Computable Functions and
Semicomputable Sets on Many-sorted

Algebras

J. V. Tucker and J. I. Zucker

Contents

1

Introduction o
1.1 Computing in algebras
1.2 Examples of computable and non-computable functions .
1.3 Relations with effective algebra
1.4 Historical notes on computable functions on algebras

1.5 Objectives and structure of the chapter
1.6 Prerequisiteso
Signatures and algebras L.
2.1 Signatures
2.2 Terms and subalgebras
2.3 Homomorphisms, isomorphisms and abstract data types

2.4 Adding Booleans: Standard signatures and algebras . . .
2.5 Adding counters: N-standard signatures and algebras . .
2.6 Adding the unspecified value ui; Algebras A" of signature

2.7 Adding arrays: Algebras A* of signature ¥*
2.8 Adding streams: Algebras A of signature ¥
W hile computability on standard algebras
3.1 Syntax of While(X)
3.2 States
3.3 Semantics of terms oL oL
3.4 Algebraic operational semantics
3.5 Semantics of statements for While(X)
3.6 Semantics of procedures.
3.7 Homomorphism invariance theorems
3.8 Locality of computation
3.9 The language WhileProc(X)
3.10 Relative While computability
3.11 For(X) computability
3.12 While" and For™ computability

317

318

J. V. Tucker and J. 1. Zucker

3.13 While* and For* computability 378
3.14 Remainder set of a statement; snapshots 380
3.15 ¥*/X conservativity for terms 383
Representations of semantic functions; universality 387
4.1 Godel numbering of syntax oL 388
4.2 Representation of states 389
4.3 Representation of term evaluation 389
4.4 Representation of the computation step function 390
4.5 Representation of statement evaluation 392
4.6 Representation of procedure evaluation 393
4.7 Computability of semantic representing functions;

term evaluation property 394
4.8 Universal While"™ procedure for While 397
4.9 Universal While"™ procedure for While* 401
4.10 Snapshot representing function and sequence 402
4.11 Order of a tuple of elements 404
4.12 Locally finite algebras 405
4.13 Representing functions for specific terms or programs . . 406
Notions of semicomputability 407
5.1 While semicomputability 408
5.2 Merging two procedures: Closure theorems 409
5.3 Projective W hile semicomputability: semicomputability

withsearch o 413
5.4 WhileV semicomputability 414
5.5 Projective While"™ semicomputability 416
5.6 Solvability of the halting problem 416
5.7 Whale* semicomputability 420
5.8 Projective While* semicomputability 421
5.9 Homomorphism invariance for semicomputable sets . . . 422
5.10 The computation tree of a While statement 423
5.11 Engeler’slemma L. 425
5.12 Engeler’s lemma for W hile* semicomputability 429
5.13 X7 definability: Input/output and halting formulae . . . 431
5.14 The projective equivalence theorem 434
5.15 Halting sets of While procedures with random

assignments 435
Examples of semicomputable sets of real and
complex numbers Lo Lo 438
6.1 Computability on Rand C 439
6.2 The algebra of reals; a set which is projectively While

semicomputable but not While* semicomputable 441
6.3 The ordered algebra of reals; sets of reals which are W hile

semicomputable but not While* computable 443

6.4 A set which is projectively W hile* semicomputable but
not projectively While™ semicomputable 445

1

Computable functions on algebras

6.5 Dynamical systems and chaotic systems on R;

sets which are W hile™ semicomputable but not While*

computable. L o
6.6 Dynamical systems and Julia sets on C;

sets which are While™ semicomputable but not W hile*

computable Lo L
Computation on topological partial algebras
71 Theproblem L.
7.2 Partial algebras and W hzle computation
7.3 Topological partial algebras
7.4 Discussion: Two models of computation on the reals. . .
7.5 Continuity of computable functions
7.6 Topological characterisation of computable sets in com-

pact algebras
7.7 Metric partial algebrao 0oL
7.8 Connected domains: computability and explicit

definability Lo
7.9 Approximable computability00
7.10 Abstract versus concrete models for computing on the real

numbers
A survey of models of computability
8.1 Computability by function schemes
8.2 Machinemodels L.
8.3 High-level programming constructs; program

schemes
8.4 Axiomatic methods
8.5 Equational definability,
8.6 Inductive definitions and fixed-point methods
8.7 Setrecursion
8.8 A generalised Church—Turing thesis for computability . .
8.9 A Church Turing thesis for specification
8.10 Some other applications

Introduction

319

447

464

488

The theory of the computable functions is a mathematical theory of total
and partial functions of the form

f: N* - N,

and sets of the form

SCN?

that can be defined by means of algorithms on the set

N=1{0,1,2,...}

320 J. V. Tucker and J. 1. Zucker

of natural numbers. The theory establishes what can and cannot be com-
puted in an explicit way using finitely many simple operations on numbers.
The set of naturals and a selection of these simple operations together form
an algebra. A mathematical objective of the theory is to develop, analyse
and compare a variety of models of computation and formal systems for
defining functions over a range of algebras of natural numbers.

Computability theory on N is of importance in science because it es-
tablishes the scope and limits of digital computation. The numbers are
realised as concrete symbolic objects and the operations on the numbers
can be carried out explicitly, in finitely many concrete symbolic steps. More
generally, the numbers can be used to represent or code any form of discrete
data. However, the question arises:

Can we develop theories of functions that can be defined by
means of algorithms on other sets of data?

The obvious examples of numerical data are the integer, rational, real and
complex numbers; and associated with these numbers there are data such
as matrices, polynomials, power series and various types of functions. In
addition, there are geometric objects that are represented using the real and
complex numbers, including algebraic curves and manifolds. Examples of
syntactic data are finite and infinite strings, terms, formulae, trees and
graphs. For each set of data there are many choices for a collection of
operations from which to build algorithms.

How specific to the set of data and chosen operations are these
computability theories? What properties do the computability
theories over different sets of data have in common?

The theory of the computable functions on N is stable, rich and useful;
will the theory of computable functions on the sets of real and complex
numbers, and the other data sets also be so?

The theory of computable functions on arbitrary many-sorted algebras
will answer these questions. It generalises the theory of functions comput-
able on algebras of natural numbers to a theory of functions computable
on any algebra made from any family of sets and operations. The notion
of ‘computable’ here presupposes an algorithm that computes the function
in finitely many steps, where a step is an application of a basic operation
of the algebra. Since the data are arbitrary, the algorithm’s computations
are at the same level of abstraction as the data and basic operations of
the algebra. For example, this means that computations over the field R
of real numbers are exact rather than approximate. Thus, the algorithms
and computations on algebras are intimately connected to their algebraic
properties; in particular, the computability theory is invariant under iso-
morphisms.

Already we can see that, in the general case, there is likely to be a
ramification of computability notions. For example, in the case of comput-
able functions on the set R of real numbers it is also natural to consider

Computable functions on algebras 321

computability in terms of computing approximations to the values of a
function. The use of approximations recognises the fact that data like
the real numbers are infinite objects and can, or must, be algorithmically
approximated. This is the approach of computable analysis. We wll present
two approaches to computation on the reals: ‘algebraic’ and ‘topological’.
In our algebraic approach we are looking for what can be computed exactly,
knowing only what the operations reveal about the reals. The operations
may have been chosen to reveal properties that are specific to the reals,
of course. In the topological approach we are looking for what can be
computed with essentially infinite data on the basis of a finite amount of
information. Actually, this is again, at bottom, an algebraic approach, for
the performance of approrimate computations.
In this chapter our objective is to show the following:

1. There is a general theory of computable functions on an arbitrary al-
gebra that possesses generalisations of many of the important results
in computability theory on natural numbers.

2. The theory provides technical concepts and results that improve our
understanding of the foundations of classical computability and de-
finability theory on N.

3. The theory has a wide range of applications in mathematics and
computer science.

4. The theory can be developed using many models of computation that
are equivalent in that they define the same class of computable func-
tions.

5. The theory possesses a generalisation of the Church Turing thesis for
functions and sets computed by algorithms on any abstract algebraic
structure.

6. The theory generalises other less general but still abstract and alge-
braic, theories of finite computation, including effective algebra and
computable analysis.

Computability theories on particular and general classes of algebras ad-
dress central concerns in mathematics and computer science. Some, such
as effective algebra, have a long history and several subfields with deep
results, such as the theory of computable rings and fields and the word
problem for groups. However, abstract computability theories of the kind
we will develop have a short and less eventful history: starting in the late
1950s, with theoretical work on flowcharts, many approaches have been pre-
sented that vary in their generality and objectives; indeed, there has been
a remarkable amount of reinventing of ideas and results, sometimes with
new motivations, such as obtaining results on: the structure of flowcharts;
the power of programming constructs; the design of program correctness
logics; the development of axiomatic foundations for generalised recursion
theories based on ordinals and higher types; and the study of algorithmic
aspects of ring and field theory, and of dynamical system theory.

322 J. V. Tucker and J. 1. Zucker

In this section we will introduce in a very informal way the model of
computation we will use (in section 1.1) and pose some questions about
examples of computable functions (in section 1.2). Then, in section 1.3, we
will outline the relationship between our model and other models of com-
putation, especially effective algebra and computable analysis. In section
1.4 the history of the theory of computable functions on abstract algebras
is sketched. In sections 1.5 and 1.6 the structure of the chapter and its
prerequisites are discussed in more detail.

The chapter is closely linked scientifically with the chapters in this
Handbook on universal algebra (Volume I), computability (Volume I), and
effective algebra (Volume IV); it also connects with other subjects (e.g.,
topology (Volume I) and those on semantics (Volumes IIT and IV)). Further
information on prerequisites is given in section 1.6.

1.1 Computing in algebras

Let us begin with a basic question:

Let S be a non-empty set of data and let f: S™ — S be a total
or partial function. How do we compute f?

The methods we have in mind start with postulating an algebra A con-
taining the set S. The algebra may consist of a finite family of non-empty
sets

Ar, ..o A

called the carriers of the algebra, one of which is the set S and another is
the set B of Booleans. The algebra is also equipped with a finite family

Cly,-..,Cp
of elements of the sets, called constants, and a finite family

F,... F,
of functions on the sets called operations; these functions are of the form

F: A, x...xA;, — A

and can be total or partial. Among the operations are some standard
functions on the Booleans. Such an algebra is called a standard many-
sorted algebra; we say it is standard because it contains the Booleans and
their special operations. An algebra is often written

(Al,... ,Ak, Cly... ,Cp,Fl,... ,Fq).

A set ¥ of names for the data set, constants and operations (and their
arities) of the algebra A is called a signature.

Computable functions on algebras 323

For most of the time we will use many-sorted algebras with finitely
many constants and total operations, but we will need the case of partial
operations to discuss the relationship between our computable functions
and continuous functions on topological algebras such as algebras of real
numbers, and algebras with infinite data streams.

The problem is to develop and classify models of computation that
describe ways of constructing new functions on the set S from the basic
operations of the algebra A. In particular, each model of computation M is
a method or technique which we use to define the notion that the function
f on the carriers of A is computable from the operations on A by means
of method M; and we collect all such functions into the set

M-Comp(A)

of functions M-computable over the algebra A.

There are many useful choices for a model of computation M with
which to develop a computability theory we list several in a survey in
section 8. In this chapter we focus on a theory for computing with a simple
imperative model, namely the W hile programming language.

In this programming language, basic computations on an algebra A are
performed by concurrent assignment statements of the form

Xlyeen yXp 1= t1,...,1n

where x1,...,x, are program variables and t;,... ,t, are terms or expres-
sions built from variables and the operation symbols from the signature of
the algebra A; and x; and ¢; correspond in their types (1 <i < n).

The control and sequencing of the basic computations are performed by
three constucts that form new programs from given programs Sy, Sy and
S, and Boolean test b:

(1) the sequential composition construct

S1352
(#4) the conditional branching construct
if b then S, else S, fi
(i31) the iteration construct
while b do S od.

The set of all programs so constructed over the signature ¥ is denoted
While(X).

The operational semantics of a While program is a function that,
given an initial state, enumerates every state of a resulting computation.
The input/output (i/o) semantics of a while program is a function that

324 J. V. Tucker and J. 1. Zucker

transforms initial states to final states, if they exist. To compute a function
on A by means of a W hile program we formulate a simple class of function
procedures based on W hile programs; a function procedure P has the form

P = proc in a out b aux c begin S end

where a, b, ¢ are lists of input, output and auxiliary variables, respectively,
and S is a While program, satisfying some simple conditions. The se-
mantics of a procedure P is a function [P]* on A whose input and output
types are determined by the types of the lists of input and output variables
a and b.

A function f is While computable on algebra A if there is a While
function procedure that computes it, i.e., [P]4 = f. All While comput-
able functions on A are collected in the set While(A).

A set is defined to be While computable, or decidable, if its charac-
teristic function is While computable. It is While semicomputable, or
semidecidable, if it is the domain of a partial W hile computable function;
in other words, if it is the halting set of a W hile program.

A crucial property of an abstract model of computation is that it is
designed to apply to any algebra or class of algebras. Two important
consequences are the following.

Firstly, it is easy to explore uniform computation where programs gen-
erate computations over a class of implementations or representations of
data types in a uniform way. For example, think of a W hile program that
is intended to implement Euclid’s algorithm to calculate greatest common
divisors in a way that is uniform over a class of algebras. By such a ‘class’
we could mean, for example, any of the following: (i) the class of all Eu-
clidean domains, (i) the isomorphism class of all (ideal, infinite) imple-
mentations of the ring of integers, (iii) the class of (actual, finite) machine
implementations of the integers.

Secondly, it is easy to employ certain forms of type constructions. Since
we can compute on any algebra (possessing the Booleans) using the pro-
gramming model, we can augment an algebra A to form a new algebra A’,
by adding new types and operations, and apply the programming model
to A’. Adding new data sets and operations is a key activity in theory and
practice. In particular, three modest expansions of an algebra A that have
significant practical effects and (as we shall show) interesting mathematical
theories are:

(a) adding the set N of natural numbers and its standard operations to
A to make a new algebra AV;

(b) adding finite sequences, and appropriate operations, to A to make an
algebra A*.

(¢) adding infinite streams, and appropriate operations, to A to make an
algebra A.

Computable functions on algebras 325

We apply the model of computation to form new classes of computable
functions, namely:

While(AVN), W hile(A*) and While(A).
By this means it is trivial to add constructs like counters, finite arrays and
infinite data streams to the theory of computation, though it is not trivial
to chart the consequences.
In summary, what mechanisms are available for computing in an alge-
bra? The methods of computation are merely:

1) basic operations of the algebra; and
g
i1) sequencing, branching and iterating the operations.
g g g

Is equality computable? Do we have available unlimited data storage?
Can we search the algebra for data?

We will see that for any many-sorted algebra A with the Booleans, by
adding the naturals, we can add

(4i7) any algorithmic construction on a numerical data representation;

and, by adding A*, we can add

(iv) local search through all elements of the subalgebra generated by given
input data;
(v) unlimited storage for data in computations.

To obtain equality we have to postulate it as a basic operation of the
algebra.

We will study these models of computation. The most important turns
out to be the programming language W hile*, which consists of While
programs with the naturals and finite arrays, and is defined simply by

While*(A) = While(A*).

This is the fundamental model of imperative programming that yields a
full generalisation, to an arbitrary many-sorted algebra A, of the theory of
computable functions on the set N of natural numbers, and for which the
generalised Church—Turing thesis for computation on A will be formulated
and justified.

1.2 Examples of computable and non-computable func-
tions

First, let us look at the raw material of our theory, namely problems con-
cerning computing functions and sets on specific algebraic structures. We
will give a list of questions about computing with W hile programs on
different, algebras and invite the reader to speculate on their answers; it is
not essential that the reader understand or recognise all the concepts in
the examples. The idea is to prepare the reader for the role of algebraic
structures in the theory of computable functions and sets, and arouse his
or her curiosity.

326 J. V. Tucker and J. 1. Zucker

Let B be the set of Booleans and let N, Z, Q, R and C be the sets of
natural, integer, rational, real and complex numbers, respectively.

1. Are the sets of functions W hile computable over the following alge-

bras the same as those computable over (N; 0, n + 1)7
(N;O,n+1,n+m,n-m, n=m)

0,n+1,n+m,n-m,n™ n=m)

0,1,n+m,n-m,n=nm)

0,n+m,n-m,n=m)

0,n+m,n=m)

(N; 0, n-m, n=m)

(N;
(N;
(N;
(N

2. Consider each of the following functions:

fn) =4

f(n) =m

) =n+1
fln,m) =n+m
fln,m) =n-m

In each case is f € While(N; 0, n —1)?
3. Let B be the set of Booleans and f : B*¥ — B. Is f eWhile(B; t, f,
and, not)?
4. Let Abe afiniteset and f: A — A. Is f € While(A4; c1,... ,¢p, F1,
., F,) for any choice of constants ¢; and operations F; on A?
5. Consider the algebra
(B,N, [N — BJ; tt,f, and, not,0, n + 1, eval)
of Booleans expanded by adding the set N of naturals with zero and
successor, and the set [N — B] of infinite sequences, or streams, of
Booleans, with the evaluation map eval:[N — B] x N — B defined
by eval(b,n) = b(n). Are the following functions W hile computable
over this algebra:
shift: [N - B] x N —» B defined by shift(a,n) = a(n + 1);
Shift: [N - B] — [N — B] defined by Shift(a)(n) = a(n+1)?
6. Which of the following sets of Boolean streams are
(1) While computable, and
(ii) W hile semicomputable, over the stream algebra in question 57
{a| for some n, a(n) =t}
{a] for all n, a(n) =t}
{ a | for infinitely many n, a(n) = t}
{a]a(0)=t, ..., a(n) =t} for some fixed n
7. Consider each of the following functions:

f@) = 4 fla) = foor(Va)
f@) = V2 fl@) = 2

f@) =« f@) = sin(x)
f@) =2 f@) = cos()
f) = ° f@) = tan(x)
f@) = VB fla) = e

10.

11.

12.

13.

14.

15.

16.

Computable functions on algebras 327

In each case, is f While computable over (R;0,1,z + y,—=,
z-y, ")

Are cos(xz) and tan(z) While computable over (R;0,1,z + y, —z,
x -y, 1, sin(x))?

Let f:R?> — R be the step function

flo,r) = {Oifm<r

1if ¢ >r.

Is f While computable over (R; 0, 1, z +y, —x, z -y, 2)?
Which of the following subsets of R are
(a) While computable, and
(b) W hile semicomputable, over the field of real numbers?
(1) The rational subfield Q of the field of reals
(ii) The subfield Q(v/2) of the field of reals generated by Q and /2
(iii) The subfield Q(y/P | p prime) of the field of reals generated by
Q and the set {,/p | p prime}
(iv) The subfield Q(r) of the field of reals generated by Q and a
non-computable real number r
(v) The subfield Ag of the field of reals containing precisely the real
algebraic numbers
Is the subalgebra 4 of (R; 0, 1,z +y, —x, -y, ', e*) generated
by Q W hile semidecidable?
Is there a While program over (R; 0, 1,z +y, —z, 2 -y, £ 1, \/T)
that computes all the real roots of all quadratic equations with real
coefficients?
Consider the polynomial

pX)=ay+ar X +a X’ + ... +a, X" (ag,...,an € R).
(a) Is the set {z € R | p(z) = 0} of roots of p W hile decidable over
(R; 0,1, x+y, —x, z-y,x ', aop,...,a,)?

(b) For each n find operations to add to the algebra (R; 0, 1, z +
Yy, —x, z-y, ') to calculate the n roots of the polynomial as func-
tions of the coefficients.

Consider the algebra (R, B; 0, 1, z+y, —x, -y, !, £ = y) which
adds equality =: R? — B to the field of reals. What new functions
f:R* - R can be computed?

which adds ordering <: R2 — B to the field of reals. What new
functions f:RF¥ — R can be computed?
Is every cyclic subgroup (t) of the circle group S' W hile decidable?

328

17

18.

19.

20.

21.

22.

23.

24.

25.

26.

J. V. Tucker and J. 1. Zucker

. If f: R — R is While computableon (R; 0, 1, 2+y, —z, 2-y, 2~ 1),
is f continuous?

Can any continuous function f: R — R be approximated (in some
suitable metric) by a function While computable over (R; 0, 1, z +
y, —x, z-y, x)?

What is the relationship, for functions on R, between computability
in the sense of computable analysis, and While computability on
(R; 0,1,z +y, —a, o y,z)7

Is there an algebra A(R) containing R, for which

Rec(R) = While(A(R))

where Rec(R) is the set of functions computable on R in the sense
of recursive or computable analysis?
Consider the many-sorted algebra

(R, N, [N = R]; Og, 1g, +y, —z, Oy, n + 1, eval)

that is an expansion of the additive Abelian group of reals, made
by adding the naturals with zero and successor, infinite sequences or
streams of real numbers, and the evaluation map eval : [N - RJxN —
R defined by eval(a,n) = a(n). Are the following functions W hile
computable on this algebra:

add: [N - R?> x N - R defined by add(a,b,n) = a(n) + b(n);

Add: [N - R? - [N — R] defined by Add(a,b)(n) = a(n) + b(n)?
Are complex conjugation —z and modulus |z| of a complex number
z W hile computable over the following algebras?

(Z) (C’ 0,1,z +y, T, TY, wil)

(”) (C’ 0: 1: Z.7 T+y, —T, Ty, wil)
Is the set {i} While decidable over either of the fields listed in
question 227

Consider the function f(x) =4x(1 — z) on the reals. Is the orbit of
f, defined by

orb(f,z) = {f*(z)|neN 0<z<1}

W hile computable over the field of real numbers?
Are the fractal subsets of C, such as the Mandelbrot and Julia sets,
W hile decidable over the field of complex numbers?
Are the following subsets of C either While decidable, or W hile
semidecidable, over the algebra (C, B; 0, 1, i, |z|, z+y, —=, =y, 21,
=)?

(¢) The set {i}

(7) The set of all roots of unity
(737) The set of all algebraic complex numbers

27.

28.

29.

30.

31.

1.3

Computable functions on algebras 329

Consider the rings Z[X4,...,X,] of all polynomials in n indeter-
minates over the integers. Is the ideal membership relation

QE (p17"' /p'm)

(in ¢,p1,...,pm) While decidable over this ring?

Consider the rings F[Xy,...,X,] of all polynomials in n indeter-
minates over a field F. Is the ideal membership relation While
decidable over this ring?

Consider the algebra T(X, X) of all terms over signature ¥ in the
finite set X of indeterminates. Let AX be the set of assignments to
X in an algebra A. Define the term evaluation function

T: TE(X, X)x AX - A

by TE(t,a) = t(a). Is TE While computable over the algebra
formed by simply combining the algebras T(X, X) and A?

(a) Are all first-order definable subsets of natural numbers W hile
computable with respect to the following algebras?

(1) (N;O,n+1,n+m,n-m)

(1) (N; 0, n+1,n+m)
(131) (N; 0, n+ 1)
(b) Are the While semicomputable sets precisely the X;-definable
sets with respect to these algebras?
Is any set of complex numbers that is first-order definable over the
field of complex numbers W hile decidable over this field? Is any set
of real numbers that is first-order definable over the ordered field of
real numbers W hile decidable over this field?

Relations with effective algebra

In computer science, many-sorted algebras are used to provide a general
theory of data and, indeed, of whole computing systems. They have been
employed to

specify and analyse many new forms of data types;
classify data representations;

characterise which data types are implementable;
model systems;

analyse the modularisation of computing systems;
formalise the correctness of systems; and

reason about systems.

A many-sorted algebra models a concrete representation of a data type or
system; such representations are compared by homomorphisms, axiomat-
ised by equations and conditional equations, and prototyped by term rewrit-
ing methods. There is a considerable theoretical and practical literature

330 J. V. Tucker and J. 1. Zucker

available which may be accessed through survey works such as Meseguer
and Goguen [1985], Wirsing [1991], Wechler [1992] and Meinke and Tucker
[1992].

The theory of computable functions and sets on many-sorted algebras
is intended to provide an abstract theory of computing to complement this
abstract algebraic theory of data. With this in mind we ask the question:

How is the theory of W hile computable functions and sets on
many-sorted algebras related to other theories of computability
on such algebras?

We have mentioned earlier that there are many models of computation
that can be applied to an arbitrary algebra and that turn out to define the
same class of functions and sets as the W hile language; these equivalent
models belong to the computability theory and are the subject of section
8. Here we will discuss an important approach to analysing computability
on algebras called effective algebra. Effective algebra is concerned with
what algebras are computable, or effective, and what functions and sets
on these algebras are computable, or effective. The subject is explained in
Stoltenberg-Hansen and Tucker [1995; 1999a).

A starting point for the discussion is the theory of the computable
functions on the set N = {0,1,2,...} of natural numbers. According to
the Church—Turing thesis, the class Comp(N) of computable function on
N, defined by any one of a number of models of computation, is precisely the
class of functions definable by means of algorithms on the natural numbers.
As we have noted, the algorithms are often over some algebraic structure
on N. In fact, seen from the algebraic theory of data, the algebras used
form a class of concrete representations of the natural numbers that is
parameterised by both the choice of operations and the precise nature of
the number representations (e.g.,binary, decimal and roman). The extent
to which the theory of computable functions on N varies over the class of
these algebras of numbers is an important question, but one that is not
often asked. We expect there to be very little variation in practice (but
compare questions 1 and 2 of section 1.2).

In general terms, a computability theory consists of

(a) a class of algebraic or relational structures to define data and opera-
tions; and

(b) a class of methods, which we call a model of computation, to define
algorithms and computations on the data using the operations.

A generalised computability theory is one which can be applied
to a structure containing the set N of natural numbers to define the set
Comp(N) of computable functions on Comp(N). An abstract computabil-
ity theory is a computability theory in which the theory is invariant up to
isomorphism (in some appropriate sense).

To develop an abstract generalised computability theory for any algebra
A, and classify the computable functions and sets on A, one can proceed

Computable functions on algebras 331

in either of the following two directions. One can apply computability the-
ory on N to algebras using maps from sets of natural numbers to algebras
called numberings. The long-established theories of decision problems in
semigroups, groups, rings and fields, etc. are examples of this approach.
Furthermore, the theory of computable functions Comp(R) on the set
R of real numbers in computable analysis uses computability theory on
Comp(N) to formalise how real number data and functions are approxi-
mated effectively. Theories based on these approaches are parts of what
we here call effective algebra.

Alternatively, one can generalise the computability theory on N to ac-
commodate abstract structures; the theory of computable functions on
many-sorted algebras developed in this chapter is an example, of course,
and more will be said about equivalent models of computation in section
8. However, there are examples of generalised computation theories that
are strictly stronger, such as ordinal recursion theory, set recursion the-
ory, higher type recursion theory and domain theory. Typically these
four generalised computability theories allow infinite computations to re-
turn outputs. To appreciate the diversity of some of these theories it
is necessary to examine closely their original motivations; seen from our
simple finitistic algebraic point of view, generalised recursion theories have
a surprisingly untidy historical development.

Let us focus on the first direction. Effective algebra is a theory that
provides answers for questions such as:

When is an algebra A computable? What functions on A are
computable? What sets on A are decidable or, at least, semide-
cidable?

It attempts to establish the scope and limits of computation by means of
algorithms for any set of data, by applying the theory of computation on N
to universal algebras containing the set of data using numberings. Thus, it
classifies what data can be represented algorithmically, and what sets and
functions can be defined by algorithms, in the same terms as those of the
Church Turing thesis for algorithms on N. Assuming such a thesis, we may
then use the theory of the recursive functions on N to give precise answers
to the above questions about algebras, and to the question:

What sets of data and functions on those data can be imple-
mented on a computer in principle?

The numberings capture the scope and limits of digital data represen-
tation and, thus, effective algebra is a general theory of the digital view of
computation. More specifically, in effective algebra we can investigate the
consequences of the fact that

1. an algebra is computable;
2. an algebra is effective in some weaker senses; and

332 J. V. Tucker and J. 1. Zucker

3. a topological algebra can be approximated by a computable or effect-
ive algebra.

Among the weaker senses are the concepts of semicomputable, cosemicom-
putable and, most generally, effective algebras. For an algebra to be effect-
ive it must be countable, so that its elements may be enumerated. For an
algebra to be effectively approximable it must have a topological structure,
so that its elements may be approximated; the bulk of interesting topolo-
gical algebras are uncountable. A full account of these concepts is given in
Stoltenberg-Hansen and Tucker [1995]. At the heart of the theory of effect-
ive algebra is the notion of a computable algebra: a computable algebra is
an algebra that can be faithfully represented using the natural numbers in
a recursive way. Here is the definition for a single-sorted algebra:

Definition 1.1. An algebra A = (4;c1,... ,¢p, F1,... , F,) is computable
if: (i) the data of A can be computably enumerated there exists a recur-
sive subset), C N and a surjection

a: Q, - N

called a numbering, that lists or enumerates, possibly with repetitions,
all the elements of A; (i7) the operations of A are computable in the
enumeration for each operation F; : A™" — A of A there exists a re-
cursive function

F: Q") 5 Q,

that tracks the F; in the set €, of numbers, in the sense that for all
L1, 77:71(2) € Q(M:

Fl(a(Tl)/ 7a(Tn(l))) = a(fl(Tla 7Tn(z)))a

(#4) the equivalence of numerical representations of data in A is decidable—
the equivalence relation = defined by

Tl =q T2 <= a(z1) = a(zs)

is recursive.

An equivalent formulation, in the algebraic theory of data, is that A is
computable if it is the image of a recursive algebra 1, of numbers under a
homomorphism « : Q, — A whose kernel =¢, is decidable. (This simple
algebraic characterisation leads to new methods of generalising computabil-
ity theories: see Stoltenberg-Hansen and Tucker [1995]).

What mechanisms are available for computing in a computable algebra?
Via the enumeration, the methods include:

(1) basic operations of the algebra;
i1) sequencing, branching and iterating the operations;
ji ing, branchi d iterating th ti

Computable functions on algebras 333

(7i7) any algorithmic construction on the numerical data representation;
(iv) global search through all elements of the algebra;

(v) unlimited storage for data in computations;

(vi) the equality relation on the algebra via the congruence.

Conditions (i) and (i) are shared with our While programming model
and, indeed, are necessary for an algebraic theory: recall section 1.1. There
are also a number of features that extend the methods of our W hile model,
including conditions (7ii) and, more dramatically, (iv). Using the properties
of the numbers that represent the data we can perform global searches
through the data sets (by means of an ordering on the code set), and
store data dynamically without limitations on data storage (by means of a
pairing on the code set). Note that condition (vi) is a defining feature of
computable algebras and can be relaxed (as in the case of semicomputable
or effective algebras, for instance).

Note that an algebra A is computable if there exists some computable
numbering « for A. The computability of functions and sets over A may
depend on the numbering a; thus, to be more precise, we should say that
A, its functions and subsets etc. are a-computable. Let us define the com-
putable subsets and functions for such an algebra.

Definition 1.2 (Sets and maps). Let A be an algebra of signature X,
computable under the numbering « : Q, — A.

(1) A set S = A* is a-decidable, a-semidecidable or a-cosemidecidable if
the corresponding set

a '(8) = {(z1,...,z) € Q7| (a(z1),... ,a(zy) € S}

of numbers is recursive, recursively enumerable (r.e.) or co-recursively
enumerable (co-r.e.) respectively.

(2) A function ¢ : A — A is an a-computable map if there exists a
recursive function f:Q, — Q, such that for all z € Q,, f(a(z)) =
a(f(x)); or, equivalently, f commutes the following diagram:

Let Compn(A) be the set of all a-computable maps on A.

For any computable algebra, there are many computable numberings,
some of which may have desirable properties; for example, it is the case
that every computable algebra has a bijective numbering with code set N.

334 J. V. Tucker and J. 1. Zucker

Let C'(A) be the set of all computable numberings of the algebra A. The
choice of a numbering a € C(A) suggests that the effectiveness of a subset
or function on A may depend on «a. To illustrate, let S C A and consider
the following questions:

Is S decidable for all computable numberings of A; or decid-
able for some, and undecidable in others; or undecidable for all
computable numberings of A?

Another question concerns the invariance of computable maps.

If A is computable under two numberings o and (3 then what
is the relation between the sets Compa(A) and Compg(A)?
What s

ﬂ Compq(A)?
aeC(A)

Consider our abstract model based on While programs. We have noted
that

While(N; 0, n+1) = Comp(N).
The question then arises for our algebras:

What is the relationship between W hile(A) and Compa(A)
for an arbitrary computable representation «?

We can prove that if A is computable then

While(A) C (] Comp,(A). (1.1)
aeC(A)

(In fact this inclusion holds for much weaker hypotheses on A.) The con-
verse inclusion does not hold in general. To see why, consider the algebra

(N7 07 n-— 1),
and the use of a While program to compute a function f:N" — N. It
turns out that for any z1,...,z, € N,
f(mla" . 1’1'57,) S maX(mh' .- 7'7:77.)

because assignments can only reduce the value of the inputs. It follows
that

While(N; 0,n—1) G (| Compy(N; 0,1 — 1) (1.2)
aeC(A)
because in any numbering the successor function S(z) = z + 1 can be

computed.

Computable functions on algebras 335

More difficult to answer is the question: When is

While(A) = (] Compa(A)?
aeC(A)

Some results in this direction are known.

Inequality (1.2) is not a weakness of the abstract theory. Rather it is
an indication of the fact that the abstract models provide a more sensitive
analysis of finite computations. For example, the abstract theory reveals
the special properties of the algebras of numbers that give computability
theory on N its special characteristics: the theory of Compq/(A) is the
same as the theory of While*(A) when A is an algebra finitely generated
by constants.

1.4 Historical notes on computable functions on alge-
bras

The generalisation of the theory of computable functions to abstract alge-
bras has a complicated history. On the one hand the connections between
computation and algebra are intimate and ancient: algebra grew from prob-
lems in computation. However, the fact that it is now necessary to explain
how computation theory can be connected or applied to algebra is an aber-
ration, and is the result of interesting intellectual and social mutations in
the past. It is a significant task to understand the history of generalisa-
tions of computability theory, with questions for research by historians of
mathematics, logic and computing, as well as sociologists of science.

The story that underlies this work involves the development of alge-
bra; the development of computability theory; interactions between com-
putability theory and algebra; and applications to computing. Some of the
connections between computation theory and algebra have been provided
in other Handbook chapters: for notes on the histories of

effective algebra, see Stoltenberg-Hansen and Tucker [1995];
computable rings and fields, see Stoltenberg-Hansen and Tucker [1999a);
algebraic methods in computer science, see Meinke and Tucker [1992].

In the following notes we discuss the nature of generalisations and point
out the earliest work on abstract computability theory. Section 8 is devoted
to a fairly detailed survey of the literature.

We first list some common-sense reasons for generalising computability
theory. A common view is to say that the purpose of a generalisation of
computability theory is one or more of the following:

(1) to say something new and useful about the original theory;
(#4) to provide new methods of use in computer science and mathematics;

(7i7) to illuminate and increase our understanding of the nature of com-
putation.

336 J. V. Tucker and J. 1. Zucker

As will be seen, the theory of computable functions on many-sorted algebras
is certainly able to meet the goals (i)—(iii). For a discussion of these and
other reasons for generalising computability theory, see Kreisel [1971].

Broadly speaking, it is often the case that a new mathematical gener-
alisation of an old theory focuses on a few basic technical ideas, results or
problems in the old theory and makes them primary objects of study in the
new theory. If the generalised theory is technically satisfying then a sub-
stantial subject can be built on foundations consisting of little more than
some modest technical motivations. Recent history records many attempts
at generalisations of computability theory that have different, narrower,
technical aims than those of the original theory. Indeed, in some cases, if
the generalisation can be applied to analyse computation on algebras then
its aims need not be particularly useful or meaningful.

Generalised computability theories bear witness to the fact that com-
putability theory has several concepts, results and problems that can bear
the weighty load of a satisfying generalisation. For instance, on general-
ising finiteness, and allowing infinite computations, theoretical differences
can be found that allow models of computation to cleverly meet goal (i),
but not (ii) or (ii).

Computability theory can also support a good axiomatic framework in
which deep results can be proved, and generalised computability theories
are models. For example, the axiomatic notion of computation theory
developed by by Moschovakis and Fenstad elegantly captures basic results
and advanced degree theory: see Stoltenberg-Hansen [1979] and Fenstad
[1980].

There is usually a good market for general frameworks in theoretical
subjects because there is more space in which to seek ideas and show res-
ults. Generality is attractive: there are many new technical concepts and
the original theory can underwrite their value. Generalisations are devel-
oped, gain an audience and reputation, and, like so many other technical
discoveries, await an application. Applications can arise in more exotic or
commonplace areas than their creators expected. In the case of generalis-
ing computability theory, some theories have useful applications (e.g. in set
theory), and some languish in the museum of possible models of axiomatic
theories of computation.

Abstract computability theory developed rather slowly, and owes much
to the development of programming languages.

A starting point is the notion of the flowchart. The idea was first seen
in examples of programs for the ENTAC from 1946, published in Goldstine
and von Neumann [1947]. Flowcharts were adapted and used extensively
in practical work. For example, standards were provided by the Amer-
ican Standards Association (see American Standards Association [1963]
and Chaplin [1970]).

To define mathematically the informal idea of a flowchart required
a number of papers on flow diagrams, graph schemata and other mod-

Computable functions on algebras 337

els; some commonly remembered papers are: Ianov [1960], Péter [1958],
Voorhes [1958], Asser [1961], Gorn [*¥1961] and Kaluzhnin [1961]. By the
time of the celebrated Béhm and Jacopini [1966] paper on the construction
of normal forms for flowcharts, the subject of flowcharts was well estab-
lished.

In some of these papers the underlying data need not be the natural
numbers, strings or bits. In particular, in Kaluzhnin [1961] flowcharts are
modelled using finite connected directed graphs. These have vertices either
with one edge to which are assigned an operation, for computation, or two
exit edges to which are assigned a discriminator, for tests. The graph
has one vertex with no incoming edge, for input, and one vertex with no
outgoing edge, for output. To interpret a so-called graph scheme, a set of
functions is used for the operations, and a set of properties is used for the
discriminators.

Kaluzhnin’s work was used in various studies, such as Elgot’s early work,
and in Thiele [1966], a major study of programming, in which flow diagrams
are presented that are not necessarily connected graphs. The semantics of
flow diagrams is defined here formally, in terms of the functions

ElAvg(n) = object or data after the nth step in flow diagram A
starting at state &,
Kla¢(n) = edge in flow diagram A traversed after the n-th step
starting at state &.

using simultaneous recursions. Thiele’s work influenced the formal develop-
ment of operational semantics as found in the Vienna Definition Language:
see Lauer [1967; 1968] and Lucas et al. [1968]. The important point is
that predicate calculus with function symbols and equality is extended by
adding expressions that correspond with flow diagrams to make an algo-
rithmic language involving graphs.

Thus, in the period 1946 66, some of the basic topics of a theory of com-
putation over any set of data had been recognised, including: equivalence
of flowcharts; substitution of flowarts into other flowcharts; transforma-
tions and normal forms for flow charts; and logics for reasoning about flow
charts.

Flowcharts were not the only abstract model of computation to be de-
veloped.

Against the background of early work on the principles of programming
by A. A. Lyapunov and theoretical work by Tanov and others in the for-
mer Soviet Union, Ershov [1958] considered computation with any set of
operations on any set of data. In Ershov [1960; 1962] the concept of oper-
ator algorithms is developed. These are imperative commands made from
expressions over a set of operations; the algorithms allow self-modification.
The model was used in early work on compilation in the former Soviet
Union. See Ershov and Shura-Bura [1980] for information on early pro-
gramming.

338 J. V. Tucker and J. 1. Zucker

Of particular interest is McCarthy [1963], which reviewed the require-
ments and content of a general mathematical theory of computation. It
emphasises the idea that classes of functions can be defined on arbitrary
sets of data. Starting with a (finite) collection F' of base functions on some
collection of sets, we can define a class C{F'} of functions computable in
terms of F. The mechanism used is that of recursion equations with an
informal operational meaning based on term substitution. An abstract
computability theory is an aim—mnot ‘merely’ a model of programming
structure etc. and McCarthy writes (p. 63):

Our characterisation of C{F'} as the set of functions computable
in terms of the base functions in F cannot be independently
verified in general since there is no other concept with which it
can be compared. However it is not hard to show that all partial
recursive functions in the sense of Church and Kleene are in
C{zero, succ}.

This, of course, falls short of a generalised Church—Turing thesis. The
paper also mentions functionals and the construction of new sets of data
from old, including a product, union and function space construction for
two sets, and recursive definition of strings. McCarthy’s paper is eloquent,
perceptive and an early milestone in the mathematical development of the
subject.

E. Engeler’s innovative work on the subject of abstract computability
begins in Engeler [1967]. This contains a mathematically clear account of
program schemes whose operations and tests are taken from a first-order
language over a single-sorted signature. The programs are lists of labelled
conditional and operational instructions of the form

k: if ¢ then goto p else goto ¢
k: do % then goto p

where k, p and ¢ are natural numbers acting as labels for instructions, ¢ is
a formula of the language and v is an assignment of one of the forms

X:=C

) x:=y or x:=f (y1,...,¥%)

where x,y, ... arevariables, and c and £ are any constant and operation
of the signature. Interpretations are given by means of a notion of state,
mapping program variables to data in a model. A basic result proved here
is this:
To each program w one can associate a formula ¢ that is a
countable disjunction of open formulae such that for all models,

7 terminates on all inputs from A <= A= ¢.

Results involving the definability of the halting sets of programs in terms
of computable fragments of infinitary languages will be proved in section
5 and applied in section 6, where we refer to them as versions of Engeler’s
lemma.

Computable functions on algebras 339

In Engeler [1968a] two new models of computation are given: one is
based on a new form of Kleene pu-recursion, the other on a deductive sys-
tem. The functions computable by the programs and these two models
are shown to be equivalent. Engeler’s development of the subject in the
period 1966 76 addresses original and yet basic questions including the
computability of geometrical constructs, exact and approximate compu-
tation, and a Galois theory for specifications and programs: see Engeler
[1993].

The study of program schemes and their interpretation on abstract
structures grew in the early 1970s, along with the theoretical computer sci-
ence community. Problems concerning program equivalence, decidability
and the expressive power of constructs were studied and formed a sub-
ject called program schematology (see, for example, Greibach [1975]). The
problem of finding decidable properties, and especially finding decidable
equivalence results, is work directly influenced by Ianov [1960]. The sub-
ject of program schemes, and the promise of decidability results on abstract
structures, was addressed in the unpublished Luckham and Park [1964], and
early undecidability results appeared in Luckham et al. [1970]. Program
schematology was part of the response to the need to develop a comprehen-
sive theory of programming languages, joining early work on programming
language semantics, program verification and data abstraction also charac-
teristic of the period. We will look at the subject again in section 8.

The next milestone is that of Friedman [1971a]. Friedman’s paper
has received a fine exegesis in Shepherdson [1985] which we recommend.
Against a backcloth of growing interest in the generalisations of com-
putability theory by mathematical logicians, and inspired by the work of
Moschovakis on computation, Friedman considered the mathematical ques-
tion (in Shepherdson’s words):

What becomes of the concepts and results of elementary recur-
sion theory if, instead of considering only computations on nat-
ural numbers, we consider computations on data objects from
any relational structure?

In this he gave four models of computation for an algebra A. The first two
were based on register machines, the programs for which were called finite
algorithmic procedures (or faps). The third was a generalisation of Turing
machines. The fourth was a model based a set of r.e. lists of conditional
formulae of the form

R,‘,l& .. &R,kl — t;

for i = 1,2,..., where the R;; are tests and the ¢; is a term, called
effective definitional schemes. In section 8 we will discuss these models
again.

All four models compute the partial recursive functions on the natural
numbers. Freidman organised some 22 basic theorems of computability
theory on the natural numbers N into six groups which were defined by

340 J. V. Tucker and J. 1. Zucker

the properties of a structure A that are sufficient to prove the theorems on
A. Also noteworthy are results which showed some of these models are not
equivalent in the abstract setting.

Friedman’s paper is technically intense, with several good ideas and
results. Looking back at the literature, one wonders why such an indis-
pensable paper had not appeared before.

The theory of computation on natural numbers and strings began in
mathematical logic, motivated by questions in the foundations of mathe-
matics. However, the theory of computation on arbitrary algebraic and re-
lational structures began and was sustained in computer science, motivated
by the need to model programming language constructs. Mathematical
logic plays two roles: firstly, it provides knowledge of abstract structures,
formal languages and their semantics; and secondly, it provides a deep
theory of computation on natural numbers.

Both the complicated history of algebra and computability theory men-
tioned earlier (and sketched in the historical notes of other Handbook chap-
ters), and the development of abstract computability since the 1950s, have
much to offer those interested in the historical development of mathematical
theories. In the matter of the development of abstract computability these
brief notes, coupled with our survey in section 8, suggest some questions a
historical analysis might answer. Why have there been many independent
attempts at making models of computation but relatively few attempts
to show equivalencies, or undertake sustained programmes of theoretical
development and applications? Why have there been so many demonstra-
tions of an ability to ignore earlier work and to reinvent ideas and results?
Why was the development of the theory so slow and messy? Why was
computability theory on the natural numbers not generalised to rings and
fields, or even relational structures, before the Second World War? Why
did the subject not find a home in mathematical logic?

It is clear that computer science played an essential role in creating the
theory of computable functions on abstract algebras. One is reminded of
McCarthy’s [1963] commonly quoted words:

It is reasonable to hope that the relationship between computa-
tion and mathematical logic will be as fruitful in the next century
as that between analysis and physics in the last. The develop-
ment of this relationship demands a concern for both applica-
tions and for mathematical elegance.

It also demands patience.

1.5 Objectives and structure of the chapter

Computability theory over algebras can be developed in many directions
and can be used in many applications. In this short introduction we have
chosen to emphasise computation on general many-sorted algebras.

We see algebra as providing a general theory of data that is theoretically
satisfying and practically useful. Therefore, theories of what is computable

Computable functions on algebras 341

over algebras are fundamental for a general theory of data.

In section 2 we define the basic algebraic notions we will need: alge-
bras with Booleans and naturals, relative homomorphisms, terms and their
evaluation, abstract data types, etc. In particular, we look at expanding
an algebra A, by adding new types such as finite sequences to make a new
algebra A* that models arrays, and adding infinite sequences to make a
new algebra A that models infinite streams of data.

In section 3 we begin the study of computing on algebras with W hile
programs. For a satisfactory theory, the algebras are required to include
the Booleans and standard Boolean operations. Such algebras are called
standard algebras. The semantics of W hile programs on A is given by a
new technique called algebraic operational semantics (AOS). This involves
axiomatising a function Comp” that defines the state Comp”(S,0,t) at
time ¢ in the computation by program S starting in intial state o. From
this we obtain a state transformer semantics in which a program S, applied
to a state o, may give rise to a final state [S]* (o).

Simple but important properties of computations are examined. First,
the invariance of computations under homomorphisms and isomorphisms:
if algebras A and B are isomorphic, then the semantical interpretations
of any While program S on A and B are isomorphic. This result has
many consequences; for example, it comfirms that executing a W hile pro-
gram on equivalent implementations of a data type results in equivalent
computations.

The second property is that each computation by a While program
S takes place in the subalgebra of A generated by the input. This is a
key to understanding the nature of abstract computation: in any algebra
computations are local to the input in this sense and, for instance, searches
are at best local.

Next, in section 4, we consider the universality of computation by
W hile programs. Let A be an algebra with Booleans and naturals. We
can code the W hile programs

507 S]: 527"'

by the natural numbers in A and ask if there exists a universal While
program to compute the function Univ® on A such that

UnivA(n,0) = [S.]*(0).

We prove that the universal function is While computable on A if, and
only if, the term evaluation function is W hile computable on A.

The evaluation of terms is not always computable. However, it is
W hile computable in several commonly used algebras such as: semi-
groups, groups, rings, fields, lattices, Boolean algebras; this because such
algebras have computationally efficient normal forms for their terms. For
any algebra A, the algebra A* of finite sequences from A has the property

342 J. V. Tucker and J. 1. Zucker

that term evaluation is always W hile computable on it; hence, the model
of While* programs is universal.

In section 5 we turn our attention to sets. We begin with a study of
computable and semicomputable sets. We prove Post’s theorem in the
present, setting. We also study the ideas of projections of computable and
semicomputable sets. It turns out that the classes of computable and semi-
computable sets are not closed under projection. The notion of projection is
very important since it distinguishes clearly between forms of specification
and computation. Furthermore, it focuses our attention to the difference
between local search and global search in computation.

Projections also lead us to consider the relationship between W hile
programming and certain non-deterministic constructs on data. These in-
clude: search procedures; initialisation mechanisms; and random assign-
ments.

Next, with each W hzile program is associated a computation tree. With
this technique, we prove that every semicomputable set is definable by an
effective infinite disjunction of Boolean terms over the signature.

In section 6 we illustrate the core of the theory with a study of its
application to computing sets of real and complex numbers over various
many sorted algebras. We include some pleasing examples from dynamical
systems.

In Section 7 we return to the special properties and problems of com-
putation of the reals. More generally, we study computation on topological
algebras. A key consideration is the property that if a function is compu-
table then it is continuous. To guarantee a good selection of applications
we use partial functions, which raises interesting topological issues. This
study of programming over topological algebras contains new material.

We also contrast exact versus approximate computation on the reals.
The following fact was observed in Shepherdson [1976]. Let f be a function
on the reals. Then f is computable in the sense of computable analysis if,
and only if, there is a function g which is While computable over the
algebra (R,B,N; 0, 1, z +y, .y, —,...) such that

[f(@) —g(n,z)] <277

for all n € N and x € R. We extend and adapt this result to topological
algebras.

In section 8 we survey other models of computation and see their re-
lation with W hile programs. We consider briefly: u-recursive functions;
register machines; flowcharts; axiomatic methods; set recursion; and equa-
tional definability. A generalised Church—Turing thesis is discussed.

There are many subjects that we have omitted from the discussion, for
example: the delicate classification of the power of constucts, including
types; computations with streams; program verification; connections with
proof theory; connections with model theory; degree theory; and gener-
alised complexity theory. There will be good work by many authors that

Computable functions on algebras 343

we have neglected to mention, from ignorance or forgetfulness. We will
be pleased to receive reminders, information and suggestions. Abstract
computability theory is a subject that offers its students considerable the-
oretical scope, many areas of application, and scientific longevity. We hope
this chapter provides a first introduction that is satisfying, stimulating and
pleasurable.

We thank Jan Bergstra (Amsterdam), Martin Davis (NYU and Berke-
ley), Jens Erik Fenstad (Oslo), Dag Norman (Oslo), Viggo Stoltenberg-
Hansen (Uppsala) and Karen Stephenson (Swansea) for useful discussions
on aspects of this work. We thank Peter Lauer (McMaster) and Ithel Jones
(Swansea) for discussions and information on the history of programming
language semantics. We also thank our colleagues and students in Swansea
and McMaster for their helpful responses to the material in courses and
seminars, especially Jeff Koster, Matthew Poole, Dafydd Rees, Kristian
Stewart, Anton Wilder and Ian Woodhouse.

Special thanks are due to Sol Feferman, who presented some of the
material of this chapter at a graduate course in computation theory at
Stanford University in spring 1999, and provided us with valuable feedback.

We are particularly grateful to Jane Spurr for her excellent and essential
work in producing the final version of the chapter.

The second author is grateful for funding by a grant from the Natural
Science and Engineering Research Council of Canada.

1.6 Prerequisites

First, we assume the reader is familiar with the theory of the recursive
functions on the natural numbers. It is treated in many books such as
Rogers [1967], Mal’cev [1973], Cutland [1980] and Machtey and Young
[1978]. An introduction to the subject is contained in this Handbook (see
Phillips [1992]) and other handbooks (e.g. Enderton [1977]).

Secondly, we assume the reader is familiar with the basics of universal
algebra. Some mathematical text-books are: Burris and Sankappanavar
[1981] and McKenzie et al. [1987]. An introduction to the subject with the
needs of computer science in mind is contained in this Handbook (see Meinke
and Tucker [1992]) and in Wechler [1992]. The application of universal
algebra to the specification of data types is treated in Ehrig and Mahr
[1985], Meseguer and Goguen [1985] and Wirsing [1991]. The theory of
computable and other effective algebras is covered by Stoltenberg-Hansen
and Tucker [1995].

Thirdly, we will need some topology. This is covered in many books,
such as Dugundji [1966] and Kelley [1955] and in a chapter in this Handbook
(see Smyth [1992]).

Finally, we note that the subject connects with other subjects, including
term rewriting (see, for example, Klop [1992]) and domain theory (see, for
example, Stoltenberg-Hansen et al. [1994]).

344 J. V. Tucker and J. 1. Zucker

2 Signatures and algebras

In this section we define some basic algebraic concepts, establish notations
and introduce three constructions of many-sorted algebras. We will use
many-sorted algebras equipped with Booleans, which we call standard al-
gebras. Sometimes we use algebras with the natural numbers as well, which
we call N-standard algebras. All our algebras have total operations, except
in section 7, where we compute on topological partial algebras.

We are particularly interested in the effects on computations of adding
and removing operations in algebras. To keep track of these changes, we
use expansions and reducts of algebras, and relative homomorphisms.

The constructions of new algebras from old involve adding (i) unspeci-
fied elements, (i¢) finite arrays, and (ii7) infinite streams.

2.1 Signatures

Definition 2.1 (Many-sorted signatures). A signature X (for a many-
sorted algebra) is a pair consisting of (1) a finite set Sort(X) of sorts,
and (2) a finite set Func(X) of (primitive or basic) function symbols, each
symbol F' having a type s X ...X 8, = s, where m > 0 is the arity of F,
and s1,...,8,m € Sort(X) are the domain sorts and s € Sort(X) is the
range sort; in such a case we write

F:s1 X...X 8, —s.

The case m = 0 corresponds to constant symbols; we then write F': — s
or just F':s.

Our signatures do not explicitly include relation symbols; relations will
be interpreted as Boolean-valued functions.

Definition 2.2 (Product types over X). A product type over X,
or Y-product type, is a symbol of the form s; x ... x s, (m > 0),
where s1,...,8, are sorts of X, called its component sorts. We define
ProdType(X) to be the set of X-product types, with elements u, v, w,....

If u= s X...XS8y, we put lgth(u) = m, the length of u. When
lgth(u) = 1, we identify u with its component sort. When lgth(u) =0, u
is the empty product type.

For a ¥-product type u and X-sort s, let Func(X),—s denote the set

of all ¥-function symbols of type u — s.

Definition 2.3 (X-algebras). A X-algebra A has, for each sort s of X,

a non-empty set Ay, called the carrier of sort s, and for each ¥-function

symbol F:s; x...x s, — s, afunction FA: Ag, X ---x As, — A,
For a Y-product type u = s; X ... X S;,, We write

A" =df As1 X ... X Asm.

Thus z € A" if, and only if, z = (z1,...,2,), where z; € A, for i =
1,...,m. So each ¥-function symbol F : u — s has an interpretation

Computable functions on algebras 345

FA: Av 5 A,. If u is empty, i.e., F is a constant symbol, then F'4 is an
element of Aj.

We will sometimes use the same notation for a function symbol F' and
its interpretation 4. The meaning will be clear from the context.
For most of this chapter, we make the following assumption.

Assumption 2.4 (Totality). The algebras A are total, i.e., F4 is total
for each Y-function symbol F'.

Later (in section 7) we will drop this assumption, in our study of partial
algebras.

We will sometimes write ¥(A) to denote the signature of an algebra A.

We will also consider classes K of ¥-algebras. In particular, Alg(X)
denotes the class of all X-algebras.

We will use the following perspicuous notation for signatures X:

signature X
sorts

;7 (s € Sort(X))
functions

F 181 X ... X 8ym = 8, (F eFunc(Y))
end

and for Y-structures A:

algebra A
carriers

As, (s € Sort(X))
functions

FA: A, x...x A, — Ay, (F¢cFunc(Y))

end

Examples 2.5. (a) The algebra of naturals Ny = (N;0, succ) has a sig-
nature containing the sort nat and the function symbols 0: —nat and
succ:nat—nat. We can display this signature thus:

J. V. Tucker and J. 1. Zucker

signature % (Np)
sorts nat
functions 0: —nat,

S:nat—snat
end

In practice, we can display the algebra thus:

algebra No
carriers N
functions 0: — N,

S:N— N
end

from which the signature can be inferred. Below, we will often display the
algebra instead of the signature.

(b) The ring of reals Rg = (R; 0,1, +,-, x) has a carrier R of sort real, and
can be displayed as follows:

algebra Ro

carriers R

functions 0,1: — R,
+,x: R 5 R,
—:R—>R

end

(¢) The algebra Cy of complex numbers has two sorts, complex and real, and
hence two carriers, C and R. It includes the algebra R, and therefore has
all the operations on R listed in (b), as well as operations on C, as follows:

algebra
import
carriers
functions

end

Co

Ro

C

0,1,i: — C,
+,x:C? =5 C,
—: C—C,
re,im: C — R,
7:R2 =5 C

where 7 is the inverse of re and im.
(d) A group has the form

Computable functions on algebras 347

algebra Go

carriers G

functions 1: — G,
x:G? =G,
inv:G — G

end

where the carrier G has sort grp.
The concepts of reduct and expansion will be important in our work.

Definition 2.6 (Reducts and expansions). Let ¥ and X' be signatures.

(a)

We write ¥ C X' to mean Sort(X)C Sort(X')and Func(X)C
Func(X').

(b) Suppose X C ¥'. Let A and A’ be algebras with signatures ¥ and

¥/ respectively.

(1) The X-reduct A'|s, of A’ is the algebra of signature X, consisting
of the carriers of A’ named by the sorts of ¥ and equipped with
the functions of A’ named by the function symbols of ¥.

(ii) A’ is a ¥'-expansion of A iff A is the X-reduct of A'.

Example 2.7. The algebra Cy (see Example 2.5(c)) is an expansion of Rg
to E(CQ)

Definition 2.8 (Function types). We collect some definitions and no-
tation. Let A be a Y.-algebra.

(a)

(b)

A function type over X, or X-function type, is a symbol of the form
u — v, with domain type u and range type v, where u and v are
Y-product types.

For any Y¥-function type u — v, a function of type u — v over A is a
function

fiAY = AV (2.1)
If v =51 X...X s, then the component functions of f are fi, ..., fn,
where
fi A" = Ay, (2.2)
for j=1,...,n,and for all z € A",
fl@) =~ (fi(x),..., ful2). (2.3)

[4

(We will explain the ‘~’ in (¢) below.) Conversely, given n functions
fj as in (2.2), all with the same domain type w, and with range types
(or sorts) si,...,S, respectively, we can form their vectorisation as
a function f satisfying (2.1) and (2.3).

348

J. V. Tucker and J. 1. Zucker

We will investigate computable vector-valued functions (2.1) over A.
Although all the primitive functions of ¥ are total, the computable
functions on the Y-algebra may very well be partial, as we will see.
We use the following notation: if f : A* — A; and z € A" then f(x)1
(‘f(x) diverges’) means that x ¢ dom(f); f(x){ (‘f(z) converges’)
means that z € dom(f); and f(z)ly (‘f(x) converges to y’) means
that ¢ € dom(f) and f(z) = y.

We also make the following convention for convergence of vector-
valued functions: in the notation of (2.1) and (2.2), for any = € A",
we say that f(z)/] if, and only if, f;(z) | for every component function
fj of f,in which case f(z) = (fi(z),..., fao(z)). Otherwise (i.e., if
fi(z) 1 for any j with 1 < j < n), we say that f(z) 7. (That is the
meaning of the symbol ‘~’ in (2.3) above.)

Definition 2.9 (Relations; projections of relations). We collect some
more definitions and notation.

(a)

(b)
()

A relation on A of type u is a subset of A*. We write R: u if R is a
relation of type u.

Let R be a relation on A of type u = s1 X ... X $p,.

The characteristic function of R is the function xg : A* — B which
takes the values tt on R and f off R.

The complement of R in A is the relation

R = A"\R = {a€ A% |a¢ R},

also of type u.

(Projections.) To explain this notion, we begin with an example.
Suppose R : u where u = 51 X 89 X §3 XS4 X 55. Now let v = 51 X 89X 83
and w = s4 x s5. Then the projection of R on v (or on AY), or
the A"-projection of R, is the relation S : v defined by existentially
quantifying over A%:

S(x1,x9,23) <= Fx4,25 € AY : R(x1,...,T5).

More generally (with R : u where u = s1 X ... X sp,) let 7 be any
list of numbers iq,...,4, such that 1 < i; < ... < i, < m, and
let 7 = J1,.e 5 dm—r Slist {1,... ,m}\ 7 Then u|7 denotes the
restriction of u to 7, that is, the product type s;; X ... x s;,; and
proj[u\?](R) is the projection of R on i (_o)r on A“‘?L or the A"/J-

projection of R, that is, the relation S : u|4 defined by existentially

quantifying over A¥lJ

S(QZZ’”... ,dﬁir) — EZL‘J'H... N - EAu‘j :R(x],... 7£L‘m).

Computable functions on algebras 349

2.2 Terms and subalgebras

Definition 2.10 (Closed terms over Y). We define the class T(X) of
closed terms over ¥, denoted t,t',¢1,..., and for each Y-sort s, the class
T(X)sof closed terms of sort s. These are generated inductively by the
rule: if F € Func(X),—s and t; € T(X),, for i = 1,...,m, where
U=81 X ...X Sm, then F(t1,... ,ty) € T(X)s.

Note that the implicit base case of this inductive definition is that of

m = 0, which yields: for all constants c: — s,¢() € T(X)s. In this case we
write ¢ instead of ¢(). Hence if ¥ contains no constants, T(X) is empty.

Definition 2.11 (Valuation of closed terms). For A € Alg(X) and ¢ €
T(X)s, we define the valuation t4 € As of t in A by structural induction
on t:

F(ti, ... tm)a = FA(t1)a,- .., (tm)a)-

In particular, for m = 0, i.e., for a constant ¢ : — s,

CpaA = CA.

We want a situation where T'(X) is non-empty, and, in fact, T'(X); is
non-empty for each s € Sort(X). We therefore proceed as follows.

Definition 2.12. The signature ¥ is said to be:

(a) non-void at sort s if T(X)s# 0;
(b) non-void if it is non-void at all ¥-sorts.

Assumption 2.13 (Instantiation). X is non-void.

Throughout this paper we will make this assumption, except where
explicitly stated: see, for example, Remark 2.31(e). It simplifies the theory
of many-sorted algebras (see Meinke and Tucker [1992]).

Definition 2.14 (Default terms; default values).

(a) For each sort s, we pick a closed term of sort s. (There is at least one,
by the instantiation assumption.) We call this the default term of sort
s, written §°. Further, for each product type u = s7 X ... X s,,, of &,
the default (term) tuple of type u, written 6%, is the tuple of default
terms (6°',...,0°™).

(b) Given a Y-algebra A, for any sort s, the default value) of sort s in A
is the valuation 6% € A, of the default term, §°; and for any product
type u = 81 X ... X Sy, the default (value) tuple of type u in A is the
tuple of default values d"A = (8% ,...,0%") € A".

Definition 2.15 (Generated subalgebras). Let X C [cg,.(x) 4s-

Then (X)4 is the (¥-)subalgebra of A generated by X, i.e., the smallest
subalgebra of A which contains X, and (X)4 is the carrier of (X)# of sort

S

350 J. V. Tucker and J. 1. Zucker

s. (See Meinke and Tucker [1992, §§3.2.6 ff.] for definitions.) Also for a
product type u = s1 X ... X Sy,

. x (X)

Sm

S1

Similarly, for a tuple a € A%, (a)* is the (2-)subalgebra of A generated by
a, etc.

Remark 2.16.

(a) Using the terminology of sections 3.1-3.3, we can characterise (for all
Y-sorts s and ¥-product types u) the sets (X)4 and (X)2 by

(X)A={[t]o | t € Term4(X) and for all x €var(t),o(x) € X}

(X)A={[t]"o | t € TermTup,(X) and for all x €var(t),o(x) € X.}

(b) The smallest subalgebra of A is its closed term subalgebra, given by

0" = {ta|teT(D)}.

(¢) The instantiation assumption implies that for any X and every sort

s, (X)4 £ 0.

Definition 2.17 (Minimal carriers; minimal algebra).

Let A be a ¥-algebra, and s a 3-sort.
A

(a) A is minimal at s (or the carrier Ag is mimimal in A) if Ay =(0)2,

i.e., Ay is generated by the closed X-terms of sort s.
(b) A is minimal if it is minimal at every X-sort.

Example 2.18. To take examples from later:

(a) Every N-standard algebra (section 2.5) is minimal at sorts bool and
nat.

(b) The ring of reals Ry (Example 2.5) (or its standardisation (section
2.4) or N-standardisation (section 2.5)) is not minimal at sort real.

2.3 Homomorphisms, isomorphisms and abstract data
types

Given a signature X, the notions of X-homomorphism as well as X-epi-
morphism (surjective), Y-monomorphism (injective), Y-isomorphism (bi-
jective) and X-automorphism are defined as usual (see [Meinke and Tucker,
1992, §3.4]). We need a more sophisticated notion, that of relative homo-

morphism.
Definition 2.19 (Relative homomorphism and isomorphism). Let
¥ and ¥’ be signatures with ¥ C ¥'. Let A and B be two standard %'-
algebras such that

Aly = Bls.

Computable functions on algebras 351

(a) A X'-homomorphism relative to ¥ from A to B, or a ¥'/Y-homomorph-
ism ¢ : A — B, is a Sort(Y¥')-indexed family of mappings

¢ = (¢s: As = Bs | s € Sort(¥'))

which is a Y'-homomorphism from A to B, such that for all s €
Sort(Y), ¢s is the identity on As.

(b) A X'/X-isomorphism from A to B is a ¥'/¥-homomorphism which is
also a Y'-isomorphism from A to B.

() Aand B are ¥'/¥-isomorphic, written A =y, /5, B, if there is a ¥'/X-
isomorphism from A to B.

Definition 2.20 (Abstract data types). An abstract data type of sig-
nature ¥ (¥-adt) is defined to be a class K of ¥-algebras closed under
Y-isomorphism. Examples of Y-adt’s are:

(a) the class Mod(X,T) of all models of a first-order X-theory T';
(b) the isomorphism class of a particular Y-algebra.

2.4 Adding Booleans: Standard signatures and alge-
bras

An very important signature for our purposes is the signature of Booleans:

signature X(B)

sorts bool

functions true, false: —bool,
and, or: bool?> —bool
not: bool—bool

end

The algebra B of Booleans, with signature X(B), has the carrier B =
{tt, f} of sort bool, and, as constants and functions, the standard interpre-
tations of the function and constant symbols of ¥(B). Thus, for example,
trueB = # and false® = f.

Of particular interest to us are those signatures and algebras which
contain ¥(B) and B.

Definition 2.21 (Standard signatures and algebras).

(a) A signature X is a standard signature if
(1) ¥(B) CX, and
(74) the function symbols of ¥ include a discriminator

ifs : bool X 25 s

for all sorts s of ¥ other than bool, and an equality operator

352

(b)

J. V. Tucker and J. 1. Zucker

eq, : s? — bool

for certain sorts s.
Given a standard signature ¥, a Y-algebra A is a standard algebra if
(7) it is an expansion of B, and
(i) the discriminators and equality operators have their standard
interpretation in A4; i.e., for b € B and z,y € Aj,

xif b=t
ifs(b,z,y) = .
1(b,7,9) {ylfb—ff

and eq; is interpreted as the identity on each equality sort s.

Let EqSort(X)CSort(X) denote the set of equality sorts of ¥, and let
StdAlg(Y) denote the class of standard X-algebras.

Remark 2.22.

(a)

(€)

Strictly speaking, the definition of standardness of a signature ¥ or
algebra depends on the choice of the set EqSort(X) of equality sorts
of ¥. However, our terminology and notation will not make this
dependence explicit.

The exact choice of the set of propositional connectives in B is not
crucial; any complete set would do.

Excluding the sort bool from the sorts of the discriminator is not
significant; we can easily define ifypo1 from the other Boolean oper-
ators. Also, eqQpeo1 can easily be defined. (Ezercise.)

Any many-sorted signature ¥ can be standardised to a signature ©.?
by adjoining the sort bool together with the standard Boolean op-
erations; and, correspondingly, any algebra A can be standardised
to an algebra AP by adjoining the algebra B and the discriminator
and equality operators. Note that both A and B are reducts of this
standardisation A®. (See the examples below.)

If A and B are two standard Y-algebras, then any Y.-homorphism
from A to B is actually a ¥/%(B)-homomorphism, i.e., it fixes the
reduct B.

Examples 2.23.

(a)
(b)

The simplest standard algebra is the algebra B of the Booleans.
The standard algebra of naturals A is formed by standardising the
algebra Ny of Example 2.5(a), with nat as an equality sort, and,
further, adjoining the order relation' less,,; on N:

IThe reason for adjoining lessnay will be clear later: in the proof of Theorem 3.63
($* /% conservativity for terms), we need it for the translation of £*-terms to SV -terms.

()

Computable functions on algebras 353

algebra N

import Ny, B

functions ifp.. :B x N2 = N,
€qnat;lessnat: N2 — B

end

The standard algebra R of reals is formed similarly by standardising
the ring Ro of Example 2.5(b), with real as an equality sort:

algebra R

import Ro, B

functions if,es:B x R2 = R,
eqreal51R2 — B

end

We will also be interested (in section 5) in the expansion R< of R
formed by adjoining the order relation on the reals less,e,: R?> — B,
thus:

algebra R<

import R

functions less,e,:R? — B
end

The standard algebra C of complex numbers C is formed similarly
by standardising the algebra Cy of Example 2.5(¢), with equality on
both R and C.

Again, we will consider the expansion C< of C formed by adjoining
lesSrel.

The standard group G is formed similarly by standardising the group
Go, with equality on G.

Throughout this chapter, we will assume the following, unless otherwise
stated.

Assumption 2.24 (Standardness). The signature ¥ and the Y-algebra
A are standard.

2.5

Adding counters: N-standard signatures and alge-
bras

Definition 2.25.

(a)

A standard signature ¥ is called N-standard if it includes (as well
as bool) the numerical sort nat, as well as function symbols for the
standard operations of zero, successor and order on the naturals:

0: — nat
S: nat — nat
lessnae: nat? — bool

354 J. V. Tucker and J. 1. Zucker

as well as the discriminator if,;; and the equality operator eqna; on
nat.

(b) The corresponding Y-algebra A is N-standard if the carrier A, is the
set of natural numbers N = {0,1,2,...}, and the standard operations
(listed above) have their standard interpretations on N.

Definition 2.26.

(a) The N-standardisation N of a standard signature ¥ is formed by
adjoining the sort nat and the operations 0, .S, eqnat, lessnat and ifpa¢.

(b) The N-standardisation AN of a standard Y-algebra A is the LV-
algebra formed by adjoining the carrier N together with certain stand-
ard operations to A, thus:

algebra AN
import A
carriers N
functions 0: — N
S:N—> N
ifrar:B x N2 5 N
€qnatlessna: N2 — B
end

(¢) The N-standardisation KN of a class K of Y-algebras is (the closure
with respect to £V /S-isomorphism of) the class {AN | 4 € K}.

Examples 2.27.

(a) The simplest N-standard algebra is the algebra A/ of Example 2.23(b).

(b)) We can N-standardise the real and complex rings R and C, and the
group G of Examples 2.23, to form the algebras R, CV and GV,
respectively.

Remark 2.28.

(a) For any standard A, both A and N are ¥-reducts of the N-standard-
isation AN (cf. Remark 2.22(d)).

(b) If A and B are two N-standard X-algebras, then any X-homorphism
from A to B is actually a ¥/%(N)-homomorphism, i.e., it fixes the
reduct N (cf. Remark 2.22(e)).

(¢) A ¥-homomorphism (or ¥-isomorphism) between two standard X-
algebras A and B can be eztended to a ¥-homomorphism (or X-
isomorphism) between AN and BN. (Ezercise.)

(d) If A is already N-standard, then AN will contain a second copy of N,
with (only) the standard operations on it. Further, AN can be effect-
ively coded within A, using a standard coding of N? in N. (Check.)

(e) In particular, (AN)N can be effectively coded within AN .

We will occasionally have use of a notion stricter than N-standardness.

Computable functions on algebras 355

Definition 2.29 (Strict N-standardness).
(a) An N-standard signature ¥ is said to be strictly N-standard if its
only function symbols with range sort nat are ‘0’, ‘S’ and ‘if,, .
(b) An N-standard algebra is strictly N -standard if its signature is.
Note that the IV-standardisation of any algebra is strictly N-standard.

2.6 Adding the unspecified value u;; Algebras A" of
signature X"

In this subsection, we need not assume that ¥ and A are standard. For each

sort, s of X let ul be a new object, representing an ‘unspecified value’, and let

A% = A;U{ui}. For each function symbol F of ¥ of type s1 X ... X s, —
s, extend its interpretation ' on A to a function

FAR A" x . x A —— A"

by strictness — i.e. the value is defined as ui whenever any argument is ui.
Then the algebra A®, with signature X*, contains:

(i) the original carriers A, of sort s, and functions F* on them:;
(ii) the new carriers A" of sort s, and functions F* on them;
(7i1) a constant unspecs; : s* to denote uis as a distinguished element of
A% and
iv) an embedding function iy : s — s* to denote the embedding of Aj
g
into A%, and the inverse function js : s* — s, mapping uis to the
default term 8° for each sort s.

Further, if A is a standard algebra, we assume A" also includes:

(v) a Boolean-valued function Unspecs, : s* — bool, the characteristic
function of uiy;
(vi) the discriminator on A" for each sort s; and
(vii) the equality operator on A for each equality sort s.

Thus, if A is standard, A" is constructed from A as follows:

algebra A"
import A
carriers A (s€S)
functions uiz: — A" (s € 8),
FAR A% x . x A% A (F:s1%x...X 8y, = sinl),
is: Ag — A" (s €9),
js A5 = Ay (s €5),
Unspec, : A - B (s € 8),
ify. 0 B x (A%)2 — A (s € S),
eqg ¢ (A2)? > B (seS.)

end

356

J. V. Tucker and J. 1. Zucker

where S=Sort(X)and S, = EqSort(X)(and the superscript A has been
dropped from the new function symbols).

Also, K* is (the closure with respect to X*/X-isomorphism of) the class
{A"| A e K}.

Remark 2.30.

(a)

(b)
()

(f)

2.7

The algebra A" is a X"-expansion of A. If ¥ has r sorts, then X" has
2r sorts.

If A is standard, then so is A".

Suppose A (and hence A") is standard. Then A" can be effectively
coded within A. Each element y of A} is represented by the pair
(b, 3s(y)) € B x A, where b = tt if y # ug and b = f otherwise.
This induces, in an obvious way, a coding of the operations on A"
by operations on A. (The coding is described in [Tucker and Zucker,
1988] for a slightly different definition of A"—however, it is clear how
to modify that for the present context.)

(Two- and three-valued Boolean operations.) Suppose again that A
is standard. Then A" contains the carrier B* = {it,f, u} as well
as B, with associated extensions of the original standard Boolean
operations, leading to a weak three-valued logic (see [Kleene, 1952;
Tucker and Zucker, 1988]). Further, there are two equality operations
on A} for each equality sort s:

(i) the extension by strictness of eq to a three-valued function

eqt: AY x AY - B®

which has the value uieo1 if either argument is uig; (i) the standard
(two-valued) equality on AY,

eqd : AY x AY — B,

which we will usually denote by ‘=’ in infix.

Some of the functions in A" are not strict, namely the (interpretations
of) the discriminator if., the function Unspec, and the two-valued
equality operator eq, (see (d)(ii) above).

A ¥-homomorphism (or Y-isomorphism) between two standard X-
algebras A and B can be extended to a Y-homomorphism (or %-
isomorphism) between A" and B®. (Ezercise.)

Adding arrays: Algebras A* of signature ¥*

Given a standard signature ¥, and standard X-algebra A, we extend ¥ and
expand A in three stages:

(1°)
(2°)
(3°)

Construct X" and A", as in section 2.6.
N-standardise these to form X%V and A“", as in section 2.5.
Define, for each sort s of ¥, the carrier A% to be the set of pairs

Computable functions on algebras 357

a* = (a,1)
where a: N — A% [€ Nand, for all n > [,
a(n) = us.

So [is a witness to the “finiteness” of a, or an ‘effective upper bound’ for

* *

a*. The elements of A} have “starred sort” s*, and can be considered as
finite sequences or arrays. The resulting algebras A* have signature X*,
which extends £ by including, for each sort s of ¥, the new starred sorts
s* (in addition to s"), and also the following new function symbols:

(7) the null array Nulls of type s*, where
Nulld = (An - ui,, 0) € A%
(i1) the application operator Ap, of type s* x nat — s, where

Ap((a, 1),m) = a(n);

s

(7i7) the Update, operator of type s* x nat x s* — s*, where for (a,l) €
A%*n € Nand z € AY, Updatef((a,l)m,x) is the array (8,1) € A:
such that for all k € N,

alk) if k<lk#n
Bk)=<= if k<l,k=n

Uis otherwise;
(iv) the Lgth, operator, of type s* — nat, where
Lgthy' (1)) = 1;

v) the Newlength, operator of type s* x nat — s*, where Newlen th”!
gthy gthy
((a,1),m) is the array (8, m) such that for all k,

_Ja(k) if E<m
ﬂ(k)_{ms if k>m;

(vi) the discriminator on A} for each sort s; and
vii) the equality operator on A for each equality sort s.
s

The justification for (vii) is that if a sort s has ‘computable’ equality,
then clearly so has the sort s*, since it amounts to testing equality of finitely
many pairs of objects of sort s, up to a computable length.

For a* € A* and n € N, we write a*[n] for j2(Ap2(a*,n)). Thus a*[n]
is the element of A, ‘corresponding to’ Ap(a*,n) € AY.

358

J. V. Tucker and J. 1. Zucker

To depict this construction of A* from a standard A: suppose we have
constructed AY as in section 2.6, and then N-standardised it to A“N as in
section 2.5. We now proceed as follows:

algebra A*

import AvN

carriers A (s € S)

functions Nully : — A (s € S)
Ap, : A* x N — A (s€S)
Update, : A* x Nx A — A* (s € S)
Lgth, : A? - N (s€8)
Newlength, : A% x N — A (s € S)
iyt B x (A7) — A (s€S)
eq,. ¢ (A2)? - B (s € S,)

end

where again S = Sort(X)and S, = EqSort(X)(and the superscript A has
been dropped from the new function symbols).

Also, K* is (the closure with respect to £* /X-isomorphism of) the class
{A* | A e K}.
Remark 2.31.

(a)

(b)
()

The algebra A* is a X*-expansion of A", and (hence) of A. If ¥ has
r sorts, then ¥* has 3r + 1 sorts, namely s, s* and s* for each sort s
of ¥, and also nat.

¥* and A* are N-standard.

(Internal versions of A* and ¥*.) Suppose A is N-standard. Then
AN has a second copy of N, and, according to our definition above,
A* is constructed on AN using this second copy of N. Let A*' (of
sort ¥*') be an alternative version of A* constructed on A, using
the ‘original’ copy of N. Then A* and A* can be effectively coded in
each other. (Check; cf. Remark 2.28(d).) We call A* and ¥*' internal
versions of A* and ¥*, respectively.

We may also need to speak of finite sequences of starred sorts. How-
ever, we do not have to introduce an algebra (A*)* of ‘doubly starred’
carrier sets containing ‘two-dimensional arrays’; such an algebra can
be effectively coded in A*, since we can effectively code a finite se-
quence of starred objects of a given sort as a single starred object
of the same sort, thanks to the explicit Lgth operation. More pre-
cisely, a sequence zj, ... ,x;_; of elements of A} (for some sort s) can
be coded as a pair (y*,n*) € A% x N*, where Lgth(n*) = k, and, for
0 <j < k,n*[j] = Lgth(z}), and Lgth(y*) = n*[0]+...+n*[k—1], and
for 1 <j<kand0<i<n[jl, y*[n*[0] +... +n*[j — 1] +i] = z][i].
A ¥-homomorphism (or X-isomorphism) between two standard X-
algebras A and B can be extended to a Y-homomorphism (or %-
isomorphism) between A* and B*. (FEzercise; cf. Remarks 2.28(c)

Computable functions on algebras 359

and 2.30(f).)

(f) The reason for introducing starred sorts is the lack of effective coding
of finite sequences within abstract algebras in general.

(g) Starred sorts have significance in programming languages, since
starred variables can be used to model arrays, and (hence) finite but
unbounded memory.

2.8 Adding streams: Algebras A of signature ©

Let, again, ¥ be a standard signature, and A a standard X-algebra. We
define an extension of ¥ and a corresponding expansion of A, alternative
to ¥* and A*.

First we N-standardise ¥ and A, to form ¥V and AN.

Then we choose a set S C Sort(X) of pre-stream sorts. We then extend

YN to a stream signature % relative to S, in the following way.
(a) With each s € S, we associate a new stream sort §, also written nat —
s. Then Sort(is):Sort(E)Us, where S =4 {5| s € S}.

(b) Func (is)consists of Func(Y), together with the evaluation func-
tion
evalg : (nat — s) X nat — s,

for each s € S.

Now we can ezpand AN to a °_stream algebra AS by adding for each
pre-stream sort, s:

(7) the carrier for nat — s, which is the set
Anatss = As = [N - AG]

of all streams on A, i.e. functions £ : N — A;
(ii) the interpretation of eval, on A as the function eval? : [N — 4,]xN —
A, which evaluates a stream at an index, i.e.,

eval!(€,n) = &(n);

(iii) the discriminator on Ay, for all s € S.

The algebra AS is the (full) stream algebra over A with respect to S.
This construction of A5 from a standard A is depicted by:

algebra AS
import AN
carriers [N — A] (s€8)
functions eval? : [N = 4,] x N — A, (s € 8)

ifd Bx(N—=A4])? > [N=A4] (s€8)

end

where now S is the set of stream sorts.

360 J. V. Tucker and J. 1. Zucker

~ Also, K is (the closure with respect to ES/E—isomorphism of) the class
{A]AeK}.
Remark 2.32.

(a) The algebra A% is a is—empansion of A. If ¥ has r sorts, then °
has r + k + 1 sorts, where k is the cardinality of S.

(b) ° and A5 are N-standard.

(c) Because we have taken A, to be the set of all streams on Ay, we call
AS the full stream algebra (with respect to S). Note that if A, has
cardinality greater than 1 for some s € S, then A,, and hence A, is
uncountable.

(d) A Y-homomorphism (or ¥-isomorphism) between two standard -
algebras A and B can be extended to a Y-homomorphism (or %-
isomorphism) between A and B. (Ezercise; cf. Remarks 2.28(c),
2.30(f) and 2.31(¢).)

(e) Note that the instantiation assumption does not hold (in general) on
stream algebras.

3 W hale computability on standard algebras

In this section, we begin to study the computation of functions and rela-
tions on algebras by means of imperative programming models. We start
by defining a simple programming language While = W hile(¥), whose
programs are constructed from concurrent assignments, sequential compo-
sition, the conditional and the ‘while’ construct, and may be interpreted on
any many-sorted Y-algebra; this takes up sections 3.1 3.6. We will define
in detail the abstract syntax and semantics of this language, and methods
by which its programs can compute functions and relations. In sections
3.7 and 3.8 we prove some algebraic properties of computation on algebras,
with regard to homomomorphisms and locality.

In sections 3.9 3.13, we will add to the basic language a number of
new constructs, namely ‘for’, procedure calls and arrays, and extend our
model of computation accordingly. In section 3.14 we study the concept
of a sequence of ‘snapshots’ of a computation, which will be useful later
in investigating the solvability of the halting problem in certain (locally
finite) algebras.

We conclude (section 3.15) with a useful syntactic conservativity the-
orem for ¥*-terms over X-terms.

We illustrate the theory with several examples of computations on the
algebras of real and complex numbers.

Throughout section 3, we assume (following Convention 1.4.3) that

Y is a standard signature,and A is a standard Y.-algebra.

3.1

Computable functions on algebras 361

Syntax of While(X)

We begin with the syntax of the language W hile(X). First, for each X-sort
s, there are (program) variables a®,b%, ... x*,y*... of sort s.

We define four syntactic classes: variables, terms, statements and pro-
cedures.

(a)

Var = Var(Y) is the class of X-variables, and Var; is the class of
variables of sort s.

For v = s; X ... X s;», we write x : u to mean that x is a u-tuple of
distinct variables, i.e., a tuple of distinct variables of sorts s1,... , Sm,
respectively.

Further, we write VarTup= VarTup(X)for the class of all tuples
of distinct ¥-variables, and VarTup, for the class of all u-tuples of
distinct Y-variables.

Term = Term(X) is the class of X-terms ¢, .. ., and for each X-sort
s, Termg is the class of terms of sort s. These are generated by the
following rules.

(1) A wariable x of sort s is in Term.
(i) If F € Func(X)y—s and t; € Termy, for i = 1,... ,m where
U=81 X...X Sm, then F(t1,... ,tm) € Terms.

Note again that ¥-constants are construed as O-ary functions, and so
enter the definition of Term(X) via clause (ii), with m = 0.

The class Term(X) can also be written (in more customary notation)
as T(X,Var), ie., the set of terms over ¥ using the set Var of
variables (clause (i) in the definition). Analogously, the set T'(X) of
closed terms over ¥ (2.10) can be written as T(X,).

We write type(t) = s or t : s to indicate that ¢t € Term.

Further, we write TermTup=TermTup(X)for the class of all tu-
ples of ¥-terms, and, for u = s1 X ... X $;n, TermTup,, for the class
of u-tuples of terms, i.e.,

TermTup, =4 Termg, x ...x Term, .

We write type(t) = u or t: u to indicate that ¢ is a u-tuple of terms,
i.e.,, a tuple of terms of sorts sy,...,Sy.

For the sort bool, we have the class of Boolean terms or Booleans
Bool(X) =4 Termyqol, denoted either tbool . (as above) or b,

3

This class is given (according to the above definition of Termy) by:

b = xPF(t)eq,(t;,t3)| true | false
| not(b)| and (b]bg)‘ Or(b]7b2)| if(b7b]7b2)

where F' is a X-function symbol of type u — bool (other than one of
the standard Boolean operations, which are listed explicitly) and s is
an equality sort.

Stmt = Stmt(X) is the class of statements S, The atomic state-

ments are ‘skip’ and the concurrent assignment x := t where for some
product type u, x:u and t: u.

362

J. V. Tucker and J. 1. Zucker

Statements are then generated by the rules
S = skip|x :=t| Si;Sa|if b then Sy else S fijwhile b do S od

Proc = Proc(Y) is the class of procedures P,(@,.... These have
the form
P = proc D begin S end

where D is the variable declaration and S is the body. Here D has
the form
D =in aoutbauxc

where a, b and c are lists of input variables, output variables and
auziliary (or local) variables, respectively. Further, we stipulate:

x a, b and c each consist of distinct variables, and they are pairwise
disjoint;

* every variable occurring in the body S must be declared in D
(among a, b or c);

* the input variables a must not occur on the lhs of assignments
in S;

x (initialisation condition:) S has the form S;,;:;S’, where Sin
is a concurrent assignment which initialises all the output and
auziliary variables, i.e., assigns to each of them the default term
(section 2.12) of the same sort.

Each variable occurring in the declaration of a procedure binds all
free occurrences of that variable in the body.

If a:u and b : v, then P is said to have type u — v, written
P :u — v. Its input type is u.

We write Proc,_,= Proc(X),—, for the class of X-procedures of
type u = v.

Notation 3.1.

(a)
(b)

()
(d)

We will often drop the sort superscript or subscript s.

We will use E,E', Eq,... to denote syntactic expressions of any of
the three classes Term, Stmt and Proc.

For any such expression E, we define var(E) to be the set of variables
occurring in E.

We use ‘=’ to denote syntactic identity between two expressions.

Remark 3.2 (Structural induction; induction on complexity). We
will often prove assertions about, or define constructs on, expressions F of
a particular syntactic class (such as Term, Stmt or Proc) by structural
induction (or recursion) on E| following the inductive definition of that

class.

Alternatively, we may give such proofs or definitions by course-of-values
induction (or recursion) on compl(F), the structural complexity of E. One

Computable functions on algebras 363

suitable definition of this is the length of the maximum branch of the
parse tree of E. Thus, for example, for a program term ¢t = F'(t1,... ,tm),
compl(t) = max;(compl(t;) + 1). Another possible definition of
compl(E), which would in fact be satisfactory for our purposes, is simply
the length of E as a string of symbols.

Sections 3.2 3.6 will be devoted to the semantics of W hzle.

3.2 States

For each standard ¥-algebra A, a state on A is a family (o] s € Sort(X))
of functions

os: Var, — A,. (3.1)

Let State(A) be the set of states on A, with elements o, Note that
State(A) is the product of the state spaces Stateg(A) for all s € Sort(X),
where each States(A) is the set of all functions as in (3.1).

We use the following notation. For x € Var,, we often write o(x) for
0s(x). Also, for a tuple x = (x1,. .. , x,,), we write o[x] for (o(x1),... ,0(xm)).

Now we define the variant of a state. Let o be a state over 4, x = (x1,. .. ,
xn)tuand a = (ay,... ,a,) € A" (for n > 1). We define o{x/a} to be the
state over A formed from o by replacing its value at x; by a; fori =1,... | n.
That is, for all variables y:

a; if y=x,.

o{x/a}(y) — {”(y) ity g forizl, .

We can now give the semantics of each of the three syntactic classes:
Term, Stmt and Proc, relative to any A € StdAlg(X). For an expres-
sion F in each of these classes, we will define a semantic function [E]*.
These three semantic functions are defined in sections 3.3, 3.4-3.5 and 3.6,
respectively.

3.3 Semantics of terms
For t € Termg, we define the function
[t]4: State(A)— A,

where [t]4 (o) is the value of ¢ in A at state o.
The definition is by structural induction on ¢:

B4 =

o(x)
[F(ty,....tm)]% = FA(t]%,... [tm]*0)

Note that this definition of [t]4c extends that of t, for ¢t € T(X)
(Definition 2.11). Also the second clause incorporates the cases that (a) F'
is a constant; (b) F' is a standard Boolean operation, e.g. the discriminator:

364 J. V. Tucker and J. 1. Zucker

[]o if o=t

_ A
[if (b, t1,t2)] "0 = {[[t2]]g if [[bAU:{f-

For a tuple of terms t = (t1,... ,t,), we use the notation

1% =4 ()"0, [tm] o).
Definition 3.3. Forany M C Var, and states o1 and 09, 01 = o2(rel M)
means o1 | M =05 | M, ie., Vo € M(o(z) = 02(z)).

Lemma 3.4 (Functionality lemma for terms). For any term t and
states o1 and 04, if 01 = 0 (rel var(t)), then [t]'c; = [[t]]Aog.

Proof. By structural induction on t. | |

3.4 Algebraic operational semantics

In this subsection we will describe a general method for defining the mean-
ing of a statement S, in a wide class of imperative programming languages,
as a partial state transformation, i.e., a partial function

[S]*: State(A)— State(A).
We define this via a computation step function
Comp”: StmtxState(A)xN — State(A)U{x}

where ‘x’ is a new symbol or object. The idea is that

Comp”(S,0,n) is the nth step, or the state at the nth time
cycle, in the computation of S on A, starting in state o.

The symbol ‘x’ indicates that the computation is over. Thus

if for any n, Comp”(S,0,n) = %, then for allm >n
Comp”(S,0,m) = *.

If we put o, = Comp”(S,0,n), then the sequence of states

g =0qp, O1, 02, ..., Op, ...

is called the computation sequence generated by S at o, written CompSeq”
(S,0). Tt is either infinite, or terminates in a final state o, where Comp*
(S, 0,1+1) =x.

We will use an algebraic method in which Comp# is defined equa-
tionally. In section 3.5 we will apply this general method to the present
programming language While(X). In later sections we will apply it to
other languages.

Computable functions on algebras 365

Assume, firstly, that (for the language under consideration) there is
a class AtStC Stmtof atomic statements for which we have a meaning
function

(S)*: State(A) — State(A)
for S € AtSt, and secondly, that we have two functions

3

First : Stmt — AtSt
Rest® : Stmt x State(A)— Stmit,

where, for a statement S and state o,

First(S) is an atomic statement which gives the first step in
the execution of S (in any state), and Rest(S, o) is a state-
ment which gives the rest of the execution in state o.

For the languages under consideration here, First(S), unlike Rest” (S,),
will be independent of A4 and o.

In each language we can define these three functions ({ -), F'irst and
Rest™).

First we define the ‘one-step computation of S at o’

Comp;': Stmt x State(A)— State(A)

by
Compi!(S,0) = (First(S))"o.

The definition of Comp”(S,o,n) now follows by a simple recursion
(‘tail recursion’) on n:

* if n > 0 and S is atomic
CompA(S7 o,n+1)= C’ompA(RestA(S, o), ComplA(S, a),n)
otherwise. (3.2)

Note that for n = 1, this yields
Comp™(S,0,1) = Compi(S,0).

We call this approach algebraic operational semantics, first used in Tucker
and Zucker [1988], and developed and applied in Stephenson [1996].

From this semantics we can easily derive the i/0 semantics as follows.
First we define the length of a computation of a statement S, starting in

state o, as the function
CompLength” : Stmt x State(A) — NU {oo}

where

366 J. V. Tucker and J. 1. Zucker

least ns.t. Comp?(S,o,n+1) =
CompLength?(S,0) = if such an n exists

o0 otherwise.

Then, putting | = CompLength?(S,0) and noting that 0 < [< oo,
we define

(514 (0) = {CompA(S,a,l) if 1 # o0
T otherwise.

Remark 3.5 (Tail recursion). Consider the recursive definition (3.2) of
Comp”. In the ‘recursive call’ (the second expression on the right-hand
side of the second equation), notice that (1°) Comp” is on the ‘outside’,
and (2°) the parameter changes (from o to Comp{'(S,o,n)). Such a defi-
nitional scheme is said to be tail recursive. Because of (2°), these equations
(as they stand) do not form a definition by primitive recursion. However,
at least in the classical case, where all the arguments and values range
over N, it can be shown that such a scheme can be reduced to a primitive
recursive definition. (See, for example, Goodstein [1964, §6.1], where this
is called ‘recursion with parameter substitution’, or Péter [1967, §7], where
a more general scheme, not satisfying (1°) only, is considered.)

An alternative, primitive recursive, definition of Comp? is given helow
in section 3.14.

3.5 Semantics of statements for While(X)

We now apply the above theory to the language W hile(X). Here there are
two atomic statements: skip and concurrent assignment. We define (S)4
for these:

(skip)loc = o
(| x:=t)" o{x/[t] o}
Next we define First and Rest?. The definitions of First(S) and
Rest”(S,0) proceed by structural induction on S.
Case 1. S is atomic.

First (S) =S
Rest?(S,0) = skip.

Case 2. S= S1; S (the interesting case!).
First(S) = First(S;)

So if S; is atomic

Rest"(S.0) =
est”(S,0) {RestA(S.l70');52 otherwise.

Case 3. S = if b then S; else S, fi.

Computable functions on algebras 367

First (S) = skip
{sl if [b]40 =t

Rest”(S
est’(S,0) S, if [b]4o = f.

Case 4. S = while b do S; od.

First (S) = skip
So; S if [b] e =t
Rest?(S,0) 0 1 []]AU
skip if [b]“4o = f.

This completes the definition of First and Rest?. Note (in cases 3
and 4) that the Boolean test in an ‘if’ or ‘while’ statement S is assumed to
take up one time cycle; this is modelled by taking First(S) = skip.

The following shows that the i/o semantics, derived from our algebraic
operational semantics, satisfies the usual desirable properties.

Theorem 3.6.
(a) For S atomic, [[S]]A = (S)4, ie.,

(skip)40 = o
(x:=t)0 = of{x/{t)"o}.
(b)
[S1; 8]0 ~ [Sa]*([S1]%0).
(c)
. . _ IS4 i bt =1t
[if b then S; else S fi]*o ~ {[[52]]/‘0 it o]0 — £
(d)

whi A s A
[while b do S od]4s ~ [S; while b do S od]”c Tf [[b]]Aa =t
o if [b]%o = f.

Proof. Exercise. Hint: For part (b), prove the following lemma. Formu-
late and prove analogous lemmas for parts (a), (¢) and (d). [|

Lemma 3.7. Comp”(S;;Ss,0,n) =

Comp”(Si,0,n) if Vk < nComp™(Sy,0,k+1) # *
Comp™*(Sy,0',n —ng) if Ik < nComp™(Sy, 0,k +1) = *
where ng is the least such k, and

o = CompA(Sl,a,ng).

368

J. V. Tucker and J. 1. Zucker

Remark 3.8.

(a)

The four suitably formulated lemmas needed to prove parts (a) (d) of
Theorem 3.6 (of which Lemma 3.7 is an example for part (b)) provide
an alternative definition of Comp”(S,o,n), which does not make
use of First or Rest”. This definition is by structural induction on
S, with a secondary induction on n.

The meaning function [S]” (i.e., our i/o semantics) was derived from
our operational semantics, i.e., the Comp? function. We could also
give a denotational i/o semantics for W hile statements. Theorem
3.6 would then provide (one direction of) a proof of the equivalence
of the two semantics (as in de Bakker [1980]).

The semantics given here is simpler than that given in Tucker and
Zucker [1988] where the states have an ‘error value’ almost everywhere
(for uninitialised variables), and there is an ‘error state’ correspond-
ing to an aborted computation. While such an ‘error semantics’ is
superior (we feel) to the one given here, the semantics given here is
simpler, and adequate for our purposes.

For the semantics of procedures, we need the following. Let M C Vary,
and 0,0’ € State(A).

Lemma 3.9. Suppose var(S) C M. If o1 = o2 (rel M), then for all
n >0,

Comp”(S,01,n) ~ Comp™(S,04,n) (rel M).

Proof. By induction on n. Use the functionality lemma (3.4) for terms.ll

Lemma 3.10 (Functionality lemma for statements). Suppose var(S)

Cc M.

(i)
(i1)

If 01 &~ o9 (rel M), then either

[S]401 | o) and [S]%02 | ob (say), where o, ~ ol (vel M), or
[S]401 1 and [S] o2 1.

Proof. From Lemma 3.9. [|

3.6

Semantics of procedures

Now if

P = proc in a out b aux c begin S end

is a procedure of type w — v, then its meaning is a function

[P]*: A" — AY

defined as follows. For a € A", let o be any state on A such that o[a] = a.

Then

o'[b] if [S]1o | o' (say)
0 if [S]4o 1.

Computable functions on algebras 369

For [P]* to be well defined, we need the fact that the procedure P is
functional, as follows.

Lemma 3.11 (Functionality lemma for procedures). Suppose
P = proc in a out b aux c begin S end.

If o1 = 0y (rel a), then either
(i) [S]*o1 | o) and [S]*02 | o (say), where o ~ o) (vel b) or
(ii) [S]*o1 1 and [S] 02 1.

Proof. Suppose o1 & o9 (rel a). We can put S=S;ni;S’, where Sing
consists of an initialisation of b and c to closed terms (see section 3.1).
Then, putting

[Sinit] o1 = o and [Sinit] o2 = o,

it is easy to see that
ol ~ o} (rel a,b,c).

The result then follows from the functionality lemma 3.10 for statements
(with S’, of and o} in place of S, o1 and o4, respectively). [|
Remark 3.12.

(a) Functionality of procedures amounts to saying that there are no side
effects from the output variables or auxiliary variables.

(b) The initialisation condition (section 3.1) is a sufficient (but not nec-
essary) syntactic condition for functionality of procedures. A more
general syntactic condition ensuring functionality was given in Jervis
[1988]. A semantic approach to functionality was taken in Tucker and
Zucker [1988, §4.3.2].

We can now define:
Definition 3.13 (While computable functions).

a unction f on A is computable on ya ile procedure P i

A function f on A i bl A by a Whil dure P if

f =[P]*. 1t is While computable on A if it is computable on A by
some W hile procedure.

(b) A family f =(fa| A € K) of functions is While computable uni-
formly over K if there is a While procedure P such that for all
AeK, fa=[P"

(¢) While(A) is the class of functions W hile computable on A.

We will often write P4 for [P]4.
Example 3.14.

(a) Recall the standard algebra A of naturals (Example 2.23(b)). The
functions W hile computable on N of type nat® — nat are precisely
the partial recursive functions over N (Kleene [1952]). This follows

370 J. V. Tucker and J. 1. Zucker

from the equivalence of partial recursiveness and W hile computabil-
ity on the naturals (see, for example, McNaughton [1982]), or from
the results in section 8. Hence

every partial recursive function over N is While compu-
table on every N -standard algebra.

(b) In the N-standardised group GV (Example 2.27(b)), the partial func-
tion ord: G — N, defined by

least n s.t. ¢” =1, if such an n exists
T otherwise,

ord(g) ~ {
which gives the order of group elements, is W hile computable, since

the ‘constructive least number operator’ is (see section 8). Altern-
atively, we can give directly a Whale procedure in the signature

»(GN):

proc in g:grp
out n:nat
aux prod:grp {temporary product}
begin
prod:=g;
n:=1;
while not(prod=1)
do prod:=prod* g;
n:=succ(n)
od
end

We emphasise that this order function is defined uniformly over all N-
standardised groups (of the given signature $(GV)).
The following proposition will be useful.

Proposition 3.15 (Closure of W hile computability under compo-
sition). The class of W hile computable functions on A is closed under
composition. In other words, given (partial) functions f : A* — AY and
g : A" = A" (for any X-product types u,v,w), if f and g are While
computable on A, then so is the composed function go f : A* — A™.

Proof. Exercise. (Construct the appropriate W hile procedure for the
composed function.) [|

Remark 3.16. Similarly, we have closure under composition for the re-
lated notions of computability still to be considered in this section, namely
WhileN, While*, For, For" and For* computability, and the rela-
tivised versions of these. The results for For computability (etc.) can be
derived from its equivalence with PR computability (etc.) (cf. section 8).

Computable functions on algebras 371

3.7 Homomorphism invariance theorems

We will investigate how our semantics of W hile programs interacts with
homomorphisms between standard X-algebras.
Let A and B be two standard ¥-algebras. Let ¢ = {¢5 |s € Sort(X)}
be a ¥-homomorphism from A to B.
For a € A,, we will write ¢(a) for ¢s(a); and for a tuple a =
(a1,... ,am) € A", we will write ¢(a) for (¢(ai),..., d(am)).
Lemma 3.17.
(@) Gbool is the identity on B.
(b) ¢s is injective on all equality sorts s.

Proof. Exercise. [|

Definition 3.18. The mapping ¢ induces a mapping
¢ : State(A) U {x} — State(B) U {x}

by

d(0) = oo,
ie., if 0 = (o0, |s € Sort(Y)), then ¢(o) = o' = (o) |s € Sort(L)),
where for all s € Sort(X)and x € Vars, o, (x) = ¢s(0s(x)). Further, we
stipulate

Bx) = =
Now we state some homomorphism invariance theorems.

Theorem 3.19 (Homomorphism invariance for terms). For t €
Termg .
¢([t]" o) = [t1° (o).

Proof. By structural induction on ¢. [|

Theorem 3.20 (Homomorphism invariance for atomic statements).

For S € AtSt, R R
$((S Do) = (S)7 é(0).

Proof. The case where S = skip is trivial. The case that S is an assignment
follows from Theorem 3.19.

Corollary 3.21 (Homomorphism invariance for the Comp; predi-
cate).

$(Compi\(S, 7)) = Comp{ (S, $(0)).

Theorem 3.22 (Homomorphism invariance for the Comp predi-
cate).

é(CompA(S,a,n)) = Comp”(S,4(0),n).

372 J. V. Tucker and J. 1. Zucker

Proof. By induction on n. For the base case n = 1, use Corollary 3.21. Il
Theorem 3.23 (Homomorphism invariance for statements). FEither
(i) [S]*o L o' and [S]Pd(c) L 0" (say), where ¢(c') = 0", or
(ii) [S1*o 1 and [S]P$(0) 1
Proof. From Theorem 3.22. |

Theorem 3.24 (Homomorphism invariance for procedures). For a
procedure P :u — v and a € A%,

¢(P*(a)) = P"(¢(a)).

Proof. From Theorem 3.23. [|

3.8 Locality of computation

We will investigate how the semantics of While programs relates to the
subalgebra generated by the input. (Recall Definition 2.15.)

We want to prove the locality theorem: for any W hile computable
function f on A of type u — v, and any a € A",

if f(a)] then f(a)C (a)”.

This will follow immediately from Theorem 3.30 below.

Lemma 3.25. For a term t : s with var(t) C x,

[t]%0 € (ofx]);-

s

(Recall the definition of o[x] in section 3.2.)
Proof. By structural induction on ¢. [|

Lemma 3.26. For an atomic statement S with var(S) C x : u,
(S) o)x] C (alx])-

Proof. There are two cases to consider. If S is an assignment, the result
follows from Lemma 3.25. If S = skip, then it is trivial. [|

Lemma 3.27. Ifvar(S) C x:u, then

Comp(S,0)[x] C (ofx])*.

Proof. From Lemma 3.26. [|
Lemma 3.28. Ifvar(S) C x and Comp”(S,0,n) # *, then

Computable functions on algebras 373
Comp”(S,0,n)[x] C (o[x])".

Proof. By induction on n (with S and ¢ varying). For the base cases
(n = 1), use Lemma 3.27. For the induction step, use the facts that

var(RestA(S, o)) Cwvar(S) and that
Xxcmt s (x)tcmh

The details are left as an exercise. [|

Theorem 3.29 (Locality for statements). If var(S) C x : u and
[S]4 (o) | then
[S](0)x] € (olx])s-

Proof. From Lemma 3.28. [|

Theorem 3.30 (Locality for procedures). For a procedure P :u — v
and a € A" such that P*(a) |,

PA(a) € (a);.

Proof. Suppose
P = proc in a out b aux c begin S;,;; S’ end

where S;,;¢ consists of an initialisation of b and c to closed terms (see
section 3.1). Put x = a,b,c, and suppose

U[a] = a, IISinit]]AU = 0'” and [[SI]]AU'” \L U’.

Then

(@* = (ola)* = ("%, (3.3)

since St consists (only) of the initialisation of b and c to the closed terms,
the values of which lie in every Y-subalgebra of A. Also, by the syntax of
procedures (section 3.1(c)), var(S;ui;S') C x. Hence by Theorem 3.29,
applied to S’ and o”,

PAa) = o'[b] C o'[x] C (o"[x])". (3.4)

The result follows from (3.3) and (3.4). |

Certain useful additions to, or modifications of, the While language
defined in section 3.1, with corresponding notions of computability, will be
defined in sections 3.9-3.13.

374 J. V. Tucker and J. 1. Zucker

3.9 The language WhileProc(X)

In the language While(X), we use procedures not in the construction of
statements, but only as a convenient device for defining functions (section
3.6). We can, however, define a language W hile Proc(¥) which extends
W hile(X) by the adjunction of a new kind of atomic statement, the pro-
cedure call

x = P(t), (3.5)

where P is a procedure of type u — v (say), ¢ is a tuple of terms of type u
(the actual parameters) and x : v.

The semantics of W hile is then extended by adding the following clause
to the semantics of atomic statements (section 3.4):

o _ Jol{x/a} if PA([t]"0) L a (say)
(x:=P() ‘)AU = {T if PA([[t]]A(T) 1.

Note that the function

(-)" : AtSt — (State(A) — State(A))

is now partial (compare section 3.4).

However, it is easy to ‘eliminate’ all such procedure calls from a program
statement, i.e., to effectively transform W hile Proc statements to W hile
statements with the same semantics, as follows. For any procedure call
(3.5), suppose

P = proc in a out b aux c begin S end. (3.6)
Then replace (3.5) by the statement
S(ab.c/t x.2), (3.7)

where z is a tuple of distinct ‘fresh’ variables of the same type as c, and
(...) denotes the simultaneous substitution of t,x,z for a,b,c.

Note that the result of this substitution (3.7) is a syntactically correct
statement, by the stipulation (section 3.1) that the input variables a not
occur on the left-hand side of assignments in S.

Remark 3.31.

(a) According to our syntax, in the procedure call (3.5) above, ‘P’ is not
just a name for a procedure but the procedure itself, i.e., the complete
text (3.6)! In practice, it is of course much more convenient and
customary to ‘declare’ the procedure before its call, introducing
an identifier for it, and then calling the procedure by means of this
identifier.

Computable functions on algebras 375

In any case, our syntax prevents recursive procedure calls. The situ-
ation with recursive procedures would be quite different from that
described above they cannot be eliminated so simply (de Bakker
[1980]).

(b) Another way of incorporating procedure calls into statements is by
expanding the definition of terms, as was done in Tucker and Zucker
[1994]. The problem with that approach here is that it would com-
plicate the semantics by leading to partially defined terms. In Tucker
and Zucker [1994] this problem does not occur, since the procedures,
being in the For language rather than W hile, produce total func-
tions.

3.10 Relative W hile computability
Let g =(g9a| A€ K) be a family of (partial) functions

ga: AU — AV

We define the programming language W hile(g) which extends the lan-
guage W hzile by including a special function symbol g of type u — v. We
can think of g as an ‘oracle’ for g4.

The atomic statements of W hile(g) include the oracle call

x = g(t)

where ¢t : u and x : v. The semantics of this is given by
o{x/a} if ga([t]'0) | a (say)
(x=gt) Vo = {700 Lonlil
i it ga([t])"o) 1.

Similarly, for a tuple of (families of) functions g1, ... ,g,, we can define

the programming language W hile(g, ... ,g,) with oracles g1,... ,g, for

J1;--- 5 9n, or (by abuse of notation) the programming language W hile(g:,
3 9n)-

In this way we can define the notion of While(gy, ... ,gn) computabil-
ity, or W hzile computability relative to g1, ... ,gn, or While computability
in gi,...,gn, of a function on A.

Similarly, we can define the notion of relative W hile semicomputability
of a relation on A.

We can also define the notion of uniform relative W hile computability
(or semicomputability) over a class K.

Lemma 3.32 (Transitivity of relative computability). If f is While

computable in g1,...,9m,h1,--. ,hyn, and g1,... ,9m are While compu-
table in hy,..., h,, then f is While computable in hy,... , hy.
Proof. Suppose that g; is computable by a While(h,,... ,h,) proce-

dure P; for i = 1,...,m. Now, given a While(gi,... ,&m,h1,...,hy)

376 J. V. Tucker and J. 1. Zucker

procedure P for f, replace each oracle call x := g;(t) in the body of P

by the procedure call x := P;(t). This results in a While(hy,... ,h;,)
procedure actually, a WhileProc(hi,... ,h,) procedure (section 3.9)
which also computes f. [|

Note that this result holds over a given algebra A, or uniformly over a
class K of ¥-algebras.

3.11 For(X) computability

We consider briefly another programming language, For = For(X), which
also plays a role in this paper.

Assume now that ¥ is an N-standard signature, and A an N-standard
algebra. The syntax for For is like that for W hile, except that Stmit(X)
is defined by replacing the loop statement while b do S od by

for t do S od, (3.8)

where ¢ : nat, with the informal semantics: execute S k times, where ¢
evaluates to k. More formally: first we define the notation S* (k > 0) to
mean the k-fold iterate of S, i.e.,
gk = S;...;S (ktimes) if k>0
~ | skip if k=0.

We now define the semantics of For by modifying the definitions (section
3.5) of the functions First and Rest, replacing case 4 with:
Case /. S = fort do Sy od.

First(S) = skip
Rest?(S,0) = (So)*

where k = [t]4o.

Note that ¢ is evaluated (to k) once, upon initial entry into the loop,
which is then executed exactly k times (even if the value of ¢ changes in
the course of the execution). Thus [S]# is always total, and functions
computable by For procedures are always total.

We define For(A) to be the class of functions For computable on A.

As in section 3.10, we can define the notion of relative For(X) com-
putability, and prove a transitivity lemma for this, analogous to Lemma
3.32.

Example 3.33. The functions For computable on A of type nat® —nat
are precisely the primitive recursive functions over N.

This follows from the equivalence of primitive recursiveness and For
computability on the naturals (proved in Meyer and Ritchie [1967]; see,
Davis and Weyuker [1983], for example) or from section 8. Hence

Computable functions on algebras 377

every primitive recursive function over N is For computable on
every N-standard algebra.

(Compare Example 3.14(a).)
Proposition 3.34.

(a) For(X) computability implies W hile(X) computability. More pre-
cisely, there is an effective translation S — S’ of For(X) state-
ments to While(X) statements, and (correspondingly) a transla-
tion P — P' of For(X) procedures to W hile(X) procedures which
is semantics preserving, i.e., for all For(X) procedures P and N -
standard Y-algebras A, [P]* = [P'T".

(b) More generally, relative For(X¥) computability implies relative
While(X) computability.

Proof. Simple exercise. [|

3.12 While" and For" computability

Consider now the While and For programming languages over X'V,
Definition 3.35.

(a) A WhileN (%) procedure is a W hile(X) procedure in which the input
and output variables have sorts in ¥.. (However the auxiliary variables
may have sort nat.)

(b) ProcN(Y) is the class of While™ (%) procedures.

Definition 3.36 (While" computable functions).

(a) A function f on A is computable on A by a While™N procedure P if
f=PA Ttis WhileN computable on A if it is computable on A by
some While™ procedure.

(b) A family f = (fa | A € K) of functions is While® computable uni-
formly over K if there is a While™ procedure P such that for all
A€K, fa=PA

(¢) WhileN(A) is the class of functions While™ computable on A.

The class of For™N(X) procedures, and For™(X) computability, are
defined analogously.

Remark 3.37.

(a) If Ais N-standard (so that For computability is defined on A), then
AN has two copies of N, which we can call N and N, of sort nat
and nat’, respectively (each with 0, S and < operations). To avoid
technical problems, we assume then that in the for command ((3.8) in
section 3.11), the term ¢ can have sort nat or nat’. This assumption
helps us prove certain desirable results, for example:

(i) There are For(AN)computable bijections, in both directions,
between the two copies of N.

378 J. V. Tucker and J. 1. Zucker

(ii) For computability implies For”™ computability (the seemingly
trivial direction ‘==’ of Proposition 3.38).

(b) For™ computability implies W hile™¥ computability (cf. Proposition
3.34).

(c) Relativised versions of While™ and For”™ computability can be de-
fined as with W hile computability (section 3.10), and corresponding
transitivity lemmas (cf. Lemma 3.32) proved. Also, relative For®™
computability implies relative While™ computability.

Proposition 3.38. If A is N-standard, then While™N (or For™) com-
putability coincides with While (or For) computability on A.

Proof. For the direction ‘While™ (or For"™) computability = W hile
(or For) computability’, we can use the coding of A" in A (see Remark
2.28(d)), or, more simply, represent the computation over AV by computa-
tion over A, by ‘identifying’ the two carriers N and N with each other, or
(equivalently) ‘identifying’ the two sorts nat’ and nat, renaming variables
of these sorts suitably to avoid conflicts. (See also Remark 3.37(a).) |

3.13 While* and For* computability

Recall the algebra A* of arrays over A, with signature ¥* (section 2.7).
Consider now the While and For programming languages over ¥*.

Definition 3.39.
(a) A sort of ¥* is called simple, augmented or starred according as it has
the form s, s" or s* (respectively), for some s € Sort(X).

(b) A variable is called simple, augmented or starred according as its sort
is simple, augmented or starred.

Note that every sort of ¥* is simple, augmented, starred or nat.
Definition 3.40.

(a) A While*(X) procedure is a While(X*) procedure in which the in-
put and output variables are simple. (However the auxiliary variables
may be augmented or starred or nat.)

(b) Proc*= Proc*(Y) is the class of While*(X) procedures.

(¢) Proc;_,,= Proc*(X),—yis the class of While*(X) procedures of

type u — v, for any ¥-product types u and v.

Remark 3.41. We can assume that the auxiliary variables of a While*
procedure are either simple or starred or nat, since a procedure with aug-
mented variables as auxiliary variables can be replaced by one with simple
variables, by the device of coding A" in A (see Remark 2.30(c)).

Definition 3.42 (While* computable functions).

(a) A function f on A is computable on A by a W hile* procedure P if
f = PA. Tt is While* computable on A if it is computable on A by
some W hile* procedure.

Computable functions on algebras 379

(b) A family f =(fa | A€ K) of functions is While* computable uni-
formly over K if there is a While* procedure P such that for all
A€K, fa=PA

(¢) While*(A) is the class of functions While* computable on A.

The class of For*(X) procedures, and For*(X) computability, are de-
fined analogously.

Remark 3.43.

(a) While* computability will be the basis for a generalised Church
Turing thesis, as we will see in section 8.8.

(b) For*(X) computability implies W hile*(X) computability (cf. Propo-
sition 3.34).

(¢) Relativised versions of While* and For* computability can be de-
fined as with W hile computability (section 3.10) and corresponding
transitivity lemmas (cf. Lemma 3.32) proved. Also, relative For*
computability implies relative W hile* computability.

(d) In N, While"N and W hile* computability are equivalent to W hile
computability, which in turn is equivalent to partial recursiveness
over N (Example 3.14(a)). Similarly, in N/, For, For"™ and For*
computability are all equivalent to primitive recursiveness (Example

Theorem 3.44 (Locality of computation for W hile* procedures).
For a While* procedure P:u — v and a € A* such that P*(a) |,

P(a) € (a);.

Proof. This follows from the corresponding Theorem 3.30 for W hile com-
putability, applied to A*, together with ¥* /X conservativity of subalgebra
generation (to be proved below, in Corollary 3.65). [|

The following observation will be needed later.

Proposition 3.45. On A*, While* (or For*) computability coincides
with W hile (or For) computability.

This follows from the effective coding of (4*)* in A* (Remark 2.31(d)).

Remark 3.46 (Internal versions of While* and For* computabil-
ity). If A is N-standard, we can consider ‘internal versions’ of W hile*
and For* computability, based on the ‘internal version’ of A*, which uses
the copy of N already in A instead of a ‘new’ copy (see Remark 2.31(c)).
We can show that these versions provide the same models of computation
as our standard (‘external’) versions.

Proposition 3.47. Suppose A is N-standard. Let W hile* and For*
computability on A be the ‘internal versions’ of W hile* and For* (re-
spectively) computability on A (see previous remark). Then W hile* and

380 J. V. Tucker and J. 1. Zucker

For* computability coincide with W hile* and For* (respectively) com-
putability on A.

Proof. Exercise. (Cf. Proposition 3.38.) ||

3.14 Remainder set of a statement; snapshots

We now return to the operational semantics of section 3.4. The concepts
developed here will be useful in investigating the solvability of the halting
problem for certain algebras (Section 5.6). First we define the remainder
set RemSet(S) of a statement S, which is (roughly) the set of all possible
iterations of the Rest” operation on S at any state.

Definition 3.48. The remainder set RemSet(S) of S is defined by struc-
tural induction on S:
Case 1. S is atomic.

RemSet(S) = {S}.
Case 2. S = 51; 5.
RemSet(S) = {S];52]S; € RemSet(S;)} U RemSet(Ss).
Case 3. S = if b then S; else S, fi.
RemSet(S) = {S}U RemSet(S))U RemSet(S).
Case 4. S = while b do Sj od.

RemSet(S) = {S}U{S};S | S, € RemSet(Sy)}.

Example 3.49. Consider a statement of the form
S = aq;while b do as; as; a4 od; as

where the a; are atomic statements (using ad hoc notation) and b is a
Boolean test. Then RemSet(S) consists of the following:

S7

while b do as;as; a4 od;as,

as; as; aq; while b do as;as; a4 od;as,
as; as; while b do as;az; a4 od;as,
a4; while b do as;az; a4 od;as,

as.

The next proposition says that RemSet(S) contains S, and is closed
under the ‘Rest’ operation (for any state).

Computable functions on algebras 381

Proposition 3.50.

(a) S € RemSet(S).

(b) S' € RemSet(S) = Rest"(S',0) € RemSet(S) for any state

0.

Proof. By structural induction on S. | |
Proposition 3.51. RemSet(S) is finite.
Proof. Structural induction on S. | |
Definition 3.52. The statement remainder function

Rem™ : StmtxState(A)xN —Stmt

is the function such that Rem™(S,o,n) is the statement (the ‘remainder
of S’) about to be executed at step n of the computation of S on A,
starting in state o (or skip when the computation is over). This is defined
by recursion on n (tail recursion again):

Rem™”(S,0,0) = S

skip if n > 0 and S is atomic
Rem™(S,0,n+1) ={ Rem”(Rest"(S,c),Comp(S,c),n)
otherwise.

Note the similarity with the tail recursive definition of Comp” (section
3.4). Note also that for n = 1, this yields

Rem™(S,0,1) = Rest”(S,0).

The two functions Comp and Rem also satisfy the following pair of
relationships, which (together with suitable base cases n = 0) could be
taken as a (re-)definition of them by simultaneous primitive recursion:

Proposition 3.53.
(a) Comp”(S,0,n+ 1) = Compi (Rem*”(S,o,n),Comp”(S,a,n))
(b) Rem”(S,0,n +1) = Rest*(Rem”(S,0,n),Comp”(S,o,n))
provided Comp?(S,0,n) # *.
Proof. Exercise. i
Proposition 3.54. For all n, Rem”(S,0,n) € RemSet(S)U{skip}.
Proof. Induction on n. Use Proposition 3.50. [|

If we put S, =Rem*(S,0,n), then the sequence of statements S =
S0, 51,83, ... is called the remainder sequence generated by S at o, written
RemSeq”(S,0).

382 J. V. Tucker and J. 1. Zucker

Corollary 3.55. For fized S and o, the range of RemSeq”(S,0) is
finite.

Proof. From Propositions 3.51 and 3.54. [|

Now we introduce the notion of a ‘snapshot’.
Definition 3.56.

(a) A snapshot is an element (o, S) of (State(A)U{*})x Stmt.
(b) The snapshot function

Snap” : Stmt x State(A) x N — (State(A)U{x}) x Stmt
is defined by

S’napA(S,a,n) = (C’ompA (S,0,n), RemA (S,0,n)).

If we put Snap”(S,0,n) = (6,,5,), so that o, = Comp?(S,0,n)
and S, = Rem”(S,0,n), then the sequence

3

((T,S) = (0’0,50), (0’1,51), (0’2,52),

is called the snapshot sequence generated by S at o, written SnapSeq” (S, o).
It is either infinite, or terminates in a ‘final snapshot’ (o, S,), where
Comp”(S,0,n+1) = x and Rem*(S,o,n) = skip.

Its importance lies in the following;:
Proposition 3.57. If the snapshot sequence generated by S at o repeats a
value at some point, then it is periodic from that point on. In other words,
if for some m,n with m #n

Snap*(S,0,m) = Snap” (S,0,n) # (x,skip)
e, Om = 0n # % and Sy, = Sy, then for all k > 0

Snap”(S,o,m +k) = Snap?(S,o,n+k) # (x,skip).

Proof. Exercise. | |

Corollary 3.58. If the snapshot sequence generated by S at o repeats a
value, then it is infinite.

Remark 3.59.
(a) The snapshot function will be used later, in considering the solvability
of the halting problem for locally finite algebras (section 5.5).

(b) The snapshot function is adapted from Davis and Weyuker [1983] (or
Davis et al. [1994]). There a ‘snapshot’ or ‘instantaneous description’

Computable functions on algebras 383

of a program P is defined as a pair (i,0) consisting of an instruction
number (or line number) i of P, and the state o. The reliance on
instruction numbers is possible here because programs consist of se-
quences of elementary instructions, including the conditional jump.
However, in the context of our While programming language, the
specification of an instantaneous description by a simple ‘instruction
number’ is impossible; we need the more complex notion of a partic-
ular ‘remainder’ of the given program (or statement).

3.15 ¥*/X conservativity for terms

We conclude this section with a very useful syntactic conservativity the-
orem (Theorem 3.63) which says that every ¥*-term with sort in ¥ is
effectively semantically equivalent to a ¥-term. This theorem will be used
in sections 4 (universality for W hile* computations: Corollary 4.15) and
5 (strengthening Engeler’s lemma: Theorem 5.58).

First we review and extend our notation for certain syntactic classes of
terms.

Notation 3.60.

(a) Term, = Term,(X) is the class of X-terms ¢ with var(t) C a, and
Term,s = Term,(X) is the class of such terms of sort s.
(b) Further, we define:
Term? = Term,(X*)

Terml = Term,(3V)
Term®N = Term,(X*“"N)
and similarly,
Term; , = Term, ;(X*) for any sort s, etc.
(¢) For any ¥ D X, we write Term,(X'/X) for the class of ¥'-terms
of sort in ¥ (but possibly with subterms of sort in X'\ X), and
Term, (X'/E) for the class of such terms of sort s (in X).

We will show that for all s € Sort(Y), every term in Term; ; (i.e.,
Y*-term of sort s) is effectively equivalent to a term in Term,s (i.e., a
Y-term of sort s). We will do this in three stages:

(1°) Define an effective transformation of Y*-terms (of sort in ¥%V) to
YN _terms.

(2°) Define an effective transformation of X%~ -terms (of sort in V) to
YN terms.

(3°) Define an effective transformation of ¥V-terms (of sort in ¥) to Y-
terms.

here, in all cases, the program variables of the terms are among a.

In preparation for this, we must define the notion of the mazimum value
of a term in Term; ... This is the maximum possible numerical value that
such a term could have, under any assignment to the variables a.

384 J. V. Tucker and J. 1. Zucker

Definition 3.61. For t € Term, ,,, its maximum value mazwval(t) € N
is defined by induction on the complexity of ¢ (which we can take as the

length of ¢ as a string of symbols: cf. Remark 3.2). There are four cases:

(a) t=0: maxval(t) = 0.

(b) t=Sto : maxval(t) = mazxzval(ty) + 1.

(¢) t=if(b,t1,t2) : mazval(t) = max(mazxzval(t;), mazval(ty)).

(d) t=Lgths(r), where r is of starred sort. There are four subcases, ac-
cording to the form of r:

S

(1) r=Null: mazval(t) = 0.
(i) r=Update(rg,ti,t2) : maxzval(t) =maxzval(Lgth(ry)).
(ii1) r=Newlength(rg, 1) : mazval(t) =mazxzval(ty).

(iw) r=if(b,r1,r2) : maxzval(t) = max(maxval(Lgth(ry)),
mazval(Lgth(rsy))).

Remark 3.62.

(a) This definition, which is used in stage 1 of the syntactic transforma-
tion described in Theorem 3.63 below, uses the assumption that the
variables of ¢ all have sorts in ¥. If, for example, ¢ (or a subterm of t)
was a variable of sort nat, or was of the form Lgth(z*) for a variable
z* of starred sort, we could not define maxval(t).

(b) Suppose (i) ¥ is strictly N-standard (and so includes the sort nat),
and (ii) the sorts of a do not include nat. Then, with Term} , =
Term, (X*) with the ‘internal’ version of ¥* (using this sort nat
instead of a ‘new’ sort, cf. Remark 2.31(¢c)), we can still give an ap-
propriate definition of maxval(t) for t € Term; (Check.)

a,nat-

Theorem 3.63 (X*/Y conservativity for terms). Let a be an (ar-
bitary but fized) tuple of X-variables. For all s € Sort(X), every term in

Term; , is effectively semantically equivalent to a term in Term, ;.
. :

Proof. This construction (or transformation) of terms proceeds in three
stages:

Stage 1: from Y*-terms (of sort in ¥%V) to ¥V _terms;
Stage 2: from X%V _terms (of sort in ¥VV) to XN -terms;
Stage 3 from YN-terms (of sort in X)) to X-terms.

In all cases, the program variables of the terms are among a.

Stage 1: From Term,(X*/3N) to Term,(Y%"). This amounts to
removing subterms of starred sort from a term of unstarred sort.

Computable functions on algebras 385

First notice that if a term of unstarred sort contains a subterm of starred
sort, then it must contain a (maximal) subterm r of starred sort in one of
the three contexts:

r=r, Ap(r,t), Lgth(r).

We will show how to eliminate each of these three contexts in turn.
Step a. Transform all contexts of the form r; = ry (r; of starred sort) to

Lgth(r1) = Lgth(ra) A (Ap(ri, k) = Ap(rs, k),

>z

k

Il
-

where M =mazval(Lgth(ry)), and k is the numeral for k (that is, ‘0’
preceded by ‘S’ k times).

Now all (maximal) occurrences of a subterm r of starred sort are in a
context of the form either Ap(r,t) or Lgth(r).
Step b. Transform all contexts of the form Ap(r,t), by structural induction
on r. There are four cases, according to the form of r:

(1) r=Null:
Ap(r,t) +— unspec.
(ZZ) T'EUpdate(To,to,t])Z
Ap(r,t) +—— if(t =to < Lgth(ro), t1, Ap(ro,t)).
(#41) = Newlength(rg, to):
Ap(r,t) +— if(t < to, Ap(ro,t), unspec).
(iv) r=if(b,ry,r2):
Ap(T, 7L) — If(b/ Ap(rlat)7 Ap(TQIf))

Note the use of the ‘if’ operator in cases (i) and (ii7). Hence the inclusion
of ‘if’ in the definition of standard algebra (section 2.4). Note also the use
of ‘<’ in cases (i7) and (iii). Hence the inclusion of ‘<’ in the definition of
the standard algebra A (Example 2.23(b)) and N-standardisations (section
2.5).

Step c. Transform all contexts of the form Lgth(r), by structural induction
on 7. Again there are four cases, according to the form of r:

(1) r=Null:
Lgth(r) +— 0.

(77) r= Update(rg, to, tl):
Lgth(r) +— Lgth(rg).

(#4i1) = Newlength(rg, to):
Lgth(r) +— to.

(iv) r=if(b,ry,re):
Lgth(r) +~— if(b,Lgth(r1), Lgth(r2)).

386 J. V. Tucker and J. 1. Zucker

By these three steps, we transform a starred term (i.e., a term of
Term,(X*)), into an unstarred term (i.e., a term of Term,(X%")), as
desired, completing stage 1.

Stage 2. From Term, (X% /%N) to Term,(XV). Let t be a term of
YN with sort in ¥V, We note the two following assertions:

(1°) A maximal subterm r" of ¢ of augmented sort s" must occur in one
of the following contexts:
(a) js(r"),
(b) Unspec, (r*),
(¢) ™ =r™or r™ =r" (for s an equality sort).
(2°) Any term 7Y € Term,(X®") of sort s' is semantically equivalent
to a term having one of the following forms:
(i) is(r), where r € Term(XV),
(4i) unspec,.

Assertion (1°) is proved by a simple inspection of the possibilities, and (2°)
is proved by structural induction on rV. (Details are left to the reader.)

Stage 2 is completed by considering all combinations of cases (a), (b)
and (¢) in (1°) with cases (i) and (i7) in (2°), and (writing ‘~’ for semantic
equivalence over ¥¥'"V) noting that

(a) js(is(r)) ~ 7,
js(unspec,) ~ &° (cf. section 2.6),
(b) Unspec,(is(r)) ~
Unspec (unspecs)) =~ true,
(¢) (is(r) =is(r")) =~ (r=r"),
(is(r) = unspecs) =~ false,
(unspecs = ig(r)) ~ false,
(unspecs =unspec;) =~ true.

false,

Stage 3: From Term,(XV /%) to Term.(X). Let t be a term of ¥V, with
sort in X.. We note the two following assertions:

(1°) A maximal subterm r of ¢ of sort nat must occur in one of the contexts

r<r, r<r, r=r, r'=r

for some subterm 7’ of sort nat.
(2°) Any term r € Term,(X) of sort nat is semantically equivalent to a
numeral 1.

Again, assertion (1°) is proved by a simple inspection of the possibilities,
and (2°) is proved by structural induction on r. (Details are left to the
reader.)

Computable functions on algebras 387

Stage 3, and hence the proof of the lemma, is completed by noting that
all four cases listed in (1°) are then equivalent to m < n or m = n, and
hence (depending on m and n) to either true or false. |

Remark 3.64.

(a) The transformation of terms given by the conservativity theorem is
primitive recursive in Gédel numbers.

(b) Suppose (i) X is strictly N-standard (and so includes a sort nat),
and (ii) the sorts of a do not include nat. Then, with T'erm;

Term, (X*) with the ‘internal’ version of £* (as in Remark 3.62(b)),
the conservativity theorem still holds. (Check.)

Recall Definition 2.15 on generated subalgebras.

Corollary 3.65 (X*/X conservativity of subalgebra generation).
Let X C |) Ag. Then for any X-sort s,

s€Sort

(X) = ()7

S

We can apply this to strengthen Theorem 3.30:

Theorem 3.66 (Locality for While, While" or While* compu-
table functions). Let f be a (partial) function on A of type u — v, let
a € A%, and suppose f(a) |. If f is While, WhileN or W hile* compu-
table, then

() € (a)'.

4 Representations of semantic functions; universal-
ity

In this section we examine whether or not the While programming lan-
guage is a so-called universal model of computation. This means answering
questions of the form:

Let A be a X-algebra. Does there exist a universal W hile pro-
gram Uy,.q, € While(X) that can simulate and perform the
computations of all programs in W hile(X) on all inputs from
A? Is there a universal W hile procedure Upyoc € Proc(X) that
can compute all the W hile computable functions on A?

These questions have a number of precise and delicate formulations which
involve representing faithfully the syntax and semantics of W hile compu-
tations using functions on A.

To this end we need the techniques of Godel numbering, symbolic com-
putations on terms, and state localisation. Specifically, for Gédel number-
ing to be possible, we need the sort nat, and so we will investigate the
possibility of representing the syntax of a standard Y-algebra A (not in

388 J. V. Tucker and J. 1. Zucker

A itself, but) in its N-standardisation AV, or (failing that) in the array
algebra A*. Among a number of results, we will show that

for any given Y.-algebra A, there is a universal While pro-
cedure over A if, and only if, there is a While program for
term evaluation over A.

In consequence, because term evaluation is always W hile computable on
A*, we have that

for any X-algebra A, there is a universal W hile program and
universal W hile procedure over A*.

Thus, for any algebra A our While* model of computation is univer-
sal. In particular, we can enumerate the While* computable functions
o, 91, ¢P2,... of any type u — v on A, and evaluate them by a universal
function U, _,, : N x A* — A? defined by

Uu—)v(i:a) = (f),((l)

which is While* computable, uniformly in the types u,v.
If the ¥-algebra A has a While program to compute term evaluation,
then
While*(A) = While (A).

We consider also the uniformity of universal programs and procedures over
a class K of algebras. Many familiar classes of algebras, such as groups,
rings and fields, have W hile programs to compute term evaluation uni-
formly over these classes.

4.1 Godel numbering of syntax

We assume given a family of numerical codings, or Gédel numberings, of the
classes of syntactic expressions of ¥ and ¥*, i.e., a family gn of effective
mappings from expressions E to natural numbers "E" = gn(E), which
satisfy certain basic properties:

e "E7increases strictly with compl(E), and in particular, the code of
an expression is larger than those of its subexpressions.

e sets of codes of the various syntactic classes, and of their respective
subclasses, such as {"t7 |t € Term}, {"t7 |t e Termy}, {*S"
| S € Stmt}, {"S7| S is an assignment}, etc. are primitive recur-
sive;

e We can go primitive recursively from codes of expressions to codes
of their immediate subexpressions, and vice versa; thus, for example,
TS17 and S, are primitive recursive in "S7;S;7, and conversely,
TSy; Sy is primitive recursive in ©S; 7 and S, .

In short, we can primitive recursively simulate all operations involved in
processing the syntazx of the programming language. This means that the

Computable functions on algebras 389

syntactic classes form a computable (in fact, primitive recursive) algebra,
in the sense of Definition 1.1. We will use the notation

TTerm™ =4 {"t"|t € Term},

etc., for sets of Godel numbers of syntactic expressions.

We will be interested in the representation of various semantic functions
on syntactic classes such as Term(X), Stmt(X) and Proc(X) by func-
tions on A or A*, and in the computability of the latter. These semantic
functions have states as arguments, so we must first define a representation
of states.

4.2 Representation of states

Let x be a u-tuple of program variables. A state o on A is represented
(relative to x) by a tuple of elements a € A" if o[x] = a. (Recall the
definition of o[x] in section 3.2.)

The state representing function

Rep?: State(A) — A"
is defined by
Rep? (o) = o[x].
The modified state representing function
Repl: State(A)U{x} — B x A"
is defined by

Repy.(0) = (t, ofx])
Repy.(x) = (F 0%)

where 84 is the default tuple of type u in A (section 2.14).

4.3 Representation of term evaluation

Let x be a u-tuple of variables. Let Term, = Term,(X) be the class
of all ¥-terms with variables among x only, and for all sorts s of X, let
Termy, s = Termy () be the class of such terms of sort s. Similarly, we
write TermTup, for the class of all term tuples with variables among x
only, and TermTupy,, for the class of all v-tuples of such terms.

The term evaluation function on A relative to x

TEXA75: Term, sx State(A) — A,
defined by
TE2,(t,0) = [t]"0,
is represented by the function

teA .

X,8"

MMermy s ' xXA" — A,

390 J. V. Tucker and J. 1. Zucker

defined by
tefﬁ("t a) = [[t]]ALT7
where ¢ is any state on A such that o[x] = a. (This is well defined, by

Lemma 3.4.) In other words, the following diagram commutes:

Termy s x State(A)

TE,,
(gn,Repf)

"Termys ' x A" - A,

A
tems

Strictly speaking, if gn is not surjective on N, then te;:"S is not uniquely
specified by the above definition, or by the diagram. However, we may
assume that for n not a Godel number (of the required sort), teés(m a)
takes the default value of sort s (2.12). Similar remarks apply to the other
representing functions given below.

Further, for a product type v, we will define a evaluating function for
tuples of terms

te? . "TermTupy, 'xA* — A’

x,v°
similarly, by
te;‘{v('—t—', a) = [t]%o.

We will be interested in the computability of these term evaluation
representing functions.

4.4 Representation of the computation step function

Let AtSt, be the class of atomic statements with variables among x only.
The atomic statement evaluation function on A relative to x,

AE#: AtSt,x State(A) — State(A),
defined by
AEX(S,0) = [S]"o

is represented by the function

ael: TAtSt,Ix A" — A",
defined by

ael(7S7, a) = ({S)*o)[x],
where o is any state on A such that o[x] = a. (Again, this is well defined,
by Lemma 3.14.) In other words, the following diagram commutes:

Computable functions on algebras 391

AE#

AtSt, x State(A) —> State(A)
(gn.Repy) T TRepf
CAtSt,x A" — A

ael

Next, let Stmity be the class of statements with variables among x only,
and define

Rest?=,4 Rest”| (Stmt,xState(A)).
Then First and Rest? are represented by the functions

first: TStmit? — TAtSt”
restf: TStmt, 'x A" — "Stmt,"

which are defined so as to make the following diagrams commute:

First
Stmt — AtSt
gnT Tgn
TStmt” — "AtSt”
first
Rest?
Stmt, x State(A) — Stmt,
e To
FStmt, 'x A" — "Stmt, "
rest

Note that first is a function from N to N, and (unlike rest' and most
of the other representing functions here) does not depend on A or x.
Next, the computation step function (relative to x)
Comp?= Comp”|(Stmt,x State(A)xN):
Stmt, x State(A)xN — State(A) U {x}

is represented by the function

392 J. V. Tucker and J. 1. Zucker

comp?: "Stmt,'xA* x N — B x A"

which is defined so as to make the following diagram commute:

Comp?
Stmt,x State(A)xN —> State(A)U{x}
(gn.Rep;idy) T T Rep;
TStmt, 'xA* x N — B x A%
comp?

We put
comp? ("S7,a,n) = (notover?("S7,a,n), statel("S7,a,n))

with the two ‘component functions’

notover?: "Stmt, ' xA* xN — B
statef: TStmt, ' xA" x N — A"

where notover?("S7,a,n) tests whether the computation of "S7 at a is
over by step n, and state?("S7,a,n) gives the value of the state (repre-
sentative) at step n.

4.5 Representation of statement evaluation

Let Stmt, be the class of W hile statements with variables among x only.
The statement evaluation function on A relative to x,

SEZX:. Stmt,x State(A) — State(A),
defined by
SE}(S,0) = [S]"0,
is represented by the (partial) function
sef: TStmt, " x A* — A",
defined by
se; ("S7a) = ([S]"0)[x]

where ¢ is any state on A such that o[x] = a. (This is also well defined, by
the functionality lemma for statements, 3.10.) In other words, the following
diagram commutes.

Computable functions on algebras 393

SEA
Stmt,x State(A) —> State(A)
(gn.Repy') T TRepf
rStmt, T x A" s Au
sed

We will also be interested in the computability of ses.

4.6 Representation of procedure evaluation

We will want a representation of the class Proc,_,, of all While proce-
dures of type u — v, in order to construct a universal procedure for that
type. This turns out to be a rather subtle matter, since it requires a cod-
ing for arbitrary tuples of auxiliary variables. We therefore postpone such
a representation to section 4.8, and meanwhile consider a local version, for
the subclass of Proec,_,, of procedures with auziliary variables of a given
fized type, which is good enough for our present purpose (Lemma 4.2 and
Theorem 4.3).

So let a,b,c be pairwise disjoint lists of variables, with types a: u, b: v
and c : w. Let Proc,y,. be the class of Whtle procedures of type u — v,
with declaration in a out b aux c. The procedure evaluation function on A
relative to a,b,c

PE:b,& Proc,p xA* — AV
defined by
PEZ, .(P,a) = P%(a)

is represented by the function
pef’bvcz "Proc,p,. 'xA* — A’
defined by
pesy (P a) = PY(a).

In other words, the following diagram commutes:

394 J. V. Tucker and J. 1. Zucker

Proc,p x A"
A
PEa,b,c

<gn7 idA“>

Term, ' x A" - AV

A
pea,b,c

A

a,b,c”

We will also be interested in the computability of pe

4.7 Computability of semantic representing functions;
term evaluation property

By examining the definitions of the various semantic functions in Section
3, we can infer the relative computability of the corresponding representing
functions, as follows.

Lemma 4.1. The function first: N — N is primitive recursive, and
hence While computable on AN, for any standard T-algebra A.

Lemma 4.2. Let x be a tuple of program variables and A a standard Y-
algebra.

(a) aei and rest] are While computable in (tel | s € Sort(X)) on
AN,

(b) comp?, and its two component functions notover? and statel,
are W hile computable in ae? and rest? on AN,

(c) sel is While computable in comp? on AN.

d) pe?, _is While computable in se? on AV, where x=a,b,c.

a,b,c x

(e) teés is While computable in pefy (y on AN where y is a variable

of sort s, not in x.

The above relative W hile computability results all hold uniformly for A €
StdAlg(Y).

Proof. Note first that if a semantic function is defined from others by
structural recursion on a syntactic class of expressions, then a representing
function for the former is definable from representing functions for the latter
by course of values recursion on the set of Godel numbers of expressions of
this class, which forms a primitive recursive subset of N.

We can then prove parts (a)—(d) by examining the definitions of the
semantic functions, and applying Lemma 4.1 and (relativised versions of)
the following facts:

(1°) If a function f on AN is defined by primitive recursion or tail recur-
sion on nat from functions g,h,... on AN, then fis For(g,h,...)
computable on AN, (Used in (a) and (b).)

Computable functions on algebras 395

(2°) Course of value recursion on nat with range sort nat is reducible to
primitive recursion on nat. (Used in (a).)

(3°) The constructive least number operator, used in part (¢) (cf. the
definition of CompLength in section 3.4), is While computable
on AN,

References for facts (1°) and (3°) are given later (Theorem 8.5). Fact
(2°) can be proved by an analogue of a classical technique for computability
on N which can be found in Péter [1967] or Kleene [1952].

We complete the cycle of relative computability by proving (e) as fol-
lows: given a term ¢t € Termy g, consider the procedure

P = proc in x out y begin y:=t end.

Then since "P7 is primitive recursive in "t7 and te;‘{s('—t—',a) =
Péyy (TP a) (and since For computability implies W hile computabil-

ity), the result follows from (1°). | |

Theorem 4.3. The following are equivalent, wuniformly for A €
StdAlg(Y).

(i) For all x and s, the term evaluation representing function te;‘{s is
W hile computable on AN .
(ii) For all x, the atomic statement evaluation representing function aes,
and the representing function rest?, are W hile computable on AN .
(iii) For all x, the computation step representing function comp?, and its
two component functions notover? and state’, are While com-
putable on AN .
(iv) For all x, the statement evaluation representing function se is W hile
computable on AN .
(v) For all a,b,c, the procedure evaluation representing function pe
is While computable on AN .

A

A

a,b,c

Proof. From the transitivity lemma for relative computability (3.32) and
Lemma 4.2. |

Definition 4.4 (Term evaluation).

(a) The algebra A has the term evaluation property (TEP) if for all x
and s, the term evaluation representing function tex“{s (or, equiva-
lently, any of the other sets of semantic representing functions listed
in Theorem 4.3) is W hile computable on AN.

(b) The class K has the uniform TEP if the term evaluation representing
function is uniformly W hile computable on KV .

Examples 4.5.

(a) Many well-known varieties (i.e., equationally axiomatisable classes of
algebras) have (uniform versions of) the TEP. Examples are: semi-
groups, groups, and associative rings with or without unity. This

396 J. V. Tucker and J. 1. Zucker

follows from the effective normalisability of the terms of these varie-
ties. In the case of rings, this means an effective transformation of
arbitrary terms to polynomials. Consequently, the unordered and
ordered algebras of real and complex numbers (R, R<,C and C<, de-
fined in Example 2.23), which we will study in section 6, have the
TEP. (See Tucker [1980, §5].)

(b) An (artificial) example of an algebra without the TEP is given in
Moldestad et al. [1980h].

Proposition 4.6. The term evaluation representing function on A* is
For (and hence W hile) computable on A*, uniformly for A €StdAlg(Y).
Hence the class StdAlg(X*) has the uniform TEP.

Proof. (Outline.) The function te fs is definable by course of values re-
cursion (cf. Remark 8.6) on Gd&del numbers of ¥*-terms, uniformly for
A €StdAlg(Y). It is therefore uniformly For computable on A*, by The-
orem 8.7(a). [|

Corollary 4.7.

(a) The term evaluation representing function on A is For* (and hence
W hile*) computable on AN, uniformly for A €StdAlg(Y).

(b) The other semantic representing functions listed in Theorems 4.3 are
W hile* computable on AN, uniformly for A €StdAlg(X).

Remark 4.8. Suppose X and A are N-standard. Then the semantic rep-
resenting functions listed above (such as tef,) can all be defined over A
instead of AN. In that case, Lemma 4.2, Theorem 4.3, Definitions 4.4 and
Corollary 4.7 can all be restated, replacing ‘AV’, ‘SN’ and ‘KN’ by ‘4’, ‘%’
and ‘K, respectively. Similar remarks apply to the definitions and results
in Sections 4.8-4.12.

Recall the definitions of generated subalgebras, and minimal carriers
and algebras (Definitions 2.15 and 2.17 and Remark 2.16).

Corollary 4.9 (Effective local enumerability).

(a) Given any X-product type u and X-sort s, there is a For* computable
uniform enumeration of the carrier set of sort s of the subalgebra {a)”
generated by a € A", i.e., a total mapping

enumﬁﬁs: A" x N — A

which is For* computable on AN, such that for each a € A¥, the
mapping
A

enum? (a,-): "Term,;" — (a):

u,s

(where x : u) is surjective.

(b) If A has the TEP, then enum,; , is also W hile computable on AN .

S

Computable functions on algebras 397

Proof. Define enum;"s simply from the appropriate term evaluation rep-
resenting function:

enum{ls (a,n) = teés(n, a).

Corollary 4.10 (Effective global enumerability).

(a) If A is minimal at s, then there is a For* computable enumeration
of the carrier Ay, i.e., a surjective total mapping

enum?: N — A,

which is For* computable on AN .
(b) If in addition A has the TEP, then enum? is also While compu-
table on AN .

Proof. From Corollary 4.9, using the empty list of generators. [|

4.8 Universal While" procedure for While

It is important to note that the procedure representing function pe:blc of
section 4.6 is not universal for Proc(X),—, (where a:u and b:v). It is only
‘universal’ for W hile procedures of type u — v with auziliary variables of
type type(c). In this subsection we will construct a universal procedure
Univ; ,("P7, a) for all P € Proc,_,,and a € A*. This incorporates not
the auxiliary variables of P themselves, but representations of their values
as (Godel numbers of) terms in the input variables a. These can then all
be coded by a single number variable.

We will, assuming the TEP for A, construct a universal procedure for
Proc,_,, on A. For this we need another representation of the computa-

tion step function which differs in two ways from comp? in section 4.4:

(1°) it is defined relative to a tuple a of program variables (‘input vari-
ables’), which does not necessarily include all the variables in S;

(2°) it has as output not a tuple of values in A, but a tuple of terms in
the input variables — or rather, the Gédel number of such a tuple of
terms.

More precisely, given a product type u = s1 X ... X s, and a u-tuple
of variables a : u, we define

compu?: "VarTup x "Stmt? x A* xN — B x "TermTup’

as follows: for any product type w extending u, i.e., w = 51 X ... x s, for
some p > m, and for any x : w extending a (i.e., x=a,x,, ,,,... X,),
and for any S € Stmit,, a € A" and n € N,

Comp’u’? (I—X—Izl—s—lz a, n) = (bn, I—tn—l)

where

398 J. V. Tucker and J. 1. Zucker

(i) b, =notover?("S7,(a,04), n), and
(i7) tn, € TermTupsy ,, and teéql)(rtn—', (a,04)) = state("S7,(a,64),
n),

where 84 is the default tuple of type sp;41 X ... % sp. This use of default
values follows from the initialisation condition for output and auxiliary
variables in procedures (section 3.1(d)). (This is also what lies behind the
functionality lemma 3.11 for procedures.)

(If p is not a Goédel number of a tuple of variables x which extends a,
or if ¢ is not a Godel number of a statement S with var(S)C x, then
we define compu(p,q,a,n) = 0 (say). This case is decidable primitive
recursively in p and ¢. Similarly for the other functions defined below.)

The function compu;‘4 has the two ‘component functions’

notoveru? : VarTupx™Stmt xA*xN — B

X

stateu? : VarTupx"Stmt'xA" xN — "TermTup”

a

where, for x extending a and s € Stmt,,

notoveru? ("x7,"S7a,n) = b,

X

A _
stateu ' ("x","Sa,n) = "t,".

Compare these functions with comp? and its components notover? and
state? (section 4.4). Note that for any x extending a and S € Stmt,,

notover?("S7,(a,84),n) = mnotoverul("x7S7, a,n) = b,

X

stateg ("S7,(a,04),n) = ted,(Tta7, (a,04)).

Think of compu? and its component functions as uniform (in x) versions
of comp? and its component functions. Only the ‘input variables’ a are
specified.

We need a syntactic operation on terms and variables.

Definition 4.11. For any term or term tuple ¢ and variable tuple a,
subex(t,a) is the result of substituting the default terms §° for all variables
x® in t except for the variables in a.

Remark 4.12.

(a) For all t € TermTup, subex(t,a) € TermTup..
(b) subex is primitive recursive in Godel numbers.
(¢) Suppose t : w and var(t) C x=a,z where a : u. Then for a € A%,

tel (Tsubex(t,a)V,a) = ted, ("t7,(a,64))

a,w X, W

where 0 4 is the default tuple of type type(z). This follows from the ‘sub-
stitution Lemma’ in logic; see, for example, Sperschneider and Antoniou
[1991].

Lemma 4.13. The function compuf, and its component functions
notoveru? and stateul, are While computable in (tegs | s €

X

Sort(X)) on AN, uniformly for A €StdAlg(Y).

Computable functions on algebras 399

Proof. (Outline.) We essentially redo parts (a) and (b) of Lemma 4.2,
using uniform (in x) versions of aeZ and rest?, i.e., we define (1°) the
function

aeu?: "VarTup'x"AtSt" — "TermTup

where for any x : w and S € AtSt,, we have
aeu’("x7,7S7) € "TermTupx,,, ', such that for any z € AY,
ted , (aeu? ("x7ST), z) = ael("S7,z);

X
and (2°) the function
restul: "VarTup'x"Stmt 'x A" — "Stmt”
where for any x : w extending a : u, S € AtSty and a € A",
restul ("x7,787,a) = rest2("S7,(a,84)).
We can then show that

(i) aeu”

(ii) compu?' is While computable in restu? on A; and
(iii) restul is While computable in (tef’S | s € Sort(%)).

is primitive recursive;

Combining these three facts gives the result.

Note, in (i7i), that the term evaluation functions tef’S are used to
evaluate Boolean tests in the course of defining restuZ. The one tricky
point is this: how do we evaluate, using teZ,, a (Gédel number of) a term
t € Term, 5, which contains variables in x other than a? (This is the issue
of ‘uniformity in x’.) The answer is that by Remark 4.12(c) the evaluation

of t is given by te:s('—subew(t,a)—', a).

Theorem 4.14 (Universality characterisation theorem for

While(X) computations). The following are equivalent, uniformly for
A eStdAlg(Y).

(i) A has the TEP.
(ii) For all S-product types u,v, there is a While(XN) procedure

Univ, ,: "Proc,—, ' xu — v

which is universal for Proc,_,, on A, in the sense that for all P €
Proc,_,, and a € A",

Univ? ("P7,a) ~ P*4(a).

u,v

Proof.

(1) = (ii): Assume A has the TEP. We give an informal description
of the algorithm represented by the procedure Univ, ,. With input
("P7, a), where P € Proc,_,,and a € A", suppose

400 J. V. Tucker and J. 1. Zucker

P = proc in a out b aux c begin S end

where a : u and b : v. Putting x=ab,c, evaluate notoveru:

("x,"S87, a,n) for n = 0,1,2,..., until you find the (least) n for
which the computation of S at a terminates (if at all), i.e.,, the least
n = ng such that

notoveru ("x7,7S7,a,ng+1) = £

X

Note that notoveru? is While computable by Lemma 4.13 and
assumption. Now let us put

stateu ("x7,7S7,a, ng) = "t, t', t"7,

where the term tuples ¢, ¢’ and "' represent the current values of a, b
and c, respectively. This is also W hile computable by Lemma 4.13
and assumption. Finally, the output is

teiv ("subex(t',a)”, a)

(cf. Remark 4.12(c)). By assumption and Remark 4.12(b), this is
W hile computable in "t and a, and hence in "P™ and a.
(i1) = (i): Note that for any a,b,c,

pe’:b’C = Univ;iv[(Procap,cxA"Y)

where a : u and b : v. Hence peZ, . is While(X") computable if

a,b,c

Univ2 is. The result follows from Theorem 4.3. [|

Corollary 4.15 (Universality for A*). For all ¥-product types u,v,
there is a W hile* (S) procedure

Univ® : natxu — v

U,

*

which is universal for Proc},_,,, in the sense that for all P € Proc
A€ StdAlg(Y) and a € A",

Univi4("P7,a) ~ P4(a).

uU,v

*
u—v?’

Proof. StdAlg(X*) has the uniform TEP, by Proposition 4.6. [|
Remark 4.16.

(a) For all u,v, the construction of Univ,, (direction (i) = (ii) in the
proof of Theorem 4.14) is uniform over ¥ in the following sense.
There is a relative W hile(S"V) procedure U,, : nat x u — v con-
taining oracle procedure calls (hs | s € Sort(X)) (section 3.12) with
hs : natxu — s, such that for any A € StdAlg(X), if hy is interpreted
as te;‘{s on A (where a : u), then U, , is universal for Proc,_,, on
A. (We ignore the question of whether teZ', is computable on A.)

(b) The use of term evaluation occurs at two points in the construction
of Univ, , (direction (i)==(i7)): (1°) in the evaluation of Boolean
tests in the construction of the sequence

Computable functions on algebras 401

compu ("x7,7S7, a, 0), compul ("x7,7S7, a, 1), ... ;
(4.1)

and (2°) in the evaluation of the output variables ' (see proof of The-
orem 4.14). We can separate, and postpone, both these applications
of term evaluation by modifying the construction of the universal
procedure as follows.

Step 1: Construct from S, not a computation sequence as in (4.1) but
rather a computation tree (section 5.10), specifically comptree("x7,
FS7 n) (where x=a,b,c), which is the Godel number of the first
n levels of the computation tree from S € Stmi, labelled by w-
tuples of terms in TermTup .,. Note that comptree:N* — N is
primitive recursive.

Step 2: Select a path in this tree by evaluating Boolean tests (using te;“’bool
together with the subex operation) until you come (if at all) to a
leaf. Evaluate the terms representing the output variables at this leaf
(again using te/', with the subex operation).

a,s

4.9 Universal While" procedure for W hile*

We can strengthen the universal characterisation theorem for While com-
putations (4.14) using the ¥£* /¥ conservativity thorem (3.63).

Theorem 4.17. (Universality characterisation theorem for W hile*
computations) The following are equivalent, uniformly for A €StdAlg(X).

(i) A has the TEP.
(ii) For all $-product types u,v, there is a While(XN) procedure

Univ,,: natxu — v

which is universal for Proc;,_,, on A, in the sense that for all P €
Proc;_,, and a € A",

U—v
Univf)v('—P—',a) ~ P4(a).

Proof. (i) = (i7): Modify the proof of Theorem 4.14, following the
algorithm of Remark 4.16(h). Construct a computation tree as in
‘step 1. Then, in step 2 (term evaluation), replace all Boolean terms
(in selecting a path) and the output terms (at the leaf) by the cor-
responding Y-terms given by Theorem 3.63, and apply tegs (for s €
Sort(Y)) to these. Since this transformation of terms is primitive
recursive in Godel numbers (Remark 3.64(a)), the whole algorithm
can be formalised as a While(X") procedure.

(¢4) = (i): This follows trivially from Theorem 4.14.

402 J. V. Tucker and J. 1. Zucker

Corollary 4.18. The following are equivalent, uniformly for A € StdAlg(X).

(i) A has the TEP.
(ii) While*(A) = While™ (A).

4.10 Snapshot representing function and sequence

Next we consider the statement remainder and snapshot functions (sec-
tion 3.14) which will be useful in our investigation of the halting problem

(section 5.6). Let x : u.
The statement remainder function (relative to x)

Rem?= Rem"[(Stmt,xState(A)xN) :
Stmt,xState(A)xN — Stmt,

(cf. Definition 3.52) is represented by the function
remxA: TStmt, 'xA* x N — "Stmt,"

which is defined so as to make the following diagram commute:

Rem?
Stmt, x State(A)xN — Stmt,
(gn,Rep? idy) T TQ"
TStmt, 'x A* x N — "Stmt,"
rem?

(Again, this is well defined, by Lemma 3.10.)
The snapshot function (relative to x)

Snap?= Snap”|(Stmt,xState(A)xN):
Stmt,xState(A)xN — (State(A)U{*})xStmt,
(cf. Definition 3.56) is represented by the function
snapl: "Stmt, ' xA* x N — (B x A¥)x"Stmt,"
which can be defined simply as

snap("STa,n) = (compl("STa,n), rem?("S7,a,n))
= ((notover?("S7,a,n), state?("S7,a,n)),
rem?("S7,a,n))
or (equivalently) so as to make the following diagram commute:

Computable functions on algebras 403

Snap?
Stmt, x State(A)xN —> (State(A) U {x})xStmit,
(gn,Repf,idMT T(Repf*/gn>
FStmt, 'x A* x N — (B x A*)x"™Stmt,"
snap?

Fix x : u, s € Stmt, and a € A*. Put b, = notover?("S7,a,n), a, =

state?("S7,a,n) and 7S, = rem("S7,a,n). Then the sequences

(lt,(l) = (b[),(l[)), (bl,(ll), (bg,(lg),
rg1 = I—SO—I; r51‘|= r52‘|=._.
((t=a)7r5—l) = ((b0=a’0)=|—50—|)7 ((b17a1)7|—51—|)= ((b2=a’2)=r52—|)7

are called, respectively, the computation representing sequence, the remain-
der representing sequence and the snapshot representing sequence gener-
ated by S (or "S7) at a (with respect to x), denoted respectively by
compseq?("S7,a), remseq?("S7,a) and snapseq?("S7,a). (Compare
the sequences CompSeq”(S,0), RemSeq”(S,0) and SnapSeq” (S, o)
introduced in section 3.)

The sequences compseq’ ("S™,a) and snapseq?("S7,a) are said to
be non-terminating, if, for all n, notover?("S7,a,n) = t, i.e., for no n is
comp(TSa,n) = (£, 6%).

These representing sequences satisfy analogues of the results listed in
section 3.14; for example:

Proposition 4.19. If snapseq? (TS7,a) repeats a value at some point,
then it is periodic from that point on, and hence non-terminating. In other
words, if for some m,n with m # n

snap("S7,a, m) = snap2("S7,an) # ((F,6%),skip)
then, for all k > 0,
snap("S7,a, m+ k) = snap("S7,an+k) # ((f,8%),skip)
(Cf. Proposition 3.57 and Corollary 3.58.)

With the function smap?, we can extend the list of relative computabil-
ity results (Lemma 4.2), and add a clause to Theorem 4.3:

Lemma 4.20. (Cf. Lemma 4.2.) The function snap?, and its two com-
ponent functions comp? and rem?, are While computable in (te’

as |
s € Sort(X)) on AN, uniformly for A €StdAlg(Y).
Proof. Simple exercise. [|

Theorem 4.21. (Cf. Theorem 4.3.) The following are equivalent, uni-
formly for A €eStdAlg(Y):

404 J. V. Tucker and J. 1. Zucker

(i) For all x and s, the term evaluation representing function tef’s 18
W hile computable on AN .
(ii) For all x, the snapshot representing function snap, and its two

component functions compr and remf, are W hile computable on
AN
Proof. As for Theorem 4.3. [|

A uniform (in x) version of snap? will be used in section 5.6 in our
investigation of the ‘solvability of the halting problem’.

4.11 Order of a tuple of elements
Let u be a Y-product type, s a Y-sort and A a X-algebra. The order
function of type u,s on A is the function
ordf)sz A" - N
where, for all x € A%,
ordf}’s(x) ~ card((a:)_f)

i.e., the cardinality of the carrier of sort s of the subalgebra of A generated
by z. (It is undefined when the cardinality is infinite.)

Note that this is a generalisation of the order operation for single ele-
ments of groups (Example 3.14(b)).

Note that for a tuple 2 € A", the subalgebra (z)# can be generated in
stages as finite sets:

where (z)2, is defined by induction on n, simultaneously for all S-sorts s

(cf. Meinke and Tucker [1992, 3.12.15ff.] for the single-sorted case), and
(@) = J @i

n

Also (x)2 is finite if, and only if, there exists n such that

(0)d, = (@8 (4.2)
in which case

@) e = @l = @ = . = (@)

Lemma 4.22. For any tuple of variables x : wu, there is a primitive
recursive function

SubAlgStagey ., s: N— N

such that SubAlgStagey , s(n) is the Gidel number of a list ("t17...
Ttr,) of Gddel numbers of the set of terms generated by stage n, i.e.,,

Computable functions on algebras 405

(m), = {te},(ti,x)[i=1,... kn}.

s,n
Example 4.23. Suppose s is an equality sort.

(a) The order function ord;}, is W hile computable in ez, (where x :

u) on AN uniformly for A €StdAlg(Y).
(b) Hence if A has the TEP, then ord{l is While computable on AN,

s

Proof. The algorithm to compute ord;is is (briefly) as follows. Suppose
given an input = € A". With the help of the functions SubAlgStage, . s
and te,f"s and the equality operator on A, test for n =0,1,2,... whether

(4.2) holds. If and when such an n is found, determine card((z),,), again

using the equality operator on A, (this time to determine repetitions in the
list (x)fn) [|

4.12 Locally finite algebras

Definition 4.24. An algebra A is locally finite if every finitely generated
subalgebra of A is finite, i.e., if for every finite X C J Ay and

every sort s, (X)4 is finite.

Note that A is locally finite if, and only if, ordfl"s (section 4.11) is total
for all u and s.

SESort(X)

Example 4.25. Consider the algebra
No = (N7; 0, pred)

where N~ is just (a copy of) N, and ‘pred’ is the predecessor operation on
this: pred(n + 1) = n and pred(0) = 0. We write ‘N~ ’ to distinguish this
carrier from the ‘standard’ naturals N, which we can adjoin to form the
N-standardised algebra. We also write the sort of N~ as nat™. Let

N7 = (N771[B’ Ozpred7eqnat’7)

be the standardised version of N, (with nat™ an equality sort). Then both
Ny and N~ are locally finite; in fact for any ki,... &k, € N7,

ki, kDN = {0,1,2,... ,k}
where k = max(ki,...,kn). (Check.) Hence

ord&;,)m’nat,(kl,... k) = max(ky, ... kp)+ 1.
Theorem 4.26. Suppose A is locally finite. Then for any x : u,
s € Stmt, and a € A¥:

(a) snapseq’("S7,a) has finite range.
(b) smapseq’("S7,a) (or, equivalently, compseq?("S7,a)) is non-term-
inating <= snapseq? ("S7,a) repeats a value (other than ((f,8"%),skip)).

406 J. V. Tucker and J. 1. Zucker

Proof.

(a) Consider a typical element of the snapshot representing sequence gen-
erated by S at a:

(an,"Sn™) (4.3)

where a,, = comp?("S7,a,n) and 7S, = rem?("S7,a,n) for some
n. By Lemma 3.28, a, must be in (a)?, which is finite by
assumption. Also, by Proposition 3.54, S,, must be in RemSet(S)U
{skip}, which is finite, by Proposition 3.51. Hence the pair (4.3) must

be in the product set {(a)2 x "RemSet(S)7, which is also finite.
(b) The direction ‘=" follows from (a). The direction ‘=’ follows
from Corollary 3.58 or (equivalently) Proposition 4.19. [|

Local finiteness will be used later, in considering ‘solvability of the halt-
ing problem’ (Section 5.6).

4.13 Representing functions for specific terms or pro-
grams

The representing functions that we considered in sections 4.3 4.6 and 4.10
have as arguments (typically)

(1) Godel numbers of terms, statements or procedures, and

(i1) representations of states.

Computability of all these functions is equivalent to the TEP (Theorems
4.3 and 4.21).

Another form of representation which will be useful is to use (i) the
term, statement, etc. as a parameter, not an argument, and just have (ii)
the state representation as an argument.

More precisely, we define (for x : u, t €Termy,, s € Stmt,, a : u,
b : v and P €Procap,.) the functions

teﬁs’t A" — A,
aeés A —» A
rest;és i A" — TStmt,"
notoverés : AYxXN - B
stateés i A"XN — A"

compls : A" xN — Bx A" (4.4)

Computable functions on algebras 407

remég i A" x N — "Stmt,"
snapys : A'xN — (Bx A") x "Stmt,”
seég o AY = AY
pe:b’c’P Y Ly
such that
teéslt(a) = te)’:"s('—t—'7 a),
compf)s(a, ’ﬂ,) = Comp?(rs—la a, n):

and similarly for the other functions listed in (4.4). We then have:
Theorem 4.27.

(a) The functions tef,s,f, and aeés are While computable on A. The
functions restés, notoverés, stateég, compés, remég and
snapf)s are While computable on AN . The functions sef)s and
pe£b7c7P are While?™ computable on A.

(b) Suppose A is N-standard. Then all the functions listed in (4.4) are
While computable on A.

Proof. For (a): computability of te;‘{s’t is proved by structural induction
on t € Term,. To prove computability of restx“{s on AN, put S = Sy; S,
where Sy does not have the form S’;S” (and ‘;S;’ may be empty), and
rewrite the definition of Rest” in section 3.5 as an explicit definition by
cases, according to the different forms of Sy. For computability of comp;és
on AV show that the family of functions (compx"{ ¢|S" € RemSet(S))
is definable by simultaneous primitive recursion. (Compare the definition
of Comp” in section 3.4.) Use the fact that this family is finite, by Propo-
sition 3.51.

Part (b) follows immediately from (a). |

5 Notions of semicomputability

We want to generalise the notion of recursive enumerability to many-sorted
algebras. There turn out to be many non-equivalent ways to do this.

The primary idea is that a set is W hile semicomputable if, and only
if, it is the domain or halting set of a W hile procedure; and similarly for
WhileY and While* semicomputability. There are many useful appli-
cations of these concepts, and they satisfy closure properties and Post’s
theorem:

A set is computable if, and only if, it and its complement are
semicomputable.

The second idea of importance is that of a projection of a semicompu-
table set. In computability theory on the set N of natural numbers, the

408 J. V. Tucker and J. 1. Zucker

class of semicomputable sets is closed under taking projections, but this is
not true in the general case of algebras, even with W hile* computability.
(A reason is the restricted form of computable local search available in
our models of computation.) Projective semicomputability is strictly more
powerful (and less algorithmic) than semicomputability.

In this section we will study the two notions of semicomputability and
projective semicomputability in some detail. We will consider the invari-
ance of the properties under homomorphisms. We will prove equivalences,
such as

projective W hile* semicomputability = projective For* computability.

In the course of the section, we also consider extensions of the W hile
language by non-deterministic constructs, including allowing:

(1) arbitrary initialisations of some auxiliary variables in programs;
(#4) random assignments in programs.

We prove that in these non-deterministic languages, semicomputability is
equivalent to the corresponding notion of projective semicomputability. We
also show an equivalence between projective semicomputability and

(7i7) definability in a weak second-order language.

We characterise the semicomputable sets as the sets definable by some
effective countable disjunction

Vo
k=0

of Boolean-valued terms. This result was first observed by E. Engeler.
There are a number of attractive applications, e.g. in classifying the semi-
computable sets over rings and fields, where Boolean terms can be replaced
by polynomial identities; we consider this topic in section 6.

These concepts and results are developed for computations with the
three languages based on the While, While" and W hile* constructs;
and their uniformity over classes of algebras is discussed.

We assume throughout this section that ¥ is a standard signature, and
A a standard X-algebra.

5.1 While semicomputability

Definition 5.1. The halting set of a procedure P : u — v on A is the
relation

Halt*(P) =4 {a€ A" | PA(a) l}.

Now let R be a relation on A.

Computable functions on algebras 409

Definition 5.2.

(a) R is While computable on A if its characteristic function is.

(b) Ris While semicomputable on A if it is the halting set on A of some
W hile procedure.

(¢) A family R =(R4 | A € K) of relations is While semicomputable
uniformly over K if there is a While procedure P such that for all
A € K, Ry is the halting set of P on A.

It follows from the definition that R is While semicomputable on A
if, and only if, R is the domain of a W hile computable (partial) function
on A.

Remark 5.3. As far as defining relations by procedures is concerned, we
can ignore output variables. More precisely, if R = Halt* (P), then we may
assume that P has no output variables, since otherwise we can remove all
output variables from P simply by reclassifying them as auxiliary variables.
We will call any procedure without output variables a relational procedure.

Definition 5.4 (Relative While semicomputability). Given a tuple

g1, -- - ,gn of functions on A, a relation R on A is W hile semicomputable
ingi,...,gn if it is the halting set on A of a While(g:, ... ,gn) procedure,
or (equivalently) the domain of a function W hile computable in g1, ... , g,

(cf. section 3.10).
Example 5.5.

(a) On the naturals N' (Example 2.23(b)), the W hile semicomputable
sets are precisely the recursively enumerable sets, and the W hile
computable sets are precisely the recursive sets.

(b) Consider the standard algebra R of reals (Example 2.23(¢)). The set
of naturals (as a subset of R) is W hile semicomputable on R, being
the halting set of the following procedure:

is.nat = procin x: real
begin while not x= 0
dox := x-1 od
end

(¢) Similarly, the set of integers is W hile semicomputable on R. (Ez-
ercise.)

(d) However, the sets of naturals and integers are W hile computable on
R< (section 2.23(d)). (Ezercise.)

(e) The set of rationals is W hile semicomputable on R. (FEzercise. Hint:
Prove this first for RV.)

5.2 Merging two procedures: Closure theorems

In order to prove certain important results for W hile semicomputable sets,
namely (a) closure under finite unions, and (b) Post’s theorem, we need to
develop an operation of merging two procedures, i.e., interleaving their

410 J. V. Tucker and J. 1. Zucker

steps to form a new procedure. In the context of N-standard structures,
and assuming the TEP, this is a simple construction (as in the classical case
over N). In general, however, the merge construction is quite non-trivial,
as we shall now see.

Lemma 5.6. Given two relational W hile(X) procedures Py and P,, of
input type u, we can construct a While(X) procedure

Q = mg(P1,P,): u— bool,

the merge of Py and Pa, with Boolean output values (written ‘1’ and ‘2’ for
clarity) such that for all A €StdAlg(Y) and a € A":

OMa)l < Pia)l or PAa)l,
QM) b1 = Pia),
QMa)l2 = Pa)d.

Proof. We may assume without loss of generality that

P
P,

proc in x aux z; begin S; end
proc in x aux z, begin Sy end

where x : u and z;Nzy =). We can construct a procedure
() = proc in x aux z1,2Zs,... out which begin S end

where S=mg(S1,S2), the ‘merge’ of S; and Ss, and ‘which’ is a Boolean
variable with values written as ‘1’ and ‘2’. The operation mg(Sy, Ss) is
actually defined for all pairs Sy, S such that var(S))Nvar(S:)C x, and
none of the x occur on the lhs of any assignment in S; or S». It has the

semantic property that for all A, o:

[mg(Si,S)]"0 | < [Si]%cl or [So]%c |

and if [mg(Si, S2)]4o | o' then

[Si]%¢ (rel varS:),

o' (which) =1 = [Si]o | and [mg(Si,S2)]"o i
[S2]2o (rel varsSs).

o' (which) =2 = [S:]o | and [mg(S:, S2)]"0 =~
The definition of mg(S;,S2) is by course of values recursion on the sum
of compl(S;) and compl(Sy). Details are left as a (challenging) ex-
ercise. (Hint: The tricky case is when both S; and Sy have the form
Si=while b; do S? od; S} (i =1,2), where “S!” may be empty). [|

Remark 5.7. The construction of mg(P;, P») for A is much simpler if we
can assume that (i) A is N-standard, and (i7) A has the TEP. In that case,
by Theorem 4.3, the computation step representing function comp? is
W hile computable on A. Using this, we can construct a W hile procedure
which interleaves the computation steps of S; and Ss, tests at each step

Computable functions on algebras 411

whether either computation has halted, and (accordingly) gives an output
of 1 or 2.

Theorem 5.8 (Closure of While semicomputability under union
and intersection). The union and intersection of two W hile semicom-
putable relations of the same type are again W hile semicomputable. More-
over, this result is uniformly effective over StdAlg(X), in the sense that
given two W hile procedures Py and P of the same input type u, there are
two other procedures Py o and Pins of input type u, effectively constructible
from Py and P», such that on any standard X-algebra A,

(a) Halt*(P) = Halt"(P)U Halt*(P,);

(b) Halt*(Pin2) = Halt*(P)N Halt*(P,).

Proof. Suppose again without loss of generality that

Py
P,

proc in x aux z; begin S; end
proc in x aux z, begin Sy end

where z; Nzy = 0.

(a) Pyu2 can be defined as mg(Py, Py), as in Lemma 5.6. (We ignore its
output here.)
(b) Pin2 can be defined, more simply, as in the classical case:

Py = proc in x aux z1, z, begin Sy; .55 end. [|

If R is a relation on A of type u, we write the complement of A as
R =4 A"\R.

Theorem 5.9 (Post’s theorem for While semicomputability). For
any relation R on A

R is While computable <= R and R¢ are W hile semicomputable.

Moreover, this equivalence is uniformly effective over StdAlg(X), i.e.,
(considering the reverse direction) given any procedures Py and P of the
same input type u, there is a procedure P3; : u — bool, effectively con-
structible from Py and P», such that on any standard Y -algebra A, if the
halting sets of P1 and Py are R4 and RS respectively, then Ps computes
the characteristic function of R4 .

Proof.

(=) This follows, as in the classical case, by modifying a procedure
which computes the characteristic function of R into two procedures
which have R and R° respectively as halting sets.

(<) Again, we can just take P; = mg(P;,P,), as in Lemma 5.6. [|

Another useful closure result, applicable to N-standard structures, is:

Theorem 5.10 (Closure of While semicomputability under N-pro-
jections). Suppose A is N-standard. If R C A“*"" is While semicom-
putable on A, then so is its N-projection {x € A* |3In € NR(z,n)}.

412 J. V. Tucker and J. 1. Zucker

Proof. From a procedure P which halts on R, we can effectively construct
another procedure which halts on the required projection. Briefly, for input
x, we search by dovetailing for a number n such that P halts on (z,n). In
other words, the algorithm proceeds in stages (1,2, ...), given by the
iterations of a ‘while’ loop. At stage n, test whether P halts in at most n
steps, with input (z, k), for some k& < n. This can be done by computing

notover}és(m, k) for all k < n (see section 4.13). The algorithm halts if
and when we get an output f. [|

Note that if A has the TEP, we could just as well use the computation
step representing function comp? in the above proof instead of compx“{s.
(Cf. Remark 5.7.)

We can generalise Theorem 5.10 to the case of an A-projection for any
minimal carrier Ag (recall Definition 2.17), provided A has the TEP:

Corollary 5.11 (Closure of While semicomputability under pro-
jections off minimal carriers). Suppose A is N-standard and has the
TEP. Let As be a minimal carrier of A. If R C A"** is W hile semicom-
putable on A, then so is its projection {x € A" | Jy € As R(z,y)}.

Proof. Recall that by Corollary 4.10, there is a total W hile computable
enumeration of A,

enum?: N — A,
So for all =z € A%,
Jy € A;R(z,y) < InR(z,enum?(n)) < InR'(z,n)

S

where (as is easily seen) the relation

R'(z,n) =4 R(z,enum(n))

S

is While semicomputable. The result follows from Theorem 5.10. [|

Note that there are relativised versions (cf. Definition 5.4) of all the
results of this subsection so far.

Discussion 5.12 (Minimality and search). Corollary 5.11 is a many-
sorted version of (part of) Theorem 2.4 of [Friedman, 1971a), cited in
[Shepherdson, 1985]. The minimality condition (a version of Friedman’s
Condition IIT) means that search in A; is computable (or, more strictly,
semicomputable) provided A has the TEP. Thus in minimal algebras, many
of the results of classical recursion theory carry over, e.g.,

e the domains of semicomputable sets are closed under projection (as
above);

e a semicomputable relation has a computable selection function;
e a function with semicomputable graph is computable.

(Cf.Theorem 2.4 of Friedman [1971a].) If, in addition, there is computable
equality at the appropriate sorts, other results of classical recursion theory
carry over, e.g.,

Computable functions on algebras 413

e the range of a computable function is semicomputable.
(Cf. Theorem 2.6 of Friedman [1971a).)

5.3 Projective W hile semicomputability: semi-
computability with search

We introduce and compare two new notions of semicomputability: (1°)

projective W hile semicomputability and (2°) W hile semicomputability

with search. First, for (1°):

Definition 5.13.

(a) R is projectively W hile computable on A if, and only if, R is a pro-
jection of a W hile computable relation on A (see Definition 2.9(d)).

(b) R is projective While semicomputable on A if, and only if, R is a
projection of a W hile semicomputable relation on A.

The notions of uniform projective W hile computability and semicom-
putability over K of a family of relations, are defined analogously (cf. Defi-
nition 5.2(c)).

Note that projective While semicomputability is, in general, weaker
than W hile semicomputability. Example 6.15 will show this, using En-
geler’s lemma.

We do, however, have closure of semicomputability in the case of N-
projections, i.e., existential quantification over N, as we saw in Theorem
5.10. Further, we have from Corollary 5.11:

Proposition 5.14. Suppose A is N-standard and minimal and has the
TEP. Then on A

projective W htle semicomputability = W hile semicomputability.

Now, for (2°), we introduce a new feature: definability with the poss-
ibility of arbitrary initialisation of search wvariables. For this, we define a
new type of procedure.

Definition 5.15. A search procedure has the form
Py.cp = proc in a out b aux c srch d begin S end, (5.1)

with search variables d as well as input, output and auxiliary variables, and
with the stipulations (compare section 3.1(d)):

e a, b, c and d each consist of distinct variables, and they are pairwise
disjoint;

e every variable in S is included among a, b, c or d;

e the input and search variables a,d can occur only on the right-hand
side of an assignment in S;

e (initialisation condition): S has the form Sinit;S’, where Sinir
consists of an initialisation of the output and auxiliary variables, but
not of the search variables d.

414 J. V. Tucker and J. 1. Zucker

Again, we may assume in (5.1) that Ps.., has no output variables, i.e.,
that b is empty. (See Remark 5.3.)

Definition 5.16. The halting set of a search procedure as in (5.1) on A
(assuming a : uw and d : w) is the set

Halt*(Psycr,) =4 {a € A"| for some o with o[a] = a, [S]o |}

In other words, it is the set of tuples a € A* such that when a is ini-
tialised to a, then for some (non-deterministic) initialisation of d, S halts.

Note that this reduces to Definition 5.1 when P,,.; has no search vari-
ables.
Now let R be a relation on A.

Definition 5.17. R is While semicomputable with search on A if R is
the halting set on A of some W hile search procedure.

Again, the notion of uniform W hile semicomputability with search over
K of a family of relations, is defined analogously.
Now we compare the two notions introduced above.

Theorem 5.18.

(a) R is While semicomputable with search on A <= R is projectively
W hile semicomputable on A.

(b) This equivalence is uniform over StdAlg(X), in the sense that there
are effective transformations Pgpc, — P and P — Pg..p between

search procedures Pg..n, and ordinary procedures P, such that for all
A €StdAlg(Y), Halt"(Py,.1,) is a projection of Halt" P.

Proof. The equivalence follows easily from the definitions. Suppose R is
the halting set on A by a search procedure Ps,., with input variables a : u
and search variables d : w. Let P be the procedure formed from Pg,.p
simply by relabelling d as additional input variables. (So the input type of
Pis uxw.) Then R is the projection onto A% of the halting set of P. The
opposite direction is just as easy. [|

5.4 While" semicomputability
Let R be a relation on A.
Definition 5.19.

(a) Ris While™N computable on A if its characteristic function is (section
3.12).

(b) R is While! semicomputable on A if it is the halting set of some
While" procedure P on AN.

Again, we may assume that P has no output variables. (See Remark
5.3.)
From Proposition 3.38 we have:

Computable functions on algebras 415

Proposition 5.20. If A is N-standard, then W hile™ semicomputability
on A coincides with W hile semicomputability on A.

Theorem 5.21 (Closure of W hile" semicomputability under union
and intersection). The union and intersection of two While™ semi-
computable relations of the same input type are again While™N semicom-
putable, uniformly over StdAlg(X).

Proof. From Theorem 5.8, applied to AN. [|

Theorem 5.22 (Post’s theorem for While" semicomputability).
For any relation R on A

R is WhileN computable <=
R and R® are While" semicomputable,

uniformly for A €eStdAlg(Y).
Proof. From Theorem 5.9, applied to AN. [|

Note that if A has the TEP, then the construction of a ‘merged’ W hile™
procedure mg(P;, P;) from two While™ procedures P, and P, used in
the above two theorems, is much simpler than the construction given in
Lemma 5.6 (cf. Remark 5.7).

Also Theorem 5.10 and Corollary 5.11 can respectively be restated for
While" semicomputability:

Theorem 5.23 (Closure of While" semicomputability under N-
projections). Suppose R C A"*" where u € ProdType(X), and R
is While semicomputable on AN. Then its N-projection {x | In €
NR(z,n)} is While"N semicomputable on A.

Corollary 5.24 (Closure of While”V semicomputability under pro-
jections off minimal carriers). Suppose A has the TEP. Let A; be a
minimal carrier of A. If R C A*** is While" semicomputable on A, then
so is its projection {x € A" | Jy € A; R(z,y)}.

Example 5.25.

(a) (While" semicomputability of the subalgebra relation.) For a stand-
ard signature X, equality sort s, product type u and standard X-
algebra A, the subalgebra relation

{(y,2) € Ag x A" |y e (z)}'}

(where (z)4 is the carrier of sort s of the subalgebra of A generated by
x € A%) is While semicomputable (on AY) in the term evaluation
representing function fey,, where x : u (section 4.3). To show this,
we note that

y €(x)d < 3zeN(tef,(z,z) =y)

S

(cf. Remark 2.16) and apply (a relativised version of) Theorem 5.23.
Hence if A has the TEP, this relation is While" semicomputable on
A.

416 J. V. Tucker and J. 1. Zucker

(b) On the standard group G (Examaple 2.23(g)) the set {g € G |
In(g" = 1)} of elements of finite order is W hile™N semicomputable,
being the domain of the order function on QN, which is W hile com-
putable on GV (Example 3.14(b)). In fact, this set is even While
semicomputable on G. (Ezercise.)

(¢) More generally, for any X-product type u and X-equality sort s, the
set

{z € A" |{(x)7 is finite}

s

is While" semicomputable in teés. This follows from the fact that
it is the domain of the function ordﬁ)s, which is W hile computable
in te;"s on AN (Example 4.23). Hence if A has the TEP, then this

set is While™N semicomputable on A.

5.5 Projective While" semicomputability
Let R be a relation on A.
Definition 5.26.

(a) R is projectively While™N computable on A if, and only if, R is a
projection of a While(X") computable relation on AV,

(b) R is projectively W hile™ semicomputable on A if R is a projection
of a While(X") semicomputable relation on AN,

Proposition 5.14 can be restated for While™ semicomputability:

Proposition 5.27. Suppose A is a minimal and has the TEP. Then on A

projective W hileN semicomputability = While® semicomputability.

Definition 5.28. R is While™ semicomputable with search on A if R is
the halting set of a While(X") search procedure on AV,

Note that the While(X") search procedure in this definition has
simple input variables. However, the auxiliary, search and output variables
may be simple or nat.

Again, the following equivalence follows easily from the definitions. (Cf.
Theorem 5.18.)

Theorem 5.29.

(a) R is WhileN semicomputable with search on A <= R is projec-
tively While™ semicomputable on A.
(b) This equivalence is uniform over StdAlg(X).

5.6 Solvability of the halting problem

The classical question of the solvability of the halting problem ([Davis,
1958]; implicit in [Turing, 1936]) applies to the algebra of naturals A
(Example 2.5(a)) or its standardised version N' (Example 2.23(b)). We

Computable functions on algebras 417

want to generalise this question to any standard signature ¥ and standard
Y-algebra A. We will find that the problem can only be formulated in
N-standard algebras.

Definition 5.30. Suppose ¥ C Y!, where ¥ is standard and ¥’ is N-
standard, and suppose A is a standard Y-algebra and A’ is a ¥'-expansion
of A. Then we say the halting problem (HP) for W hile(X) computation
on A is While(X')-solvable on A', or the HP for W hile(A) is solvable in
While(A'), if for every Y-product type u there is a While(X') procedure

HaltTest,: natxu — bool,

such that HaltTest is total, and for every W hile(X) procedure P of input
type u, and all a € A",

0 pA
HaltTest("P7, a) = € itp (a) v
f otherwise.

The procedure HaltTest,, in the above definition is called a universal
halting test for type u on W hile(A).

Proposition 5.31. If the HP for While(A) is solvable in W hile(A'),
then every W hile(X) semicomputable set in A is While(X') computable
in A’

Proof. Simple exercise. [|

The two typical situations are:
(i) ¥'=%N and A' = AN;
(i1) ¥ is N-standard, ¥'= ¥ and A’ = A.
Example 5.32. For the algebra N (Example 2.23(b)), the HP is not solv-

able in While(N)). This is a version of the classical result of [Kleene,
1952].

Theorem 5.34 makes use of the concept of local finiteness (section
4.12). In preparation for it, we define uniform (in x) representations of
the statement remainder function and the snapshot function (cf. section
4.10). Namely, given a product type w = s; X ... X s, and a u-tuple of
variables a : u (which we think of as input variables), we define

remul: "VarTup 'x"Stmt x A" x N =" Stmt’
snapul: "VarTup 'x"Stmt? xA" x N —
(Bx™TermTup,')x" Stmt"

as follows: for any product type w extending u, i.e.,

w = s X...%xs, for some p > m, for any x : w extending a (i.e.,
X=a,X,, ., --,Xs,), and for any S € Stmt,, a € A and n € N,
remul ("z7,"STa,n,) = rem?("S7a,64),n)

where d 4 is the default value of type sp,41 X ... X 55, and

418 J. V. Tucker and J. 1. Zucker

snapul("x7,7S7 a,n) = (compul("x7,7S7, a,n),
remul ("x7,7S7, a, n))
= ((bn:rtn—l)= I—Sn—l) (5-2)
where
b, = mnotoverul("x7,"S7, a,n)
“t,7 = stateul("x7,7S7, a, n)
rs,7 = remul("x7,7S7 a,n).
A

Lemma 5.33. The function snapu?, and its components compu? and
remuZ, are While computable in (tel', | s € Sort(X)) on AN, uniformly

a’

for A €StdAlg(Y).
Proof. Similar to Lemma 4.20. [|

Theorem 5.34. Suppose

(1°) X has equality at all sorts,
(2°) A has the TEP, and
(3°) A is locally finite.

Then the HP for W hile(A) is solvable in W hile(AN).

Proof. Given a Y-product type u = s1 X ... X Sy, we will give an informal
description of an algorithm over AN for a universal halting test for type
u on While(A). (Compare the construction of the universal procedure in
section 4.8.)

With input ("P7,a), where P has input type u, and a € A%, suppose

P = proc in a out b aux c begin S end
where a : u. Put x = a,b,c. Then for n =0,1,2,...
snapul ("x7,7S7, a,n) = ((bp,"tx™),"S,7)
as in (5.2) above. Now put

Ty = tegql]('—tn—',a) = state?("S7,a,54),n).
By Lemma 5.33 and assumption (2°), snapuZ is While computable on
AN In other words, its three components b,, "t, 7 and 7S, (as functions
of n) are W hile computable on A" . Hence by assumption (2°) again, the
components of the w-tuple x,, are W hile computable on A" (as functions
of n).

Now for n =0,1,2,..., evaluate the w-tuple z,, and compare it (com-
ponentwise) to z,, for all m < n (which is possible by assumption (1°)),
until either

(a) b, = f, which means that the computation of S (and hence of P at
a) terminates; or

Computable functions on algebras 419

(b) for some distinct m and n, b, = b, = #, ,, = z, and 7S, =
rS,", which means that the computation of S never terminates, by
Proposition 3.34.

Exactly one of these two cases must happen, by Theorem 4.26 and assump-
tion (3°). In case (a) halt with output t, and in case (b) halt with output
f. ||

Note that Assumption (1°) can be weakened to:
(1°") Equality on A, is While" computable, for all ¥-sorts s.

Also, for all u, the above construction of HaltTest, is uniform over X
in the following sense: t‘here is a relative While(X") procedure H, :
nat X u — bool containing oracle procedure calls (g | s € Sort(X)) and
(hs | s € Sort(X)) with gy : s> = bool and hy : nat x u — s, such that
for any A €StdAlg(Y), if A is locally finite, then, interpreting g5 and hg
as eq and te | respectively on A (where x : u), H, is a universal halting

X,s

test for type u on A. (Cf. Remark 4.16(a).)
Corollary 5.35. Suppose

(1°) ¥ has equality at all sorts,
(2°) A has the TEP,

(3°) A is locally finite, and
(4°) A is N-standard.

Then the HP for W hile(A) is solvable in W hile(A).

Example 5.36 (A set which is While” but not While semicompu-
table). The above theory allows us to produce an example to distinguish
between While and While" semicomputability. Let A be the algebra
N~ (Example 4.25). We present an outline of the argument. Check each
of the following points in turn.

(i) In AV there is a computable bijection (n + n) from N~ to N.

(ii) Hence the While computable subsets of N~ are precisely the
recursive sets of natural numbers (cf. Remark 3.43(d)).

(iii) Similarly the While™ semicomputable subsets of N~ are precisely
the recursively enumerable sets of natural numbers (cf. Example 5.5).

(tv) Since A~ is locally finite (4.25) and has the TEP, the HP for
While(A) is solvable in While(AN). Therefore, by Proposition
5.31, every While semicomputable subset of N~ is While" com-
putable, and hence recursive.

The result follows from (iii) and (iv).

The same algebra, N7, can be used to distinguish between W hile
and While"N computable functions. (Ezercise. Hint: There is a univer-
sal While™N (N~) procedure for all total While(N~) functions of type
nat~—nat™.)

420 J. V. Tucker and J. 1. Zucker

5.7 While* semicomputability
Let R be a relation on A.
Definition 5.37.

(a) R is While* computable on A if, and only if, its characteristic func-
tion is.

(b) R is While* semicomputable if, and only if, it is the halting set of
some While procedure P on A*.

Again, we may assume that P has no output variables. (See Remark
5.3.)

From Proposition 3.45 we have:

Proposition 5.38. On A*, While* semicomputability coincides with W hile
semicomputability.

Theorem 5.39 (Closure of While* semicomputability under union
and intersection). The union and intersection of two W hile* semicom-
putable relations of the same type are again W hile* semicomputable, uni-
formly over StdAlg(Y).

Proof. From Theorem 5.8, applied to A* [|

Theorem 5.40 (Post’s theorem for While* semicomputability).
For any relation R on A

R is While* computable <=
both R and R are W hile* semicomputable,

uniformly for A €StdAlg(Y).
Proof. From Theorem 5.9, applied to A*. [|

Note that if A has the TEP, then the construction of a ‘merged’ W hile™
procedure mg(Py, P;) from two W hile™¥ procedures P; and P», used in
the above two theorems, is much simpler than the construction given in
Lemma 5.6 (cf. Remark 5.7).

Note that since A* has the TEP for all A €StdAlg(Y), there is a
uniform construction of a ‘merged” W hile* procedure mg(P;, P») from
two W hile* procedures P, and Ps, used in the above two theorems, which
is much simpler than the construction given in Lemma 5.6 (cf. Remark
5.7).

Also Theorem 5.10 (and 5.23) and Corollary 5.11 (and 5.24) can be
restated for W hile* semicomputability:

Theorem 5.41. Suppose R C A"*"' where u € ProdType(X), and
R is While* semicomputable on AN. Then its N-projection {x | In €
NR(z,n)} is While* semicomputable on A.

Corollary 5.42 (Closure of While* semicomputability under pro-
jections off minimal carriers). Let A, be a minimal carrier of A, and
let uw € ProdType(Y).

Computable functions on algebras 421

(a) If R C A“** is While* semicomputable on A, then so is its projec-
tion {x € A | dy € A; R(x,y)}.

(b) If R C A**%" is While semicomputable on A*, then its projection
{z € Au|3y* € AL R(z,y*)} is While* semicomputable on A.

Proof. In (b) we use the fact that if A, is minimal in A, then A% is minimal
in A*. (Exercise.) |

Remark 5.43. Unlike the case with Corollaries 5.11 and 5.24, we do not
have to assume the TEP here, since the term evaluation representing func-
tion is always Whtle* computable.

Example 5.44. The subalgebra relation is W hile* semicomputable on
A. This follows from its While™ semicomputability in term evaluation
(Example 5.25(a)), and While* computability of the latter (Corollary
4.7.)

The semicomputability equivalence theorem, which we prove later (Theo-
rem 5.61), states that for algebras with the TEP, W hile* semicomputabil-
ity coincides with While™ semicomputability.

5.8 Projective While* semicomputability
Let R be a relation on A.

Definition 5.45.

(a) R is projectively W hile* computable on A if R is a projection of a
W hile(X*) computable relation on A*.

(b) R is projectively W hile* semicomputable on A if R is a projection of
a While(X*) semicomputable relation on A*.

Proposition 5.14 (or 5.27) can be restated for While* semicomputabil-
ity:
Proposition 5.46. Suppose A is a minimal. Then on A

projective W hile* semicomputability = W hile* semicomputability.

Note again that the TEP does not have to be assumed here (cf. Remark
5.43). Also we are using the fact that if A is minimal then so is A*.

Definition 5.47. R is While* semicomputable with search on A if R is
the halting set of a While(X*) search procedure on A*.

Note that the W hile(X*) search procedure in this definition has simple
input variables. However the auxiliary, search and output variables may be

simple, nat or starred.
Again, we have (cf. Theorems 5.18 and 5.29):

Theorem 5.48.

(a) R is W hile* semicomputable with search on A <= R is projectively
W hile* semicomputable on A.

(b) This equivalence is uniform over StdAlg(Y).

422 J. V. Tucker and J. 1. Zucker

Example 5.49. In A, the various concepts we have listed—W hile,
WhileN and While* semicomputability, as well as projective W hile,
W hile" and W hile* semicomputability all reduce to recursive enumer-
ability over N (cf. 5.5(a)).

In general, however, projective W hile* semicomputability is strictly
stronger than projective While or While" semicomputability. In other
words, projecting along starred sorts is stronger than projecting along
simple sorts or nat. (Intuitively, this corresponds to existentially quan-
tifying over a finite, but unbounded, sequence of elements.) An example
to show this will be given in section 6.4.

We do, however, have the following equivalence:

projective W hile* semicomputability =
projective For* computability.
This is the projective equivalence theorem, which will be proved in section
5.14.

Projective W hile* semicomputability is the model of specifiability which

will be the basis for a second generalised Church Turing thesis (section 8.9).

5.9 Homomorphism invariance for semicomputable
sets

For a ¥-homomorphism ¢ : A — B and a relation R : u on A, we write

B[R] =4 {¢(x) |z € R}

which is a relation of type u on B.

Theorem 5.50 (Epimorphism invariance for halting sets). For any
Y-epimorphism ¢ : A — B,
$[Halt*(P)] = HaltB(P).
Proof. From Theorem 3.24. [|
Notice that the above result holds for a given procedure P, and any

epimorphism ¢ : A — B. In particular, taking the case B = A, we obtain:
Corollary 5.51 (Automorphism invariance for semicomputabil-
ity).

(a) If R is W hile semicomputable on A, then for any L-automorphism

¢ of A, ¢|R] = R.

(b) Similarly for W hile* semicomputable sets.
Corollary 5.52 (Automorphism invariance for projective semi-
computability).

(a) If R is projectively W hile semicomputable on A, then for any -
automorphism ¢ of A, ¢[R] = R.
(b) Similarly for projectively W hile* semicomputable sets.

Computable functions on algebras 423

Example 5.53. In the algebra C~ of complex numbers (Example 2.23(e)
without the constant i, the singleton set {i} is not W hile semicomputable,
or even projectively W hile* semicomputable. This is because there is
an automorphism of C~ with itself which maps ¢ to —i. However the set
{—1i,i} is While semicomputable, and in fact computable, in C~, by the
procedure

proc in x:complex out b:bool
begin
b:= xxx= -1
end.

5.10 The computation tree of a W hzile statement

We will define, for any W hile statement S over X, and any tuple of distinct
program variables x = x1,...,x, of type u = s X ... x s, such that
var(S) C x, the computation tree T[S, x], which is like an ‘unfolded flow
chart’ of S.

The root of the tree T[S, x] is labelled ‘s’ (for ‘start’), and the leaves
are labelled ‘e’ (for ‘end’). The internal nodes are labelled with assignment
statements and Boolean tests.

Furthermore, each edge of T[S, x] is labeled with a syntactic state, i.e., a
tuple of terms ¢ : u, where t =t;,... ,t,, with t; € Termy ;. Intuitively,
t gives the current state, assuming execution of S starts in the initial state
(represented by) x.

In the course of the following definition we will make use of the restricted
tree T[S, %], which is just T[S, x| without the ‘s’ node.

We also use the notation T[S,t] for the tree formed from T[S, x] by
replacing all edge labels ' by t'(x/t).

The definition is by structural induction on S.

(i) S= skip. Then T[S, x] is as in Fig. 1.

5)
X
e
Fig. 1.
(i) S=y:=r, wherey = y1,...,ym and r = r1,... , 7, with each y;
in x. Then TS, x] is as in Fig. 2, where ¢t = t1,...,t, is defined
by:

o= I if x;=y; for some j
T) x otherwise.

424

J. V. Tucker and J. 1. Zucker

Fig. 2.

(#31) T = S1;S2. Then T[S, x] is formed from T[Sy, x] by replacing each

leaf (Fig. 3) by the tree in Fig. 4.

+t

/ “\
N

Fig. 4.

(iv) S = if b then S; else Sy fi. Then TS, x] is as in Fig. 5.

(v) S = while b do Sy od. For the sake of this case, we temporarily adjoin

another kind of leaf to our tree formalism, labelled ‘i’ (for ‘incomplete
computation’), in addition to the e-leaf (representing an end to the
computation). Then T[S, x] is defined as the ‘limit’ of the sequence
of trees T,,, where 7y is as in Fig. 6, and 7,41 is formed from 7, by
replacing each i-leaf (Fig. 7) by the tree in Fig. 8, where 7,7 [S1,1]
is formed from 7 ~[S;,t] by replacing all e-leaves in the latter by
i-leaves. Note that the Boolean test b shown in Fig. 8 is evaluated
at the ‘current syntactic state’ ¢ (which amounts to evaluating b(x/t)
at ‘the initial state’ x). Note also that the ‘limiting tree’ T[S, x] does
not contain any i-leaves. (Fzercise.)

Computable functions on algebras 425

/ N
N N
/N // \
/T [5.,;{]\ /T [S2.%] \
A [\
Fig. 5.

Fig. 6.

Remark 5.54.

(a) In case (v) the sequence T,[S,x] is defined by primitive recursion
on n. An equivalent definition by tail recursion is possible (Ezercise;
compare the two definitions of Comp”(S,0,n) in sections 3.4 and
3.14; see also Remark 3.5).

(b) The construction of T[S, x] is effective in S and x. More precisely:
T[S, %] can be coded as a recursive set of numbers, with index prim-
itive recursive in ".S™ and "x™.

Example 5.55. Let S = while x > 0 dox := x—1 od, where x is a
natural number variable. Then (in the notation of case (v)) Tg, 71 and Ts
are, respectively, as shown in Figs. 9, 10 and 11, and 7S, %] is the infinite
tree shown in Fig. 12.

Notice that each tree in the sequence of approximations is obtained
from the previous tree by replacing each i-leaf by one more iteration of the
‘while’ loop.

5.11 Engeler’s lemma

Using the computation tree for a W hile statement constructed in the pre-
vious subsection, we will prove an important structure theorem for W hile
semicomputabilty due to Engeler [1968a]. One of the consequences of this
result will be the semicomputability equivalence thorem (5.61).

426 J. V. Tucker and J. 1. Zucker

Fig. 8.

For each leaf A of the computation tree T[S, x|, there is a Boolean bg »,
with variables among x, which expresses the conjunction of results of all the
successive tests, that (the current values of) the variables x must satisfy in
order for the computation to ‘follow’ the finite path from the root s to A.

Consider, for example, a test node in T[S, x]:

If the path goes to the right here (say), then it contributes to bg the
conjunct

SASD(/E) AL
Next, let (Ao, A1, A2,...) be some effective enumeration of leaves of T[S, x]
(e.g., in increasing depth, and, at a given depth, from left to right). Then,

writing bg = bs,», , we can express the halting formula for S as the count-
able disjunction

haltg =daf \/ bg’k (53)
k=0

which expresses the conditions under which execution of S eventually halts,
if started in the initial state (represented by) x.

Computable functions on algebras 427

Fig. 10.

Note that although the Booleans bg ., and (hence) the formula haltg,
are constructed from a computation tree T[S, x] for some tuple x containing
var(S), their construction is independent of the choice of x.

Remark 5.56.

(a) The Booleans bgj are effective in S and k. More precisely, "bg ™ is
partial recursive in "S™ and k.

(b) Further, by a standard technique of classical recursion theory, for a
fixed S, if T[S, x] has at least one leaf, then the enumeration

bgv(], bS,l; bSﬁQ, e

can be constructed (with repetitions) so that bg is a total function
of k, and, in fact, primitive recursive in k.

Now consider a relational procedure

P = proc in a aux c begin S end

428 J. V. Tucker and J. 1. Zucker

Fig. 11.

with input variables a : u and auxiliary variables ¢ : w. Then S = S;,i; S,
where S;,; is an initialisation of the auxiliary variables c to the default
tuple 8. The computation tree for P is defined to be

T(P) =4 TIS',2,c]

with a corresponding halting formula

haltg/ = \/ bS’,k (54)
k=0

(cf. (5.3)). Now, for k =0,1,..., let by be the Boolean which results from
substituting 6" for c in bg ;. Note that var(by) C a. Let bila] € B
be the evaluation of b, when a € A" is assigned to a. Then by (5.4), the
halting set of P (5.1) is characterised as an effective countable disjunction

a € Halt"(P) = (7 by[a] (5.5)
k=0

for all a € A*. Now suppose R is a While semicomputable relation on
A. That means, by definition, that R =Halt”(P)for a suitable W hile
procedure P. Hence, by (5.5), we immediately derive the following theorem

Computable functions on algebras 429

X
X v % N X
x:—=x—1 @
x—1
_ YN _
x:—=x—1 @
x—2
x—2 x—2
Y N
X:— 1 @

Fig. 12.

due to Engeler [1968a):

Theorem 5.57 (Engeler’s lemma). Let R be a While semicomput-
able relation on a standard X -structure A. Then R can be expressed as an
effective countable disjunction of Booleans over 3.

Actually, we need a stronger version of Engeler’s lemma, applied to
W hile* programs, which we will derive next.

5.12 Engeler’s lemma for W hile* semicomputability

We will use the results of the previous subsection, applied to While*
computation, together with the ¥*/¥ conservativity theorem for terms
(Theorem 3.63), to prove a strengthened version of Engeler’s lemma.

430 J. V. Tucker and J. 1. Zucker

Fig. 13.

Theorem 5.58 (Engeler’s lemma for While* semicomputability).
Let R be a While* semicomputable relation on a standard ¥-structure A.
Then R can be expressed as an effective countable disjunction of Booleans
over Y.

Proof. Suppose R has type u (over). By assumption, R is the halting set
Halt(P) for a While* procedure P. By (5.5) of the previous subsection,

R(a) <= \/ by[a] (5.6)
k=0

for alla € A", where (now) by € Term; ., i.e., the Booleans by, though
not of starred sort, may contain subterms of starred sort — for example,
they may be equations or inequalities between terms of starred sort. As
before, by[a] is the evaluation of by when a € A" is assigned to a.

Now for any Boolean b €Term},,,, let b be the Boolean in

Term,poo1 associated with b by the conservativity theorem (3.63). Then
from (5.6), for all a € A",

R(a) <= \/ b[al. (5.7)
k=0

Because the disjunction in (5.6) and the transformation b — b’ are both
effective, the disjunction in (5.7) is also effective. [|

For the converse direction:

Lemma 5.59. Let R be a relation on a standard X -algebra A. If R can
be expressed as an effective countable disjunction of Booleans over X, then
R is Whale* semicomputable.

Proof. Suppose R is expressed by an effective disjunction

R(a) <= \/ bi[a]
k=0

Computable functions on algebras 431

for all a € A", where by, € Termapoo1. Then for all a € A",

R(a) <= 3k (telyoor (Tbr7,a) = tt) (5.8)

where by 7 is (total) recursive in k. Hence, by Corollary 4.7, Remark 3.16
and Theorem 5.41, R is While* semicomputable. [|

Combining Engeler’s lemma for While* semicomputability with this
lemma gives the following ‘structural’ characterisation of W hile* semi-
computable relations.

Corollary 5.60. Let R be a relation on a standard X-algebra. Then R
can be expressed as an effective countable disjunction of Booleans over X
if, and only if, R is W hile* semicomputable.

If, moreover, A has the TEP, then we can say more:

Theorem 5.61 (Semicomputability equivalence theorem). Suppose
that A is a standard X.-algebra with the TEP, and that R is a relation on
A. Then the following assertions are equivalent:

(i) R is While" semicomputable on A;
(ii) R is While* semicomputable on A;
(iii) R can be expressed as an effective countable disjunction of Booleans
over Y.

Proof. The step (i) = (4i) is trivial, and (i) = (i4i) is just Engeler’s
lemma for While*. The new step here ((iii) = (i)) follows from (5.8) and
Theorem 5.23.

Corollary 5.62. Suppose that A is a standard X-algebra with the TEP,
and that R is a relation on A. Then

R is WhileN computable on A <= R is While* computable on A.
Proof. From Theorem 5.61, or from Corollary 4.18. [|

5.13 X7 definability: Input/output and halting
formulae

For any standard signature X, let Lang*= Lang(X*)be the first-order
language with equality over X*.

The atomic formulae of Lang*are equalities between pairs of terms of
the same sort, for any sort of ¥, i.e., sort s, s* and s*, for all sorts s of &
(whether equality sorts or not), and for the sort nat.

Formulae of Lang* are formed from the atomic formulae by means of
the propositional connectives and universal and existential quantification
over variables of any sort of ¥*.

We are more interested in special classes of formulae of Lang*.

432 J. V. Tucker and J. 1. Zucker

Definition 5.63 (Classes of formulae of Lang*).

(a) A bounded quantifier has the form ‘Vk < ¢’ or ‘Ik < t’, where t : nat.

(b) An elementary formula is one with only bounded quantifiers.

(¢) A X7 formula is formed by prefixing an elementary formula with
existential quantifiers only.

(d) An extended X7 formula is formed by prefixing an elementary for-
mula with a string of existential quantifiers and bounded universal
quantifiers (in any order).

Proposition 5.64. For any extended X7 formula P, there is a X7 formula
Q) which is equivalent to P over X, in the sense that

StdAlg(S*)|= PQ.

Proof. The construction of) from the P is given in Tucker and Zucker
[1993]. (In that paper, the equivalence is actually shown relative to a
formal system over K with 37 induction. However, we are not concerned
with issues of provability in this chapter.) [|

Because of this result, we will use the term ‘X7’ to denote (possibly)
extended X7 formulae.

Proposition 5.65. If P is an elementary formula all of whose variables
are of equality sort, then the predicate defined by P is For* computable.

Proof. By structural induction on P. Equations between variables of
equality sort, and Boolean operations, are trivially computable. Bounded
quantification uses the ‘for’ loop. [|

In general, formulae over the structure A* (or rather, over the signature
¥*) may have simple, augmented, starred or nat variables (Definition 3.39).
We are interested in formulae with the property that all free variables are
simple, since such formulae define relations on A. For such formulae, all
bound augmented variables may be replaced by bound simple variables, by
the effective coding of A" in A (see Remark 2.30(c)).

Theorem 5.66 (The X} i/o formula for a procedure). Given a
W hile* procedure P :u — v

P = proc in a out b aux c* begin S end (5.9)

where a : u, b : v and c* : w*, we can effectively construct a X7 formula
IOp = I0p(a,b), with free variables among a,b, called the input/output
(or i/0) formula for P, which satisfies: for all A eStdAlg(Y), a € A* and
be AY,

AEI0p[a,b] < P*(a) b

Note: The left-hand side means that A satisfies IO p at any state which
assigns a to a and b to b.

Computable functions on algebras 433

Proof. First we construct an elementary formula
Compus(x,y,2*)
(where var(S)C x), as in Tucker and Zucker [1988, §2.6.11], by structural
induction on S, with the meaning: ‘z* represents a computation sequence
generated by statement S, starting in a state in which all the variables
of S have values (represented by) x, and ending in a state in which these
variables have value y’. From this it is easy to construct a X7 formula
Compup(a, b, z*)
with the meaning: ‘z* represents a computation sequence generated by
procedure P, starting in a state in which the input variables have values
(represented by) a, and ending in a state in which the output variables have
values b’.
Finally we obtain the ¥} i/o formula

IOp(a,b) =g 32* Compup(a, b, z*)

as required. [|

Remark 5.67 (Quantification over N sufficient). We can construct
a X7 i/o formula in which there is only existential quantification over N.
Briefly, a formula similar to Compugs (in the above proof) is constructed
in which the variable z* representing the computation sequence is replaced
by a Godel number. (Cf. point (2°) in section 4.8, concerning the replace-
ment of the function comp? by compu?.)

Remark 5.68 (Alternative construction of IOp). Let a be the uPR*
scheme (section 8.1) which corresponds to P according to the construction
given by the proof of Theorem 8.5(d). By structural induction on «, we
construct the formula IOq(= IOp), as in Tucker et al. [1990] or Tucker
and Zucker [1993, §5] (where it is called P,).

Corollary 5.69 (The X7 halting formula for a procedure). Given a
W hile* procedure P : u — v asin (5.9), we can construct a X7 definition
for the halting formula haltp = haltp(a) for P.

Proof. We define
haltp(a) = IO p(a,b)
Alternatively, recalling (Remark 5.3) that in the context of semicomputabil-
ity we may assume that P has no output variables, we can put, more simply,
haltp(a) = I0p(a).

Since IO p is X7, so is haltp (in either case). [|

Remark 5.70 (Quantification over N sufficient). Again, by the use
of Gédel numbers, we can construct a X7 halting formula in which there
is only existential quantification over N. (Cf. Remark 5.67.)

Note finally that by Corollary 5.69, since for all A € StdAlg(X) and all
a€ A,

434 J. V. Tucker and J. 1. Zucker

a € Halt"(P) <= A |= haltp(a),
it follows that

the halting set for While* procedures is X7 definable, uniformly over
StdAlg(X).

5.14 The projective equivalence theorem

Theorem 5.71. Let R be a relation on a standard X-algebra A. Then

R is projectively W hile* semicomputable <=
R is projectively For* computable.

We present two proofs of this theorem. The first uses X7 definability of
the halting set (and the assumption that ¥ has equality at all sorts) while
the second uses Engeler’s lemma (without any assumption about equality
sorts).

First proof. First we restate the theorem suitably.
Suppose ¥ has an equality operator at all sorts. Let R be a relation on A.
Then the following are equivalent:

(i) R is projectively W hile* semicomputable;
(ii) R is X7 definable;
(iii) R is projectively For* computable.

(i)=(ii): Suppose R : u, and for all z € A",
R(z)<=3y* € AV R, (z,y*) (5.10)

where v* is a product type of ¥*, and Ry : u X v* is W hile semicom-
putable on A*. Then R; is the halting set of a W hile(X*) procedure
P on A*. By Corollary 5.69, R; is X} definable on A*, say

Ri(z,y*)<=32"* € AY Ry(z,y",2**) (5.11)

where w** is a product type of ¥**, and Rg(...) is given by an ele-
mentary formula over ¥**. Combining (5.10) and (5.11):

R(z)<=3y* € AV 32" € AV Ro(z,y*,2**). (5.12)

Finally, by the coding of (A*)* in A* (Remark 2.31(d)), we can
rewrite the existential quantification over (A*)* in (‘5.12) (‘z** €
A™""") as existential quantification over A*, yielding a X* definition
of R on A.

(i1)==(iii): Suppose R is defined by the formula 3z*P(x,z*), where z*
is a tuple of starred and unstarred variables, and P is elementary.
Then R is a projection of P, which, by Proposition 5.65, is For*
computable. (Here we use the assumption about equality sorts.)

Computable functions on algebras 435

(i11)=(i): Trivial (using Proposition 3.34). |

Second proof. (Here we make no assumption about equality sorts.) Sup-
pose R : u is projectively W hile* semicomputable on A. Then (as before)
for some product type v* of X%,

R(z) < Jy* € A Ry(z,y")

where Rp :u X v* is While semicomputable on A*.

By Engeler’s lemma (Theorem 5.57) applied to A*, there is an effect-
ive sequence bp*(x,y*) (k = 0,1,2,...) of Booleans over ¥* such that
Ry (z,y*) is equivalent over A to the disjunction of bp*[z,y*]. Further,
by Remark 5.56(b), this sequence can be defined so that "b;* 7 is primitive
recursive in k. (Assume here that R is non-empty, otherwise the theorem
is trivial.) Then

Ry(z,y*) <= for some k, teé;*7bool("bk*",m,y*) = .
Further, tef)}mool is For computable on A* (by Proposition 4.6).

Hence the function g defined on A* by
g(kamay*) —df texA’;*ﬁbool(I—bk*—” €T, y*)

is For computable on A* (by Equation 3.8 and Remark 3.16). Hence the
relation
Ro(k,z,y") <= g(k,z,y") =1t

is For computable on A* (composing g with equality on bool), and so the
relation

R(z) < 3y*3kRo(k,z,y")

is projectively For* computable on A.
The other direction is trivial. |

5.15 Halting sets of While procedures with random
assignments

We now consider the While programming language over X, extended by
the random assignment
x:=7

for variables x of every sort of ¥. This is an example of non-deterministic
computation.

The semantics of the W hile-random programming language can be
obtained by a modification of the semantics of the W hile language given
in section 3, by taking the meaning of a statement S to be a function [[S]]A
from states to sets of states. In the case that S is a random assignment
x :=?, [S]'o is the set of all states which agree with o on all variables
except x.

436 J. V. Tucker and J. 1. Zucker

However we are only interested here in the While-random language
for defining relations, not functions, as the following definition clarifies.

Definition 5.72. Let P be a W hile-random procedure, with input vari-
ables a : u (and, we may assume, no output variables). The halting set of
P on A is the set of tuples a € A" such that when a is initialised to a, then
for some values of the random assignments, execution of P halts.

Definition 5.73. Let R be a relation on A.

(a) R is While-random semicomputable on A if R is the halting set of a
W hile-random procedure on A.

(b) R is W hile*-random semicomputable on A if R is the halting set of
a While(X*)-random procedure on A*.

Note that in (b), there could be random assignments to starred (auxili-
ary) variables.

Remark 5.74. Clearly, semicomputability with random assignments can
be viewed as a generalisation of the notion of semicomputability with
search, i.e., initialisation of search variables (section 5.3), since initialisation
amounts to random assignments at the beginning of the program. We may
ask how these two notions of semicomputability compare. We will show
that, at least over A*, they coincide: both are equivalent to projective
W hile* semicomputability.

Theorem 5.75. Let R be a relation on A. Then

R is W hile* -random semicomputable <=
R is projectively W hile* semicomputable.

Proof. The direction (<) follows from Remark 5.74 and Theorem 5.18.
We turn to the direction (=>). For ease of exposition, we will assume first
that R is W hile-random semicomputable.

We will define a computation tree T[S,x] for While-random state-
ments S with varS C x = x1,... ,x,, extending the definition for W hile
statements given in Section 5.10. There is one new case:

(vi) S =x;:=7. Then T[S, x] is as in Fig. 14.

So x; is replaced by a new variable x; of the same sort.

Notice that for a ‘?’-assignment S, and for terms ¢ = ¢y, ... ,t,, the tree
T[S,t] is asn in Fig. 15.
where x} does not occur in x or ¢. The intuition here is that there is nothing
we can say about the ‘new’ value of x;, so we can only represent it by a
brand new variable x}. If this assignment is followed by another assignment
x; :=7, we introduce another new variable x!, and so on.

In this way the variables proliferate, and the tree contains (possibly)
infinitely many variables. Hence we cannot simply construct a halting
formula as an (infinite) disjunction of Booleans in a fized finite number of
variables over ¥, as we did in section 5.11.

Computable functions on algebras 437

x; =7

/
oo X1, X5, X541, - - . Xy

Fig. 14.

/
tl,... 7ti—17X1‘7ti—|—17--- ,tn

Fig. 15.

The solution is to represent all the variables x;,x},x,... which arise
in this way for each i (1 < i < n) by a single starred variable x} (with

x;[0],x7[1],x}[2],... representing x;,x;,x;,...). Then to each leaf A of
T[S, x] there corresponds (as in section 5.11) a Boolean bg x, but now in
the starred variables x*=x7,...,x).

Again, as in section 5.11, we can define the halting formula for S as a

countable disjunction of Booleans:

halts =4 \/ bs.i
k=0

where the bg; are effective, in fact primitive recursive, in S and k. Note
however that the program variables in halts are now among x*, not x.
Now suppose that the relation R : u is the halting set of a Whitle-

438 J. V. Tucker and J. 1. Zucker

random procedure on A,
P = proc in a aux c begin S;,i; S’ end

where a:u=s; X...x s, and c: w.

As in section 5.11, let by, be the Boolean which results from substituting
the default tuple 8" for c in bg/ . Note that var(by)C a,c* : u x w*.
Then for all a € A™:

m

a€ R« 3" € A 3k | \ (8 = cj[0])Atel, (Tb 7, a,¢*) =t

a,c”,bool
i=1

(cf. (5.8) in section 5.12) which (by Proposition 4.6) is projectively For*
computable on A, and hence projectively W hile* semicomputable on A.

This proves the theorem for the case that R is W hile-random semi-
computable on A.

Assume, finally, that R is While*-random semicomputable, i.e., the
procedure for R may contain starred auziliary variables, and there may be
random assignments to these. Now we can represent a sequence of random
assignments to a starred variable by a single doubly starred variable, or
two-dimensional array, which can then be effectively coded in A* (Remark
2.31(d)), and proceed as before.

6 Examples of semicomputable sets of real and
complex numbers

In this section we look at the various notions of semicomputability in the
case of algebras based on the set R of real numbers and the set C of complex
numbers. By doing so, we will find examples proving the inequivalence of
the following notions:

(1) While computability;

(14) W hile semicomputability;
(7i1) projective W hile semicomputability;
(iv) projective W hile* semicomputability.

We will also find interesting examples of sets of real and complex num-
bers which are semicomputable but not computable. Some of these sets
belong to dynamical system theory: orbits and periodic sets of chaotic
systems turn out to be semicomputable but not computable.

Finally we will also reconsider an example of a semicomputable, non-
computable set of complex numbers described in Blum et al. [1989]. The
effective content of their work can be obtained from the general theory.

Our main tool will be Engeler’s lemma.

We will concentrate on the following algebras introduced in Example
2.23: the standard algebras

Computable functions on algebras 439

R = (B’ Ra 0: 1: +7) X:ifrealzeqreal)

of reals, and
C = (R;C;0,1,4,4, —, x, re, im, 7)

of complex numbers, and their expansions
RS = (R;lessrear) and C< = (C;lessreal)

formed by adjoining the order relation on the reals less,,: R? — B (which
we will write as infix ‘<’). We will show that:

(a) the order relation on R is projectively W hile semicomputable, but
not While semicomputable, on R; and

(b) a certain real closed subfield of R is projectively W hile* semicom-
putable, but not projectively W hile semicomputable, on R<.

6.1 Computability on R and C

Based on the general theory of computability developed so far, we can see
that each of these four algebras has a computability theory with several
standard properties (e.g., universality, section 4.9). First, we will list some
preliminary results for computability on the real and complex numbers that
will entail simplicity and elegance of computation on these structures, but
will also show that the analogy with the classical case of computation on
N often breaks down. To begin with, we have:

Proposition 6.1. For A =R,R<,C or C<,

WhileN(A) = While(A). (6.1)

This is proved essentially by simulating the algebra AV, i.e., the carrier N,
with zero, successor, etc., in the carrier R, using the non-negative integers
together with 0, the operation +1, etc.

As an exercise, the reader should formulate a theorem expressing a
sufficient condition on an algebra A for (6.1) to hold, from which the above
proposition will follow as a simple corollary.

This situation should be contrasted with that in Example 5.36.

Recall Definition 4.4 and Examples 4.5:

Lemma 6.2 (TEP). The algebras R,R<,C and C< all have the TEP.
The TEP has a profound impact on the computability theory for an
algebra. For example, from Corollary 4.18 we know that on R, R<,C and
c<:
W hile* computability = While™N computability
and hence (or from the semicomputability equivalence theorem (5.61))

W hile* semicomputability = While™ semicomputability

440 J. V. Tucker and J. 1. Zucker

for these four algebras. We will give more detailed formulations of these
facts for each of these algebras shortly.

Example 6.3 (Non-computable functions). Recall Theorem 3.66 which
says that the output of a While, While™ or While* computable func-
tion is contained in the subalgebra generated by its inputs. From this we
can derive some negative computability results for these algebras:

(a) The square root function is not While* computable on R or R<.
This follows from the fact that the subset of R generated from the
empty set by the constants and operations of R or R< is the set Z
of integers. But v/2 is not in this set. (For computability in ordered
Euclidean fields incorporating the square root operation, see Engeler
[1975a)).

(b) The mod function (z + |z|) is not W hile* computable on C or C<.
This follows from the fact that the subset of R generated from the
empty set by the constants and operations of C or C< is again Z. But
again, |1 +i| =+/2 is not in this set.

(¢) The mod function would be computable in C if we adjoined the square
root, function to the algebra R (as a reduct of C).

In the rest of this subsection, we will apply Engeler’s lemma for W hile*
semicomputability (section 5.12) to the algebras R, R<,C and C<.

From the semicomputability equivalence theorem (5.61) (which follows
from Engeler’s lemma) and from the TEP lemma (6.2), we get:

Theorem 6.4 (Semicomputability equivalences for R,R<,C,C<).
Suppose A is R or R<, and R C R"; or A isC or C<, and R C C".
Then the following are equivalent:

(i) R is While™N semicomputable on A;

(ii) R is While* semicomputable on A;

(iii) R can be expressed as an effective countable disjunction of Booleans
over A.

For applications of this theorem, we need the following normal form
lemmas for Booleans over R and R<.

Lemma 6.5 (Normal form for Booleans over R). A Boolean over R,
with variables x = x1,... ,x, of sortreal only, is effectively equivalent over
R to a finite disjunction of finite conjunctions of equations and negations
of equations of the form

pla) =0 and q(@) #0,

where p and q are polynomials in x with coefficients in Z.

Lemma 6.6 (Normal form for Booleans over R<). A Boolean over
R<, with variables x = x1,... ,z, of sort real only, is effectively equival-
ent over R< to a finite disjunction of finite conjunctions of equations and

Computable functions on algebras 441

inequalities of the form
p(z) =0 and q(z) >0,

where p and q are polynomials in x with coefficients in 7.

The proofs of these are left as exercises.

6.2 The algebra of reals; a set which is projectively
W hile semicomputable but not While* semicom-
putable

In this subsection we obtain results distinguishing various notions of semi-

computability, using the algebra R of reals. In the next subsection we will

obtain other results in a similar vein, using the ordered algebra R< of reals.

We begin with a restatement of the semicomputability equivalence thorem

(6.4) for the particular case of R.

Theorem 6.7 (Semicomputability for R). Suppose R C R™. Then
the following are equivalent:

(i) R is While" semicomputable on R;

(ii) R is While* semicomputable on R;

Wi can be expressed as an effective countable disjunction
iii) R b d ti table disjuncti

z€R \/ibi(m) (6.2)

where each b;(x) is a finite conjunction of equations and negations of equa-
tions of the form

p)=0 and q(z) #0, (6.3)
where p and q are polynomials in © = (x1,... ,x,) € R", with coefficients
mn 7.

Proof. From Theorem 6.4 and Lemma 6.5. [|

Thus we see that there is an intimate connection between computability,
polynomials and algebraic field extensions on R.

Definition 6.8 (Algebraic and transcendental points). Let us define
apoint = (a1,...,a,) € R tobe (i) algebraic if it is the root of a poly-
nomial in n variables with coefficients in Z; and (i) transcendental if it is
not algebraic, or, equivalently, if for each i = 1,... | n, a; is transcendental
(in the usual sense) over Q(a1,...,a; 1).

The following corollary was stated for n = 1in Herman and Isard [1970].

442 J. V. Tucker and J. 1. Zucker

Corollary 6.9. If R C R" is While* semicomputable on R, and contains
a transcendental point o, then R contains some open neighbourhood of a.

Proof. In the notation of (6.2): « satisfies b;(x) for some i. Then (for this
i) b;(x) cannot contain any equations (as in (6.3)) since « is transcendental,
and so it must contain negations of equations only. The result follows from
the continuity of polynomial functions. [|

An immediate consequence of this is:

Corollary 6.10 (Density/codensity condition). Any subset of R™ which
is both dense and co-dense in R™ (or in any non-empty open subset of R™)
cannot be W hile* computable on R.

Example 6.11. The following subsets of R” are easily seen to be While™
semicomputable on R in fact W hile semicomputable (by Proposition
6.1). However, they are not While (= W hileN= W hile*) computable,
by the density/codensity condition:

(a) the set of points with rational coordinates;
(b) the set of points with algebraic coordinates;
(c) the set of algebraic points.

Of course, a standard example of a While semicomputable but not
W hile* computable set can be found in A/, namely any recursively enu-
merable, non-recursive set of naturals (Example 5.49).

Next, specialising to n = 1:

Corollary 6.12 (Countability /cofiniteness condition). If R C R is
W hile* semicomputable on R, then R is either countable or cofinite (i.e.,
the complement of a fine set) in R.

Proof. By the fundamental theorem of algebra, each polynomial equation
with coefficients in Z has at most finitely many rootsin R. Hence, regarding
the disjunction in (6.2), there are two cases:

Case 1. For some i, b;(z) contains only negations of equations. Then (for
this) b;(x) holds for all but finitely many © € R. Hence R is co-finite in
R.

Case 2. For all i, b;(z) contains at least one equation. Then (for all 7)
b;(x) holds for at most finitely many x € R. Hence R is countable. [|

Hence we have:
Corollary 6.13. A subset of R which is (W hileor W hile™ or W hile*)

computable on R it is either finite or cofinite.

Example 6.14. From Corollary 6.13 we have another example of a subset
of R which is W hile semicomputable but not W hile* computable, namely
the integers (Example 5.5(c)).

Example 6.15 (Projectively W hile semicomputable, not While*
semicomputable set). The order relation on R is a primitive operation

Computable functions on algebras 443

in R<, but, as we shall see, is not even semicomputable in R. Consider
first the relation
Ro(z,y) <=qy =y’

on R. Ry is clearly While computable on R, and so its projection on the
first argument,

R =g {z|3y(=y"}

i.e., the set {z | z > 0} of all non-negative reals, is projectively While
semicomputable. From the countability /cofiniteness condition (6.12) how-
ever, it is not (even While*) semicomputable on R. From this it is easy
to see that the order relation

r<y < (y—z)€Randz#y

is also projectively W hile semicomputable, but not W hile* semicomput-
able, on R.

6.3 The ordered algebra of reals; sets of reals which
are W hile semicomputable but not While* com-
putable

In the previous subsection we saw that the order relation on R is not (even)

While* semicomputable on the algebra R. Let us add it now to R, to

form the algebra R<, and see how this affects the computability theory.

We begin again with a restatement of the semicomputability equivalence
theorem (6.4), this time for the algebra R<.

Theorem 6.16 (Semicomputability for R<). Suppose R C R". Then
the following are equivalent:

(i) R is While"N semicomputable on R<,

(i1) R is While* semicomputable on R<,

Wi can be expressed as an effective countable disjunction
iii) R b d ti table disjuncti

z€R < \/ibi(x)

where each b;(x) is a finite conjunction of equations and inequalities of the
form
p(x) =0 and q(z) > 0,

where p and q are polynomials in © = (x1,... ,x,) € R", with coefficients
mn 7.
Proof. From Theorem 6.4 and Lemma 6.5. [|

To proceed further, we need some definitions and lemmas about points
and sets defined by polynomials. (Background information on algebraic
geometry can be found, for example, in Shafarevich [1977] or Brocker and

444 J. V. Tucker and J. 1. Zucker

Lander [1975, Chapter 12]. For the application below (section 6.4), we
relativise our concepts to an arbitrary subset D of R.

Definition 6.17.
(a) An interval in R (open, half-open or closed) is algebraic in D if, and
only if, its end-points are.
(b) A patch in R is a finite union of points and intervals.

(¢) A D-algebraic patch in R is a finite union of points and intervals
algebraic in D.

Definition 6.18. A set in R" is D-semialgebraic if, and only if, it can
be defined as a finite disjunction of finite conjunctions of equations and
inequalities of the form

p(r) =0 and q(z) >0,

where p and ¢ are polynomials in z with coefficients in Z[D].

We will drop the ‘D’ when it denotes the empty set.
Note that clause (iii) of Theorem 6.16 can, by Definition 6.18, be writ-
ten equivalently in the form:

(#4i") R can be expressed as an effective countable union of semialgebraic
sets.

components.

(See Becker [1986]. This will be used in section 6.6.) It follows that a
semialgebraic subset of R is a patch. However, for n = 1 we need a stronger
result:

Lemma 6.20. A subset of R is D-semialgebraic if, and only if, it is a
D-algebraic patch.

Lemma 6.21. A projection of a D-semialgebraic set in R* on R™ (m <
n) is again D-semialgebraic.

This follows from Tarski’s quantifier-elimination theorem for real closed
fields (see, for example, Kreisel and Krivine [1971, Chapter 4]). From this
and Lemma 6.20:

Corollary 6.22. A projection of a D-semialgebraic set in R™ on R is a
D-algebraic patch.

Remark 6.23. Corollaries 6.9 and 6.10 (the density/codensity condition)
hold for R< as well as R, leading to the same examples (6.11) of subsets
of R® which are W hile™ semicomputable, but not While™ (= W hile*)
computable, on R<. Another example is given below (6.26).

The following corollary, however, points out a contrast with K.

Corollary 6.24. In R<, the following three notions coincide for subsets
of R":

Computable functions on algebras 445

(i) While" semicomputability;
(ii) While* semicomputability;
(iii) projective W hile™ semicomputability.

This follows from Theorem 6.16 and Lemma 6.21. (This corollary fails
in the structure R, since in that structure, Lemma 6.21, depending on
Tarski’s quantifier-elimination theorem, does not hold.)

However, the above three notions of semicomputability differ in R<
from a fourth:

(iv) projective W hile* semicomputability,
as we will see in section 6.4. But first we need:
Corollary 6.25 (Countable connectivity condition).
(a) If R C R is While* semicomputable on R<, then R consists of
countably many connected components.
(b) If R C R is While* semicomputable on R<, then either R is count-
able or R contains an interval.

(This is a refinement of the countability/cofiniteness condition (6.12).)
This follows from Theorem 6.16 and Lemma 6.19, since the connected sub-
sets of R are precisely the singletons and the intervals.

Example 6.26.

(a) The Cantor set in [0,1] is not While* semicomputable on R<, by
the countable connectivity condition.

(b) The complement of the Cantor set in [0, 1] is W hile semicomputable
on R< (Ezercise), but (by (a)) it is not (even W hile*) computable
on R<.

Other interesting examples of semicomputable, non-computable sets are
given in sections 6.5 and 6.6.

6.4 A set which is projectively W hile* semicomput-
able but not projectively W hile" semicomputable

First we must enrich the structure R<. Let E = {ep,e1,e2,...} be a
sequence of reals such that

for all 4, e; is transcendental over Q(eg, ... ,e;_1). (6.4)

We define R<'F to be the algebra R< augmented by the set E as a
separate sort E, with the embedding j : ' — R in the signature, thus:

algebra R<FE
import R<
carriers E
functions j:E — R
end

446 J. V. Tucker and J. 1. Zucker

We write E C R for the real algebraic closure of Q(E).

It is easy to see that E is projectively W hile* semicomputable in R<:7.
(In fact, E is the projection on R of a While semicomputable relation on
R x E*.) We will now show that, on the other hand, E is not. projectively
W hile" semicomputable in R<¥.

Theorem 6.27. Let F' C E be projectively W hile™N semicomputable in
R<E. Then F # E. Specifically, suppose for some W hile computable
function p on R<EN:

F={zecR| (FyecEN3FzcR)(Fuc N)TweB)op(z,y,2zu,v) |}
(6.5)

(with ezistential quantification over all four sorts in R<"¥*N). Then for all
x € F, z is algebraic over some subset of E of cardinality r (= the number
of arguments of ¢ of sort E in (6.5)).

The rest of this subsection is a sketch of the proof.
Lemma 6.28. (In the notation of the Theorem 6.27,) F can be represented

as a countable union of the form F = U;’io F;, where
Fy={xz|(3y € E")(3z € R)bi(z,y.2)}

and b; is a finite conjunction of equations and inequalities of the form
p(x.y,2,)=0 and q(z,y,2)>0

where p and q are polynomials in x,y, z with coefficients in Z.

Proof. Apply Engeler’slemma. Also replace existential quantification over
nat and bool by countable disjunctions. [|

Lemma 6.29. (In the notation of Lemma 6.28,) for any r-tuple e = (e;,,
. ,€i.) of elements of E, put
File] =4 {x | (3z € R*)bi(z,e,2)}.

Then for all e € E", Fjle] is a (finite) set of points, all algebraic in e.

Proof. Note that Fj[e] is a projection on R of an e-semialgebraic set in
Rs*+!. Hence, by Corollary 6.22, it is an e-algebraic patch. Since by as-
sumption

File]CFCE,

Fj[e] is countable, and hence cannot contain any (non-degenerate) interval.
The result follows from the definition of e-algebraic patch. [|

Since F' is the union of Fjle] over all i, and all r-tuples e from E, the
theorem follows from Lemma 6.29 and the following;:

Computable functions on algebras 447

Lemma 6.30. For all n, there exists a real which is algebraic over E but
not over any subset of E of cardinality n.

Proof. Take z = ey + €1 + ...+ e, (more strictly, j(eg) + ...+ j(en))-
The result follows from the construction (6.4) of E.

We have shown that F (although a projection on R of a While semi-
computable relation on Rx E*) is not a projection of a While¥ semicom-
putable relation in R<"¥. In fact, we can see (still using Engeler’s lemma)
that E is not even a projection of a While* semicomputable relation on
R” x E™ (for any n,m > 0). Thus to define £, we must project off the
starred sort E* or (in other words) existentially quantify over a finite, but
unbounded sequence of elements of F.

6.5 Dynamical systems and chaotic systems on R; sets
which are While” semicomputable but not
W hile* computable

We will examine algorithmic aspects of certain dynamical systems. Many
physical, biological and computing systems are deterministic and share a
common mathematical form.

Consider a deterministic system (S, F') modelled by means of a set S
of states, whose dynamical behaviour in discrete time is given by a system
function

F:TxS—=S

where T=N={0,1,2,...} and for t € T and s € S, F(t,s) is the state
of the system at time ¢ given initial state s.
The orbit of F' at state s is the set

Orb(F,s) = {F(t,s)|te T}.
The set of periodic points of F is
Per(F) = {se€S|3teT(F(ts) =s)}.

In modelling a dynamical system (S, F'), the computability of the F' and
of sets such as the orbits and periodic points is of immediate interest and
importance.

Now suppose, more specifically, that the evolution of the system in time
is determined by a next state function

f:5—-S8
through the equations
F(0,s) = s
Flt+1,5) = [(F(ts))

which have the solution

448 J. V. Tucker and J. 1. Zucker

Fit,5) = f'(s)

for t € T and s € S. We call such systems iterated maps. In this case, we
write

orb(f,s) = Orb(Fs) = {f'(s)teT)
per(f) = Per(F) = {seS|3t>0F(ts)=s)}

Theorem 6.31. Let A be an N-standard algebra (with N =T), and con-
taining the state space S. If the next state function f is W hile computable
on A then so is the system function F. Furthermore, the orbits orb(f,s)
and the set of periodic points per (f) are While semicomputable on A.

Proof. By computability of primitive recursion (Theorem 8.5) and clo-
sure of semicomputability under existential quantification over N (Theorem
5.23). | |

Now we will consider the computability of some simple dynamical sys-
tems with one-dimensional state spaces. More specifically, suppose the
state space is an interval

S =1=][ab CR

and so the next state function and system function have the form

f:I=1
F:TxI—1I

F'is called an iterated map on the interval I. Dynamical systems based on
such maps have a wide range of uses and a beautiful theory. For example,
such systems will under certain circumstances exhibit ‘chaos’. The follow-
ing discussion is taken from Devaney [1989]. Let (I,F) be a dynamical
system based on the iterated map F'.

Definition 6.32.

(a) (I, F) is sensitive to initial conditions if there exists § > 0 such that
for all x € I and any neighbourhood U of z, there exist y € U and
t € T such that

\F(t,z) — F(t,y)| > 0.

(b) (I, F) is topologically transitive if for any open sets U; and U, there
exist z € Uy and t € T such that F(t,z) € Us.

Note that if I is compact then (I, F') is topologically transitive if, and
only if, Orb(F,z) is dense in I for some z € I. (The direction ‘<’ is
clear. The proof of ‘=’ depends on the Baire category theorem.)

Computable functions on algebras 449

Definition 6.33. The system (I, F) is chaotic if:
(a) it is sensitive to initial conditions;
(b) it is topologically transitive;
(c) the set Per(F) of periodic points of F' is dense in I.

Consider the guadratic family of dynamical systems (I, F),) for y real,
where I =[0,1] and the next state function is

Fulw) = (1 —a).

For 4 =4 we have:

Theorem 6.34. The system (I, Fy) is chaotic. Thus, for the algebras R
and R<:
(a) for some x € [0,1], the set Orb(Fy,x) is While™ semicomputable
but not W hile™N (= While*) computable;

(b) the set Per(F) is While™ semicomputable, but not While™N (=
W hile*) computable.

Proof. That (I, F}) is chaotic is proved in Devaney [1989]. The semicom-
putability of fs is clear. Semicomputability of Orb(Fy,z) and Per(F)
follows from Theorem 6.31. Further, it can be shown that Orb(Fy,z) and
Per(F) are both dense and codense in I. (Ezercise.) Non-computability
then follows from the density/codensity condition (see Remark 6.23). N

6.6 Dynamical systems and Julia sets on C; sets which
are While” semicomputable but not W hile* com-
putable

We reconsider an example from Blum et al. [1989], and show how it follows

from our general theory of semicomputability. We work from now on in

C<. First, we must relate computability in the complex and real algebras.

We consider the algebras C and C<.

Notation 6.35. If S C C", we write

S =g {(re(z1),im(z1),... ,re(zn),im(z,)) | (21,-..,2,) € C"} C R*™.

Lemma 6.36 (Reduction lemma). Let S C C".

(a) S is While (or WhileN or While*) semicomputable in C if, and
only if, S is While (or While™N or While*) semicomputable in R.

(b) S is While (or WhileN or While*) semicomputable in C< if,
and only if, S is W hile (or While or While*) semicomputable
in R<.

This lemma will enable us to reduce problems of semicomputability
in the algebras C or C< to those in the corresponding real algebras. For
example, from this lemma and Corollary 6.24 we have:

450 J. V. Tucker and J. 1. Zucker

Corollary 6.37. In C<, the notions of While", While* and projective
W hileN semicomputability all coincide for subsets of C".

Note that the reduction lemma would not be true if we included the
mod function (z — |z|) in C or C<, by Example 6.3(b).

We work from now on in C<.

Let g : C —» C be a function. For z € C, the orbit of g at z (as in
section 6.5) is the set

orb(g,z) = {g"(2) |n=0,1,2,...}.
Let
U(g) = {z€ C|orb(g,z) is unbounded}

and
F(g) ={z€C]|orb(g,z) is bounded}

=C\U(g)-

The set F'(g) is the filled Julia set of g; the boundary J(g) of F(g) is the
Julia set of g.
For any r € R define

Vilg) = {zeClan(g"()] >)}

Clearly, U(g) C V,.(g) for all r.

Theorem 6.38. For g(z) = 2% — ¢, with |¢| > 4, we have U(g) is
W hile semicomputable but not (even W hile*) computable. Thus, F(g)
is not W hile* semicomputable.

Proof. Assume for now that |c| > 1, and choose r = 2|¢|. Then for |z| > r,

3
9| = 22 =l > [z = el > S,

@l 2 (2)

g"(z) = 00 as n — oc.

Hence for all n,

and so

Hence for such r, V,.(g) C U(g), and so
Ulg) = Velg) = {z€C[3n(lg"(2)] >r)}.

To show that U(g) is semicomputable is routine; for example, as the
halting set of the procedure

Computable functions on algebras 451

proc in a: complex

aux b: complex
begin

b:= a;

while | b|?< 4[c]? do b:=b? ¢ od
end.

(Note that although the function z > |z| is not computable, the function
2z 22 =re(2)? +im(2)? is.)

To conclude the proof we must show that F(g) is not While* semi-
computable. Suppose it was, then (by the countable connectivity condition
and the reduction lemma) it would consist of countably many connected
components. But if we choose |¢| > 4 it can be shown that F(g) is compact,
totally disconnected and perfect, i.e., homeomorphic to the Cantor set (see,
for example, Hocking and Young [1961]), and so we have a contradiction
(cf. Example 6.26(a)). |

7 Computation on topological partial algebras

We have considered While computations on algebras of reals in section
6. Connections were made between notions of semicomputability and fa-
miliar rational polynomial definability; we also made some observations on
connections between projective semicomputability and field extensions of
Q.

There is thus a close relationship between computability properties, and
algebraic properties of sets of reals. (Of course many of these properties
can be reformulated for arbitrary rings and fields.)

In this section we explore the relationship between computability prop-
erties and topological properties of sets of reals. We will analyse W htle
computations on general topological algebras, and using these general con-
cepts and results, we will be able to give a quick guide to the primary case
of computation on R.

The outline of this section is as follows. In section 7.1 we indicate the
basic problem: although computability implies continuity (to be proved
later), total Boolean-valued functions on R such as equality and order are
discontinuous. The solution is to work with partial functions. We there-
fore define partial algebras in section 7.2, and topological partial algebras
in section 7.3. In section 7.4 we compare the two approaches to computa-
tion on the reals: the algebraic model of section 6, and the stream model
which lies behind the models studied in this section. In section 7.5 we
prove that computable functions are continuous, from which it follows that
semicomputable or projectively semicomutable sets are open, and hence
computable sets are clopen (= closed and open). In section 7.6 we infer a
converse of this last statement in the case of compact algebras with open
subbases of semicomputable sets. In section 7.7 we specialise to metric
partial algebras, and in section 7.8 show the equivalence between com-

452 J. V. Tucker and J. 1. Zucker

putability and explicit definability in the case of a connected domain. This
result is used in the study of approzimable computability in section 7.9, in
which effective Weierstrass computability (generalising the classical notion
of Weierstrass approximability) is shown to be equivalent on connected
domains (under certain broad assumptions) to effective uniform W hile
(or While*) approximability. Finally, in section 7.10, we discuss the re-
lationship between abstract and concrete models of computability, with
particular reference to computation on the reals.

The material of this section is based on Tucker and Zucker [1999]. Back-
ground information on topology can be found in any standard text, such
as Kelley [1955], Hocking and Young [1961], Simmons [1963] or Dugundji
[1966].

7.1 The problem

Consider again the standard algebras

R = (]Ra HB) 07 17 +, = X, ifreah GQreaI:---)

and R<, which extends R with less,ea (or ‘<’).

Not all the functions in While(R) and W hile(R<) are continuous.
This is obvious, because both algebras contain certain basic operations,
namely eqeal and less,ea (‘=" and ‘<’), that are not continuous (with re-
spect to the usual topology on R).

If A is an algebra built on R such that all its basic operations are
continuous, then is every function in While(A) continuous?

Let us immediately consider this question more generally.
Definition 7.1.

(1) A topological (total) ¥-algebrais a pair (A, T), where A is a X-algebra
and T is a family (7; | s € Sort(X)), where for each s € Sort(%),
Ts is a topology on Ay, such that for each basic function symbol
F:u— s of ¥, the function FA : A* — A, is continuous.

(2) A standard total topological algebra (A, T) is a total topological al-
gebra in which A is standard, and the carrier Apo,oy = B has the
discrete topology.

We will often speak of a ‘topological algebra A’, without stating the
topology explicitly.

Remark 7.2. In a topological algebra, the carriers of all equality sorts
must be discrete, in order for the equality operation on them to be continu-
ous. In particular, if A is N-standard, then the carrier A,,; = N must be
discrete.

To provide motivation, we state the following theorem here. (It will be
formulated and proved later in a more general context.)

Computable functions on algebras 453

Theorem 7.3. Let A be a standard topological algebra.

(a) If f € While(A) then f is continuous on A.
(b) If f € While (A) then f is continuous on A.
(c) If f € While*(A) then f is continuous on A.

At first sight this gives a satisfactory answer to the above question
about continuity of While computable functions. However, a standard
total topological algebra based on R has the following problem. There can
be no non-constant basic operations of the form F : R? — B such as ‘<’
or even ‘=". This is because if f : R? — B is continuous, then f![t] and
f7'[ff] are disjoint open sets whose union is R?. So one must be R?, and
the other (), by the connectness of R. (We investigate connectedness in
topological algebras in section 7.8.)

Hence the problem with the above theorem is the paucity of useful
applications. In fact, the only continuous equality test is on a discrete
space.

However, equality and order on R do have some properties close to
continuity. For example, given two points x and y with = < y, there are
disjoint neighbourhoods U, and U, of z and y respectively such that for
all we U, and v € Uy, u < wv. (Similarly for inequality ‘#’.)

We will develop notions that allow us to express these ‘continuity’ prop-
erties as follows. Define partial functions

less, : R* - B

eq, : R* =B
so that
tif zx <y
lessy(z,y) = (fFif 2>y
tif z =y,
and
tifz =y
eq,(r,y) = {“f“éy_

These partial functions are continuous, in the sense that the inverse images
of {tt} and {f} are always open subsets of R2.

We will exploit these observations about ‘<’ and ‘=’ to the full by
studying topological partial algebras. We will also prove a more general
version of Theorem 7.3 for such partial algebras (Theorem 7.12).

7.2 Partial algebras and W hile computation

A partial X-algebra is defined in the same way as a ¥-algebra (section 2.3),
except that for each F : u — s in Func(Y), the function FA : A® — A,
may be partial.

454 J. V. Tucker and J. 1. Zucker

Standard and N-standard partial Y-algebras are defined analogously,
as are the standardisation and N-standardisation of partial Y-algebras (cf.
sections 2.4, 2.5).

Suppose ¥ is a standard signature, and A is a standard partial -
algebra.

The error partial algebra A", of signature Y.V, is constructed as before
(cf. section 2.6). In particular, for each F' € Func(X), its interpretation
F4 on A is extended by strictness to a partial function F4 on AY.

The array partial algebra A*, of signature ¥*, is constructed as before
(cf. section 2.7).

The stream partial algebra A, of signature X, is constructed as before
(cf. section 2.8).

The semantics of W hile programs on A is similar to that for total
algebras (cf. sections 3.3 3.8), except that many of the semantic functions
are now partial, namely: the term evaluation function [t]* (section 3.3),
the functions (]S\)A, Compi', Comp”, CompLength® (section 3.4), and
(as before) the statement evaluation function [[S]]A (section 3.5) and pro-
cedure evaluation function P# (section 3.6). For example, the definition of
[t]*becomes (cf. section 3.3):

['e = ox)
[F(ti,...,tm)]%0 =~ FA([t:]0,... [tm]"0).

Here the second clause is interpreted as

FA(IM Ao, [tm]fo) if [t:]40 |

[F(t,... tm)]" 0 ~ fori=1,...,m
) otherwise.
except for the case that F'(...) is the discriminator if (b, t1, t2), in which case

we have a ‘non-strict’ computation of either [t;]4c or [t2]4o, depending
on the value of [b]"0:

[ti]o if []70 | tt
[if (b, t1,t2)]%0 ~ { [tz]o if [b]Ao L F
T if [b]40 1.

The results in sections 3.3 3.10 (functionality lemmas, hormomorphism
invariance and locality theorems) still hold, with certain obvious modifica-
tions related to divergence. For example, the functionality lemma for temrs
(3.4) becomes:

Lemma 7.4 (Functionality lemma for terms). For any term t and
states o1 and o9, if o1 = o9 (rel vart), then either

() [t]'or L and [t]%os L and []"o1 = [t]" 02, or

Computable functions on algebras 455
(i) [t]'o1 t and [t]"os 1.

7.3 Topological partial algebras
Note that in, this section, by ‘function’ we generally mean partial function.

Definition 7.5. Given two topological spaces X and Y, a function f :
X =Y is continuous if for every open V.C Y, f7V]=4{re X |z €
dom(f) and f(z) € Y} is openin X.

Definition 7.6.

(1) A topological partial ¥-algebra is a partial X-algebra with topologies
on the carriers such that each of the basic functions is continuous.

(2) A standard topological partial algebra is a topological partial algebra
which is also a standard partial algebra, such that the carrier B has
the discrete topology. (Cf. Definition 7.1.)

Examples 7.7.

(a) (Real algebra.) An important standard topological partial algebra for
our purpose is the algebra

Ry = (R, B; 0, 1, +, —, x,ifreal, €q,, lessy,...)

which is formed from R< by the replacement of eqe, and less,e, by
the partial operations eq, and less, (defined in section 7.1). Tt be-
comes a topological partial algebra by giving R its usual topology, and
B the discrete topology. An open base for the standard topology on
R is given by the collection of open intervals with rational endpoints.
These intervals are all While semicomputable on R,. (Ezercise.)

(b) (Interval algebras.) Another useful class of topological partial alge-
bras are of the form

algebra Z,

import Rp

carriers 1

functions iy : I - R,
Fy '™ — 1,
Fp : I —]

end

where I is the closed interval [0,1] (with its usual topology), ir is the
embedding of I into R, and F; : I"™ — I are continuous partial functions.
These are called (partial) interval algebras on I.

Example 7.8 (While computable functions on R,). We give two
examples of functions computable by W hile programs, using the above
Boolean-valued functions (eq, and less,) as tests. (In both cases, the in-
puts are taken to be positive reals to simplify the programs, although the

456 J. V. Tucker and J. 1. Zucker

programs could easily be modified to apply to all reals, positive and non-
positive).
(a) The characteristic function of Z on R, is_int : RT — B, where

is_int(z) = {T if is an integer

ff otherwise.

This is defined by the procedure

proc in x:pos-real

out b:bool
begin
b: =false;

while x>0 {if x = 0, test diverges!}
do x:=x-1
od
end

(b) The truncation function trunc : R¥ — Z, where

¢ (2) Lxa if x is not an integer
runc(z) =
T otherwise.

The procedure for this is similar:

proc in x:pos-real

out c:int
begin
c:=0;

while x > 1 {if x =1, test diverges}
do x:=x—1;
c:=c+l
od
end

Until further notice (section 7.8) let A be a standard topological partial
Y-algebra.

Definition 7.9 (Expansions of topological partial algebra).

(a) The topological partial algebra A", of signature X", is constructed
from A by giving each new carrier A% the disjoint union topology of
A, and {w}. (This makes u an isolated point of AY.)

(b) The topological partial algebra A"V, of signature X, is constructed
from A by giving the new carrier N the discrete topology.

()

Computable functions on algebras 457

The topological partial algebra A*, of signature ¥*, is constructed
from AN as follows. Viewing the elements of each new carrier AZ
as (essentially) infinite sequences of elements of AY, which take the
value ui for all indices greater than Lgth(a*), we give A% the subspace
topology of the set (AY)N of all infinite sequences from AY, with the
product topology over AY. Equivalently, viewing the elements of A}
as (essentially) arrays of elements of AY of finite length, we can give
A% the disjoint union topology of the sets (A%)™ of arrays of length
n, for all n > 0, where each set (AY)" is given the product topology of
its components AY. It is easy to check that A* is indeed a topological
algebra, i.e., all the new functions of A* are continuous.

The topological partial algebra A, of signature ¥, is constructed by
giving each new carrier A, the product topology over A,. Note that,
if A, is compact for any sort s, then so is A, by Tychonoff’s theorem
(see Remark 7.28).

Definition 7.10. A is Hausdorffif each carrier of A is Hausdorff (i.e., any
distinct pair of points can be separated by disjoint neighbourhoods.)

Proposition 7.11. If A is Hausdorff, then so are the expansions AY, AV,
A* and A.

Theorem 7.12. Let A be a standard topological partial algebra.
(a) If f € While(A) then f is continuous on A.

(b) If f € While™N (A) then f is continuous on A.
(c) If f € While*(A) then f is continuous on A.

The proof will be given in section 7.5. For now we observe that this
theorem implies the following.

Theorem 7.13. If R is

(a) W hile* semicomputable on A, or

(b) projectively W hile* semicomputable on A,

then R is open in A.
Proof.

(a)

(b)

Suppose R is the halting set of a While* computable function f :
A* — A,. By Theorem 7.12, f is continuous. Hence R = f~'[A,]
is open.

From (a) and since a projection of an open set is open. (Check.) W

Note that in the above proof, we used the fact that a projection of an
open set is open. (Check.)

Corollary 7.14. A W hile* computable relation on A is clopen in A.

Proof. By Post’s theorems (5.40) and Theorem 7.13. |

458 J. V. Tucker and J. 1. Zucker

7.4 Discussion: Two models of computation on the
reals

The purpose of this subsection is to explain the conceptual background for
our models of computation on the reals.
There are two types of models of reals, and computations on them:

(1) The algebraic model. Here we work with a many-sorted algebra like
R = (R7N,Bz 071:+: X:"')7

This was the approach in section 6.
(2) The stream model. A real number input or output is given as a
stream of
(7) digits (representing a decimal expansion), or
(43) rationals (representing a Cauchy sequence), or

(731) integers (representing a continued fraction).

This idea lies behind the partial algebras of reals R, and 7, studied in this
section. For convenience, we concentrate on (i). (The decimal representa-
tion may be to any base.)

Then a procedure for a computable real-valued function f : R" — R
has as input n streams of digits, and as output a stream of digits. Sim-
ilarly a procedure for a computable relation on the reals, or Boolean-valued
function, R : R® — B has as input n streams of digits, and as output a
Boolean value (or bit).

In the algebraic approach, the input and output reals are just ‘points’
(elements of R) given in one step. Continuity of the computable functions,
or even of the primitive functions (with respect to the usual topology on
R), is not forced on us — and our models in section 6 violated it.

In the stream model, however, the reals form infinite data; at any finite
time, only a finite part has been processed (written or read). Continuity
of the computable functions (which we will prove formally in the next sub-
section) is then forced on us conceptually by computability requirements,
ie.:

(a) For f : R* — R to be computable, we must be able to get the
output real (= stream of digits) to any desired degree of accuracy
(= length) by inputting sufficiently long input streams. (Briefly: the
longer the inputs, the longer the output.)

(b) For R : R® — B to be computable, we must be able to get an output
bit after finite (suficiently long) input streams.

We often work with the algebraic model, because of its simplicity. It is
a good source of examples to distinguish various notions of abstract com-
putability and semicomputability (as we saw in section 6). However, the
stream model is more satisfying conceptually, conforming to our intuition

Computable functions on algebras 459

of reals as they occur to us, e.g., in physical measurements and calcula-
tions. So we can use the stream model as a source of insights for our
requirements or assumptions regarding the algebraic model, notably the
continuity requirement for computable functions.

Recall the problem discussed in Section 7.1 concerning the continuity
requirement for computable relations, i.e., Boolean-valued functions R :
R™ — B: the only continuous total functions from R to any discrete space
such as B are the constant funtions.

The solution, we saw, was to work with partial algebras, i.e., to interpret
the function symbols in the signature by partial functions. We use the
stream model for insight. Consider, for example, the equality and order
relations on the reals. Suppose we have two input reals (between 0 and 1)
defined by streams of decimal digits, which we read, one digit at a time:

0.(1[)(11(12 .

0.bpb1 by . ..

«

B

Consider the various possibilities:

(a) a < B. Then for some n, this will be determined by the initial
segments aq ...a, and by ...b,.

(b) @ > B. Similarly, this will be determined by some pair of initial
segments.

(¢) a # B. This is the disjunction of cases (a) and (¢), so again it will be
determined by some pair of initial segments.

(d) a = 3. This case, however, cannot be determined by initial segments
of any length! (Note that this analysis is not affected by the double
decimal representation of rationals.)

This analysis suggests the following definitions for partial functions in the
signature of R:

if ¢ =
) eq,(e.y) = {} o

t if x
(i) uneqp(z,y) = if oy (compare (i));
T ifrz=y
t ifrx<y
(iii) lessp(z,y) = <1 ifz=y
f ifx>y;
t ifz<y
(iv) lseqp(z,y) = <1 ifx=y (same as (iii)!).
f ifz>y

Note that examples (i) and (iii) were incorporated as basic operations in
the topological partial algebras R, and Z, in section 7.3.

460 J. V. Tucker and J. 1. Zucker

Further, we can add real-valued functions such as division:

. T if 0
o s~ i 1270

Note that in the above definitions, ‘t’ (undefinedness or divergence) must
not be confused with ‘€’ (error), which occurs in integer division:

. . I_X/YJ if Yy 75 0
d =
(vi) xzdivzy {6 if y = 0.

In the integer case, we can effectively test whether the input y is 0, and so
(if y = 0) give an output, namely an error message (or default value, if we
prefer). In the real case, if y = 0, this cannot be effectively decided, and
so no output (error or other) is possible. (Suppose the first n digits of the
input y are 00...0. The (n 4+ 1)th digit may or may not also be 0.)

We remark that the concept of reals as streams is reminiscent of Brou-
wer’s notion of reals defined by lawless sequences or choice sequences. In
fact, for Brouwer, a function was a constructively defined function, and he
‘proved’ that every function on R is continuous! (See, for example, the
discussion in Troelstra and van Dalen [1988, Chapter 12]).

We conclude this discussion by pointing out a related, intensional, ap-
proach by Feferman to computation on the reals, based on Bishop’s con-
structive approach to higher analysis (Bishop [1967], Bishop and Bridges

[1985]). This is outlined in Feferman [1992a; 1992b)].

7.5 Continuity of computable functions

In this section we will prove that computational processes associated with
W hile* programs over topological partial algebras are continuous. More
precisely, we will prove Theorem 7.12:

(a) If f € While(A) then f is continuous on A.
(b) If f € WhileN (A) then f is continuous on A.
(c) If f € While*(A) then f is continuous on A.

Clearly, part (a) follows trivially from parts (b) and (c). Note that, con-
versely, parts (b) and (c¢) follow easily from (a). For example, if f €
While*(A)then f € While(A*), therefore f is continuous on A*, and
hence on A. We will prove part (a) by demonstrating the continuity of
the operational semantics developed in section 3 (as modified for partial
algebras). We will see the advantage of the algebraic approach to opera-
tional semantics used there, since these functions are built up from simpler
functions using composition, thus preserving continuity.

We proceed with a series of lemmas. Let X,Y,... be topological spaces.
Remember, functions are (in general) partial.

Lemma 7.15 (Basic lemmas on continuity).

(a) A composition of continuous functions is continuous.

Computable functions on algebras 461

(b) Let f : X = Y1 x...xY, have component functions f; : X —
Yi fori=1,... ,n, ie, f(zx) ~ (fi(z),..., fa(x)) for all z € X.
Then f is continuous if, and only if, all the f; are continuous for
1=1,...,n.

(¢) If D is a discrete space, then a function f : X xD — 'Y is continuous
if, and only if, f(-,d) : X =Y is continuous for all d € D.

Proof. FEzercise. | |

Corollary 7.16. The discriminator f : Bx X2 — X, defined by f(tt,z,y) =
x and f(f,z,y) =y, is continuous.

Proof. FEzercise. | |

Corollary 7.17. Let f : X =Y be defined by

g1(z) if h(z) Lt
f(x) =~ gaz) if h(z) | F

T otherwise,

where g1,92 : X =Y and h : X — B are continuous. Then f is continu-
ous.

Proof. From Corollary 7.16 and Lemma 7.15(a). [|

Lemma 7.18 (Least number operator). Letg : X X N = Y be con-
tinuous, and let yo € Y be such that {yo} is clopen in Y. Let f : X - N
be defined by

f(x) = pklg(z, k) L yol,

f@) Lk = Vi < k(g(z,1) I# yo)A (9(z, k) L o)
Then f is continuous.

Proof. Since N has the discrete topology, it is sufficient to show that for
any k € N, f~'({k}) is open. We have

k—1
ﬁ {z]g(z,9) I#yo} N {z | g(z, k) L yo}
]

= (o) \{wh) g k) ({yo})

i=0

1 ({E})

which is a finite intersection of open sets, since by assumption both {yo}
and Y\{yo} are open.

The rest of the proof consists of showing the continuity of the various
semantic operations defined in section 3.

462 J. V. Tucker and J. 1. Zucker

First we must specify topologies on the various spaces involved in the
operational semantics.

For a product type u = s1 X ...X 8, the space A" =4 A;, x ... x A,
has (of course) the product topology of the Ag,’s.

The state space State(A) is the (finite) product of the state spaces
States(A) for all s € Sort(X) (section 3.2), where each States(A) is an
(infinite) product of the carriers A (indexed by Vargs). Thus State(A)
is an infinite product of all the carriers Ay, and takes the product topology
of the As’s. The space State(A)U{x} is formed as the union of State(A)
and the singleton space {*}. Note that this makes the point % clopen in
State(A)U{x}.

The syntactic sets Stmt and AtSt have the discrete topology, as do
the sets B and N of Booleans and naturals.

Lemma 7.19. For t € Termy, the function [t]": State(A) — A, (sec-
tion 3.3) is continuous.

Proof. By structural induction on ¢t. Use the facts that the basic func-
tions of ¥ are continuous, and that continuity is preserved by composition
(Lemma 7.15(a)).

Recall that [t]* and the other semantic functions considered below are
actually the partial algebra analogues of the functions defined in section 3
(as discussed in section 7.2).

Lemma 7.20. The state variant function
Ao,a-o{x/a}: State(A) x A" — State(A)

(for some product type u and fized tuple of variables x : u) is continuous.
Proof. FEzxercise. i

Lemma 7.21. For S € AtSt, the function (S)*: State(A) — State(A)
(section 8.5) is continuous.

Proof. For S=skip, this is trivial. For S=x := t, use Lemmas 7.19, 7.20
and 7.15(b). [|

Lemma 7.22. The functions First and Rest? (section 3.6) are contin-
UOUS.

Proof. For First, this is trivial (a mapping with discrete domain space).
For Rest”, it is sufficient, by Lemma 7.15(c), to show that for any fixed

S € Stmt, the function
Rest”(S,-) : State(A)— Stmt

is continuous. This is proved by structural induction on S, making use (in
the case that S is a conditional or ‘while’ statement) of Corollary 7.17. H

Lemma 7.23. The one-step computation function

Computable functions on algebras 463

Comp{' : Stmt x State(A) — State(A)

(section 3.4) is continuous.

Proof. Again, by Lemma 7.15(c), it is sufficient to show that for any fixed
S € Stmt, the function Comp;i'(S, -) is continuous. But by definition,
this is (First(S))?, which is continuous by Lemma 7.22.

Lemma 7.24. The computation step function Comp” (section 3.4) is
continuous.

Proof. Again, it is sufficient to show that for any fixed S € Stmtand
n € N, the function

Comp?”(S, -,n) : State(A)— State(A)U{x}

is continuous. This is proved by induction on n, using (in the base case)
Lemma 7.23 and (in the induction step) Lemmas 7.22 and 7.23. |

Lemma 7.25. The computation length function CompLength” (section
3.4) is continuous.

Proof. This function is defined by
CompLength”(S,0) ~ un[Comp™*(S,o,n+1) | #].

Its continuity follows from Lemma 7.18, since {x} is clopen in
State(A)U{x}, and by Lemma 7.24.

Lemma 7.26. For S € Stmt, the function [[SJ]A: State(A)— State(A)
(section 3.5) is continuous.

Proof. Since
[S]*(6) ~ CompA(S, o,CompLength?(S, o)),
the result follows from Lemmas 7.24 and 7.25. [|

Lemma 7.27. For any W hile procedure P, the function P4 (section 3.6)
18 continuous.

Proof. Suppose P = proc in a out b aux cbegin S end, where a : u and
b : v, so that P* : A* — AY. Fix any state oy € State(A). The
imbedding and projection functions

la : A" — State(A) and m: State(A) — AV
defined by
ta(z) = oof{a/z} and m(o) = o[b]
are continuous. (FEzercise.) Hence the composition
TpO [[S]]AOLa : AY — AV,

is continuous. But this is just P#, independent of the choice of o¢, by the
functionality lemma (3.11) for procedures.

Theorem 7.12(a) follows from this.

464 J. V. Tucker and J. 1. Zucker

7.6 Topological characterisation of computable sets in
compact algebras

For background on compactness, see any of the books listed at the begin-
ning of section 7.

Remark 7.28 (Compactness).

(a) By Tychonoff’s theorem, the product of compact spaces is compact.
(b) The unit interval I is compact. Hence so is the product space I? for
any q.

Now we have seen (Theorem 7.13 and Corollary 7.14) that for sets:

semicomputable = open
computable = clopen.

We can reverse the direction of the implication in the second of these as-
sertions, under the assumption of compactness.

Theorem 7.29. Let A be a topological partial algebra, and let uw = s1 X ... X s, €
ProdType(X), where, for i =1,... n,

(a) As, is compact, and

(b) A, has an open subbase of W hile semicomputable sets.
Then for any relation R C A", the following are equivalent:

(i) R is While computable;
(i) R is While* computable;
(iii) R is clopen in A™.

Proof. (i)==(ii) is trivial.

(i1)==(7i1) follows from Corollary 7.14.

(#41)==(i): Note first that from assumptions (a) and (b), the product space
A" (with the product topology) is compact, and has an open subbase
of W hile semicomputable sets. Suppose now that R is clopen in A*.
Since R is open, we can write

R:UBZ»

i€l

where the B; are basic open sets. Each B; is a finite intersection of
subbasic open sets, and hence semicomputable, by Theorem 5.8.
Since R is closed, R is compact, and hence R is the union of finitely
many of the B;’s, and so R is semicomputable, by Theorem 5.8.
Repeating the above argument for R°, we infer by Post’s theorem (5.9)
that R is computable. [|

Computable functions on algebras 465

7.7 Metric partial algebra

A particular type of topological partial algebra is a metric partial algebra.
This is a pair (A, d) where d is a family of metrics (d, | s € Sort(X)), and
for each s € Sort(X), ds is a metric on A, such that for each basic function
symbol F : u — s of ¥, the function F4 : A* — A, is continuous (where
continuity of a partial function is as per Definition 7.5).

This induces or defines a topological partial algebra in the standard way.

Note that if A is standard, then the carrier B, as well as the carriers of
all equality sorts, will have the discrete metric, defined by

0 ifz=y
d(x, = ’
(z.y) {1 if x £y,

which induces the discrete topology (see Remark 7.2).

Again, we will often speak of a ‘metric algebra A’, without stating the
metric explicitly.
Example 7.30. The real algebra R, and interval algebras Z, (Examples
7.7) can be viewed (or recast) as metric algebras in an obvious way.
Remark 7.31. If A is a metric partial algebra, then for each product sort
U= 81 X...X 8y, we can define a metric d, on A*, which induces the
product topology on A", by

du((T1, - @), (Y15 Ym)) = mi%x(ds;v(muyz‘))

k3

or more generally, by the £, metric

Metric algebras will be used in our study of approximable computability
(section 7.9).

7.8 Connected domains: computability and explicit
definability

In this subsection we investigate the relationship between computability
and explicit definability for a function on a connected domain.
First we review the concept of connectedness.
Remark 7.32 (Connectedness).
(a) A topological space X is said to be connected if the only clopen subsets
of X are X and 0.
(b) Tt is easy to see that X is connected if, and only if, the only continuous

466 J. V. Tucker and J. 1. Zucker

total functions from X to B (or to any discrete space) are the constant
functions. (FExercise.)

(¢) A finite product of connected spaces is connected. (See any of the
references listed at the beginning of section 7.) Hence in a topological
Y-algebra A, if v = s; X ... %X s, € ProdType(X), and A, is
connected for i = 1,... ,m, then so is A“.

(d) The space R of the reals, with its usual topology, is connected. There-
fore, so is the product space R? for any ¢q. Hence, by Corollary 7.14,
for any topological partial algebra over R, such as the algebra R,
(Example 7.7(a)), the only While or W hile* computable subsets
of R? are RY itself and 0.

(e) Similarly, by the connectedness of the unit interval I (and hence of
I7), the only While or While* computable subsets of I? in any
interval algebra over I (Example 7.7(b)) are I? itself and 0, ...,
regardless of the choice of (continuous) functions F, ... , F} as basic
operations!

We will only develop the theory in this section for total functions on
total algebras. The essential idea is that if f is a computable total function
on A, then f is continuous, and so, by Remark 7.32(b), its definition cannot
depend non-trivially on any Boolean tests involving variables of sort s if
A; is connected. (We will make this precise below, in the proof of Lemma
7.40.)

Note that many of these results can be extended to the case of total
functions f on connected domains in partial algebras. We intend to inves-
tigate this more fully in future work. However, for now we assume in this
subsection:

Assumption 7.33. A is a total topological algebra.

Examples 7.34 (Topological total algebras on the reals). Two im-
portant total topological algebras based on the reals which will be import-
ant for our purposes are:

(a) The algebra R} (‘t’ for ‘total topological’), defined by

algebra RY

import Ro, N, B

functions ifies: B x R2 = R,
divpat : Rx N > R,

end

Here Ry is the ring of reals (R; 0, 1, +, —, x) (Example 2.5(b)), N
is the standard algebra of naturals (Example 2.23(b)), divpy is division
of reals by naturals (where division by zero is defined as zero), and
R has its usual topology.

Note that R,N does not contain the (total) Boolean-valued functions
€dreal OT |€SS/eq1, since they are not continuous (cf. the partial functions

Computable functions on algebras 467

eq, and less, of R;). Tt is therefore not an expansion of the standard
algebra R of reals (Example 2.23(c)) which contains eqres. (Compare
the N-standardisation RY of R (Example 2.27(b)) which does contain
eqreal-)

(b) (The interval algebra of reals.) Here the unit interval I = [0,1] is
included as a separate carrier of sort ‘intvl’, again with the usual
topology. This is useful for studying real continuous functions with
compact domain. (We could also choose I = [—1,1], etc.) The total
topological algebra Z}Y is defined by

algebra N

import RY
carriers I
functions iy : I - R
end

Here i is the embedding of I into R.

Remark 7.35. Note that both algebras R} and Z are strictly N-stand-
ard. The reason why N, and the function div,,;, are included in these total
algebras (unlike the partial algebras R, and Z, of 7.7) is because of their
applicability in the theory of approximable computability in section 7.9.
Definition 7.36. Let f be a function on A.

(a) f is X-explicitly definable on A if f is definable on A by a X-term.
(b) f is X*-explicitly definable on A if f is definable on A by a X*-term.

By the ¥*/X conservativity theorem (3.63)*, the two concepts defined
above are equivalent:

Proposition 7.37. A function on A is X-explicitly definable if, and only
if, it is X*-explicitly definable.
Remarks 7.38.
(a) Suppose (i) A is strictly N-standard (e.g., R and Z}V), and (ii) the
domain and range types of f do not include nat (e.g., f : R? - R or
f: 19 = R in these algebra, respectively). Then this proposition also
holds with the ‘internal’ version of £* (Remark 2.31(c)), by Remark
3.64(b).
(b) Because of Proposition 7.37, we shall usually use ‘explicit definability’
over an algebra to mean either Y- or YX*-explicit definability.

In the following lemma, A is any total algebra, not necessarily topolo-
gical.

Lemma 7.39. Explicit definability on A —> W hile computability on A.
Proof. Simple exercise. [|

In preparation for the converse direction, we need the following:

468 J. V. Tucker and J. 1. Zucker

Lemma 7.40. Suppose A" is connected. Let P : u— v be a (While or
W hile*) procedure which defines a total function on A, i.e., Halt"(P)=
A". Then the computation tree T (P) for P is essentially finite, or (more
accurately) semantically equivalent to a finite, unbranching tree.

(The computation tree for a procedure was defined in section 5.11.)

Proof. Put
P = proc in a out b aux c begin S end

where a : u, b : vand ¢ : w, and S = S;,;#;5', where S;,;; is an
initialisation of the variables b,c to their default values. Let T = T(P).
First, we show that all branches in 7 can be eliminated. Consider a branch
at a test node in 7 (Fig. 16).

Fig. 16.
This Boolean test defines a function
for + AY > B
where (putting x = a, b, c)

fo.r(a) = b{x/t)]a, 6, 8%]

ie., fpt(a) is the evaluation of b(x/t) when a is assigned to a and the
default tuples 6Y,8" are assigned to b,c respectively. The function f
is clearly (While or While*) computable, by Lemma 7.39, and hence
continuous, by Theorem 7.12. Tt is also total, since A is total by assumption
(7.33). By Remark 7.32(b) it must therefore be constant on A“. If it is
constantly tt, we can replace this test node by its left branch (i.e., delete
the node and the right branch), and if it is constantly f, we can similarly
replace the node by its right branch only.

By repeating this process, we can replace 7 by a semantically equivalent
tree 7' without any Boolean tests, and (hence) without any branching. The
tree 7' consists of a single path, which must be finite, since P4 is total by
assumption. [|

Remarks 7.41.

Computable functions on algebras 469

(a) Examples of the application of this lemma are the total topological
algebras Rfv and Z), and procedures of type real’ — real and
intvl? — real, respectively. Note that the result also holds with the
‘internal’ version of W htle* computability, by Proposition 3.47.

(b) Without the assumption that A* be connected, Lemma 7.40 is false,
i.e., it is possible for P4 to be total, but 7 (P) to be infinite. (Ezer-
cise.)

(¢) Note that any computation tree 7 is finitely branching; therefore,
by Ko6nig’s lemma, 7 is finite if, and only if, all its paths are finite.
Hence any counterexample to demonstrate (b) would be an example
of a computation tree for a procedure which defines a total function,
but nevertheless has infinite paths!

(d) The lemma also holds without the assumption that A be total, as
long as P# is total (and A" is connected). (FEzercise.)

(e) In general, this transformation of 7(P) to a finite unbranching tree
given by the proof of Lemma 7.40 is not effective in P, since it de-
pends on the evaluation of (constant) Boolean tests. If we want it
to be effective in P (as we will in the next subsection, dealing with
approximable computability), we will need a further condition on A,
such as the Boolean computability property (Definition 7.56).

Lemma 7.42. If a computation tree T (P) for a (While or While*)
procedure P is finite and unbranching, then P4 is (X-)explicitly definable
on A.

Proof. Ezercise. [|

Remark 7.43. More generally, Lemma 7.42 holds if 7 (P) is finite but
(possibly) branching. (Use the discriminator in constructing the defining
term.)

Combining Lemmas 7.39, 7.40 and 7.42, we have conditions for an equi-
valence between explicit definability and W hile computability:

Theorem 7.44. Let A be a total topological algebra, and suppose A" is
connected. Let f : A* — AV be a total function. Then the following are
equivalent:

(i) f is While computable on A;
(ii) f is While* computable on A;
(iii) f is explicitly definable on A.

Example 7.45. This theorem holds for the total topological algebras Rfv
and Z)Y, and total functions f : R — R and f : I? — I, respectively.

Note that by Remarks 7.38(a) and 7.41(a), the theorem also holds in
these algebras with ‘internal’ versions of While* computability and >*-
explicit definability.

470 J. V. Tucker and J. 1. Zucker

7.9 Approximable computability

It is often the case that functions are computed approximately, by a se-
quence of ‘polynomial approximations’. In this way we extend the class of
computable functions to that of approximably computable functions. This
theory will build on the work of section 7.8.

First we review some basic notions on convergence of sequences of func-
tions.

Definition 7.46 (Effective uniform convergence). Given a set X, a
metric space Y, a total function f : X — Y and a sequence of total
functions g, : X =Y (n=0,1,2,...), wesay that g, converges effectively
uniformly to f on X (or approzimates f effectively uniformly on X) if, and
only if, there is a total recursive function e : N — N such that for all n, k
and all x € X,

k>en) = dy(gr(z), f(z)) <27

Remark 7.47. Let M : N — N be any total recursive function which is
increasing and unbounded. Then (in the notation of Definition 7.46) the
sequence g, converges effectively uniformly to f on X if, and only if, there
is a total recursive function e : N — N such that for all n, k and all z € X,

k2>e(n) = dy(g(z), f(z)) <1/M(n).

(Ezercise.)

The theory here will be developed for total functions on metric total
algebras (defined in section 7.5). We therefore assume in this subsection:

Assumption 7.48. A is a metric total algebra.

Example 7.49 (Metric total algebras on the reals). The two total
topological algebras based on the reals given in Example 7.34 can be viewed
as metric algebras in an obvious way. The second of these, the interval
algebra Z)V, will be particularly useful here.

We will present, and compare, two notions of approximable computabil-
ity on metric total algebras: effective uniform W hile (or W hile*) approximabil-
ity (Definition 7.50) and effective Weierstrass approximability (Definition
7.54).

So suppose A is a metric total X-algebra. Let u,v € ProdType(X)
and s € Sort(X).

Definition 7.50. A total function f : A* — AV is effectively uniformly
W hile (or While*) approximable on A if there is a While (or W hile*)
procedure

P :natxu — w

on AN such that PA" is total on AN and, putting g, (z) =4f PAY (n, 2),
the sequence g,, converges to f effectively uniformly on A".

Computable functions on algebras 471

Remark 7.51. If A is N-standard, we can replace ‘AN’ by ‘4’ in the above
definition (by Proposition 3.38).

Lemma 7.52. If A" is compact, and f : A" — Ay is effectively uniformly
W hile* approzimable on A, then f is continuous.

Proof. By Theorem 7.12, the approximating functions for f are continu-
ous. The theorem follows by a standard result for uniform convergence on
compact spaces.

Remark 7.53. Note that a function from R? to R is explicitly definable
over Rév if, and only if, it is definable by a polynomial in ¢ variables over
R with rational coefficients. Similarly, a function from 77 to R is explicitly
definable over Z}" if, and only if, it is definable by a polynomial in ¢ variables
over I with rational coefficients. This explains the following terminology,
since Weierstrass-type theorems deal typically with approximations of real
functions by polynomial functions (uniformly on compact domains).

Definition 7.54 (Effective Weierstrass approximability).

(a) A total function f : A" — A, is effectively ¥-Weierstrass approx-
imable over A if, for some x : wu, there is a total computable function

h: N = "Termy (%)

such that, putting g,(z) =4 teés(h(n),x), the sequence g, con-
verges to f effectively uniformly on A™.

(b) Effective X*-Weierstrass approzimability is defined similarly, by re-
placing ‘¥’ by ‘¥*" and ‘te}és’ by ‘teés’.

(The term evaluation representing function te;:"S was defined in section 4.3.)

Proposition 7.55. A function on A is effectively - Weierstrass approz-
imable if, and only if, it is effectively X.*-Weierstrass approximable.

Proof. From a computable function

h*: N = "Term,(X*)"
we can construct a computable function

h: N = "Termy(X)”

where, for each n, h(n) and h*(n) are Gédel numbers for semantically equi-
valent terms, using the fact that the transformation of ¥*-terms to X-terms
in the conservativity theorem (the2.15.4) is effective. [|

We shall therefore usually speak of ‘effective Weierstrass approximabil-
ity’ over an algebra to mean effective Weierstrass approximability in either
sense.

472 J. V. Tucker and J. 1. Zucker

We now investigate the connection between effective uniform W hile
approximability and effective Weierstrass approximability. We are looking
for a uniform version of Theorem 7.44 (i.e., uniform over N-sequences of
functions).

To attain this uniformity, we need an extra condition in each direc-
tion: for ‘effective Weierstrass = effective uniform W hile’ (i.e., a uniform
version of Lemma 7.39) we need the TEP (section 4.7), and for ‘effective
uniform W hile = effective Weierstrass’ (i.e., a uniform version of Lemma
7.40) we need a new condition, the Boolean computability property (cf.
Remark 7.41(e)), which we now define.

Definition 7.56. A Y-algebra A has the Boolean computability property
(BCP) if for any closed X-Boolean term b, its valuation bs (= t or ff, cf.
Definition 2.11) can be effectively computed, i.e., (equivalently) there is a
recursive function

f :|—1-|(E)b001—I — IB

with f("b7) = ba.

Remark 7.57. To avoid confusion: the BCP is not a special case of the
TEP, for closed terms of sort bool. It requires the function f in Definition
7.56 to be recursive, i.e., computable over N (and B) in the sense of classical
recursion theory. The TEP entails only that f be computable over A — a
weaker assumption (in general).

Example 7.58. Both R} and ZV have the TEP and the BCP. (Ezer-
cise.)

We will see how these two conditions (TEP and BCP) are applied in
opposite directions to obtain a uniform version of Theorem 7.44.

In the following lemma, A is any total algebra, not necessarily metric
or even topological (cf. Lemma 7.39).

Lemma 7.59. Suppose A has the TEP. Given variables x : u, let
h:N—= "Term;, (X)7

be a total computable function. Then there is a While(S") procedure
P : nat X u = s such that for all x € A" and n € N,

P (n,z) = tef,(h(n),).

Proof. Simple exercise. [|

For the converse direction:

Lemma 7.60. Suppose A" is connected and A has the BCP. Let P
nat x u — v be a (While or While*) procedure over AN which defines

Computable functions on algebras 473

a total function on AN . Then there is a computable function h : N —
TTermy (X)7 such that for all x € A" and n € N,

teA (h(n),z) = PA" (n,1).

X,s

Proof. Suppose
P = proc in n,a out b aux c begin S end

where n : nat. Consider the While™ (%) procedures P, : u = v (n =
0,1,2,...) defined by

P, = procin a out b aux n, c begin n := n;S end
where 7 is the numeral for n. It is clear that for all n € N and z € A",

PAz) = PA (n,1).
By Lemmas 7.40 and 7.42, P2 is definable by a Y-term ¢,. Moreover,
the sequence (t,) is computable in n, by use of the BCP to effectivise the
transformation of the tree 7 to 7' in the construction given by the proof
of Lemma 7.40. (Note that the evaluation of a constant Boolean test can
be effected by the computation of any closed instance of the Boolean term,
which exists by the instantiation assumption.) Hence the function h defined
by
h(n) = "t,"”

is computable. [|

We now have a uniform version of Theorem 7.44:

Theorem 7.61. Suppose A" is connected and A has the TEP and BCP.
Let f : A" — A, be a total function. Then the following are equivalent:

(i) [is effectively uniformly W hile approzimable on A;
(ii) f is effectively uniformly W hile* approximable on A;
(iii) f is effectively Weierstass approzimable on A.

Proof. From Lemmas 7.59 and 7.60. [|

The requirement in the above theorem that f be total derives from the
application of Lemma 7.60, which in turn used Lemma 7.40, where totality
was required.

Remark 7.62. The equivalence of (i) and (iii) was noted for the special
case A =17N, A" = I? and A, = R in Shepherdson [1976], in the course of

proving the equivalence of these with another notion of computability on
the reals (Theorem 7.64).

474 J. V. Tucker and J. 1. Zucker

We are especially interested in computability on the reals, and, in par-
ticular, a notion of computability of functions from I? to R, developed
in Grzegorczyk [1955; 1957] and Lacombe [1955]. We repeat the version
given in Pour-El and Richards [1989], giving also, for completeness, the
definitions of computable sequences of rationals and computable reals. Fi-
nally (Theorem 7.64),we state the equivalence of this notion with the others
listed in Theorem 7.61.

Definition 7.63.

(a) A sequence (ry) of rationals is computable if there exist recursive
functions a,b,s : N = N such that, for all k, b(k) # 0 and

_ s(k) 9(F)

A double sequence of rationals is computable if it is mapped onto
a computable sequence of rationals by one of the standard recursive
pairing functions from N? onto N.

(b) A sequence (xy) of reals is computable if there is a computable double
sequence of rationals (r,;) such that

o

[Trk — Tp] < 27F for all k and n.

(¢) A total function f : I? - R is GL (or Grzegorczyk Lacombe) com-
putable if:
i is sequentially computable, i.e., f maps every computable se-
(i) f is sequentially computable, i.e., f map y computabl
quence of points in I? into a computable sequence of points in
R;

(ii) f is effectively uniformly continuous, i.e., there is a recursive
function § : N — N such that, for all z,y € I? and all n € N,

oyl <270 = [f(2) - fly)l <27

Theorem 7.64. Let f : I? — R be a total function. Then the following
are equivalent:

(i) f is effectively uniformly W hile approximable on T} ;

(ii) f is effectively uniformly W hile* approzimable on TN ;

(iii f is effectively Weierstrass approximable on T} ;

(iv) f is GL computable.

Proof. As we have noted, I? is connected and Z}¥ has the TEP and BCP.
Hence the equivalence of the first three assertions is a special case of The-
orem 7.61. The equivalence of (ii7) and (iv) is proved in detail in Pour-El
and Richards [1989]. [|

Remark 7.65 (Historical). The equivalence (iii)<(iv) was proved in
Pour-El and Caldwell [1975]. An exposition of this proof is given in Pour-El

Computable functions on algebras 475

and Richards [1989]. Shepherdson [1976] gave a proof of (i)<(iv) by (es-
sentially) noting the equivalence (7)< (iii) and reproving (iii)<>(iv). The
new features in the present treatment are: (a) the equivalence (i)< (ii7)
in a more general context (Theorem 7.61), and (b) the equivalence of (i7)
with the rest (Theorems 7.61 and 7.64).

7.10 Abstract versus concrete models for computing
on the real numbers

Our models of computation can be applied to any algebraic structure. Fur-
thermore, our models of computation are abstract: the computable sets
and functions on an algebra are isomorphism invariant. Thus to compute
on the real numbers we have only to choose an algebra A in which (any
one of the representations of) the set R of reals is a carrier set. There
are infinitely many such algebras of representations or implementations of
the reals, all with decent theories resembling the theory of the computable
functions on the naturals. However, unlike the case of the natural numbers,
it is easy to list different algebras of reals with different classes of While
computable functions (see below).

In sections 6 and 7, we have let the abstract theory dictate our devel-
opment, of computation on the reals. The goal of making an attractive and
useful connection with continuity led us to use partial algebras in section 7.
Because of the fundamental role of continuity, this partial algebra approach
is important since it enables us to relate abstract computation on the reals
with concrete computation on representations of the reals (via the natural
numbers). This we saw in section 7.4 and, especially, in section 7.9. Here
we will reflect further on the distinction between concrete and abstract,
following Tucker and Zucker [1999].

The real numbers can be built from the rational numbers, and hence the
natural numbers, in a variety of equivalent ways, such as Dedekind cuts,
Cauchy sequences, decimal expansions, etc. Thus it is natural to investigate
the computability of functions on the real numbers, starting from the theory
of computable functions on the naturals. Such an approach we term a
concrete computability theory. The key idea is that of a computable real
number. A computable real number is a number that has a computable
approximation by rational numbers; the set of computable real numbers
forms a real closed subfield of the reals. Computable functions on the reals
are functions that can be computably approximated on computable real
numbers. The study of the computability of the reals began in Turing
[1936], but only later was taken up in a systematic way, in Rice [1954]
Lacombe [1955] and Grzegorczyk [1955; 1957], for example.

The different representations of the reals are specified axiomatically,
uniquely up to isomorphism, as a complete Archimedean ordered field.
But computationally they are far from being equivalent. For instance,
representing real numbers by infinite decimals leads to the problem that the
trivial function 3z cannot be computable. If Cauchy sequences are used,

3

476 J. V. Tucker and J. 1. Zucker

however, elementary functions on the reals are computable. The problems
of representation are worse when investigating computational complexity
(see Ko [1991]).

It is a general problem to understand concrete representations of in-
finite data and, to this end, to establish a comprehensive theory of com-
puting in topological algebras. There have been a number of approaches
to computability based on concrete representations for the reals and other
topological structures. Only recently have these approaches been shown to
be equivalent.

The ideas about computable functions on the reals were generalised
to metric spaces in Moschovakis [1964] who proved some of the special
theorems of Ceitin [1959] obtained earlier with a constructive point of view.

An axiomatic approach to computability on Banach spaces is given
in Pour-El and Richards [1989]. This gives general theorems about the
independence of computation from representations, and provides a series
of remarkable results characterising computable operators.

Computability theory on N includes a theory of computation for func-
tionals on the set

B =y [N=N

which, with the product topology, is called Baire space. The theory of
computation on B is called type 2 computability theory. Klaus Weihrauch
and his collaborators, in a long series of papers, have created a fine general-
isation of the theory of numberings of countable sets (recall section 1.3) to
a theory of type 2 numberings of uncountable sets. In type 2 enumeration
theory, numberings have the following form. Let X be a topological space.
A type 2 enumeration of X is surjective partial map

a: B > X

(cf. Definition 1.1). Computability on X is analysed using type 2 com-
putability on B. See, for example, Kreitz and Weihrauch [1985] and, es-
pecially, Weihrauch [1987].

A more abstract method for the systematic study of effective approx-
imations of uncountable topological algebras has been developed by V.
Stoltenberg-Hansen and J. V. Tucker. It is based on representing topolo-
gical algebras with algebras built from domains and applying the theory of
effective domains. This method of applying domain theory to mathemat-
ical approximation problems was first developed for topological algebras
and used on completions of local rings in Stoltenberg-Hansen and Tucker
[1985; 1988]. It was further developed on universal algebras in Stoltenberg-
Hansen and Tucker [1991; 1993; 1995]; see also Stoltenberg-Hansen et al.
[1994, Chapter 8]. We will sketch the basic method; an introduction can be
found in Stoltenberg-Hansen and Tucker [1995]. Suppose A is a topologi-
cal algebra. The idea is to build an algebra R that represents A by means

Computable functions on algebras 477

of the continuous representation map « : R — A and to computably
approximate R.

We imagine building R from a set P of approximating data that is a
computable structure (in the sense of Section 1.3). Each datum in R is
approximated by some sequence of data from P. More specifically, R is a
topological space obtained from P by some form of completion process in
which P is dense in R. The key feature of this approach is that, since P
is computable, some of the approximating sequences are computable. The
subset of R consisting of the computably approximable elements forms a
basis for the computable approximation of R and hence of A. We usu-
ally use a special type of approximating structure P called a conditional
upper semilattice, and a completion process called ideal completion. This
process yields an algebraic domain. The method effectively approximates
a large class of examples: ultrametric algebras, locally compact Hausdorff
algebras (Stoltenberg-Hansen and Tucker [1995]), and complete metric al-
gebras (Blanck [1997]).

Similar ideas have been used in Edalat [1995a; 1995b], applying con-
tinuous domains to analytical questions, such as integration and measure.

The domain method is related to Weihrauch’s generalised computability
theory: a type 2 enumeration is easily shown to give a domain representa-
tion, and it is possible to construct a type 2 enumeration for a large class of
domain representations (see also Weihrauch and Schreiber [1981]). Indeed,
in Stoltenberg-Hansen and Tucker [1999b] there is a series of theorems that
show that for a wide class of spaces the concrete models based on effective
metric algebras, axiomatic computation theory, type 2 enumerability, alge-
braic domain representability, and continuous domain representability are
all equivalent. Thus there is a stable theory of computable functions based
on concrete models.

It is important to understand fully the relationship between the concrete
and abstract computability theories developed here and elsewhere: in the
one direction, we construct concrete representations of abstract models, and
in the other, we abstract from concrete models. Let us examine this more
closely.

The various concrete computability theories discussed above have a
common form, which is similar to that of the theory of computable al-
gebras (see section 1.3), one difference being that, at present, the theory of
effective computation on topological algebras is not completely settled.

Let A be a topological algebra. To compute in A, a concrete represen-
tation

a: R > A (7.1)

of A must be made where:

(1) R is a topological algebra, made from computable data types, on
which we can compute; and

478 J. V. Tucker and J. 1. Zucker

(#4) «ais a surjective continuous homomorphism that allows us to compute
on A by computing on R.

In particular, there is a set Comp,, (A4) of functions on A computable in
terms of the representation (7.1).

In general terms, when comparing abstract and concrete models of com-
putation, we may expect the following situation.

Let AbsComp(A) be a set of functions on A that is computable in an
abstract model of computation (e.g. the W hile language).

Let ConcRep(A) be a class of concrete representations of the form
a: R— A (e.g., atype 2 enumeration, or domain representation).

For o € ConcRep(A), let Comp,(A) be the set of functions on A
computable with the representation a.

Computing with a concrete representation R of an algebra A enables
more functions to be computable than with an abstract model of computa-
tion based solely on the operations. In fact, for a class of concrete models
of computation, we expect the following abstraction condition to hold:

AbsComp(A) C Nae ConcRep(a)COMPa(A).

In the case of classes of concrete models of computation that are designed
to characterise the set of functions on A that can be computed, we can
further postulate (using the generalised Church—Turing thesis, cf. section
8.9):

While*(A) C e ConcRep(A)Compﬂ(A)

(compare (1.1) of Section 1.3). In the known concrete models, the com-
putable functions are continuous, therefore the continuity of the abstract
computable functions is essential.

There is much to explore in the border between abstract and concrete
computability. In Stewart [1999] it is shown that if A is an effective metric
algebra with enumeration «, then the Whzle* approximable functions on
A are a-effective. The converse is not true. To bridge this gap, non-
deterministic choice must be added to the ‘W hzile’ language, and many-
valued functions considered (see Tucker and Zucker [2000a]).

A theory of relations (or multi-valued functions) defined by generalised
Kleene schemes has been developed in Brattka [1996; 1997]. Among several
important results is an equivalence between the abstract computability
model based on Kleene schemes and Weihrauch’s type 2 enumerability.

The distinction between abstract and concrete models made in Tucker
and Zucker [1999] has practical use in classifying the many approaches
to computability in concrete structures. However, this distinction needs
further theoretical refinement. One is reminded of the distinction between
‘internal’ and ‘external’, applied to higher type functionals, in Normann
[1982].

Computable functions on algebras 479

8 A survey of models of computability

In this section we will survey other abstract approaches to computability on
abstract algebras, and discuss two generalised Church Turing theses: one
for computability of functions, and one for specification of relations, that
draw support from theorems estabilishing the equivalence of different mod-
els. Earlier we have surveyed the origins of these abstract generalisations
(section 1.4) and also the ‘independent’ development of abstract models for
computation on real and complex numbers (sections 6 and 7.10).

The alternative methods for defining W hile computable functions are
to be found in various mathematical contexts and have various objectives.
Technically, they share the abstract setting of a single-sorted abstract struc-
ture (i.e., an algebraic or a relational structure). Here we consider their
common purpose to be the characterisation of those functions effectively
computable in an abstract setting: their generalisation to a class of many-
sorted abstract algebras is not difficult.

The first alternative approach we look at in some detail, namely: the
class of functions defined from the operations of an algebra by the ap-
plication of composition, simultaneous primitive recursion and least num-
ber search, which we call the uPR computable functions. This model of
computation was created in Tucker and Zucker [1988] with the needs of
equational and logical definability in mind. A simpler generalisation using
induction schemes was made early on, in Engeler [1968a]. We have found
the various recursion schemes on N to be a primary source of technical
ideas about functions computable on an abstract algebra A, and a useful
tool for applications.

The W hile computable functions can also be characterised by approaches
based upon

(i) machine models;
(ii
(iii

) high-level programming constructs;

)
(iv) equational calculi;

)

)

axiomatic methods;

(v) fixed-point methods for inductive definitions;
(vi) set-theoretic methods;
(vii) logical languages.

We will say something about each in turn.

8.1 Computability by function schemes

We will consider computability on N-standard algebras formalised by
schemes, which apply uniformly to all algebras of some fixed N-standard
signature Y. These generalise the schemes in Kleene [1952], for construct-
ing functions over N by starting with some basic functions and applying to
these composition, simultaneous primitive recursion and the constructive
least number operator. We write a, 3, ... for schemes.

Each scheme a will have a fixed type u — v, with domain type u and

480 J. V. Tucker and J. 1. Zucker

range type v, both product types over ¥; we will also write a : u — v.
The semantics of such a scheme, for each A e NStdAlg(Y)(the class of
N-standard X-algebras), will then be a function

[[a]]A A 5 AV

We will usually write a”? for [[a]]A.

We will consider four notions of computability by schemes: PR, PR*,
uwPR and puPR*, and see how they correspond with our basic notions of
computability involving While and For programs.

Definition 8.1 (PR computability). Given a standard signature ¥, we
will define the family

PR(Y) = (PR(Y)y—sy| u,v € ProdType(X))
where PR(X),_, is the set of schemes of type v — v over ¥. Then for
any scheme o« € PR(X),_,and any A e NStdAlg(X), we can define a

function on A:
a’ i AY 5 AV

of type u — v. These schemes generalise the schemes for primitive recursive
functions over N in Kleene [1952]. They are generated as follows.

Basic function schemes

(1) Initial functions and constants. For each Y-product type u, X-sort s
and function symbol F' € Func(X),_ s, there is a scheme F' € PR(X), 5.
On each A e NStdAlg(Y), it defines the function

FA LAY 5 A,.

(i1) Projection. For all m > 0, u = s1 X ... X 8, and ¢ with 1 <i < m,
there is a scheme U, ; € PR(X)ys,. It defines the projection function
Uf)i : A" — A,, on each A e NStdAlg(Y), where

U;ii(a:],... JTm) = X

for all (z1,...,zm) € A",
(i31) Definition by cases. For every X-sort s there is a scheme dc €

PR(X)Bxsxsss. It defines the function dc® : B x A2 — A, on each
A eNStdAlg(Y), where

r ifb=t
dch(bzy) =" !
(b, 2, y) {y b f

forall be B and z,y € A,.

Computable functions on algebras 481

Induction: Building new function schemes from old

(iv) Vectorisation. For all ¥-product types u,v, where v = 81 X ... X sy,
and for all schemes fi,...,0,, where 8; € PR(X),s, fori=1,... n,
there is a scheme a = vecty (51,...,0n) € PR(X)y—y. It defines the
function a? : A% — AY on each A € NStdAlg(X), where

for all z € A",

(v) Composition. For all ¥-product types u,v,w, and for all schemes
B € PR(Y), — vand v € PR(X),,, there is a scheme a = comp,,, ,,
(B,7) € PR(X)y_w. It defines the function a? : A" — A" on each
A e NStdAlg(Y), where

at(z) = (8" (2))

for all z € A",

(vi) Simultaneous primitive recursion. For all ¥-product types u, v, w, and
for all schemes 3 € PR(X)y_, and v € PR(Y)natxuxv—v there is a scheme
a=prim, ,(8,7) € PR(Y) ,1xu_, It defines the function a’ :Nx A —
A" on each A e NStdAlg(X), where

a*(0,2) = p4x)
a(z+1,2) = Az, z, a’(z,2))

for all z € Nand z € A",
Now, for any A e NStdAlg(Y), we define

PR(A) = (PR(4A) | u,v € ProdType(X))

uU—v

where

PR(A) = {a? | a€ PR(X)u_u}.

u—v

It turns out that a broader class of functions provides a better gen-
eralisation of the notion of primitive recursiveness, namely PR*(X¥) com-
putability.

Definition 8.2 (PR* computability). We define PR*(X) to be the
class of PR(X*) schemes for which the domain and range types are in ¥,
i.e.,

PR*(X) =4 (PR(X*) | u,v € ProdType(X) & PR(X*).

Z

uU—v

Then any such scheme a € PR*(X),_,, defines a function a” : A* — AY
on each A e NStdAlg(X).
Also PR*(A) is the set of PR*(X)-computable functions on A.

Next we add the constructive least number operator to the PR schemes.

482 J. V. Tucker and J. 1. Zucker

Definition 8.3 (uPR computability). The class of u PR schemes over
b

)

uPR(Y) = (uPR(X), = v |u,v € ProdType(X))

3

is formed by adding to the PR schemes of Definition 8.1 the following;:

(vii) Least number or u operator. For all ¥-product types w and for all
schemes 8 € p PR, ._po01 there is a scheme a=min, (8) € uPR(X), ..
It defines the function a” : A* — N on each A e NStdAlg(X), where for
all z € A",
A A _
oM @) ~ e[(3, 2) =).
hat is, a”(z) | zif, and only if, 84 (z, y) | ffor eachy < z and 4 (z, 2) | t.

Also uPR(A) is the set of wPR(X)computable functions on A.

Note that this scheme (as well as the scheme for simultaneous primitive
recursion) uses the N-standardness of the algebra. Also, uP R computable
functions are, in general, partial.

Again, however, a broader class turns out to be a better generalisation,
namely:

Definition 8.4 (uPR* computability). The class uPR*(X) consists
of those uPR(X*) schemes for which the domain and range types are in
Y, ie.,

pPR*(Y) =4 (WPR(X")ysy | u,v € ProdType(Y)) G pPR(Y").

Also, forany A e NStdAlg(Y), uPR*(A) is the set of u P R*(X)-computable
functions on A.

We now compare the above notions of scheme computability with our
notions of computability involving imperative programming languages.
They correspond as follows.

Theorem 8.5. For any N -standard X-algebra A,
(a) PR(A) = For(A),
() PR*(4) = For*(A),
(¢) nPR(A) = While(A),
(d) uPR*(A) = While*(A).
These equivalences hold uniformly over X.

‘Uniformity over ¥’ in the above theorem means (taking, for example,
case (a), and writing ForProc(Y) for the class of For(X) procedures)
that there are effective mappings

¢: PR(Y) —» ForProc(Y)

and
¢: ForProc(¥) - PR(Y)

Computable functions on algebras 483

(primitive recursive in the enumerated syntax) such that for all PR(Y)
schemes a, For(X) procedures P and N-standard ¥-algebras A,

[b(@)]" = [o]* and [p(P)]" = [P]%

and similarly for parts (b), (¢) and (d).

Similar uniformity results hold for the equivalences stated in the follow-
ing subsections.

The above theorem can be proved by the techniques of Tucker and

Zucker [1988] or Thompson [1987]. Part (a), in the classical case over N
or Z, was originally proved in Meyer and Ritchie [1967]. For an exposition
of parts (a) and (c¢) in the classical case, see, for example, Brainerd and
Landweber [1974], Kfoury et al. [1982], Davis and Weyuker [1983, Chapter
13] or Zucker and Pretorius [1993, Section 13].
Remark 8.6 (Course of values recursion). In our development above,
we considered the class PR(X) of primitive recursive schemes equivalent
to For(X) computability. From this we could obtain the class PR*(X)
of schemes equivalent to For*(X) computability by operating with the
same schemes PR, but over the extended array signature ¥*. An alter-
native approach for strengthening PR(X) is to maintain the signature X,
but strengthen the recursion scheme. More precisely, we define the class
CR(X) of course of values recursive schemes by replacing the scheme (vi)
for simultaneous primitive recursion by the scheme

(vi') Simultaneous course of values recursion. For all X-product types
u,v and positive integers d, and for all schemes 8 € CR(X)y—y, v €
CR(Z)natquvd%v and (Sl, - ,(Sd where §; € CR(Z)natxu—)nat (7 =1,... ,d),
there is a scheme

a = cvaly,y,q4(8,7,01,...,04) € CR(X)

natxu—uv"

It defines the function a? : N x A* — A" on each A e NStdAlg(Y),
where

at(0,z) = p(x)
and for z > 0
at(z,z) = a8 A9
z,x) = y(z, m, a” (0 (2,2),2),...,a” (0,4 (2,2),)),
where §; are the ‘reducing functions’ derived from §;, defined by

0i(z,x) ~ min(d(z,z), z — 1) for z > 0.

We also define the class uC R(X) of course of values recursive schemes
with the least number operator by adjoining the scheme (vii) for the p

484 J. V. Tucker and J. 1. Zucker

operator to CR(X). We then obtain the two equivalences (cf. Theorem
8.5):

Theorem 8.7. For any N -standard X-algebra A,
(a) CR(A) = PR*(A) (= For*(A))
(b) wuCR(A) = uPR*(A) (= While*(A)).

Part (b) is proved in Tucker and Zucker [1988] by showing that uC R(A) =
While*(A). (Part (a) can be proved similarly.) This proof is more delicate
than the proofs for Theorem 8.5. The direction ‘<=’ is based on local
representability and term evaluation arguments.

Remark 8.8 (Some applications of the scheme models).

(1) These can be used easily in the mathematical modelling of many de-
terministic systems, from computers (e.g. Harman and Tucker [1993]
to spatially extended non-linear dynamical systems (Holden et al.
[1992]).

(2) The uPR schemes have been adapted and extended to characterise
the computable relations on certain metric algebras, including the
algebra of reals (Brattka [1996; 1997]).

8.2 Machine models

Perhaps the most concrete approach to generalising computability theory
from N to an algebra A is that based upon models of machines that handle
data from A. To be specific, we consider some models called A-register ma-
chines that generalise, to a single-sorted relational structure A, the register
machine models on N in Shepherdson and Sturgis [1963] (see also Cutland
[1980] for a development of recursive function theory using register ma-
chines); the first A-register machines appeared in Friedman [1971a)].

Some of these register machine models are used in work on real number
computation (Herman and Isard [1970], Shepherdson [1976] and Blum et
al. [1989]) and have been developed further independently of the earlier
literature (see our survey in section 1.4).

We will consider four types of A-register machine for an arbitrary single-
sorted algebra.

A (basic) A-register machine has a fixed number of registers, each of
which can hold a single element of A. The machine can perform the basic
operations of A and decide the basic relations of A; in addition, it can
relocate data and test when two registers carry the same element.

Thus, the programming language that defines the A-register machine

has register names or variables rg,71,72,... and labels 0,1,2,..., and al-
lows instructions of the form

ra = F(ry,,...."u,)

ry = ¢

A o= Ty

if R(ry,,...,ry,) thenielse j

Computable functions on algebras 485

and, if equality is required,
if T\ =7, then i else j

wherein A, pu, p1, m € N; 4,7 € N are considered as labels; and F,c, R are
symbols for a basic operation, constant and relation, respectively.

A program for an A-register machine is called, in Friedman [1971a], a
finite algorithmic procedure or fap, and it has the form of a finite numbered
or labelled list of A-register machine instructions Iy, . .. , I,. Given a formal
definition of a machine state, containing the contents of registers and the
label of a current instruction, is it easy to formalise an operational seman-
tics for the finite algorithmic procedures — one in which the instructions
are given their conventional meaning.

On setting conventions for input and output registers we obtain the class
FAP(A) of all partial functions on A computable by all finite algorithmic
procedures on A-register machines.

Secondly, an A-register machine with counting is an A-register machine
enhanced with a fixed, finite number of counting registers. Each counting
register can hold a single element of N and the machine is able to put 0
into a counting register, add or subtract 1 from a counting register, and
test whether two counting registers contain the same number. Thus, an
A-register machine with counting is an A-register machine augmented by
a conventional register machine on N. (Implicitly, this is concerned with
the process of N-standardisation of the algebra A by the addition of the
natural numbers N.)

The programming language that defines the A-register machine with

counting has new variables c¢g, ¢y, ca,... for counting registers, and new
instructions

C) ‘= 0

ey = ¢y +1

ey = ¢y —1

if cx = ¢, then i else j

for \,u € N and i,j € N considered as labels.

A program for an A-register machine with counting is called a finite
algorithmic procedure with counting or fapC, and is a finite numbered list
of machine instructions. Once again it is easy to give a formal semantics
for the language and to rigorously define the class FAPC (A) of all partial
functions on A computable by A-register machines with counting. The point
of this model is that it enhances computation on the abstract algebra A with
computation on N.

The A-register machine and A-register machine with counting, and their
classes of partial functions FAP(A) and FAPC(A), were introduced and
studied in Friedman [1971a).

Next, an A-register machine with stacking is an A-register machine aug-
mented with a stacking device into which the entire contents of the algebraic

486 J. V. Tucker and J. 1. Zucker

registers of the A-register machine can be copied at various points in the
course of a computation.

The programming language that defines the A-register machine with
stacking has a new variable s for the store or stack and the new instructions:

stack (i,7g,... ,7m)
restore (7o, ... ,7j—1,Tj41s--+ sTm)
if s = empty then k else marker.

Here i,j,k € N are considered as labels, and the machine has m reg-
isters and one stack. Intuitively, what they mean for the machine is as
follows. The ‘stack’ instruction commands the device to copy the contents
of all the registers and store at the top of a (single) stack, along with
the instruction label 4. The ‘restore’ instruction returns to the registers
TQ,.-. ,Tj—1,Tj+1,-.. ,Tm the values stored at the top of the stack; the
value of r; is lost (in order not to destroy the result of the subcomputation
preceding the ‘restore’ instruction), as is the instruction label. The test
instruction passes control to instruction k if the stack is empty and to the
instruction indexed by the label contained in the topmost element of the
stack otherwise.

A program for an A-register machine with stacking is called a finite
algorithmic procedure with stacking or fapS, and is a finite numbered list of
machine instructions. On formalising the semantics for the language, it is
easy to define the class FAPS(A) of all partial functions on A computable
by A-register machines with stacking.

Of course there are alternative designs for a stacking device of equivalent
computational power. The point of this model is that first, it enhances the
bounded finite algebraic memory available in computation by an A-register
machine with unbounded finite algebraic storage, and secondly, it does not
enable us to simulate counting with natural numbers.

Finally, an A-register machine with counting and stacking is an A-
register machine augmented by both a counting and stacking device. A
program for such a machine is called a finite algorithmic procedure with
counting and stacking or fapCS, and the class of all partial functions on A
computable by such machines is denoted FAPCS(A). This stack device
and its associated classes of functions FAPS(A) and FAPCS(A) were
introduced in Moldestad et al. [1980a; 1980b].

Of course, in the case of computability of the natural numbers A = N
we have

FAP(N) = FAPC(N) = FAPS(N) = FAPCS(N)

but in the abstract setting we have:

Theorem 8.9. For any single-sorted algebra A, the inclusion relationship
between the sets of functions is shown in Fig 17. Moreover, there exists an
algebra on which the above inclusions are strict.

Computable functions on algebras 487

/ FAPC(A) \
FAP(A) FAPCS(A)
\) /

FAPS(

Fig. 17.

This theorem is taken from Moldestad et al. [1980b]. It and other
results about these models make clear the fact that, when computing in
the abstract setting of an algebra A, adding

e computation on N
e unbounded algebraic memory over A

both separately, and together, increases the computational power of the
formalism.

The connection with the imperative models is easily described. Assum-
ing the straightforward generalisation of the machine models to accom-
modate many-sorted algebra, we have:

Theorem 8.10. For any standard X -algebra A,

While(A) = FAP(A),
WhileN(A) = FAPC(A),
While*(A) = FAPCS(A).

Three other machine model formalisms of interest are the finite algo-
rithmic procedures with index registers (fapIR) and countable algorithmic
procedures (cap) in Shepherdson [1973] and the generalised Turing algo-
rithms (gTa) in Friedman [1971a], all equivalent to W hile* computability.
In the obvious notation, we have:

Theorem 8.11. For any standard X -algebra A,

FAPCS(A) =GTA(A) = FAPIR(A) = CAP(A) = While*(A).
In addition, it is convenient at this point to mention Friedman’s effect-

ive definitional schemes (eds) which are a simple and transparent technical

device for defining and analysing computability on A. The effective defini-

tional schemes have found a useful role in the logic of programs (see Tiuryn
[1981b], for example).

Theorem 8.12. For any standard X -algebra A,
FAPCS(A) = EDS(A) = While*(A).

488 J. V. Tucker and J. 1. Zucker

8.3 High-level programming constructs; program
schemes

Practical programming languages, especially imperative languages, are a
rich source of theoretical ideas about computation. However, their devel-
opment, from the 1940s to the present, has not had a dominant role in
shaping computability theories. The development of high-level constructs,
abstract data types and non-deterministic constructs for algorithmic spec-
ification is clearly relevant.

The study of computability via machine models is akin to low-level
programming, where there is a simple correspondence between instructions
and machine operations. In high-level programming, abstractions away
from the machine are achieved wherein a program statement or command
can set off a sequence of machine operations. This break with program-
ming a specific architecture increases the practical need for mathematical
semantics. All our algebraic models are high-level since they are based on
abstract data types that abstract from the data representations and their
algorithms.

We have, of course, already studied some high-level constructs in the
languages for W hile and W hile* programs. However, in contemplating
high-level constructs with regard to generalising computability theory, close
attention must be paid to the ideas about algorithms that motivate their
introduction. Clearly, recursion and iteration are distinct tools for defining
algorithms in connection with procedures. Non-deterministic constructs,
by contrast, are proposed as tools for algorithm specification, in order to
abstract away from algorithmic implementation. Non-deterministic control
and data commands, such as those in the guarded command language

if by = Si,..., [br — S fi
doby = Sif,..., [bx — Sk od

(Dijkstra [1976]), or the non-deterministic assignment

z = y.9(z,y),

where ® is some condition relating y to z (Back [1983]), or the random
assignment
r =7

(Apt and Plotkin [1986]), are needed to express appropriately the design
of an algorithm. We have examined some of these non-deterministic con-
structs in section 5, where we showed, for example, that the random as-
signment defines projectively semicomputable sets.

In building a generalisation, it is prudent to concentrate on making a
comprehensive deterministic theory, having clear relations with ‘classical’
computability theory on N, and its applications to other data types such as
R. Technically, to appreciate non-deterministic constructs, a deterministic
theory is a necessary prerequisite. Unfortunately, there are unanswered

Computable functions on algebras 489

questions as to the nature of the relationships between non-determinism,
specification and non-computability, and (correspondingly) between deter-
minism, implementation and computability. The programming of com-
putations involving non-deterministic aspects of control, concurrency and
communication is also an important topic that we leave unexplored. (We
have dealt with synchronous concurrency in concurrent assignments and
in the scheme of simultaneous primitive recursion in section 8.1.) We will
return to the broad theme of programming languages and computability
theory in section 8.9.

Here we will briefly draw attention to a body of early work on the
computational power of elementary control and data structures.

The systematic classification of programming features such as itera-
tions, recursions, ‘goto’s, arrays, stacks, queues and lists seems to have
begun in earnest with Luckham et al. [1970] and Paterson and Hewitt
[1970]. The central notions are that of a program scheme and its interpre-
tation in a model, and that of the equivalence of program schemes in all
models. These ideas may be considered as technical precursors of the corre-
sponding syntactic and semantic concepts we use here, namely: program,
state transformer semantics, abstract data type, equivalence on K. The
importance of a general syntactic notion of a program scheme that can be
applied to abstract structures was discussed in Luckham and Park [1964]
and Engeler [1967]. We note that in the latter paper computation over
arbitrary classes of structures is treated in the course of analysing program
termination by means of logical formulae from a simple fragment of £, .;
Engeler [1967] is the origin of algorithmic and dynamic logic.

The study of the power of programming features came to be known
as program schematology. Like program verification, the subject was con-
temporary with, but independent of, research on programming language
semantics. The necessity of introducing abstract structures in such a clas-
sification project is easy to understand. From the point of view of program-
ming theory the equivalence of most algorithmic formalisms for computing
on N with the partial recursive functions on N is a mixed blessing. This
stability of the computational models illuminates our perception of the
scope and limits of computer languages and architectures, and has many
technical applications in the mathematical theory of computation. How-
ever, the restriction to N fails to support an analysis of the intuitive dif-
ferences between programming with and without arrays, ‘goto’s, Boolean
variables, and so forth.

The research on schematology has produced several program constructs
and languages that are weaker than or equivalent to those of the four basic
machine models discussed in section 8.2. We refer the reader to Greibach
[1975] for a general introduction to schematology and, in particular, to
Shepherdson [1985] for a detailed discussion of many important results and
their relation to machine models. Other significant references are Constable
and Gries [1972], Chandra [1973] and Chandra and Manna [1972].

490 J. V. Tucker and J. 1. Zucker

High-level imperative programming models were slow to enter main-
stream computability theory, despite attention being drawn to the value
of this approach in Scott [1967]. Some early textbooks to feature such
programming models were Brainerd and Landweber [1974], Manna, [1974],
Bird [1976] and Clark and Cowell [1976].

8.4 Axiomatic methods

In an axiomatic method one defines the concept of a computation theory as
aset ©(A) of partial functions on an algebra A having some of the essential
properties of the set of partial recursive functions on N. To take an example,
©(A) can be required to contain the basic algebraic operators of A4; be
closed under operations such as composition; and, in particular, possess
an enumeration for which appropriate universality and s-m-n properties
(see, for example, Rogers [1967]) are true. Thus in section 4 we saw that
While*(A) is a computation theory in this sense.

It is important to note that computation theory definitions, of which
there are a number of equivalent examples, require N to be part of the
underlying structures A for the indexing of functions:

aziomatic methods specifically address N -standard structures
and classes of N-standard structures.

With reference to the definition sketched above, the following theorem
is of importance here:

Theorem 8.13. The set W hile*(A) of W hile* computable functions on
an N-standard algebra A is the smallest set of partial functions on A to
satisfy the azioms of a computation theory; in consequence, W hile*(A) is
a subset of every computational theory ©(A) on A.

The definition of a computation theory used here is from Fenstad [1975;
1980] which take up the ideas in Moschovakis [1971]. We note that

the W hile computable functions coincide with the prime com-
putable functions of Moschovakis.

Theorem 8.13 can be deduced using work in Moldestad et al. [1980b];
see also Fenstad [1980, Chapter 0].

The development of axiomatisations of computable functions includes
Strong [1968] and Wagner [1969]. The axiomatisation of subrecursive func-
tions is tackled in Heaton and Wainer [1996].

8.5 Equational definability

One of the earliest formalisations of effective computability was by means of
functions effectively reckonable in an equational calculus, a method known
as equational or Herbrand Gddel Kleene definability. This was the method
employed to define the recursive functions in important works such as
Church [1936] and Kleene [1952].

Computable functions on algebras 491

Equational definability may be generalised from N to an arbitrary al-
gebra A with the natural result that, if A is an N-standard structure,
equational definability is equivalent with W hile* computability. The first
attempt at such a generalisation is Lambert [1968]. We sketch a simpler
treatment from Moldestad and Tucker [1981], adapted to many-sorted al-
gebras.

First we choose a language Eqn= Eqn(X) for defining equations over
a signature ¥ and transforming them in simple deductions. Let Fgn

have constants a, b, c,... and variables x,y, z,... for data; and variables
p,q,r,... for functions. Using the basic operations of the signature, we
inductively define Y-terms ¢, ... in the usual way. An equation in Eqn is
an expression e = (t; =), where t; and ¢, are terms of the same sort.
A deduction of an equation e from a set of equations F is alist eq,... ,eg
of equations such that for each i = 1,... ,k one of the following holds:
(1) ei € E;

(i7) e; is obtained from e; for some j < i by replacing every occurrence
of a variable z in e; by a constant c;

(i9i) e; is obtained from e; for some j < i by replacing at least one oc-
currence of a subterm ¢ of e; by a constant ¢, where £ has no free
variables, and for some j' < i, e; = (t = ¢).

An equation e is defined to be formally derivable or deducible from E,
written E'F e, if there is a deduction of e from E.

Thus, it remains to formulate equational deductions with respect to a
given algebra A of signature ¥ in order to formulate what it means for a
function f on A to be equationally definable on A. This is essentially giving
our system a semantics. The first semantical problem is to allow the basic
operations of A to play a role in deductions from a set of equations E, and
this is accomplished by permitting

Erpler,...,cp) = c¢ if FA(cf,... ,cfl‘) =t

This is the reason why we add the constants to Eqn.
The second semantical problem is to prove a single-valuedness property
of the form:

Erplei,...,cpn) = a1 and Ebp(er,...,ch) = a2 = a1 = as.

This done, we can define f: A* — A to be equationally definable over A
if for some finite set of equations E and some function symbol p,
Erplei,....cp) = ¢ = f(cf',...,c) =

for all constants of Egn.
Let Eqn(A) denote the set of all equationally definable functions on A.

Theorem 8.14.

492 J. V. Tucker and J. 1. Zucker

(a) For any standard Y-algebra A,
Egn(A) = FAPS(A).
(b) For any N -standard Y -algebra A,
Egqn(A) = FAPCS(A) = While*(A).

8.6 Inductive definitions and fixed-point methods

The familiar definition of the recursive functions on N based on the prim-
itive recursion scheme of Dedekind and Godel, and the least number op-
erator of Kleene, appeared in Kleene [1936]. Kleene provided a thorough
revision of the process of recursion on N sufficiently general to include re-
cursion in objects of higher function type: see Kleene [1959; 1963]. In
Platek [1966] there is an abstract account of higher-type recursion.

Studies of higher type inductive definitions have been taken up by D.
Scott and Y. Ershov, whose work forms part of domain theory (see, for
example, Stoltenberg-Hansen et al. [1994]). The central technical notion
is that of fixed points of higher type operators.

In Moldestad et al. [1980a] Platek’s methods were analysed and classi-
fied in terms of the machine models of section 8.2. Like equational defin-
ability, definability by fixed-point operators applies to an arbitrary algebra
A and is there equivalent to fapS computability. Thus, this notion coincides
with W hale* definability in an N-standard structure. We will sketch the
method (adapted to many-sorted algebras).

First we construct the language FPD= FPD(X) for defining fixed-
point operators. Let FPD have the data and function variables of Eqn,
the equation language of section 8.5. Using the basic operations of the
signature ¥ and the A-abstraction notation, we create a set of fized-point
terms of both data and function types:

t u= x|p|F|T{,... ta) | fP[AD- Y1, ,yn-t].

Here p is a function variable, F' is a basic operation of X, T is a term of
type function, t1,... ,t, and t are terms of type data, and y,,... ,y, are
data variables.

Each term defines a function on each algebra A of signature ¥. The
definition of the semantics of terms is by induction on their construction,
the terms of the form

A Y1, yn -]

being assigned the unique least fixed point of the continuous monotonic
operator defined by the notation Ap-y1,...,yn - t.

A function f: A" — A is definable by fized-point terms over A if there
is a term ¢ such that for all x € A", f(z) ~ t(x).

Let FPD(A)denote the set of all functions definable by fixed-point
terms over A.

Computable functions on algebras 493

Theorem 8.15.
(a) For any standard X-algebra A,
FPD(A) = FAPS(A).
(b) For any N -standard X -algebra A,
FPD(A) = FAPCS(A) = While*(A).

For more details see Moldestad et al. [1980a).

An approach to computation on abstract data types, alternative to that
presented in this chapter, is the development in Feferman [1992a; 1992b)]
of a theory of abstract computation procedures, defined by least fized-point
schemes, influenced by Moschovakis [1984; 1989]. The ‘abstract data types’
here are classes of structures similar to our standard partial many-sorted
algebras, abstract in the sense that they are closed under isomorphism,
and the computation procedures are abstract in the sense that they are
isomorphism invariant on the data types; cf. Theorem 3.24. Types (or
sorts) and operations can have an intensional or extensional interpretation.

Another treatment of inductive definitions (also influenced by Moschov-
akis) and a survey of their connections with machine models is given in
Hinman [1999].

8.7 Set recursion

Given a structure on A one can construct a set-theoretic hierarchy H(A)
over A, taking A as so-called urelements, and, depending upon the con-
struction, develop a recursion theory on H(A). This is the methodology in
Normann [1978] where combinatorial operations on sets are employed to
make a generalisation of computability. In Moldestad and Tucker [1981],
Normann’s set recursion schemes are applied to the domain HF(A), the
set of hereditarily finite subsets, so as to invest the general construction
with computational content. H F(A) is inductively defined as follows:

(i) AC HF(A);

(i7) if ai,... ,a, € HF(A)then {aj,...,a,} € HF(A), n > 0.

Thus,) € HF(A), a copy of N is imbedded in HF(A), and copies
of A" (n = 2,3,...) are embedded in HF(A). From computability on
HF(A) a notion of computability on A, set recursiveness, is easily ob-
tained. Then, writing SR(A) for the class of set-recursive functions on A,
we have:

Theorem 8.16. For any standard Y.-algebra A,
SR(A) = While*(A).

8.8 A generalised Church-Turing thesis for comput-
ability

The W hile* computable functions are a mathematically interesting and

useful generalisation of the partial recursive functions on N to abstract

494 J. V. Tucker and J. 1. Zucker

many-sorted algebras A and classes K of such algebras. Do they also give
rise to an interesting and useful generalisation to A and K of the Church—
Turing thesis, concerning effective computability on N?

They do; though this answer is difficult to explain fully and briefly. In
this section we will only sketch some reasons. The issues are discussed in
more detail in Tucker and Zucker [1988].

Consider the following naive attempt at a generalisation of the Church—
Turing thesis.

Thesis 8.17 (A naive generalised Church—Turing thesis for
computability).

(a) The functions ‘effectively computable’ on a many-sorted algebra A
are precisely the functions While* computable on A.

(b) The families of functions ‘effectively computable’ uniformly over a
class K of such algebras are precisely the families of functions uni-
formly W hile* computable over K.

Consider now: what can be meant by ‘effective computability’ on an
abstract algebra or class of algebras?

In the standard situation of calculation with N, the idea of effective
computability is complicated, as it is made up from many philosophical
and mathematical ideas about the nature of finite computation with fi-
nite or concrete elements. For example, its analysis raises questions about
the mechanical representation and manipulation of finite symbols; about
the equivalence of data representations; and about the formalisation of
constituent concepts such as algorithm; deterministic procedure; mechan-
ical procedure; computer program; programming language; formal system;
machine; and the functions definable by these entities.

The idea of effective computability is particularly deep and valuable
because of the close relationships that can be shown to exist between its
distinct constituent concepts. However, only some of these constituent
concepts can be reinterpreted or generalised to work in an abstract setting;
and hence the general concept, and term, of ‘effective computability’ does
not belong in a generalisation of the Church—Turing thesis. In addition,
since finite computation on finite data is truly a fundamental phenomenon,
it is approriate to preserve the term with its established special meaning.

In seeking a generalisation of the Church Turing thesis we are trying
to make explicit certain primary informal concepts that are formalised by
the technical definitions, and hence to clarify the nature and use of the
computable functions.

We will start by trying to clarify the nature and use of abstract struc-
tures. There are three points of view from which to consider the step from
concrete structures to abstract structures, and hence three points of view
from which to consider the W hile* computable functions.

First, there is abstract algebra, which is a theory of calculation based
upon the ‘behaviour’ of elements in calculations without reference to their

Computable functions on algebras 495

‘nature’. This abstraction is achieved through the concept of isomorphism
between concrete structures; an abstract algebra A is ‘a concrete algebra
considered unique only up to isomorphism’.

Secondly, there is formal logic, which is a theory about the scope and
limits of axiomatisations and formal reasonings. Here structures and classes
of structures are used to discuss formal systems and axiomatic theories in
terms of consistency, soundness, completeness, and so on.

Thirdly, in programming language theory, there is data type theory,
which is about data types that users may care to define and that arise
independently of programming languages. Here structures are employed
to discuss the semantics of data types, and isomorphisms are employed
to make the semantics independent of implementations. In addition, ax-
iomatic theories are employed to discuss their specifications and implemen-
tation.

Data type theory is built upon and developed from the first two sub-
jects: it is our main point of view.

Computation in each of the three cases is thought of slightly differently.
In algebra, it is natural to think informally of algorithms built from the
basic operations that compute functions and sets in algebras, or over classes
of algebras uniformly. In formal logic, it is natural to think of formulae that
define functions and sets, and their manipulation by algorithms. In data
type theory, we use programming languages to define a computation. Each
of these theories, because of its special concerns and technical emphasis,
leads to its own theory of computability on abstract structures.

Suppose, for example, the W hile* computable functions are considered
with the needs of doing algebra in mind. Then the context of studying
algorithms and decision problems for algebraic structures (groups, rings
and fields, etc.) leads to a formalisation of a generalised Church—Turing
thesis tailored to the language and use of an algebraist:

Thesis 8.18 (Generalised Church—Turing thesis for algebraic com-
putability).

(a) The functions computable by finite deterministic algebraic algorithms
on a many-sorted algebra A are precisely the functions While*
computable on A.

(b) The families of functions uniformly so computable over a class K
of such algebras are precisely the families of functions uniformly
W hile* computable over K.

An account of computability on abstract structures from the point of view
of algebra is given in Tucker [1980].

Now suppose that the While* computable functions are considered
with the needs of computer science in mind. The context of studies of data
types, programming and specification constructs, etc., leads to a formula-
tion tailored to the language and use of a computer scientist:

Thesis 8.19 (Generalised Church—Turing thesis for programming

496 J. V. Tucker and J. 1. Zucker

languages). Consider a deterministic programming language over an ab-
stract data type dt.

(a) The functions that can be programmed in the language on an algebra
A which represents an implementation of dt, are the same as the
functions While* programmable on A.

(b) The families of functions that can be programmed in the language
uniformy over a class K of implementations of dt, are the same as
the families of functions W hile* programmable over K.

The thesis has been discussed in Tucker and Zucker [1988].

The logical view of computable functions and sets, with its focus on
axiomatic theories and reasoning, is a more abstract view of computation
than the view from algebra and data type theory, with their focus on al-
gorithms and programs. The logical view is directed at the specification of
computations.

8.9 A Church—Turing thesis for specification

In the course of our study, we have met logical and non-deterministic lan-
guages that define in a natural way the projectively computable sets (and,
equivalently, the projectively semicomputable sets). These languages are
motivated by the wish to specify problems and computations, and to leave
open all or some of the details of the programs that will solve the problems
and perform the computations.

To better understand the role of the projective computable sets, we
introduce the idea of an algorithmic specification language which includes
some ideas about non-deterministic programming languages. The prop-
erties that characterise an algorithmic specification language are forms of
algorithmically validating a specification. An algorithmic specification lan-
guage is an informal concept that is intended to complement that of a
deterministic programming language. The problem we consider is that of
formalising the informal notion of an algorithmic specification language by
means of a generalised Church Turing thesis for specification, based on
projectively computable sets.

There are four basic components to a computation:

(0) a data type;

(1) a specification of a task to be performed or problem to be solved;

(2) specifications for algorithms whose input/output behaviour accom-
plishes the task or solves the problem; and

(3) algorithms with appropriate i/o behaviour.

We model mathematically these components of a computation, by assuming
that:

(0°) a data type is a many-sorted algebra, or class of algebras;
(1°) a specification of the task or problem is defined by a relation on the
algebra;

Computable functions on algebras 497

(2°) specifications of algorithms for the task or problem are defined by
functions on the algebra; and

(3°) algorithms are defined by programs that compute functions on the
algebra.

Usually, the relations, functions and programs are defined uniformly over
a class of algebras.
Given a specification
S C A" x A?

on an algebra A, the taskis: for all 2 € A", to calculate all or some y € AY
such that R(z,y) holds, if any such y exist. The set

D =4 {r e A" [3yR(z,y)}

may be called the domain of the task.
Thus the task of computing the relation can be expressed in the follow-
ing functional form:

R: A" = P(AY)
(where P(A"Y) is the power set of A”), defined for = € A" by

R(z) =ar {y€ A" | R(z,y)}.

Quite commonly, the task is ‘simplified’ to computing one or more so-called
selection functions for the relation.

Definition 8.20 (Selection functions). Let R C A" x AY be a relation.
A function
fi A* = AY
is a selection function for R if
(i) ValByR(z.y) = f() | and R(z, f(x))]; and
(i) Ve[f(z) I = R(z, f(z))].

Notice that the domain and range of a selection function f are projections:
dom(f) = {zeA"|3yR(z,y)}.
ran(f) = {yeA"|32R(z,y)}.

Note also that

any partial function f is definable as the unique selection func-

tion for its graph G(f) = {(x.y) | f(x) L y}.

Other sets of use in specification theory can be derived from these sets
(e.g. weakest preconditions and strongest postconditions — see Tucker and
Zucker [1988]).

498 J. V. Tucker and J. 1. Zucker

To define and reason about computations on a data type, we must define
a class of relations, functions and programs on an algebra A. The key ideas
are those of formal languages that define functions, called programming
languages, and those that define relations, called specification languages.

The relation between a programming language P and a specification
language S is that of satisfaction

EF C PxS
defined for p € Pand s € Shy

PES = the function defined by p is a selection function
for the relation defined by s.

What properties of relations are needed for a specification language?

We propose two properties. The first is that it should be possible to
‘validate’ (‘test’, ‘check’, ...) data against each specification. A basic ques-
tion is, therefore:

For any given data x and y, can we validate whether or not the
given y is a valid output for the given input = ?

We define the following informal concept:

Definition 8.21 (Algorithmic specification language). An algorith-
mic specification language is a language in which any data for any task can
be validated.

The process of validation depends on the relations defined by the spe-
cification. Our theory of computability on algebras presents three cases:

Definition 8.22 (Algorithmic validation of specifications). Let S
be a specification language.

(a) S has decidable validation if each relation it defines is computable.

(b) S has semidecidable validation if each relation it defines is semicom-
putable.

(¢) S has projectively decidable validation if each relation it defines is
projectively computable.

The second property is ‘adequacy’. A specification language may be
quite expressive, containing specifications for tasks for which there does not
exist an algorithmic solution. It should, however, be capable of expressing
at least all those tasks which are algorithmic. We therefore define the
following informal concept:

Definition 8.23 (Adequate specification language). A specification
language is adequate if all computations can be specified in it.

Computable functions on algebras 499

To specify a function is to define a relation for which it is a selection
function. Recall that any function is definable as the unique selection func-
tion for its graph. Consider the adequacy of an algorithmic specification
language with each of the three types of algorithmic validation above.

(a) If a specification language has decidable validation then not every par-
tial computable function can be specified uniquely, since the graph of
a partial computable function need not be computable (by a standard
result of classical computation theory).

(b) If a specification language has semidecidable validation then every
partial computable function can be specified uniquely, since the graph
of a partial computable function is semicomputable.

(¢) Thus a specification language with projectively decidable validation is
also adequate for the definition of all possible computations.

Furthermore, there are many occasions when the adequacy of a specifi-
cation formalism demands greater expressiveness. The problem is to allow
a class of specifications that extends that of the semicomputable relations,
and yet retains some chance of an effective test or check.

For example, let £ C A be a computable subset of an algebra A and
consider the membership relation for the subalgebra (E) of A generated
by F; using established notations, this is defined by:

a €(E) & 3k >03ey,...,ex € Et € Term(X)[TE(t,e1,...,ex) = al.

This relation is not semicomputable, nor even projectively computable over
A, but projectively computable over A*.

In examples of the above kind, the computation and specification of y
from z involves a finite sequence of auxiliary data z* that is ‘hidden’ from
R, but can be recovered from the specification and algorithm. This type
of specification R has the form

R(z,y) & 32" Ro(x,y,z"%),

where Ry is computable. That is, R is projectively computable (or semi-
computable) over A*.

This is a weak form of the concept of a specification that can be valid-
ated algorithmically.

We have seen a number of methods, involving logical and non-deterministic
languages, all of which define the projections of computable sets (or, equiv-
alently, of semicomputable sets); we recall them briefly:

(1) Projections in first-order languages. Consider the first-order lan-
guages

Lang(Y) and Lang(X*)

over the signatures ¥ and X* with their usual semantics. The rela-
tions that are ¥; definable in these languages are the projectively
W hile and W hile* computable sets.

500 J. V. Tucker and J. 1. Zucker

(ii) Horn clause languages. In Tucker and Zucker [1989; 1992a] we stud-
ied a generalisation of logic programming languages based on Horn
clauses, and a semantics based on resolution. The relations definable
in this specification-cum-programming language were the projectively
W hile* computable sets. The logic programming model was shown
to be equivalent to certain classes of logically definable functions (Fit-
ting [1981]).

(iii) Other definabilities. In Fitting [1981] the relations are shown to be
equivalent to those definable in Montague [1968]. Hence, by work in
Gordon [1970], these all coincide with the search computable func-
tions of Moschovakis [1969a]. A summary of these results is contained
in Tucker and Zucker [1988, section 7].

(iv) Non-deterministic programming languages. Finally, recall from sec-
tion 5 that we have seen that constructs allowing non-deterministic
choices of data, state, or control in programming languages also lead
to the projectively computable sets. In particular, the models

W hile* computability with initialisation and
W hile* computability with random assignments

were analysed.

The equivalence results suggest that the concepts of projective com-
putablity and semicomputability are stable in the analysis of models of
specification. The concept of an algorithmic specification language in its
weak form, together with all the above equivalence results, leads us to for-
mulate the following generalised Church Turing thesis for specification, to
complement that for computation:

Thesis 8.24 (Generalised Church—Turing thesis for specification
on abstract data types). Consider an adequate algorithmic specification
language S over an abstract data type dt.

(a) The relations on a many-sorted algebra A implementing dt that can
be specified in S are precisely the projectively While* computable
relations on A.

(b) The families of relations over a class K of such algebras implementing
dt, that can be specified in S, uniformly over K, are precisely the

families of uniformly projectively W hile* computable relations over
K.

This thesis has been discussed in Tucker and Zucker [1988].

8.10 Some other applications

Computations on many-sorted algebras lead to many investigations and
applications. We conclude by mentioning two.

Computable functions on algebras 501

(i) Provably computable selection functions. In this chapter we have not
dealt with proof systems, or the connections between provability and com-
putability. In Tucker and Zucker [1988] we developed one such connection,
namely the use of proof systems for verifying program correctness.

Another connection is based on classical proof theory, and its applica-
tion to computability on the naturals. In Tucker et al. [1990] and Tucker
and Zucker [1993] we investigated the generalisation of a particular problem
in classical proof theory to the context of N-standard many-sorted signa-
tures and algebras. Specifically, we developed classical and intuitionistic
formal systems for theories over N-standard signatures ¥. We showed, in
the case of universal theories (i.e., theories with axioms containing only
universal quantifiers) that, in either of these systems:

if an existential assertion is provable, then it has a PR*(X) selection
function.

(Recall the discussion of selection functions in section 8.9.) It follows that

if a uPR*(X) function scheme is provably total, then it is ex-
tensionally equivalent over ¥ to a PR*(X) scheme.

The methods are proof-theoretical, involving cut elimination. These results
generalise to an abstract setting previous results of Parsons [1971; 1972] and
Mints [1973] over the natural numbers.
(11) Computation on stream algebras. A stream over a set A is a sequence
of data from A

., oa(t), ...
indexed by time ¢ € T. Discrete time T is modelled by the naturals N,
and the space of all streams over A is the set [N — A] of functions from N
to A.

Streams are ubiquitous in computing. In hardware, where clocking
and timing are important, most systems process streams (see McEvoy and
Tucker [1990] and Méller and Tucker [1998]). Models of stream computa-
tion are needed for any wide spectrum specification method such as FOCUS
(see Broy et al. [1993]).

A general theory of stream processing is given in Stephens [1997].

There is a strong need to incorporate stream computation in a gen-
eral theory of computation on many-sorted algebras. Some first steps in
this direction, partly motivated by technical questions arising in an al-
gebraic study of stream processing by synchronous concurrent algorithms
(see Thompson and Tucker [1991]), were taken in Tucker and Zucker [1994;
1998].

Another approach to this problem has been developed in Feferman
[1996], within (an extensional version of) the framework of computation
theory on abstract data types presented in Feferman [1992a; 1992b], as
summarised in section 8.6.

The relationship between these two theories of stream computations
remains to be investigated.

502 J. V. Tucker and J. 1. Zucker

We conclude with a brief survey of the former approach (Tucker and
Zucker [1994]). Here we consider the following problem: Given a algebra
A (which we suppose for notational simplicity is single-sorted), consider
stream transformations of the form

f: IN>A™ = [N = 4]
as well as their cartesian or uncurried forms
cart(f): IN=>A" xN—> A

defined by
cart(f)(&n) = f(€)(n).

We ask the following questions.

For any algebra A, what are the computable stream transformations
over A?
What is their relation to the computable functions on A?

To answer these, we extend A to the stream algebra A (section 2.8), and
consider various models of computation MC(A) over A, as well as the
corresponding models of computation MC(A) over A. These models of
computation MC include the schemes

PR, PR*, uPR, uPR*.

We also consider the operation of stream abstraction or currying inverse to
cart: for any function
g: DxN— A

where D is any cartesian product of carriers of A, construct the function
Aabs(g) : D — [N — A]

defined by

(Aabs(g))(d)(n) = g(d,n).
The addition of this construct to models of computation MC leads to mod-
els of computation AMC(A):

APR, MPR*, MPR, MPR"

We investigate the relationships between these various models; for ex-
ample, we prove some computational conservativity results: for any func-
tion f on A,

f€PR(A) < fe PR(A

and similarly for APR*, AuPR and AuPR*. We also show that com-
putability is not invariant under Cartesian forms, i.e., there are functions
f such that

Computable functions on algebras 503

f¢ PR(A) but cart(f) € PR(A)

and similarly for APR*, AuPR and A\uyP R*. Further, ‘A-elimination’ does
not hold, i.e., there are functions f such that

feAPR(A) but f¢ PR(A);

for example, the function const?: A — [N — A], which maps data a € A4 to
the stream const?(a) € [N — A] with constant value a, is in APR(A) but
not in PR(A), or even in uPR*(A). However, we do have \-elimination
+ cartesian form, in the sense that

f €EAPR(A) < cart(f) € PR(A),
and similarly for APR*, AuPR and AuPR*.

There are advantages to working with stream transformers via their
cartesian forms. It is then true, but difficult to show, that the class of
computable functions so defined is closed under composition (Stephens and
Thompson [1996]).

Suppose now we ask for a model of computability to satisfy a generalised
Church-Turing thesis for stream computations. The model wPR*(A) ob-
tained from our previous generalised Church—Turing thesis on arbitrary
standard algebras (section 8.8, substituting A for A) would be too weak,
since (as we have seen) even the constant stream function const? is not
computable in it. However, we can show, as a corollary of the computa-
tional conservativity results, that the following models of computation are
equivalent:

AMPR(A), MPR(A), AMPR*(A)
This shows that the model

AMPR(A*).

MPR(A)
is robust, and suggests it as a good candidate for a generalised Church—
Turing thesis for stream computations.

(#41) Equational specification of computable functions. Many functions are
defined as solutions of systems of equations from, for example, datatype
theory or real analysis. Sometimes considerable effort is expended in devis-
ing algorithms to implement or compute these functions; this is the raison
d’étre of numerical methods for differential and integral equations.

It is possible to develop a theory of equational specifications for func-
tions on algebras, including topological algebras. In Tucker and Zucker
[2000D] it is shown that any W hile* approximable function on a total
metric algebra is the unique solution of a finite system of conditional equa-
tions, which can be chosen uniformly over all algebras of the signature, and
over all Whale* computations. The converse however is not true; speci-
fiability by conditional equations is a more powerful device than W hile*
approximation — how much more powerful, remains to be investigated.

504 J. V. Tucker and J. 1. Zucker

References
The great majority of the publications listed here are referenced in the
text. Some papers, however, marked with a star next to the date, are not
so referenced. They are included here as a guide to further reading, either
because they shed some light on the historical development of the subject,
or because they provide useful further information in certain areas, such as
program verification and computation on the reals.

[American Standards Association, 1963] American Standards Association.
Proposed American standard flowchart symbols for information pro-
cessing, Communications of the Association for Computing Machinery
6:601 604, 1963.

[Apt, *1981] K. R. Apt. Ten years of Hoare’s logic: A survey — Part 1,
ACM Transactions on Programming Languages and Systems 3:431-483,
1981.

[Apt and Plotkin, 1986] K. R. Apt and G. D. Plotkin. Countable nonde-
terminism and random assignment, Journal of the Association for Com-
puting Machinery, 33:724 767, 1986.

[Arbib and Give’'on, *1968] M. A. Arbib and Y. Give’on. Algebra au-
tomata I: Parallel programming as a prolegomena to the categorical
approach, Information and Control 12:331 345, 1968.

[Ashcroft and Manna, *1971] E. Ashcroft and Z. Manna. The translation
of ‘go to’ programs to ‘while’ programs, Information Processing, 71:147
152, 1971.

[Ashcroft and Manna, *1974] E. Ashcroft and Z. Manna. Translation pro-
gram schemas to while-schemas, SIAM Journal of Computing 4:125 146,
1974.

[Asser, ¥1960] G. Asser. Rekursive Wortfunktionen, Zeitschrift fiir mathe-
matische Logik und Grundlagen der Mathematik 6:258 278, 1960.

[Asser, 1961] G. Asser. Funktionen-Algorithmen und Graphschemata,
Zeitschrift fir mathematische Logik und Grundlangen der Mathematik
7:20 27, 1961.

[Back, 1983] R. J. R. Back. A continuous semantics for unbounded nonde-
terminism, Theoretical Computer Science 23:187-210, 1983.

[de Bakker, 1980] J. W. de Bakker. Mathematical Theory of Program Cor-
rectness, Prentice Hall, 1980.

[Banachowski et al., ¥1977] L. Banachowski, A. Kreczmar, G. Mirkowska,
H. Rasiowa and A. Salwicki. An introduction to algorithmic logic, math-
ematical investigations in the theory of programs. In Mathematical Foun-
dations of Computer Science, A. Mazurkiewicz and Z. Pawlak eds, pp.
7 99, Banach Center Publications, 1977.

[Barwise, *¥1975] J. Barwise. Admissible Sets and Structures, Springer-
Verlag, 1975.

[Becker, 1986] E. Becker. On the real spectrum of a ring and its applica-
tion to semialgebraic geometry, Bulletin of the American Mathematical

Computable functions on algebras 505

Society (N.S.) 15:19-60, 1986.

[Bergstra and Tucker, *1980a] J. A. Bergstra and J. V. Tucker. A natural
data type with a finite equational final semantics specification but no
effective equational initial semantics specification. Bulletin of the Euro-
pean Association for Theoretical Computer Science 11:23-33, 1980.

[Bergstra and Tucker, *1980b] J. A. Bergstra and J. V. Tucker. A charac-
terisation of computable data types by means of a finite equational spe-
cification method. In 7th International Colloquium on Automata, Lan-
guages and Programming, Noordwijkerhout, The Netherlands, July 1980.
J. W. de Bakker and J. van Leeuwen eds, Lecture Notes in Computer
Science 85, pp. 76 90, Springer-Verlag, 1980.

[Bergstra and Tucker, ¥1982a) J. A. Bergstra and J. V. Tucker. The com-
pleteness of the algebraic specification methods for data types, Informa-
tion & Control 54:186 200, 1982.

[Bergstra and Tucker, ¥1982b] J. A. Bergstra and J. V. Tucker. Some nat-
ural structures which fail to possess a sound and decidable Hoare-like
logic for their while-programs, Theoretical Computer Science 17:303 315,
1982.

[Bergstra and Tucker, ¥1982c] J. A. Bergstra and J. V. Tucker. Expres-
siveness and the completeness of Hoare’s logic, Journal of Computer &
Systems Science 25:267 284, 1982.

[Bergstra and Tucker, ¥1982d] J. A. Bergstra and J. V. Tucker. Two the-
orems about the completeness of Hoare’s logic, Information Processing
Letters, 15:143 149, 1982.

[Bergstra and Tucker, ¥1983a] J. A. Bergstra and J. V. Tucker. Hoare’s
logic and Peano’s arithmetic, Theoretical Computer Science 22:265 284,
1983.

[Bergstra and Tucker, ¥1983b] J. A. Bergstra and J. V. Tucker. Initial and
final algebra semantics for data type specifications: two characterization
theorems, SIAM Journal of Computing 12:366 387, 1983.

[Bergstra and Tucker, ¥1984a] J. A. Bergstra and J. V. Tucker. Hoare’s
logic for programming languages with two data types, Theoretical Com-
puter Science 28:215 221, 1984.

[Bergstra and Tucker, ¥1984b] J. A. Bergstra and J. V. Tucker. The ax-
iomatic semantics of programs based on Hoare’s logic, Acta Informatica
21:293 320, 1984.

[Bergstra and Tucker, ¥*1987] J. A. Bergstra and J. V. Tucker. Algebraic
specifications of computable and semicomputable data types, Theoretical
Computer Science 50:137 181, 1987.

[Bergstra et al., ¥1982] J. A. Bergstra, J. Tiuryn and J. V. Tucker. Floyd’s
principle, correctness theories and program equivalence, Theoretical
Computer Science 17:113-149, 1982.

[Bird, 1976] R. Bird. Programs and Machines: An Introduction to the The-
ory of Computation, John Wiley and Sons, 1976.

506 J. V. Tucker and J. 1. Zucker

[Bishop, 1967] E. Bishop. Foundations of Constructive Analysis, McGraw-
Hill, 1967.

[Bishop and Bridges, 1985] E. Bishop and D. Bridges. Constructive Ana-
lysis, Springer-Verlag, 1985.

[Blanck, 1997] J. Blanck. Domain representability of metric spaces, Annals
of Pure and Applied Logic 83:225 247, 1997.

[Blum and Smale, 1993] L. Blum and S. Smale. The Gddel incompleteness
theorem and decidability over a ring. In From Topology to Computation:
Proceedings of the Smalefest, M. W. Hirsch, J. E. Marsden and M. Schub
eds, pp. 321 339, Springer-Verlag, 1993.

[Blum et al., 1989] L. Blum, M. Shub and S. Smale. On a theory of compu-
tation and complexity over the real numbers: NP-completeness, recur-
sive functions and universal machines, Bulletin of the American Math-
ematical Society 21:1 46, 1989.

[Blum et al., 1996] L. Blum, F. Cucker, M. Shub and S. Smale. Complexity
and real computation: A manifesto, International Journal of Bifurcation
and Chaos 6(1):3 26, 1996.

[Béhm and Jacopini, 1966] C. Bhm and G. Jacopini. Flow diagrams, Tur-
ing machines and languages with only two formation rules, Communica-
tions of the Association for Computing Machinery, 9:366-371, 1966.

[Brainerd and Landweber, 1974] W. S. Brainerd and L. H. Landweber.
Theory of Computation, John Wiley & Sons, 1974.

[Brattka, 1996] V. Brattka. Recursive characterisation of computable real-
valued functions and relations, Theoretical Computer Science 162:45 77,
1996.

[Brattka, 1997] V. Brattka. Order-free recursion on the real numbers,
Mathematical Logic Quarterly 43:216-234, 1997.

[Brocker and Lander, 1975] T. Brocker and L. C. Lander. Differentiable
Germs and Catastrophes, London Mathematical Society, Lecture Notes
Series 17, Cambridge University Press, 1975.

[Brown et al., ¥1972] S. Brown, D. Gries and T. Szymanski. Program
schemes with pushdown stores, SIAM Journal of Computing 1:242 268,
1972.

[Broy et al., 1993] M. Broy, F. Dederichs, C. Dendorfer, M. Fuchs, T. F.
Gritzner and R. Weber. The design of distributed sytems: An introduc-
tion to FOCUS, Technical Report TUM-19202-2, Institut fiir Informatik,
Technical University of Munich, January 1993.

[Burris and Sankappavanar, 1981] S. Burris and H. P. Sankappavanar. A
Course in Universal Algebra, Springer-Verlag, 1981.

[Byerly, ¥1993] R. E. Byerly. Ordered subrings of the reals in which output
sets are recusively enumerable, Proceedings of the American Mathemat-
ical Society 118:597 601, 1993.

[Ceitin, 1959] G. S. Ceitin. Algebraic operators in constructive complete
separable metric spaces, Doklady Akademii Nauk SSSR 128:49-52, 1959.

Computable functions on algebras 507

[Chandra, 1973] A. K. Chandra. On the properties and applications of pro-
gram schemas, PhD. thesis, Department of Computer Science, Stanford
University, 1973.

[Chandra, 1974] A. K. Chandra. The power of parallelism and nondeter-
minism in programming. In Information Processing 74, North-Holland,
pp. 461 465, 1974.

[Chandra and Manna, 1972] A. K. Chandra and Z. Manna. Program
schemes with equality. In Proceedings of the 4th Annual ACM Sympo-
sium on the Theory of Computing, Denver, Col. pp. 52 64, Association
for Computing Machinery, 1972.

[Chandra and Manna, 1975] A. K. Chandra and Z. Manna. On the power
of programming features, Journal of Computer Languages 1:219 232,
1975.

[Chaplin, 1970] N. Chaplin. Flowcharting with the ANSI Standard, Com-
puter Surveys 2:119 30, 1970.

[Church, 1936] A. Church. An unsolvable problem of elementary number
theory, American Journal of Mathematics 58: pp. 345-363, 1936.

[Clark and Cowell, 1976] K. L. Clark and D. F. Cowell. Programs, Ma-
chines and Computation: An Introduction to the Theory of Computing,
McGraw-Hill, 1976.

[Clarke, *¥1979] E. M. Clarke, Jr. Programming language constructs for
which it is impossible to obtain good Hoare-like axioms, Journal of the
ACM 26:126-147, 1979.

[Clarke, *1984] E. M. Clarke, Jr. The characterization problem for
Hoare logic, Philisophical Transactions of the Royal Society of London
A:312;423-440, 1984.

[Clarke et al., *1983] E. M. Clarke, Jr., S. German and J. Y. Halpern.
Effective axiomatization of Hoare logics, Journal of the Association of
Computing Machinery, 30:612-636, 1983.

[Constable and Gries, 1972] R. L. Constable and D. Gries. On classes of
program schemata, SIAM Journal of Computing 1:66-118, 1972.

[Cook, *1978] S. A. Cook. Soundness and completeness of an axiom system
for program verification, SIAM Journal of Computing 7:70-90, 1978;
corrigendum [1981], ibid. 10, 612.

[Cucker et al., ¥1994] F. Cucker, M. Shub and S. Smale. Separation of com-
plexity classes in Koiran’s weak model, Theoretical Computer Science

13:3-14, 1994.

[Cutland, 1980] N. J. Cutland. Computability: An Introduction to Recurs-
ive Function Theory, Cambridge University Press, 1980.

[Danko, *¥1983] W. Danko. Algebraic properties of finitely generated struc-
tures. In Proceedings in Logics of Programs and their Applications,
Poznan 1980, A. Salwicki ed., Lecture Notes in Computer Science 148,
pp- 118-131, Springer-Verlag, 1983.

508 J. V. Tucker and J. 1. Zucker

[Davis, 1958] M. Davis Computability and Unsolvability. McGraw-Hill,
1958. (Reprinted [1983], Dover.)

[Davis and Weyuker, 1983] M. D. Davis and E. P. Weyuker. Computability,
Complezity, and Languages Academic Press, 1983.

[Davis et al., 1994] M. D. Davis, R. Sigal and E. P. Weyuker. Computabil-
ity, Complexity, and Languages (2nd edition), Academic Press, 1994.
[Devaney, 1989] R. Devaney. An Introduction to Chaotic Dynamical Sys-

tems, Addison Wesley, 1989.

[Dijkstra, 1976] E. W. Dijkstra. A Discipline of Programming, Prentice
Hall, 1976.

[Dugundji, 1966] J. Dugundji. Topology, Allyn and Bacon, 1966.

[Edalat, 1995a] A. Edalat. Domain theory and integration, Theoretical
Computer Science 151:163-193, 1995.

[Edalat, 1995b] A. Edalat. Dynamical systems, measures, and fractals via
domain theory, Information & Computation 120:32—48, 1995.

[Ehrig and Mahr, 1985] H. Ehrig and B. Mahr. Fundamentals of Algebraic
Specification 1, EATCS Monographs 6:, Springer-Verlag, 1985.

[Eilenberg and Elgot, *1968] S. Eilenberg and C. C. Elgot. Iteration and
recursion, IBM Research Report RC-2148, 1968.

[Eilenberg and Elgot, *1970] S. Eilenberg and C. C. Elgot. Recursiveness,
Academic Press, 1970.

[Eilenberg and Wright, *1967] S. Eilenberg and J. B. Wright. Automata in
general algebras, Information € Control 11:452 470, 1976.

[Elgot, ¥*1966a] C. C. Elgot. Abstract algorithms and diagram closure. In
Programming Languages, Genuys ed., pp. 1-42, Academic Press, 1966,
also: Preprint, IBM Laboratory Vienna (1966) (presented at NATO
Summer School on Programming Languages, Villard-de-Lans (Isere),
France, September 1966).

[Elgot, *1966b] C. C. Elgot. A notion of interpretability of algorithms in
algorithms, Preprint, IBM Laboratory Vienna (presented at NATO Sum-
mer School on Programming Languages, Villard-de-Lans (Isere), France,
September 1966).

[Elgot, *1966¢c] C. C. Elgot. Machine species and their computation lan-
guages. In Formal Language Description Languages for Computer Pro-
gramming, Proceedings of the IFIP Working Conference on Formal Lan-
guage Description Languages, Amsterdam, T. B. Steel, Jr.; ed., North-
Holland, pp. 160-178, 1966.

[Elgot, *1970] C. C. Elgot. The common algebraic structure of exit-
automata and machines, IBM Research Report RC-2744, 1970.

[Elgot, *1971] C. C. Elgot. Algebraic theories and program schemes. In
Symposium on Algorithmic Semantics of Languages, E. Engeler ed., Lec-
ture Notes in Mathematics 188, Springer-Verlag, 1971.

[Elgot and Robinson, *¥1964] C. C. Elgot and A. Robinson. Random-
access, stored-program machines. An approach to programming

Computable functions on algebras 509

Langueages, Journal of the Association for Computing Machinery,
11:365-399, 1964.

[Elgot et al., ¥1966] C. C. Elgot, A. Robinson and J. D. Rutledge. Multiple
control computer models, IBM Research Report RC-1622, 1966.

[Enderton, 1977] H. B. Enderton. Elements of recursion theory. In Hand-
book of Mathematical Logic, J. Barwise, ed., pp. 527-566, North-Holland,
1977.

[Engeler, 1967] E. Engeler. Algebraic properties of structures, Mathem-
atical Systems Theory 1:183 195, 1967.

[Engeler, 1968a] E. Engeler. Formal Languages: Automata and Structures,
Markham Publishing Co., 1968.

[Engeler, 1968b] E. Engeler. Remarks on the theory of geometrical con-
structions. In The Syntaz and Semantics of Infinitary Languages, Lec-
ture Notes in Mathematics 72, pp. 64-76, Springer-Verlag, 1968.

[Engeler, 1971] E. Engeler. Structure and meaning of elementary programs.

In Symposium on Semantics of Algorithmic Languages, Lecture Notes in
Mathematics 188, pp. 89 101, Springer-Verlag, 1971.

[Engeler, 1975a] E. Engeler. On the solvability of algorithmic problems,
in Logic Colloquium 73, H. E. Rose and J. C. Shepherdson eds, pp.
231-251, North-Holland, 1975.

[Engeler, 1975b] E. Engeler. Algebraic logic. In Foundations of Computer
Science, Mathematical Centre Tracts No. 63, J. W. de Bakker, ed., Am-
sterdam, pp. 57 85, 1975.

[Engeler, 1993] E. Engeler. Algebraic Properties of Structures, World Sci-
entific, 1993.

[Ershov, 1958] A. P. Ershov. On operator algorithms, Doklady Akademii
Nauk SSSR 122:967 970, 1958 (in Russian), translated in Automation
Ezpress 1:20-23, 1959.

[Ershov, 1960] A. P. Ershov. Operator algorithms I, Problemi Kibernetiki
3, 1960. (in Russian), translated in Problems of Cybernetics 3, 1962.

8:211 233 (in Russian), 1962.

[Ershov, *1981] A. P. Ershov. Abstract computability on algebraic struc-
tures. In Algorithms in Modern Mathematics and Computer Science, A.
P. Ershov and D. E. Knuth, eds, Lecture Notes in Computer Science

122, Springer-Verlag, 1981.

[Ershov and Shura-Bura, 1980] A. P. Ershov and M. R. Shura-Bura. The
early development of programming in the USSR. In A History of Com-
puting in the Twentieth Century, E. N. Metropolis, J. Howlett and G.-C.
Rota eds, pp. 137 196, Academic Press, 1980.

[Feferman, 1992a] S. Feferman. A new approach to abstract data types, I:

Informal development, Mathematical Structures in Computer Science 2:
pp. 193-229, 1992.

510 J. V. Tucker and J. 1. Zucker

[Feferman, 1992b] S. Feferman. A new approach to abstract data types, II:
Computability on ADTs as ordinary computation. In Computer Science
Logic, E. Borger, g. Jager, H. Kleine Biining and M. M. Richter eds, Lec-
ture Notes in Computer Science 626, pp. 79 95, Springer-Verlag, 1992.

[Feferman, 1996] S. Feferman. Computation on abstract data types: The
extensional approach, with an application to streams, Annals of Pure
and Applied Logic 81:75 113, 1996.

[Fenstad, 1975] J. E. Fenstad. Computation theories: an axiomatic ap-
proach to recursion on general structures. In Logic Conference, Kiel
1974, G. Miiller, A. Oberschelp and K. Potthoff eds, Lecture Notesin
Mathematics 499, pp. 143 168, Springer-Verlag, 1975.

[Fenstad, 1980] J. E. Fenstad. Recursion Theory: An Aziomatic Approach,
Springer-Verlag, 1980.

[Fitting, 1981] M. Fitting. Fundamentals of Generalized Recursion Theory,
North-Holland, 1981.

[Floyd, *1967] R. W. Floyd. Assigning meaning to programs. In Mathemat-
ical Aspects of Computer Science, J. T. Schirtz ed, pp. 19-32, American
Mathematical Society, 1967.

[Friedman, 1971a] H. Friedman. Algebraic procedures, generalized Turing
algorithms, and elementary recursion theory. In Logic Colloguium ’69,
R. O. Gandy and C. M. E. Yates eds, pp. 361-389, North-Holland, 1971.

[Friedman, *1971b] H. Friedman. Axiomatic recursive function theory. In
Logic Colloquium 69, R. O. Gandy and C. M. E. Yates eds, pp. 113-137,
North-Holland, 1971.

[Friedman and Mansfield, *1992] H. Friedman and R. Mansfield. Algebraic
procedures, Transactions of the American Mathematical Society 332:297
312, 1992.

[Gabrovsky, *¥1976] P. Gabrovsky. Models for an axiomatic theory of com-
putability, PhD thesis, Syracuse University, 1976.

[Gandy, *¥1980] R. O. Gandy. Church’s thesis and principles for mecha-
nisms. In The Kleene Symposium, J. Barwise, H. J. Keisler and K. Kunen
eds, pp. 123 148, North-Holland, 1980.

[Garland and Luckham, *1973] S. J. Garland and D. C. Luckham. Pro-
gram schemes, recursion schemes, and formal languages, Journal of Com-
puter and Systems Science 7:119 160, 1973.

[Goguen et al., *1978] J. A. Goguen, J. W. Thatcher and E. G. Wagner.
An initial approach to the specification, correctness and implementation
of abstract data types. In Current Trends in Programming Methodology,
4: Data Structuring, R.T. Yeh ed, pp. 80 149, Prentice Hall, 1978.

[Goldstine and von Neumann, 1947] H. H. Goldstine and J. von Neumann.
Planning and Coding Problems for an Electronic Computing Instrument,
Institute for Advanced Study, Princeton, 1947. Reprinted in A. H. Traub
ed, John von Neumann’s Collected Works, 5, pp. 80-235, Pergamon,
1963.

Computable functions on algebras 511

[Goodstein, 1964] R. L. Goodstein. Recursive Number Theory, North-
Holland, 1964.

[Gordon, 1970] C. E. Gordon. Comparisons between some generalizations
of recursion theory, Compositio Mathematica 22:333-346, 1970.

[Gordon, *1971] C. E. Gordon. Finitistically computable functions and re-
lations on an abstract structure (abstract), Journal of Symbolic Logic
36:704, 1971.

[Gorn, *¥1961] S. Gorn. Specification languages for mechanical languages
and their processors, Communications of the Association for Computing
Machinery 4:532 542, 1961.

[Grabowski, *1981] M. Grabowski. Full weak second-order logic versus al-
gorithmic logic, Colloquia In Proceedings in Mathematical Logic in Com-
puter Science, Mathematica Societatis Janos Bolyai 26, pp. 471 483,
North-Holland, 1981.

[Grabowski and Kreczmar, ¥1978] M. Grabowski and A. Kreczmar. Dy-
namic theories of real and complex numbers. In Mathematical Foun-
dations of Computer Science ’78, J. Winkowski ed., Lecture Notes in
Computer Science 64, pp. 239 249, Springer-Verlag, 1978.

[Greibach, 1975] S. A. Greibach. Theory of Program Structures: Schemes,
Semantics, Verification, Lecture Notes in Computer Science 36,
Springer-Verlag, 1975.

[Grzegorezyk, 1955] A. Grzegorczyk. Computable functions, Fundamenta
Mathematicae 42:168-202, 1955.

[Grzegorezyk, 1957] A. Grzegorczyk. On the defintions of computable real
continuous functions, Fundamenta Mathematicae 44:61 71, 1957.

[Guttag, *1977] J. V. Guttag. Abstract data types and the development
of data structures, Communications of the Association for Computing
Machinery 20:396 404, 1977.

[Harel, *1980] D. Harel. On folk theorems, Communications of the Asso-
ciation for Computing Machinery 23, 1980.

[Harel, *1984] D. Harel. Dynamic logic. In Handbook of Philisophical Logic,
1I, D. Gabbay and F. Guenthner eds, pp. 497 604, Reidel, 1984.

[Harel et al., *1977] D. Harel, A. R. Meyer and V. R. Pratt. Computability
and completeness in logics of programs. In Proceedings of the 9th Annual
ACM Symposium on the Theory of Computing, Boulder, Colorado, 1977.

[Harman and Tucker, 1993] N. A. Harman and J. V. Tucker. Algebraic
methods and the correctness of microprocessors. In Correct Hardware
Design and Verification Methods, G. J. Milne and L. Pierre eds, Lecture
Notes in Computer Science 683, pp. 92 108, Springer-Verlag, 1993.

[Harnik, *1975] V. Harnik. Effective proper procedures and universal
classes of program schemata, Journal of Computer € Systems Science
10:44-61, 1975.

[Heaton and Wainer, 1996] A. Heaton and S. Wainer. Subrecursion the-
ories. In Computability, Enumerability, Unsolvability, S. B. Cooper, S.

512 J. V. Tucker and J. 1. Zucker

S. Wainer and T. A. Slaman eds, London Mathematical Society Lecture
Note Series, Cambridge University Press, 1996.

[Hemmerling, *1994] A. Hemmerling. On genuine complexity and kinds
of nondeterminism, Journal of Information Processing and Cybernetics
30:77-96, 1994.

[Hemmerling, *1995] A. Hemmerling. Computability and complexity over
structures of finite type, Preprint Nr. 2-1995, Preprint-Reihe Mathe-
matik, Ernst-Moritz-Arndt-Universitat, Greifswald, 1995.

[Hemmerling, *1998] A. Hemmerling. Computability of string functions
over algebraic structures, Mathematical Logic Quarterly 44:1 44, 1998.
[Herman and Isard, 1970] G. T. Herman and S. D. Isard. Computability
over arbitrary fields, Journal of the London Mathematical Society 2:73—

79, 1970.

[Hinman, 1999] P. G. Hinman. Recursion on abstract structures. In Hand-
book of Computability Theory, E. Griffor ed., pp. 315-359. Elsevier, 1999.

[Hoare, *1969] C. A. R. Hoare. An axiomatic basis for computer pro-
gramming, Communications of the Association of Computing Machinery
12:576-583, 1969.

[Hobley et al., ¥1988] K. M. Hobley, B. C. Thompson and J. V. Tucker.
Specification and verification of synchronous concurrent, algorithms: a
case study of a convoluted algorithm. In The Fusion of Hardware De-
sign and Verification (Proceedings of IFIP Working Group 10.2 Working
Conference), G. Milne ed, pp. 347-374, North-Holland, 1988.

[Hocking and Young, 1961] J. G. Hocking and G. S. Young. Topology, Ad-
dison Wesley, 1961.

[Holden et al., 1992] A. V. Holden, M. Poole, J. V. Tucker and H. Zhang.
Coupled map lattices as computational systems. American Institute of
Physics Chaos, 2: 367 376, 1992.

[Ianov, 1960] I. Ianov. The logical schemes of algorithms, Problemi Kiber-
netiki 1:75-127, 1958 (in Russian). Translated in Problems of Cybernetics
1:82-140, 1960.

[Igerashi, *1968] S. Igerashi. An axiomatic approach to the equivalence
problems of algorithms with applications, Report from the Computing
Centre of the University of Tokyo 1, 1968.

[Ivanov, *1986) L. L. Ivanov. Algebraic Recursion Theory, Ellis Horwood,
1986.

[Jacopini, ¥1966] G. Jacopini. Macchina Universale di von Neumann ad
unico comando incondizionato, Calcolo 3:23 29, 1966.

[Jervis, 1988] C. A. Jervis. On the specification, implementation and ver-
ification of data types, PhD thesis, Department of Computer Studies,
University of Leeds, 1988.

[Kaluzhnin, 1961] A. Kaluzhnin. Algorithmization of mathematical prob-
lems, Problemi Kibernetiki 2, 1959 (in Russian). Translated in Problems
of Cybernetics 2, 1961.

Computable functions on algebras 513

[Kaphengst, ¥1959] M. Kaphengst. Eine abstrakte programmgesteuerte
Rechenmaschine, Zeitschrift fiir mathematische Logik und Grundlagen
der Mathematik 5: 366 379, 1959.

[Kaplan, *1969] D. M. Kaplan. Regular expressions and the equivalence of
programs, Journal of Computer € System Sciences, 3:361 386, 1969.
[Karp and Miller, ¥1969] R. M. Karp and R. E. Miller. Parallel program
schemata, Journal of Computer & Systems Science 3:147 195, 1969.
[Kelley, 1955] J. L. Kelley. General Topology, Van Nostrand, 1955.

Reprinted Springer-Verlag, 1975.

[Kfoury, *1972] A. J. Kfoury. Comparing algebraic structures up to al-
gorithmic equivalence. In International Colloquium on Automata, Lan-
guages and Programming, Paris, 1972, M. Nivat, ed., pp. 235 264,
North-Holland, 1972.

[Kfoury, *1983] A. J. Kfoury. Definability by programs in first-order struc-
tures, Theoretical Computer Science 25:1 66, 1983.

[Kfoury, *1985] A. J. Kfoury. Definability by deterministic and non-
deterministic programs (with applications to first-order dynamic logic)
Information € Control 65:98-121, 1985.

[Kfoury and Park, *1975] A. J. Kfoury and D. M. Park. On the termina-
tion of program schemas, Information € Control 29:243-251, 1975.

[Kfoury and Urzyczyn, *1985] A. J. Kfoury and P. Urzyczyn. Necessary
and sufficient conditions for the universality of programming formalisms,
Acta Informatica 22:347-377, 1985.

[Kfoury et al., 1982] A. J. Kfoury, R. N. Moll and M. A. Arbib. A Pro-
gramming Approach to Computability, Springer-Verlag, 1982.

[Kleene, 1936] S. C. Kleene. General recursive functions of natural num-
bers, Mathematische Annalen 112:727-742, 1936.

[Kleene, 1952] S. C. Kleene. Introduction to Metamathematics, North-
Holland, 1952.

[Kleene, 1959] S. C. Kleene. Recursive functionals and quantifiers of finite
types I, Transactions of the American Mathematical Society 91:1-52,
1959.

[Kleene, 1963] S. C. Kleene. Recursive functionals and quantifiers of finite
types II, Transactions of the American Mathematical Society 108:106
142, 1963.

[Klop, 1992] J. W. Klop. Term rewriting systems. In Handbook of Logic in
Computer Science, Vol. 1, S. Abramsky, D. Gabbay and T. Maibaum
eds, pp. 2 116, Clarendon Press, 1992.

[Knuth, *1974] D. E. Knuth. Structured programming with ‘go to’ state-
ments, Computing Surveys 6:261 301, 1974.

[Knuth and Prado, ¥1980] D. Knuth and L. T. Prado. The early devel-
opment of programming languages. In A History of Computing in the
Twentieth Century, N. Metropolis, J. Howlett and G.-C. Rota eds, pp.
197-273, Academic Press, 1980.

3

514 J. V. Tucker and J. 1. Zucker

[Ko, 1991] K.-1. Ko. Complezity Theory of Real Functions, Birkhiuser,
1991.

[Kolmogorov, *¥1953] A. N. Kolmogorov. O ponyatii algoritma, Uspekhi
Matematicheskikh Nauk 814:175-176, 1953.

[Kreczmar, ¥1977] A. Kreczmar. Programmability in fields, Fundamenta
Informaticae 1:195-230, 1977.

[Kreisel, 1971] G. Kreisel. Some reasons for generalizing recursion theory.
In Logic Colloquium 69, R. O. Gandy and C. M. E. Yates eds, pp. 139—
198, North-Holland, 1971.

[Kreisel and Krivine, 1971] G. Kreisel and J. L. Krivine. Elements of Math-
ematical Logic, North-Holland, 1971.

[Kreitz and Weihrauch, 1985] C. Kreitz and K. Weihrauch. Theory of rep-
resentations, Theoretical Computer Science 38:35 53, 1985.

[Lacombe, 1955] D. Lacombe. Extension de la notion de fonction récursive
aux fonctions d’une ou plusieurs variables réelles, I, II, III, Comptes Ren-
dus de ;’Académie des Sciences Paris 240:2470 2480, 241:13 14, 151
153, 1955.

[Lacombe, *1971] D. Lacombe. Recursion theoretic structure for relational
systems. In Logic Colloquium ’69, R. O. Gandy and C. M. E. Yates eds,
pp- 3-18, North-Holland, 1971.

[Lambert, 1968] W. M. Lambert, Jr. A notion of effectiveness in arbitrary
structures, Journal of Symbolic Logic, 33:577-602, 1968.

[Lauer, 1967] P. E. Lauer. The formal explicates of the notion of algorithm,
Technical Report TR 25.072, IBM Laboratory, Vienna, 1971.

[Lauer, 1968] P. E. Lauer. An introduction to H. Thiele’s notions of algo-
rithm, algorithmic process and graph-schemata calculus, Technical Re-
port TR 25.079, IBM Laboratory, Vienna, 1968.

[Levien, *¥1962] R. E. Levien. Set-theoretic formalizations of computational
algorithms, computable functions and general purpose computers. In
Proceedings of the Symposium on the Mathematical Theory of Automa-
tion, New York, American Mathematical Society, pp. 101 123, 1962.

[Lucas et al., 1968] P. Lucas, P. E. Lauer and H. Stigleitner. Method and
notation for the formal definition of programming languages, Technical
Report TR 25.087, IBM Laboratory, Vienna, 1968.

[Luckham and Park, 1964] D. Luckham and D. M. Park. The undecidabil-
ity of the equivalence problem for program schemata, Report 1141, Bolt,
Beranek and Newman Inc., 1964.

[Luckham et al., 1970] D. Luckham, D. M. Park and M. S. Paterson. On
formalized computer programs, Journal of Computer € Systems Science
4:220-249, 1970.

[Machtey and Young, 1978] M. Machtey and P. Young. An Introduction to
the General Theory of Algorithms, North-Holland, 1978.

[Mahr and Makowsky, *1984] B. Mahr and J. A. Makowsky. Character-
izing specification languages which admit initial semantics, Theoretical

Computable functions on algebras 515

Computer Science 31:49-59, 1984.

[Makowsky and Sain, *1989] J. A. Makowsky and I. Sain. Weak second or-
der characterization of various program verification systems, Theoretical
Computer Science 66:239-321, 1989.

[Mal’cev, 1973] A. 1. Mal'cev. Algebraic Systems, Grundlehren der math-
ematischen Wissenschaften 192, Springer-Verlag, 1973.

[Manna, 1974] Z. Manna. Mathematical Theory of Computation, McGraw-
Hill, 1974.

[Martin and Tucker, *1988] A.R. Martin and J. V. Tucker. The concurrent
assignment representation of synchronous systems, Parallel Computing
9:227 256, 1988.

[McCarthy, ¥1960] J. McCarthy. Recursive functions of symbolic expres-
sions and their computation by machine, Part I, Communications of the
Association for Computing Machinery 3:184 195, 1960.

[McCarthy, ¥1962] J. McCarthy. Towards a mathematical science of com-
putation, in Proceedings of the International Congress of Information
Processing pp. 21 34, 1962.

[McCarthy, 1963] J. McCarthy. A basis for a mathematical theory of com-
putation. In Computer Programming and Formal Systems, P. Braffort
and D. Hershberg, eds., North Holland, Amsterdam, pp. 33-70, 1963.

[McEvoy and Tucker, 1990] K. McEvoy and J. V. Tucker, eds. Theoretical
Foundations of VLSI Design, Cambridge University Press, 1990.

[McKenzie et al., 1987] R. N. McKenzie, G. F. McNulty and W. F. Taylor.
Algebras, Lattices, Varieties 1, Wadsworth and Brookes Cole, 1987.

[McNaughton, 1982] R. McNaughton. Elementary Computability, Formal
Languages and Automata, Prentice Hall, 1982.

[Meer, *1993] K. Meer. Komplexititsbetrachtungen fiir reelle Maschinen-
modelle, Shaker Verlag, 1993.

[Meer and Michaux, ¥*1996] K. Meer and C. Michaux. A survey on real
structural complexity theory, Bulletin of the Belgian Mathematical
Socitety 3:113-148, 1996.

[Megiddo, *¥1993] N. Megiddo. A general NP-completeness theorem. In
From Topology to Computation: Proceedings of the Smalefest, M. W.
Hirsch, J. E. Marsden and M. Schub eds, pp. 432 442, Springer-Verlag,
1993.

[Meinke and Tucker, 1992] K. Meinke and J.V. Tucker. Universal algebra.
In Handbook of Logic in Computer Science, Vol. 1, S. Abramsky, D.
Gabbay and T. Maibaum eds, pp. 189 411, Clarendon Press, 1992.

[Melzak, *1961] Z. A. Melzak. An informal arithmetical approach to com-
putability and computation, Canadian Mathematical Bulletin, 4:279
293, 1961.

[Meseguer and Goguen, 1985] J. Meseguer and J. A. Goguen. Initiality, in-
duction and computability. In Algebraic Methods in Semantics, M. Nivat
and J. Reynolds eds, pp. 459541, Cambridge University Press, 1985.

516 J. V. Tucker and J. 1. Zucker

[Meyer and Ritchie, 1967] A. R. Meyer and D. M. Ritchie. The complex-
ity of loop programs. In Proceedings of the 22nd National Conference,
Association for Computing Machinery, pp. 465 469, Thompson Book
Company, 1967.

[Meyer and Tiuryn, *1982] A. R. Meyer and J. Tiuryn. A note on equival-
ences among logics of programs. In Proceedings in Logics of Programs,
Yorktown Heights 1981, D. Kozen ed, Lecture Notes in Computer Science
92, Springer-Verlag, 1982.

[Michaux, *1989] C. Michaux. Une remarque & propos des machines sur
R. In Comptes Rendus de 1’Académie des Sciences Paris, Série I 309:
pp. 435 437, 1989.

[Michaux, *¥1990] C. Michaux. Machines sur les réels et problémes
NP-complets. In Séminaire de structures algébriques ordonnées,
Prépublication de I’equipe de logique mathématique de Paris 7, 1990.

[Michaux, *¥1991] C. Michaux. Ordered rings over which output sets are
recursively enumerable, Proceedings of the American Mathematical So-

ciety, 112:569 575, 1991.

[Milner, *1969] Equivalences on program schemes. Journal of Computer €
System Sciences 4: 205 219, 1969.

[Mints, 1973] G. Mints. Quantifier-free and one-quantifier systems, Jounal
of Soviet Mathematics 1:71 84, 1973.

[Moldestad and Tucker, 1981] J. Moldestad, and J. V. Tucker. On the clas-
sification of computable functions in an abstract setting. Unpublished
manuscript, 1981.

[Moldestad et al., 1980a] J. Moldestad, V. Stoltenberg-Hansen and J. V.
Tucker. Finite algorithmic procedures and inductive definability, Math-
ematica Scandinavica 46:62 76, 1980.

[Moldestad et al., 1980b] J. Moldestad, V. Stoltenberg-Hansen and J. V.
Tucker. Finite algorithmic procedures and inductive definability, Math-
ematica Scandinavica 46:77 94, 1980.

[Montague, 1968] R. Montague. Recursion theory as a branch of model the-
ory, Logic, Methodology & Philosophy of Science III, B. van Rootselaar
and J. F. Staal eds, North-Holland, pp. 63 86, 1968.

[Moschovakis, 1964] Y. N. Moschovakis. Recursive metric spaces, Funda-
menta Mathematicae 55:215-238, 1964.

[Moschovakis, 1969a] Y. N. Moschovakis. Abstract first-order computabil-
ity I, Transactions of the American Mathematical Society 138:427-464,
1969.

[Moschovakis, ¥1969b] Y. N. Moschovakis. Abstract first-order com-
putability II, Transactions of the American Mathematical Society
138:465-504, 1969.

[Moschovakis, ¥1969c] Y. N. Moschovakis. Abstract computability and in-
variant definability, Journal of Symbolic Logic, 34:605-633, 1969.

Computable functions on algebras 517

[Moschovakis, 1971] Y. N. Moschovakis. Axioms for computation theories
— first draft. In Logic Colloquium 69, R. O. Gandy and C. E. M. Yates
eds, pp. 199 255, North-Holland, 1971.

[Moschovakis, ¥*1974] Y. N. Moschovakis. Elementary Induction on Ab-
stract Structures, North-Holland, 1974.

[Moschovakis, 1984] Y. N. Moschovakis. Abstract recursion as a foundation
for the theory of recursive algorithms. In Computation and Proof Theory,
Lecture Notes in Mathematics 1104, pp. 289-364, Springer-Verlag, 1984.

[Moschovakis, 1989] Y. N. Moschovakis. The formal language of recursion,
Journal of Symbolic Logic 54:1216 1252, 1989.

[Miiller and Tucker, 1998] B. Miiller and J. V. Tucker, eds. Prospects
for Hardware Foundations. Lecture Notes in Computer Science 1546,
Springer-Verlag, 1998.

[Normann, 1978] D. Normann. Set-recursion. In Generalized Recursion
Theory II: Proceedings of the 1977 Oslo Symposium, J. E. Fenstad,
R. O. Gandy and G. E. Sacks eds, pp. 303 320, North-Holland, 1978.

[Normann, 1982] D. Normann. External and internal algorithms on the
continuous functionals. In Patas Logic Symposium, G. Metakides, ed,
Studies in Logic, vol. 109, pp. 137-144. North-Holland, 1982.

[Parsons, 1971] C. Parsons. On a number theoretic choice scheme IT (Ab-
stract), Journal of Symbolic Logic 36:587, 1971.

[Parsons, 1972] C. Parsons. On n-quantifier induction, Journal of Symbolic
Logic 37:466 482, 1972.

[Paterson, ¥1967] M. S. Paterson. Equivalence problems in a model of com-
putation, PhD thesis, Cambridge University, 1967.

[Paterson, *1968] M. S. Paterson. Program schemata, Machine Intelligence
3:19-31, 1968.

[Paterson and Hewitt, 1970] M. S. Paterson and C. E. Hewitt. Compara-
tive schematology. In Record of Project MAC Conference on Concurrent
Systems and Parallel Computation pp. 119 128, ACM; also MIT, Al
Technical Memo 201, 1979.

[Péter, 1958] R. Péter. Graphschemata und rekursive Funktionen, Dialec-
tica 2:373-393, 1958.

[Péter, 1967] R. Péter. Recursive Functions, Academic Press, 1967.

[Phillips, 1992] 1. C. C. Phillips. Recursion theory. In Handbook of Logic
in Computer Science, Vol. 1, S. Abramsky, D. Gabbay and T. Maibaum
eds, pp. 79-187, Clarendon Press, 1992.

[Plaisted, *1972] D. Plaisted. Program schemas with counters. In Proceed-
ings of the 4th Annual ACM Simposium on the Theory of Computing,
Denwver, Col. pp. 44-51, Association for Computing Machinery, 1972.

[Platek, 1966] R. A. Platek. Foundations of recursion theory, PhD thesis,
Department of Mathematics, Stanford University, 1966.

[Pour-El and Caldwell, 1975] M. B. Pour-El and J. C. Caldwell. On a
simple definition of computable function of a real variable with appli-

518 J. V. Tucker and J. 1. Zucker

cations to functions of a complex variable, Zeitschrift fiir mathematische
Logik und Grundlagen der Mathematik 21:1-19, 1975.

[Pour-El and Richards, 1989] M. B. Pour-El and J. I. Richards. Com-
putability in Analysis and Physics, Springer-Verlag, 1989.

[Rice, 1954] H. G. Rice. Recursive real numbers, Proceedings of the Amer-
ican Mathematical Society 5:784-791, 1954.

[Rogers, 1967] H. Rogers, Jr. Theory of Recursive Functions and Effective
Computability, McGraw-Hill, 1967.

[Rutledge, *1964] J. D. Rutledge. On Ianov’s program schemata, Journal
of the Association for Computing Machinery 11:1-9, 1964.

[Rutledge, *1970] J. D. Rutledge. Parallel processes—schemata and trans-
formations, IBM Research Report RC-2912 1970. Also in Architecture
and Design of Digital Computers, Boulaye ed., pp. 91 129, Dunod, 1971.

[Rutledge, *1973] J. D. Rutledge. Program Schemes as Automata 1, Jour-
nal of Computer € System Sciences 7:543 578, 1973.

[Saint John, *1994] R. Saint John. Qutput sets, halting sets and an arith-
metical hierarchy for ordered substrings of the real numbers under
Blum/Shub/Smale computation, Technical Report TR-94-035, ICSI,
Berkeley, CA, 1994.

[Saint John, *1995] R. Saint John. Theory of computation for the real num-
bers and subrings of the real numbers following Blum/Shub/Smale, Dis-
sertation, University of California at Berkeley, 1995.

[Sanchis, *¥1988] L. E. Sanchis. Reflexive Structures, Springer-Verlag, 1988.

[Schreiber, *¥1975] P. Schreiber. Theorie der geometrischen Konstruktio-
nen, Deutscher Verlag der Wissenschaften, Berlin, 1975.

[Scott, 1967] D. Scott. Some definitional suggestions for automata theory,
Journal of Computer € System Sciences 1:187-212, 1967.

[Scott, *¥1970a] D. S. Scott. The lattice of flow diagrams, Programming
Research Group, Oxford, 1970.

[Scott, ¥1970b] D. S. Scott. Outline of a mathematical theory of computa-
tion. In Proceedings of the Jth Annual Princeton Conference on Infor-
mation Sciences & Systems, Princeton University, pp. 169-176, 1970.
Also Technical Monograph PRG-2, Porgramming Research Group, Ox-
ford University, 1970.

[Scott and Strachey, *¥1971] D. S. Scott and C. Strachey. Towards a math-
ematical semantics for computer languages, in Proceedings of the Sym-
posium on Computers € Automata, J. Fox ed., Polytechnic Institute
of Brooklyn. Also in Technical Monograph 6, Programming Research
Group, Oxford, 1971.

[Shafarevich, 1977] 1. R. Shafarevich. Basic Algebraic Geometry, Springer-
Verlag, 1977.

[Shepherdson, 1973] J. C. Shepherdson. Computations over abstract struc-
tures: serial and parallel procedures and Friedman'’s effective definitional

Computable functions on algebras 519

schemes, in Logic Colloguium ’73, H. E. Rose and J. C. Shepherdson eds,
pp- 445-513, North-Holland, 1973.

[Shepherdson, 1976] J. C. Shepherdson. On the definition of computable
function of a real variable, Zeitschrift fiir mathematische Logik und
Grundlagen der Mathematik 22:391-402, 1976.

[Shepherdson, 1985] J. C. Shepherdson. Algebraic procedures, generalized
Turing algorithms, and elementary recursion theory. In Harvey Fried-
man’s Research on the Foundations of Mathematics, L. A. Harrington,
M. D. Morley, A. Séedrov and S. G. Simpson eds, pp. 285 308, North-
Holland, 1985.

[Shepherdson, *¥1994] J. C. Shepherdson. Mechanisms for computing over
arbitrary structures. In The Universal Turing Machine, A Half-Century
Survey, R. Herken ed, pp. 581 601, Oxford University Press, 1994.

[Shepherdson and Sturgis, 1963] J. C. Shepherdson and H. E. Sturgis.
Computability of recursive functions, Journal of the Association for
Computing Machinery 10:217-255, 1963.

[Simmons, 1963] G. F. Simmons. Introduction to Topology and Modern
Analysis, McGraw-Hill, 1963.

[Smyth, 1992] M. B. Smyth. Topology. In Handbook of Logic in Computer
Science, Vol. 1, S. Abramsky, D. Gabbay and T. Maibaum eds, pp. 641—
761, Clarendon Press, 1992.

[Soskov, *¥1987] I. N. Soskov. Prime computability on partial structures. In
Mathematical Logic and its Applications, D. G. Skordev ed, pp. 341 350,
Plenum Press, 1987.

[Soskov, *¥1989a] 1. N. Soskov. Definability via enumerations, Journal of
Symbolic Logic, 54:428 440, 1989.

[Soskov, ¥1989b] I. N. Soskov. An external characterization of the prime
computability, Annuaire de I’Université Sofia 83:89 110, 1089.

[Soskov, *¥1990] I. N. Soskov. Computability by means of effectively defin-
able schemes and definability via enumerations, Archive for Mathemat-
ical Logic 29:187 200, 1990.

[Soskova, *1994] A. A. Soskova An external approach to abstract data
types I, Annuaire de I’Université Sofia 87, 1994.

[Soskova and Soskov, ¥*1990] A. A. Soskova and I. N. Soskov. Effective enu-
merations of abstract structures. In Heyting 88, P. Petkov ed, pp. 361
372, Plenum Press, 1990.

[Sperschneider and Antoniou, 1991] V. Sperschneider and G. Antoniou.
Logic: A Foundation for Computer Science, Addison Wesley, 1991.

[Stephens, 1997] R. Stephens. A survey of stream processing, Acta Infor-
matica 34:491 541, 1997.

[Stephens and Thompson, 1996] R. Stephens and B. C. Thompson. Carte-

sian stream transformer composition, Fundamenta Informaticae 25:123—
174, 1996.

520 J. V. Tucker and J. 1. Zucker

[Stephenson, 1996] K. Stephenson. An algebraic approach to syntax, se-
mantics and computation, PhD thesis, Department of Computer Science,
University of Wales, Swansea, 1996.

[Stewart, 1999] K. Stewart. Abstract and concrete models of computation
over metric algebras. PhD thesis, Computer Science Department, Uni-
versity of Wales, Swansea, 1999.

[Stoltenberg-Hansen, 1979] V. Stoltenberg-Hansen. Finite injury argu-
ments in infinite computation theories, Annals of Mathematical Logic
16:57-80, 1979.

[Stoltenberg-Hansen and Tucker, 1985] V. Stoltenberg-Hansen and J. V.
Tucker. Complete local rings as domains, Technical Report 1.85, Centre
for Theoretical Computer Science, University of Leeds, 1985.

[Stoltenberg-Hansen and Tucker, 1988] V. Stoltenberg-Hansen and J. V.
Tucker. Complete local rings as domains, Journal of Symbolic Logic
53:603—624, 1988.

[Stoltenberg-Hansen and Tucker, 1991] V. Stoltenberg-Hansen and J. V.
Tucker. Algebraic and fixed point equations over inverse limits of alge-
bras, Theoretical Computer Science 87:1-24, 1991.

[Stoltenberg-Hansen and Tucker, 1993] V. Stoltenberg-Hansen and J. V.
Tucker. Infinite systems of equations over inverse limits and infinite syn-
chronous concurrent algorithms. In Semantics: Foundations and Appli-
cations J. W. de Bakker, W.-P. de Roever and G. Rozenberg, eds. Lecture
Notes in Computer Science 666, pp. 531 562, Springer-Verlag, 1993.

[Stoltenberg-Hansen and Tucker, 1995] V. Stoltenberg-Hansen and J. V.
Tucker. Effective algebras. In Handbook of Logic in Computer Science,
Vol. 4, S. Abramsky, D. Gabbay and T. Maibaum eds, pp. 357 526,
Oxford University Press, 1995.

[Stoltenberg-Hansen and Tucker, 1999a] V. Stoltenberg-Hansen and J. V.
Tucker. Computable rings and fields. In Handbook of Computability The-
ory, E. Griffor ed, North-Holland, 1999.

[Stoltenberg-Hansen and Tucker, 1999b] V. Stoltenberg-Hansen and J. V.
Tucker. Concrete models of computation for topological algebras. Theo-
retical Computer Science, 219:347 378, 1999.

[Stoltenberg-Hansen et al., 1994] V. Stoltenberg-Hansen, I. Lindstrém and
E. Griffor. Mathematical Theory of Domains, Cambridge University
Press, 1994.

[Strong, 1968] H. R. Strong, Jr. Algebraically generalised recursive func-
tion theory, IBM Journal of Research and Development, 12:465-475,
1968.

[Strong, *1971] H. R. Strong, Jr. Translating recursion equations into
flowcharts, Journal of Computer € Systems Science 5:254-285, 1971.
[Thiele, 1966] H. Thiele. Wissenschaftstheoretische Untersuchungen in al-
gorithmischen Sprachen, VEB Deutcher Verlag der Wissenschaften,

1966.

Computable functions on algebras 521

[Thompson, 1987] B. C. Thompson. A mathematical theory of synchronous
concurrent algorithms, PhD thesis, School of Computer Studies, Univer-
sity of Leeds, 1987.

[Thompson and Tucker, 1991] B. C. Thompson and J. V. Tucker. Alge-
braic specification of synchronous concurrent algorithms and architec-
tures, Research Report CSR 9-91, University College of Swansea, 1991.

[Tiuryn, *1981a] J. Tiuryn. Unbounded program memory adds to expres-
sive power of first-order dynamic logic. In Proceedings of the 22nd An-
nual Symposium on the Foundations of Computer Science, Nashville, pp.
335 339, IEEE, 1981.

[Tiuryn, 1981b] J. Tiuryn. Logic of effective definitions, Fundamenta In-
formaticae 4:629 660, 1981.

[Tiuryn, *1981c] J. Tiuryn. A survey of the logic of effective definitions. In
Logics of Programs: Workshop, ETH Ziirich, May—July 1979, E. En-
geler ed., Lecture Notes in Computer Science 125, pp. 198-245, Springer-
Verlag, 1981.

[Troelstra and van Dalen, 1988] A. S. Troelstra and D. van Dalen. Con-
structivism in Mathematics: An Introduction, Vols. I and II, North-

Holland, 1988.

[Tucker, 1980] J. V. Tucker. Computing in algebraic systems, Recursion
Theory, Its Generalisations and Applications, F. R. Drake and S. S.
Wainer eds., London Mathematical Society Lecture Note Series 45, pp.
215-235, Cambridge University Press, 1980.

[Tucker, *¥1991] J. V. Tucker. Theory of computation and specification over
abstract data types and its applications. In NATO Advanced Study In-
stitute, International Summer School at Marktoberdorf, 1989, on Logic,
Algebra and Computation, F. L. Bauer ed, pp. 1 39, Springer-Verlag,
1991.

[Tucker and Zucker, 1988] J. V. Tucker and J. 1. Zucker. Program Cor-
rectness over Abstract Data Types, with FError-State Semantics, CWI
Monographs 6:, North-Holland, 1988.

[Tucker and Zucker, 1989] J. V. Tucker and J. I. Zucker. Horn programs
and semicomputable relations on abstract structures, in 16th Interna-
tional Colloguium on Automata, Languages and Programming, Stresa,
Ttaly, July 1989, G. Ausiello, M. Dezani-Ciancaglini and S. Ronchi della
Rocca eds., Lecture Notes in Computer Science 372:, Springer-Verlag,
pp- 745-760, 1989.

[Tucker and Zucker, *¥1991] J. V. Tucker and J. I. Zucker. Projections of
semicomputable relations on abstract data types, International Journal
of Foundations of Computer Science 2:267 296, 1991.

[Tucker and Zucker, 1992a] J. V. Tucker and J. I. Zucker. Deterministic
and nondeterministic computation, and Horn programs, on abstract data
types, Journal of Logic Programming 13:23-55, 1992.

[Tucker and Zucker, ¥1992b] J. V. Tucker and J. I. Zucker. Examples of

522 J. V. Tucker and J. 1. Zucker

semicomputable sets of real and complex numbers. In Constructivity
in Computer Science: Summer Symposium, San Antonio, Tezxas, June
1991, J. P. Myers, Jr. and M. J. O’Donnell eds, Lecture Notes in Com-
puter Science 613, pp. 179 198, Springer-Verlag, 1992.

[Tucker and Zucker, *1992¢] J. V. Tucker and J. I. Zucker. Theory of com-
putation over stream algebras, and its applications. In Mathematical
Foundations of Computer Science 1992: 17th International Symposium,
Prague, .M. Havel and V. Koubek eds, Lecture Notes in Computer Sci-
ence 629, pp. 62 80, Springer-Verlag,1992.

[Tucker and Zucker, 1993] J. V. Tucker and J. I. Zucker. Provable com-
putable selection functions on abstract structures. In Proof Theory, P.
Aczel, H. Simmons and S. S. Wainer eds, Cambridge University Press,
pp- 277-306, 1993.

[Tucker and Zucker, 1994] J. V. Tucker and J. I. Zucker. Computable func-
tions on stream algebras. In NATO Advanced Study Institute, Interna-
tional Summer School at Marktoberdorf, 1993, on Proof and Computa-
tion, H. Schwichtenberg ed, pp. 341 382, Springer-Verlag, 1994.

[Tucker and Zucker, 1998] J. V. Tucker and J. I. Zucker. Infinitary alge-
braic specifications for stream algebras. Report CAS 98-02, Department
of Computing and Software, McMaster University, 1998.

[Tucker and Zucker, 1999] J. V. Tucker and J. I. Zucker. Computation by
‘While’ programs on topological partial algebras. Theoretical Computer
Science, 219:379-420, 1999.

[Tucker and Zucker, 2000a] J. V. Tucker and J. I. Zucker. Abstract versus
concrete comptability over partial metric algebras (in preparation).

[Tucker and Zucker, 2000b] J. V. Tucker and J. I. Zucker. Abstract com-
putability, algebraic specificationa nd initiality. Technical Report No.
CAS 2000-01-J2, Department of Computing & Software, McMaster Uni-
versity, Hamilton, Canada.

[Tucker et al., 1990] J. V. Tucker, S. S. Wainer and J. I. Zucker. Provable
computable functions on abstract data types. In 17th International Col-
loquium on Automata, Languages and Programming, Warwick Univer-
sity, England, July 1990, M. S. Paterson ed, Lecture Notes in Computer
Science 443, pp. 660-673, Springer-Verlag, 1990.

[Turing, 1936] A. M. Turing. On computable numbers, with an applica-
tion to the Entscheidungsproblem, Proceedings of the London Mathe-
matical Society 42: pp. 230-265; correction [1937], ibid. 43, pp. 544-546.

Reprinted [1965], The Undecidable, M. Davis, ed., Raven Press, 1936.

[Urzyczyn, *1981a] P. Urzyczyn. Algorithmic triviality of abstract struc-
tures, Fundamenta Informaticae 4:819 849, 1981.

[Urzyczyn, *1981b] P. Urzyczyn. The unwind property in certain algebras,
Information € Control 50:91-109, 1981.

[Urzyczyn, ¥1982] P. Urzyczyn. On the unwinding of flow-charts with
stacks, Fundamenta Informaticae 4:119-126, 1982.

Computable functions on algebras 523

[Urzyczyn, *1983] P. Urzyczyn. Nontrivial definability by flow-chart pro-
grams, Information & Control, 58:101-112, 1983.

[Voorhes, 1958] E. A. Voorhes. Algebric formulation of the notion of flow-
diagrams, Communications of the Association for Computing Machinery
1:4 8, 1958.

[Wagner, *1965] E. A. Wagner. Uniformly reflexive structures: An ax-
iomatic approach to computability. In Logic, Computability € Automa-
tion: Joint PADC-AIAC Symposium, Trinkaus Manor, Oriskany, New
York, 1965.

[Wagner, 1969] E. A. Wagner. Uniformly reflexive structures: On the na-
ture of Godelizations and relative computability, Transactions of the
American Mathematical Society 144:1 41, 1969.

[Walker and Strong, *1973] S. Q. Walker and H. R. Strong. Characteriza-
tions of flowchartable recursions, Journal of Computer & Systems Sci-
ence 7:404-447, 1973.

[Warner, *¥1993] S. Warner. Topological Rings, Mathematics Studies 178,
North-Holland, 1989.

[Wechler, 1992] W. Wechler. Universal Algebra for Computer Scientists,
EATCS Monographs 25, Springer-Verlag, 1992.

[Weihrauch, 1987] K. Weihrauch. Computability, EATCS Monographs 9,
Springer-Verlag, 1987.

[Weihrauch and Schreiber, 1981] K. Weihrauch. Embedding metric spaces
into complete partial orders. Theoretical Computer Science 16:5 24,
1981.

[van Wijngaarden, *¥1966] A. van Wijngaarden. Numerical analysis as an
independent science, BIT 6:68-81, 1966.

[Wirsing, 1991] M. Wirsing. Algebraic specification. In Handbook of Theo-
retical Computer Science Vol.B: Formal Methods and Semantics, J. van
Leeuwen ed, pp. 675 788, North-Holland, 1991.

[Zucker and Pretorius, 1993] J. I. Zucker and L. Pretorius. Introduction to
computability theory, South African Computer Journal 9:3 30, 1993.

