2.3. A sequence (xn) of reals is computable (according to Definition 2.3.1) if, and only if, there is a total recursive function
ψ :N → E such that for all n, α(ψ(n)) = xn.

Proof. By the S-m-n Theorem [11,17]. �
We come to the Equivalence Lemma for our two concrete computation models. Recall our global assumptions (cf. Section

2.2) on f : R ⇀R. Let (U�) be an effective exhaustion of dom(f).

Equivalence Lemma 2 (GL- and α-computability). The following are equivalent:

(i) f is GL-computable w.r.t. (U�).
(ii) f is α-computable.

9 Where Nbd(a, δ) is the open neighborhood of a with radius δ.

228 M.Q. Fu, J. Zucker / Journal of Logical and Algebraic Methods in Programming 84 (2015) 218–237
Proof. First we prove (ii) ⇒ (i). Suppose f is α-computable. We must show f is GL-computable w.r.t. (U�).
By the Continuity (global assumption (b)), we only have to show that f is sequentially computable on U (cf. Defini-

tions 2.3.2 and 2.3.4).
Take any computable sequence (xn) in U . We must show that the sequence (f (xn)) is also computable.
By Lemma 3.2.3, there is a recursive function ψ : N →N, such that for all n

xn = α
(
ψ(n)

)
.

Let

S1 = α ◦ψ :N→R.

Then for all n,

xn = S1(n).

Since f is α-computable, there is an α-tracking function ϕ: N ⇀N for f . Put

yn = f (xn),

and let

S2 = α ◦ ϕ ◦ψ :N ⇀ R.

(xn)

R

α

f

ϕ

S2S1

ψ

(yn)

R

α

NN N�

�

��������������������

�
�
�
�
��� � �

Then for all n,

yn = S2(n)= α
(
(ϕ ◦ψ)(n)

)
,

so by Lemma 3.2.3 (yn) is also a computable sequence of reals.
We have proved f is sequentially computable on U , and hence f is GL-computable w.r.t. (U�).
Next, we will prove (i) ⇒ (ii). The idea of the proof is that

(1) sequential computability of f determines its value on the rationals Q ∩ U , a dense subset of U, and
(2) effective local uniform continuity of f then determines its value on the computable reals Rc ∩ U .

So suppose f is GL-computable w.r.t. (U�). We must show that f is α-computable; i.e. we must construct an α-tracking
function ϕ for f .

By (3.3) and Lemma 3.2.1, D is r.e. Hence there is an effective enumeration or listing of D:

ρ :N≈ D ⊆N,

such that α ◦ ρ is an effective enumeration of Q ∩ U . Putting

rn =df α
(
ρ(n)

) ∈ U (3.6)

we have Q ∩ U = ran(α ◦ ρ) = {rn | n ∈N}.
Also, the inverse function

ρ−1 : D ≈N

is a partial recursive function from N to N. Note that for all q ∈Q ∩ U ,

q= α(�q�)= rρ−1(�q�) (3.7)

(putting n = ρ−1(�q�) in (3.6)). Consider the computable double sequence (rnk) of rationals where for all k,

rnk = rn = α
(
ρ(n)

)
.

M.Q. Fu, J. Zucker / Journal of Logical and Algebraic Methods in Programming 84 (2015) 218–237 229
Suppose

f (rn)= un. (3.8)

Since f is sequentially computable, there is computable double sequence (unk) of rationals such that unk → un (and by
Remark 3.1.6 we may assume fast convergence).

So we can find, effectively in n, and hence in ρ(n), an index en for the sequence (�un0�, �un1�, �un2�, . . .). In other word,
there is a recursive function ψ such that for all n

ψ
(
ρ(n)

)= en.

Hence for all n, un ∈Rc with

un = α(en)= α
(
ψ

(
ρ(n)

))
. (3.9)

So ψ (or rather ψ ◦ ρ) is a kind of (α,α)-tracking function for f �Q ∩ U :

n
N

rn

Q∩ U

α

f �Q∩ U

ψρ

un

R

α

ρ(n)

D
en

Ωα
� �

�

� �

Now suppose given a computable real x ∈Rc ∩ U , with x = α(e), e ∈Ω . Note that even though x ∈ U , there is no guarantee
that for all n, {e}(n) ∈ U . We must therefore replace e by ̂e = inU (e), as in Lemma 3.2.2.

Then we have a sequence of rationals α ◦ {̂e}, such that for all n, putting

sn = α
({̂e}(n)

) ∈Q∩ U ,

we have

�sn�= {̂e}(n) ∈ D (3.10)

and

sn→ x. (3.11)

Next, putting

yn = f (sn) (3.12)

we have

yn = f (sn)= f (rρ−1(�sn�)) by (3.7) putting q= sn

= uρ−1(�sn�) by (3.8) with n← ρ−1(�sn�)
= α

(
ψ

(
ρ
(
ρ−1(�sn�)

)))
by (3.9) with n← ρ−1(�sn�)

= α
(
ψ(�sn�)

)
= α

(
ψ

({̂e}(n)
))

by (3.10). (3.13)

Hence yn ∈Rc for all n.
Next, since f is effectively locally uniformly continuous w.r.t. (U�), by (3.12) (yn) is an effective Cauchy sequence. (The

proof is an effective version of the standard proof that local uniform continuity of a mapping preserves the Cauchy property
of sequences.) Again (by taking subsequences) we may assume (yn) is a fast Cauchy sequence.

By completeness of R, (yn) has a limit y. So by (3.11), (3.12) and continuity of f ,

f (x)= y.

From (3.13) each yn is a limit of an effective sequence of rationals

tnk = α
({

ψ
({ê}(n)

)}
(k)

)
.

230 M.Q. Fu, J. Zucker / Journal of Logical and Algebraic Methods in Programming 84 (2015) 218–237
Let e′ be an index for the diagonal sequence (tkk). Then e′ ∈Ω and

α
(
e′

)= y.

The effective mapping from e to e′ sketched above is a recursive α-tracking function ϕ for f :

x

α sn

f

ϕ

y

αyn

e e′�

�

� �

Hence f is α-computable. �
This Equivalence Lemma, for total f , was stated without proof in [23].
In Section 5.2 we return to this Equivalence Lemma, to show how it holds for functions f : Rm ⇀ R for all m ≥ 1 with a

weaker domain exhaustion assumption.

4. Abstract models; the topological partial algebra R

This section is devoted to abstract computation on R. To prepare for this, we discuss abstract many-sorted algebras, and
more particularly, topological partial algebras, illustrated by the topological partial algebra R of reals. We then describe the
While programming language, and its extensions, such as WhileCC (While with “countable choice”), and hence the concepts
of While and WhileCC approximability for functions on R. We then state the third Equivalence Lemma, on the equiva-
lence of WhileCC approximability with ᾱ-computability. From this follows the equivalence theorem for our four models of
computation on R, under our global assumptions.

4.1. Basic concepts: Signatures and algebras

Definition 4.1.1 (Many-sorted signatures). A many-sorted signature Σ is a pair 〈Sort(Σ), Func(Σ)〉 where

(a) Sort(Σ) is a finite set of sorts, written s, s′, . . . , and
(b) Func(Σ) is a finite set of (primitive or basic) function symbols F , each with a type of the form s1×· · ·× sm→ s, written

F : s1 × · · · × sm→ s,

where m ≥ 0 is the arity of F . The case m = 0 corresponds to a constant; we then write F : → s.

Definition 4.1.2 (Product types over Σ). A Σ-product type has the form s1 × · · · × sm (m ≥ 0), where s1, . . . , sm are Σ-sorts.
Product types are written u, v,

Definition 4.1.3 (Σ-algebras). A Σ-algebra A has, for each sort s of Σ , a non-empty set As , the carrier of sort s, and for each
Σ-function symbol F : u → s, where u = s1 × · · · × sm , a (not necessary total) function F A: Au ⇀ As , where

Au =df As1 × · · · × Asm .

The algebra A is total if F A is total for each Σ-function symbol F . Otherwise it is partial.

We will write Σ(A) for the signature of an algebra A.

4.2. Topological algebras

Definition 4.2.1 (Continuity). Given two topological spaces X and Y , a partial function f : X ⇀ Y is continuous if for every
open V ⊆ Y ,

f −1[V] =df
{

x ∈ X
∣∣ x ∈ dom(f) and f (x) ∈ V

}
is open in X .

M.Q. Fu, J. Zucker / Journal of Logical and Algebraic Methods in Programming 84 (2015) 218–237 231
Definition 4.2.2 (Topological partial algebra). A topological partial algebra is a partial Σ-algebra with topologies on the carri-
ers such that each of the basic Σ-functions is continuous, and the carriers B and N (if present) have the discrete topology.

Remark 4.2.3 (Continuity of computable functions; the continuity principle). The significance of the continuity of the basic
functions of a topological algebra A is that it implies continuity of all While computable10 functions on A [20,21].

This is in accordance with the Continuity Principle, which can be expressed as

computability �⇒ continuity.

This principle is discussed in [20,22].

4.3. The algebra R of reals

In this paper, we will work with the following algebra:

algebra R
carriers R, B, N
functions 0 R,1R : →R,

plusR, timesR : R2→R

invR : R⇀R,
0N : →N,
sucN : N→N

tt, ff : → B,
and,or : B2→ B,
not : B→ B,
eqN, lessN: N2→ B

eqR, lessR: R2 ⇀ B

The signature Σ(R), with sorts real, bool, and nat, can be inferred from the above.

Remarks 4.3.1.

(1) R contains three carriers: R, N and B, of sorts real, nat and bool respectively.
(2) R contains (as retracts) the field of reals, the naturals with 0 and successor, and the booleans with their standard

operations, including equality and order on R and N.
(3) R is a partial algebra, with the following partial basic functions: invR , eqR and lessR , where for x, y ∈R:

invR(x)�
{

1/x if x �= 0

↑ otherwise,

eqR(x, y)�
{↑ if x= y

ff otherwise,

lessR(x, y)�
⎧⎨
⎩

tt if x < y

ff if x > y

↑ if x= y.

By contrast, the boolean functions on N: eqN and lessN , are total.
The reasons for these semantic definitions will now be discussed.

Discussion 4.3.2 (The topological partial algebra R). R is a topological partial algebra when R is given its usual topology, and
B and N the discrete topology. This motivates our semantic definitions of the partial functions invR , eqR and lessR in R.

Note that the total versions of these functions are not continuous, as can easily be checked. By contrast, the total func-
tions eqN , lessN on N ar trivially continuous, because of the discrete topology on N. Continuity of the basic functions of R,
and hence of all While-computable functions on R, accords with the Continuity Principle (see Remark 4.2.3).

Note that R is standard in the sense that it contains the booleans with their standard operations. This is clearly important
for the purpose of programming on R. R is also N-standard in the sense that it contains the naturals (with 0 and successor).
This is important for considerations of computation on R [21–23].

10 See Section 4.5.

232 M.Q. Fu, J. Zucker / Journal of Logical and Algebraic Methods in Programming 84 (2015) 218–237
4.4. The algebra R∗

R∗ is formed from R by adding the carrier R∗ (of sort real∗) consisting of all finite sequences or arrays of reals, together
with certain standard constants and operations for the empty array, for updating arrays, etc. [20,21,23].

The significance of arrays for computation is that they provide finite but unbounded memory. The reason for introducing
the starred sort real∗ is the lack of effective coding of finite sequences from R (unlike the case with N and B).

Although the use of R∗ is convenient for computational purposes, it does not affect the computational strength of
abstract models on R, as we will see (Section 4.8).

We will be using the topological partial algebras R and R∗ in the rest of the paper.

4.5. The While programming language

Our abstract models of computation on R are based on the While programming language and its extensions, applied to
R [20–23].

We review the syntax of the While language over a standard signature Σ . We use ‘≡’ to denote syntactic identity
between two expressions:

• Σ-variables: There are variables xs, ... of each Σ-sort s.
• Σ-terms: The set of Σ-terms of sort s, denoted ts, . . . , is generated by

ts ::= xs
∣∣ F

(
ts1

1 , . . . , tsm
m

)
where F is a Σ-function symbol of type s1 × · · · × sm→ s.
We also write t : s to indicate that t is a Σ-term of sort s. More generally, we write t : u if t is a tuple of Σ-terms of
product type u. We write b, . . . for boolean terms, i.e. terms of sort bool.
• Σ-statements S, . . . are generated by:

S ::= skip | x := t | S1; S2 | if b then S1 else S2 fi | while b do S0 od

where x := t denotes simultaneous assignment, i.e. for some m > 0, x ≡ (x1, . . . , xm) and t ≡ (t1, . . . , tm) are variable
and term tuples of the same product type, with the condition that xi �≡ x j for i �= j.
• Σ-procedures P , . . . have the form:

P ≡ proc D begin S end

where the statement S is the body and D is the variable declaration of the form

D ≡ in a : u out b : v aux c : w

where a, b and c are tuples of input variables, output variables and auxiliary variables respectively. We stipulate:
(i) a, b and c each consist of distinct variables, and they are pairwise disjoint; and

(ii) every variable in S must be declared in D (among a, b, c).
If a : u and b : v , then P has type u → v , written P : u → v .

Now, for a standard Σ-algebra A, the semantics of the While language over A can be defined in a well-known way [20,
21,23] which will not be repeated here. In particular, the meaning of a While(Σ) procedure P : u → v is a partial function

P A: Au ⇀ Av .

Then we define:

Definition 4.5.1 (While computable function).

(a) A function f : Au ⇀ As is said to be computable on A by a While procedure P : u → s if f = P A .
(b) While(A) is the class of functions While computable on A.

4.6. While approximability

From now on, we restrict our attention to the real algebra R. We consider another paradigm of abstract computability
related to the While language over R.

Given a procedure P : nat× real→ real, we write for any n,

PR
n =df PR(n, ·):R ⇀ R.

Now let f : R ⇀ R satisfy the two global assumptions, with (U�) an effective exhaustion of U = dom(f), and let P : nat×
real ⇀ real be a While procedure over R.

M.Q. Fu, J. Zucker / Journal of Logical and Algebraic Methods in Programming 84 (2015) 218–237 233
Definition 4.6.1 (Local uniform While approximability). f is locally uniformly While approximable by P over R if

(1) for all n, dom(PR
n) ⊇ U , and

(2) the sequence (PR
n � U) converges to f effectively locally uniformly w.r.t. (U�) (cf. Definition 2.3.7).

4.7. While programming with countable choice

We extend the While language over R to the WhileCC language by adding a new assignment statement:

x := choose z : P (z, . . .)

[22,23] where x and the ‘choose’ variable z have sort nat, and P (z, . . .) is a semicomputable predicate of z (and other
variables), i.e., the halting set of a WhileCC procedure with z among its input variables.

Then ‘choose z : P (z, . . .)’ selects some value k such that P (k, . . .) is true if any such k exists, and is undefined otherwise.
In the abstract semantics [22], the meaning of ‘choose z : P (z, . . .)’ is the set of all such k’s (hence “countable choice”). Any
concrete model will select a particular k, according to the implementation.

The abstract semantics for WhileCC associates with a WhileCC procedure P : real→ real a (many-valued) function:

PR :R→ P+ω
(
R↑

)
,

where P+ω (X) is the set of all countable non-empty subsets of X , and R↑ = R ∪ {↑}, where ‘↑’ represents a divergent
computation.

Next we consider WhileCC approximable computability or WhileCC approximability. Let

P : nat× real→ real

be a WhileCC procedure. Again we write

PR
n =df PR(n, .):R→ P+ω

(
R↑

)
.

Definition 4.7.1 (WhileCC approximability to a single-valued function). A function f : R ⇀ R is approximable by a WhileCC
procedure P on R iff for all n ∈N and all x ∈R:

(i) x ∈ dom(f) �⇒ ↑/∈ PR
n (x) ⊆ Nbd(f (x), 2−n), and

(ii) x /∈ dom(f) �⇒ PR
n (x) = {↑}.

Remark 4.7.2. The concept of WhileCC approximability, unlike that of local uniform While approximability (Definition 4.6.1),
does not refer to the exhaustion (U�) of dom(f).

4.8. While∗∗∗ and WhileCC∗∗∗ computability

Recall the definition of the array algebra R∗ with signature Σ∗ (Section 4.4).
A While∗(Σ) procedure is a While(Σ∗) procedure with the restriction that the array variables (i.e. variables of sort real∗)

are used only as auxiliary variables, not for input or output.
The While∗ language is clearly more convenient than While for writing programs over R. However, it is not (in theory)

stronger than While for defining functions on R; in fact (writing While∗(R) for the set of functions While∗ definable
on R):

While∗(R)= While(R)

by [21, §4.7], adapting the proof there to partial algebras.
Similarly we can define the language

WhileCC∗(Σ)= WhileCC
(
Σ∗

)
and again show that

WhileCC∗(R)= WhileCC(R).

Analogously, we can also define the concepts of While∗ and WhileCC∗ approximability on R.
Hence in the rest of the paper, we will write While(∗) and WhileCC(∗) to refer to these languages either with or without

arrays.

234 M.Q. Fu, J. Zucker / Journal of Logical and Algebraic Methods in Programming 84 (2015) 218–237
4.9. Equivalence of abstract and concrete computability

We come now to the third and last Equivalence Lemma, for abstract (WhileCC(∗)(R)) approximability and concrete
(α-tracking) computability. It can also be viewed as a completeness result for abstract (WhileCC(∗)(R)) vs. concrete (tracking)
computability.

Recall our global assumptions on f : R ⇀R.

Equivalence Lemma 3 (Abstract and concrete computability). The following are equivalent:

(i) f is α-computable
(ii) f is WhileCC(∗)(R) approximable.

This was proved in [22,23] for complete separable metric algebras.11 It can be seen that the conditions listed in [22, Thm.
C+] and [23, Thm. 4.2.13] are satisfied here. (See also the discussion in Section 5.2 below.)

Remark 4.9.1. Interestingly, the proof of this Equivalence Lemma requires the global (domain exhaustion and continuity)
assumptions for f , even though the definitions of α-computability and WhileCC(∗) approximability (unlike those of GL
computability and multipolynomial approximability) do not mention them (cf. Remark 4.7.2).

In Section 5.2 we return to this Equivalence Lemma, to show how it holds for functions f : Rm ⇀ R for all m ≥ 1 with a
weaker domain exhaustion assumption.

Remark 4.9.2. In [23] it was proved that for total f : R →R, local uniform While approximability of f over Rt corresponds
to α-computability of f , where Rt is the total topological algebra formed from R by removing the partial operations eqR
and lessR , and replacing invR by the (weaker) inverse operation on N:

invN:N→R,

where

invN(n)=
{

1/n if n �= 0

0 R if n= 0
(4.1)

which is total, but still continuous.
However we have been unable to prove (or disprove) such an Equivalence Lemma for partial functions f (satisfying the

global assumptions).

5. Conclusion; future work

5.1. Conclusion: equivalence of all models

We have studied four models of computation of partial functions on the real numbers: two concrete, one abstract, and
one based on multipolynomial approximation.

From the three Equivalence Lemmas (in Sections 2.5, 3.2 and 4.9) follows the Equivalence Theorem for these models
(Section 1.3), for partial functions satisfying the two global assumptions of domain exhaustion and continuity (Section 1.2).

Over the past decade, as interest in computation on real, metric or other topological spaces, has grown, many models
of computation have been proposed, developed and compared. To cite one among many examples, Stoltenberg-Hansen
and Tucker [19] proved the equivalence of different types of concrete models for total functions, all based on effective
representations by:

• algebraic domains [18],
• continuous domains [3,4],
• type 2 recursion [25],
• effective metric spaces [14], and
• computability structures [15].

One can also take a more radical approach to concrete models of computation. Such models, whatever their motivation,
and however they are conceived and designed, rest upon numberings, which are mappings from N onto some subset of
the algebra A, typically dense in A. In these theories, the subsets are considered to be “finitistic” elements of A, precisely

11 I.e. topological algebras where the topology is given by a metric.

M.Q. Fu, J. Zucker / Journal of Logical and Algebraic Methods in Programming 84 (2015) 218–237 235
because they are capable of being numbered. With this simple but fundamental viewpoint, we see that the equivalence
between different models of computation can be expressed as invariance of computability between different numberings:
if M1 and M2 are two models over A based on numberings α1 and α2 respectively, then equivalence between α1 and α2
implies that M1 and M2 have the same computable functions. Two interesting studies of the equivalence of numberings
for familiar topological spaces are by Hertling [10] on the reals, and Blanck, Stoltenberg-Hansen and Tucker [2] on more
general structures. A more abstract approach to invariance of computational models is given by Bauer and Blanck [1] using
realizability theory.

5.2. A weaker domain exhaustion assumption

Can our domain exhaustion assumption be weakened? Consider the three Equivalence Lemmas, which together form the
Equivalence Theorem:

EL1 (Section 2.5) GL-comp. ⇐⇒ multipoly approx.
EL2 (Section 3.2) GL-comp. ⇐⇒ α-tracking comp.
EL3 (Section 4.9) α-tracking comp. ⇐⇒ WhileCC∗ approx.

Note first that EL3 was presented and proved in [22,23] (as a “completeness theorem” for abstract vs concrete computation),
in the much more general case of functions f on a complete separable metric algebra A, where

(a) the domain U of f is the union of an open exhaustion (U�), i.e., an increasing sequence of open sets, which is
(i) semi-effective, in the sense that the relation{

(x, �) ∈ A ×N
∣∣ x ∈ U�

}
is While∗-semicomputable;

(ii) effectively open, in the sense that there is a While-computable function γ : A × N → N such that for all � and all
a ∈ U� ,

Nbd
(
a,2−γ (a,�)

)⊆ U�

(b) f is effectively locally uniformly continuous w.r.t. this exhaustion.

Specializing again to the case A =R: assumption (a) is easily seen to be weaker than the domain exhaustion assumption
given in this paper (Definitions 2.2.1 and 2.2.2), since in the above definition,

• it is not assumed that each U� is a finite union of rational intervals;
• it is not assumed that U� ⊆ U�+1, only that U� ⊆ Ul+1;
• the condition (ii) of effective openness is derivable from the domain exhaustion assumption given in this paper. (That is

the essence of Lemma 3.2.1, used in the proof of EL2.)

We will call (a) the weak domain exhaustion assumption, and the conjunction of (a) and (b) the weak global assumptions.
Then from the results in [22,23], it follows that the Equivalence Lemma EL3 given here in Section 4.9 can be re-stated

using the weak global assumptions, and can also be generalized to functions f : Rm ⇀R for m > 1.
Next, considering EL2: note, in this regard, that the definition of GL-computability as given here (Section 2.3) can be

easily adapted to the case of functions f : Rm ⇀ R for m > 1.12 Then the proof of this equivalence given in Section 3.2 can
be easily generalized to the case of such functions satisfying the weak global assumptions above.

Combining these versions of EL2 and EL3, we arrive at the following “generalization” of the equivalence theorem: (cf. the
Equivalence Theorem for all four computation models (i)–(iv) given in Section 1.3):

Generalized equivalence theorem. Suppose f : Rm ⇀R (m > 0) has a domain with an effective exhaustion (U�) which satisfies the
weak domain exhaustion assumption, and f is effectively locally uniformly continuous w.r.t. (U�). Then the following are equivalent:

(i) f is GL-computable w.r.t. (U�),
(ii) f is tracking computable,
(iv) f is WhileCC∗ approximable on R.

This is called a “generalized” equivalence theorem because (a) it applies to functions of arity m ≥ 1, and (b) the domain
exhaustion assumption here is weaker than that used in this paper (as stated above).

12 Such a definition is given in [15, Ch. 0, Sec. 3] in the case that the domain of f is a closed m-dimensional rectangle.

236 M.Q. Fu, J. Zucker / Journal of Logical and Algebraic Methods in Programming 84 (2015) 218–237
Conspicuously absent here, however, is the multipolynomial model:

(iii) f is effectively locally uniformly multipolynomially approximable w.r.t. (U�).

To include this among the equivalences, we seem to need the “strong” effective exhaustion assumption (Definitions 2.2.1(2)),
and even then it only works for m = 1 (Section 1.2, point (3)).

Remark 5.2.1 (Further generalization of “effective exhaustion”). It seems that the generalized equivalence theorem presented
above can be generalized even further (still excluding the multipolynomial model), so as to apply to partial functions on
complete separable metric algebras, as used in proving EL3 (“abstract/concrete completeness”) in [22,23]. It only remains to
give a generalized definition of GL-computability for such functions, and then generalize the proof of EL2 (Section 3.2)
accordingly. This seems unproblematic.

Remark 5.2.2 (Consistent generalization of “effective exhaustion”). The generalization of the notion of “effective exhaustion”
used above does not reduce to the notion developed in this paper when n = 1. It is strictly weaker, as indicated above.
However, in order to include (for example) the multipolynomial approximability model in an equivalence theorem for func-
tions f : Rm ⇀R with m > 1, we want a notion of “effective exhaustion” in m dimensions that reduces, when m = 1, to the
one developed in this paper (Definitions 2.2.1 and 2.2.2). To formulate the correct notion for this is a challenging problem.13

5.3. Invariance of continuity assumption

For two of our four models: GL-computability and multipolynomial approximability, the definition of computability of
a function f with domain U depends on the choice of effective exhaustion (U�) of U , since the global assumption (b)
(cf. Section 2.2) requires effective local uniform continuity of f with respect to this exhaustion.

It is therefore desirable to have an invariance result of the form that if global assumption (b) holds for any effective
exhaustion of dom(f), then it holds for all effective exhaustions of dom(f). This is given by the following proposition.

Proposition 5.3.1 (Invariance of global assumption (b) w.r.t. (a)). Given f : R ⇀ R with domain U , let (U�) and (V�) be two effective
exhaustions of U . If f is effectively locally uniformly continuous w.r.t. (U�), then f is also effectively locally uniformly continuous
w.r.t. (V�).

Proof. Consider any stage V� of the exhaustion (V�). Since V� ⊆ U , which is a union of expanding open sets Um , by
compactness of V� there exists m such that

V� ⊆ Um. (5.1)

By assumption, f is uniformly continuous on Um , and so by (5.1) f is also uniformly continuous on V� .
Further, m in (5.1) can be effectively found from � (as can be seen from Definition 2.2.2), i.e., m = g(�) for some total

recursive g . Hence f is effectively locally uniformly continuous w.r.t. (V�), with a modulus M ′ obtainable from the modulus
M for f w.r.t. (U�) (cf. Definition 2.2.6):

M ′(k, �)= M
(
k, g(�)

)
. �

5.4. Future work

Three interesting problems left open by this paper are:

(1) Generalizing the full Equivalence Theorem (including the effective multipolynomial model) to functions f :Rm ⇀ R for
m > 1.
Two difficulties here are how to generalize to m > 1:
• the proof in Equivalence Lemma 1 (Section 2.5) of the implication

multipolynomial approx. �⇒ GL computability

which, as it stands, requires extending the domain of the multipolynomial approximants to dom(f) by linear inter-
polation;
and more fundamentally:
• the definition of the concept of (effective) exhaustion (Definitions 2.2.1 and 2.2.2).14

13 We return to this in Section 5.4.
14 This has recently been accomplished in [6], where (briefly) the rational intervals forming the components of the stages of an exhaustion are replaced

(for m > 1) by computable open basic semialgebraic sets.

M.Q. Fu, J. Zucker / Journal of Logical and Algebraic Methods in Programming 84 (2015) 218–237 237
(2) Investigating the

Conjecture. The two global assumptions are satisfied by all elementary functions on the reals.

Here the elementary functions on R are functions defined by expressions built up from the variable x and constants
for computable reals, by applying (repeatedly) the four field operations, n-th roots, the exponential and trigonometric
functions, and their inverses.
This is a very interesting class of functions, investigated by, among others, Hardy [9].15 Richardson [16] proved, for a
naturally defined subclass C of this class, the unsolvability of the identity problem (for f , g in C , does f = g ?) and the
integration problem (for f in C , is the integral of f in C ?).
Note that the function n

√
x, for n even, is defined on the interval [0, ∞), which is not open (and hence cannot be the

union of an open exhaustion). This is easily remedied by defining its value to be 0 for x < 0, resulting in a total, effec-
tively uniformly continuous function. Of course, many elementary functions (e.g. 1/x, log x, tan x) cannot be “totalized”
in this way.
One can then easily prove that the domains of all elementary functions are open, by induction on the complexity of
their defining expressions. However the above conjecture remains to be proved.

(3) Determining the status of the While(∗) approximability model:
whether (or under what conditions) it is equivalent to the four models on R studied here. (See Remark 4.9.2.)

Acknowledgements

This article developed out of the first author’s MSc thesis [5]. We are grateful to Jacques Carette, John Tucker and four
anonymous referees for very helpful comments on earlier drafts.

References

[1] A. Bauer, J. Blanck, Canonical effective subalgebras of classical algebras as constructive metric completions, J. Univers. Comput. Sci. 16 (18) (2010)
2496–2522.

[2] J. Blanck, V. Stoltenberg-Hansen, J.V. Tucker, Stability of representations for effective partial algebras, Math. Log. Q. 57 (2011) 217–231.
[3] A. Edalat, Domain theory and integration, Theor. Comput. Sci. 151 (1995) 163–193.
[4] A. Edalat, Dynamical systems, measures, and fractals via domain theory, Inf. Comput. 120 (1995) 32–48.
[5] Ming Quan Fu, Models of computability of partial functions on the reals, MSc thesis, Department of Computing & Software, McMaster University, 2007,

Technical report CAS-08-01-JZ, January 2008.
[6] Ming Quan Fu, Characterizations of semicomputable sets, and computable partial functions, on the real plane, PhD thesis, Department of Computing &

Software, McMaster University, 2014, archived in DSpace at: http://hdl.handle.net/11375/16066.
[7] A. Grzegorczyk, Computable functions, Fundam. Math. 42 (1955) 168–202.
[8] A. Grzegorczyk, On the definitions of computable real continuous functions, Fundam. Math. 44 (1957) 61–71.
[9] G.H. Hardy, The Integration of Functions of a Single Variable, Cambridge Tracts in Mathematics and Mathematical Physics, vol. 2, Cambridge University

Press, 1905, available as an eBook at openlibrary.org.
[10] R. Hertling, A real number structure that is effectively categorical, Math. Log. Q. 45 (2) (1999) 147–182.
[11] S.C. Kleene, Introduction to Metamathematics, North Holland, 1952.
[12] D. Lacombe, Extension de la notion de fonction récursive aux fonctions d’une ou plusieurs variables réelles, I, II, III, C. R. Acad. Sci. Paris 240 (1955)

2470–2480; C. R. Acad. Sci. Paris 241 (13–14) (1955) 151–153.
[13] A.I. Mal’cev, Constructive algebras I, in: The Metamathematics of Algebraic Systems. A.I. Mal’cev, Collected Papers: 1936–1967, North Holland, 1971,

pp. 148–212.
[14] Y.N. Moschovakis, Recursive metric spaces, Fundam. Math. 55 (1964) 215–238.
[15] M.B. Pour-El, J.I. Richards, Computability in Analysis and Physics, Springer-Verlag, 1989.
[16] D. Richardson, Some unsolvable problems involving functions of a real variable, J. Symb. Log. 33 (1968) 514–520.
[17] H. Rogers Jr., Theory of Recursive Functions and Effective Computability, McGraw–Hill, 1967.
[18] V. Stoltenberg-Hansen, J.V. Tucker, Effective algebras, in: S. Abramsky, D. Gabbay, T. Maibaum (Eds.), Handbook of Logic in Computer Science, vol. 4,

Oxford University Press, 1995, pp. 357–526.
[19] V. Stoltenberg-Hansen, J.V. Tucker, Concrete models of computation for topological algebras, Theor. Comput. Sci. 219 (1999) 347–378.
[20] J.V. Tucker, J.I. Zucker, Computation by ‘while’ programs on topological partial algebras, Theor. Comput. Sci. 219 (1999) 379–420.
[21] J.V. Tucker, J.I. Zucker, Computable functions and semicomputable sets on many-sorted algebras, in: S. Abramsky, D. Gabbay, T. Maibaum (Eds.), Hand-

book of Logic in Computer Science, vol. 5, Oxford University Press, 2000, pp. 317–523.
[22] J.V. Tucker, J.I. Zucker, Abstract versus concrete computation on metric partial algebras, ACM Trans. Comput. Log. 5 (2004) 611–668.
[23] J.V. Tucker, J.I. Zucker, Computable total functions, algebraic specifications and dynamical systems, J. Log. Algebr. Program. 62 (2005) 71–108.
[24] J.V. Tucker, J.I. Zucker, Abstract versus concrete computability: the case of countable algebras, in: V. Stoltenberg-Hansen, J. Väänänen (Eds.), Logic

Colloquium ’03, Proc. Annual European Summer Meeting, Association for Symbolic Logic, Helsinki, August 2003, in: Lecture Notes in Logic, vol. 24,
Association for Symbolic Logic, 2006, pp. 377–408.

[25] K. Weihrauch, Computable Analysis: An Introduction, Springer, 2000.
15 Hardy also included functions y = f (x) implicitly defined by polynomial equations in x and y.

http://refhub.elsevier.com/S2352-2208(14)00075-3/bib62617565722B626C616E636B3130s1
http://refhub.elsevier.com/S2352-2208(14)00075-3/bib62617565722B626C616E636B3130s1
http://refhub.elsevier.com/S2352-2208(14)00075-3/bib626C616E636B2B73746F6C742B6A76743131s1
http://refhub.elsevier.com/S2352-2208(14)00075-3/bib6564616C617439353A746373s1
http://refhub.elsevier.com/S2352-2208(14)00075-3/bib6564616C617439353A69636F6D70s1
http://refhub.elsevier.com/S2352-2208(14)00075-3/bib66753A6D746865736973s1
http://refhub.elsevier.com/S2352-2208(14)00075-3/bib66753A6D746865736973s1
http://hdl.handle.net/11375/16066
http://refhub.elsevier.com/S2352-2208(14)00075-3/bib67727A65673535s1
http://refhub.elsevier.com/S2352-2208(14)00075-3/bib67727A65673537s1
http://refhub.elsevier.com/S2352-2208(14)00075-3/bib68617264793A696E746567726174696F6Es1
http://refhub.elsevier.com/S2352-2208(14)00075-3/bib68617264793A696E746567726174696F6Es1
http://refhub.elsevier.com/S2352-2208(14)00075-3/bib686572746C696E673939s1
http://refhub.elsevier.com/S2352-2208(14)00075-3/bib6B6C65656E653A696Ds1
http://refhub.elsevier.com/S2352-2208(14)00075-3/bib6C61636F6D62653535s1
http://refhub.elsevier.com/S2352-2208(14)00075-3/bib6C61636F6D62653535s1
http://refhub.elsevier.com/S2352-2208(14)00075-3/bib6D616C63657637313A636F6E7374722D616C67s1
http://refhub.elsevier.com/S2352-2208(14)00075-3/bib6D616C63657637313A636F6E7374722D616C67s1
http://refhub.elsevier.com/S2352-2208(14)00075-3/bib6D6F7363686F3634s1
http://refhub.elsevier.com/S2352-2208(14)00075-3/bib706572s1
http://refhub.elsevier.com/S2352-2208(14)00075-3/bib72696368617264736F6E3638s1
http://refhub.elsevier.com/S2352-2208(14)00075-3/bib726F67657273s1
http://refhub.elsevier.com/S2352-2208(14)00075-3/bib73746F6C742B6A76743935s1
http://refhub.elsevier.com/S2352-2208(14)00075-3/bib73746F6C742B6A76743935s1
http://refhub.elsevier.com/S2352-2208(14)00075-3/bib73746F6C742B6A767439393A746373s1
http://refhub.elsevier.com/S2352-2208(14)00075-3/bib747A3A7768696C65s1
http://refhub.elsevier.com/S2352-2208(14)00075-3/bib747A3A6862s1
http://refhub.elsevier.com/S2352-2208(14)00075-3/bib747A3A6862s1
http://refhub.elsevier.com/S2352-2208(14)00075-3/bib747A3A6163s1
http://refhub.elsevier.com/S2352-2208(14)00075-3/bib747A3A746F74616Cs1
http://refhub.elsevier.com/S2352-2208(14)00075-3/bib747A3A636F756E7461626C65s1
http://refhub.elsevier.com/S2352-2208(14)00075-3/bib747A3A636F756E7461626C65s1
http://refhub.elsevier.com/S2352-2208(14)00075-3/bib747A3A636F756E7461626C65s1
http://refhub.elsevier.com/S2352-2208(14)00075-3/bib776569683A626F6F6Bs1

	Models of computation for partial functions on the reals
	1 Introduction
	1.1 Background
	1.2 Comparison with case of total functions
	1.3 Overview

	2 Exhaustions; GL computability; multipolynomial approximability; Equivalence Lemma 1
	2.1 Codings; computability of functions and predicates on Q
	2.2 Exhaustions; local approximability and continuity
	2.3 GL-computability
	2.4 Multipolynomial approximability
	2.5 Equivalence between GL-computability and multipolynomial approximability

	3 Tracking computability; Equivalence Lemma
	3.1 Tracking computability
	3.2 Equivalence between α- and GL-computability

	4 Abstract models; the topological partial algebra R
	4.1 Basic concepts: Signatures and algebras
	4.2 Topological algebras
	4.3 The algebra R of reals
	4.4 The algebra R*
	4.5 The While programming language
	4.6 While approximability
	4.7 While programming with countable choice
	4.8 While* and WhileCC* computability
	4.9 Equivalence of abstract and concrete computability

	5 Conclusion; future work
	5.1 Conclusion: equivalence of all models
	5.2 A weaker domain exhaustion assumption
	5.3 Invariance of continuity assumption
	5.4 Future work

	Acknowledgements
	References

