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320 J. V. Tuker and J. I. Zukerof natural numbers. The theory establishes what an and annot be om-puted in an expliit way using �nitely many simple operations on numbers.The set of naturals and a seletion of these simple operations together forman algebra. A mathematial objetive of the theory is to develop, analyseand ompare a variety of models of omputation and formal systems forde�ning funtions over a range of algebras of natural numbers.Computability theory on N is of importane in siene beause it es-tablishes the sope and limits of digital omputation. The numbers arerealised as onrete symboli objets and the operations on the numbersan be arried out expliitly, in �nitely many onrete symboli steps. Moregenerally, the numbers an be used to represent or ode any form of disretedata. However, the question arises:Can we develop theories of funtions that an be de�ned bymeans of algorithms on other sets of data?The obvious examples of numerial data are the integer, rational, real andomplex numbers; and assoiated with these numbers there are data suhas matries, polynomials, power series and various types of funtions. Inaddition, there are geometri objets that are represented using the real andomplex numbers, inluding algebrai urves and manifolds. Examples ofsyntati data are �nite and in�nite strings, terms, formulae, trees andgraphs. For eah set of data there are many hoies for a olletion ofoperations from whih to build algorithms.How spei� to the set of data and hosen operations are theseomputability theories? What properties do the omputabilitytheories over di�erent sets of data have in ommon?The theory of the omputable funtions on N is stable, rih and useful;will the theory of omputable funtions on the sets of real and omplexnumbers, and the other data sets also be so?The theory of omputable funtions on arbitrary many-sorted algebraswill answer these questions. It generalises the theory of funtions omput-able on algebras of natural numbers to a theory of funtions omputableon any algebra made from any family of sets and operations. The notionof `omputable' here presupposes an algorithm that omputes the funtionin �nitely many steps, where a step is an appliation of a basi operationof the algebra. Sine the data are arbitrary, the algorithm's omputationsare at the same level of abstration as the data and basi operations ofthe algebra. For example, this means that omputations over the �eld Rof real numbers are exat rather than approximate. Thus, the algorithmsand omputations on algebras are intimately onneted to their algebraiproperties; in partiular, the omputability theory is invariant under iso-morphisms.Already we an see that, in the general ase, there is likely to be arami�ation of omputability notions. For example, in the ase of omput-able funtions on the set R of real numbers it is also natural to onsider



Computable funtions on algebras 321omputability in terms of omputing approximations to the values of afuntion. The use of approximations reognises the fat that data likethe real numbers are in�nite objets and an, or must, be algorithmiallyapproximated. This is the approah of omputable analysis. We wll presenttwo approahes to omputation on the reals: `algebrai' and `topologial'.In our algebrai approah we are looking for what an be omputed exatly,knowing only what the operations reveal about the reals. The operationsmay have been hosen to reveal properties that are spei� to the reals,of ourse. In the topologial approah we are looking for what an beomputed with essentially in�nite data on the basis of a �nite amount ofinformation. Atually, this is again, at bottom, an algebrai approah, forthe performane of approximate omputations.In this hapter our objetive is to show the following:1. There is a general theory of omputable funtions on an arbitrary al-gebra that possesses generalisations of many of the important resultsin omputability theory on natural numbers.2. The theory provides tehnial onepts and results that improve ourunderstanding of the foundations of lassial omputability and de-�nability theory on N.3. The theory has a wide range of appliations in mathematis andomputer siene.4. The theory an be developed using many models of omputation thatare equivalent in that they de�ne the same lass of omputable fun-tions.5. The theory possesses a generalisation of the Churh{Turing thesis forfuntions and sets omputed by algorithms on any abstrat algebraistruture.6. The theory generalises other less general but still abstrat and alge-brai, theories of �nite omputation, inluding e�etive algebra andomputable analysis.Computability theories on partiular and general lasses of algebras ad-dress entral onerns in mathematis and omputer siene. Some, suhas e�etive algebra, have a long history and several sub�elds with deepresults, suh as the theory of omputable rings and �elds and the wordproblem for groups. However, abstrat omputability theories of the kindwe will develop have a short and less eventful history: starting in the late1950s, with theoretial work on owharts, many approahes have been pre-sented that vary in their generality and objetives; indeed, there has beena remarkable amount of reinventing of ideas and results, sometimes withnew motivations, suh as obtaining results on: the struture of owharts;the power of programming onstruts; the design of program orretnesslogis; the development of axiomati foundations for generalised reursiontheories based on ordinals and higher types; and the study of algorithmiaspets of ring and �eld theory, and of dynamial system theory.



322 J. V. Tuker and J. I. ZukerIn this setion we will introdue in a very informal way the model ofomputation we will use (in setion 1.1) and pose some questions aboutexamples of omputable funtions (in setion 1.2). Then, in setion 1.3, wewill outline the relationship between our model and other models of om-putation, espeially e�etive algebra and omputable analysis. In setion1.4 the history of the theory of omputable funtions on abstrat algebrasis skethed. In setions 1.5 and 1.6 the struture of the hapter and itsprerequisites are disussed in more detail.The hapter is losely linked sienti�ally with the hapters in thisHandbook on universal algebra (Volume I), omputability (Volume I), ande�etive algebra (Volume IV); it also onnets with other subjets (e.g.,topology (Volume I) and those on semantis (Volumes III and IV)). Furtherinformation on prerequisites is given in setion 1.6.1.1 Computing in algebrasLet us begin with a basi question:Let S be a non-empty set of data and let f : Sn ! S be a totalor partial funtion. How do we ompute f?The methods we have in mind start with postulating an algebra A on-taining the set S. The algebra may onsist of a �nite family of non-emptysets A1; : : : ; Akalled the arriers of the algebra, one of whih is the set S and another isthe set B of Booleans. The algebra is also equipped with a �nite family1; : : : ; pof elements of the sets, alled onstants, and a �nite familyF1; : : : ; Fqof funtions on the sets alled operations; these funtions are of the formF : As1 � : : :�Asn ! Asand an be total or partial. Among the operations are some standardfuntions on the Booleans. Suh an algebra is alled a standard many-sorted algebra; we say it is standard beause it ontains the Booleans andtheir speial operations. An algebra is often written(A1; : : : ; Ak; 1; : : : ; p; F1; : : : ; Fq):A set � of names for the data set, onstants and operations (and theirarities) of the algebra A is alled a signature.



Computable funtions on algebras 323For most of the time we will use many-sorted algebras with �nitelymany onstants and total operations, but we will need the ase of partialoperations to disuss the relationship between our omputable funtionsand ontinuous funtions on topologial algebras suh as algebras of realnumbers, and algebras with in�nite data streams.The problem is to develop and lassify models of omputation thatdesribe ways of onstruting new funtions on the set S from the basioperations of the algebra A. In partiular, eah model of omputationM isa method or tehnique whih we use to de�ne the notion that the funtionf on the arriers of A is omputable from the operations on A by meansof method M; and we ollet all suh funtions into the setM-Comp(A)of funtions M-omputable over the algebra A.There are many useful hoies for a model of omputation M withwhih to develop a omputability theory|we list several in a survey insetion 8. In this hapter we fous on a theory for omputing with a simpleimperative model, namely the While programming language.In this programming language, basi omputations on an algebra A areperformed by onurrent assignment statements of the formx1; : : : ; xn := t1; : : : ; tnwhere x1; : : : ; xn are program variables and t1; : : : ; tn are terms or expres-sions built from variables and the operation symbols from the signature ofthe algebra A; and xi and ti orrespond in their types (1 � i � n).The ontrol and sequening of the basi omputations are performed bythree onstuts that form new programs from given programs S1, S2 andS, and Boolean test b:(i) the sequential omposition onstrutS1;S2(ii) the onditional branhing onstrutif b then S1 else S2 �(iii) the iteration onstrut while b do S od:The set of all programs so onstruted over the signature � is denotedWhile(�).The operational semantis of a While program is a funtion that,given an initial state, enumerates every state of a resulting omputation.The input/output (i/o) semantis of a while program is a funtion that



324 J. V. Tuker and J. I. Zukertransforms initial states to �nal states, if they exist. To ompute a funtionon A by means of aWhile program we formulate a simple lass of funtionproedures based onWhile programs; a funtion proedure P has the formP � pro in a out b aux  begin S endwhere a, b,  are lists of input, output and auxiliary variables, respetively,and S is a While program, satisfying some simple onditions. The se-mantis of a proedure P is a funtion [[P ℄℄A on A whose input and outputtypes are determined by the types of the lists of input and output variablesa and b.A funtion f is While omputable on algebra A if there is a Whilefuntion proedure that omputes it, i.e., [[P ℄℄A = f . All While omput-able funtions on A are olleted in the set While(A).A set is de�ned to be While omputable, or deidable, if its hara-teristi funtion is While omputable. It is While semiomputable, orsemideidable, if it is the domain of a partialWhile omputable funtion;in other words, if it is the halting set of a While program.A ruial property of an abstrat model of omputation is that it isdesigned to apply to any algebra or lass of algebras. Two importantonsequenes are the following.Firstly, it is easy to explore uniform omputation where programs gen-erate omputations over a lass of implementations or representations ofdata types in a uniform way. For example, think of aWhile program thatis intended to implement Eulid's algorithm to alulate greatest ommondivisors in a way that is uniform over a lass of algebras. By suh a `lass'we ould mean, for example, any of the following: (i) the lass of all Eu-lidean domains, (ii) the isomorphism lass of all (ideal, in�nite) imple-mentations of the ring of integers, (iii) the lass of (atual, �nite) mahineimplementations of the integers.Seondly, it is easy to employ ertain forms of type onstrutions. Sinewe an ompute on any algebra (possessing the Booleans) using the pro-gramming model, we an augment an algebra A to form a new algebra A0,by adding new types and operations, and apply the programming modelto A0. Adding new data sets and operations is a key ativity in theory andpratie. In partiular, three modest expansions of an algebra A that havesigni�ant pratial e�ets and (as we shall show) interesting mathematialtheories are:(a) adding the set N of natural numbers and its standard operations toA to make a new algebra AN ;(b) adding �nite sequenes, and appropriate operations, to A to make analgebra A�.() adding in�nite streams, and appropriate operations, to A to make analgebra �A.



Computable funtions on algebras 325We apply the model of omputation to form new lasses of omputablefuntions, namely:While(AN ); While(A�) and While( �A).By this means it is trivial to add onstruts like ounters, �nite arrays andin�nite data streams to the theory of omputation, though it is not trivialto hart the onsequenes.In summary, what mehanisms are available for omputing in an alge-bra? The methods of omputation are merely:(i) basi operations of the algebra; and(ii) sequening, branhing and iterating the operations.Is equality omputable? Do we have available unlimited data storage?Can we searh the algebra for data?We will see that for any many-sorted algebra A with the Booleans, byadding the naturals, we an add(iii) any algorithmi onstrution on a numerial data representation;and, by adding A�, we an add(iv) loal searh through all elements of the subalgebra generated by giveninput data;(v) unlimited storage for data in omputations.To obtain equality we have to postulate it as a basi operation of thealgebra.We will study these models of omputation. The most important turnsout to be the programming language While�, whih onsists of Whileprograms with the naturals and �nite arrays, and is de�ned simply byWhile�(A) = While(A�).This is the fundamental model of imperative programming that yields afull generalisation, to an arbitrary many-sorted algebra A, of the theory ofomputable funtions on the set N of natural numbers, and for whih thegeneralised Churh{Turing thesis for omputation on A will be formulatedand justi�ed.1.2 Examples of omputable and non-omputable fun-tionsFirst, let us look at the raw material of our theory, namely problems on-erning omputing funtions and sets on spei� algebrai strutures. Wewill give a list of questions about omputing with While programs ondi�erent algebras and invite the reader to speulate on their answers; it isnot essential that the reader understand or reognise all the onepts inthe examples. The idea is to prepare the reader for the role of algebraistrutures in the theory of omputable funtions and sets, and arouse hisor her uriosity.



326 J. V. Tuker and J. I. ZukerLet B be the set of Booleans and let N, Z, Q, R and C be the sets ofnatural, integer, rational, real and omplex numbers, respetively.1. Are the sets of funtionsWhile omputable over the following alge-bras the same as those omputable over (N; 0; n+ 1)?(N; 0; n+ 1; n+m; n �m; n = m)(N; 0; n+ 1; n+m; n �m; nm; n = m)(N; 0; 1; n+m; n �m; n = m)(N; 0; n+m; n �m; n = m)(N; 0; n+m; n = m)(N; 0; n �m; n = m)2. Consider eah of the following funtions:f(n) = 4f(n) = nf(n) = n+ 1f(n;m) = n+mf(n;m) = n�mIn eah ase is f 2 While(N; 0; n� 1)?3. Let B be the set of Booleans and f : B k ! B . Is f 2While(B ; tt; ff;and; not)?4. Let A be a �nite set and f : A! A. Is f 2While(A; 1; : : : ; p; F1;: : : ; Fq) for any hoie of onstants i and operations Fj on A?5. Consider the algebra(B ;N ; [N ! B ℄; tt; ff; and, not, 0; n+ 1; eval)of Booleans expanded by adding the set N of naturals with zero andsuessor, and the set [N ! B ℄ of in�nite sequenes, or streams, ofBooleans, with the evaluation map eval:[N ! B ℄ � N ! B de�nedby eval(b; n) = b(n). Are the following funtionsWhile omputableover this algebra:shift: [N ! B ℄ � N ! B de�ned by shift(a; n) = a(n+ 1);Shift: [N ! B ℄ ! [N ! B ℄ de�ned by Shift(a)(n) = a(n+ 1)?6. Whih of the following sets of Boolean streams are(i) While omputable, and(ii) While semiomputable, over the stream algebra in question 5?f a j for some n; a(n) =ttgf a j for all n; a(n) =ttgf a j for in�nitely many n; a(n) = ttgf a j a(0) = tt , : : : ; a(n) =ttg for some �xed n7. Consider eah of the following funtions:f(x) = 4 f(x) = oor(px)f(x) = p2 f(x) = 2xf(x) = � f(x) = sin(x)f(x) = x f(x) = os(x)f(x) = x5 f(x) = tan(x)f(x) = px f(x) = ex



Computable funtions on algebras 327In eah ase, is f While omputable over (R; 0; 1; x + y;�x;x � y; x�1)8. Are os(x) and tan(x) While omputable over (R; 0; 1; x + y;�x;x � y; x�1; sin(x))?9. Let f : R2 ! R be the step funtionf(x; r) = (0 if x < r1 if x � r:Is f While omputable over (R; 0; 1; x+ y; �x; x � y; x�1)?10. Whih of the following subsets of R are(a) While omputable, and(b) While semiomputable, over the �eld of real numbers?(i) The rational sub�eld Q of the �eld of reals(ii) The sub�eld Q(p2) of the �eld of reals generated by Q and p2(iii) The sub�eld Q(pp j p prime) of the �eld of reals generated byQ and the set fpp j p primeg(iv) The sub�eld Q(r) of the �eld of reals generated by Q and anon-omputable real number r(v) The sub�eld A R of the �eld of reals ontaining preisely the realalgebrai numbers11. Is the subalgebra A of (R; 0; 1; x + y; �x; x � y; x�1; ex) generatedby Q While semideidable?12. Is there a While program over (R; 0; 1; x + y; �x; x � y; x�1; px)that omputes all the real roots of all quadrati equations with realoeÆients?13. Consider the polynomialp(X) � a0 + a1X + a2X2 + : : :+ anXn (a0; : : : ; an 2 R):(a) Is the set fx 2 R j p(x) = 0g of roots of pWhile deidable over(R; 0; 1; x+ y; �x; x � y; x�1; a0; : : : ; an)?(b) For eah n �nd operations to add to the algebra (R; 0; 1; x +y; �x; x � y; x�1) to alulate the n roots of the polynomial as fun-tions of the oeÆients.14. Consider the algebra (R; B ; 0; 1; x+ y; �x; x � y; x�1; x = y) whihadds equality =: R2 ! B to the �eld of reals. What new funtionsf : Rk ! R an be omputed?15. Consider the algebra (R; B ; 0; 1; x+ y; �x; x � y; x�1; x = y; x < y)whih adds ordering <: R2 ! B to the �eld of reals. What newfuntions f : Rk ! R an be omputed?16. Is every yli subgroup hti of the irle group S1 While deidable?



328 J. V. Tuker and J. I. Zuker17. If f : R ! R isWhile omputable on (R; 0; 1; x+y; �x; x�y; x�1),is f ontinuous?18. Can any ontinuous funtion f : R ! R be approximated (in somesuitable metri) by a funtionWhile omputable over (R; 0; 1; x+y; �x; x � y; x�1)?19. What is the relationship, for funtions on R, between omputabilityin the sense of omputable analysis, and While omputability on(R; 0; 1; x+ y; �x; x � y; x�1)?20. Is there an algebra A(R) ontaining R, for whihRe(R) = While(A(R)),where Re(R) is the set of funtions omputable on R in the senseof reursive or omputable analysis?21. Consider the many-sorted algebra(R; N; [N ! R℄; 0R; 1R; x+ y; �x; 0N; n+ 1; eval)that is an expansion of the additive Abelian group of reals, madeby adding the naturals with zero and suessor, in�nite sequenes orstreams of real numbers, and the evaluation map eval : [N ! R℄�N !R de�ned by eval(a; n) = a(n). Are the following funtions Whileomputable on this algebra:add: [N ! R℄2 � N ! R de�ned by add(a; b; n) = a(n) + b(n);Add: [N ! R℄2 ! [N ! R℄ de�ned by Add(a; b)(n) = a(n) + b(n)?22. Are omplex onjugation �z and modulus jzj of a omplex numberz While omputable over the following algebras?(i) (C ; 0; 1; x+ y; �x; x � y; x�1)(ii) (C ; 0; 1; i; x+ y; �x; x � y; x�1)23. Is the set fig While deidable over either of the �elds listed inquestion 22?24. Consider the funtion f(x) = 4x(1� x) on the reals. Is the orbit off , de�ned by orb(f; x) = ffn(x) j n 2 N; 0 � x � 1gWhile omputable over the �eld of real numbers?25. Are the fratal subsets of C , suh as the Mandelbrot and Julia sets,While deidable over the �eld of omplex numbers?26. Are the following subsets of C either While deidable, or Whilesemideidable, over the algebra (C ; B ; 0; 1; i; jzj; x+y; �x; x�y; x�1;=)?(i) The set fig(ii) The set of all roots of unity(iii) The set of all algebrai omplex numbers



Computable funtions on algebras 32927. Consider the rings Z[X1; : : : ; Xn℄ of all polynomials in n indeter-minates over the integers. Is the ideal membership relationq 2 (p1; : : : ; pm)(in q; p1; : : : ; pm) While deidable over this ring?28. Consider the rings F [X1; : : : ; Xn℄ of all polynomials in n indeter-minates over a �eld F . Is the ideal membership relation Whiledeidable over this ring?29. Consider the algebra T(�, X) of all terms over signature � in the�nite set X of indeterminates. Let AX be the set of assignments toX in an algebra A. De�ne the term evaluation funtionT : TE(�, X)�AX ! Aby TE(t; a) = t(a). Is TE While omputable over the algebraformed by simply ombining the algebras T (�; X) and A?30. (a) Are all �rst-order de�nable subsets of natural numbers Whileomputable with respet to the following algebras?(i) (N; 0; n+ 1; n+m; n �m)(ii) (N; 0; n+ 1; n+m)(iii) (N; 0; n+ 1)(b) Are the While semiomputable sets preisely the �1-de�nablesets with respet to these algebras?31. Is any set of omplex numbers that is �rst-order de�nable over the�eld of omplex numbersWhile deidable over this �eld? Is any setof real numbers that is �rst-order de�nable over the ordered �eld ofreal numbers While deidable over this �eld?1.3 Relations with e�etive algebraIn omputer siene, many-sorted algebras are used to provide a generaltheory of data and, indeed, of whole omputing systems. They have beenemployed tospeify and analyse many new forms of data types;lassify data representations;haraterise whih data types are implementable;model systems;analyse the modularisation of omputing systems;formalise the orretness of systems; andreason about systems.A many-sorted algebra models a onrete representation of a data type orsystem; suh representations are ompared by homomorphisms, axiomat-ised by equations and onditional equations, and prototyped by term rewrit-ing methods. There is a onsiderable theoretial and pratial literature



330 J. V. Tuker and J. I. Zukeravailable whih may be aessed through survey works suh as Meseguerand Goguen [1985℄, Wirsing [1991℄, Wehler [1992℄ and Meinke and Tuker[1992℄.The theory of omputable funtions and sets on many-sorted algebrasis intended to provide an abstrat theory of omputing to omplement thisabstrat algebrai theory of data. With this in mind we ask the question:How is the theory of While omputable funtions and sets onmany-sorted algebras related to other theories of omputabilityon suh algebras?We have mentioned earlier that there are many models of omputationthat an be applied to an arbitrary algebra and that turn out to de�ne thesame lass of funtions and sets as the While language; these equivalentmodels belong to the omputability theory and are the subjet of setion8. Here we will disuss an important approah to analysing omputabilityon algebras alled e�etive algebra. E�etive algebra is onerned withwhat algebras are omputable, or e�etive, and what funtions and setson these algebras are omputable, or e�etive. The subjet is explained inStoltenberg-Hansen and Tuker [1995; 1999a℄.A starting point for the disussion is the theory of the omputablefuntions on the set N = f0; 1; 2; : : :g of natural numbers. Aording tothe Churh{Turing thesis, the lass Comp(N) of omputable funtion onN, de�ned by any one of a number of models of omputation, is preisely thelass of funtions de�nable by means of algorithms on the natural numbers.As we have noted, the algorithms are often over some algebrai strutureon N. In fat, seen from the algebrai theory of data, the algebras usedform a lass of onrete representations of the natural numbers that isparameterised by both the hoie of operations and the preise nature ofthe number representations (e.g.,binary, deimal and roman). The extentto whih the theory of omputable funtions on N varies over the lass ofthese algebras of numbers is an important question, but one that is notoften asked. We expet there to be very little variation in pratie (butompare questions 1 and 2 of setion 1.2).In general terms, a omputability theory onsists of(a) a lass of algebrai or relational strutures to de�ne data and opera-tions; and(b) a lass of methods, whih we all a model of omputation, to de�nealgorithms and omputations on the data using the operations.A generalised omputability theory is one whih an be appliedto a struture ontaining the set N of natural numbers to de�ne the setComp(N) of omputable funtions onComp(N). An abstrat omputabil-ity theory is a omputability theory in whih the theory is invariant up toisomorphism (in some appropriate sense).To develop an abstrat generalised omputability theory for any algebraA, and lassify the omputable funtions and sets on A, one an proeed



Computable funtions on algebras 331in either of the following two diretions. One an apply omputability the-ory on N to algebras using maps from sets of natural numbers to algebrasalled numberings. The long-established theories of deision problems insemigroups, groups, rings and �elds, et. are examples of this approah.Furthermore, the theory of omputable funtions Comp(R) on the setR of real numbers in omputable analysis uses omputability theory onComp(N) to formalise how real number data and funtions are approxi-mated e�etively. Theories based on these approahes are parts of whatwe here all e�etive algebra.Alternatively, one an generalise the omputability theory on N to a-ommodate abstrat strutures; the theory of omputable funtions onmany-sorted algebras developed in this hapter is an example, of ourse,and more will be said about equivalent models of omputation in setion8. However, there are examples of generalised omputation theories thatare stritly stronger, suh as ordinal reursion theory, set reursion the-ory, higher type reursion theory and domain theory. Typially thesefour generalised omputability theories allow in�nite omputations to re-turn outputs. To appreiate the diversity of some of these theories itis neessary to examine losely their original motivations; seen from oursimple �nitisti algebrai point of view, generalised reursion theories havea surprisingly untidy historial development.Let us fous on the �rst diretion. E�etive algebra is a theory thatprovides answers for questions suh as:When is an algebra A omputable? What funtions on A areomputable? What sets on A are deidable or, at least, semide-idable?It attempts to establish the sope and limits of omputation by means ofalgorithms for any set of data, by applying the theory of omputation on Nto universal algebras ontaining the set of data using numberings. Thus, itlassi�es what data an be represented algorithmially, and what sets andfuntions an be de�ned by algorithms, in the same terms as those of theChurh{Turing thesis for algorithms on N. Assuming suh a thesis, we maythen use the theory of the reursive funtions on N to give preise answersto the above questions about algebras, and to the question:What sets of data and funtions on those data an be imple-mented on a omputer in priniple?The numberings apture the sope and limits of digital data represen-tation and, thus, e�etive algebra is a general theory of the digital view ofomputation. More spei�ally, in e�etive algebra we an investigate theonsequenes of the fat that1. an algebra is omputable;2. an algebra is e�etive in some weaker senses; and



332 J. V. Tuker and J. I. Zuker3. a topologial algebra an be approximated by a omputable or e�et-ive algebra.Among the weaker senses are the onepts of semiomputable, osemiom-putable and, most generally, e�etive algebras. For an algebra to be e�et-ive it must be ountable, so that its elements may be enumerated. For analgebra to be e�etively approximable it must have a topologial struture,so that its elements may be approximated; the bulk of interesting topolo-gial algebras are unountable. A full aount of these onepts is given inStoltenberg-Hansen and Tuker [1995℄. At the heart of the theory of e�et-ive algebra is the notion of a omputable algebra: a omputable algebra isan algebra that an be faithfully represented using the natural numbers ina reursive way. Here is the de�nition for a single-sorted algebra:De�nition 1.1. An algebra A = (A; 1; : : : ; p; F1; : : : ; Fq) is omputableif: (i) the data of A an be omputably enumerated|there exists a reur-sive subset 
� � N and a surjetion� : 
� ! Nalled a numbering, that lists or enumerates, possibly with repetitions,all the elements of A; (ii) the operations of A are omputable in theenumeration|for eah operation Fi : An(i) ! A of A there exists a re-ursive funtion Fi : 
�n(i) ! 
�that traks the Fi in the set 
� of numbers, in the sense that for allx1; : : : ; xn(i) 2 
�,Fi(�(x1); : : : ; �(xn(i))) = �(fi(x1; : : : ; xn(i)));(iii) the equivalene of numerial representations of data in A is deidable|the equivalene relation �� de�ned byx1 �� x2 () �(x1) = �(x2)is reursive.An equivalent formulation, in the algebrai theory of data, is that A isomputable if it is the image of a reursive algebra 
� of numbers under ahomomorphism � : 
� ! A whose kernel �� is deidable. (This simplealgebrai haraterisation leads to new methods of generalising omputabil-ity theories: see Stoltenberg-Hansen and Tuker [1995℄).What mehanisms are available for omputing in a omputable algebra?Via the enumeration, the methods inlude:(i) basi operations of the algebra;(ii) sequening, branhing and iterating the operations;



Computable funtions on algebras 333(iii) any algorithmi onstrution on the numerial data representation;(iv) global searh through all elements of the algebra;(v) unlimited storage for data in omputations;(vi) the equality relation on the algebra via the ongruene.Conditions (i) and (ii) are shared with our While programming modeland, indeed, are neessary for an algebrai theory: reall setion 1.1. Thereare also a number of features that extend the methods of ourWhilemodel,inluding onditions (iii) and, more dramatially, (iv). Using the propertiesof the numbers that represent the data we an perform global searhesthrough the data sets (by means of an ordering on the ode set), andstore data dynamially without limitations on data storage (by means of apairing on the ode set). Note that ondition (vi) is a de�ning feature ofomputable algebras and an be relaxed (as in the ase of semiomputableor e�etive algebras, for instane).Note that an algebra A is omputable if there exists some omputablenumbering � for A. The omputability of funtions and sets over A maydepend on the numbering �; thus, to be more preise, we should say thatA, its funtions and subsets et. are �-omputable. Let us de�ne the om-putable subsets and funtions for suh an algebra.De�nition 1.2 (Sets and maps). Let A be an algebra of signature �,omputable under the numbering � : 
� ! A.(1) A set S = Ak is �-deidable, �-semideidable or �-osemideidable ifthe orresponding set��1(S) = f(x1; : : : ; xk) 2 
�k j (�(x1); : : : ; �(xk) 2 Sgof numbers is reursive, reursively enumerable (r.e.) or o-reursivelyenumerable (o-r.e.) respetively.(2) A funtion � : A ! A is an �-omputable map if there exists areursive funtion f : 
� ! 
� suh that for all x 2 
�, f(�(x)) =�(f(x)); or, equivalently, f ommutes the following diagram:A ������������! A�x?? x??�
� �����������!f 
�Let Comp�(A) be the set of all �-omputable maps on A.For any omputable algebra, there are many omputable numberings,some of whih may have desirable properties; for example, it is the asethat every omputable algebra has a bijetive numbering with ode set N.



334 J. V. Tuker and J. I. ZukerLet C(A) be the set of all omputable numberings of the algebra A. Thehoie of a numbering � 2 C(A) suggests that the e�etiveness of a subsetor funtion on A may depend on �. To illustrate, let S � A and onsiderthe following questions:Is S deidable for all omputable numberings of A; or deid-able for some, and undeidable in others; or undeidable for allomputable numberings of A?Another question onerns the invariane of omputable maps.If A is omputable under two numberings � and � then whatis the relation between the sets Comp�(A) and Comp�(A)?What is \�2C(A) Comp�(A)?Consider our abstrat model based on While programs. We have notedthat While(N; 0; n+ 1) = Comp(N).The question then arises for our algebras:What is the relationship between While(A) and Comp�(A)for an arbitrary omputable representation �?We an prove that if A is omputable thenWhile(A) � \�2C(A)Comp�(A): (1.1)(In fat this inlusion holds for muh weaker hypotheses on A.) The on-verse inlusion does not hold in general. To see why, onsider the algebra(N; 0; n� 1);and the use of a While program to ompute a funtion f : Nn ! N. Itturns out that for any x1; : : : ; xn 2 N,f(x1; : : : ; xn) � max(x1; : : : ; xn)beause assignments an only redue the value of the inputs. It followsthat While(N; 0; n� 1) $ \�2C(A)Comp�(N; 0; n� 1) (1.2)beause in any numbering the suessor funtion S(x) = x + 1 an beomputed.



Computable funtions on algebras 335More diÆult to answer is the question: When isWhile(A) = \�2C(A)Comp�(A)?Some results in this diretion are known.Inequality (1.2) is not a weakness of the abstrat theory. Rather it isan indiation of the fat that the abstrat models provide a more sensitiveanalysis of �nite omputations. For example, the abstrat theory revealsthe speial properties of the algebras of numbers that give omputabilitytheory on N its speial harateristis: the theory of Comp�(A) is thesame as the theory of While�(A) when A is an algebra �nitely generatedby onstants.1.4 Historial notes on omputable funtions on alge-brasThe generalisation of the theory of omputable funtions to abstrat alge-bras has a ompliated history. On the one hand the onnetions betweenomputation and algebra are intimate and anient: algebra grew from prob-lems in omputation. However, the fat that it is now neessary to explainhow omputation theory an be onneted or applied to algebra is an aber-ration, and is the result of interesting intelletual and soial mutations inthe past. It is a signi�ant task to understand the history of generalisa-tions of omputability theory, with questions for researh by historians ofmathematis, logi and omputing, as well as soiologists of siene.The story that underlies this work involves the development of alge-bra; the development of omputability theory; interations between om-putability theory and algebra; and appliations to omputing. Some of theonnetions between omputation theory and algebra have been providedin other Handbook hapters: for notes on the histories ofe�etive algebra, see Stoltenberg-Hansen and Tuker [1995℄;omputable rings and �elds, see Stoltenberg-Hansen and Tuker [1999a℄;algebrai methods in omputer siene, see Meinke and Tuker [1992℄.In the following notes we disuss the nature of generalisations and pointout the earliest work on abstrat omputability theory. Setion 8 is devotedto a fairly detailed survey of the literature.We �rst list some ommon-sense reasons for generalising omputabilitytheory. A ommon view is to say that the purpose of a generalisation ofomputability theory is one or more of the following:(i) to say something new and useful about the original theory;(ii) to provide new methods of use in omputer siene and mathematis;(iii) to illuminate and inrease our understanding of the nature of om-putation.



336 J. V. Tuker and J. I. ZukerAs will be seen, the theory of omputable funtions on many-sorted algebrasis ertainly able to meet the goals (i){(iii). For a disussion of these andother reasons for generalising omputability theory, see Kreisel [1971℄.Broadly speaking, it is often the ase that a new mathematial gener-alisation of an old theory fouses on a few basi tehnial ideas, results orproblems in the old theory and makes them primary objets of study in thenew theory. If the generalised theory is tehnially satisfying then a sub-stantial subjet an be built on foundations onsisting of little more thansome modest tehnial motivations. Reent history reords many attemptsat generalisations of omputability theory that have di�erent, narrower,tehnial aims than those of the original theory. Indeed, in some ases, ifthe generalisation an be applied to analyse omputation on algebras thenits aims need not be partiularly useful or meaningful.Generalised omputability theories bear witness to the fat that om-putability theory has several onepts, results and problems that an bearthe weighty load of a satisfying generalisation. For instane, on general-ising �niteness, and allowing in�nite omputations, theoretial di�erenesan be found that allow models of omputation to leverly meet goal (i),but not (ii) or (iii).Computability theory an also support a good axiomati framework inwhih deep results an be proved, and generalised omputability theoriesare models. For example, the axiomati notion of omputation theorydeveloped by by Moshovakis and Fenstad elegantly aptures basi resultsand advaned degree theory: see Stoltenberg-Hansen [1979℄ and Fenstad[1980℄.There is usually a good market for general frameworks in theoretialsubjets beause there is more spae in whih to seek ideas and show res-ults. Generality is attrative: there are many new tehnial onepts andthe original theory an underwrite their value. Generalisations are devel-oped, gain an audiene and reputation, and, like so many other tehnialdisoveries, await an appliation. Appliations an arise in more exoti orommonplae areas than their reators expeted. In the ase of generalis-ing omputability theory, some theories have useful appliations (e.g. in settheory), and some languish in the museum of possible models of axiomatitheories of omputation.Abstrat omputability theory developed rather slowly, and owes muhto the development of programming languages.A starting point is the notion of the owhart. The idea was �rst seenin examples of programs for the ENIAC from 1946, published in Goldstineand von Neumann [1947℄. Flowharts were adapted and used extensivelyin pratial work. For example, standards were provided by the Amer-ian Standards Assoiation (see Amerian Standards Assoiation [1963℄and Chaplin [1970℄).To de�ne mathematially the informal idea of a owhart requireda number of papers on ow diagrams, graph shemata and other mod-



Computable funtions on algebras 337els; some ommonly remembered papers are: Ianov [1960℄, P�eter [1958℄,Voorhes [1958℄, Asser [1961℄, Gorn [*1961℄ and Kaluzhnin [1961℄. By thetime of the elebrated B�ohm and Jaopini [1966℄ paper on the onstrutionof normal forms for owharts, the subjet of owharts was well estab-lished.In some of these papers the underlying data need not be the naturalnumbers, strings or bits. In partiular, in Kaluzhnin [1961℄ owharts aremodelled using �nite onneted direted graphs. These have verties eitherwith one edge to whih are assigned an operation, for omputation, or twoexit edges to whih are assigned a disriminator, for tests. The graphhas one vertex with no inoming edge, for input, and one vertex with nooutgoing edge, for output. To interpret a so-alled graph sheme, a set offuntions is used for the operations, and a set of properties is used for thedisriminators.Kaluzhnin's work was used in various studies, suh as Elgot's early work,and in Thiele [1966℄, a major study of programming, in whih ow diagramsare presented that are not neessarily onneted graphs. The semantis ofow diagrams is de�ned here formally, in terms of the funtionsEl�;�(n) = objet or data after the nth step in ow diagram �starting at state �,Kl�;�(n) = edge in ow diagram � traversed after the n-th stepstarting at state �.using simultaneous reursions. Thiele's work inuened the formal develop-ment of operational semantis as found in the Vienna De�nition Language:see Lauer [1967; 1968℄ and Luas et al. [1968℄. The important point isthat prediate alulus with funtion symbols and equality is extended byadding expressions that orrespond with ow diagrams to make an algo-rithmi language involving graphs.Thus, in the period 1946{66, some of the basi topis of a theory of om-putation over any set of data had been reognised, inluding: equivaleneof owharts; substitution of owarts into other owharts; transforma-tions and normal forms for ow harts; and logis for reasoning about owharts.Flowharts were not the only abstrat model of omputation to be de-veloped.Against the bakground of early work on the priniples of programmingby A. A. Lyapunov and theoretial work by Ianov and others in the for-mer Soviet Union, Ershov [1958℄ onsidered omputation with any set ofoperations on any set of data. In Ershov [1960; 1962℄ the onept of oper-ator algorithms is developed. These are imperative ommands made fromexpressions over a set of operations; the algorithms allow self-modi�ation.The model was used in early work on ompilation in the former SovietUnion. See Ershov and Shura-Bura [1980℄ for information on early pro-gramming.



338 J. V. Tuker and J. I. ZukerOf partiular interest is MCarthy [1963℄, whih reviewed the require-ments and ontent of a general mathematial theory of omputation. Itemphasises the idea that lasses of funtions an be de�ned on arbitrarysets of data. Starting with a (�nite) olletion F of base funtions on someolletion of sets, we an de�ne a lass CfFg of funtions omputable interms of F . The mehanism used is that of reursion equations with aninformal operational meaning based on term substitution. An abstratomputability theory is an aim|not `merely' a model of programmingstruture et.|and MCarthy writes (p. 63):Our haraterisation of CfFg as the set of funtions omputablein terms of the base funtions in F annot be independentlyveri�ed in general sine there is no other onept with whih itan be ompared. However it is not hard to show that all partialreursive funtions in the sense of Churh and Kleene are inCfzero, sug.This, of ourse, falls short of a generalised Churh{Turing thesis. Thepaper also mentions funtionals and the onstrution of new sets of datafrom old, inluding a produt, union and funtion spae onstrution fortwo sets, and reursive de�nition of strings. MCarthy's paper is eloquent,pereptive and an early milestone in the mathematial development of thesubjet.E. Engeler's innovative work on the subjet of abstrat omputabilitybegins in Engeler [1967℄. This ontains a mathematially lear aount ofprogram shemes whose operations and tests are taken from a �rst-orderlanguage over a single-sorted signature. The programs are lists of labelledonditional and operational instrutions of the formk : if � then goto p else goto qk : do  then goto pwhere k, p and q are natural numbers ating as labels for instrutions, � isa formula of the language and  is an assignment of one of the formsx:=, x:=y or x:=f (y1; : : : ; yk)where x,y,... are variables, and  and f are any onstant and operationof the signature. Interpretations are given by means of a notion of state,mapping program variables to data in a model. A basi result proved hereis this:To eah program � one an assoiate a formula � that is aountable disjuntion of open formulae suh that for all models,� terminates on all inputs from A () A j= �.Results involving the de�nability of the halting sets of programs in termsof omputable fragments of in�nitary languages will be proved in setion5 and applied in setion 6, where we refer to them as versions of Engeler'slemma.



Computable funtions on algebras 339In Engeler [1968a℄ two new models of omputation are given: one isbased on a new form of Kleene �-reursion, the other on a dedutive sys-tem. The funtions omputable by the programs and these two modelsare shown to be equivalent. Engeler's development of the subjet in theperiod 1966{76 addresses original and yet basi questions inluding theomputability of geometrial onstruts, exat and approximate ompu-tation, and a Galois theory for spei�ations and programs: see Engeler[1993℄.The study of program shemes and their interpretation on abstratstrutures grew in the early 1970s, along with the theoretial omputer si-ene ommunity. Problems onerning program equivalene, deidabilityand the expressive power of onstruts were studied and formed a sub-jet alled program shematology (see, for example, Greibah [1975℄). Theproblem of �nding deidable properties, and espeially �nding deidableequivalene results, is work diretly inuened by Ianov [1960℄. The sub-jet of program shemes, and the promise of deidability results on abstratstrutures, was addressed in the unpublished Lukham and Park [1964℄, andearly undeidability results appeared in Lukham et al. [1970℄. Programshematology was part of the response to the need to develop a omprehen-sive theory of programming languages, joining early work on programminglanguage semantis, program veri�ation and data abstration also hara-teristi of the period. We will look at the subjet again in setion 8.The next milestone is that of Friedman [1971a℄. Friedman's paperhas reeived a �ne exegesis in Shepherdson [1985℄ whih we reommend.Against a bakloth of growing interest in the generalisations of om-putability theory by mathematial logiians, and inspired by the work ofMoshovakis on omputation, Friedman onsidered the mathematial ques-tion (in Shepherdson's words):What beomes of the onepts and results of elementary reur-sion theory if, instead of onsidering only omputations on nat-ural numbers, we onsider omputations on data objets fromany relational struture?In this he gave four models of omputation for an algebra A. The �rst twowere based on register mahines, the programs for whih were alled �nitealgorithmi proedures (or faps). The third was a generalisation of Turingmahines. The fourth was a model based a set of r.e. lists of onditionalformulae of the form Ri1& : : :&Riki ! tifor i = 1; 2; : : : , where the Rij are tests and the ti is a term, allede�etive de�nitional shemes. In setion 8 we will disuss these modelsagain.All four models ompute the partial reursive funtions on the naturalnumbers. Freidman organised some 22 basi theorems of omputabilitytheory on the natural numbers N into six groups whih were de�ned by



340 J. V. Tuker and J. I. Zukerthe properties of a struture A that are suÆient to prove the theorems onA. Also noteworthy are results whih showed some of these models are notequivalent in the abstrat setting.Friedman's paper is tehnially intense, with several good ideas andresults. Looking bak at the literature, one wonders why suh an indis-pensable paper had not appeared before.The theory of omputation on natural numbers and strings began inmathematial logi, motivated by questions in the foundations of mathe-matis. However, the theory of omputation on arbitrary algebrai and re-lational strutures began and was sustained in omputer siene, motivatedby the need to model programming language onstruts. Mathematiallogi plays two roles: �rstly, it provides knowledge of abstrat strutures,formal languages and their semantis; and seondly, it provides a deeptheory of omputation on natural numbers.Both the ompliated history of algebra and omputability theory men-tioned earlier (and skethed in the historial notes of other Handbook hap-ters), and the development of abstrat omputability sine the 1950s, havemuh to o�er those interested in the historial development of mathematialtheories. In the matter of the development of abstrat omputability thesebrief notes, oupled with our survey in setion 8, suggest some questions ahistorial analysis might answer. Why have there been many independentattempts at making models of omputation but relatively few attemptsto show equivalenies, or undertake sustained programmes of theoretialdevelopment and appliations? Why have there been so many demonstra-tions of an ability to ignore earlier work and to reinvent ideas and results?Why was the development of the theory so slow and messy? Why wasomputability theory on the natural numbers not generalised to rings and�elds, or even relational strutures, before the Seond World War? Whydid the subjet not �nd a home in mathematial logi?It is lear that omputer siene played an essential role in reating thetheory of omputable funtions on abstrat algebras. One is reminded ofMCarthy's [1963℄ ommonly quoted words:It is reasonable to hope that the relationship between omputa-tion and mathematial logi will be as fruitful in the next enturyas that between analysis and physis in the last. The develop-ment of this relationship demands a onern for both applia-tions and for mathematial elegane.It also demands patiene.1.5 Objetives and struture of the hapterComputability theory over algebras an be developed in many diretionsand an be used in many appliations. In this short introdution we havehosen to emphasise omputation on general many-sorted algebras.We see algebra as providing a general theory of data that is theoretiallysatisfying and pratially useful. Therefore, theories of what is omputable



Computable funtions on algebras 341over algebras are fundamental for a general theory of data.In setion 2 we de�ne the basi algebrai notions we will need: alge-bras with Booleans and naturals, relative homomorphisms, terms and theirevaluation, abstrat data types, et. In partiular, we look at expandingan algebra A, by adding new types suh as �nite sequenes to make a newalgebra A� that models arrays, and adding in�nite sequenes to make anew algebra �A that models in�nite streams of data.In setion 3 we begin the study of omputing on algebras with Whileprograms. For a satisfatory theory, the algebras are required to inludethe Booleans and standard Boolean operations. Suh algebras are alledstandard algebras. The semantis of While programs on A is given by anew tehnique alled algebrai operational semantis (AOS). This involvesaxiomatising a funtion CompA that de�nes the state CompA(S; �; t) attime t in the omputation by program S starting in intial state �. Fromthis we obtain a state transformer semantis in whih a program S, appliedto a state �, may give rise to a �nal state [[S℄℄A(�).Simple but important properties of omputations are examined. First,the invariane of omputations under homomorphisms and isomorphisms:if algebras A and B are isomorphi, then the semantial interpretationsof any While program S on A and B are isomorphi. This result hasmany onsequenes; for example, it om�rms that exeuting aWhile pro-gram on equivalent implementations of a data type results in equivalentomputations.The seond property is that eah omputation by a While programS takes plae in the subalgebra of A generated by the input. This is akey to understanding the nature of abstrat omputation: in any algebraomputations are loal to the input in this sense and, for instane, searhesare at best loal.Next, in setion 4, we onsider the universality of omputation byWhile programs. Let A be an algebra with Booleans and naturals. Wean ode the While programsS0; S1; S2; : : :by the natural numbers in A and ask if there exists a universal Whileprogram to ompute the funtion UnivA on A suh thatUnivA(n; �) = [[Sn℄℄A(�):We prove that the universal funtion is While omputable on A if, andonly if, the term evaluation funtion is While omputable on A.The evaluation of terms is not always omputable. However, it isWhile omputable in several ommonly used algebras suh as: semi-groups, groups, rings, �elds, latties, Boolean algebras; this beause suhalgebras have omputationally eÆient normal forms for their terms. Forany algebra A, the algebra A� of �nite sequenes from A has the property



342 J. V. Tuker and J. I. Zukerthat term evaluation is alwaysWhile omputable on it; hene, the modelof While� programs is universal.In setion 5 we turn our attention to sets. We begin with a study ofomputable and semiomputable sets. We prove Post's theorem in thepresent setting. We also study the ideas of projetions of omputable andsemiomputable sets. It turns out that the lasses of omputable and semi-omputable sets are not losed under projetion. The notion of projetion isvery important sine it distinguishes learly between forms of spei�ationand omputation. Furthermore, it fouses our attention to the di�erenebetween loal searh and global searh in omputation.Projetions also lead us to onsider the relationship between Whileprogramming and ertain non-deterministi onstruts on data. These in-lude: searh proedures; initialisation mehanisms; and random assign-ments.Next, with eahWhile program is assoiated a omputation tree. Withthis tehnique, we prove that every semiomputable set is de�nable by ane�etive in�nite disjuntion of Boolean terms over the signature.In setion 6 we illustrate the ore of the theory with a study of itsappliation to omputing sets of real and omplex numbers over variousmany sorted algebras. We inlude some pleasing examples from dynamialsystems.In Setion 7 we return to the speial properties and problems of om-putation of the reals. More generally, we study omputation on topologialalgebras. A key onsideration is the property that if a funtion is ompu-table then it is ontinuous. To guarantee a good seletion of appliationswe use partial funtions, whih raises interesting topologial issues. Thisstudy of programming over topologial algebras ontains new material.We also ontrast exat versus approximate omputation on the reals.The following fat was observed in Shepherdson [1976℄. Let f be a funtionon the reals. Then f is omputable in the sense of omputable analysis if,and only if, there is a funtion g whih is While omputable over thealgebra (R; B ;N ; 0; 1; x+ y; x:y; �x; : : : ) suh thatjf(x)� g(n; x)j < 2�nfor all n 2 N and x 2 R. We extend and adapt this result to topologialalgebras.In setion 8 we survey other models of omputation and see their re-lation with While programs. We onsider briey: �-reursive funtions;register mahines; owharts; axiomati methods; set reursion; and equa-tional de�nability. A generalised Churh{Turing thesis is disussed.There are many subjets that we have omitted from the disussion, forexample: the deliate lassi�ation of the power of onstuts, inludingtypes; omputations with streams; program veri�ation; onnetions withproof theory; onnetions with model theory; degree theory; and gener-alised omplexity theory. There will be good work by many authors that



Computable funtions on algebras 343we have negleted to mention, from ignorane or forgetfulness. We willbe pleased to reeive reminders, information and suggestions. Abstratomputability theory is a subjet that o�ers its students onsiderable the-oretial sope, many areas of appliation, and sienti� longevity. We hopethis hapter provides a �rst introdution that is satisfying, stimulating andpleasurable.We thank Jan Bergstra (Amsterdam), Martin Davis (NYU and Berke-ley), Jens Erik Fenstad (Oslo), Dag Norman (Oslo), Viggo Stoltenberg-Hansen (Uppsala) and Karen Stephenson (Swansea) for useful disussionson aspets of this work. We thank Peter Lauer (MMaster) and Ithel Jones(Swansea) for disussions and information on the history of programminglanguage semantis. We also thank our olleagues and students in Swanseaand MMaster for their helpful responses to the material in ourses andseminars, espeially Je� Koster, Matthew Poole, Dafydd Rees, KristianStewart, Anton Wilder and Ian Woodhouse.Speial thanks are due to Sol Feferman, who presented some of thematerial of this hapter at a graduate ourse in omputation theory atStanford University in spring 1999, and provided us with valuable feedbak.We are partiularly grateful to Jane Spurr for her exellent and essentialwork in produing the �nal version of the hapter.The seond author is grateful for funding by a grant from the NaturalSiene and Engineering Researh Counil of Canada.1.6 PrerequisitesFirst, we assume the reader is familiar with the theory of the reursivefuntions on the natural numbers. It is treated in many books suh asRogers [1967℄, Mal'ev [1973℄, Cutland [1980℄ and Mahtey and Young[1978℄. An introdution to the subjet is ontained in this Handbook (seePhillips [1992℄) and other handbooks (e.g. Enderton [1977℄).Seondly, we assume the reader is familiar with the basis of universalalgebra. Some mathematial text-books are: Burris and Sankappanavar[1981℄ and MKenzie et al. [1987℄. An introdution to the subjet with theneeds of omputer siene in mind is ontained in this Handbook (see Meinkeand Tuker [1992℄) and in Wehler [1992℄. The appliation of universalalgebra to the spei�ation of data types is treated in Ehrig and Mahr[1985℄, Meseguer and Goguen [1985℄ and Wirsing [1991℄. The theory ofomputable and other e�etive algebras is overed by Stoltenberg-Hansenand Tuker [1995℄.Thirdly, we will need some topology. This is overed in many books,suh as Dugundji [1966℄ and Kelley [1955℄ and in a hapter in this Handbook(see Smyth [1992℄).Finally, we note that the subjet onnets with other subjets, inludingterm rewriting (see, for example, Klop [1992℄) and domain theory (see, forexample, Stoltenberg-Hansen et al. [1994℄).



344 J. V. Tuker and J. I. Zuker2 Signatures and algebrasIn this setion we de�ne some basi algebrai onepts, establish notationsand introdue three onstrutions of many-sorted algebras. We will usemany-sorted algebras equipped with Booleans, whih we all standard al-gebras. Sometimes we use algebras with the natural numbers as well, whihwe all N-standard algebras. All our algebras have total operations, exeptin setion 7, where we ompute on topologial partial algebras.We are partiularly interested in the e�ets on omputations of addingand removing operations in algebras. To keep trak of these hanges, weuse expansions and reduts of algebras, and relative homomorphisms.The onstrutions of new algebras from old involve adding (i) unspei-�ed elements, (ii) �nite arrays, and (iii) in�nite streams.2.1 SignaturesDe�nition 2.1 (Many-sorted signatures). A signature � (for a many-sorted algebra) is a pair onsisting of (1) a �nite set Sort(�) of sorts,and (2) a �nite set Fun(�) of (primitive or basi) funtion symbols, eahsymbol F having a type s1� : : :� sm ! s, where m � 0 is the arity of F ,and s1; : : : ; sm 2 Sort(�) are the domain sorts and s 2 Sort(�) is therange sort; in suh a ase we writeF : s1 � : : :� sm ! s:The asem = 0 orresponds to onstant symbols; we then write F :! sor just F : s.Our signatures do not expliitly inlude relation symbols; relations willbe interpreted as Boolean-valued funtions.De�nition 2.2 (Produt types over �). A produt type over �,or �-produt type, is a symbol of the form s1 � : : : � sm (m � 0),where s1; : : : ; sm are sorts of �, alled its omponent sorts. We de�neProdType(�) to be the set of �-produt types, with elements u; v; w; : : : .If u = s1 � : : :� sm, we put lgth(u) = m, the length of u. Whenlgth(u) = 1, we identify u with its omponent sort. When lgth(u) = 0, uis the empty produt type.For a �-produt type u and �-sort s, let Fun(�)u!s denote the setof all �-funtion symbols of type u! s.De�nition 2.3 (�-algebras). A �-algebra A has, for eah sort s of �,a non-empty set As, alled the arrier of sort s, and for eah �-funtionsymbol F : s1 � : : :� sm ! s, a funtion FA : As1 � � � � �Asm ! As.For a �-produt type u = s1 � : : :� sm, we writeAu =df As1 � : : :�Asm :Thus x 2 Au if, and only if, x = (x1; : : : ; xm), where xi 2 Asi for i =1; : : : ;m. So eah �-funtion symbol F : u ! s has an interpretation



Computable funtions on algebras 345FA : Au ! As. If u is empty, i.e., F is a onstant symbol, then FA is anelement of As.We will sometimes use the same notation for a funtion symbol F andits interpretation FA. The meaning will be lear from the ontext.For most of this hapter, we make the following assumption.Assumption 2.4 (Totality). The algebras A are total, i.e., FA is totalfor eah �-funtion symbol F .Later (in setion 7) we will drop this assumption, in our study of partialalgebras.We will sometimes write �(A) to denote the signature of an algebra A.We will also onsider lasses K of �-algebras. In partiular, Alg(�)denotes the lass of all �-algebras.We will use the following perspiuous notation for signatures �:signature �sorts ...s, (s 2 Sort(�))...funtions ...F : s1 � : : :� sm ! s, (F 2Fun(�))...endand for �-strutures A:algebra Aarriers ...As, (s 2 Sort(�))...funtions ...FA : As1 � : : :�Asm ! As, (F 2Fun(�))...endExamples 2.5. (a) The algebra of naturals N0 = (N; 0; su) has a sig-nature ontaining the sort nat and the funtion symbols 0: !nat andsu:nat!nat. We an display this signature thus:



346 J. V. Tuker and J. I. Zukersignature �(N0)sorts natfuntions 0: !nat,S:nat!natendIn pratie, we an display the algebra thus:algebra N0arriers Nfuntions 0: ! N,S: N ! Nendfrom whih the signature an be inferred. Below, we will often display thealgebra instead of the signature.(b) The ring of reals R0 = (R; 0, 1,+, -,�) has a arrier R of sort real, andan be displayed as follows:algebra R0arriers Rfuntions 0,1: ! R,+;� : R2 ! R;� : R ! Rend() The algebra C0 of omplex numbers has two sorts, omplex and real, andhene two arriers, C and R. It inludes the algebra R0, and therefore hasall the operations on R listed in (b), as well as operations on C , as follows:algebra C0import R0arriers Cfuntions 0; 1; i : ! C ;+;� : C 2 ! C ;� : C ! C ;re,im: C ! R,� : R2 ! Cendwhere � is the inverse of re and im.(d) A group has the form



Computable funtions on algebras 347algebra G0arriers Gfuntions 1 : ! G;� : G2 ! G;inv: G! Gendwhere the arrier G has sort grp.The onepts of redut and expansion will be important in our work.De�nition 2.6 (Reduts and expansions). Let � and �0 be signatures.(a) We write � � �0 to mean Sort(�)� Sort(�0)and Fun(�)�Fun(�0).(b) Suppose � � �0. Let A and A0 be algebras with signatures � and�0 respetively.(i) The �-redut A0j� of A0 is the algebra of signature �, onsistingof the arriers of A0 named by the sorts of � and equipped withthe funtions of A0 named by the funtion symbols of �.(ii) A0 is a �0-expansion of A i� A is the �-redut of A0.Example 2.7. The algebra C0 (see Example 2.5()) is an expansion of R0to �(C0).De�nition 2.8 (Funtion types). We ollet some de�nitions and no-tation. Let A be a �-algebra.(a) A funtion type over �, or �-funtion type, is a symbol of the formu ! v, with domain type u and range type v, where u and v are�-produt types.(b) For any �-funtion type u! v, a funtion of type u! v over A is afuntion f : Au ! Av : (2.1)If v = s1 � : : :� sn then the omponent funtions of f are f1; : : : ; fn,where fj : Au ! Asj (2.2)for j = 1; : : : ; n, and for all x 2 Au,f(x) ' (f1(x); : : : ; fn(x)): (2.3)(We will explain the `'' in () below.) Conversely, given n funtionsfj as in (2.2), all with the same domain type u, and with range types(or sorts) s1; : : : ; sn respetively, we an form their vetorisation asa funtion f satisfying (2.1) and (2.3).



348 J. V. Tuker and J. I. ZukerWe will investigate omputable vetor-valued funtions (2.1) over A.() Although all the primitive funtions of � are total, the omputablefuntions on the �-algebra may very well be partial, as we will see.We use the following notation: if f : Au ! As and x 2 Au, then f(x)"(`f(x) diverges') means that x =2 dom(f); f(x) # (`f(x) onverges')means that x 2 dom(f); and f(x)#y (`f(x) onverges to y') meansthat x 2 dom(f) and f(x) = y.We also make the following onvention for onvergene of vetor-valued funtions: in the notation of (2.1) and (2.2), for any x 2 Au,we say that f(x)# if, and only if, fj(x)# for every omponent funtionfj of f , in whih ase f(x) = (f1(x); : : : ; fn(x)). Otherwise (i.e., iffj(x) " for any j with 1 � j � n); we say that f(x) ". (That is themeaning of the symbol `'' in (2.3) above.)De�nition 2.9 (Relations; projetions of relations). We ollet somemore de�nitions and notation.(a) A relation on A of type u is a subset of Au. We write R : u if R is arelation of type u.Let R be a relation on A of type u = s1 � : : :� sm.(b) The harateristi funtion of R is the funtion �R : Au ! B whihtakes the values tt on R and ff o� R.() The omplement of R in A is the relationR = AunR = fa 2 Au j a =2 Rg;also of type u.(d) (Projetions.) To explain this notion, we begin with an example.Suppose R : u where u = s1�s2�s3�s4�s5. Now let v = s1�s2�s3and w = s4 � s5. Then the projetion of R on v (or on Av), orthe Aw-projetion of R, is the relation S : v de�ned by existentiallyquantifying over Aw:S(x1; x2; x3) () 9x4; x5 2 Aw : R(x1; : : : ; x5):More generally (with R : u where u = s1 � : : :� sm) let !i be anylist of numbers i1; : : : ; ir suh that 1 � i1 < : : : < ir � m, andlet !j = j1; : : : ; jm�r ,list f1; : : : ;mg n !i . Then uj!i denotes therestrition of u to !i , that is, the produt type si1 � : : : � sir ; andproj[uj!i ℄(R) is the projetion of R on !i (or on Auj!i ), or the Auj!j -projetion of R, that is, the relation S : uj!i de�ned by existentiallyquantifying over Auj!j :S(xi1 ; : : : ; xir ) () 9xj1 ; : : : ; xjm�r 2 Auj!j : R(x1; : : : ; xm):



Computable funtions on algebras 3492.2 Terms and subalgebrasDe�nition 2.10 (Closed terms over �). We de�ne the lass T (�) oflosed terms over �, denoted t; t0; t1; : : : , and for eah �-sort s, the lassT (�)sof losed terms of sort s. These are generated indutively by therule: if F 2 Fun(�)u!s and ti 2 T (�)si for i = 1; : : : ;m, whereu = s1 � : : :� sm, then F (t1; : : : ; tm) 2 T (�)s.Note that the impliit base ase of this indutive de�nition is that ofm = 0, whih yields: for all onstants  : ! s; () 2 T (�)s. In this ase wewrite  instead of (). Hene if � ontains no onstants, T (�) is empty.De�nition 2.11 (Valuation of losed terms). For A 2Alg(�) and t 2T (�)s, we de�ne the valuation tA 2 As of t in A by strutural indutionon t: F (t1; : : : ; tm)A = FA((t1)A; : : : ; (tm)A):In partiular, for m = 0, i.e., for a onstant  : ! s,A = A:We want a situation where T (�) is non-empty, and, in fat, T (�)s isnon-empty for eah s 2 Sort(�). We therefore proeed as follows.De�nition 2.12. The signature � is said to be:(a) non-void at sort s if T (�)s 6= ;;(b) non-void if it is non-void at all �-sorts.Assumption 2.13 (Instantiation). � is non-void.Throughout this paper we will make this assumption, exept whereexpliitly stated: see, for example, Remark 2.31(e). It simpli�es the theoryof many-sorted algebras (see Meinke and Tuker [1992℄).De�nition 2.14 (Default terms; default values).(a) For eah sort s, we pik a losed term of sort s. (There is at least one,by the instantiation assumption.) We all this the default term of sorts, written Æs. Further, for eah produt type u = s1 � : : :� sm of �,the default (term) tuple of type u, written Æu, is the tuple of defaultterms (Æs1 ; : : : ; Æsm).(b) Given a �-algebra A, for any sort s, the default value) of sort s in Ais the valuation ÆsA2 As of the default term, Æs; and for any produttype u = s1 � : : :� sm, the default (value) tuple of type u in A is thetuple of default values ÆuA = (Æs1A ; : : : ; ÆsmA ) 2 Au.De�nition 2.15 (Generated subalgebras). Let X � Ss2Sort(�) As.Then hXiA is the (�-)subalgebra of A generated by X , i.e., the smallestsubalgebra of A whih ontains X , and hXiAs is the arrier of hXiA of sort



350 J. V. Tuker and J. I. Zukers. (See Meinke and Tuker [1992, xx3.2.6 �.℄ for de�nitions.) Also for aprodut type u = s1 � : : :� sm,hXiAu = hXiAs1 � : : :� hXiAsm :Similarly, for a tuple a 2 Au, haiA is the (�-)subalgebra of A generated bya, et.Remark 2.16.(a) Using the terminology of setions 3.1{3.3, we an haraterise (for all�-sorts s and �-produt types u) the sets hXiAs and hXiAu byhXiAs =f[[t℄℄A� j t 2 Terms(�) and for all x 2var(t); �(x) 2 XghXiAu=f[[t℄℄A� j t 2 TermTupu(�) and for all x 2var(t); �(x) 2 X:g(b) The smallest subalgebra of A is its losed term subalgebra, given byh;iA = ftA j t 2 T (�)g:() The instantiation assumption implies that for any X and every sorts, hXiAs 6= ;.De�nition 2.17 (Minimal arriers; minimal algebra).Let A be a �-algebra, and s a �-sort.(a) A is minimal at s (or the arrier As is mimimal in A) if As =h;iAs ,i.e., As is generated by the losed �-terms of sort s.(b) A is minimal if it is minimal at every �-sort.Example 2.18. To take examples from later:(a) Every N -standard algebra (setion 2.5) is minimal at sorts bool andnat.(b) The ring of reals R0 (Example 2.5) (or its standardisation (setion2.4) or N -standardisation (setion 2.5)) is not minimal at sort real.2.3 Homomorphisms, isomorphisms and abstrat datatypesGiven a signature �, the notions of �-homomorphism as well as �-epi-morphism (surjetive), �-monomorphism (injetive), �-isomorphism (bi-jetive) and �-automorphism are de�ned as usual (see [Meinke and Tuker,1992, x3.4℄). We need a more sophistiated notion, that of relative homo-morphism.De�nition 2.19 (Relative homomorphism and isomorphism). Let� and �0 be signatures with � � �0. Let A and B be two standard �0-algebras suh that Aj� = Bj�:



Computable funtions on algebras 351(a) A �0-homomorphism relative to� fromA toB, or a �0/�-homomorph-ism � : A! B, is a Sort(�0)-indexed family of mappings� = h�s : As ! Bs j s 2 Sort(�0)iwhih is a �0-homomorphism from A to B, suh that for all s 2Sort(�), �s is the identity on As.(b) A �0/�-isomorphism from A to B is a �0/�-homomorphism whih isalso a �0-isomorphism from A to B.() A and B are �0/�-isomorphi, written A �=�0=� B, if there is a �0/�-isomorphism from A to B.De�nition 2.20 (Abstrat data types). An abstrat data type of sig-nature � (�-adt) is de�ned to be a lass K of �-algebras losed under�-isomorphism. Examples of �-adt's are:(a) the lass Mod(�,T) of all models of a �rst-order �-theory T ;(b) the isomorphism lass of a partiular �-algebra.2.4 Adding Booleans: Standard signatures and alge-brasAn very important signature for our purposes is the signature of Booleans:signature �(B)sorts boolfuntions true, false: !bool,and, or: bool2 !boolnot: bool!boolendThe algebra B of Booleans, with signature �(B), has the arrier B =ftt; ffg of sort bool, and, as onstants and funtions, the standard interpre-tations of the funtion and onstant symbols of �(B). Thus, for example,trueB = tt and falseB = ff.Of partiular interest to us are those signatures and algebras whihontain �(B) and B.De�nition 2.21 (Standard signatures and algebras).(a) A signature � is a standard signature if(i) �(B) � �, and(ii) the funtion symbols of � inlude a disriminatorifs : bool� s2 ! sfor all sorts s of � other than bool, and an equality operator



352 J. V. Tuker and J. I. Zukereqs : s2 ! boolfor ertain sorts s.(b) Given a standard signature �, a �-algebra A is a standard algebra if(i) it is an expansion of B, and(ii) the disriminators and equality operators have their standardinterpretation in A; i.e., for b 2 B and x; y 2 As,ifs(b; x; y) = (x if b = tty if b = ff;and eqs is interpreted as the identity on eah equality sort s.Let EqSort(�)�Sort(�) denote the set of equality sorts of �, and letStdAlg(�) denote the lass of standard �-algebras.Remark 2.22.(a) Stritly speaking, the de�nition of standardness of a signature � oralgebra depends on the hoie of the set EqSort(�) of equality sortsof �. However, our terminology and notation will not make thisdependene expliit.(b) The exat hoie of the set of propositional onnetives in B is notruial; any omplete set would do.() Exluding the sort bool from the sorts of the disriminator is notsigni�ant; we an easily de�ne ifbool from the other Boolean oper-ators. Also, eqbool an easily be de�ned. (Exerise.)(d) Any many-sorted signature � an be standardised to a signature �Bby adjoining the sort bool together with the standard Boolean op-erations; and, orrespondingly, any algebra A an be standardisedto an algebra AB by adjoining the algebra B and the disriminatorand equality operators. Note that both A and B are reduts of thisstandardisation AB . (See the examples below.)(e) If A and B are two standard �-algebras, then any �-homorphismfrom A to B is atually a �/�(B)-homomorphism, i.e., it �xes theredut B.Examples 2.23.(a) The simplest standard algebra is the algebra B of the Booleans.(b) The standard algebra of naturals N is formed by standardising thealgebra N0 of Example 2.5(a), with nat as an equality sort, and,further, adjoining the order relation1 lessnat on N:1The reason for adjoining lessnat will be lear later: in the proof of Theorem 3.63(��=� onservativity for terms), we need it for the translation of ��-terms to �N -terms.



Computable funtions on algebras 353algebra Nimport N0;Bfuntions ifnat : B � N2 ! N;eqnat,lessnat:N2 ! Bend() The standard algebraR of reals is formed similarly by standardisingthe ring R0 of Example 2.5(b), with real as an equality sort:algebra Rimport R0;Bfuntions ifreal:B � R2 ! R;eqreal:R2 ! Bend(d) We will also be interested (in setion 5) in the expansion R< of Rformed by adjoining the order relation on the reals lessreal: R2 ! B ,thus: algebra R<import Rfuntions lessreal:R2 ! Bend(e) The standard algebra C of omplex numbers C is formed similarlyby standardising the algebra C0 of Example 2.5(), with equality onboth R and C .(f) Again, we will onsider the expansion C< of C formed by adjoininglessreal.(g) The standard group G is formed similarly by standardising the groupG0, with equality on G .Throughout this hapter, we will assume the following, unless otherwisestated.Assumption 2.24 (Standardness). The signature � and the �-algebraA are standard.2.5 Adding ounters: N-standard signatures and alge-brasDe�nition 2.25.(a) A standard signature � is alled N-standard if it inludes (as wellas bool) the numerial sort nat, as well as funtion symbols for thestandard operations of zero, suessor and order on the naturals:0: ! natS: nat ! natlessnat: nat2 ! bool



354 J. V. Tuker and J. I. Zukeras well as the disriminator ifnat and the equality operator eqnat onnat.(b) The orresponding �-algebra A is N-standard if the arrier Anat is theset of natural numbers N = f0; 1; 2; : : :g, and the standard operations(listed above) have their standard interpretations on N.De�nition 2.26.(a) The N -standardisation �N of a standard signature � is formed byadjoining the sort nat and the operations 0; S, eqnat, lessnat and ifnat.(b) The N -standardisation AN of a standard �-algebra A is the �N -algebra formed by adjoining the arrier N together with ertain stand-ard operations to A, thus:algebra ANimport Aarriers Nfuntions 0 : ! NS:N ! Nifnat:B � N2 ! Neqnat,lessnat:N2 ! Bend() The N -standardisation KN of a lass K of �-algebras is (the losurewith respet to �N/�-isomorphism of) the lass fAN j A 2 K g.Examples 2.27.(a) The simplestN -standard algebra is the algebraN of Example 2.23(b).(b) We an N -standardise the real and omplex rings R and C, and thegroup G of Examples 2.23, to form the algebras RN , CN and GN ,respetively.Remark 2.28.(a) For any standard A, both A and N are �-reduts of the N -standard-isation AN (f. Remark 2.22(d)).(b) If A and B are two N -standard �-algebras, then any �-homorphismfrom A to B is atually a �/�(N )-homomorphism, i.e., it �xes theredut N (f. Remark 2.22(e)).() A �-homomorphism (or �-isomorphism) between two standard �-algebras A and B an be extended to a �-homomorphism (or �-isomorphism) between AN and BN . (Exerise.)(d) If A is already N -standard, then AN will ontain a seond opy of N,with (only) the standard operations on it. Further, AN an be e�et-ively oded within A, using a standard oding of N2 in N. (Chek.)(e) In partiular, (AN )N an be e�etively oded within AN .We will oasionally have use of a notion striter than N -standardness.



Computable funtions on algebras 355De�nition 2.29 (Strit N-standardness).(a) An N -standard signature � is said to be stritly N-standard if itsonly funtion symbols with range sort nat are `0', `S' and `ifnat'.(b) An N -standard algebra is stritly N-standard if its signature is.Note that the N -standardisation of any algebra is stritly N -standard.2.6 Adding the unspei�ed value up; Algebras Au ofsignature �uIn this subsetion, we need not assume that � and A are standard. For eahsort s of � let up be a new objet, representing an `unspei�ed value', and letAus = As[fupsg. For eah funtion symbol F of � of type s1 � : : :� sm !s, extend its interpretation FA on A to a funtionFA;u : Aus1 � : : :�Ausm �! Ausby stritness | i.e. the value is de�ned as up whenever any argument is up.Then the algebra Au, with signature �u, ontains:(i) the original arriers As of sort s, and funtions FA on them;(ii) the new arriers Aus of sort su, and funtions FA;u on them;(iii) a onstant unspess : su to denote ups as a distinguished element ofAus; and(iv) an embedding funtion is : s ! su to denote the embedding of Asinto Aus, and the inverse funtion js : su ! s, mapping ups to thedefault term Æs for eah sort s.Further, if A is a standard algebra, we assume Au also inludes:(v) a Boolean-valued funtion Unspess : su ! bool, the harateristifuntion of ups;(vi) the disriminator on Aus for eah sort s; and(vii) the equality operator on Aus for eah equality sort s.Thus, if A is standard, Au is onstruted from A as follows:algebra Auimport Aarriers Aus (s 2 S)funtions ups : ! Aus (s 2 S),FA;u : Aus1 � : : :�Ausm ! Aus (F : s1 � : : :� sm ! s in �);is : As ! Aus (s 2 S);js : Aus ! As (s 2 S);Unspes : Aus ! B (s 2 S);ifsu : B � (Aus)2 ! Aus (s 2 S);eqsu : (Aus)2 ! B (s 2 Se)end



356 J. V. Tuker and J. I. Zukerwhere S=Sort(�)and Se = EqSort(�)(and the supersript A has beendropped from the new funtion symbols).Also, K u is (the losure with respet to �u=�-isomorphism of) the lassfAu j A 2 Kg.Remark 2.30.(a) The algebra Au is a �u-expansion of A. If � has r sorts, then �u has2r sorts.(b) If A is standard, then so is Au.() Suppose A (and hene Au) is standard. Then Au an be e�etivelyoded within A. Eah element y of Aus is represented by the pair(b; js(y)) 2 B � As, where b = tt if y 6= ups and b = ff otherwise.This indues, in an obvious way, a oding of the operations on Auby operations on A. (The oding is desribed in [Tuker and Zuker,1988℄ for a slightly di�erent de�nition of Au|however, it is lear howto modify that for the present ontext.)(d) (Two- and three-valued Boolean operations.) Suppose again that Ais standard. Then Au ontains the arrier B u = ftt; ff; upg as wellas B , with assoiated extensions of the original standard Booleanoperations, leading to a weak three-valued logi (see [Kleene, 1952;Tuker and Zuker, 1988℄). Further, there are two equality operationson Aus for eah equality sort s:(i) the extension by stritness of eqAs to a three-valued funtioneqA;us : Aus �Aus ! B uwhih has the value upbool if either argument is ups; (ii) the standard(two-valued) equality on Aus,eqAus : Aus �Aus ! B ;whih we will usually denote by `=' in in�x.(e) Some of the funtions in Au are not strit, namely the (interpretationsof) the disriminator ifus , the funtion Unspes and the two-valuedequality operator equ (see (d)(ii) above).(f) A �-homomorphism (or �-isomorphism) between two standard �-algebras A and B an be extended to a �-homomorphism (or �-isomorphism) between Au and Bu. (Exerise.)2.7 Adding arrays: Algebras A� of signature ��Given a standard signature �, and standard �-algebra A, we extend � andexpand A in three stages:(1Æ) Construt �u and Au, as in setion 2.6.(2Æ) N-standardise these to form �u;N and Au;N , as in setion 2.5.(3Æ) De�ne, for eah sort s of �, the arrier A�s to be the set of pairs



Computable funtions on algebras 357a� = (�; l)where � : N ! Aus, l 2 N and, for all n � l,�(n) = ups:So l is a witness to the \�niteness" of �, or an `e�etive upper bound' fora�. The elements of A�s have \starred sort" s�, and an be onsidered as�nite sequenes or arrays. The resulting algebras A� have signature ��,whih extends �u;N by inluding, for eah sort s of �, the new starred sortss� (in addition to su), and also the following new funtion symbols:(i) the null array Nulls of type s�, whereNullAs = (�n � ups; 0) 2 A�s ;(ii) the appliation operator Aps of type s� � nat! su, whereApAs ((�; l); n) = �(n);(iii) the Updates operator of type s� � nat � su ! s�, where for (�; l) 2A�s ; n 2 N and x 2 Aus, UpdateAs ((�; l); n; x) is the array (�; l) 2 A�ssuh that for all k 2 N,�(k) = 8><>:�(k) if k < l; k 6= nx if k < l; k = nups otherwise;(iv) the Lgths operator, of type s� ! nat, whereLgthAs ((�; l)) = l;(v) the Newlengths operator of type s� � nat ! s�, where NewlengthAs((�; l);m) is the array (�;m) suh that for all k,�(k) = (�(k) if k < mups if k � m;(vi) the disriminator on A�s for eah sort s; and(vii) the equality operator on A�s for eah equality sort s.The justi�ation for (vii) is that if a sort s has `omputable' equality,then learly so has the sort s�, sine it amounts to testing equality of �nitelymany pairs of objets of sort s, up to a omputable length.For a� 2 A�s and n 2 N, we write a�[n℄ for jAs (ApAs (a�; n)). Thus a�[n℄is the element of As `orresponding to' Ap(a�; n) 2 Aus.



358 J. V. Tuker and J. I. ZukerTo depit this onstrution of A� from a standard A: suppose we haveonstruted Au as in setion 2.6, and then N -standardised it to Au;N as insetion 2.5. We now proeed as follows:algebra A�import Au;Narriers A�s (s 2 S)funtions Nulls : ! A�s (s 2 S)Aps : A�s � N ! Aus (s 2 S)Updates : A�s � N �Aus ! A�s (s 2 S)Lgths : A�s ! N (s 2 S)Newlengths : A�s � N ! A�s (s 2 S)ifs� : B � (A�s)2 ! A�s (s 2 S)eqs� : (A�s)2 ! B (s 2 Se)endwhere again S = Sort(�)and Se = EqSort(�)(and the supersript A hasbeen dropped from the new funtion symbols).Also, K � is (the losure with respet to ��=�-isomorphism of) the lassfA� j A 2 Kg.Remark 2.31.(a) The algebra A� is a ��-expansion of Au, and (hene) of A. If � hasr sorts, then �� has 3r +1 sorts, namely s, su and s� for eah sort sof �, and also nat.(b) �� and A� are N -standard.() (Internal versions of A� and ��.) Suppose A is N -standard. ThenAN has a seond opy of N, and, aording to our de�nition above,A� is onstruted on AN using this seond opy of N. Let A�0 (ofsort ��0) be an alternative version of A� onstruted on A, usingthe `original' opy of N. Then A� and A�0 an be e�etively oded ineah other. (Chek; f. Remark 2.28(d).) We all A�0 and ��0 internalversions of A� and ��, respetively.(d) We may also need to speak of �nite sequenes of starred sorts. How-ever, we do not have to introdue an algebra (A�)� of `doubly starred'arrier sets ontaining `two-dimensional arrays'; suh an algebra anbe e�etively oded in A�, sine we an e�etively ode a �nite se-quene of starred objets of a given sort as a single starred objetof the same sort, thanks to the expliit Lgth operation. More pre-isely, a sequene x�0; : : : ; x�k�1 of elements of A�s (for some sort s) anbe oded as a pair (y�; n�) 2 A�s � N� , where Lgth(n�) = k, and, for0 � j < k, n�[j℄ = Lgth(x�j ), and Lgth(y�) = n�[0℄+: : :+n�[k�1℄, andfor 1 � j � k and 0 � i < n�[j℄, y�[n�[0℄ + : : :+n�[j� 1℄+ i℄ = x�j [i℄.(e) A �-homomorphism (or �-isomorphism) between two standard �-algebras A and B an be extended to a �-homomorphism (or �-isomorphism) between A� and B�. (Exerise; f. Remarks 2.28()



Computable funtions on algebras 359and 2.30(f).)(f) The reason for introduing starred sorts is the lak of e�etive odingof �nite sequenes within abstrat algebras in general.(g) Starred sorts have signi�ane in programming languages, sinestarred variables an be used to model arrays, and (hene) �nite butunbounded memory.2.8 Adding streams: Algebras �A of signature �Let, again, � be a standard signature, and A a standard �-algebra. Wede�ne an extension of � and a orresponding expansion of A, alternativeto �� and A�.First we N -standardise � and A, to form �N and AN .Then we hoose a set S � Sort(�) of pre-stream sorts. We then extend�N to a stream signature �S relative to S, in the following way.(a) With eah s 2 S, we assoiate a new stream sort �s, also written nat!s. Then Sort(�S)=Sort(�)[�S, where �S =df f�s j s 2 Sg.(b) Fun (�S)onsists of Fun(�), together with the evaluation fun-tion evals : (nat! s)� nat! s;for eah s 2 S.Now we an expand AN to a �S-stream algebra �AS by adding for eahpre-stream sort s:(i) the arrier for nat! s, whih is the setAnat!s = �As = [N ! As℄of all streams on A, i.e. funtions � : N ! A;(ii) the interpretation of evals on A as the funtion evalAs : [N !As℄�N !As whih evaluates a stream at an index, i.e.,evalAs (�; n) = �(n);(iii) the disriminator on �As, for all s 2 S.The algebra �AS is the (full) stream algebra over A with respet to S.This onstrution of �AS from a standard A is depited by:algebra �ASimport ANarriers [N !As℄ (s 2 S)funtions evalAs : [N !As℄� N ! As (s 2 S)ifA�s : B � ([N !As℄)2 ! [N !As℄ (s 2 S)endwhere now S is the set of stream sorts.



360 J. V. Tuker and J. I. ZukerAlso, �KS is (the losure with respet to �S=�-isomorphism of) the lassf �A j A 2 Kg.Remark 2.32.(a) The algebra �AS is a �S-expansion of A. If � has r sorts, then �Shas r + k + 1 sorts, where k is the ardinality of S.(b) �S and �AS are N -standard.() Beause we have taken �As to be the set of all streams on As, we all�AS the full stream algebra (with respet to S). Note that if As hasardinality greater than 1 for some s 2 S, then �As, and hene �A, isunountable.(d) A �-homomorphism (or �-isomorphism) between two standard �-algebras A and B an be extended to a �-homomorphism (or �-isomorphism) between �A and �B. (Exerise; f. Remarks 2.28(),2.30(f) and 2.31(e).)(e) Note that the instantiation assumption does not hold (in general) onstream algebras.3 While omputability on standard algebrasIn this setion, we begin to study the omputation of funtions and rela-tions on algebras by means of imperative programming models. We startby de�ning a simple programming language While = While(�), whoseprograms are onstruted from onurrent assignments, sequential ompo-sition, the onditional and the `while' onstrut, and may be interpreted onany many-sorted �-algebra; this takes up setions 3.1{3.6. We will de�nein detail the abstrat syntax and semantis of this language, and methodsby whih its programs an ompute funtions and relations. In setions3.7 and 3.8 we prove some algebrai properties of omputation on algebras,with regard to homomomorphisms and loality.In setions 3.9{3.13, we will add to the basi language a number ofnew onstruts, namely `for', proedure alls and arrays, and extend ourmodel of omputation aordingly. In setion 3.14 we study the oneptof a sequene of `snapshots' of a omputation, whih will be useful laterin investigating the solvability of the halting problem in ertain (loally�nite) algebras.We onlude (setion 3.15) with a useful syntati onservativity the-orem for ��-terms over �-terms.We illustrate the theory with several examples of omputations on thealgebras of real and omplex numbers.Throughout setion 3, we assume (following Convention 1.4.3) that� is a standard signature,and A is a standard �-algebra.



Computable funtions on algebras 3613.1 Syntax of While(�)We begin with the syntax of the languageWhile(�). First, for eah �-sorts, there are (program) variables as; bs; : : : ; xs; ys : : : of sort s.We de�ne four syntati lasses: variables, terms, statements and pro-edures.(a) V ar = V ar(�) is the lass of �-variables, and V ars is the lass ofvariables of sort s.For u = s1 � : : :� sm, we write x : u to mean that x is a u-tuple ofdistint variables, i.e., a tuple of distint variables of sorts s1; : : : ; sm,respetively.Further, we write V arTup= V arTup(�)for the lass of all tuplesof distint �-variables, and V arTupu for the lass of all u-tuples ofdistint �-variables.(b) Term = Term(�) is the lass of �-terms t; : : : , and for eah �-sorts, Terms is the lass of terms of sort s. These are generated by thefollowing rules.(i) A variable x of sort s is in Terms.(ii) If F 2 Fun(�)u!s and ti 2 Termsi for i = 1; : : : ;m whereu = s1 � : : :� sm, then F (t1; : : : ; tm) 2 Terms.Note again that �-onstants are onstrued as 0-ary funtions, and soenter the de�nition of Term(�) via lause (ii), with m = 0.The lass Term(�) an also be written (in more ustomary notation)as T(�;V ar), i.e., the set of terms over � using the set V ar ofvariables (lause (i) in the de�nition). Analogously, the set T (�) oflosed terms over � (2.10) an be written as T(�; ;).We write type(t) = s or t : s to indiate that t 2 Terms.Further, we write TermTup=TermTup(�)for the lass of all tu-ples of �-terms, and, for u = s1 � : : :� sm, TermTupu for the lassof u-tuples of terms, i.e.,TermTupu =df Terms1 � : : :� Term sm .We write type(t) = u or t : u to indiate that t is a u-tuple of terms,i.e.,, a tuple of terms of sorts s1; : : : ; sm.For the sort bool, we have the lass of Boolean terms or BooleansBool(�) =df Termbool, denoted either tbool : : : (as above) or b; : : : .This lass is given (aording to the above de�nition of Terms) by:b ::= xbooljF (t)jeqs(ts1; ts2)j true j falsej not(b)j and (b1; b2)j or(b1; b2)j if(b; b1; b2)where F is a �-funtion symbol of type u! bool (other than one ofthe standard Boolean operations, whih are listed expliitly) and s isan equality sort.() Stmt = Stmt(�) is the lass of statements S; : : : . The atomi state-ments are `skip' and the onurrent assignment x := t where for someprodut type u, x : u and t : u.



362 J. V. Tuker and J. I. ZukerStatements are then generated by the rulesS ::= skipjx := tj S1;S2jif b then S1 else S2 �jwhile b do S od(d) Pro = Pro(�) is the lass of proedures P;Q; : : : . These havethe form P � pro D begin S endwhere D is the variable delaration and S is the body. Here D hasthe form D � in a out b aux where a, b and  are lists of input variables, output variables andauxiliary (or loal) variables, respetively. Further, we stipulate:� a, b and  eah onsist of distint variables, and they are pairwisedisjoint;� every variable ourring in the body S must be delared in D(among a, b or );� the input variables a must not our on the lhs of assignmentsin S;� (initialisation ondition:) S has the form Sinit;S0, where Sinitis a onurrent assignment whih initialises all the output andauxiliary variables, i.e., assigns to eah of them the default term(setion 2.12) of the same sort.Eah variable ourring in the delaration of a proedure binds allfree ourrenes of that variable in the body.If a : u and b : v, then P is said to have type u ! v, writtenP : u! v. Its input type is u.We write Prou!v= Pro(�)u!v for the lass of �-proedures oftype u! v:Notation 3.1.(a) We will often drop the sort supersript or subsript s.(b) We will use E;E0; E1; : : : to denote syntati expressions of any ofthe three lasses Term, Stmt and Pro.() For any suh expression E, we de�ne var(E) to be the set of variablesourring in E.(d) We use `�' to denote syntati identity between two expressions.Remark 3.2 (Strutural indution; indution on omplexity). Wewill often prove assertions about, or de�ne onstruts on, expressions E ofa partiular syntati lass (suh as Term, Stmt or Pro) by struturalindution (or reursion) on E, following the indutive de�nition of thatlass.Alternatively, we may give suh proofs or de�nitions by ourse-of-valuesindution (or reursion) on ompl(E), the strutural omplexity of E. One



Computable funtions on algebras 363suitable de�nition of this is the length of the maximum branh of theparse tree of E. Thus, for example, for a program term t�F (t1; : : : ; tm);ompl(t) = maxi(ompl(ti) + 1). Another possible de�nition ofompl(E), whih would in fat be satisfatory for our purposes, is simplythe length of E as a string of symbols.Setions 3.2{3.6 will be devoted to the semantis of While.3.2 StatesFor eah standard �-algebra A, a state on A is a family h�sj s 2 Sort(�)iof funtions �s : V ars ! As: (3.1)Let State(A) be the set of states on A, with elements �; : : : . Note thatState(A) is the produt of the state spaes States(A) for all s 2 Sort(�),where eah States(A) is the set of all funtions as in (3.1).We use the following notation. For x 2 V ars, we often write �(x) for�s(x). Also, for a tuple x� (x1; : : : ; xm), we write �[x℄ for (�(x1); : : : ; �(xm)).Now we de�ne the variant of a state. Let � be a state overA, x� (x1; : : : ;xn) : u and a = (a1; : : : ; an) 2 Au (for n � 1). We de�ne �fx=ag to be thestate overA formed from � by replaing its value at xi by ai for i = 1; : : : ; n.That is, for all variables y:�fx=ag(y) = (�(y) if y 6� xi for i = 1; : : : ; nai if y�xi:We an now give the semantis of eah of the three syntati lasses:Term, Stmt and Pro, relative to any A 2StdAlg(�). For an expres-sion E in eah of these lasses, we will de�ne a semanti funtion [[E℄℄A.These three semanti funtions are de�ned in setions 3.3, 3.4{3.5 and 3.6,respetively.3.3 Semantis of termsFor t 2 Terms, we de�ne the funtion[[t℄℄A: State(A)! Aswhere [[t℄℄A(�) is the value of t in A at state �.The de�nition is by strutural indution on t:[[x℄℄A� = �(x)[[F (t1; : : : ; tm)℄℄A� = FA([[t1℄℄A�; : : : ;[[tm℄℄A�)Note that this de�nition of [[t℄℄A� extends that of tA for t 2 T (�)(De�nition 2.11). Also the seond lause inorporates the ases that (a) Fis a onstant; (b) F is a standard Boolean operation, e.g. the disriminator:



364 J. V. Tuker and J. I. Zuker[[if(b; t1; t2)℄℄A� = ([[t1℄℄� if [[bA� = tt[[t2℄℄� if [[bA� = ff:For a tuple of terms t = (t1; : : : ; tm), we use the notation[[t℄℄A� =df ([[t1℄℄A�; : : : ; [[tm℄℄A�):De�nition 3.3. For anyM � V ars, and states �1 and �2, �1 � �2(rel M)means �1 �M = �2 �M , i.e., 8x 2M��1(x) = �2(x)�.Lemma 3.4 (Funtionality lemma for terms). For any term t andstates �1 and �2, if �1 � �2 (rel var(t)), then [[t℄℄A�1 = [[t℄℄A�2.Proof. By strutural indution on t.3.4 Algebrai operational semantisIn this subsetion we will desribe a general method for de�ning the mean-ing of a statement S, in a wide lass of imperative programming languages,as a partial state transformation, i.e., a partial funtion[[S ℄℄A : State(A)! State(A).We de�ne this via a omputation step funtionCompA: Stmt�State(A)�N ! State(A)[f�gwhere `�' is a new symbol or objet. The idea is thatCompA(S; �; n) is the nth step, or the state at the nth timeyle, in the omputation of S on A, starting in state �.The symbol `�' indiates that the omputation is over. Thusif for any n, CompA(S; �; n) = �, then for all m � nCompA(S; �;m) = �.If we put �n = CompA(S; �; n), then the sequene of states� = �0; �1; �2; : : : ; �n; : : :is alled the omputation sequene generated by S at �, writtenCompSeqA(S; �). It is either in�nite, or terminates in a �nal state �l, where CompA(S; �; l + 1) = �.We will use an algebrai method in whih CompA is de�ned equa-tionally. In setion 3.5 we will apply this general method to the presentprogramming language While(�). In later setions we will apply it toother languages.



Computable funtions on algebras 365Assume, �rstly, that (for the language under onsideration) there isa lass AtSt� Stmt of atomi statements for whih we have a meaningfuntion hj S jiA : State(A)! State(A),for S 2 AtSt, and seondly, that we have two funtionsFirst : Stmt ! AtStRestA : Stmt � State(A)! Stmt,where, for a statement S and state �,First(S) is an atomi statement whih gives the �rst step inthe exeution of S (in any state), and RestA(S; �) is a state-ment whih gives the rest of the exeution in state �.For the languages under onsideration here, First(S), unlikeRestA(S; �),will be independent of A and �.In eah language we an de�ne these three funtions (hj � ji; First andRestA).First we de�ne the `one-step omputation of S at �'CompA1 : Stmt � State(A)! State(A)by CompA1 (S; �) = hjFirst(S) jiA�.The de�nition of CompA(S; �; n) now follows by a simple reursion(`tail reursion') on n:CompA(S; �; n+ 1) = 8<: � if n > 0 and S is atomiCompA(RestA(S; �);CompA1 (S; �); n)otherwise: (3.2)Note that for n = 1, this yieldsCompA(S; �; 1) = CompA1 (S; �):We all this approah algebrai operational semantis, �rst used in Tukerand Zuker [1988℄, and developed and applied in Stephenson [1996℄.From this semantis we an easily derive the i/o semantis as follows.First we de�ne the length of a omputation of a statement S, starting instate �, as the funtionCompLengthA : Stmt� State(A)! N [ f1gwhere



366 J. V. Tuker and J. I. ZukerCompLengthA(S; �) = 8><>: least ns:t: CompA(S; �; n+ 1) = �if suh an n exists1 otherwise:Then, putting l = CompLengthA(S; �) and noting that 0 < l � 1,we de�ne [[S℄℄A(�) ' (CompA(S; �; l) if l 6=1" otherwise:Remark 3.5 (Tail reursion). Consider the reursive de�nition (3.2) ofCompA. In the `reursive all' (the seond expression on the right-handside of the seond equation), notie that (1Æ) CompA is on the `outside',and (2Æ) the parameter hanges (from � to CompA1 (S; �; n)). Suh a de�-nitional sheme is said to be tail reursive. Beause of (2Æ), these equations(as they stand) do not form a de�nition by primitive reursion. However,at least in the lassial ase, where all the arguments and values rangeover N; it an be shown that suh a sheme an be redued to a primitivereursive de�nition. (See, for example, Goodstein [1964, x6.1℄, where thisis alled `reursion with parameter substitution', or P�eter [1967, x7℄, wherea more general sheme, not satisfying (1Æ) only, is onsidered.)An alternative, primitive reursive, de�nition of CompA is given belowin setion 3.14.3.5 Semantis of statements for While(�)We now apply the above theory to the languageWhile(�). Here there aretwo atomi statements: skip and onurrent assignment. We de�ne hj S jiAfor these: hj skipjiA� = �hj x:= t jiA� = �fx/[[t℄℄A�g.Next we de�ne First and RestA. The de�nitions of First(S) andRestA(S; �) proeed by strutural indution on S.Case 1. S is atomi. First (S) = SRestA(S; �) = skip.Case 2. S� S1;S2 (the interesting ase!).First(S) = First(S1)RestA(S; �) = (S2 if S1 is atomiRestA(S1; �);S2 otherwise:Case 3. S � if b then S1 else S2 �.



Computable funtions on algebras 367First (S) = skipRestA(S; �) = (S1 if [[b℄℄A� = ttS2 if [[b℄℄A� = ff:Case 4. S � while b do S0 od.First (S) = skipRestA(S; �) = (S0;S if [[b℄℄A� = ttskip if [[b℄℄A� = ff:This ompletes the de�nition of First and RestA. Note (in ases 3and 4) that the Boolean test in an `if' or `while' statement S is assumed totake up one time yle; this is modelled by taking First(S)� skip.The following shows that the i/o semantis, derived from our algebraioperational semantis, satis�es the usual desirable properties.Theorem 3.6.(a) For S atomi, [[S ℄℄A = hj S jiA, i.e.,hj skip jiA� = �hj x := t jiA� = �fx=hj t jiA�g:(b) [[S1;S2℄℄A� ' [[S2℄℄A([[S1℄℄A�):() [[if b then S1 else S2 �℄℄A� ' ([[S1℄℄A� if [[b℄℄A� = tt[[S2℄℄A� if [[b℄℄A� = ff:(d) [[while b do S od℄℄A� ' ([[S;while b do S od℄℄A� if [[b℄℄A� = tt� if [[b℄℄A� = ff:Proof. Exerise. Hint: For part (b), prove the following lemma. Formu-late and prove analogous lemmas for parts (a), () and (d).Lemma 3.7. CompA(S1;S2; �; n) =8>>><>>>:CompA(S1; �; n) if 8k < nCompA(S1; �; k + 1) 6= �CompA(S2; �0; n� n0) if 9k < nCompA(S1; �; k + 1) = �where n0 is the least suh k; and�0 = CompA(S1; �; n0):



368 J. V. Tuker and J. I. ZukerRemark 3.8.(a) The four suitably formulated lemmas needed to prove parts (a){(d) ofTheorem 3.6 (of whih Lemma 3.7 is an example for part (b)) providean alternative de�nition of CompA(S; �; n), whih does not makeuse of First or RestA. This de�nition is by strutural indution onS, with a seondary indution on n.(b) The meaning funtion [[S ℄℄A (i.e., our i/o semantis) was derived fromour operational semantis, i.e., the CompA funtion. We ould alsogive a denotational i/o semantis for While statements. Theorem3.6 would then provide (one diretion of) a proof of the equivaleneof the two semantis (as in de Bakker [1980℄).() The semantis given here is simpler than that given in Tuker andZuker [1988℄ where the states have an `error value' almost everywhere(for uninitialised variables), and there is an `error state' orrespond-ing to an aborted omputation. While suh an `error semantis' issuperior (we feel) to the one given here, the semantis given here issimpler, and adequate for our purposes.For the semantis of proedures, we need the following. LetM � V ars,and �; �0 2 State(A).Lemma 3.9. Suppose var(S) � M . If �1 � �2 (rel M), then for alln � 0, CompA(S; �1; n) � CompA(S; �2; n) (rel M):Proof. By indution on n. Use the funtionality lemma (3.4) for terms.Lemma 3.10 (Funtionality lemma for statements). Suppose var(S)�M . If �1 � �2 (rel M), then either(i) [[S℄℄A�1 # �01 and [[S℄℄A�2 # �02 (say), where �01 � �02 (rel M), or(ii) [[S℄℄A�1 " and [[S℄℄A�2 ".Proof. From Lemma 3.9.3.6 Semantis of proeduresNow if P � pro in a out b aux  begin S endis a proedure of type u! v, then its meaning is a funtion[[P ℄℄A : Au ! Avde�ned as follows. For a 2 Au, let � be any state on A suh that �[a℄ = a.Then [[P ℄℄A(a) ' (�0[b℄ if [[S℄℄A� # �0 (say)" if [[S℄℄A� " :



Computable funtions on algebras 369For [[P ℄℄A to be well de�ned, we need the fat that the proedure P isfuntional, as follows.Lemma 3.11 (Funtionality lemma for proedures). SupposeP � pro in a out b aux  begin S end:If �1 � �2 (rel a), then either(i) [[S℄℄A�1 # �01 and [[S℄℄A�2 # �02 (say), where �01 � �02 (rel b) or(ii) [[S℄℄A�1 " and [[S℄℄A�2 ".Proof. Suppose �1 � �2 (rel a). We an put S�Sinit;S0, where Sinitonsists of an initialisation of b and  to losed terms (see setion 3.1).Then, putting [[Sinit℄℄A�1 = �001 and [[Sinit℄℄A�2 = �002 ;it is easy to see that �001 � �002 (rel a; b; ):The result then follows from the funtionality lemma 3.10 for statements(with S0, �001 and �002 in plae of S, �1 and �2, respetively).Remark 3.12.(a) Funtionality of proedures amounts to saying that there are no sidee�ets from the output variables or auxiliary variables.(b) The initialisation ondition (setion 3.1) is a suÆient (but not ne-essary) syntati ondition for funtionality of proedures. A moregeneral syntati ondition ensuring funtionality was given in Jervis[1988℄. A semanti approah to funtionality was taken in Tuker andZuker [1988, x4.3.2℄.We an now de�ne:De�nition 3.13 (While omputable funtions).(a) A funtion f on A is omputable on A by a While proedure P iff = [[P ℄℄A. It is While omputable on A if it is omputable on A bysome While proedure.(b) A family f =hfA j A 2 K i of funtions is While omputable uni-formly over K if there is a While proedure P suh that for allA 2 K , fA = [[P ℄℄A.() While(A) is the lass of funtions While omputable on A.We will often write PA for [[P ℄℄A.Example 3.14.(a) Reall the standard algebra N of naturals (Example 2.23(b)). ThefuntionsWhile omputable on N of type natk ! nat are preiselythe partial reursive funtions over N (Kleene [1952℄). This follows



370 J. V. Tuker and J. I. Zukerfrom the equivalene of partial reursiveness andWhile omputabil-ity on the naturals (see, for example, MNaughton [1982℄), or fromthe results in setion 8. Heneevery partial reursive funtion over N is While ompu-table on every N-standard algebra.(b) In the N -standardised group GN (Example 2.27(b)), the partial fun-tion ord: G! N, de�ned byord(g) ' (least n s:t: gn = 1; if suh an n exists" otherwise;whih gives the order of group elements, isWhile omputable, sinethe `onstrutive least number operator' is (see setion 8). Altern-atively, we an give diretly a While proedure in the signature�(GN ): pro in g:grpout n:nataux prod:grp ftemporary produtgbeginprod:=g;n:=1;while not(prod=1)do prod:=prod* g;n:=su(n)odendWe emphasise that this order funtion is de�ned uniformly over all N-standardised groups (of the given signature �(GN )).The following proposition will be useful.Proposition 3.15 (Closure of While omputability under ompo-sition). The lass of While omputable funtions on A is losed underomposition. In other words, given (partial) funtions f : Au ! Av andg : Av ! Aw (for any �-produt types u; v; w), if f and g are Whileomputable on A, then so is the omposed funtion g Æ f : Au ! Aw.Proof. Exerise. (Construt the appropriate While proedure for theomposed funtion.)Remark 3.16. Similarly, we have losure under omposition for the re-lated notions of omputability still to be onsidered in this setion, namelyWhileN , While�, For, ForN and For� omputability, and the rela-tivised versions of these. The results for For omputability (et.) an bederived from its equivalene with PR omputability (et.) (f. setion 8).



Computable funtions on algebras 3713.7 Homomorphism invariane theoremsWe will investigate how our semantis of While programs interats withhomomorphisms between standard �-algebras.Let A and B be two standard �-algebras. Let � = f�s js 2 Sort(�)gbe a �-homomorphism from A to B.For a 2 As, we will write �(a) for �s(a); and for a tuple a =(a1; : : : ; am) 2 Au, we will write �(a) for (�(a1); : : : ; �(am)).Lemma 3.17.(a) �bool is the identity on B :(b) �s is injetive on all equality sorts s.Proof. Exerise.De�nition 3.18. The mapping � indues a mapping�̂ : State(A) [ f�g ! State(B) [ f�gby �̂(�) = � Æ �;i.e., if � = h�s js 2 Sort(�)i, then �̂(�) = �0 = h�0s js 2 Sort(�)i,where for all s 2 Sort(�) and x 2 V ars, �0s(x) = �s(�s(x)). Further, westipulate �̂(�) = �:Now we state some homomorphism invariane theorems.Theorem 3.19 (Homomorphism invariane for terms). For t 2Terms �([[t℄℄A�) = [[t℄℄B �̂(�):Proof. By strutural indution on t.Theorem 3.20 (Homomorphism invariane for atomi statements).For S 2 AtSt, �̂(hj S jiA�) = hj S jiB �̂(�):Proof. The ase where S � skip is trivial. The ase that S is an assignmentfollows from Theorem 3.19.Corollary 3.21 (Homomorphism invariane for the Comp1 predi-ate). �̂(CompA1 (S; �)) = CompB1 (S; �̂(�)):Theorem 3.22 (Homomorphism invariane for the Comp predi-ate). �̂(CompA(S; �; n)) = CompB(S; �̂(�); n):



372 J. V. Tuker and J. I. ZukerProof. By indution on n. For the base ase n = 1, use Corollary 3.21.Theorem 3.23 (Homomorphism invariane for statements). Either(i) [[S℄℄A� # �0 and [[S℄℄B�̂(�) # �00 (say), where �̂(�0) = �00, or(ii) [[S℄℄A� " and [[S℄℄B�̂(�) ".Proof. From Theorem 3.22.Theorem 3.24 (Homomorphism invariane for proedures). For aproedure P : u! v and a 2 Au,�(PA(a)) ' PB(�(a)):Proof. From Theorem 3.23.3.8 Loality of omputationWe will investigate how the semantis of While programs relates to thesubalgebra generated by the input. (Reall De�nition 2.15.)We want to prove the loality theorem: for any While omputablefuntion f on A of type u! v, and any a 2 Au;if f(a) # then f(a) � haiA:This will follow immediately from Theorem 3.30 below.Lemma 3.25. For a term t : s with var(t) � x,[[t℄℄A� 2 h�[x℄iAs :(Reall the de�nition of �[x℄ in setion 3.2.)Proof. By strutural indution on t.Lemma 3.26. For an atomi statement S with var(S) � x : u,hj S jiA(�)[x℄ � h�[x℄iAu :Proof. There are two ases to onsider. If S is an assignment, the resultfollows from Lemma 3.25. If S � skip, then it is trivial.Lemma 3.27. If var(S) � x : u, thenCompA1 (S; �)[x℄ � h�[x℄iA:Proof. From Lemma 3.26.Lemma 3.28. If var(S) � x and CompA(S; �; n) 6= �, then



Computable funtions on algebras 373CompA(S; �; n)[x℄ � h�[x℄iA:Proof. By indution on n (with S and � varying). For the base ases(n = 1), use Lemma 3.27. For the indution step, use the fats thatvar(RestA(S; �)) � var(S) and thatX � hY iA ) hXiA � hY iA:The details are left as an exerise.Theorem 3.29 (Loality for statements). If var(S) � x : u and[[S℄℄A(�) # then [[S℄℄A(�)[x℄ 2 h�[x℄iAu :Proof. From Lemma 3.28.Theorem 3.30 (Loality for proedures). For a proedure P : u! vand a 2 Au suh that PA(a) #,PA(a) 2 haiAu :Proof. SupposeP � pro in a out b aux  begin Sinit;S0 endwhere Sinit onsists of an initialisation of b and  to losed terms (seesetion 3.1). Put x � a,b,, and suppose�[a℄ = a; [[Sinit℄℄A� = �00 and [[S0℄℄A�00 # �0:Then haiA = h�[a℄iA = h�00[x℄iA; (3.3)sine Sinit onsists (only) of the initialisation of b and  to the losed terms,the values of whih lie in every �-subalgebra of A. Also, by the syntax ofproedures (setion 3.1()), var(Sinit;S0) � x. Hene by Theorem 3.29,applied to S0 and �00,PA(a) =df �0[b℄ � �0[x℄ � h�00[x℄iA: (3.4)The result follows from (3.3) and (3.4).Certain useful additions to, or modi�ations of, the While languagede�ned in setion 3.1, with orresponding notions of omputability, will bede�ned in setions 3.9{3.13.



374 J. V. Tuker and J. I. Zuker3.9 The language WhilePro(�)In the language While(�), we use proedures not in the onstrution ofstatements, but only as a onvenient devie for de�ning funtions (setion3.6). We an, however, de�ne a language WhilePro(�) whih extendsWhile(�) by the adjuntion of a new kind of atomi statement, the pro-edure all x := P (t); (3.5)where P is a proedure of type u! v (say), t is a tuple of terms of type u(the atual parameters) and x : v.The semantis ofWhile is then extended by adding the following lauseto the semantis of atomi statements (setion 3.4):hj x := P (t) jiA� = (�fx=ag if PA([[t℄℄A�) # a (say)" if PA([[t℄℄A�) " :Note that the funtionhj � jiA : AtSt! (State(A)! State(A))is now partial (ompare setion 3.4).However, it is easy to `eliminate' all suh proedure alls from a programstatement, i.e., to e�etively transformWhilePro statements toWhilestatements with the same semantis, as follows. For any proedure all(3.5), suppose P � pro in a out b aux  begin S end: (3.6)Then replae (3.5) by the statementSha,b,=t; x,zi; (3.7)where z is a tuple of distint `fresh' variables of the same type as , andh: : : i denotes the simultaneous substitution of t,x,z for a,b,.Note that the result of this substitution (3.7) is a syntatially orretstatement, by the stipulation (setion 3.1) that the input variables a notour on the left-hand side of assignments in S.Remark 3.31.(a) Aording to our syntax, in the proedure all (3.5) above, `P ' is notjust a name for a proedure but the proedure itself, i.e., the ompletetext (3.6)! In pratie, it is of ourse muh more onvenient | andustomary | to `delare' the proedure before its all, introduingan identi�er for it, and then alling the proedure by means of thisidenti�er.



Computable funtions on algebras 375In any ase, our syntax prevents reursive proedure alls. The situ-ation with reursive proedures would be quite di�erent from thatdesribed above | they annot be eliminated so simply (de Bakker[1980℄).(b) Another way of inorporating proedure alls into statements is byexpanding the de�nition of terms, as was done in Tuker and Zuker[1994℄. The problem with that approah here is that it would om-pliate the semantis by leading to partially de�ned terms. In Tukerand Zuker [1994℄ this problem does not our, sine the proedures,being in the For language rather than While, produe total fun-tions.3.10 Relative While omputabilityLet g = hgA j A 2 K i be a family of (partial) funtionsgA : Au ! Av :We de�ne the programming language While(g) whih extends the lan-guageWhile by inluding a speial funtion symbol g of type u! v. Wean think of g as an `orale' for gA.The atomi statements of While(g) inlude the orale allx := g(t)where t : u and x : v. The semantis of this is given byhj x := g(t) jiA� ' (�fx=ag if gA([[t℄℄A�) # a (say)" if gA([[t℄℄A�) " :Similarly, for a tuple of (families of) funtions g1; : : : ; gn, we an de�nethe programming languageWhile(g1; : : : ; gn) with orales g1; : : : ; gn forg1; : : : ; gn, or (by abuse of notation) the programming language While(g1;: : : ; gn).In this way we an de�ne the notion ofWhile(g1; : : : ; gn) omputabil-ity, orWhile omputability relative to g1; : : : ; gn; orWhile omputabilityin g1; : : : ; gn; of a funtion on A.Similarly, we an de�ne the notion of relativeWhile semiomputabilityof a relation on A.We an also de�ne the notion of uniform relative While omputability(or semiomputability) over a lass K :Lemma 3.32 (Transitivity of relative omputability). If f isWhileomputable in g1; : : : ; gm; h1; : : : ; hn, and g1; : : : ; gm are While ompu-table in h1; : : : ; hn; then f is While omputable in h1; : : : ; hn:Proof. Suppose that gi is omputable by a While(h1; : : : ; hn) proe-dure Pi for i = 1; : : : ;m. Now, given a While(g1; : : : ; gm; h1; : : : ; hn)



376 J. V. Tuker and J. I. Zukerproedure P for f , replae eah orale all x := gi(t) in the body of Pby the proedure all x := Pi(t). This results in a While(h1; : : : ; hn)proedure | atually, a WhilePro(h1; : : : ; hn) proedure (setion 3.9)| whih also omputes f .Note that this result holds over a given algebra A, or uniformly over alass K of �-algebras.3.11 For(�) omputabilityWe onsider briey another programming language, For = For(�), whihalso plays a role in this paper.Assume now that � is an N-standard signature, and A an N-standardalgebra. The syntax for For is like that forWhile, exept that Stmt(�)is de�ned by replaing the loop statement while b do S od byfor t do S od; (3.8)where t : nat, with the informal semantis: exeute S k times, where tevaluates to k. More formally: �rst we de�ne the notation Sk (k � 0) tomean the k-fold iterate of S, i.e.,Sk � (S; : : : ;S (k times) if k > 0skip if k = 0:We now de�ne the semantis of For by modifying the de�nitions (setion3.5) of the funtions First and RestA, replaing ase 4 with:Case 40. S � for t do S0 od.First(S) = skipRestA(S; �) = (S0)kwhere k = [[t℄℄A�.Note that t is evaluated (to k) one, upon initial entry into the loop,whih is then exeuted exatly k times (even if the value of t hanges inthe ourse of the exeution). Thus [[S℄℄A is always total, and funtionsomputable by For proedures are always total.We de�ne For(A) to be the lass of funtions For omputable on A.As in setion 3.10, we an de�ne the notion of relative For(�) om-putability, and prove a transitivity lemma for this, analogous to Lemma3.32.Example 3.33. The funtions For omputable on N of type natk !natare preisely the primitive reursive funtions over N.This follows from the equivalene of primitive reursiveness and Foromputability on the naturals (proved in Meyer and Rithie [1967℄; see,Davis and Weyuker [1983℄, for example) or from setion 8. Hene



Computable funtions on algebras 377every primitive reursive funtion over N is For omputable onevery N-standard algebra.(Compare Example 3.14(a).)Proposition 3.34.(a) For(�) omputability implies While(�) omputability. More pre-isely, there is an e�etive translation S ! S0 of For(�) state-ments to While(�) statements, and (orrespondingly) a transla-tion P ! P 0 of For(�) proedures to While(�) proedures whihis semantis preserving, i.e., for all For(�) proedures P and N-standard �-algebras A, [[P ℄℄A = [[P 0℄℄A.(b) More generally, relative For(�) omputability implies relativeWhile(�) omputability.Proof. Simple exerise.3.12 WhileN and ForN omputabilityConsider now the While and For programming languages over �N :De�nition 3.35.(a) AWhileN (�) proedure is aWhile(�) proedure in whih the inputand output variables have sorts in �. (However the auxiliary variablesmay have sort nat.)(b) ProN (�) is the lass of WhileN (�) proedures.De�nition 3.36 (WhileN omputable funtions).(a) A funtion f on A is omputable on A by a WhileN proedure P iff = PA. It is WhileN omputable on A if it is omputable on A bysome WhileN proedure.(b) A family f = hfA j A 2 K i of funtions is WhileN omputable uni-formly over K if there is a WhileN proedure P suh that for allA 2 K , fA = PA.() WhileN (A) is the lass of funtions WhileN omputable on A.The lass of ForN (�) proedures, and ForN (�) omputability, arede�ned analogously.Remark 3.37.(a) If A is N -standard (so that For omputability is de�ned on A), thenAN has two opies of N, whih we an all N and N0 , of sort natand nat0, respetively (eah with 0, S and < operations). To avoidtehnial problems, we assume then that in the for ommand ((3.8) insetion 3.11), the term t an have sort nat or nat0. This assumptionhelps us prove ertain desirable results, for example:(i) There are For(AN ) omputable bijetions, in both diretions,between the two opies of N:



378 J. V. Tuker and J. I. Zuker(ii) For omputability implies ForN omputability (the seeminglytrivial diretion `(=' of Proposition 3.38).(b) ForN omputability impliesWhileN omputability (f. Proposition3.34).() Relativised versions ofWhileN and ForN omputability an be de-�ned as withWhile omputability (setion 3.10), and orrespondingtransitivity lemmas (f. Lemma 3.32) proved. Also, relative ForNomputability implies relative WhileN omputability.Proposition 3.38. If A is N-standard, then WhileN (or ForN) om-putability oinides with While (or For) omputability on A.Proof. For the diretion `WhileN (or ForN ) omputability =)While(or For) omputability', we an use the oding of AN in A (see Remark2.28(d)), or, more simply, represent the omputation over AN by omputa-tion over A, by `identifying' the two arriers N0 and N with eah other, or(equivalently) `identifying' the two sorts nat0 and nat, renaming variablesof these sorts suitably to avoid onits. (See also Remark 3.37(a).)3.13 While� and For� omputabilityReall the algebra A� of arrays over A, with signature �� (setion 2.7).Consider now the While and For programming languages over ��.De�nition 3.39.(a) A sort of �� is alled simple, augmented or starred aording as it hasthe form s, su or s� (respetively), for some s 2 Sort(�).(b) A variable is alled simple, augmented or starred aording as its sortis simple, augmented or starred.Note that every sort of �� is simple, augmented, starred or nat.De�nition 3.40.(a) AWhile�(�) proedure is aWhile(��) proedure in whih the in-put and output variables are simple. (However the auxiliary variablesmay be augmented or starred or nat.)(b) Pro�= Pro�(�) is the lass of While�(�) proedures.() Pro�u!v= Pro�(�)u!v is the lass of While�(�) proedures oftype u! v, for any �-produt types u and v.Remark 3.41. We an assume that the auxiliary variables of a While�proedure are either simple or starred or nat, sine a proedure with aug-mented variables as auxiliary variables an be replaed by one with simplevariables, by the devie of oding Au in A (see Remark 2.30()).De�nition 3.42 (While� omputable funtions).(a) A funtion f on A is omputable on A by a While� proedure P iff = PA. It is While� omputable on A if it is omputable on A bysome While� proedure.



Computable funtions on algebras 379(b) A family f =hfA j A 2 K i of funtions is While� omputable uni-formly over K if there is a While� proedure P suh that for allA 2 K , fA = PA.() While�(A) is the lass of funtions While� omputable on A.The lass of For�(�) proedures, and For�(�) omputability, are de-�ned analogously.Remark 3.43.(a) While� omputability will be the basis for a generalised Churh{Turing thesis, as we will see in setion 8.8.(b) For�(�) omputability impliesWhile�(�) omputability (f. Propo-sition 3.34).() Relativised versions of While� and For� omputability an be de-�ned as withWhile omputability (setion 3.10) and orrespondingtransitivity lemmas (f. Lemma 3.32) proved. Also, relative For�omputability implies relative While� omputability.(d) In N ,WhileN andWhile� omputability are equivalent toWhileomputability, whih in turn is equivalent to partial reursivenessover N (Example 3.14(a)). Similarly, in N ; For, ForN and For�omputability are all equivalent to primitive reursiveness (Example3.33).Theorem 3.44 (Loality of omputation for While� proedures).For a While� proedure P : u! v and a 2 Au suh that PA(a) #,PA(a) 2 haiAv :Proof. This follows from the orresponding Theorem 3.30 forWhile om-putability, applied to A�, together with ��=� onservativity of subalgebrageneration (to be proved below, in Corollary 3.65).The following observation will be needed later.Proposition 3.45. On A�, While� (or For�) omputability oinideswith While (or For) omputability.This follows from the e�etive oding of (A�)� in A� (Remark 2.31(d)).Remark 3.46 (Internal versions of While� and For� omputabil-ity). If A is N -standard, we an onsider `internal versions' of While�and For� omputability, based on the `internal version' of A�, whih usesthe opy of N already in A instead of a `new' opy (see Remark 2.31()).We an show that these versions provide the same models of omputationas our standard (`external') versions.Proposition 3.47. Suppose A is N-standard. Let While�0 and For�0omputability on A be the `internal versions' of While� and For� (re-spetively) omputability on A (see previous remark). Then While�0 and



380 J. V. Tuker and J. I. ZukerFor�0 omputability oinide with While� and For�(respetively) om-putability on A.Proof. Exerise. (Cf. Proposition 3.38.)3.14 Remainder set of a statement; snapshotsWe now return to the operational semantis of setion 3.4. The oneptsdeveloped here will be useful in investigating the solvability of the haltingproblem for ertain algebras (Setion 5.6). First we de�ne the remainderset RemSet(S) of a statement S, whih is (roughly) the set of all possibleiterations of the RestA operation on S at any state.De�nition 3.48. The remainder setRemSet(S) of S is de�ned by stru-tural indution on S:Case 1. S is atomi. RemSet(S) = fSg:Case 2. S � S1;S2.RemSet(S) = fS01;S2 j S01 2 RemSet(S1)g [RemSet(S2):Case 3. S � if b then S1 else S2 �.RemSet(S) = fSg [RemSet(S1) [RemSet(S2):Case 4. S � while b do S0 od.RemSet(S) = fSg [ fS00;S j S00 2 RemSet(S0)g:Example 3.49. Consider a statement of the formS � a1;while b do a2; a3; a4 od; a5where the ai are atomi statements (using ad ho notation) and b is aBoolean test. Then RemSet(S) onsists of the following:S,while b do a2; a3; a4 od; a5;a2; a3; a4; while b do a2; a3; a4 od; a5;a3; a4; while b do a2; a3; a4 od; a5;a4; while b do a2; a3; a4 od; a5;a5:The next proposition says that RemSet(S) ontains S, and is losedunder the `Rest' operation (for any state).



Computable funtions on algebras 381Proposition 3.50.(a) S 2 RemSet(S).(b) S0 2 RemSet(S) =) RestA(S0; �) 2 RemSet(S) for any state�.Proof. By strutural indution on S.Proposition 3.51. RemSet(S) is �nite.Proof. Strutural indution on S.De�nition 3.52. The statement remainder funtionRemA : Stmt�State(A)�N !Stmtis the funtion suh that RemA(S; �; n) is the statement (the `remainderof S') about to be exeuted at step n of the omputation of S on A,starting in state � (or skip when the omputation is over). This is de�nedby reursion on n (tail reursion again):RemA(S; �; 0) = SRemA(S; �; n+ 1) = 8<: skip if n > 0 and S is atomiRemA(RestA(S; �);CompA1 (S; �); n)otherwise.Note the similarity with the tail reursive de�nition of CompA (setion3.4). Note also that for n = 1, this yieldsRemA(S; �; 1) = RestA(S; �):The two funtions Comp and Rem also satisfy the following pair ofrelationships, whih (together with suitable base ases n = 0) ould betaken as a (re-)de�nition of them by simultaneous primitive reursion:Proposition 3.53.(a) CompA(S; �; n+ 1) = CompA1 (RemA(S; �; n);CompA(S; �; n))(b) RemA(S; �; n+ 1) = RestA(RemA(S; �; n);CompA(S; �; n))provided CompA(S; �; n) 6= �.Proof. Exerise.Proposition 3.54. For all n, RemA(S; �; n) 2 RemSet(S)[fskipg.Proof. Indution on n. Use Proposition 3.50.If we put Sn =RemA(S; �; n), then the sequene of statements S �S0; S1; S2; : : : is alled the remainder sequene generated by S at �, writtenRemSeqA(S; �).



382 J. V. Tuker and J. I. ZukerCorollary 3.55. For �xed S and �, the range of RemSeqA(S; �) is�nite.Proof. From Propositions 3.51 and 3.54.Now we introdue the notion of a `snapshot'.De�nition 3.56.(a) A snapshot is an element (�; S) of (State(A)[f�g)� Stmt.(b) The snapshot funtionSnapA : Stmt � State(A) � N ! (State(A)[f�g) � Stmtis de�ned bySnapA(S; �; n) = ( CompA (S; �; n); RemA (S; �; n)):If we put SnapA(S; �; n) = (�n; Sn), so that �n = CompA(S; �; n)and Sn = RemA(S; �; n), then the sequene(�; S) = (�0; S0); (�1; S1); (�2; S2); : : :is alled the snapshot sequene generated by S at �, written SnapSeqA(S; �).It is either in�nite, or terminates in a `�nal snapshot' (�n; Sn), whereCompA(S; �; n+ 1) = � and RemA(S; �; n) = skip.Its importane lies in the following:Proposition 3.57. If the snapshot sequene generated by S at � repeats avalue at some point, then it is periodi from that point on. In other words,if for some m;n with m 6= nSnapA(S; �;m) = SnapA (S; �; n) 6= (�; skip)i.e., �m = �n 6= � and Sm = Sn, then for all k > 0SnapA(S; �;m+ k) = SnapA(S; �; n+ k) 6= (�; skip):Proof. Exerise.Corollary 3.58. If the snapshot sequene generated by S at � repeats avalue, then it is in�nite.Remark 3.59.(a) The snapshot funtion will be used later, in onsidering the solvabilityof the halting problem for loally �nite algebras (setion 5.5).(b) The snapshot funtion is adapted from Davis and Weyuker [1983℄ (orDavis et al. [1994℄). There a `snapshot' or `instantaneous desription'



Computable funtions on algebras 383of a program P is de�ned as a pair (i; �) onsisting of an instrutionnumber (or line number) i of P , and the state �. The reliane oninstrution numbers is possible here beause programs onsist of se-quenes of elementary instrutions, inluding the onditional jump.However, in the ontext of our While programming language, thespei�ation of an instantaneous desription by a simple `instrutionnumber' is impossible; we need the more omplex notion of a parti-ular `remainder' of the given program (or statement).3.15 ��=� onservativity for termsWe onlude this setion with a very useful syntati onservativity the-orem (Theorem 3.63) whih says that every ��-term with sort in � ise�etively semantially equivalent to a �-term. This theorem will be usedin setions 4 (universality for While� omputations: Corollary 4.15) and5 (strengthening Engeler's lemma: Theorem 5.58).First we review and extend our notation for ertain syntati lasses ofterms.Notation 3.60.(a) Terma = Terma(�) is the lass of �-terms t with var(t) � a, andTerma;s = Terma;s(�) is the lass of suh terms of sort s.(b) Further, we de�ne:Term�a = Terma(��)TermNa = Terma(�N )Termu;Na = Terma(�u;N )and similarly,Term�a;s = Terma;s(��) for any sort s, et.() For any �0 � �, we write Terma(�0=�) for the lass of �0-termsof sort in � (but possibly with subterms of sort in �0 n �), andTerma;s(�0=�) for the lass of suh terms of sort s (in �).We will show that for all s 2 Sort(�), every term in Term�a;s (i.e.,��-term of sort s) is e�etively equivalent to a term in Terma;s (i.e., a�-term of sort s). We will do this in three stages:(1Æ) De�ne an e�etive transformation of ��-terms (of sort in �u;N) to�u;N -terms.(2Æ) De�ne an e�etive transformation of �u;N -terms (of sort in �N ) to�N -terms.(3Æ) De�ne an e�etive transformation of �N -terms (of sort in �) to �-terms.here, in all ases, the program variables of the terms are among a.In preparation for this, we must de�ne the notion of the maximum valueof a term in Term�a;nat: This is the maximum possible numerial value thatsuh a term ould have, under any assignment to the variables a.



384 J. V. Tuker and J. I. ZukerDe�nition 3.61. For t 2 Term�a;nat, its maximum valuemaxval(t) 2 Nis de�ned by indution on the omplexity of t (whih we an take as thelength of t as a string of symbols: f. Remark 3.2). There are four ases:(a) t�0 :maxval(t) = 0.(b) t�St0 :maxval(t) =maxval(t0) + 1.() t�if(b; t1; t2) : maxval(t) = max(maxval(t1); maxval(t2)).(d) t�Lgths(r), where r is of starred sort. There are four subases, a-ording to the form of r:(i) r�Null : maxval(t) = 0.(ii) r�Update(r0; t1; t2) : maxval(t) =maxval(Lgth(r0)).(iii) r�Newlength(r0; t1) : maxval(t) =maxval(t1).(iv) r� if(b; r1; r2) : maxval(t) = max(maxval(Lgth(r1));maxval(Lgth(r2))).Remark 3.62.(a) This de�nition, whih is used in stage 1 of the syntati transforma-tion desribed in Theorem 3.63 below, uses the assumption that thevariables of t all have sorts in �. If, for example, t (or a subterm of t)was a variable of sort nat, or was of the form Lgth(z�) for a variablez� of starred sort, we ould not de�ne maxval(t).(b) Suppose (i) � is stritly N -standard (and so inludes the sort nat),and (ii) the sorts of a do not inlude nat. Then, with Term�a;s =Terma;s(��) with the `internal' version of �� (using this sort natinstead of a `new' sort, f. Remark 2.31()), we an still give an ap-propriate de�nition of maxval(t) for t 2 Term�a;nat. (Chek.)Theorem 3.63 (��=� onservativity for terms). Let a be an (ar-bitary but �xed) tuple of �-variables. For all s 2 Sort(�), every term inTerm�a;s is e�etively semantially equivalent to a term in Terma;s.Proof. This onstrution (or transformation) of terms proeeds in threestages:Stage 1: from ��-terms (of sort in �u;N) to �u;N -terms;Stage 2: from �u;N -terms (of sort in �N ) to �N -terms;Stage 3: from �N -terms (of sort in �) to �-terms.In all ases, the program variables of the terms are among a.Stage 1: From Terma(��=�u;N) to Terma(�u;N ). This amounts toremoving subterms of starred sort from a term of unstarred sort.



Computable funtions on algebras 385First notie that if a term of unstarred sort ontains a subterm of starredsort, then it must ontain a (maximal) subterm r of starred sort in one ofthe three ontexts: r = r0; Ap(r; t); Lgth(r):We will show how to eliminate eah of these three ontexts in turn.Step a. Transform all ontexts of the form r1 = r2 (ri of starred sort) toLgth(r1) = Lgth(r2) ^ M̂k=1�Ap(r1; �k) = Ap(r2; �k)�;where M =maxval(Lgth(r1)), and �k is the numeral for k (that is, `0'preeded by `S' k times).Now all (maximal) ourrenes of a subterm r of starred sort are in aontext of the form either Ap(r; t) or Lgth(r).Step b. Transform all ontexts of the form Ap(r; t), by strutural indutionon r. There are four ases, aording to the form of r:(i) r�Null:Ap(r; t) 7�! unspe:(ii) r�Update(r0; t0; t1):Ap(r; t) 7�! if(t = t0 < Lgth(r0); t1; Ap(r0; t)):(iii) r�Newlength(r0; t0):Ap(r; t) 7�! if(t < t0; Ap(r0; t); unspe):(iv) r� if(b; r1; r2):Ap(r; t) 7�! if(b; Ap(r1; t); Ap(r2; t)):Note the use of the `if' operator in ases (ii) and (iii). Hene the inlusionof `if' in the de�nition of standard algebra (setion 2.4). Note also the useof `<' in ases (ii) and (iii). Hene the inlusion of `<' in the de�nition ofthe standard algebraN (Example 2.23(b)) andN -standardisations (setion2.5).Step . Transform all ontexts of the form Lgth(r), by strutural indutionon r. Again there are four ases, aording to the form of r:(i) r�Null: Lgth(r) 7�! 0:(ii) r�Update(r0; t0; t1):Lgth(r) 7�! Lgth(r0).(iii) r�Newlength(r0; t0):Lgth(r) 7�! t0.(iv) r� if(b; r1; r2):Lgth(r) 7�! if(b; Lgth(r1); Lgth(r2)):



386 J. V. Tuker and J. I. ZukerBy these three steps, we transform a starred term (i.e., a term ofTerma(��)), into an unstarred term (i.e., a term of Terma(�u;N )), asdesired, ompleting stage 1.Stage 2: From Terma(�u;N=�N) to Terma(�N ). Let t be a term of�u;N , with sort in �N : We note the two following assertions:(1Æ) A maximal subterm ru of t of augmented sort su must our in oneof the following ontexts:(a) js(ru),(b) Unspes(ru),() ru = r0u or r0u = ru (for s an equality sort).(2Æ) Any term ru 2 Terma(�u;N) of sort su is semantially equivalentto a term having one of the following forms:(i) is(r), where r 2 Term(�N ),(ii) unspes.Assertion (1Æ) is proved by a simple inspetion of the possibilities, and (2Æ)is proved by strutural indution on ru: (Details are left to the reader.)Stage 2 is ompleted by onsidering all ombinations of ases (a), (b)and () in (1Æ) with ases (i) and (ii) in (2Æ), and (writing `'' for semantiequivalene over �u;N) noting that(a) js(is(r)) ' r,js(unspes) ' Æs (f. setion 2.6),(b) Unspes(is(r)) ' false,Unspes(unspes)) ' true,() (is(r) = is(r0)) ' (r = r0),(is(r) = unspes) ' false,(unspes = is(r)) ' false,(unspes =unspes) ' true.Stage 3: From Terma(�N=�) to Terma(�). Let t be a term of �N , withsort in �. We note the two following assertions:(1Æ) A maximal subterm r of t of sort nat must our in one of the ontextsr < r0; r0 < r; r = r0; r0 = rfor some subterm r0 of sort nat.(2Æ) Any term r 2 Terma(�N ) of sort nat is semantially equivalent to anumeral �n.Again, assertion (1Æ) is proved by a simple inspetion of the possibilities,and (2Æ) is proved by strutural indution on r. (Details are left to thereader.)



Computable funtions on algebras 387Stage 3, and hene the proof of the lemma, is ompleted by noting thatall four ases listed in (1Æ) are then equivalent to �m < �n or �m = �n, andhene (depending on m and n) to either true or false.Remark 3.64.(a) The transformation of terms given by the onservativity theorem isprimitive reursive in G�odel numbers.(b) Suppose (i) � is stritly N -standard (and so inludes a sort nat),and (ii) the sorts of a do not inlude nat. Then, with Term�a;s =Terma;s(��) with the `internal' version of �� (as in Remark 3.62(b)),the onservativity theorem still holds. (Chek.)Reall De�nition 2.15 on generated subalgebras.Corollary 3.65 (��=� onservativity of subalgebra generation).Let X � Ss2Sort(�)As. Then for any �-sort s,hXiA�s = hXiAs :We an apply this to strengthen Theorem 3.30:Theorem 3.66 (Loality for While, WhileN or While� ompu-table funtions). Let f be a (partial) funtion on A of type u ! v, leta 2 Au; and suppose f(a) #. If f is While, WhileN or While� ompu-table, then fA(a) 2 haiAv :4 Representations of semanti funtions; universal-ityIn this setion we examine whether or not the While programming lan-guage is a so-alled universal model of omputation. This means answeringquestions of the form:Let A be a �-algebra. Does there exist a universal While pro-gram Uprog 2 While(�) that an simulate and perform theomputations of all programs in While(�) on all inputs fromA? Is there a universalWhile proedure Upro 2 Pro(�) thatan ompute all the While omputable funtions on A?These questions have a number of preise and deliate formulations whihinvolve representing faithfully the syntax and semantis ofWhile ompu-tations using funtions on A.To this end we need the tehniques of G�odel numbering, symboli om-putations on terms, and state loalisation. Spei�ally, for G�odel number-ing to be possible, we need the sort nat, and so we will investigate thepossibility of representing the syntax of a standard �-algebra A (not in



388 J. V. Tuker and J. I. ZukerA itself, but) in its N -standardisation AN , or (failing that) in the arrayalgebra A�. Among a number of results, we will show thatfor any given �-algebra A, there is a universal While pro-edure over A if, and only if, there is a While program forterm evaluation over A.In onsequene, beause term evaluation is alwaysWhile omputable onA�, we have thatfor any �-algebra A, there is a universal While program anduniversal While proedure over A�.Thus, for any algebra A our While� model of omputation is univer-sal. In partiular, we an enumerate the While� omputable funtions�0; �1; �2; : : : of any type u ! v on A, and evaluate them by a universalfuntion Uu!v : N �Au ! Av de�ned byUu!v(i; a) = �i(a)whih is While� omputable, uniformly in the types u; v.If the �-algebra A has aWhile program to ompute term evaluation,then While�(A) = WhileN (A).We onsider also the uniformity of universal programs and proedures overa lass K of algebras. Many familiar lasses of algebras, suh as groups,rings and �elds, have While programs to ompute term evaluation uni-formly over these lasses.4.1 G�odel numbering of syntaxWe assume given a family of numerial odings, or G�odel numberings, of thelasses of syntati expressions of � and ��, i.e., a family gn of e�etivemappings from expressions E to natural numbers pEq = gn(E), whihsatisfy ertain basi properties:� pEq inreases stritly with ompl(E), and in partiular, the ode ofan expression is larger than those of its subexpressions.� sets of odes of the various syntati lasses, and of their respetivesublasses, suh as fptq j t 2 Termg, fptq j t 2 Termsg, fpSqj S 2 Stmtg, fpSq j S is an assignmentg, et. are primitive reur-sive;� We an go primitive reursively from odes of expressions to odesof their immediate subexpressions, and vie versa; thus, for example,pS1q and pS2q are primitive reursive in pS1;S2q, and onversely,pS1;S2q is primitive reursive in pS1q and pS2q.In short, we an primitive reursively simulate all operations involved inproessing the syntax of the programming language. This means that the



Computable funtions on algebras 389syntati lasses form a omputable (in fat, primitive reursive) algebra,in the sense of De�nition 1.1. We will use the notationpTermq =df f ptq j t 2 Termg,et., for sets of G�odel numbers of syntati expressions.We will be interested in the representation of various semanti funtionson syntati lasses suh as Term(�), Stmt(�) and Pro(�) by fun-tions on A or A�, and in the omputability of the latter. These semantifuntions have states as arguments, so we must �rst de�ne a representationof states.4.2 Representation of statesLet x be a u-tuple of program variables. A state � on A is represented(relative to x) by a tuple of elements a 2 Au if �[x℄ = a. (Reall thede�nition of �[x℄ in setion 3.2.)The state representing funtionRepAx : State(A) ! Auis de�ned by RepAx (�) = �[x℄.The modi�ed state representing funtionRepAx�: State(A)[f�g ! B �Auis de�ned by RepAx�(�) = (tt; �[x℄)RepAx�(�) = (ff; ÆuA)where ÆuA is the default tuple of type u in A (setion 2.14).4.3 Representation of term evaluationLet x be a u-tuple of variables. Let Termx = Termx(�) be the lassof all �-terms with variables among x only, and for all sorts s of �, letTermx;s = Termx;s(�) be the lass of suh terms of sort s. Similarly, wewrite TermTupx for the lass of all term tuples with variables among xonly, and TermTupx;v for the lass of all v-tuples of suh terms.The term evaluation funtion on A relative to xTEAx;s: Termx;s� State(A) ! As;de�ned by TEAx;s(t; �) = [[t℄℄A�,is represented by the funtionteAx;s: pTermx;sq �Au ! As



390 J. V. Tuker and J. I. Zukerde�ned by teAx;s( ptq, a) = [[t℄℄A�;where � is any state on A suh that �[x℄ = a. (This is well de�ned, byLemma 3.4.) In other words, the following diagram ommutes:
-? j AspTermx;sq�Au teAx;s

TEAx;sTermx;s � State(A)hgn,RepAx i
Stritly speaking, if gn is not surjetive on N, then teAx;s is not uniquelyspei�ed by the above de�nition, or by the diagram. However, we mayassume that for n not a G�odel number (of the required sort), teAx;s(n; a)takes the default value of sort s (2.12). Similar remarks apply to the otherrepresenting funtions given below.Further, for a produt type v, we will de�ne a evaluating funtion fortuples of terms teAx;v: pTermTupx;vq�Au ! Avsimilarly, by teAx;v(ptq, a) = [[t℄℄A�.We will be interested in the omputability of these term evaluationrepresenting funtions.4.4 Representation of the omputation step funtionLet AtStx be the lass of atomi statements with variables among x only.The atomi statement evaluation funtion on A relative to x,AEAx : AtStx� State(A) ! State(A),de�ned by AEAx (S; �) = [[S℄℄A�is represented by the funtionaeAx : pAtStxq�Au ! Au,de�ned by aeAx ( pSq, a) = (hjSjiA�)[x℄,where � is any state on A suh that �[x℄ = a. (Again, this is well de�ned,by Lemma 3.14.) In other words, the following diagram ommutes:



Computable funtions on algebras 391AtStx�State(A) AEAx���������! State(A)hgn,RepAx ix?? x??RepAxpAtStxq�Au ���������!aeAx AuNext, let Stmtx be the lass of statements with variables among x only,and de�ne RestAx =df RestA� (Stmtx�State(A)).Then First and RestAx are represented by the funtionsfirst: pStmtq ! pAtStqrestAx : pStmtxq�Au ! pStmtxqwhih are de�ned so as to make the following diagrams ommute:Stmt First����������! AtStgnx?? x??gnpStmtq ����������!first pAtStq
Stmtx�State(A) RestAx����������! Stmtxhgn,RepAx ix?? x??gnpStmtxq�Au ����������!restAx pStmtxqNote that first is a funtion from N to N, and (unlike restAx and mostof the other representing funtions here) does not depend on A or x.Next, the omputation step funtion (relative to x)CompAx = CompA�(Stmtx�State(A)�N):Stmtx�State(A)�N ! State(A) [ f�gis represented by the funtion



392 J. V. Tuker and J. I. ZukerompAx : pStmtxq�Au � N ! B �Auwhih is de�ned so as to make the following diagram ommute:Stmtx�State(A)�N CompAx�����������! State(A)[f�ghgn,RepAx idNix?? x??RepAxpStmtxq�Au � N �����������!ompAx B �AuWe putompAx (pSq; a; n) = (notoverAx (pSq; a; n); stateAx (pSq; a; n))with the two `omponent funtions'notoverAx : pStmtxq�Au � N ! BstateAx : pStmtxq�Au � N ! Auwhere notoverAx (pSq; a; n) tests whether the omputation of pSq at a isover by step n, and stateAx (pSq; a; n) gives the value of the state (repre-sentative) at step n.4.5 Representation of statement evaluationLet Stmtx be the lass ofWhile statements with variables among x only.The statement evaluation funtion on A relative to x,SEAx : Stmtx� State(A) ! State(A),de�ned by SEAx (S; �) = [[S ℄℄A�;is represented by the (partial) funtionseAx : pStmtxq�Au ! Au;de�ned by seAx (pSq,a) = ([[S℄℄A�)[x℄where � is any state on A suh that �[x℄ = a. (This is also well de�ned, bythe funtionality lemma for statements, 3.10.) In other words, the followingdiagram ommutes.



Computable funtions on algebras 393Stmtx�State(A) SEAx���������! State(A)hgn,RepAx ix?? x??RepAxpStmtxq�Au ���������!seAx AuWe will also be interested in the omputability of seAx .4.6 Representation of proedure evaluationWe will want a representation of the lass Prou!v of all While proe-dures of type u ! v, in order to onstrut a universal proedure for thattype. This turns out to be a rather subtle matter, sine it requires a od-ing for arbitrary tuples of auxiliary variables. We therefore postpone suha representation to setion 4.8, and meanwhile onsider a loal version, forthe sublass of Prou!v of proedures with auxiliary variables of a given�xed type, whih is good enough for our present purpose (Lemma 4.2 andTheorem 4.3).So let a,b, be pairwise disjoint lists of variables, with types a : u, b : vand  : w. Let Proa;b; be the lass ofWhile proedures of type u! v,with delaration in a out b aux . The proedure evaluation funtion on Arelative to a,b, PEAa;b;: Proa;b;�Au ! Avde�ned by PEAa;b;(P; a) = PA(a)is represented by the funtionpeAa;b;: pProa;b;q�Au ! Avde�ned by peAa;b;(pPq; a) = PA(a).In other words, the following diagram ommutes:
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-? j AvpTermx;sq�Au pe Aa;b;

PE Aa;b;Pro a;b; �Auhgn; idAui
We will also be interested in the omputability of peAa;b;.4.7 Computability of semanti representing funtions;term evaluation propertyBy examining the de�nitions of the various semanti funtions in Setion3, we an infer the relative omputability of the orresponding representingfuntions, as follows.Lemma 4.1. The funtion first: N ! N is primitive reursive, andhene While omputable on AN , for any standard �-algebra A.Lemma 4.2. Let x be a tuple of program variables and A a standard �-algebra.(a) aeAx and restAx are While omputable in h teAa;sj s 2 Sort(�)i onAN :(b) ompAx , and its two omponent funtions notoverAx and stateAx ,are While omputable in aeAx and restAx on AN .() seAx is While omputable in ompAx on AN .(d) peAa;b; is While omputable in seAx on AN , where x�a,b,.(e) teAx;s is While omputable in peAx;y;hi on AN , where y is a variableof sort s, not in x.The above relativeWhile omputability results all hold uniformly for A 2StdAlg(�).Proof. Note �rst that if a semanti funtion is de�ned from others bystrutural reursion on a syntati lass of expressions, then a representingfuntion for the former is de�nable from representing funtions for the latterby ourse of values reursion on the set of G�odel numbers of expressions ofthis lass, whih forms a primitive reursive subset of N.We an then prove parts (a){(d) by examining the de�nitions of thesemanti funtions, and applying Lemma 4.1 and (relativised versions of)the following fats:(1Æ) If a funtion f on AN is de�ned by primitive reursion or tail reur-sion on nat from funtions g; h; : : : on AN , then f is For(g; h; : : : )omputable on AN . (Used in (a) and (b).)



Computable funtions on algebras 395(2Æ) Course of value reursion on nat with range sort nat is reduible toprimitive reursion on nat. (Used in (a).)(3Æ) The onstrutive least number operator, used in part () (f. thede�nition of CompLength in setion 3.4), is While omputableon AN .Referenes for fats (1Æ) and (3Æ) are given later (Theorem 8.5). Fat(2Æ) an be proved by an analogue of a lassial tehnique for omputabilityon N whih an be found in P�eter [1967℄ or Kleene [1952℄.We omplete the yle of relative omputability by proving (e) as fol-lows: given a term t 2Termx;s, onsider the proedureP � pro in x out y begin y:=t end.Then sine pPq is primitive reursive in ptq and teAx;s(ptq; a) =pex;y;hi(pPq; a) (and sine For omputability impliesWhile omputabil-ity), the result follows from (1Æ).Theorem 4.3. The following are equivalent, uniformly for A 2StdAlg(�).(i) For all x and s, the term evaluation representing funtion teAx;s isWhile omputable on AN .(ii) For all x, the atomi statement evaluation representing funtion aeAx ,and the representing funtion restAx , are While omputable on AN .(iii) For all x, the omputation step representing funtion ompAx , and itstwo omponent funtions notoverAx and stateAx , are While om-putable on AN .(iv) For all x, the statement evaluation representing funtion seAx isWhileomputable on AN .(v) For all a,b,, the proedure evaluation representing funtion peAa;b;is While omputable on AN .Proof. From the transitivity lemma for relative omputability (3.32) andLemma 4.2.De�nition 4.4 (Term evaluation).(a) The algebra A has the term evaluation property (TEP) if for all xand s, the term evaluation representing funtion teAx;s (or, equiva-lently, any of the other sets of semanti representing funtions listedin Theorem 4.3) is While omputable on AN .(b) The lass K has the uniform TEP if the term evaluation representingfuntion is uniformly While omputable on KN .Examples 4.5.(a) Many well-known varieties (i.e., equationally axiomatisable lasses ofalgebras) have (uniform versions of) the TEP. Examples are: semi-groups, groups, and assoiative rings with or without unity. This



396 J. V. Tuker and J. I. Zukerfollows from the e�etive normalisability of the terms of these varie-ties. In the ase of rings, this means an e�etive transformation ofarbitrary terms to polynomials. Consequently, the unordered andordered algebras of real and omplex numbers (R;R<; C and C<, de-�ned in Example 2.23), whih we will study in setion 6, have theTEP. (See Tuker [1980, x5℄.)(b) An (arti�ial) example of an algebra without the TEP is given inMoldestad et al. [1980b℄.Proposition 4.6. The term evaluation representing funtion on A� isFor (and heneWhile) omputable on A�, uniformly for A 2StdAlg(�).Hene the lass StdAlg(��) has the uniform TEP.Proof. (Outline.) The funtion te A�x;s is de�nable by ourse of values re-ursion (f. Remark 8.6) on G�odel numbers of ��-terms, uniformly forA 2StdAlg(�). It is therefore uniformly For omputable on A�, by The-orem 8.7(a).Corollary 4.7.(a) The term evaluation representing funtion on A is For� (and heneWhile�) omputable on AN , uniformly for A 2StdAlg(�).(b) The other semanti representing funtions listed in Theorems 4.3 areWhile� omputable on AN , uniformly for A 2StdAlg(�).Remark 4.8. Suppose � and A are N -standard. Then the semanti rep-resenting funtions listed above (suh as teAx;s) an all be de�ned over Ainstead of AN . In that ase, Lemma 4.2, Theorem 4.3, De�nitions 4.4 andCorollary 4.7 an all be restated, replaing `AN ', `�N ' and `KN ' by `A', `�'and `K ', respetively. Similar remarks apply to the de�nitions and resultsin Setions 4.8{4.12.Reall the de�nitions of generated subalgebras, and minimal arriersand algebras (De�nitions 2.15 and 2.17 and Remark 2.16).Corollary 4.9 (E�etive loal enumerability).(a) Given any �-produt type u and �-sort s, there is a For� omputableuniform enumeration of the arrier set of sort s of the subalgebra haiAgenerated by a 2 Au, i.e., a total mappingenumAu;s: Au � N ! Aswhih is For� omputable on AN , suh that for eah a 2 Au, themapping enumAu;s(a; � ) : pTermx;sq ! haiAs(where x : u) is surjetive.(b) If A has the TEP, then enumAu;s is also While omputable on AN .



Computable funtions on algebras 397Proof. De�ne enumAu;s simply from the appropriate term evaluation rep-resenting funtion: enumAu;s(a; n) = teAx;s(n; a).Corollary 4.10 (E�etive global enumerability).(a) If A is minimal at s, then there is a For� omputable enumerationof the arrier As, i.e., a surjetive total mappingenumAs : N ! As,whih is For� omputable on AN .(b) If in addition A has the TEP, then enumAs is also While ompu-table on AN .Proof. From Corollary 4.9, using the empty list of generators.4.8 Universal WhileN proedure for WhileIt is important to note that the proedure representing funtion peAa;b; ofsetion 4.6 is not universal forPro(�)u!v (where a :u and b : v). It is only`universal' forWhile proedures of type u! v with auxiliary variables oftype type(). In this subsetion we will onstrut a universal proedureUnivAu;v(pPq; a) for all P 2Prou!vand a 2 Au. This inorporates notthe auxiliary variables of P themselves, but representations of their valuesas (G�odel numbers of) terms in the input variables a. These an then allbe oded by a single number variable.We will, assuming the TEP for A, onstrut a universal proedure forProu!v on A. For this we need another representation of the omputa-tion step funtion whih di�ers in two ways from ompAx in setion 4.4:(1Æ) it is de�ned relative to a tuple a of program variables (`input vari-ables'), whih does not neessarily inlude all the variables in S;(2Æ) it has as output not a tuple of values in A, but a tuple of terms inthe input variables | or rather, the G�odel number of suh a tuple ofterms.More preisely, given a produt type u = s1 � : : :� sm and a u-tupleof variables a : u, we de�neompuAa : pV arTupq� pStmtq� Au � N ! B � pTermTupqas follows: for any produt type w extending u, i.e., w = s1 � : : :� sp forsome p � m, and for any x : w extending a (i.e., x�a; xsm+1 ; : : : ; xsp),and for any S 2Stmtx, a 2 Au and n 2 N,ompuAa (pxq,pSq; a; n) = (bn; ptnq)where



398 J. V. Tuker and J. I. Zuker(i) bn =notoverAx (pSq, (a; ÆA); n), and(ii) tn 2 TermTupx;w and teAx;w(ptnq, (a; ÆA)) = stateAx (pSq,(a; ÆA);n),where ÆA is the default tuple of type sm+1 � : : :� sp. This use of defaultvalues follows from the initialisation ondition for output and auxiliaryvariables in proedures (setion 3.1(d)). (This is also what lies behind thefuntionality lemma 3.11 for proedures.)(If p is not a G�odel number of a tuple of variables x whih extends a,or if q is not a G�odel number of a statement S with var(S)� x, thenwe de�ne ompuAa (p; q; a; n) = 0 (say). This ase is deidable primitivereursively in p and q. Similarly for the other funtions de�ned below.)The funtion ompuAa has the two `omponent funtions'notoveruAx : V arTup�pStmtq�Au � N ! BstateuAa : V arTup�pStmtq�Au � N ! pTermTupqwhere, for x extending a and s 2 Stmtx,notoveruAx (pxq,pSq,a; n) = bnstateuAa (pxq,pSq,a; n) = ptnq.Compare these funtions with ompAx and its omponents notoverAx andstateAx (setion 4.4). Note that for any x extending a and S 2Stmtx,notoverAx (pSq, (a; ÆA); n) = notoveruAx (pxq,pSq, a; n) = bnstateAx (pSq, (a; ÆA); n) = teAx;w(ptnq, (a; ÆA)).Think of ompuAa and its omponent funtions as uniform (in x) versionsof ompAx and its omponent funtions. Only the `input variables' a arespei�ed.We need a syntati operation on terms and variables.De�nition 4.11. For any term or term tuple t and variable tuple a,subex(t; a) is the result of substituting the default terms Æs for all variablesxs in t exept for the variables in a.Remark 4.12.(a) For all t 2 TermTup, subex(t; a) 2 TermTupa.(b) subex is primitive reursive in G�odel numbers.() Suppose t : w and var(t) � x�a; z where a : u. Then for a 2 Au,teAa;w(psubex(t; a)q, a) = teAx;w(ptq,(a; ÆA))where ÆA is the default tuple of type type(z). This follows from the `sub-stitution Lemma' in logi; see, for example, Spershneider and Antoniou[1991℄.Lemma 4.13. The funtion ompuAa , and its omponent funtionsnotoveruAx and stateuAa , are While omputable in hte Aa;s j s 2Sort(�)i on AN , uniformly for A 2StdAlg(�).



Computable funtions on algebras 399Proof. (Outline.) We essentially redo parts (a) and (b) of Lemma 4.2,using uniform (in x) versions of aeAx and restAx , i.e., we de�ne (1Æ) thefuntion aeuA: pV arTupq�pAtStq ! pTermTupqwhere for any x : w and S 2AtStx, we haveaeuA(pxq, pSq) 2 pTermTupx;wq, suh that for any x 2 Aw,teAx;w(aeuA(pxqpSq); x) = aeAx (pSq,x);and (2Æ) the funtionrestuAa : pV arTupq�pStmtq�Au ! pStmtqwhere for any x : w extending a : u, S 2AtSt0 and a 2 Au,restuAa (pxq,pSq, a) = restAx (pSq, (a; ÆA)).We an then show that(i) aeuA is primitive reursive;(ii) ompuAa is While omputable in restuAa on A; and(iii) restuAa is While omputable in hteAa;s j s 2 Sort(�)i.Combining these three fats gives the result.Note, in (iii), that the term evaluation funtions teAa;s are used toevaluate Boolean tests in the ourse of de�ning restuAa . The one trikypoint is this: how do we evaluate, using teAa;s, a (G�odel number of) a termt 2Termx;s, whih ontains variables in x other than a? (This is the issueof `uniformity in x'.) The answer is that by Remark 4.12() the evaluationof t is given by teAa;s(psubex(t,a)q; a).Theorem 4.14 (Universality haraterisation theorem forWhile(�) omputations). The following are equivalent, uniformly forA 2StdAlg(�).(i) A has the TEP.(ii) For all �-produt types u; v, there is a While(�N ) proedureUnivu;v: pProu!vq� u ! vwhih is universal for Prou!v on A, in the sense that for all P 2Prou!v and a 2 Au,UnivAu;v(pPq, a) ' PA(a).Proof.(i) =) (ii): Assume A has the TEP. We give an informal desriptionof the algorithm represented by the proedure Univu;v. With input(pPq; a), where P 2Prou!v and a 2 Au, suppose



400 J. V. Tuker and J. I. ZukerP � pro in a out b aux  begin S endwhere a : u and b : v. Putting x�a,b,, evaluate notoveruAx(pxq,pSq, a; n) for n = 0; 1; 2; : : : , until you �nd the (least) n forwhih the omputation of S at a terminates (if at all), i.e.,, the leastn = n0 suh thatnotoveruAx (pxq,pSq, a; n0 + 1) = ff.Note that notoveruAx is While omputable by Lemma 4.13 andassumption. Now let us putstateuAa (pxq,pSq, a; n0) = pt; t0; t00q,where the term tuples t, t0 and t00 represent the urrent values of a, band , respetively. This is also While omputable by Lemma 4.13and assumption. Finally, the output isteAa;v(psubex(t0; a)q, a)(f. Remark 4.12()). By assumption and Remark 4.12(b), this isWhile omputable in pt0q and a, and hene in pPq and a.(ii) =) (i): Note that for any a,b,,peAa;b; = UnivAu;v� (Proa;b;�Au)where a : u and b : v. Hene peAa;b; is While(�N ) omputable ifUnivAu;v is. The result follows from Theorem 4.3.Corollary 4.15 (Universality for A�). For all �-produt types u; v,there is a While�(�N) proedureUniv�u;v: nat�u ! vwhih is universal for Pro�u!v, in the sense that for all P 2 Pro�u!v,A 2 StdAlg(�) and a 2 Au,Univ�;Au;v (pPq, a) ' PA(a).Proof. StdAlg(��) has the uniform TEP, by Proposition 4.6.Remark 4.16.(a) For all u; v, the onstrution of Univu;v (diretion (i) ) (ii) in theproof of Theorem 4.14) is uniform over � in the following sense.There is a relative While(�N ) proedure Uu;v : nat � u ! v on-taining orale proedure alls hhs j s 2 Sort(�)i (setion 3.12) withhs : nat�u! s, suh that for any A 2StdAlg(�), if hs is interpretedas teAa;s on A (where a : u), then Uu;v is universal for Prou!v onA. (We ignore the question of whether teAa;s is omputable on A.)(b) The use of term evaluation ours at two points in the onstrutionof Univu;v (diretion (i)=)(ii)): (1Æ) in the evaluation of Booleantests in the onstrution of the sequene



Computable funtions on algebras 401ompuAa (pxq,pSq; a; 0); ompuAa (pxq,pSq; a; 1); : : : ; (4.1)and (2Æ) in the evaluation of the output variables t0 (see proof of The-orem 4.14). We an separate, and postpone, both these appliationsof term evaluation by modifying the onstrution of the universalproedure as follows.Step 1: Construt from S, not a omputation sequene as in (4.1) butrather a omputation tree (setion 5.10), spei�ally omptree(pxq,pSq,n) (where x�a; b; ), whih is the G�odel number of the �rstn levels of the omputation tree from S 2 Stmtx labelled by w-tuples of terms in TermTupx;w. Note that omptree:N3 ! N isprimitive reursive.Step 2: Selet a path in this tree by evaluating Boolean tests (using teAa;booltogether with the subex operation) until you ome (if at all) to aleaf. Evaluate the terms representing the output variables at this leaf(again using teAa;s with the subex operation).4.9 Universal WhileN proedure for While�We an strengthen the universal haraterisation theorem forWhile om-putations (4.14) using the ��=� onservativity thorem (3.63).Theorem 4.17. (Universality haraterisation theorem forWhile�omputations) The following are equivalent, uniformly for A 2StdAlg(�).(i) A has the TEP.(ii) For all �-produt types u; v, there is a While(�N ) proedureUnivu;v: nat�u ! vwhih is universal for Pro�u!v on A, in the sense that for all P 2Pro�u!v and a 2 Au,UnivAu;v(pPq, a) ' PA(a).Proof. (i) =) (ii): Modify the proof of Theorem 4.14, following thealgorithm of Remark 4.16(b). Construt a omputation tree as in`step 1. Then, in step 2 (term evaluation), replae all Boolean terms(in seleting a path) and the output terms (at the leaf) by the or-responding �-terms given by Theorem 3.63, and apply teAa;s (for s 2Sort(�)) to these. Sine this transformation of terms is primitivereursive in G�odel numbers (Remark 3.64(a)), the whole algorithman be formalised as a While(�N ) proedure.(ii) =) (i): This follows trivially from Theorem 4.14.



402 J. V. Tuker and J. I. ZukerCorollary 4.18. The following are equivalent, uniformly for A 2StdAlg(�).(i) A has the TEP.(ii) While�(A) = WhileN (A).4.10 Snapshot representing funtion and sequeneNext we onsider the statement remainder and snapshot funtions (se-tion 3.14) whih will be useful in our investigation of the halting problem(setion 5.6). Let x : u.The statement remainder funtion (relative to x)RemAx = RemA�(Stmtx�State(A)�N) :Stmtx�State(A)�N ! Stmtx(f. De�nition 3.52) is represented by the funtionremAx : pStmtxq�Au � N ! pStmtxqwhih is de�ned so as to make the following diagram ommute:Stmtx�State(A)�N RemAx����������! Stmtxhgn;RepAx ,idNix?? x??gnpStmtxq�Au � N ����������!remAx pStmtxq(Again, this is well de�ned, by Lemma 3.10.)The snapshot funtion (relative to x)SnapAx = SnapA�(Stmtx�State(A)�N):Stmtx�State(A)�N ! (State(A)[f�g)�Stmtx(f. De�nition 3.56) is represented by the funtionsnapAx : pStmtxq�Au � N ! (B �Au)�pStmtxqwhih an be de�ned simply assnapAx (pSq,a; n) = (ompAx (pSq,a; n), remAx (pSq,a; n))= ((notoverAx (pSq,a; n); stateAx (pSq,a; n)),remAx (pSq,a; n))or (equivalently) so as to make the following diagram ommute:



Computable funtions on algebras 403Stmtx�State(A)�N SnapAx�����������! (State(A) [ f�g)�Stmtxhgn,RepAx ,idNix?? x??hRepAx�,gnipStmtxq�Au � N ����������!snapAx (B �Au)�pStmtxqFix x : u, s 2 Stmtx and a 2 Au. Put bn = notoverAx (pSq,a; n), an =stateAx (pSq,a; n) and pSnq = remAx (pSq; a; n). Then the sequenes(tt; a) = (b0; a0); (b1; a1); (b2; a2); : : :pSq = pS0q, pS1q, pS2q, : : :((tt; a);pSq) = ((b0; a0);pS0q); ((b1; a1);pS1q); ((b2; a2);pS2q); : : :are alled, respetively, the omputation representing sequene, the remain-der representing sequene and the snapshot representing sequene gener-ated by S (or pSq) at a (with respet to x), denoted respetively byompseqAx (pSq,a), remseqAx (pSq,a) and snapseqAx (pSq,a). (Comparethe sequenes CompSeqA(S; �), RemSeqA(S; �) and SnapSeqA(S; �)introdued in setion 3.)The sequenes ompseqAx (pSq,a) and snapseqAx (pSq,a) are said tobe non-terminating, if, for all n, notoverAx (pSq,a; n) = tt, i.e., for no n isompAx (pSq,a; n) = (ff; ÆuA).These representing sequenes satisfy analogues of the results listed insetion 3.14; for example:Proposition 4.19. If snapseqAx (pSq,a) repeats a value at some point,then it is periodi from that point on, and hene non-terminating. In otherwords, if for some m;n with m 6= nsnapAx (pSq, a; m) = snapAx (pSq, an) 6= ((ff; ÆuA); skip)then, for all k > 0,snapAx (pSq, a; m+ k) = snapAx (pSq, an+ k) 6= ((ff; ÆuA); skip)(Cf. Proposition 3.57 and Corollary 3.58.)With the funtion snapAx , we an extend the list of relative omputabil-ity results (Lemma 4.2), and add a lause to Theorem 4.3:Lemma 4.20. (Cf. Lemma 4.2.) The funtion snapAx , and its two om-ponent funtions ompAx and remAx , are While omputable in hteAa;s js 2 Sort(�)i on AN , uniformly for A 2StdAlg(�).Proof. Simple exerise.Theorem 4.21. (Cf. Theorem 4.3.) The following are equivalent, uni-formly for A 2StdAlg(�):



404 J. V. Tuker and J. I. Zuker(i) For all x and s, the term evaluation representing funtion teAx;s isWhile omputable on AN .(ii) For all x, the snapshot representing funtion snapAx , and its twoomponent funtions ompAx and remAx , are While omputable onAN .Proof. As for Theorem 4.3.A uniform (in x) version of snapAx will be used in setion 5.6 in ourinvestigation of the `solvability of the halting problem'.4.11 Order of a tuple of elementsLet u be a �-produt type, s a �-sort and A a �-algebra. The orderfuntion of type u; s on A is the funtionordAu;s: Au ! Nwhere, for all x 2 Au, ordAu;s(x) ' ard(hxiAs )i.e., the ardinality of the arrier of sort s of the subalgebra of A generatedby x. (It is unde�ned when the ardinality is in�nite.)Note that this is a generalisation of the order operation for single ele-ments of groups (Example 3.14(b)).Note that for a tuple x 2 Au, the subalgebra hxiAs an be generated instages as �nite sets: hxiAs;0 � hxiAs;1 � hxiAs;2 � : : :where hxiAs;n is de�ned by indution on n, simultaneously for all �-sorts s(f. Meinke and Tuker [1992, 3.12.15�.℄ for the single-sorted ase), andhxiAs = [n hxiAs;n.Also hxiAs is �nite if, and only if, there exists n suh thathxiAs;n = hxiAs;n+1 (4.2)in whih asehxiAs;n = hxiAs;n+1 = hxiAs;n+2 = : : : = hxiAs .Lemma 4.22. For any tuple of variables x : u, there is a primitivereursive funtion SubAlgStagex;u;s: N ! Nsuh that SubAlgStagex;u;s(n) is the G�odel number of a list (pt1q : : :ptknq) of G�odel numbers of the set of terms generated by stage n, i.e.,,



Computable funtions on algebras 405hxiAs;n = f teAx;s(ti; x) j i = 1; : : : ; kn g.Example 4.23. Suppose s is an equality sort.(a) The order funtion ordAu;s isWhile omputable in teAx;s (where x :u) on AN , uniformly for A 2StdAlg(�).(b) Hene if A has the TEP, then ordAu;s is While omputable on AN .Proof. The algorithm to ompute ordAu;s is (briey) as follows. Supposegiven an input x 2 Au. With the help of the funtions SubAlgStagex;u;sand teAx;s and the equality operator on As, test for n = 0; 1; 2; : : : whether(4.2) holds. If and when suh an n is found, determine ard(hxiAs;n), againusing the equality operator on As (this time to determine repetitions in thelist hxiAs;n).4.12 Loally �nite algebrasDe�nition 4.24. An algebra A is loally �nite if every �nitely generatedsubalgebra of A is �nite, i.e., if for every �nite X � Ss2Sort(�)As andevery sort s, hXiAs is �nite.Note that A is loally �nite if, and only if, ordAu;s (setion 4.11) is totalfor all u and s.Example 4.25. Consider the algebraN�0 = (N� ; 0, pred)where N� is just (a opy of) N, and `pred' is the predeessor operation onthis: pred(n + 1) = n and pred(0) = 0. We write `N� ' to distinguish thisarrier from the `standard' naturals N, whih we an adjoin to form theN -standardised algebra. We also write the sort of N� as nat�. LetN� = (N� , B ; 0, pred, eqnat� , : : : )be the standardised version of N�0 (with nat� an equality sort). Then bothN�0 and N� are loally �nite; in fat for any k1; : : : ; km 2N� ,hfk1; : : : ; kmgiN�nat� = f0; 1; 2; : : : ; kgwhere k = max(k1; : : : ; km). (Chek.) HeneordN�(nat�)m; nat�(k1; : : : ; km) = max(k1; : : : ; km) + 1.Theorem 4.26. Suppose A is loally �nite. Then for any x : u,s 2 Stmtx and a 2 Au:(a) snapseqAx (pSq,a) has �nite range.(b) snapseqAx (pSq,a) (or, equivalently, ompseqAx (pSq,a)) is non-term-inating() snapseqAx (pSq,a) repeats a value (other than ((ff; ÆuA),skip)).



406 J. V. Tuker and J. I. ZukerProof.(a) Consider a typial element of the snapshot representing sequene gen-erated by S at a: (an; pSnq) (4.3)where an = ompAx (pSq,a; n) and pSnq = remAx (pSq,a; n) for somen. By Lemma 3.28, an must be in haiAu , whih is �nite byassumption. Also, by Proposition 3.54, Sn must be in RemSet(S)[fskipg, whih is �nite, by Proposition 3.51. Hene the pair (4.3) mustbe in the produt set haiAu � pRemSet(S)q, whih is also �nite.(b) The diretion `=)' follows from (a). The diretion `(=' followsfrom Corollary 3.58 or (equivalently) Proposition 4.19.Loal �niteness will be used later, in onsidering `solvability of the halt-ing problem' (Setion 5.6).4.13 Representing funtions for spei� terms or pro-gramsThe representing funtions that we onsidered in setions 4.3{4.6 and 4.10have as arguments (typially)(i) G�odel numbers of terms, statements or proedures, and(ii) representations of states.Computability of all these funtions is equivalent to the TEP (Theorems4.3 and 4.21).Another form of representation whih will be useful is to use (i) theterm, statement, et. as a parameter, not an argument, and just have (ii)the state representation as an argument.More preisely, we de�ne (for x : u, t 2Termx;s, s 2 Stmtx, a : u,b : v and P 2Proa;b;) the funtionsteAx;s;t : Au ! AsaeAx;S : Au ! AurestAx;S : Au ! pStmtxqnotoverAx;S : Au � N ! BstateAx;S : Au � N ! AuompAx;S : Au � N ! B �Au (4.4)



Computable funtions on algebras 407remAx;S : Au � N ! pStmtxqsnapAx;S : Au � N ! (B � Au)� pStmtxqseAx;S : Au ! AupeAa;b;;P : Au ! Avsuh that teAx;s;t(a) = teAx;s(ptq, a);ompAx;S(a; n) = ompAx (pSq, a; n),and similarly for the other funtions listed in (4.4). We then have:Theorem 4.27.(a) The funtions teAx;s;t and aeAx;S are While omputable on A. Thefuntions restAx;S, notoverAx;S, stateAx;S, ompAx;S, remAx;S andsnapAx;S are While omputable on AN . The funtions seAx;S andpeAa;b;;P are WhileN omputable on A.(b) Suppose A is N-standard. Then all the funtions listed in (4.4) areWhile omputable on A.Proof. For (a): omputability of teAx;s;t is proved by strutural indutionon t 2Termx. To prove omputability of restAx;S on AN , put S � S0;S1,where S0 does not have the form S0;S00 (and `;S1' may be empty), andrewrite the de�nition of RestA in setion 3.5 as an expliit de�nition byases, aording to the di�erent forms of S0. For omputability of ompAx;Son AN , show that the family of funtions hompAx; S0 jS0 2 RemSet(S)iis de�nable by simultaneous primitive reursion. (Compare the de�nitionof CompA in setion 3.4.) Use the fat that this family is �nite, by Propo-sition 3.51.Part (b) follows immediately from (a).5 Notions of semiomputabilityWe want to generalise the notion of reursive enumerability to many-sortedalgebras. There turn out to be many non-equivalent ways to do this.The primary idea is that a set is While semiomputable if, and onlyif, it is the domain or halting set of a While proedure; and similarly forWhileN and While� semiomputability. There are many useful appli-ations of these onepts, and they satisfy losure properties and Post'stheorem:A set is omputable if, and only if, it and its omplement aresemiomputable.The seond idea of importane is that of a projetion of a semiompu-table set. In omputability theory on the set N of natural numbers, the



408 J. V. Tuker and J. I. Zukerlass of semiomputable sets is losed under taking projetions, but this isnot true in the general ase of algebras, even with While� omputability.(A reason is the restrited form of omputable loal searh available inour models of omputation.) Projetive semiomputability is stritly morepowerful (and less algorithmi) than semiomputability.In this setion we will study the two notions of semiomputability andprojetive semiomputability in some detail. We will onsider the invari-ane of the properties under homomorphisms. We will prove equivalenes,suh asprojetive While� semiomputability = projetive For� omputability.In the ourse of the setion, we also onsider extensions of the Whilelanguage by non-deterministi onstruts, inluding allowing:(i) arbitrary initialisations of some auxiliary variables in programs;(ii) random assignments in programs.We prove that in these non-deterministi languages, semiomputability isequivalent to the orresponding notion of projetive semiomputability. Wealso show an equivalene between projetive semiomputability and(iii) de�nability in a weak seond-order language.We haraterise the semiomputable sets as the sets de�nable by somee�etive ountable disjuntion 1_k=0 bkof Boolean-valued terms. This result was �rst observed by E. Engeler.There are a number of attrative appliations, e.g. in lassifying the semi-omputable sets over rings and �elds, where Boolean terms an be replaedby polynomial identities; we onsider this topi in setion 6.These onepts and results are developed for omputations with thethree languages based on the While, WhileN and While� onstruts;and their uniformity over lasses of algebras is disussed.We assume throughout this setion that � is a standard signature, andA a standard �-algebra.5.1 While semiomputabilityDe�nition 5.1. The halting set of a proedure P : u ! v on A is therelation HaltA(P ) =df fa 2 Au j PA(a) #g.Now let R be a relation on A.



Computable funtions on algebras 409De�nition 5.2.(a) R is While omputable on A if its harateristi funtion is.(b) R isWhile semiomputable on A if it is the halting set on A of someWhile proedure.() A family R =hRA j A 2 K i of relations is While semiomputableuniformly over K if there is a While proedure P suh that for allA 2 K , RA is the halting set of P on A.It follows from the de�nition that R is While semiomputable on Aif, and only if, R is the domain of a While omputable (partial) funtionon A.Remark 5.3. As far as de�ning relations by proedures is onerned, wean ignore output variables. More preisely, if R =HaltA(P ), then we mayassume that P has no output variables, sine otherwise we an remove alloutput variables from P simply by relassifying them as auxiliary variables.We will all any proedure without output variables a relational proedure.De�nition 5.4 (Relative While semiomputability). Given a tupleg1; : : : ; gn of funtions on A, a relation R on A isWhile semiomputablein g1; : : : ; gn if it is the halting set on A of aWhile(g1; : : : ; gn) proedure,or (equivalently) the domain of a funtionWhile omputable in g1; : : : ; gn(f. setion 3.10).Example 5.5.(a) On the naturals N (Example 2.23(b)), the While semiomputablesets are preisely the reursively enumerable sets, and the Whileomputable sets are preisely the reursive sets.(b) Consider the standard algebra R of reals (Example 2.23()). The setof naturals (as a subset of R) isWhile semiomputable on R, beingthe halting set of the following proedure:is nat � pro in x: realbegin while not x= 0do x := x-1 odend() Similarly, the set of integers is While semiomputable on R. (Ex-erise.)(d) However, the sets of naturals and integers areWhile omputable onR< (setion 2.23(d)). (Exerise.)(e) The set of rationals isWhile semiomputable onR. (Exerise. Hint:Prove this �rst for RN .)5.2 Merging two proedures: Closure theoremsIn order to prove ertain important results forWhile semiomputable sets,namely (a) losure under �nite unions, and (b) Post's theorem, we need todevelop an operation of merging two proedures, i.e., interleaving their



410 J. V. Tuker and J. I. Zukersteps to form a new proedure. In the ontext of N -standard strutures,and assuming the TEP, this is a simple onstrution (as in the lassial aseover N). In general, however, the merge onstrution is quite non-trivial,as we shall now see.Lemma 5.6. Given two relational While(�) proedures P1 and P2, ofinput type u, we an onstrut a While(�) proedureQ � mg(P1; P2) : u! bool;the merge of P1 and P2, with Boolean output values (written `1' and `2' forlarity) suh that for all A 2StdAlg(�) and a 2 Au:QA(a) # () PA1 (a) # or PA2 (a) #;QA(a) # 1 =) PA1 (a) #;QA(a) # 2 =) PA2 (a) # :Proof. We may assume without loss of generality thatP1 � pro in x aux z1 begin S1 endP2 � pro in x aux z2 begin S2 endwhere x : u and z1\z2 = ;. We an onstrut a proedureQ � pro in x aux z1,z2; : : : out whih begin S endwhere S�mg(S1; S2), the `merge' of S1 and S2, and `whih' is a Booleanvariable with values written as `1' and `2'. The operation mg(S1; S2) isatually de�ned for all pairs S1; S2 suh that var(S1)\var(S2)� x, andnone of the x our on the lhs of any assignment in S1 or S2. It has thesemanti property that for all A; �:[[mg(S1; S2)℄℄A� # () [[S1℄℄A� # or [[S2℄℄A� #;and if [[mg(S1; S2)℄℄A� # �0 then�0(whih) = 1 =) [[S1℄℄� # and [[mg(S1; S2)℄℄A� � [[S1℄℄A� (rel varS1),�0(whih) = 2 =) [[S2℄℄� # and [[mg(S1; S2)℄℄A� � [[S2℄℄A� (rel varS2).The de�nition of mg(S1; S2) is by ourse of values reursion on the sumof ompl(S1) and ompl(S2). Details are left as a (hallenging) ex-erise. (Hint: The triky ase is when both S1 and S2 have the formSi�while bi do S0i od;S0i (i = 1; 2), where `;S0i' may be empty).Remark 5.7. The onstrution ofmg(P1; P2) for A is muh simpler if wean assume that (i) A is N-standard, and (ii) A has the TEP. In that ase,by Theorem 4.3, the omputation step representing funtion ompAx isWhile omputable on A. Using this, we an onstrut aWhile proedurewhih interleaves the omputation steps of S1 and S2, tests at eah step



Computable funtions on algebras 411whether either omputation has halted, and (aordingly) gives an outputof 1 or 2.Theorem 5.8 (Closure of While semiomputability under unionand intersetion). The union and intersetion of two While semiom-putable relations of the same type are againWhile semiomputable. More-over, this result is uniformly e�etive over StdAlg(�), in the sense thatgiven two While proedures P1 and P2 of the same input type u, there aretwo other proedures P1[2 and P1\2 of input type u, e�etively onstrutiblefrom P1 and P2, suh that on any standard �-algebra A,(a) HaltA(P1[2) = HaltA(P1)[ HaltA(P2);(b) HaltA(P1\2) = HaltA(P1)\ HaltA(P2).Proof. Suppose again without loss of generality thatP1 � pro in x aux z1 begin S1 endP2 � pro in x aux z2 begin S2 endwhere z1 \ z2 = ;.(a) P1[2 an be de�ned asmg(P1; P2), as in Lemma 5.6. (We ignore itsoutput here.)(b) P1\2 an be de�ned, more simply, as in the lassial ase:P1\2 � pro in x aux z1, z2 begin S1;S2 end.If R is a relation on A of type u, we write the omplement of A asR =df AunR:Theorem 5.9 (Post's theorem for While semiomputability). Forany relation R on AR is While omputable () R and R are While semiomputable.Moreover, this equivalene is uniformly e�etive over StdAlg(�), i.e.,(onsidering the reverse diretion) given any proedures P1 and P2 of thesame input type u, there is a proedure P3 : u ! bool, e�etively on-strutible from P1 and P2, suh that on any standard �-algebra A, if thehalting sets of P1 and P2 are RA and RA respetively, then P3 omputesthe harateristi funtion of RA.Proof.(=)) This follows, as in the lassial ase, by modifying a proedurewhih omputes the harateristi funtion of R into two proedureswhih have R and R respetively as halting sets.((=) Again, we an just take P3 � mg(P1; P2), as in Lemma 5.6. �Another useful losure result, appliable to N -standard strutures, is:Theorem 5.10 (Closure ofWhile semiomputability under N-pro-jetions). Suppose A is N-standard. If R � Au�nat is While semiom-putable on A, then so is its N-projetion fx 2 Au j 9n 2 NR(x; n)g.



412 J. V. Tuker and J. I. ZukerProof. From a proedure P whih halts on R, we an e�etively onstrutanother proedure whih halts on the required projetion. Briey, for inputx, we searh by dovetailing for a number n suh that P halts on (x; n). Inother words, the algorithm proeeds in stages (1,2, : : : ), given by theiterations of a `while' loop. At stage n, test whether P halts in at most nsteps, with input (x; k), for some k < n. This an be done by omputingnotoverAx;S(x; k) for all k < n (see setion 4.13). The algorithm halts ifand when we get an output ff.Note that if A has the TEP, we ould just as well use the omputationstep representing funtion ompAx in the above proof instead of ompAx;S .(Cf. Remark 5.7.)We an generalise Theorem 5.10 to the ase of an As-projetion for anyminimal arrier As (reall De�nition 2.17), provided A has the TEP:Corollary 5.11 (Closure of While semiomputability under pro-jetions o� minimal arriers). Suppose A is N-standard and has theTEP. Let As be a minimal arrier of A. If R � Au�s is While semiom-putable on A, then so is its projetion fx 2 Au j 9y 2 As R(x; y)g.Proof. Reall that by Corollary 4.10, there is a total While omputableenumeration of As, enumAs : N ! As.So for all x 2 Au,9y 2 AsR(x; y) () 9nR(x; enumAs (n)) () 9nR0(x; n)where (as is easily seen) the relationR0(x; n) =df R(x; enumAs (n))is While semiomputable. The result follows from Theorem 5.10.Note that there are relativised versions (f. De�nition 5.4) of all theresults of this subsetion so far.Disussion 5.12 (Minimality and searh). Corollary 5.11 is a many-sorted version of (part of) Theorem 2.4 of [Friedman, 1971a℄, ited in[Shepherdson, 1985℄. The minimality ondition (a version of Friedman'sCondition III) means that searh in As is omputable (or, more stritly,semiomputable) provided A has the TEP. Thus in minimal algebras, manyof the results of lassial reursion theory arry over, e.g.,� the domains of semiomputable sets are losed under projetion (asabove);� a semiomputable relation has a omputable seletion funtion;� a funtion with semiomputable graph is omputable.(Cf.Theorem 2.4 of Friedman [1971a℄.) If, in addition, there is omputableequality at the appropriate sorts, other results of lassial reursion theoryarry over, e.g.,



Computable funtions on algebras 413� the range of a omputable funtion is semiomputable.(Cf. Theorem 2.6 of Friedman [1971a℄.)5.3 Projetive While semiomputability: semi-omputability with searhWe introdue and ompare two new notions of semiomputability: (1Æ)projetive While semiomputability and (2Æ) While semiomputabilitywith searh. First, for (1Æ):De�nition 5.13.(a) R is projetively While omputable on A if, and only if, R is a pro-jetion of aWhile omputable relation on A (see De�nition 2.9(d)).(b) R is projetive While semiomputable on A if, and only if, R is aprojetion of a While semiomputable relation on A.The notions of uniform projetive While omputability and semiom-putability over K of a family of relations, are de�ned analogously (f. De�-nition 5.2()).Note that projetive While semiomputability is, in general, weakerthan While semiomputability. Example 6.15 will show this, using En-geler's lemma.We do, however, have losure of semiomputability in the ase of N-projetions, i.e., existential quanti�ation over N, as we saw in Theorem5.10. Further, we have from Corollary 5.11:Proposition 5.14. Suppose A is N-standard and minimal and has theTEP. Then on Aprojetive While semiomputability = While semiomputability.Now, for (2Æ), we introdue a new feature: de�nability with the poss-ibility of arbitrary initialisation of searh variables. For this, we de�ne anew type of proedure.De�nition 5.15. A searh proedure has the formPsrh � pro in a out b aux  srh d begin S end; (5.1)with searh variables d as well as input, output and auxiliary variables, andwith the stipulations (ompare setion 3.1(d)):� a, b,  and d eah onsist of distint variables, and they are pairwisedisjoint;� every variable in S is inluded among a, b,  or d;� the input and searh variables a,d an our only on the right-handside of an assignment in S;� (initialisation ondition): S has the form Sinit;S0, where Sinitonsists of an initialisation of the output and auxiliary variables, butnot of the searh variables d.



414 J. V. Tuker and J. I. ZukerAgain, we may assume in (5.1) that Psrh has no output variables, i.e.,that b is empty. (See Remark 5.3.)De�nition 5.16. The halting set of a searh proedure as in (5.1) on A(assuming a : u and d : w) is the setHaltA(Psrh) =df fa 2 Auj for some � with �[a℄ = a, [[S℄℄� #g.In other words, it is the set of tuples a 2 Au suh that when a is ini-tialised to a, then for some (non-deterministi) initialisation of d, S halts.Note that this redues to De�nition 5.1 when Psrh has no searh vari-ables.Now let R be a relation on A.De�nition 5.17. R is While semiomputable with searh on A if R isthe halting set on A of some While searh proedure.Again, the notion of uniformWhile semiomputability with searh overK of a family of relations, is de�ned analogously.Now we ompare the two notions introdued above.Theorem 5.18.(a) R isWhile semiomputable with searh on A () R is projetivelyWhile semiomputable on A.(b) This equivalene is uniform over StdAlg(�), in the sense that thereare e�etive transformations Psrh 7! P and P 7! Psrh betweensearh proedures Psrh and ordinary proedures P , suh that for allA 2StdAlg(�), HaltA(Psrh) is a projetion of HaltAP .Proof. The equivalene follows easily from the de�nitions. Suppose R isthe halting set on A by a searh proedure Psrh with input variables a : uand searh variables d : w. Let P be the proedure formed from Psrhsimply by relabelling d as additional input variables. (So the input type ofP is u�w.) Then R is the projetion onto Au of the halting set of P . Theopposite diretion is just as easy.5.4 WhileN semiomputabilityLet R be a relation on A.De�nition 5.19.(a) R isWhileN omputable on A if its harateristi funtion is (setion3.12).(b) R is WhileN semiomputable on A if it is the halting set of someWhileN proedure P on AN .Again, we may assume that P has no output variables. (See Remark5.3.)From Proposition 3.38 we have:



Computable funtions on algebras 415Proposition 5.20. If A is N-standard, then WhileN semiomputabilityon A oinides with While semiomputability on A.Theorem 5.21 (Closure ofWhileN semiomputability under unionand intersetion). The union and intersetion of two WhileN semi-omputable relations of the same input type are again WhileN semiom-putable, uniformly over StdAlg(�).Proof. From Theorem 5.8, applied to AN .Theorem 5.22 (Post's theorem for WhileN semiomputability).For any relation R on AR is WhileN omputable ()R and R are WhileN semiomputable,uniformly for A 2StdAlg(�).Proof. From Theorem 5.9, applied to AN .Note that if A has the TEP, then the onstrution of a `merged'WhileNproedure mg(P1; P2) from two WhileN proedures P1 and P2, used inthe above two theorems, is muh simpler than the onstrution given inLemma 5.6 (f. Remark 5.7).Also Theorem 5.10 and Corollary 5.11 an respetively be restated forWhileN semiomputability:Theorem 5.23 (Closure of WhileN semiomputability under N-projetions). Suppose R � Au�nat, where u 2ProdType(�), and Ris While semiomputable on AN . Then its N-projetion fx j 9n 2NR(x; n)g is WhileN semiomputable on A.Corollary 5.24 (Closure ofWhileN semiomputability under pro-jetions o� minimal arriers). Suppose A has the TEP. Let As be aminimal arrier of A. If R � Au�s isWhileN semiomputable on A, thenso is its projetion fx 2 Au j 9y 2 As R(x; y)g.Example 5.25.(a) (WhileN semiomputability of the subalgebra relation.) For a stand-ard signature �, equality sort s, produt type u and standard �-algebra A, the subalgebra relationf(y; x) 2 As �Au j y 2 hxiAs g(where hxiAs is the arrier of sort s of the subalgebra of A generated byx 2 Au) is While semiomputable (on AN ) in the term evaluationrepresenting funtion teAx;s, where x : u (setion 4.3). To show this,we note that y 2 hxiAs () 9z 2 N (teAx;s(z; x) = y)(f. Remark 2.16) and apply (a relativised version of) Theorem 5.23.Hene if A has the TEP, this relation isWhileN semiomputable onA.



416 J. V. Tuker and J. I. Zuker(b) On the standard group G (Examaple 2.23(g)) the set fg 2 G j9n(gn = 1)g of elements of �nite order is WhileN semiomputable,being the domain of the order funtion on GN , whih isWhile om-putable on GN (Example 3.14(b)). In fat, this set is even Whilesemiomputable on G. (Exerise.)() More generally, for any �-produt type u and �-equality sort s, theset fx 2 Au jhxiAs is �nitegis WhileN semiomputable in teAx;s. This follows from the fat thatit is the domain of the funtion ordAu;s, whih isWhile omputablein teAx;s on AN (Example 4.23). Hene if A has the TEP, then thisset is WhileN semiomputable on A.5.5 Projetive WhileN semiomputabilityLet R be a relation on A.De�nition 5.26.(a) R is projetively WhileN omputable on A if, and only if, R is aprojetion of a While(�N ) omputable relation on AN .(b) R is projetively WhileN semiomputable on A if R is a projetionof a While(�N ) semiomputable relation on AN .Proposition 5.14 an be restated for WhileN semiomputability:Proposition 5.27. Suppose A is a minimal and has the TEP. Then on Aprojetive WhileN semiomputability = WhileN semiomputability.De�nition 5.28. R is WhileN semiomputable with searh on A if R isthe halting set of a While(�N ) searh proedure on AN .Note that the While(�N ) searh proedure in this de�nition hassimple input variables. However, the auxiliary, searh and output variablesmay be simple or nat.Again, the following equivalene follows easily from the de�nitions. (Cf.Theorem 5.18.)Theorem 5.29.(a) R is WhileN semiomputable with searh on A () R is proje-tively WhileN semiomputable on A.(b) This equivalene is uniform over StdAlg(�).5.6 Solvability of the halting problemThe lassial question of the solvability of the halting problem ([Davis,1958℄; impliit in [Turing, 1936℄) applies to the algebra of naturals N0(Example 2.5(a)) or its standardised version N (Example 2.23(b)). We



Computable funtions on algebras 417want to generalise this question to any standard signature � and standard�-algebra A. We will �nd that the problem an only be formulated inN -standard algebras.De�nition 5.30. Suppose � � �0, where � is standard and �0 is N -standard, and suppose A is a standard �-algebra and A0 is a �0-expansionof A. Then we say the halting problem (HP) for While(�) omputationon A is While(�0)-solvable on A0, or the HP for While(A) is solvable inWhile(A0), if for every �-produt type u there is aWhile(�0) proedureHaltTestu: nat�u! bool,suh that HaltTestAu is total, and for every While(�) proedure P of inputtype u, and all a 2 Au,HaltTestAu (pPq; a) = (tt if PA(a) #ff otherwise:The proedure HaltTestu in the above de�nition is alled a universalhalting test for type u on While(A).Proposition 5.31. If the HP for While(A) is solvable in While(A0),then every While(�) semiomputable set in A is While(�0) omputablein A0.Proof. Simple exerise.The two typial situations are:(i) �0 = �N and A0 = AN ;(ii) � is N -standard, �0= � and A0 = A.Example 5.32. For the algebra N (Example 2.23(b)), the HP is not solv-able in While(N ). This is a version of the lassial result of [Kleene,1952℄.Theorem 5.34 makes use of the onept of loal �niteness (setion4.12). In preparation for it, we de�ne uniform (in x) representations ofthe statement remainder funtion and the snapshot funtion (f. setion4.10). Namely, given a produt type u = s1 � : : :� sm and a u-tuple ofvariables a : u (whih we think of as input variables), we de�neremuAa : pV arTupq�pStmtq�Au � N !pStmtqsnapuAa : pV arTupq�pStmtq �Au � N !(B�pTermTupaq)�pStmtqas follows: for any produt type w extending u, i.e.,w = s1 � : : : � sp for some p � m, for any x : w extending a (i.e.,x�a; xsm+1 ; : : : ; xsp), and for any S 2Stmtx, a 2 Au and n 2 N,remuAa (pxq,pSq,a; n; ) = remAx (pSq,a; ÆA); n)where ÆA is the default value of type sm+1 � : : :� sp; and



418 J. V. Tuker and J. I. ZukersnapuAa (pxq; pSq; a; n) = (ompuAa (pxq; pSq; a; n);remuAa (pxq; pSq; a; n))= ((bn; ptnq); pSnq) (5.2)where bn = notoveruAx (pxq; pSq; a; n)ptnq = stateuAa (pxq; pSq; a; n)pSnq = remuAa (pxq; pSq; a; n).Lemma 5.33. The funtion snapuAa , and its omponents ompuAa andremuAa , areWhile omputable in hteAa;s j s 2 Sort(�)i on AN , uniformlyfor A 2StdAlg(�).Proof. Similar to Lemma 4.20.Theorem 5.34. Suppose(1Æ) � has equality at all sorts,(2Æ) A has the TEP, and(3Æ) A is loally �nite.Then the HP for While(A) is solvable in While(AN ).Proof. Given a �-produt type u = s1 � : : :� sm, we will give an informaldesription of an algorithm over AN for a universal halting test for typeu on While(A). (Compare the onstrution of the universal proedure insetion 4.8.)With input (pPq, a), where P has input type u, and a 2 Au, supposeP � pro in a out b aux  begin S endwhere a : u. Put x � a; b; . Then for n = 0; 1; 2; : : :snapuAa (pxq; pSq; a; n) = ((bn; ptnq), pSnq)as in (5.2) above. Now putxn = teAa;w(ptnq, a) = stateAx (pSq,a; ÆA); n).By Lemma 5.33 and assumption (2Æ), snapuAa is While omputable onAN . In other words, its three omponents bn, ptnq and pSnq (as funtionsof n) areWhile omputable on AN . Hene by assumption (2Æ) again, theomponents of the w-tuple xn areWhile omputable on AN (as funtionsof n).Now for n = 0; 1; 2; : : : , evaluate the w-tuple xn, and ompare it (om-ponentwise) to xm for all m < n (whih is possible by assumption (1Æ)),until either(a) bn = ff, whih means that the omputation of S (and hene of P ata) terminates; or



Computable funtions on algebras 419(b) for some distint m and n, bm = bn = tt, xm = xn and pSmq =pSnq, whih means that the omputation of S never terminates, byProposition 3.34.Exatly one of these two ases must happen, by Theorem 4.26 and assump-tion (3Æ). In ase (a) halt with output tt, and in ase (b) halt with outputff. Note that Assumption (1Æ) an be weakened to:(1Æ0) Equality on As is WhileN omputable, for all �-sorts s.Also, for all u, the above onstrution of HaltTestu is uniform over �in the following sense: t`here is a relative While(�N ) proedure Hu :nat � u ! bool ontaining orale proedure alls hgs j s 2 Sort(�)i andhhs j s 2 Sort(�)i with gs : s2 ! bool and hs : nat� u! s, suh thatfor any A 2StdAlg(�), if A is loally �nite, then, interpreting gs and hsas eqAs and teAx;s respetively on A (where x : u), Hu is a universal haltingtest for type u on A. (Cf. Remark 4.16(a).)Corollary 5.35. Suppose(1Æ) � has equality at all sorts,(2Æ) A has the TEP,(3Æ) A is loally �nite, and(4Æ) A is N-standard.Then the HP for While(A) is solvable in While(A).Example 5.36 (A set whih isWhileN but notWhile semiompu-table). The above theory allows us to produe an example to distinguishbetween While and WhileN semiomputability. Let A be the algebraN� (Example 4.25). We present an outline of the argument. Chek eahof the following points in turn.(i) In AN there is a omputable bijetion (n 7! n) from N� to N.(ii) Hene the WhileN omputable subsets of N� are preisely thereursive sets of natural numbers (f. Remark 3.43(d)).(iii) Similarly the WhileN semiomputable subsets of N� are preiselythe reursively enumerable sets of natural numbers (f. Example 5.5).(iv) Sine N� is loally �nite (4.25) and has the TEP, the HP forWhile(A) is solvable in While(AN ). Therefore, by Proposition5.31, every While semiomputable subset of N� is WhileN om-putable, and hene reursive.The result follows from (iii) and (iv).The same algebra, N�, an be used to distinguish between Whileand WhileN omputable funtions. (Exerise. Hint: There is a univer-sal WhileN (N�) proedure for all total While(N�) funtions of typenat�!nat�.)



420 J. V. Tuker and J. I. Zuker5.7 While� semiomputabilityLet R be a relation on A.De�nition 5.37.(a) R isWhile� omputable on A if, and only if, its harateristi fun-tion is.(b) R is While� semiomputable if, and only if, it is the halting set ofsome While proedure P on A�.Again, we may assume that P has no output variables. (See Remark5.3.)From Proposition 3.45 we have:Proposition 5.38. On A�,While� semiomputability oinides withWhilesemiomputability.Theorem 5.39 (Closure ofWhile� semiomputability under unionand intersetion). The union and intersetion of twoWhile� semiom-putable relations of the same type are again While� semiomputable, uni-formly over StdAlg(�).Proof. From Theorem 5.8, applied to A�Theorem 5.40 (Post's theorem for While� semiomputability).For any relation R on AR is While� omputable ()both R and R are While� semiomputable,uniformly for A 2StdAlg(�).Proof. From Theorem 5.9, applied to A�.Note that if A has the TEP, then the onstrution of a `merged'WhileNproedure mg(P1; P2) from two WhileN proedures P1 and P2, used inthe above two theorems, is muh simpler than the onstrution given inLemma 5.6 (f. Remark 5.7).Note that sine A� has the TEP for all A 2StdAlg(�), there is auniform onstrution of a `merged' While� proedure mg(P1; P2) fromtwoWhile� proedures P1 and P2, used in the above two theorems, whihis muh simpler than the onstrution given in Lemma 5.6 (f. Remark5.7).Also Theorem 5.10 (and 5.23) and Corollary 5.11 (and 5.24) an berestated for While� semiomputability:Theorem 5.41. Suppose R � Au�nat, where u 2ProdType(�), andR is While� semiomputable on AN . Then its N-projetion fx j 9n 2NR(x; n)g is While� semiomputable on A.Corollary 5.42 (Closure of While� semiomputability under pro-jetions o� minimal arriers). Let As be a minimal arrier of A, andlet u 2ProdType(�).



Computable funtions on algebras 421(a) If R � Au�s is While� semiomputable on A, then so is its proje-tion fx 2 Au j 9y 2 AsR(x; y)g.(b) If R � Au�s� is While semiomputable on A�, then its projetionfx 2 Au j 9y� 2 A�s R(x; y�)g is While� semiomputable on A.Proof. In (b) we use the fat that if As is minimal in A, then A�s is minimalin A�. (Exerise.)Remark 5.43. Unlike the ase with Corollaries 5.11 and 5.24, we do nothave to assume the TEP here, sine the term evaluation representing fun-tion is alwaysWhile� omputable.Example 5.44. The subalgebra relation is While� semiomputable onA. This follows from its WhileN semiomputability in term evaluation(Example 5.25(a)), and While� omputability of the latter (Corollary4.7.)The semiomputability equivalene theorem, whih we prove later (Theo-rem 5.61), states that for algebras with the TEP,While� semiomputabil-ity oinides with WhileN semiomputability.5.8 Projetive While� semiomputabilityLet R be a relation on A.De�nition 5.45.(a) R is projetively While� omputable on A if R is a projetion of aWhile(��) omputable relation on A�.(b) R is projetively While� semiomputable on A if R is a projetion ofa While(��) semiomputable relation on A�.Proposition 5.14 (or 5.27) an be restated forWhile� semiomputabil-ity:Proposition 5.46. Suppose A is a minimal. Then on Aprojetive While� semiomputability = While� semiomputability.Note again that the TEP does not have to be assumed here (f. Remark5.43). Also we are using the fat that if A is minimal then so is A�.De�nition 5.47. R is While� semiomputable with searh on A if R isthe halting set of a While(��) searh proedure on A�.Note that theWhile(��) searh proedure in this de�nition has simpleinput variables. However the auxiliary, searh and output variables may besimple, nat or starred.Again, we have (f. Theorems 5.18 and 5.29):Theorem 5.48.(a) R isWhile� semiomputable with searh on A () R is projetivelyWhile� semiomputable on A.(b) This equivalene is uniform over StdAlg(�).



422 J. V. Tuker and J. I. ZukerExample 5.49. In N , the various onepts we have listed|While,WhileN and While� semiomputability, as well as projetive While,WhileN andWhile� semiomputability|all redue to reursive enumer-ability over N (f. 5.5(a)).In general, however, projetive While� semiomputability is stritlystronger than projetive While or WhileN semiomputability. In otherwords, projeting along starred sorts is stronger than projeting alongsimple sorts or nat. (Intuitively, this orresponds to existentially quan-tifying over a �nite, but unbounded, sequene of elements.) An exampleto show this will be given in setion 6.4.We do, however, have the following equivalene:projetive While� semiomputability =projetive For� omputability.This is the projetive equivalene theorem, whih will be proved in setion5.14.ProjetiveWhile� semiomputability is the model of spei�ability whihwill be the basis for a seond generalised Churh{Turing thesis (setion 8.9).5.9 Homomorphism invariane for semiomputablesetsFor a �-homomorphism � : A! B and a relation R : u on A, we write�[R℄ =df f�(x) j x 2 Rgwhih is a relation of type u on B.Theorem 5.50 (Epimorphism invariane for halting sets). For any�-epimorphism � : A! B,�[HaltA(P )℄ = HaltB(P ):Proof. From Theorem 3.24.Notie that the above result holds for a given proedure P , and anyepimorphism � : A! B. In partiular, taking the ase B = A, we obtain:Corollary 5.51 (Automorphism invariane for semiomputabil-ity).(a) If R is While semiomputable on A, then for any �-automorphism� of A, �[R℄ = R.(b) Similarly for While� semiomputable sets.Corollary 5.52 (Automorphism invariane for projetive semi-omputability).(a) If R is projetively While semiomputable on A, then for any �-automorphism � of A, �[R℄ = R.(b) Similarly for projetively While� semiomputable sets.



Computable funtions on algebras 423Example 5.53. In the algebra C� of omplex numbers (Example 2.23(e)without the onstant i, the singleton set fig is notWhile semiomputable,or even projetively While� semiomputable. This is beause there isan automorphism of C� with itself whih maps i to �i. However the setf�i; ig is While semiomputable, and in fat omputable, in C�, by theproedure pro in x:omplex out b:boolbeginb:= x�x= -1end.5.10 The omputation tree of a While statementWe will de�ne, for anyWhile statement S over �, and any tuple of distintprogram variables x � x1; : : : ; xn of type u = s1 � : : :� sn suh thatvar(S) � x, the omputation tree T [S; x℄, whih is like an `unfolded owhart' of S.The root of the tree T [S; x℄ is labelled `s' (for `start'), and the leavesare labelled `e' (for `end'). The internal nodes are labelled with assignmentstatements and Boolean tests.Furthermore, eah edge of T [S; x℄ is labeled with a syntati state, i.e., atuple of terms t : u, where t � t1; : : : ; tn, with ti 2 Termx;si . Intuitively,t gives the urrent state, assuming exeution of S starts in the initial state(represented by) x.In the ourse of the following de�nition we will make use of the restritedtree T �[S; x ℄, whih is just T [S; x℄ without the `s' node.We also use the notation T [S; t℄ for the tree formed from T [S; x℄ byreplaing all edge labels t0 by t0hx=ti.The de�nition is by strutural indution on S.(i) S� skip. Then T [S; x℄ is as in Fig. 1.s ...............................................................................................................................................................................................................e ..................................................................................................................xFig. 1.(ii) S � y := r, where y � y1; : : : ; ym and r � r1; : : : ; rm, with eah yjin x. Then T [S; x℄ is as in Fig. 2, where t � t1; : : : ; tn is de�nedby: ti � (rj if xi�yj for some jxi otherwise:



424 J. V. Tuker and J. I. Zukers ............................................................................................................................................................................................................... xy := r............................................................................................. te ..................................................................................................................Fig. 2.(iii) T � S1;S2. Then T [S; x℄ is formed from T [S1; x℄ by replaing eahleaf (Fig. 3) by the tree in Fig. 4.............................................................................................. te ..................................................................................................................Fig. 3.............................................................................................. t................................................................................................................................................................................................................................................................................................................................................................ T �[S2; t℄Fig. 4.(iv) S � if b then S1 else S2 �. Then T [S; x℄ is as in Fig. 5.(v) S � while b do S1 od. For the sake of this ase, we temporarily adjoinanother kind of leaf to our tree formalism, labelled `i' (for `inompleteomputation'), in addition to the e-leaf (representing an end to theomputation). Then T [S; x℄ is de�ned as the `limit' of the sequeneof trees Tn, where T0 is as in Fig. 6, and Tn+1 is formed from Tn byreplaing eah i-leaf (Fig. 7) by the tree in Fig. 8, where T �i [S1; t℄is formed from T �[S1; t℄ by replaing all e-leaves in the latter byi-leaves. Note that the Boolean test b shown in Fig. 8 is evaluatedat the `urrent syntati state' t (whih amounts to evaluating bhx=tiat `the initial state' x). Note also that the `limiting tree' T [S; x℄ doesnot ontain any i-leaves. (Exerise.)



Computable funtions on algebras 425s ............................................................................................................................................................................................................... x................................................................................................................................................................................................................b.........................................................................................................................................................Y x................................................................................................................................................................................................................................................................................................................................................................................................................................ T �[S1; x℄ ...................................................................................................................................... ................... Nx ................................................................................................................................................................................................................................................................................................................................................................................................................................ T �[S2; x℄Fig. 5.s ...............................................................................................................................................................................................................i ..................................................................................................................xFig. 6.Remark 5.54.(a) In ase (v) the sequene Tn[S; x℄ is de�ned by primitive reursionon n. An equivalent de�nition by tail reursion is possible (Exerise;ompare the two de�nitions of CompA(S; �; n) in setions 3.4 and3.14; see also Remark 3.5).(b) The onstrution of T [S; x℄ is e�etive in S and x. More preisely:T [S; x℄ an be oded as a reursive set of numbers, with index prim-itive reursive in pSq and pxq.Example 5.55. Let S � while x > 0 do x := x � 1 od, where x is anatural number variable. Then (in the notation of ase (v)) T0, T1 and T2are, respetively, as shown in Figs. 9, 10 and 11, and T [S; x℄ is the in�nitetree shown in Fig. 12.Notie that eah tree in the sequene of approximations is obtainedfrom the previous tree by replaing eah i-leaf by one more iteration of the`while' loop.5.11 Engeler's lemmaUsing the omputation tree for aWhile statement onstruted in the pre-vious subsetion, we will prove an important struture theorem forWhilesemiomputabilty due to Engeler [1968a℄. One of the onsequenes of thisresult will be the semiomputability equivalene thorem (5.61).



426 J. V. Tuker and J. I. Zuker............................................................................................. ti ..................................................................................................................Fig. 7.............................................................................................. t....................................................................................................................................................................................................................................................................................................................b.............................................................................................................................................Y t................................................................................................................................................................................................................................................................................................................................................................................................................................ T �i [S1; t℄ .......................................................................................................................... ................... Nt ................................................................ e ..................................................................................................................
Fig. 8.For eah leaf � of the omputation tree T [S; x℄, there is a Boolean bS;�,with variables among x, whih expresses the onjuntion of results of all thesuessive tests, that (the urrent values of) the variables x must satisfy inorder for the omputation to `follow' the �nite path from the root s to �.Consider, for example, a test node in T [S; x℄:If the path goes to the right here (say), then it ontributes to bS;� theonjunt : : : ^ :bhx/ti ^ : : :Next, let (�0; �1; �2; : : : ) be some e�etive enumeration of leaves of T [S; x℄(e.g., in inreasing depth, and, at a given depth, from left to right). Then,writing bS;k� bS;�k , we an express the halting formula for S as the ount-able disjuntion haltS �df 1_k=0 bS;k (5.3)whih expresses the onditions under whih exeution of S eventually halts,if started in the initial state (represented by) x.



Computable funtions on algebras 427s ............................................................................................................................................................................................. xi ..................................................................................................................Fig. 9.s ............................................................................................................................................................................................. x................................................................................................................................................................................................................x>0....................................................................... ................... xN .......................... e ............................................................................................................................................................................................................x Y..........................x := x�1........................................................................... x�1i ..................................................................................................................Fig. 10.Note that although the Booleans bS;k, and (hene) the formula haltS ,are onstruted from a omputation tree T [S; x℄ for some tuple x ontainingvar(S), their onstrution is independent of the hoie of x.Remark 5.56.(a) The Booleans bS;k are e�etive in S and k. More preisely, pbS;kq ispartial reursive in pSq and k.(b) Further, by a standard tehnique of lassial reursion theory, for a�xed S, if T [S; x℄ has at least one leaf, then the enumerationbS;0; bS;1; bS;2; : : :an be onstruted (with repetitions) so that bS;k is a total funtionof k, and, in fat, primitive reursive in k.Now onsider a relational proedureP � pro in a aux  begin S end



428 J. V. Tuker and J. I. Zukers ............................................................................................................................................................................................. x................................................................................................................................................................................................................x>0....................................................................... ................... xN .......................... e ............................................................................................................................................................................................................x Y..........................x := x�1........................................................................... x�1................................................................................................................................................................................................................x>0....................................................................... ................... x�1N .......................... e ............................................................................................................................................................................................................x�1 Y..........................x := x�1........................................................................... x�2i .................................................................................................................. Fig. 11.with input variables a : u and auxiliary variables  : w. Then S � Sinit;S0,where Sinit is an initialisation of the auxiliary variables  to the defaulttuple Æw. The omputation tree for P is de�ned to beT (P ) =df T [S0; a; ℄with a orresponding halting formulahaltS0 � 1_k=0 bS0;k (5.4)(f. (5.3)). Now, for k = 0; 1; : : : , let bk be the Boolean whih results fromsubstituting Æw for  in bS0;k. Note that var(bk) � a. Let bk[a℄ 2 Bbe the evaluation of bk when a 2 Au is assigned to a. Then by (5.4), thehalting set of P (5.1) is haraterised as an e�etive ountable disjuntiona 2 HaltA(P ) () 1_k=0 bk[a℄ (5.5)for all a 2 Au. Now suppose R is a While semiomputable relation onA. That means, by de�nition, that R =HaltA(P ) for a suitable Whileproedure P . Hene, by (5.5), we immediately derive the following theorem



Computable funtions on algebras 429s ............................................................................................................................................................................................. x................................................................................................................................................................................................................x>0....................................................................... ................... xN .......................... e ............................................................................................................................................................................................................x Y..........................x := x�1........................................................................... x�1................................................................................................................................................................................................................x>0....................................................................... ................... x�1N .......................... e ............................................................................................................................................................................................................x�1 Y..........................x := x�1........................................................................... x�2................................................................................................................................................................................................................x>0....................................................................... ................... x�2N .......................... e ............................................................................................................................................................................................................x�2 Y..........................x := x�1........................................................................... x�3... Fig. 12.due to Engeler [1968a℄:Theorem 5.57 (Engeler's lemma). Let R be a While semiomput-able relation on a standard �-struture A. Then R an be expressed as ane�etive ountable disjuntion of Booleans over �.Atually, we need a stronger version of Engeler's lemma, applied toWhile� programs, whih we will derive next.5.12 Engeler's lemma for While� semiomputabilityWe will use the results of the previous subsetion, applied to While�omputation, together with the ��/� onservativity theorem for terms(Theorem 3.63), to prove a strengthened version of Engeler's lemma.



430 J. V. Tuker and J. I. Zuker........................................................................... t................................................................................................................................................................................................................b ....................................................................... ................... N....................................................................................................................Y .......................... Fig. 13.Theorem 5.58 (Engeler's lemma for While� semiomputability).Let R be a While� semiomputable relation on a standard �-struture A.Then R an be expressed as an e�etive ountable disjuntion of Booleansover �.Proof. Suppose R has type u (over �). By assumption, R is the halting setHaltA(P ) for aWhile� proedure P . By (5.5) of the previous subsetion,R(a) () 1_k=0 bk[a℄ (5.6)for all a 2 Au, where (now) bk 2Term�a;bool, i.e., the Booleans bk, thoughnot of starred sort, may ontain subterms of starred sort | for example,they may be equations or inequalities between terms of starred sort. Asbefore, bk[a℄ is the evaluation of bk when a 2 Au is assigned to a.Now for any Boolean b 2Term�a;bool, let b0 be the Boolean inTerma;bool assoiated with b by the onservativity theorem (3.63). Thenfrom (5.6), for all a 2 Au, R(a) () 1_k=0 b0k[a℄: (5.7)Beause the disjuntion in (5.6) and the transformation b 7! b0 are bothe�etive, the disjuntion in (5.7) is also e�etive.For the onverse diretion:Lemma 5.59. Let R be a relation on a standard �-algebra A. If R anbe expressed as an e�etive ountable disjuntion of Booleans over �, thenR is While� semiomputable.Proof. Suppose R is expressed by an e�etive disjuntionR(a) () 1_k=0 bk[a℄



Computable funtions on algebras 431for all a 2 Au, where bk 2Terma;bool. Then for all a 2 Au,R(a) () 9k �teAa;bool (pbkq; a) = tt� (5.8)where pbkq is (total) reursive in k. Hene, by Corollary 4.7, Remark 3.16and Theorem 5.41, R is While� semiomputable.Combining Engeler's lemma for While� semiomputability with thislemma gives the following `strutural' haraterisation of While� semi-omputable relations.Corollary 5.60. Let R be a relation on a standard �-algebra. Then Ran be expressed as an e�etive ountable disjuntion of Booleans over �if, and only if, R is While� semiomputable.If, moreover, A has the TEP, then we an say more:Theorem 5.61 (Semiomputability equivalene theorem). Supposethat A is a standard �-algebra with the TEP, and that R is a relation onA. Then the following assertions are equivalent:(i) R is WhileN semiomputable on A;(ii) R is While� semiomputable on A;(iii) R an be expressed as an e�etive ountable disjuntion of Booleansover �.Proof. The step (i) ) (ii) is trivial, and (ii) ) (iii) is just Engeler'slemma forWhile�. The new step here ((iii)) (i)) follows from (5.8) andTheorem 5.23.Corollary 5.62. Suppose that A is a standard �-algebra with the TEP,and that R is a relation on A. ThenR is WhileN omputable on A () R is While� omputable on A.Proof. From Theorem 5.61, or from Corollary 4.18.5.13 ��1 de�nability: Input/output and haltingformulaeFor any standard signature �, let Lang�= Lang(��) be the �rst-orderlanguage with equality over ��.The atomi formulae of Lang�are equalities between pairs of terms ofthe same sort, for any sort of ��, i.e., sort s, su and s�, for all sorts s of �(whether equality sorts or not), and for the sort nat.Formulae of Lang� are formed from the atomi formulae by means ofthe propositional onnetives and universal and existential quanti�ationover variables of any sort of ��.We are more interested in speial lasses of formulae of Lang�.



432 J. V. Tuker and J. I. ZukerDe�nition 5.63 (Classes of formulae of Lang�).(a) A bounded quanti�er has the form `8k < t' or `9k < t', where t : nat.(b) An elementary formula is one with only bounded quanti�ers.() A ��1 formula is formed by pre�xing an elementary formula withexistential quanti�ers only.(d) An extended ��1 formula is formed by pre�xing an elementary for-mula with a string of existential quanti�ers and bounded universalquanti�ers (in any order).Proposition 5.64. For any extended ��1 formula P , there is a ��1 formulaQ whih is equivalent to P over �, in the sense thatStdAlg(��)j= P$Q.Proof. The onstrution of Q from the P is given in Tuker and Zuker[1993℄. (In that paper, the equivalene is atually shown relative to aformal system over K with ��1 indution. However, we are not onernedwith issues of provability in this hapter.)Beause of this result, we will use the term `��1' to denote (possibly)extended ��1 formulae.Proposition 5.65. If P is an elementary formula all of whose variablesare of equality sort, then the prediate de�ned by P is For� omputable.Proof. By strutural indution on P . Equations between variables ofequality sort, and Boolean operations, are trivially omputable. Boundedquanti�ation uses the `for' loop.In general, formulae over the struture A� (or rather, over the signature��) may have simple, augmented, starred or nat variables (De�nition 3.39).We are interested in formulae with the property that all free variables aresimple, sine suh formulae de�ne relations on A. For suh formulae, allbound augmented variables may be replaed by bound simple variables, bythe e�etive oding of Au in A (see Remark 2.30()).Theorem 5.66 (The ��1 i/o formula for a proedure). Given aWhile� proedure P : u! vP � pro in a out b aux � begin S end (5.9)where a : u, b : v and � : w�, we an e�etively onstrut a ��1 formulaIOP � IOP (a; b), with free variables among a,b, alled the input/output(or i/o) formula for P , whih satis�es: for all A 2StdAlg(�), a 2 Au andb 2 Av, A j= IOP [a; b℄ () PA(a) # b:Note: The left-hand side means that A satis�es IOP at any state whihassigns a to a and b to b.



Computable funtions on algebras 433Proof. First we onstrut an elementary formulaCompuS(x,y,z�)(where var(S)� x), as in Tuker and Zuker [1988, x2.6.11℄, by struturalindution on S, with the meaning: `z� represents a omputation sequenegenerated by statement S, starting in a state in whih all the variablesof S have values (represented by) x, and ending in a state in whih thesevariables have value y'. From this it is easy to onstrut a ��1 formulaCompuP (a, b, z�)with the meaning: `z� represents a omputation sequene generated byproedure P , starting in a state in whih the input variables have values(represented by) a, and ending in a state in whih the output variables havevalues b'.Finally we obtain the ��1 i/o formulaIOP (a; b) =df 9z� CompuP (a, b, z�)as required.Remark 5.67 (Quanti�ation over N suÆient). We an onstruta ��1 i/o formula in whih there is only existential quanti�ation over N.Briey, a formula similar to CompuS (in the above proof) is onstrutedin whih the variable z� representing the omputation sequene is replaedby a G�odel number. (Cf. point (2Æ) in setion 4.8, onerning the replae-ment of the funtion ompAx by ompuAa .)Remark 5.68 (Alternative onstrution of IOP ). Let � be the �PR�sheme (setion 8.1) whih orresponds to P aording to the onstrutiongiven by the proof of Theorem 8.5(d). By strutural indution on �, weonstrut the formula IO�(� IOP ), as in Tuker et al. [1990℄ or Tukerand Zuker [1993, x5℄ (where it is alled P�).Corollary 5.69 (The ��1 halting formula for a proedure). Given aWhile� proedure P : u! v as in (5.9), we an onstrut a ��1 de�nitionfor the halting formula haltP � haltP (a) for P .Proof. We de�ne haltP (a) � 9b IOP (a; b)Alternatively, realling (Remark 5.3) that in the ontext of semiomputabil-ity we may assume that P has no output variables, we an put, more simply,haltP (a) � IOP (a):Sine IOP is ��1, so is haltP (in either ase).Remark 5.70 (Quanti�ation over N suÆient). Again, by the useof G�odel numbers, we an onstrut a ��1 halting formula in whih thereis only existential quanti�ation over N. (Cf. Remark 5.67.)Note �nally that by Corollary 5.69, sine for all A 2StdAlg(�) and alla 2 Au,



434 J. V. Tuker and J. I. Zukera 2HaltA(P ) () A j= haltP (a);it follows thatthe halting set for While� proedures is ��1 de�nable, uniformly overStdAlg(�).5.14 The projetive equivalene theoremTheorem 5.71. Let R be a relation on a standard �-algebra A. ThenR is projetively While� semiomputable ()R is projetively For� omputable.We present two proofs of this theorem. The �rst uses ��1 de�nability ofthe halting set (and the assumption that � has equality at all sorts) whilethe seond uses Engeler's lemma (without any assumption about equalitysorts).First proof. First we restate the theorem suitably.Suppose � has an equality operator at all sorts. Let R be a relation on A.Then the following are equivalent:(i) R is projetively While� semiomputable;(ii) R is ��1 de�nable;(iii) R is projetively For� omputable.(i)=)(ii): Suppose R : u, and for all x 2 Au,R(x)()9y� 2 Av�R1(x; y�) (5.10)where v� is a produt type of ��, and R1 : u�v� isWhile semiom-putable on A�. Then R1 is the halting set of aWhile(��) proedureP on A�. By Corollary 5.69, R1 is ��1 de�nable on A�, sayR1(x; y�)()9z�� 2 Aw��R0(x; y�; z��); (5.11)where w�� is a produt type of ���, and R0(: : : ) is given by an ele-mentary formula over ���. Combining (5.10) and (5.11):R(x)()9y� 2 Av�9z�� 2 Aw��R0(x; y�; z��): (5:12)Finally, by the oding of (A�)� in A� (Remark 2.31(d)), we anrewrite the existential quanti�ation over (A�)� in (`5.12) (`9z�� 2Aw�� ') as existential quanti�ation over A�, yielding a ��1 de�nitionof R on A.(ii)=)(iii): Suppose R is de�ned by the formula 9z�P (x; z�), where z�is a tuple of starred and unstarred variables, and P is elementary.Then R is a projetion of P , whih, by Proposition 5.65, is For�omputable. (Here we use the assumption about equality sorts.)



Computable funtions on algebras 435(iii)=)(i): Trivial (using Proposition 3.34). �Seond proof. (Here we make no assumption about equality sorts.) Sup-pose R : u is projetivelyWhile� semiomputable on A. Then (as before)for some produt type v� of ��,R(x) () 9y� 2 Av�R1(x; y�)where R1 : u� v� is While semiomputable on A�.By Engeler's lemma (Theorem 5.57) applied to A�, there is an e�et-ive sequene bk�(x; y�) (k = 0; 1; 2; : : : ) of Booleans over �� suh thatR1(x; y�) is equivalent over A to the disjuntion of bk�[x; y�℄. Further,by Remark 5.56(b), this sequene an be de�ned so that pbk�q is primitivereursive in k. (Assume here that R is non-empty, otherwise the theoremis trivial.) ThenR1(x; y�) () for some k; teA�x;y�;bool(pbk�q,x; y�) = tt:Further, teA�x;y�;bool is For omputable on A� (by Proposition 4.6).Hene the funtion g de�ned on A� byg(k; x; y�) =df teA�x;y�;bool(pbk�q; x; y�)is For omputable on A� (by Equation 3.8 and Remark 3.16). Hene therelation R0(k; x; y�) ()df g(k; x; y�) = ttis For omputable on A� (omposing g with equality on bool), and so therelation R(x) () 9 y�9k R0(k; x; y�)is projetively For� omputable on A.The other diretion is trivial. �5.15 Halting sets of While proedures with randomassignmentsWe now onsider the While programming language over �, extended bythe random assignment x := ?for variables x of every sort of �. This is an example of non-deterministiomputation.The semantis of the While-random programming language an beobtained by a modi�ation of the semantis of the While language givenin setion 3, by taking the meaning of a statement S to be a funtion [[S℄℄Afrom states to sets of states. In the ase that S is a random assignmentx := ?, [[S℄℄A� is the set of all states whih agree with � on all variablesexept x.



436 J. V. Tuker and J. I. ZukerHowever we are only interested here in the While-random languagefor de�ning relations, not funtions, as the following de�nition lari�es.De�nition 5.72. Let P be a While-random proedure, with input vari-ables a : u (and, we may assume, no output variables). The halting set ofP on A is the set of tuples a 2 Au suh that when a is initialised to a, thenfor some values of the random assignments, exeution of P halts.De�nition 5.73. Let R be a relation on A.(a) R isWhile-random semiomputable on A if R is the halting set of aWhile-random proedure on A.(b) R is While�-random semiomputable on A if R is the halting set ofa While(��)-random proedure on A�.Note that in (b), there ould be random assignments to starred (auxili-ary) variables.Remark 5.74. Clearly, semiomputability with random assignments anbe viewed as a generalisation of the notion of semiomputability withsearh, i.e., initialisation of searh variables (setion 5.3), sine initialisationamounts to random assignments at the beginning of the program. We mayask how these two notions of semiomputability ompare. We will showthat, at least over A�, they oinide: both are equivalent to projetiveWhile� semiomputability.Theorem 5.75. Let R be a relation on A. ThenR is While�-random semiomputable ()R is projetively While� semiomputable.Proof. The diretion ((=) follows from Remark 5.74 and Theorem 5.18.We turn to the diretion (=)). For ease of exposition, we will assume �rstthat R is While-random semiomputable.We will de�ne a omputation tree T [S; x℄ for While-random state-ments S with varS � x � x1; : : : ; xn, extending the de�nition forWhilestatements given in Setion 5.10. There is one new ase:(vi) S � xi := ?. Then T [S; x℄ is as in Fig. 14.So xi is replaed by a new variable x0i of the same sort.Notie that for a `?'-assignment S, and for terms t � t1; : : : ; tn, the treeT [S; t℄ is asn in Fig. 15.where x0i does not our in x or t. The intuition here is that there is nothingwe an say about the `new' value of xi, so we an only represent it by abrand new variable x0i. If this assignment is followed by another assignmentxi := ?, we introdue another new variable x00i , and so on.In this way the variables proliferate, and the tree ontains (possibly)in�nitely many variables. Hene we annot simply onstrut a haltingformula as an (in�nite) disjuntion of Booleans in a �xed �nite number ofvariables over �, as we did in setion 5.11.



Computable funtions on algebras 437s ............................................................................................................................................................................................................... xxi := ?............................................................................................. x1; : : : ; xi�1; x0i; xi+1; : : : ; xne .................................................................................................................. Fig. 14.s ............................................................................................................................................................................................................... txi := ?............................................................................................. t1; : : : ; ti�1; x0i; ti+1; : : : ; tne .................................................................................................................. Fig. 15.The solution is to represent all the variables xi; x0i; x00i ; : : : whih arisein this way for eah i (1 � i � n) by a single starred variable x�i (withx�i [0℄; x�i [1℄; x�i [2℄; : : : representing xi; x0i; x00i ; : : : ). Then to eah leaf � ofT [S; x℄ there orresponds (as in setion 5.11) a Boolean bS;�, but now inthe starred variables x��x�1; : : : ; x�n.Again, as in setion 5.11, we an de�ne the halting formula for S as aountable disjuntion of Booleans:haltS �df 1_k=0 bS;kwhere the bS;k are e�etive, in fat primitive reursive, in S and k. Notehowever that the program variables in haltS are now among x�, not x.Now suppose that the relation R : u is the halting set of a While-



438 J. V. Tuker and J. I. Zukerrandom proedure on A,P � pro in a aux  begin Sinit;S0 endwhere a : u = s1 � : : :� sm and  : w.As in setion 5.11, let bk be the Boolean whih results from substitutingthe default tuple Æw for  in bS0;k. Note that var(bk)� a; � : u � w�.Then for all a 2 Au:a 2 R () 9� 2 Aw�9k " m̂i=1(Æi = �i [0℄)^teA�a;�;bool(pbkq; a; �) = tt#(f. (5.8) in setion 5.12) whih (by Proposition 4.6) is projetively For�omputable on A, and hene projetively While� semiomputable on A.This proves the theorem for the ase that R is While-random semi-omputable on A.Assume, �nally, that R is While�-random semiomputable, i.e., theproedure for R may ontain starred auxiliary variables, and there may berandom assignments to these. Now we an represent a sequene of randomassignments to a starred variable by a single doubly starred variable, ortwo-dimensional array, whih an then be e�etively oded in A� (Remark2.31(d)), and proeed as before.6 Examples of semiomputable sets of real andomplex numbersIn this setion we look at the various notions of semiomputability in thease of algebras based on the set R of real numbers and the set C of omplexnumbers. By doing so, we will �nd examples proving the inequivalene ofthe following notions:(i) While omputability;(ii) While semiomputability;(iii) projetive While semiomputability;(iv) projetive While� semiomputability.We will also �nd interesting examples of sets of real and omplex num-bers whih are semiomputable but not omputable. Some of these setsbelong to dynamial system theory: orbits and periodi sets of haotisystems turn out to be semiomputable but not omputable.Finally we will also reonsider an example of a semiomputable, non-omputable set of omplex numbers desribed in Blum et al. [1989℄. Thee�etive ontent of their work an be obtained from the general theory.Our main tool will be Engeler's lemma.We will onentrate on the following algebras introdued in Example2.23: the standard algebras



Computable funtions on algebras 439R = (B; R; 0; 1; +; �; �; ifreal, eqreal)of reals, and C = (R; C ; 0; 1; i;+; �; �; re; im; �)of omplex numbers, and their expansionsR< = (R; lessreal) and C< = (C; lessreal)formed by adjoining the order relation on the reals lessreal: R2 ! B (whihwe will write as in�x `<'). We will show that:(a) the order relation on R is projetively While semiomputable, butnot While semiomputable, on R; and(b) a ertain real losed sub�eld of R is projetively While� semiom-putable, but not projetivelyWhile semiomputable, on R<.6.1 Computability on R and CBased on the general theory of omputability developed so far, we an seethat eah of these four algebras has a omputability theory with severalstandard properties (e.g., universality, setion 4.9). First, we will list somepreliminary results for omputability on the real and omplex numbers thatwill entail simpliity and elegane of omputation on these strutures, butwill also show that the analogy with the lassial ase of omputation onN often breaks down. To begin with, we have:Proposition 6.1. For A = R;R<; C or C<;WhileN (A) = While(A). (6.1)This is proved essentially by simulating the algebraN , i.e., the arrier N,with zero, suessor, et., in the arrier R, using the non-negative integerstogether with 0, the operation +1, et.As an exerise, the reader should formulate a theorem expressing asuÆient ondition on an algebra A for (6.1) to hold, from whih the aboveproposition will follow as a simple orollary.This situation should be ontrasted with that in Example 5.36.Reall De�nition 4.4 and Examples 4.5:Lemma 6.2 (TEP). The algebras R;R<; C and C< all have the TEP.The TEP has a profound impat on the omputability theory for analgebra. For example, from Corollary 4.18 we know that on R;R<; C andC<: While� omputability = WhileN omputabilityand hene (or from the semiomputability equivalene theorem (5.61))While� semiomputability = WhileN semiomputability



440 J. V. Tuker and J. I. Zukerfor these four algebras. We will give more detailed formulations of thesefats for eah of these algebras shortly.Example 6.3 (Non-omputable funtions). Reall Theorem 3.66 whihsays that the output of a While, WhileN orWhile� omputable fun-tion is ontained in the subalgebra generated by its inputs. From this wean derive some negative omputability results for these algebras:(a) The square root funtion is not While� omputable on R or R<.This follows from the fat that the subset of R generated from theempty set by the onstants and operations of R or R< is the set Zof integers. But p2 is not in this set. (For omputability in orderedEulidean �elds inorporating the square root operation, see Engeler[1975a℄).(b) The mod funtion (z 7! jzj) is not While� omputable on C or C<.This follows from the fat that the subset of R generated from theempty set by the onstants and operations of C or C< is again Z. Butagain, j1 + ij = p2 is not in this set.() The mod funtion would be omputable in C if we adjoined the squareroot funtion to the algebra R (as a redut of C).In the rest of this subsetion, we will apply Engeler's lemma forWhile�semiomputability (setion 5.12) to the algebras R;R<; C and C<.From the semiomputability equivalene theorem (5.61) (whih followsfrom Engeler's lemma) and from the TEP lemma (6.2), we get:Theorem 6.4 (Semiomputability equivalenes for R;R<; C; C<).Suppose A is R or R<, and R � Rn ; or A is C or C<, and R � C n .Then the following are equivalent:(i) R is WhileN semiomputable on A;(ii) R is While� semiomputable on A;(iii) R an be expressed as an e�etive ountable disjuntion of Booleansover A.For appliations of this theorem, we need the following normal formlemmas for Booleans over R and R<.Lemma 6.5 (Normal form for Booleans over R). A Boolean over R,with variables x = x1; : : : ; xn of sort real only, is e�etively equivalent overR to a �nite disjuntion of �nite onjuntions of equations and negationsof equations of the formp(x) = 0 and q(x) 6= 0;where p and q are polynomials in x with oeÆients in Z.Lemma 6.6 (Normal form for Booleans over R<). A Boolean overR<, with variables x = x1; : : : ; xn of sort real only, is e�etively equival-ent over R< to a �nite disjuntion of �nite onjuntions of equations and



Computable funtions on algebras 441inequalities of the formp(x) = 0 and q(x) > 0;where p and q are polynomials in x with oeÆients in Z.The proofs of these are left as exerises.6.2 The algebra of reals; a set whih is projetivelyWhile semiomputable but not While� semiom-putableIn this subsetion we obtain results distinguishing various notions of semi-omputability, using the algebra R of reals. In the next subsetion we willobtain other results in a similar vein, using the ordered algebraR< of reals.We begin with a restatement of the semiomputability equivalene thorem(6.4) for the partiular ase of R.Theorem 6.7 (Semiomputability for R). Suppose R � Rn . Thenthe following are equivalent:(i) R is WhileN semiomputable on R;(ii) R is While� semiomputable on R;(iii) R an be expressed as an e�etive ountable disjuntionx 2 R () _ibi(x) (6.2)where eah bi(x) is a �nite onjuntion of equations and negations of equa-tions of the form p(x) = 0 and q(x) 6= 0; (6.3)where p and q are polynomials in x � (x1; : : : ; xn) 2 Rn , with oeÆientsin Z.Proof. From Theorem 6.4 and Lemma 6.5.Thus we see that there is an intimate onnetion between omputability,polynomials and algebrai �eld extensions on R.De�nition 6.8 (Algebrai and transendental points). Let us de�nea point � = (�1; : : : ; �n) 2 Rn to be (i) algebrai if it is the root of a poly-nomial in n variables with oeÆients in Z; and (ii) transendental if it isnot algebrai, or, equivalently, if for eah i = 1; : : : ; n, �i is transendental(in the usual sense) over Q(�1; : : : ; �i�1).The following orollary was stated for n = 1 in Herman and Isard [1970℄.



442 J. V. Tuker and J. I. ZukerCorollary 6.9. If R � Rn isWhile� semiomputable on R, and ontainsa transendental point �, then R ontains some open neighbourhood of �.Proof. In the notation of (6.2): � satis�es bi(x) for some i. Then (for thisi) bi(x) annot ontain any equations (as in (6.3)) sine � is transendental,and so it must ontain negations of equations only. The result follows fromthe ontinuity of polynomial funtions.An immediate onsequene of this is:Corollary 6.10 (Density/odensity ondition). Any subset of Rn whihis both dense and o-dense in Rn (or in any non-empty open subset of Rn )annot be While� omputable on R.Example 6.11. The following subsets of Rn are easily seen to beWhileNsemiomputable on R | in fat While semiomputable (by Proposition6.1). However, they are not While (= WhileN= While�) omputable,by the density/odensity ondition:(a) the set of points with rational oordinates;(b) the set of points with algebrai oordinates;() the set of algebrai points.Of ourse, a standard example of a While semiomputable but notWhile� omputable set an be found in N , namely any reursively enu-merable, non-reursive set of naturals (Example 5.49).Next, speialising to n = 1:Corollary 6.12 (Countability/o�niteness ondition). If R � R isWhile� semiomputable on R, then R is either ountable or o�nite (i.e.,the omplement of a �ne set) in R.Proof. By the fundamental theorem of algebra, eah polynomial equationwith oeÆients in Z has at most �nitely many roots in R. Hene, regardingthe disjuntion in (6.2), there are two ases:Case 1. For some i, bi(x) ontains only negations of equations. Then (forthis i) bi(x) holds for all but �nitely many x 2 R. Hene R is o-�nite inR.Case 2. For all i, bi(x) ontains at least one equation. Then (for all i)bi(x) holds for at most �nitely many x 2 R. Hene R is ountable.Hene we have:Corollary 6.13. A subset of R whih is (Whileor WhileNor While�)omputable on R it is either �nite or o�nite.Example 6.14. From Corollary 6.13 we have another example of a subsetof R whih isWhile semiomputable but notWhile� omputable, namelythe integers (Example 5.5()).Example 6.15 (Projetively While semiomputable, not While�semiomputable set). The order relation on R is a primitive operation



Computable funtions on algebras 443in R<, but, as we shall see, is not even semiomputable in R. Consider�rst the relation R0(x; y) ()df x = y2on R. R0 is learlyWhile omputable on R, and so its projetion on the�rst argument, R =df fx j 9y(x = y2)gi.e., the set fx j x � 0g of all non-negative reals, is projetively Whilesemiomputable. From the ountability/o�niteness ondition (6.12) how-ever, it is not (even While�) semiomputable on R. From this it is easyto see that the order relationx < y () (y � x) 2 R and x 6= yis also projetivelyWhile semiomputable, but notWhile� semiomput-able, on R.6.3 The ordered algebra of reals; sets of reals whihare While semiomputable but not While� om-putableIn the previous subsetion we saw that the order relation on R is not (even)While� semiomputable on the algebra R. Let us add it now to R, toform the algebra R<, and see how this a�ets the omputability theory.We begin again with a restatement of the semiomputability equivalenetheorem (6.4), this time for the algebra R<.Theorem 6.16 (Semiomputability for R<). Suppose R � Rn . Thenthe following are equivalent:(i) R is WhileN semiomputable on R<,(ii) R is While� semiomputable on R<,(iii) R an be expressed as an e�etive ountable disjuntionx 2 R () _ibi(x)where eah bi(x) is a �nite onjuntion of equations and inequalities of theform p(x) = 0 and q(x) > 0;where p and q are polynomials in x � (x1; : : : ; xn) 2 Rn , with oeÆientsin Z.Proof. From Theorem 6.4 and Lemma 6.5.To proeed further, we need some de�nitions and lemmas about pointsand sets de�ned by polynomials. (Bakground information on algebraigeometry an be found, for example, in Shafarevih [1977℄ or Br�oker and



444 J. V. Tuker and J. I. ZukerLander [1975, Chapter 12℄. For the appliation below (setion 6.4), werelativise our onepts to an arbitrary subset D of R.De�nition 6.17.(a) An interval in R (open, half-open or losed) is algebrai in D if, andonly if, its end-points are.(b) A path in R is a �nite union of points and intervals.() A D-algebrai path in R is a �nite union of points and intervalsalgebrai in D.De�nition 6.18. A set in Rn is D-semialgebrai if, and only if, it anbe de�ned as a �nite disjuntion of �nite onjuntions of equations andinequalities of the formp(x) = 0 and q(x) > 0;where p and q are polynomials in x with oeÆients in Z[D℄.We will drop the `D' when it denotes the empty set.Note that lause (iii) of Theorem 6.16 an, by De�nition 6.18, be writ-ten equivalently in the form:(iii0) R an be expressed as an e�etive ountable union of semialgebraisets.Lemma 6.19. A semialgebrai set in Rn has a �nite number of onnetedomponents.(See Beker [1986℄. This will be used in setion 6.6.) It follows that asemialgebrai subset of R is a path. However, for n = 1 we need a strongerresult:Lemma 6.20. A subset of R is D-semialgebrai if, and only if, it is aD-algebrai path.Lemma 6.21. A projetion of a D-semialgebrai set in Rn on Rm (m <n) is again D-semialgebrai.This follows from Tarski's quanti�er-elimination theorem for real losed�elds (see, for example, Kreisel and Krivine [1971, Chapter 4℄). From thisand Lemma 6.20:Corollary 6.22. A projetion of a D-semialgebrai set in Rn on R is aD-algebrai path.Remark 6.23. Corollaries 6.9 and 6.10 (the density/odensity ondition)hold for R< as well as R, leading to the same examples (6.11) of subsetsof Rn whih areWhileN semiomputable, but notWhileN (=While�)omputable, on R<. Another example is given below (6.26).The following orollary, however, points out a ontrast with R.Corollary 6.24. In R<, the following three notions oinide for subsetsof Rn :



Computable funtions on algebras 445(i) WhileN semiomputability;(ii) While� semiomputability;(iii) projetive WhileN semiomputability.This follows from Theorem 6.16 and Lemma 6.21. (This orollary failsin the struture R, sine in that struture, Lemma 6.21, depending onTarski's quanti�er-elimination theorem, does not hold.)However, the above three notions of semiomputability di�er in R<from a fourth:(iv) projetive While� semiomputability,as we will see in setion 6.4. But �rst we need:Corollary 6.25 (Countable onnetivity ondition).(a) If R � R is While� semiomputable on R<, then R onsists ofountably many onneted omponents.(b) If R � R is While� semiomputable on R<, then either R is ount-able or R ontains an interval.(This is a re�nement of the ountability/o�niteness ondition (6.12).)This follows from Theorem 6.16 and Lemma 6.19, sine the onneted sub-sets of R are preisely the singletons and the intervals.Example 6.26.(a) The Cantor set in [0; 1℄ is not While� semiomputable on R<, bythe ountable onnetivity ondition.(b) The omplement of the Cantor set in [0; 1℄ isWhile semiomputableon R< (Exerise), but (by (a)) it is not (even While�) omputableon R<.Other interesting examples of semiomputable, non-omputable sets aregiven in setions 6.5 and 6.6.6.4 A set whih is projetively While� semiomput-able but not projetivelyWhileN semiomputableFirst we must enrih the struture R<. Let E = fe0; e1; e2; : : : g be asequene of reals suh thatfor all i; ei is transendental over Q(e0 ; : : : ; ei�1): (6.4)We de�ne R<;E to be the algebra R< augmented by the set E as aseparate sort E, with the embedding j : E ,! R in the signature, thus:algebra R<;Eimport R<arriers Efuntions j : E ,! Rend



446 J. V. Tuker and J. I. ZukerWe write �E � R for the real algebrai losure of Q(E).It is easy to see that �E is projetivelyWhile� semiomputable inR<;E .(In fat, �E is the projetion on R of a While semiomputable relation onR �E�.) We will now show that, on the other hand, �E is not projetivelyWhileN semiomputable in R<;E .Theorem 6.27. Let F � �E be projetively WhileN semiomputable inR<;E. Then F 6= �E. Spei�ally, suppose for some While omputablefuntion ' on R<;E;N :F = fx 2 R j (9y 2 Er)(9z 2 Rs )(9u 2 Nk )(9v 2 B l )'(x; y; z; u; v) #g(6.5)(with existential quanti�ation over all four sorts in R<;E;N). Then for allx 2 F , x is algebrai over some subset of E of ardinality r (= the numberof arguments of ' of sort E in (6.5)).The rest of this subsetion is a sketh of the proof.Lemma 6.28. (In the notation of the Theorem 6.27,) F an be representedas a ountable union of the form F = S1i=0 Fi, whereFi = fx j (9y 2 Er)(9z 2 Rs )bi(x; y; z)gand bi is a �nite onjuntion of equations and inequalities of the formp(x; y; z; ) = 0 and q(x; y; z) > 0where p and q are polynomials in x; y; z with oeÆients in Z.Proof. Apply Engeler's lemma. Also replae existential quanti�ation overnat and bool by ountable disjuntions.Lemma 6.29. (In the notation of Lemma 6.28,) for any r-tuple e = (ei1 ;: : : ; eir ) of elements of E, putFi[e℄ =df fx j (9z 2 Rs )bi(x; e; z)g:Then for all e 2 Er, Fi[e℄ is a (�nite) set of points, all algebrai in e.Proof. Note that Fi[e℄ is a projetion on R of an e-semialgebrai set inRs+1 . Hene, by Corollary 6.22, it is an e-algebrai path. Sine by as-sumption Fi[e℄ � F � �E;Fi[e℄ is ountable, and hene annot ontain any (non-degenerate) interval.The result follows from the de�nition of e-algebrai path.Sine F is the union of Fi[e℄ over all i, and all r-tuples e from E, thetheorem follows from Lemma 6.29 and the following:



Computable funtions on algebras 447Lemma 6.30. For all n, there exists a real whih is algebrai over E butnot over any subset of E of ardinality n.Proof. Take x = e0 + e1 + : : : + en (more stritly, j(e0) + : : : + j(en)).The result follows from the onstrution (6.4) of E.We have shown that �E (although a projetion on R of a While semi-omputable relation on R�E�) is not a projetion of aWhileN semiom-putable relation in R<;E . In fat, we an see (still using Engeler's lemma)that �E is not even a projetion of a While� semiomputable relation onRn � Em (for any n;m > 0). Thus to de�ne �E, we must projet o� thestarred sort E�, or (in other words) existentially quantify over a �nite, butunbounded sequene of elements of E.6.5 Dynamial systems and haoti systems on R; setswhih are WhileN semiomputable but notWhile� omputableWe will examine algorithmi aspets of ertain dynamial systems. Manyphysial, biologial and omputing systems are deterministi and share aommon mathematial form.Consider a deterministi system (S; F ) modelled by means of a set Sof states, whose dynamial behaviour in disrete time is given by a systemfuntion F : T� S ! Swhere T = N = f0; 1; 2; : : :g and for t 2 T and s 2 S, F (t; s) is the stateof the system at time t given initial state s.The orbit of F at state s is the setOrb(F; s) = fF (t; s) j t 2 Tg:The set of periodi points of F isPer(F ) = fs 2 S j 9t 2 T(F (t; s) = s)g:In modelling a dynamial system (S; F ), the omputability of the F andof sets suh as the orbits and periodi points is of immediate interest andimportane.Now suppose, more spei�ally, that the evolution of the system in timeis determined by a next state funtionf : S ! Sthrough the equations F (0; s) = sF (t+ 1; s) = f(F (t; s))whih have the solution



448 J. V. Tuker and J. I. ZukerF (t; s) = f t(s)for t 2 T and s 2 S. We all suh systems iterated maps. In this ase, wewriteorb(f; s) = Orb(F; s) = ff t(s) j t 2 Tgper(f) = Per(F ) = fs 2 S j 9t > 0(F (t; s) = s)g:Theorem 6.31. Let A be an N-standard algebra (with N = T), and on-taining the state spae S. If the next state funtion f isWhile omputableon A then so is the system funtion F . Furthermore, the orbits orb(f; s)and the set of periodi points per(f) are While semiomputable on A.Proof. By omputability of primitive reursion (Theorem 8.5) and lo-sure of semiomputability under existential quanti�ation over N (Theorem5.23).Now we will onsider the omputability of some simple dynamial sys-tems with one-dimensional state spaes. More spei�ally, suppose thestate spae is an interval S = I = [a; b℄ � Rand so the next state funtion and system funtion have the formf : I ! IF : T� I ! I:F is alled an iterated map on the interval I . Dynamial systems based onsuh maps have a wide range of uses and a beautiful theory. For example,suh systems will under ertain irumstanes exhibit `haos'. The follow-ing disussion is taken from Devaney [1989℄. Let (I; F ) be a dynamialsystem based on the iterated map F .De�nition 6.32.(a) (I; F ) is sensitive to initial onditions if there exists Æ > 0 suh thatfor all x 2 I and any neighbourhood U of x, there exist y 2 U andt 2 T suh that jF (t; x)� F (t; y)j > Æ:(b) (I; F ) is topologially transitive if for any open sets U1 and U2 thereexist x 2 U1 and t 2 T suh that F (t; x) 2 U2.Note that if I is ompat then (I; F ) is topologially transitive if, andonly if, Orb(F; x) is dense in I for some x 2 I . (The diretion `(' islear. The proof of `)' depends on the Baire ategory theorem.)



Computable funtions on algebras 449De�nition 6.33. The system (I; F ) is haoti if:(a) it is sensitive to initial onditions;(b) it is topologially transitive;() the set Per(F ) of periodi points of F is dense in I .Consider the quadrati family of dynamial systems (I; F�) for � real,where I = [0; 1℄ and the next state funtion isf�(x) = �x(1� x):For � = 4 we have:Theorem 6.34. The system (I; F4) is haoti. Thus, for the algebras Rand R<:(a) for some x 2 [0; 1℄, the set Orb(F4; x) is WhileN semiomputablebut not WhileN (= While�) omputable;(b) the set Per(F ) is WhileN semiomputable, but not WhileN (=While�) omputable.Proof. That (I; F4) is haoti is proved in Devaney [1989℄. The semiom-putability of f4 is lear. Semiomputability of Orb(F4; x) and Per(F )follows from Theorem 6.31. Further, it an be shown that Orb(F4; x) andPer(F ) are both dense and odense in I . (Exerise.) Non-omputabilitythen follows from the density/odensity ondition (see Remark 6.23).6.6 Dynamial systems and Julia sets on C ; sets whihareWhileN semiomputable but notWhile� om-putableWe reonsider an example from Blum et al. [1989℄, and show how it followsfrom our general theory of semiomputability. We work from now on inC<. First, we must relate omputability in the omplex and real algebras.We onsider the algebras C and C<.Notation 6.35. If S � C n , we writeŜ =df f(re(z1); im(z1); : : : ; re(zn); im(zn)) j (z1; : : : ; zn) 2 C ng � R2n :Lemma 6.36 (Redution lemma). Let S � C n .(a) S is While (or WhileN or While�) semiomputable in C if, andonly if, Ŝ is While (orWhileN or While�) semiomputable in R.(b) S is While (or WhileN or While�) semiomputable in C< if,and only if, Ŝ is While (or WhileN or While�) semiomputablein R<.This lemma will enable us to redue problems of semiomputabilityin the algebras C or C< to those in the orresponding real algebras. Forexample, from this lemma and Corollary 6.24 we have:



450 J. V. Tuker and J. I. ZukerCorollary 6.37. In C<, the notions of WhileN , While� and projetiveWhileN semiomputability all oinide for subsets of C n .Note that the redution lemma would not be true if we inluded themod funtion (z 7! jzj) in C or C<, by Example 6.3(b).We work from now on in C<.Let g : C ! C be a funtion. For z 2 C , the orbit of g at z (as insetion 6.5) is the setorb(g; z) = fgn(z) j n = 0; 1; 2; : : :g:Let U(g) = fz 2 C j orb(g; z) is unboundedgand F (g) =fz 2 C j orb(g; z) is boundedg=C nU(g):The set F (g) is the �lled Julia set of g; the boundary J(g) of F (g) is theJulia set of g.For any r 2 R de�neVr(g) = fz 2 C j 9n(jgn(z)j > r)g:Clearly, U(g) � Vr(g) for all r.Theorem 6.38. For g(z) = z2 � , with jj > 4, we have U(g) isWhile semiomputable but not (even While�) omputable. Thus, F (g)is not While� semiomputable.Proof. Assume for now that jj � 1, and hoose r = 2jj. Then for jzj > r,jg(z)j = jz2 � j � jzj2 � jj � 32 jzj:Hene for all n, jgn(z)j � �32�n jzj;and so gn(z)!1 as n!1:Hene for suh r, Vr(g) � U(g), and soU(g) = Vr(g) = fz 2 C j 9n(jgn(z)j > r)g:To show that U(g) is semiomputable is routine; for example, as thehalting set of the proedure



Computable funtions on algebras 451pro in a: omplexaux b: omplexbeginb:= a;while j b j2� 4jj2 do b := b2 �  odend.(Note that although the funtion z 7! jzj is not omputable, the funtionz 7! jzj2 = re(z)2 + im(z)2 is.)To onlude the proof we must show that F (g) is not While� semi-omputable. Suppose it was, then (by the ountable onnetivity onditionand the redution lemma) it would onsist of ountably many onnetedomponents. But if we hoose jj > 4 it an be shown that F (g) is ompat,totally disonneted and perfet, i.e., homeomorphi to the Cantor set (see,for example, Hoking and Young [1961℄), and so we have a ontradition(f. Example 6.26(a)).7 Computation on topologial partial algebrasWe have onsidered While omputations on algebras of reals in setion6. Connetions were made between notions of semiomputability and fa-miliar rational polynomial de�nability; we also made some observations ononnetions between projetive semiomputability and �eld extensions ofQ. There is thus a lose relationship between omputability properties, andalgebrai properties of sets of reals. (Of ourse many of these propertiesan be reformulated for arbitrary rings and �elds.)In this setion we explore the relationship between omputability prop-erties and topologial properties of sets of reals. We will analyse Whileomputations on general topologial algebras, and using these general on-epts and results, we will be able to give a quik guide to the primary aseof omputation on R.The outline of this setion is as follows. In setion 7.1 we indiate thebasi problem: although omputability implies ontinuity (to be provedlater), total Boolean-valued funtions on R suh as equality and order aredisontinuous. The solution is to work with partial funtions. We there-fore de�ne partial algebras in setion 7.2, and topologial partial algebrasin setion 7.3. In setion 7.4 we ompare the two approahes to omputa-tion on the reals: the algebrai model of setion 6, and the stream modelwhih lies behind the models studied in this setion. In setion 7.5 weprove that omputable funtions are ontinuous, from whih it follows thatsemiomputable or projetively semiomutable sets are open, and heneomputable sets are lopen (= losed and open). In setion 7.6 we infer aonverse of this last statement in the ase of ompat algebras with opensubbases of semiomputable sets. In setion 7.7 we speialise to metripartial algebras, and in setion 7.8 show the equivalene between om-



452 J. V. Tuker and J. I. Zukerputability and expliit de�nability in the ase of a onneted domain. Thisresult is used in the study of approximable omputability in setion 7.9, inwhih e�etive Weierstrass omputability (generalising the lassial notionof Weierstrass approximability) is shown to be equivalent on onneteddomains (under ertain broad assumptions) to e�etive uniform While(or While�) approximability. Finally, in setion 7.10, we disuss the re-lationship between abstrat and onrete models of omputability, withpartiular referene to omputation on the reals.The material of this setion is based on Tuker and Zuker [1999℄. Bak-ground information on topology an be found in any standard text, suhas Kelley [1955℄, Hoking and Young [1961℄, Simmons [1963℄ or Dugundji[1966℄.7.1 The problemConsider again the standard algebrasR = (R; B ; 0; 1; +; �; �; ifreal; eqreal; : : : )and R<, whih extends R with lessreal (or `<').Not all the funtions in While(R) and While(R<) are ontinuous.This is obvious, beause both algebras ontain ertain basi operations,namely eqreal and lessreal (`=' and `<'), that are not ontinuous (with re-spet to the usual topology on R).If A is an algebra built on R suh that all its basi operations areontinuous, then is every funtion in While(A) ontinuous?Let us immediately onsider this question more generally.De�nition 7.1.(1) A topologial (total) �-algebra is a pair (A; T ), where A is a �-algebraand T is a family hTs j s 2 Sort(�)i, where for eah s 2 Sort(�),Ts is a topology on As, suh that for eah basi funtion symbolF : u! s of �, the funtion FA : Au ! As is ontinuous.(2) A standard total topologial algebra (A; T ) is a total topologial al-gebra in whih A is standard, and the arrier Abool = B has thedisrete topology.We will often speak of a `topologial algebra A', without stating thetopology expliitly.Remark 7.2. In a topologial algebra, the arriers of all equality sortsmust be disrete, in order for the equality operation on them to be ontinu-ous. In partiular, if A is N -standard, then the arrier Anat = N must bedisrete.To provide motivation, we state the following theorem here. (It will beformulated and proved later in a more general ontext.)



Computable funtions on algebras 453Theorem 7.3. Let A be a standard topologial algebra.(a) If f 2While(A) then f is ontinuous on A.(b) If f 2WhileN (A) then f is ontinuous on A.() If f 2While�(A) then f is ontinuous on A.At �rst sight this gives a satisfatory answer to the above questionabout ontinuity of While omputable funtions. However, a standardtotal topologial algebra based on R has the following problem. There anbe no non-onstant basi operations of the form F : Rq ! B suh as `<'or even `='. This is beause if f : Rq ! B is ontinuous, then f�1[tt℄ andf�1[ff℄ are disjoint open sets whose union is Rq . So one must be Rq , andthe other ;, by the onnetness of R. (We investigate onnetedness intopologial algebras in setion 7.8.)Hene the problem with the above theorem is the pauity of usefulappliations. In fat, the only ontinuous equality test is on a disretespae.However, equality and order on R do have some properties lose toontinuity. For example, given two points x and y with x < y, there aredisjoint neighbourhoods Ux and Uy of x and y respetively suh that forall u 2 Ux and v 2 Uy, u < v. (Similarly for inequality 6̀='.)We will develop notions that allow us to express these `ontinuity' prop-erties as follows. De�ne partial funtionslessp : R2 ! Beqp : R2 ! Bso that lessp(x; y) = 8><>:tt if x < yff if x > y" if x = y;and eqp(x; y) = (" if x = yff if x 6= y:These partial funtions are ontinuous, in the sense that the inverse imagesof fttg and fffg are always open subsets of R2 .We will exploit these observations about `<' and `=' to the full bystudying topologial partial algebras. We will also prove a more generalversion of Theorem 7.3 for suh partial algebras (Theorem 7.12).7.2 Partial algebras and While omputationA partial �-algebra is de�ned in the same way as a �-algebra (setion 2.3),exept that for eah F : u! s in Fun(�), the funtion FA : Au ! Asmay be partial.



454 J. V. Tuker and J. I. ZukerStandard and N-standard partial �-algebras are de�ned analogously,as are the standardisation and N-standardisation of partial �-algebras (f.setions 2.4, 2.5).Suppose � is a standard signature, and A is a standard partial �-algebra.The error partial algebra Au, of signature �u, is onstruted as before(f. setion 2.6). In partiular, for eah F 2Fun(�), its interpretationFA on A is extended by stritness to a partial funtion FA;up on Au.The array partial algebra A�, of signature ��, is onstruted as before(f. setion 2.7).The stream partial algebra �A, of signature �, is onstruted as before(f. setion 2.8).The semantis of While programs on A is similar to that for totalalgebras (f. setions 3.3{3.8), exept that many of the semanti funtionsare now partial, namely: the term evaluation funtion [[t℄℄A (setion 3.3),the funtions hjSjiA, CompA1 , CompA, CompLengthA(setion 3.4), and(as before) the statement evaluation funtion [[S ℄℄A (setion 3.5) and pro-edure evaluation funtion PA (setion 3.6). For example, the de�nition of[[t℄℄Abeomes (f. setion 3.3):[[x℄℄A� = �(x)[[F (t1; : : : ; tm)℄℄A� ' FA([[t1℄℄A�; : : : ;[[tm℄℄A�).Here the seond lause is interpreted as[[F (t1; : : : ; tm)℄℄A� ' 8><>:FA([[t1℄℄A�; : : : ; [[tm℄℄A�) if [[ti℄℄A� #for i = 1; : : : ;m" otherwise:exept for the ase that F (: : : ) is the disriminator if(b; t1; t2), in whih asewe have a `non-strit' omputation of either [[t1℄℄A� or [[t2℄℄A�, dependingon the value of [[b℄℄A�:[[if(b; t1; t2)℄℄A� ' 8><>:[[t1℄℄� if [[b℄℄A� # tt[[t2℄℄� if [[b℄℄A� # ff" if [[b℄℄A� " :The results in setions 3.3{3.10 (funtionality lemmas, homomorphisminvariane and loality theorems) still hold, with ertain obvious modi�a-tions related to divergene. For example, the funtionality lemma for temrs(3.4) beomes:Lemma 7.4 (Funtionality lemma for terms). For any term t andstates �1 and �2, if �1 � �2 (rel vart), then either(i) [[t℄℄A�1 # and [[t℄℄A�2 # and [[t℄℄A�1 = [[t℄℄A�2, or



Computable funtions on algebras 455(ii) [[t℄℄A�1 " and [[t℄℄A�2 ".7.3 Topologial partial algebrasNote that in, this setion, by `funtion' we generally mean partial funtion.De�nition 7.5. Given two topologial spaes X and Y , a funtion f :X ! Y is ontinuous if for every open V � Y , f�1[V ℄ =df fx 2 X j x 2dom(f) and f(x) 2 Y g is open in X .De�nition 7.6.(1) A topologial partial �-algebra is a partial �-algebra with topologieson the arriers suh that eah of the basi funtions is ontinuous.(2) A standard topologial partial algebra is a topologial partial algebrawhih is also a standard partial algebra, suh that the arrier B hasthe disrete topology. (Cf. De�nition 7.1.)Examples 7.7.(a) (Real algebra.) An important standard topologial partial algebra forour purpose is the algebraRp = (R; B ; 0; 1; +; �; �; ifreal, eqp, lessp, : : : )whih is formed from R< by the replaement of eqreal and lessreal bythe partial operations eqp and lessp (de�ned in setion 7.1). It be-omes a topologial partial algebra by giving R its usual topology, andB the disrete topology. An open base for the standard topology onR is given by the olletion of open intervals with rational endpoints.These intervals are all While semiomputable on Rp. (Exerise.)(b) (Interval algebras.) Another useful lass of topologial partial alge-bras are of the formalgebra Ipimport Rparriers Ifuntions iI : I ! R,F1 : Im1 ! I ,: : :Fk : Imk ! Iendwhere I is the losed interval [0; 1℄ (with its usual topology), iI is theembedding of I into R, and Fi : Imi ! I are ontinuous partial funtions.These are alled (partial) interval algebras on I .Example 7.8 (While omputable funtions on Rp). We give twoexamples of funtions omputable by While programs, using the aboveBoolean-valued funtions (eqp and lessp) as tests. (In both ases, the in-puts are taken to be positive reals to simplify the programs, although the



456 J. V. Tuker and J. I. Zukerprograms ould easily be modi�ed to apply to all reals, positive and non-positive).(a) The harateristi funtion of Z on R, is int : R+ ! B , whereis int(x) = (" if x is an integerff otherwise:This is de�ned by the proedurepro in x : pos-realout b : boolbeginb : =false;while x>0 fif x = 0, test diverges!gdo x := x-1odend(b) The trunation funtion trun : R+ ! Z, wheretrun(x) = (xxy if x is not an integer" otherwise:The proedure for this is similar:pro in x : pos-realout  : intbegin := 0;while x > 1 fif x = 1, test divergesgdo x :=x�1; := +1odendUntil further notie (setion 7.8) let A be a standard topologial partial�-algebra.De�nition 7.9 (Expansions of topologial partial algebra).(a) The topologial partial algebra Au, of signature �u, is onstrutedfrom A by giving eah new arrier Aus the disjoint union topology ofAs and fupg. (This makes up an isolated point of Aus.)(b) The topologial partial algebra AN , of signature �N , is onstrutedfrom A by giving the new arrier N the disrete topology.



Computable funtions on algebras 457() The topologial partial algebra A�, of signature ��, is onstrutedfrom AN as follows. Viewing the elements of eah new arrier A�sas (essentially) in�nite sequenes of elements of Aus, whih take thevalue up for all indies greater than Lgth(a�), we give A�s the subspaetopology of the set (Aus)N of all in�nite sequenes from Aus, with theprodut topology over Aus. Equivalently, viewing the elements of A�sas (essentially) arrays of elements of Aus of �nite length, we an giveA�s the disjoint union topology of the sets (Aus)n of arrays of lengthn, for all n � 0, where eah set (Aus)n is given the produt topology ofits omponents Aus. It is easy to hek that A� is indeed a topologialalgebra, i.e., all the new funtions of A� are ontinuous.(d) The topologial partial algebra �A, of signature �, is onstruted bygiving eah new arrier �As the produt topology over As. Note that,if As is ompat for any sort s, then so is �As, by Tyhono�'s theorem(see Remark 7.28).De�nition 7.10. A is Hausdor� if eah arrier of A is Hausdor� (i.e., anydistint pair of points an be separated by disjoint neighbourhoods.)Proposition 7.11. If A is Hausdor�, then so are the expansions Au; AN ;A� and �A:Theorem 7.12. Let A be a standard topologial partial algebra.(a) If f 2While(A) then f is ontinuous on A.(b) If f 2WhileN (A) then f is ontinuous on A.() If f 2While�(A) then f is ontinuous on A.The proof will be given in setion 7.5. For now we observe that thistheorem implies the following.Theorem 7.13. If R is(a) While� semiomputable on A, or(b) projetively While� semiomputable on A,then R is open in A.Proof.(a) Suppose R is the halting set of a While� omputable funtion f :Au ! As. By Theorem 7.12, f is ontinuous. Hene R = f�1[As℄is open.(b) From (a) and sine a projetion of an open set is open. (Chek.)Note that in the above proof, we used the fat that a projetion of anopen set is open. (Chek.)Corollary 7.14. A While� omputable relation on A is lopen in A.Proof. By Post's theorems (5.40) and Theorem 7.13.



458 J. V. Tuker and J. I. Zuker7.4 Disussion: Two models of omputation on therealsThe purpose of this subsetion is to explain the oneptual bakground forour models of omputation on the reals.There are two types of models of reals, and omputations on them:(1) The algebrai model. Here we work with a many-sorted algebra likeR = (R;N ; B ; 0; 1;+;�; : : : );This was the approah in setion 6.(2) The stream model. A real number input or output is given as astream of(i) digits (representing a deimal expansion), or(ii) rationals (representing a Cauhy sequene), or(iii) integers (representing a ontinued fration).This idea lies behind the partial algebras of reals Rp and Ip studied in thissetion. For onveniene, we onentrate on (i). (The deimal representa-tion may be to any base.)Then a proedure for a omputable real-valued funtion f : Rn ! Rhas as input n streams of digits, and as output a stream of digits. Sim-ilarly a proedure for a omputable relation on the reals, or Boolean-valuedfuntion, R : Rn ! B has as input n streams of digits, and as output aBoolean value (or bit).In the algebrai approah, the input and output reals are just `points'(elements of R) given in one step. Continuity of the omputable funtions,or even of the primitive funtions (with respet to the usual topology onR), is not fored on us | and our models in setion 6 violated it.In the stream model, however, the reals form in�nite data; at any �nitetime, only a �nite part has been proessed (written or read). Continuityof the omputable funtions (whih we will prove formally in the next sub-setion) is then fored on us oneptually by omputability requirements,i.e.,:(a) For f : Rn ! R to be omputable, we must be able to get theoutput real (= stream of digits) to any desired degree of auray(= length) by inputting suÆiently long input streams. (Briey: thelonger the inputs, the longer the output.)(b) For R : Rn ! B to be omputable, we must be able to get an outputbit after �nite (su�iently long) input streams.We often work with the algebrai model, beause of its simpliity. It isa good soure of examples to distinguish various notions of abstrat om-putability and semiomputability (as we saw in setion 6). However, thestream model is more satisfying oneptually, onforming to our intuition



Computable funtions on algebras 459of reals as they our to us, e.g., in physial measurements and alula-tions. So we an use the stream model as a soure of insights for ourrequirements or assumptions regarding the algebrai model, notably theontinuity requirement for omputable funtions.Reall the problem disussed in Setion 7.1 onerning the ontinuityrequirement for omputable relations, i.e., Boolean-valued funtions R :Rn ! B : the only ontinuous total funtions from Rn to any disrete spaesuh as B are the onstant funtions.The solution, we saw, was to work with partial algebras, i.e., to interpretthe funtion symbols in the signature by partial funtions. We use thestream model for insight. Consider, for example, the equality and orderrelations on the reals. Suppose we have two input reals (between 0 and 1)de�ned by streams of deimal digits, whih we read, one digit at a time:� = 0:a0a1a2 : : :� = 0:b0b1b2 : : :Consider the various possibilities:(a) � < �. Then for some n, this will be determined by the initialsegments a0 : : : an and b0 : : : bn.(b) � > �. Similarly, this will be determined by some pair of initialsegments.() � 6= �. This is the disjuntion of ases (a) and (), so again it will bedetermined by some pair of initial segments.(d) � = �. This ase, however, annot be determined by initial segmentsof any length! (Note that this analysis is not a�eted by the doubledeimal representation of rationals.)This analysis suggests the following de�nitions for partial funtions in thesignature of R:(i) eqp(x; y) = (" if x = yff if x 6= y;(ii) uneqp(x; y) = (tt if x 6= y" if x = y (ompare (i));(iii) lessp(x; y) = 8><>:tt if x < y" if x = yff if x > y;(iv) lseqp(x; y) = 8><>:tt if x < y" if x = yff if x > y (same as (iii)!).Note that examples (i) and (iii) were inorporated as basi operations inthe topologial partial algebras Rp and Ip in setion 7.3.



460 J. V. Tuker and J. I. ZukerFurther, we an add real-valued funtions suh as division:(v) x divR y = (x=y if y 6= 0" if y = 0:Note that in the above de�nitions, `"' (unde�nedness or divergene) mustnot be onfused with `�' (error), whih ours in integer division:(vi) x divZ y = (xx/yy if y 6= 0� if y = 0:In the integer ase, we an e�etively test whether the input y is 0, and so(if y = 0) give an output, namely an error message (or default value, if weprefer). In the real ase, if y = 0, this annot be e�etively deided, andso no output (error or other) is possible. (Suppose the �rst n digits of theinput y are 00 : : :0. The (n+ 1)th digit may or may not also be 0.)We remark that the onept of reals as streams is reminisent of Brou-wer's notion of reals de�ned by lawless sequenes or hoie sequenes. Infat, for Brouwer, a funtion was a onstrutively de�ned funtion, and he`proved' that every funtion on R is ontinuous! (See, for example, thedisussion in Troelstra and van Dalen [1988, Chapter 12℄).We onlude this disussion by pointing out a related, intensional, ap-proah by Feferman to omputation on the reals, based on Bishop's on-strutive approah to higher analysis (Bishop [1967℄, Bishop and Bridges[1985℄). This is outlined in Feferman [1992a; 1992b℄.7.5 Continuity of omputable funtionsIn this setion we will prove that omputational proesses assoiated withWhile� programs over topologial partial algebras are ontinuous. Morepreisely, we will prove Theorem 7.12:(a) If f 2While(A) then f is ontinuous on A.(b) If f 2WhileN (A) then f is ontinuous on A.() If f 2While�(A) then f is ontinuous on A.Clearly, part (a) follows trivially from parts (b) and (). Note that, on-versely, parts (b) and () follow easily from (a). For example, if f 2While�(A) then f 2While(A�), therefore f is ontinuous on A�, andhene on A. We will prove part (a) by demonstrating the ontinuity ofthe operational semantis developed in setion 3 (as modi�ed for partialalgebras). We will see the advantage of the algebrai approah to opera-tional semantis used there, sine these funtions are built up from simplerfuntions using omposition, thus preserving ontinuity.We proeed with a series of lemmas. Let X;Y; : : : be topologial spaes.Remember, funtions are (in general) partial.Lemma 7.15 (Basi lemmas on ontinuity).(a) A omposition of ontinuous funtions is ontinuous.



Computable funtions on algebras 461(b) Let f : X ! Y1 � : : :� Yn have omponent funtions fi : X !Yi for i = 1; : : : ; n, i.e., f(x) ' (f1(x); : : : ; fn(x)) for all x 2 X.Then f is ontinuous if, and only if, all the fi are ontinuous fori = 1; : : : ; n.() If D is a disrete spae, then a funtion f : X�D! Y is ontinuousif, and only if, f( � ; d) : X ! Y is ontinuous for all d 2 D.Proof. Exerise.Corollary 7.16. The disriminator f : B�X2 ! X, de�ned by f(tt; x; y) =x and f(ff; x; y) = y, is ontinuous.Proof. Exerise.Corollary 7.17. Let f : X ! Y be de�ned byf(x) ' 8><>:g1(x) if h(x) # ttg2(x) if h(x) # ff" otherwise;where g1; g2 : X ! Y and h : X ! B are ontinuous. Then f is ontinu-ous.Proof. From Corollary 7.16 and Lemma 7.15(a).Lemma 7.18 (Least number operator). Let g : X � N ! Y be on-tinuous, and let y0 2 Y be suh that fy0g is lopen in Y . Let f : X ! Nbe de�ned by f(x) ' �k[g(x; k) # y0℄;i.e., f(x) # k () 8i < k(g(x; i) #6= y0)^ (g(x; k) # y0)Then f is ontinuous.Proof. Sine N has the disrete topology, it is suÆient to show that forany k 2 N, f�1(fkg) is open. We havef�1(fkg) = k�1\i=0fx j g(x; i) #6= y0g \ fx j g(x; k) # y0g= k�1\i=0 g( � ; i)�1(Y nfy0g) \ g( � ; k)�1(fy0g)whih is a �nite intersetion of open sets, sine by assumption both fy0gand Y nfy0g are open.The rest of the proof onsists of showing the ontinuity of the varioussemanti operations de�ned in setion 3.



462 J. V. Tuker and J. I. ZukerFirst we must speify topologies on the various spaes involved in theoperational semantis.For a produt type u = s1� : : :�sm, the spae Au =df As1 � : : :�Asmhas (of ourse) the produt topology of the Asi 's.The state spae State(A) is the (�nite) produt of the state spaesStates(A) for all s 2 Sort(�) (setion 3.2), where eah States(A) is an(in�nite) produt of the arriers As (indexed by V ars). Thus State(A)is an in�nite produt of all the arriers As, and takes the produt topologyof the As's. The spae State(A)[f�g is formed as the union of State(A)and the singleton spae f�g. Note that this makes the point � lopen inState(A)[f�g.The syntati sets Stmt and AtSt have the disrete topology, as dothe sets B and N of Booleans and naturals.Lemma 7.19. For t 2 Terms, the funtion [[t℄℄A: State(A) ! As (se-tion 3.3) is ontinuous.Proof. By strutural indution on t. Use the fats that the basi fun-tions of � are ontinuous, and that ontinuity is preserved by omposition(Lemma 7.15(a)).Reall that [[t℄℄A and the other semanti funtions onsidered below areatually the partial algebra analogues of the funtions de�ned in setion 3(as disussed in setion 7.2).Lemma 7.20. The state variant funtion��; a � �fx=ag : State(A) �Au ! State(A)(for some produt type u and �xed tuple of variables x : u) is ontinuous.Proof. Exerise.Lemma 7.21. For S 2 AtSt, the funtion hjSjiA: State(A)! State(A)(setion 3.5) is ontinuous.Proof. For S�skip, this is trivial. For S�x := t, use Lemmas 7.19, 7.20and 7.15(b).Lemma 7.22. The funtions First and RestA (setion 3.6) are ontin-uous.Proof. For First, this is trivial (a mapping with disrete domain spae).For RestA, it is suÆient, by Lemma 7.15(), to show that for any �xedS 2Stmt, the funtionRestA(S; � ) : State(A)! Stmtis ontinuous. This is proved by strutural indution on S, making use (inthe ase that S is a onditional or `while' statement) of Corollary 7.17.Lemma 7.23. The one-step omputation funtion



Computable funtions on algebras 463CompA1 : Stmt� State(A)! State(A)(setion 3.4) is ontinuous.Proof. Again, by Lemma 7.15(), it is suÆient to show that for any �xedS 2Stmt, the funtion CompA1 (S; �) is ontinuous. But by de�nition,this is hjFirst(S)jiA, whih is ontinuous by Lemma 7.22.Lemma 7.24. The omputation step funtion CompA (setion 3.4) isontinuous.Proof. Again, it is suÆient to show that for any �xed S 2Stmt andn 2 N, the funtionCompA(S; � ; n) : State(A)!State(A)[f�gis ontinuous. This is proved by indution on n, using (in the base ase)Lemma 7.23 and (in the indution step) Lemmas 7.22 and 7.23.Lemma 7.25. The omputation length funtion CompLengthA (setion3.4) is ontinuous.Proof. This funtion is de�ned byCompLengthA(S; �) ' �n[CompA(S; �; n+ 1) # �℄:Its ontinuity follows from Lemma 7.18, sine f�g is lopen inState(A)[f�g, and by Lemma 7.24.Lemma 7.26. For S 2 Stmt, the funtion [[S℄℄A: State(A)! State(A)(setion 3.5) is ontinuous.Proof. Sine[[S℄℄A(�) ' CompA(S; �;CompLengthA(S; �));the result follows from Lemmas 7.24 and 7.25.Lemma 7.27. For anyWhile proedure P , the funtion PA (setion 3.6)is ontinuous.Proof. Suppose P � pro in a out b aux begin S end, where a : u andb : v, so that PA : Au ! Av . Fix any state �0 2State(A). Theimbedding and projetion funtions�a : Au !State(A) and �b : State(A)! Avde�ned by �a(x) = �0fa=xg and �b(�) = �[b℄are ontinuous. (Exerise.) Hene the omposition�bÆ [[S℄℄AÆ�a : Au ! Av :is ontinuous. But this is just PA, independent of the hoie of �0, by thefuntionality lemma (3.11) for proedures.Theorem 7.12(a) follows from this.



464 J. V. Tuker and J. I. Zuker7.6 Topologial haraterisation of omputable sets inompat algebrasFor bakground on ompatness, see any of the books listed at the begin-ning of setion 7.Remark 7.28 (Compatness).(a) By Tyhono�'s theorem, the produt of ompat spaes is ompat.(b) The unit interval I is ompat. Hene so is the produt spae Iq forany q.Now we have seen (Theorem 7.13 and Corollary 7.14) that for sets:semiomputable =) openomputable =) lopen.We an reverse the diretion of the impliation in the seond of these as-sertions, under the assumption of ompatness.Theorem 7.29. Let A be a topologial partial algebra, and let u = s1 � : : :� sm 2ProdType(�), where, for i = 1; : : : ; n,(a) Asi is ompat, and(b) Asi has an open subbase of While semiomputable sets.Then for any relation R � Au, the following are equivalent:(i) R is While omputable;(ii) R is While� omputable;(iii) R is lopen in Au.Proof. (i)=)(ii) is trivial.(ii)=)(iii) follows from Corollary 7.14.(iii)=)(i): Note �rst that from assumptions (a) and (b), the produt spaeAu (with the produt topology) is ompat, and has an open subbaseofWhile semiomputable sets. Suppose now that R is lopen in Au.Sine R is open, we an writeR = [i2I Biwhere the Bi are basi open sets. Eah Bi is a �nite intersetion ofsubbasi open sets, and hene semiomputable, by Theorem 5.8.Sine R is losed, R is ompat, and hene R is the union of �nitelymany of the Bi's, and so R is semiomputable, by Theorem 5.8.Repeating the above argument for R, we infer by Post's theorem (5.9)that R is omputable.



Computable funtions on algebras 4657.7 Metri partial algebraA partiular type of topologial partial algebra is a metri partial algebra.This is a pair (A; d) where d is a family of metris hds j s 2 Sort(�)i, andfor eah s 2 Sort(�), ds is a metri on As, suh that for eah basi funtionsymbol F : u! s of �, the funtion FA : Au ! As is ontinuous (whereontinuity of a partial funtion is as per De�nition 7.5).This indues or de�nes a topologial partial algebra in the standard way.Note that if A is standard, then the arrier B , as well as the arriers ofall equality sorts, will have the disrete metri, de�ned byd(x; y) = (0 if x = y1 if x 6= y;whih indues the disrete topology (see Remark 7.2).Again, we will often speak of a `metri algebra A', without stating themetri expliitly.Example 7.30. The real algebra Rp and interval algebras Ip (Examples7.7) an be viewed (or reast) as metri algebras in an obvious way.Remark 7.31. If A is a metri partial algebra, then for eah produt sortu = s1 � : : :� sm, we an de�ne a metri du on Au, whih indues theprodut topology on Au, bydu((x1; : : : ; xm); (y1; : : : ; ym)) = mmaxi=1 �dsi(xi; yi)�or more generally, by the `p metridu((x1; : : : ; xm); (y1; : : : ; ym)) = � mXi=1(dsi(xi; yi))p�1=p (1 � p �1)Metri algebras will be used in our study of approximable omputability(setion 7.9).7.8 Conneted domains: omputability and expliitde�nabilityIn this subsetion we investigate the relationship between omputabilityand expliit de�nability for a funtion on a onneted domain.First we review the onept of onnetedness.Remark 7.32 (Connetedness).(a) A topologial spaeX is said to be onneted if the only lopen subsetsof X are X and ;.(b) It is easy to see thatX is onneted if, and only if, the only ontinuous



466 J. V. Tuker and J. I. Zukertotal funtions fromX to B (or to any disrete spae) are the onstantfuntions. (Exerise.)() A �nite produt of onneted spaes is onneted. (See any of thereferenes listed at the beginning of setion 7.) Hene in a topologial�-algebra A, if u = s1 � : : :� sm 2 ProdType(�), and Asi isonneted for i = 1; : : : ;m, then so is Au.(d) The spae R of the reals, with its usual topology, is onneted. There-fore, so is the produt spae Rq for any q. Hene, by Corollary 7.14,for any topologial partial algebra over R, suh as the algebra Rp(Example 7.7(a)), the only While or While� omputable subsetsof Rq are Rq itself and ;.(e) Similarly, by the onnetedness of the unit interval I (and hene ofIq), the only While or While� omputable subsets of Iq in anyinterval algebra over I (Example 7.7(b)) are Iq itself and ;, : : : ,regardless of the hoie of (ontinuous) funtions F1; : : : ; Fk as basioperations!We will only develop the theory in this setion for total funtions ontotal algebras. The essential idea is that if f is a omputable total funtionon A, then f is ontinuous, and so, by Remark 7.32(b), its de�nition annotdepend non-trivially on any Boolean tests involving variables of sort s ifAs is onneted. (We will make this preise below, in the proof of Lemma7.40.)Note that many of these results an be extended to the ase of totalfuntions f on onneted domains in partial algebras. We intend to inves-tigate this more fully in future work. However, for now we assume in thissubsetion:Assumption 7.33. A is a total topologial algebra.Examples 7.34 (Topologial total algebras on the reals). Two im-portant total topologial algebras based on the reals whih will be import-ant for our purposes are:(a) The algebra RNt (`t' for `total topologial'), de�ned byalgebra RNtimport R0;N ; Bfuntions ifreal : B � R2 ! R;divnat : R � N ! R;endHere R0 is the ring of reals (R; 0; 1; +; �; �) (Example 2.5(b)), Nis the standard algebra of naturals (Example 2.23(b)), divnat is divisionof reals by naturals (where division by zero is de�ned as zero), andR has its usual topology.Note that RNt does not ontain the (total) Boolean-valued funtionseqreal or lessreal, sine they are not ontinuous (f. the partial funtions



Computable funtions on algebras 467eqp and lessp of Rp). It is therefore not an expansion of the standardalgebraR of reals (Example 2.23()) whih ontains eqreal. (Comparethe N-standardisationRN ofR (Example 2.27(b)) whih does ontaineqreal.)(b) (The interval algebra of reals.) Here the unit interval I = [0; 1℄ isinluded as a separate arrier of sort `intvl', again with the usualtopology. This is useful for studying real ontinuous funtions withompat domain. (We ould also hoose I = [�1; 1℄, et.) The totaltopologial algebra INt is de�ned byalgebra INtimport RNtarriers Ifuntions iI : I ! RendHere iI is the embedding of I into R.Remark 7.35. Note that both algebras RNt and INt are stritly N-stand-ard. The reason why N, and the funtion divnat, are inluded in these totalalgebras (unlike the partial algebras Rp and Ip of 7.7) is beause of theirappliability in the theory of approximable omputability in setion 7.9.De�nition 7.36. Let f be a funtion on A.(a) f is �-expliitly de�nable on A if f is de�nable on A by a �-term.(b) f is ��-expliitly de�nable on A if f is de�nable on A by a ��-term.By the ��=� onservativity theorem (3.63)`, the two onepts de�nedabove are equivalent:Proposition 7.37. A funtion on A is �-expliitly de�nable if, and onlyif, it is ��-expliitly de�nable.Remarks 7.38.(a) Suppose (i) A is stritly N -standard (e.g., RNt and INt ), and (ii) thedomain and range types of f do not inlude nat (e.g., f : Rq ! R orf : Iq ! R in these algebra, respetively). Then this proposition alsoholds with the `internal' version of �� (Remark 2.31()), by Remark3.64(b).(b) Beause of Proposition 7.37, we shall usually use `expliit de�nability'over an algebra to mean either �- or ��-expliit de�nability.In the following lemma, A is any total algebra, not neessarily topolo-gial.Lemma 7.39. Expliit de�nability on A =) While omputability on A.Proof. Simple exerise.In preparation for the onverse diretion, we need the following:



468 J. V. Tuker and J. I. ZukerLemma 7.40. Suppose Au is onneted. Let P : u! v be a (While orWhile�) proedure whih de�nes a total funtion on A, i.e., HaltA(P )=Au. Then the omputation tree T (P ) for P is essentially �nite, or (moreaurately) semantially equivalent to a �nite, unbranhing tree.(The omputation tree for a proedure was de�ned in setion 5.11.)Proof. Put P � pro in a out b aux  begin S endwhere a : u, b : v and  : w, and S � Sinit;S0, where Sinit is aninitialisation of the variables b, to their default values. Let T = T (P ).First, we show that all branhes in T an be eliminated. Consider a branhat a test node in T (Fig. 16). ........................................................................... t................................................................................................................................................................................................................b ....................................................................... ................... N....................................................................................................................Y .......................... Fig. 16.This Boolean test de�nes a funtionfb;t : Au ! Bwhere (putting x � a; b; )fb;t(a) = bhx=ti[a; ÆvA; ÆwA℄i.e., fb;t(a) is the evaluation of bhx/ti when a is assigned to a and thedefault tuples Æv; Æw are assigned to b, respetively. The funtion fb;tis learly (While or While�) omputable, by Lemma 7.39, and heneontinuous, by Theorem 7.12. It is also total, sine A is total by assumption(7.33). By Remark 7.32(b) it must therefore be onstant on Au. If it isonstantly tt, we an replae this test node by its left branh (i.e., deletethe node and the right branh), and if it is onstantly ff, we an similarlyreplae the node by its right branh only.By repeating this proess, we an replae T by a semantially equivalenttree T 0 without any Boolean tests, and (hene) without any branhing. Thetree T 0 onsists of a single path, whih must be �nite, sine PA is total byassumption.Remarks 7.41.



Computable funtions on algebras 469(a) Examples of the appliation of this lemma are the total topologialalgebras RNt and INt , and proedures of type realq ! real andintvlq ! real, respetively. Note that the result also holds with the`internal' version of While� omputability, by Proposition 3.47.(b) Without the assumption that Au be onneted, Lemma 7.40 is false,i.e., it is possible for PA to be total, but T (P ) to be in�nite. (Exer-ise.)() Note that any omputation tree T is �nitely branhing; therefore,by K�onig's lemma, T is �nite if, and only if, all its paths are �nite.Hene any ounterexample to demonstrate (b) would be an exampleof a omputation tree for a proedure whih de�nes a total funtion,but nevertheless has in�nite paths!(d) The lemma also holds without the assumption that A be total, aslong as PA is total (and Au is onneted). (Exerise.)(e) In general, this transformation of T (P ) to a �nite unbranhing treegiven by the proof of Lemma 7.40 is not e�etive in P , sine it de-pends on the evaluation of (onstant) Boolean tests. If we want itto be e�etive in P (as we will in the next subsetion, dealing withapproximable omputability), we will need a further ondition on A,suh as the Boolean omputability property (De�nition 7.56).Lemma 7.42. If a omputation tree T (P ) for a (While or While�)proedure P is �nite and unbranhing, then PA is (�-)expliitly de�nableon A.Proof. Exerise.Remark 7.43. More generally, Lemma 7.42 holds if T (P ) is �nite but(possibly) branhing. (Use the disriminator in onstruting the de�ningterm.)Combining Lemmas 7.39, 7.40 and 7.42, we have onditions for an equi-valene between expliit de�nability and While omputability:Theorem 7.44. Let A be a total topologial algebra, and suppose Au isonneted. Let f : Au ! Av be a total funtion. Then the following areequivalent:(i) f is While omputable on A;(ii) f is While� omputable on A;(iii) f is expliitly de�nable on A.Example 7.45. This theorem holds for the total topologial algebras RNtand INt , and total funtions f : Rq ! R and f : Iq ! I , respetively.Note that by Remarks 7.38(a) and 7.41(a), the theorem also holds inthese algebras with `internal' versions of While� omputability and ��-expliit de�nability.



470 J. V. Tuker and J. I. Zuker7.9 Approximable omputabilityIt is often the ase that funtions are omputed approximately, by a se-quene of `polynomial approximations'. In this way we extend the lass ofomputable funtions to that of approximably omputable funtions. Thistheory will build on the work of setion 7.8.First we review some basi notions on onvergene of sequenes of fun-tions.De�nition 7.46 (E�etive uniform onvergene). Given a set X , ametri spae Y , a total funtion f : X ! Y and a sequene of totalfuntions gn : X ! Y (n = 0; 1; 2; : : : ), we say that gn onverges e�etivelyuniformly to f on X (or approximates f e�etively uniformly on X) if, andonly if, there is a total reursive funtion e : N ! N suh that for all n; kand all x 2 X , k � e(n) =) dY (gk(x); f(x)) < 2�n:Remark 7.47. Let M : N ! N be any total reursive funtion whih isinreasing and unbounded. Then (in the notation of De�nition 7.46) thesequene gn onverges e�etively uniformly to f on X if, and only if, thereis a total reursive funtion e : N ! N suh that for all n; k and all x 2 X ,k � e(n) =) dY (gk(x); f(x)) < 1=M(n):(Exerise.)The theory here will be developed for total funtions on metri totalalgebras (de�ned in setion 7.5). We therefore assume in this subsetion:Assumption 7.48. A is a metri total algebra.Example 7.49 (Metri total algebras on the reals). The two totaltopologial algebras based on the reals given in Example 7.34 an be viewedas metri algebras in an obvious way. The seond of these, the intervalalgebra INt ; will be partiularly useful here.We will present, and ompare, two notions of approximable omputabil-ity on metri total algebras: e�etive uniformWhile (orWhile�) approximabil-ity (De�nition 7.50) and e�etive Weierstrass approximability (De�nition7.54).So suppose A is a metri total �-algebra. Let u; v 2ProdType(�)and s 2 Sort(�).De�nition 7.50. A total funtion f : Au ! Av is e�etively uniformlyWhile (orWhile�) approximable on A if there is aWhile (orWhile�)proedure P : nat� u ! von AN suh that PAN is total on AN and, putting gn(x) =df PAN (n; x),the sequene gn onverges to f e�etively uniformly on Au.



Computable funtions on algebras 471Remark 7.51. If A is N-standard, we an replae `AN ' by `A' in the abovede�nition (by Proposition 3.38).Lemma 7.52. If Au is ompat, and f : Au ! As is e�etively uniformlyWhile� approximable on A, then f is ontinuous.Proof. By Theorem 7.12, the approximating funtions for f are ontinu-ous. The theorem follows by a standard result for uniform onvergene onompat spaes.Remark 7.53. Note that a funtion from Rq to R is expliitly de�nableover RNt if, and only if, it is de�nable by a polynomial in q variables overR with rational oeÆients. Similarly, a funtion from Iq to R is expliitlyde�nable over INt if, and only if, it is de�nable by a polynomial in q variablesover I with rational oeÆients. This explains the following terminology,sine Weierstrass-type theorems deal typially with approximations of realfuntions by polynomial funtions (uniformly on ompat domains).De�nition 7.54 (E�etive Weierstrass approximability).(a) A total funtion f : Au ! As is e�etively �-Weierstrass approx-imable over A if, for some x : u, there is a total omputable funtionh : N ! pTermx;s(�)qsuh that, putting gn(x) =df teAx;s(h(n); x), the sequene gn on-verges to f e�etively uniformly on Au.(b) E�etive ��-Weierstrass approximability is de�ned similarly, by re-plaing `�' by `��' and `teAx;s' by `teA�x;s '.(The term evaluation representing funtion teAx;s was de�ned in setion 4.3.)Proposition 7.55. A funtion on A is e�etively �-Weierstrass approx-imable if, and only if, it is e�etively ��-Weierstrass approximable.Proof. From a omputable funtionh� : N ! pTermx;s(��)qwe an onstrut a omputable funtionh : N ! pTermx;s(�)qwhere, for eah n, h(n) and h�(n) are G�odel numbers for semantially equi-valent terms, using the fat that the transformation of ��-terms to �-termsin the onservativity theorem (the2.15.4) is e�etive.We shall therefore usually speak of `e�etive Weierstrass approximabil-ity' over an algebra to mean e�etive Weierstrass approximability in eithersense.



472 J. V. Tuker and J. I. ZukerWe now investigate the onnetion between e�etive uniform Whileapproximability and e�etive Weierstrass approximability. We are lookingfor a uniform version of Theorem 7.44 (i.e., uniform over N-sequenes offuntions).To attain this uniformity, we need an extra ondition in eah dire-tion: for `e�etive Weierstrass) e�etive uniformWhile' (i.e., a uniformversion of Lemma 7.39) we need the TEP (setion 4.7), and for `e�etiveuniformWhile ) e�etive Weierstrass' (i.e., a uniform version of Lemma7.40) we need a new ondition, the Boolean omputability property (f.Remark 7.41(e)), whih we now de�ne.De�nition 7.56. A �-algebra A has the Boolean omputability property(BCP) if for any losed �-Boolean term b, its valuation bA (= tt or ff, f.De�nition 2.11) an be e�etively omputed, i.e., (equivalently) there is areursive funtion f : pT (�)boolq ! Bwith f(pbq) = bA.Remark 7.57. To avoid onfusion: the BCP is not a speial ase of theTEP, for losed terms of sort bool. It requires the funtion f in De�nition7.56 to be reursive, i.e., omputable over N (and B ) in the sense of lassialreursion theory. The TEP entails only that f be omputable over A | aweaker assumption (in general).Example 7.58. Both RNt and INt have the TEP and the BCP. (Exer-ise.)We will see how these two onditions (TEP and BCP) are applied inopposite diretions to obtain a uniform version of Theorem 7.44.In the following lemma, A is any total algebra, not neessarily metrior even topologial (f. Lemma 7.39).Lemma 7.59. Suppose A has the TEP. Given variables x : u, leth : N ! pTermx;s(�)qbe a total omputable funtion. Then there is a While(�N ) proedureP : nat� u! s suh that for all x 2 Au and n 2 N,PAN (n; x) = teAx;s(h(n); x):Proof. Simple exerise.For the onverse diretion:Lemma 7.60. Suppose Au is onneted and A has the BCP. Let P :nat � u ! v be a (While or While�) proedure over AN whih de�nes



Computable funtions on algebras 473a total funtion on AN . Then there is a omputable funtion h : N !pTermx;s(�)q suh that for all x 2 Au and n 2 N;teAx;s(h(n); x) = PAN (n; x):`Proof. Suppose P � pro in n; a out b aux  begin S endwhere n : nat. Consider the WhileN (�) proedures Pn : u ! v (n =0; 1; 2; : : : ) de�ned byPn � pro in a out b aux n;  begin n := �n;S endwhere �n is the numeral for n. It is lear that for all n 2 N and x 2 Au,PAn (x) = PAN (n; x):By Lemmas 7.40 and 7.42, PAn is de�nable by a �-term tn. Moreover,the sequene (tn) is omputable in n, by use of the BCP to e�etivise thetransformation of the tree T to T 0 in the onstrution given by the proofof Lemma 7.40. (Note that the evaluation of a onstant Boolean test anbe e�eted by the omputation of any losed instane of the Boolean term,whih exists by the instantiation assumption.) Hene the funtion h de�nedby h(n) = ptnqis omputable.We now have a uniform version of Theorem 7.44:Theorem 7.61. Suppose Au is onneted and A has the TEP and BCP.Let f : Au ! As be a total funtion. Then the following are equivalent:(i) f is e�etively uniformly While approximable on A;(ii) f is e�etively uniformly While� approximable on A;(iii) f is e�etively Weierstass approximable on A.Proof. From Lemmas 7.59 and 7.60.The requirement in the above theorem that f be total derives from theappliation of Lemma 7.60, whih in turn used Lemma 7.40, where totalitywas required.Remark 7.62. The equivalene of (i) and (iii) was noted for the speialase A = INt , Au = Iq and As = R in Shepherdson [1976℄, in the ourse ofproving the equivalene of these with another notion of omputability onthe reals (Theorem 7.64).



474 J. V. Tuker and J. I. ZukerWe are espeially interested in omputability on the reals, and, in par-tiular, a notion of omputability of funtions from Iq to R, developedin Grzegorzyk [1955; 1957℄ and Laombe [1955℄. We repeat the versiongiven in Pour-El and Rihards [1989℄, giving also, for ompleteness, thede�nitions of omputable sequenes of rationals and omputable reals. Fi-nally (Theorem 7.64),we state the equivalene of this notion with the otherslisted in Theorem 7.61.De�nition 7.63.(a) A sequene (rk) of rationals is omputable if there exist reursivefuntions a; b; s : N ! N suh that, for all k, b(k) 6= 0 andrk = (�1)s(k) a(k)b(k) :A double sequene of rationals is omputable if it is mapped ontoa omputable sequene of rationals by one of the standard reursivepairing funtions from N2 onto N.(b) A sequene (xk) of reals is omputable if there is a omputable doublesequene of rationals (rnk) suh thatjrnk � xnj � 2�k for all k and n:() A total funtion f : Iq ! R is GL (or Grzegorzyk{Laombe) om-putable if:(i) f is sequentially omputable, i.e., f maps every omputable se-quene of points in Iq into a omputable sequene of points inR;(ii) f is e�etively uniformly ontinuous, i.e., there is a reursivefuntion Æ : N ! N suh that, for all x; y 2 Iq and all n 2 N,jx� yj < 2�Æ(n) =) jf(x)� f(y)j < 2�n:Theorem 7.64. Let f : Iq ! R be a total funtion. Then the followingare equivalent:(i) f is e�etively uniformly While approximable on INt ;(ii) f is e�etively uniformly While� approximable on INt ;(iii f is e�etively Weierstrass approximable on INt ;(iv) f is GL omputable.Proof. As we have noted, Iq is onneted and INt has the TEP and BCP.Hene the equivalene of the �rst three assertions is a speial ase of The-orem 7.61. The equivalene of (iii) and (iv) is proved in detail in Pour-Eland Rihards [1989℄.Remark 7.65 (Historial). The equivalene (iii),(iv) was proved inPour-El and Caldwell [1975℄. An exposition of this proof is given in Pour-El



Computable funtions on algebras 475and Rihards [1989℄. Shepherdson [1976℄ gave a proof of (i),(iv) by (es-sentially) noting the equivalene (i),(iii) and reproving (iii),(iv). Thenew features in the present treatment are: (a) the equivalene (i),(iii)in a more general ontext (Theorem 7.61), and (b) the equivalene of (ii)with the rest (Theorems 7.61 and 7.64).7.10 Abstrat versus onrete models for omputingon the real numbersOur models of omputation an be applied to any algebrai struture. Fur-thermore, our models of omputation are abstrat: the omputable setsand funtions on an algebra are isomorphism invariant. Thus to omputeon the real numbers we have only to hoose an algebra A in whih (anyone of the representations of) the set R of reals is a arrier set. Thereare in�nitely many suh algebras of representations or implementations ofthe reals, all with deent theories resembling the theory of the omputablefuntions on the naturals. However, unlike the ase of the natural numbers,it is easy to list di�erent algebras of reals with di�erent lasses of Whileomputable funtions (see below).In setions 6 and 7, we have let the abstrat theory ditate our devel-opment of omputation on the reals. The goal of making an attrative anduseful onnetion with ontinuity led us to use partial algebras in setion 7.Beause of the fundamental role of ontinuity, this partial algebra approahis important sine it enables us to relate abstrat omputation on the realswith onrete omputation on representations of the reals (via the naturalnumbers). This we saw in setion 7.4 and, espeially, in setion 7.9. Herewe will reet further on the distintion between onrete and abstrat,following Tuker and Zuker [1999℄.The real numbers an be built from the rational numbers, and hene thenatural numbers, in a variety of equivalent ways, suh as Dedekind uts,Cauhy sequenes, deimal expansions, et. Thus it is natural to investigatethe omputability of funtions on the real numbers, starting from the theoryof omputable funtions on the naturals. Suh an approah we term aonrete omputability theory. The key idea is that of a omputable realnumber. A omputable real number is a number that has a omputableapproximation by rational numbers; the set of omputable real numbersforms a real losed sub�eld of the reals. Computable funtions on the realsare funtions that an be omputably approximated on omputable realnumbers. The study of the omputability of the reals began in Turing[1936℄, but only later was taken up in a systemati way, in Rie [1954℄,Laombe [1955℄ and Grzegorzyk [1955; 1957℄, for example.The di�erent representations of the reals are spei�ed axiomatially,uniquely up to isomorphism, as a omplete Arhimedean ordered �eld.But omputationally they are far from being equivalent. For instane,representing real numbers by in�nite deimals leads to the problem that thetrivial funtion 3x annot be omputable. If Cauhy sequenes are used,



476 J. V. Tuker and J. I. Zukerhowever, elementary funtions on the reals are omputable. The problemsof representation are worse when investigating omputational omplexity(see Ko [1991℄).It is a general problem to understand onrete representations of in-�nite data and, to this end, to establish a omprehensive theory of om-puting in topologial algebras. There have been a number of approahesto omputability based on onrete representations for the reals and othertopologial strutures. Only reently have these approahes been shown tobe equivalent.The ideas about omputable funtions on the reals were generalisedto metri spaes in Moshovakis [1964℄ who proved some of the speialtheorems of Ceitin [1959℄ obtained earlier with a onstrutive point of view.An axiomati approah to omputability on Banah spaes is givenin Pour-El and Rihards [1989℄. This gives general theorems about theindependene of omputation from representations, and provides a seriesof remarkable results haraterising omputable operators.Computability theory on N inludes a theory of omputation for fun-tionals on the set B =df [N ! N℄whih, with the produt topology, is alled Baire spae. The theory ofomputation on B is alled type 2 omputability theory. Klaus Weihrauhand his ollaborators, in a long series of papers, have reated a �ne general-isation of the theory of numberings of ountable sets (reall setion 1.3) toa theory of type 2 numberings of unountable sets. In type 2 enumerationtheory, numberings have the following form. Let X be a topologial spae.A type 2 enumeration of X is surjetive partial map� : B ! X(f. De�nition 1.1). Computability on X is analysed using type 2 om-putability on B. See, for example, Kreitz and Weihrauh [1985℄ and, es-peially, Weihrauh [1987℄.A more abstrat method for the systemati study of e�etive approx-imations of unountable topologial algebras has been developed by V.Stoltenberg-Hansen and J. V. Tuker. It is based on representing topolo-gial algebras with algebras built from domains and applying the theory ofe�etive domains. This method of applying domain theory to mathemat-ial approximation problems was �rst developed for topologial algebrasand used on ompletions of loal rings in Stoltenberg-Hansen and Tuker[1985; 1988℄. It was further developed on universal algebras in Stoltenberg-Hansen and Tuker [1991; 1993; 1995℄; see also Stoltenberg-Hansen et al.[1994, Chapter 8℄. We will sketh the basi method; an introdution an befound in Stoltenberg-Hansen and Tuker [1995℄. Suppose A is a topologi-al algebra. The idea is to build an algebra R that represents A by means



Computable funtions on algebras 477of the ontinuous representation map � : R ! A and to omputablyapproximate R.We imagine building R from a set P of approximating data that is aomputable struture (in the sense of Setion 1.3). Eah datum in R isapproximated by some sequene of data from P . More spei�ally, R is atopologial spae obtained from P by some form of ompletion proess inwhih P is dense in R. The key feature of this approah is that, sine Pis omputable, some of the approximating sequenes are omputable. Thesubset of R onsisting of the omputably approximable elements forms abasis for the omputable approximation of R and hene of A. We usu-ally use a speial type of approximating struture P alled a onditionalupper semilattie, and a ompletion proess alled ideal ompletion. Thisproess yields an algebrai domain. The method e�etively approximatesa large lass of examples: ultrametri algebras, loally ompat Hausdor�algebras (Stoltenberg-Hansen and Tuker [1995℄), and omplete metri al-gebras (Blank [1997℄).Similar ideas have been used in Edalat [1995a; 1995b℄, applying on-tinuous domains to analytial questions, suh as integration and measure.The domain method is related to Weihrauh's generalised omputabilitytheory: a type 2 enumeration is easily shown to give a domain representa-tion, and it is possible to onstrut a type 2 enumeration for a large lass ofdomain representations (see also Weihrauh and Shreiber [1981℄). Indeed,in Stoltenberg-Hansen and Tuker [1999b℄ there is a series of theorems thatshow that for a wide lass of spaes the onrete models based on e�etivemetri algebras, axiomati omputation theory, type 2 enumerability, alge-brai domain representability, and ontinuous domain representability areall equivalent. Thus there is a stable theory of omputable funtions basedon onrete models.It is important to understand fully the relationship between the onreteand abstrat omputability theories developed here and elsewhere: in theone diretion, we onstrut onrete representations of abstrat models, andin the other, we abstrat from onrete models. Let us examine this morelosely.The various onrete omputability theories disussed above have aommon form, whih is similar to that of the theory of omputable al-gebras (see setion 1.3), one di�erene being that, at present, the theory ofe�etive omputation on topologial algebras is not ompletely settled.Let A be a topologial algebra. To ompute in A, a onrete represen-tation � : R ! A (7.1)of A must be made where:(i) R is a topologial algebra, made from omputable data types, onwhih we an ompute; and



478 J. V. Tuker and J. I. Zuker(ii) � is a surjetive ontinuous homomorphism that allows us to omputeon A by omputing on R.In partiular, there is a set Comp�(A) of funtions on A omputable interms of the representation (7.1).In general terms, when omparing abstrat and onrete models of om-putation, we may expet the following situation.Let AbsComp(A) be a set of funtions on A that is omputable in anabstrat model of omputation (e.g. the While language).Let ConRep(A) be a lass of onrete representations of the form� : R! A (e.g., a type 2 enumeration, or domain representation).For � 2ConRep(A), let Comp�(A) be the set of funtions on Aomputable with the representation �.Computing with a onrete representation R of an algebra A enablesmore funtions to be omputable than with an abstrat model of omputa-tion based solely on the operations. In fat, for a lass of onrete modelsof omputation, we expet the following abstration ondition to hold:AbsComp(A) � T�2ConRep(A)Comp�(A).In the ase of lasses of onrete models of omputation that are designedto haraterise the set of funtions on A that an be omputed, we anfurther postulate (using the generalised Churh{Turing thesis, f. setion8.9): While�(A) � T�2ConRep(A)Comp�(A)(ompare (1.1) of Setion 1.3). In the known onrete models, the om-putable funtions are ontinuous, therefore the ontinuity of the abstratomputable funtions is essential.There is muh to explore in the border between abstrat and onreteomputability. In Stewart [1999℄ it is shown that if A is an e�etive metrialgebra with enumeration �, then the While� approximable funtions onA are �-e�etive. The onverse is not true. To bridge this gap, non-deterministi hoie must be added to the `While' language, and many-valued funtions onsidered (see Tuker and Zuker [2000a℄).A theory of relations (or multi-valued funtions) de�ned by generalisedKleene shemes has been developed in Brattka [1996; 1997℄. Among severalimportant results is an equivalene between the abstrat omputabilitymodel based on Kleene shemes and Weihrauh's type 2 enumerability.The distintion between abstrat and onrete models made in Tukerand Zuker [1999℄ has pratial use in lassifying the many approahesto omputability in onrete strutures. However, this distintion needsfurther theoretial re�nement. One is reminded of the distintion between`internal' and `external', applied to higher type funtionals, in Normann[1982℄.



Computable funtions on algebras 4798 A survey of models of omputabilityIn this setion we will survey other abstrat approahes to omputability onabstrat algebras, and disuss two generalised Churh{Turing theses: onefor omputability of funtions, and one for spei�ation of relations, thatdraw support from theorems estabilishing the equivalene of di�erent mod-els. Earlier we have surveyed the origins of these abstrat generalisations(setion 1.4) and also the `independent' development of abstrat models foromputation on real and omplex numbers (setions 6 and 7.10).The alternative methods for de�ningWhile omputable funtions areto be found in various mathematial ontexts and have various objetives.Tehnially, they share the abstrat setting of a single-sorted abstrat stru-ture (i.e., an algebrai or a relational struture). Here we onsider theirommon purpose to be the haraterisation of those funtions e�etivelyomputable in an abstrat setting: their generalisation to a lass of many-sorted abstrat algebras is not diÆult.The �rst alternative approah we look at in some detail, namely: thelass of funtions de�ned from the operations of an algebra by the ap-pliation of omposition, simultaneous primitive reursion and least num-ber searh, whih we all the �PR omputable funtions. This model ofomputation was reated in Tuker and Zuker [1988℄ with the needs ofequational and logial de�nability in mind. A simpler generalisation usingindution shemes was made early on, in Engeler [1968a℄. We have foundthe various reursion shemes on N to be a primary soure of tehnialideas about funtions omputable on an abstrat algebra A, and a usefultool for appliations.TheWhile omputable funtions an also be haraterised by approahesbased upon(i) mahine models;(ii) high-level programming onstruts;(iii) axiomati methods;(iv) equational aluli;(v) �xed-point methods for indutive de�nitions;(vi) set-theoreti methods;(vii) logial languages.We will say something about eah in turn.8.1 Computability by funtion shemesWe will onsider omputability on N -standard algebras formalised byshemes, whih apply uniformly to all algebras of some �xed N -standardsignature �. These generalise the shemes in Kleene [1952℄, for onstrut-ing funtions over N by starting with some basi funtions and applying tothese omposition, simultaneous primitive reursion and the onstrutiveleast number operator. We write �; �; : : : for shemes.Eah sheme � will have a �xed type u ! v, with domain type u and



480 J. V. Tuker and J. I. Zukerrange type v, both produt types over �; we will also write � : u ! v.The semantis of suh a sheme, for eah A 2NStdAlg(�)(the lass ofN -standard �-algebras), will then be a funtion[[�℄℄A : Au ! Av :We will usually write �A for [[�℄℄A.We will onsider four notions of omputability by shemes: PR, PR�,�PR and �PR�, and see how they orrespond with our basi notions ofomputability involvingWhile and For programs.De�nition 8.1 (PR omputability). Given a standard signature �, wewill de�ne the familyPR(�) = hPR(�)u!v j u; v 2 ProdType(�)iwhere PR(�)u!v is the set of shemes of type u ! v over �. Then forany sheme � 2 PR(�)u!vand any A 2NStdAlg(�), we an de�ne afuntion on A: �A : Au ! Avof type u! v. These shemes generalise the shemes for primitive reursivefuntions over N in Kleene [1952℄. They are generated as follows.Basi funtion shemes(i) Initial funtions and onstants. For eah �-produt type u, �-sort sand funtion symbol F 2 Fun(�)u!s, there is a sheme F 2 PR(�)u!s.On eah A 2NStdAlg(�), it de�nes the funtionFA : Au ! As:(ii) Projetion. For all m > 0, u = s1 � : : :� sm and i with 1 � i � m,there is a sheme Uu;i 2 PR(�)u!si . It de�nes the projetion funtionUAu;i : Au ! Asi on eah A 2NStdAlg(�), whereUAu;i(x1; : : : ; xm) = xifor all (x1; : : : ; xm) 2 Au.(iii) De�nition by ases. For every �-sort s there is a sheme d 2PR(�)B�s�s!s. It de�nes the funtion dA : B � A2s ! As on eahA 2NStdAlg(�), wheredA(b; x; y) = (x if b = tty if b = fffor all b 2 B and x; y 2 As.



Computable funtions on algebras 481Indution: Building new funtion shemes from old(iv) Vetorisation. For all �-produt types u; v, where v = s1 � : : :� sn,and for all shemes �1; : : : ; �n, where �i 2 PR(�)u!si for i = 1; : : : ; n,there is a sheme � � vetu;v(�1; : : : ; �n) 2 PR(�)u!v . It de�nes thefuntion �A : Au ! Av on eah A 2NStdAlg(�), where�A(x) = (�A1 (x); : : : ; �An (x))for all x 2 Au.(v) Composition. For all �-produt types u; v; w, and for all shemes� 2 PR(�)u ! v and  2 PR(�)v!w there is a sheme � � ompu;v;w(�; ) 2 PR(�)u!w. It de�nes the funtion �A : Au ! Aw on eahA 2NStdAlg(�), where �A(x) = A(�A(x))for all x 2 Au.(vi) Simultaneous primitive reursion. For all �-produt types u; v; w, andfor all shemes � 2PR(�)u!v and  2 PR(�)nat�u�v!v there is a sheme� � primu;v(�; ) 2 PR(�)nat�u!v . It de�nes the funtion �A : N�Au !Av on eah A 2NStdAlg(�), where�A(0; x) = �A(x)�A(z + 1; x) = A(z; x; �A(z; x))for all z 2 N and x 2 Au.Now, for any A 2NStdAlg(�), we de�nePR(A) = hPR(A)u!v j u; v 2 ProdType(�)iwhere PR(A)u!v = f�A j � 2 PR(�)u!vg:It turns out that a broader lass of funtions provides a better gen-eralisation of the notion of primitive reursiveness, namely PR�(�) om-putability.De�nition 8.2 (PR� omputability). We de�ne PR�(�) to be thelass of PR(��) shemes for whih the domain and range types are in �,i.e.,PR�(�) =df hPR(��)u!v j u; v 2 ProdType(�) $ PR(��).Then any suh sheme � 2 PR�(�)u!v de�nes a funtion �A : Au ! Avon eah A 2NStdAlg(�).Also PR�(A) is the set of PR�(�)-omputable funtions on A.Next we add the onstrutive least number operator to the PR shemes.



482 J. V. Tuker and J. I. ZukerDe�nition 8.3 (�PR omputability). The lass of �PR shemes over�, �PR(�) = h�PR(�)u ! v j u; v 2 ProdType(�)i;is formed by adding to the PR shemes of De�nition 8.1 the following:(vii) Least number or � operator. For all �-produt types u and for allshemes � 2 �PRu�nat!bool there is a sheme ��minu(�) 2 �PR(�)u!nat.It de�nes the funtion �A : Au ! N on eah A 2NStdAlg(�), where forall x 2 Au, �A(x) ' �z[�A(x; z) = tt℄:hat is, �A(x) # z if, and only if, �A(x; y) # ff for eah y < z and �A(x; z) # tt.Also �PR(A) is the set of �PR(�)omputable funtions on A.Note that this sheme (as well as the sheme for simultaneous primitivereursion) uses the N -standardness of the algebra. Also, �PR omputablefuntions are, in general, partial.Again, however, a broader lass turns out to be a better generalisation,namely:De�nition 8.4 (�PR� omputability). The lass �PR�(�) onsistsof those �PR(��) shemes for whih the domain and range types are in�, i.e.,�PR�(�) =df h�PR(��)u!v j u; v 2 ProdType(�)i $ �PR(��):Also, for anyA 2NStdAlg(�), �PR�(A) is the set of �PR�(�)-omputablefuntions on A.We now ompare the above notions of sheme omputability with ournotions of omputability involving imperative programming languages.They orrespond as follows.Theorem 8.5. For any N-standard �-algebra A,(a) PR(A) = For(A),(b) PR�(A) = For�(A),() �PR(A) = While(A),(d) �PR�(A) = While�(A).These equivalenes hold uniformly over �.`Uniformity over �' in the above theorem means (taking, for example,ase (a), and writing ForPro(�) for the lass of For(�) proedures)that there are e�etive mappings�: PR(�) ! ForPro(�)and  : ForPro(�) ! PR(�)



Computable funtions on algebras 483(primitive reursive in the enumerated syntax) suh that for all PR(�)shemes �, For(�) proedures P and N -standard �-algebras A,[[�(�)℄℄A = [[�℄℄A and [[ (P )℄℄A = [[P ℄℄A;and similarly for parts (b), () and (d).Similar uniformity results hold for the equivalenes stated in the follow-ing subsetions.The above theorem an be proved by the tehniques of Tuker andZuker [1988℄ or Thompson [1987℄. Part (a), in the lassial ase over Nor Z, was originally proved in Meyer and Rithie [1967℄. For an expositionof parts (a) and () in the lassial ase, see, for example, Brainerd andLandweber [1974℄, Kfoury et al. [1982℄, Davis and Weyuker [1983, Chapter13℄ or Zuker and Pretorius [1993, Setion 13℄.Remark 8.6 (Course of values reursion). In our development above,we onsidered the lass PR(�) of primitive reursive shemes equivalentto For(�) omputability. From this we ould obtain the lass PR�(�)of shemes equivalent to For�(�) omputability by operating with thesame shemes PR, but over the extended array signature ��. An alter-native approah for strengthening PR(�) is to maintain the signature �,but strengthen the reursion sheme. More preisely, we de�ne the lassCR(�) of ourse of values reursive shemes by replaing the sheme (vi)for simultaneous primitive reursion by the sheme(vi0) Simultaneous ourse of values reursion. For all �-produt typesu; v and positive integers d, and for all shemes � 2CR(�)u!v ,  2CR(�)nat�u�vd!v and Æ1; : : : ; Æd where Æi 2CR(�)nat�u!nat (i = 1; : : : ; d),there is a sheme� � valu;v;d(�; ; Æ1; : : : ; Æd) 2 CR(�)nat�u!v :It de�nes the funtion �A : N � Au ! Av on eah A 2NStdAlg(�),where �A(0; x) = �A(x)and for z > 0�A(z; x) = (z; x; �A(Æ̂A1 (z; x); x); : : : ; �A(Æ̂Ad (z; x); x));where Æ̂i are the `reduing funtions' derived from Æi, de�ned byÆ̂i(z; x) ' min(Æ(z; x); z � 1) for z > 0:We also de�ne the lass �CR(�) of ourse of values reursive shemeswith the least number operator by adjoining the sheme (vii) for the �



484 J. V. Tuker and J. I. Zukeroperator to CR(�). We then obtain the two equivalenes (f. Theorem8.5):Theorem 8.7. For any N-standard �-algebra A,(a) CR(A) = PR�(A) ( = For�(A))(b) �CR(A) = �PR�(A) ( = While�(A)).Part (b) is proved in Tuker and Zuker [1988℄ by showing that �CR(A) =While�(A). (Part (a) an be proved similarly.) This proof is more deliatethan the proofs for Theorem 8.5. The diretion `(' is based on loalrepresentability and term evaluation arguments.Remark 8.8 (Some appliations of the sheme models).(1) These an be used easily in the mathematial modelling of many de-terministi systems, from omputers (e.g. Harman and Tuker [1993℄to spatially extended non-linear dynamial systems (Holden et al.[1992℄).(2) The �PR shemes have been adapted and extended to haraterisethe omputable relations on ertain metri algebras, inluding thealgebra of reals (Brattka [1996; 1997℄).8.2 Mahine modelsPerhaps the most onrete approah to generalising omputability theoryfrom N to an algebra A is that based upon models of mahines that handledata from A. To be spei�, we onsider some models alled A-register ma-hines that generalise, to a single-sorted relational struture A, the registermahine models on N in Shepherdson and Sturgis [1963℄ (see also Cutland[1980℄ for a development of reursive funtion theory using register ma-hines); the �rst A-register mahines appeared in Friedman [1971a℄.Some of these register mahine models are used in work on real numberomputation (Herman and Isard [1970℄, Shepherdson [1976℄ and Blum etal. [1989℄) and have been developed further independently of the earlierliterature (see our survey in setion 1.4).We will onsider four types of A-register mahine for an arbitrary single-sorted algebra.A (basi) A-register mahine has a �xed number of registers, eah ofwhih an hold a single element of A. The mahine an perform the basioperations of A and deide the basi relations of A; in addition, it anreloate data and test when two registers arry the same element.Thus, the programming language that de�nes the A-register mahinehas register names or variables r0; r1; r2; : : : and labels 0; 1; 2; : : : , and al-lows instrutions of the formr� := F (r�1 ; : : : ; r�m)r� := r� := r�if R(r�1 ; : : : ; r�m) then i else j



Computable funtions on algebras 485and, if equality is required,if r� = r� then i else jwherein �; �; �1; �m 2 N; i; j 2 N are onsidered as labels; and F; ; R aresymbols for a basi operation, onstant and relation, respetively.A program for an A-register mahine is alled, in Friedman [1971a℄, a�nite algorithmi proedure or fap, and it has the form of a �nite numberedor labelled list of A-register mahine instrutions I1; : : : ; In: Given a formalde�nition of a mahine state, ontaining the ontents of registers and thelabel of a urrent instrution, is it easy to formalise an operational seman-tis for the �nite algorithmi proedures | one in whih the instrutionsare given their onventional meaning.On setting onventions for input and output registers we obtain the lassFAP (A) of all partial funtions on A omputable by all �nite algorithmiproedures on A-register mahines.Seondly, an A-register mahine with ounting is an A-register mahineenhaned with a �xed, �nite number of ounting registers. Eah ountingregister an hold a single element of N and the mahine is able to put 0into a ounting register, add or subtrat 1 from a ounting register, andtest whether two ounting registers ontain the same number. Thus, anA-register mahine with ounting is an A-register mahine augmented bya onventional register mahine on N. (Impliitly, this is onerned withthe proess of N -standardisation of the algebra A by the addition of thenatural numbers N.)The programming language that de�nes the A-register mahine withounting has new variables 0; 1; 2; : : : for ounting registers, and newinstrutions � := 0� := � + 1� := � � 1if � = � then i else jfor �; � 2 N and i; j 2 N onsidered as labels.A program for an A-register mahine with ounting is alled a �nitealgorithmi proedure with ounting or fapC, and is a �nite numbered listof mahine instrutions. One again it is easy to give a formal semantisfor the language and to rigorously de�ne the lass FAPC(A) of all partialfuntions on A omputable by A-register mahines with ounting. The pointof this model is that it enhanes omputation on the abstrat algebra A withomputation on N.The A-register mahine and A-register mahine with ounting, and theirlasses of partial funtions FAP (A) and FAPC(A), were introdued andstudied in Friedman [1971a℄.Next, an A-register mahine with staking is an A-register mahine aug-mented with a staking devie into whih the entire ontents of the algebrai



486 J. V. Tuker and J. I. Zukerregisters of the A-register mahine an be opied at various points in theourse of a omputation.The programming language that de�nes the A-register mahine withstaking has a new variable s for the store or stak and the new instrutions:stak (i; r0; : : : ; rm)restore (r0; : : : ; rj�1; rj+1; : : : ; rm)if s = empty then k else marker.Here i; j; k 2 N are onsidered as labels, and the mahine has m reg-isters and one stak. Intuitively, what they mean for the mahine is asfollows. The `stak' instrution ommands the devie to opy the ontentsof all the registers and store at the top of a (single) stak, along withthe instrution label i. The `restore' instrution returns to the registersr0; : : : ; rj�1; rj+1; : : : ; rm the values stored at the top of the stak; thevalue of rj is lost (in order not to destroy the result of the subomputationpreeding the `restore' instrution), as is the instrution label. The testinstrution passes ontrol to instrution k if the stak is empty and to theinstrution indexed by the label ontained in the topmost element of thestak otherwise.A program for an A-register mahine with staking is alled a �nitealgorithmi proedure with staking or fapS, and is a �nite numbered list ofmahine instrutions. On formalising the semantis for the language, it iseasy to de�ne the lass FAPS(A) of all partial funtions on A omputableby A-register mahines with staking.Of ourse there are alternative designs for a staking devie of equivalentomputational power. The point of this model is that �rst, it enhanes thebounded �nite algebrai memory available in omputation by an A-registermahine with unbounded �nite algebrai storage, and seondly, it does notenable us to simulate ounting with natural numbers.Finally, an A-register mahine with ounting and staking is an A-register mahine augmented by both a ounting and staking devie. Aprogram for suh a mahine is alled a �nite algorithmi proedure withounting and staking or fapCS, and the lass of all partial funtions on Aomputable by suh mahines is denoted FAPCS(A). This stak devieand its assoiated lasses of funtions FAPS(A) and FAPCS(A) wereintrodued in Moldestad et al. [1980a; 1980b℄.Of ourse, in the ase of omputability of the natural numbers A = Nwe haveFAP (N) = FAPC(N) = FAPS(N) = FAPCS(N)but in the abstrat setting we have:Theorem 8.9. For any single-sorted algebra A, the inlusion relationshipbetween the sets of funtions is shown in Fig 17. Moreover, there exists analgebra on whih the above inlusions are strit.



Computable funtions on algebrasig. 17.This theorem is taken from Moldestad et al. [1980b℄. It and otherresults about these models make lear the fat that, when omputing inthe abstrat setting of an algebra A, adding� omputation on N� unbounded algebrai memory over Aboth separately, and together, inreases the omputational power of theformalism.The onnetion with the imperative models is easily desribed. Assum-ing the straightforward generalisation of the mahine models to aom-modate many-sorted algebra, we have:Theorem 8.10. For any standard �-algebra A,While(A) = FAP (A),WhileN (A) = FAPC(A),While�(A) = FAPCS(A).Three other mahine model formalisms of interest are the �nite algo-rithmi proedures with index registers (fapIR) and ountable algorithmiproedures (ap) in Shepherdson [1973℄ and the generalised Turing algo-rithms (gTa) in Friedman [1971a℄, all equivalent toWhile� omputability.In the obvious notation, we have:Theorem 8.11. For any standard �-algebra A,FAPCS(A) = GTA(A) = FAPIR(A) = CAP(A) = While�(A).In addition, it is onvenient at this point to mention Friedman's e�et-ive de�nitional shemes (eds) whih are a simple and transparent tehnialdevie for de�ning and analysing omputability on A. The e�etive de�ni-tional shemes have found a useful role in the logi of programs (see Tiuryn[1981b℄, for example).Theorem 8.12. For any standard �-algebra A,FAPCS(A) = EDS(A) = While�(A).



488 J. V. Tuker and J. I. Zuker8.3 High-level programming onstruts; programshemesPratial programming languages, espeially imperative languages, are arih soure of theoretial ideas about omputation. However, their devel-opment, from the 1940s to the present, has not had a dominant role inshaping omputability theories. The development of high-level onstruts,abstrat data types and non-deterministi onstruts for algorithmi spe-i�ation is learly relevant.The study of omputability via mahine models is akin to low-levelprogramming, where there is a simple orrespondene between instrutionsand mahine operations. In high-level programming, abstrations awayfrom the mahine are ahieved wherein a program statement or ommandan set o� a sequene of mahine operations. This break with program-ming a spei� arhiteture inreases the pratial need for mathematialsemantis. All our algebrai models are high-level sine they are based onabstrat data types that abstrat from the data representations and theiralgorithms.We have, of ourse, already studied some high-level onstruts in thelanguages for While and While� programs. However, in ontemplatinghigh-level onstruts with regard to generalising omputability theory, loseattention must be paid to the ideas about algorithms that motivate theirintrodution. Clearly, reursion and iteration are distint tools for de�ningalgorithms in onnetion with proedures. Non-deterministi onstruts,by ontrast, are proposed as tools for algorithm spei�ation, in order toabstrat away from algorithmi implementation. Non-deterministi ontroland data ommands, suh as those in the guarded ommand languageif b1 ! S1[j ; : : : ; [j bk ! Sk �do b1 ! S1[j ; : : : ; [j bk ! Sk od(Dijkstra [1976℄), or the non-deterministi assignmentx := y:�(x; y);where � is some ondition relating y to x (Bak [1983℄), or the randomassignment x := ?(Apt and Plotkin [1986℄), are needed to express appropriately the designof an algorithm. We have examined some of these non-deterministi on-struts in setion 5, where we showed, for example, that the random as-signment de�nes projetively semiomputable sets.In building a generalisation, it is prudent to onentrate on making aomprehensive deterministi theory, having lear relations with `lassial'omputability theory on N, and its appliations to other data types suh asR. Tehnially, to appreiate non-deterministi onstruts, a deterministitheory is a neessary prerequisite. Unfortunately, there are unanswered



Computable funtions on algebras 489questions as to the nature of the relationships between non-determinism,spei�ation and non-omputability, and (orrespondingly) between deter-minism, implementation and omputability. The programming of om-putations involving non-deterministi aspets of ontrol, onurreny andommuniation is also an important topi that we leave unexplored. (Wehave dealt with synhronous onurreny in onurrent assignments andin the sheme of simultaneous primitive reursion in setion 8.1.) We willreturn to the broad theme of programming languages and omputabilitytheory in setion 8.9.Here we will briey draw attention to a body of early work on theomputational power of elementary ontrol and data strutures.The systemati lassi�ation of programming features suh as itera-tions, reursions, `goto's, arrays, staks, queues and lists seems to havebegun in earnest with Lukham et al. [1970℄ and Paterson and Hewitt[1970℄. The entral notions are that of a program sheme and its interpre-tation in a model, and that of the equivalene of program shemes in allmodels. These ideas may be onsidered as tehnial preursors of the orre-sponding syntati and semanti onepts we use here, namely: program,state transformer semantis, abstrat data type, equivalene on K . Theimportane of a general syntati notion of a program sheme that an beapplied to abstrat strutures was disussed in Lukham and Park [1964℄and Engeler [1967℄. We note that in the latter paper omputation overarbitrary lasses of strutures is treated in the ourse of analysing programtermination by means of logial formulae from a simple fragment of L!1;!;Engeler [1967℄ is the origin of algorithmi and dynami logi.The study of the power of programming features ame to be knownas program shematology. Like program veri�ation, the subjet was on-temporary with, but independent of, researh on programming languagesemantis. The neessity of introduing abstrat strutures in suh a las-si�ation projet is easy to understand. From the point of view of program-ming theory the equivalene of most algorithmi formalisms for omputingon N with the partial reursive funtions on N is a mixed blessing. Thisstability of the omputational models illuminates our pereption of thesope and limits of omputer languages and arhitetures, and has manytehnial appliations in the mathematial theory of omputation. How-ever, the restrition to N fails to support an analysis of the intuitive dif-ferenes between programming with and without arrays, `goto's, Booleanvariables, and so forth.The researh on shematology has produed several program onstrutsand languages that are weaker than or equivalent to those of the four basimahine models disussed in setion 8.2. We refer the reader to Greibah[1975℄ for a general introdution to shematology and, in partiular, toShepherdson [1985℄ for a detailed disussion of many important results andtheir relation to mahine models. Other signi�ant referenes are Constableand Gries [1972℄, Chandra [1973℄ and Chandra and Manna [1972℄.



490 J. V. Tuker and J. I. ZukerHigh-level imperative programming models were slow to enter main-stream omputability theory, despite attention being drawn to the valueof this approah in Sott [1967℄. Some early textbooks to feature suhprogramming models were Brainerd and Landweber [1974℄, Manna [1974℄,Bird [1976℄ and Clark and Cowell [1976℄.8.4 Axiomati methodsIn an axiomati method one de�nes the onept of a omputation theory asa set �(A) of partial funtions on an algebraA having some of the essentialproperties of the set of partial reursive funtions on N. To take an example,�(A) an be required to ontain the basi algebrai operators of A; belosed under operations suh as omposition; and, in partiular, possessan enumeration for whih appropriate universality and s-m-n properties(see, for example, Rogers [1967℄) are true. Thus in setion 4 we saw thatWhile�(A) is a omputation theory in this sense.It is important to note that omputation theory de�nitions, of whihthere are a number of equivalent examples, require N to be part of theunderlying strutures A for the indexing of funtions:axiomati methods spei�ally address N-standard struturesand lasses of N-standard strutures.With referene to the de�nition skethed above, the following theoremis of importane here:Theorem 8.13. The setWhile�(A) of While� omputable funtions onan N-standard algebra A is the smallest set of partial funtions on A tosatisfy the axioms of a omputation theory; in onsequene, While�(A) isa subset of every omputational theory �(A) on A.The de�nition of a omputation theory used here is from Fenstad [1975;1980℄ whih take up the ideas in Moshovakis [1971℄. We note thatthe While omputable funtions oinide with the prime om-putable funtions of Moshovakis.Theorem 8.13 an be dedued using work in Moldestad et al. [1980b℄;see also Fenstad [1980, Chapter 0℄.The development of axiomatisations of omputable funtions inludesStrong [1968℄ and Wagner [1969℄. The axiomatisation of subreursive fun-tions is takled in Heaton and Wainer [1996℄.8.5 Equational de�nabilityOne of the earliest formalisations of e�etive omputability was by means offuntions e�etively rekonable in an equational alulus, a method knownas equational or Herbrand{G�odel{Kleene de�nability. This was the methodemployed to de�ne the reursive funtions in important works suh asChurh [1936℄ and Kleene [1952℄.



Computable funtions on algebras 491Equational de�nability may be generalised from N to an arbitrary al-gebra A with the natural result that, if A is an N -standard struture,equational de�nability is equivalent withWhile� omputability. The �rstattempt at suh a generalisation is Lambert [1968℄. We sketh a simplertreatment from Moldestad and Tuker [1981℄, adapted to many-sorted al-gebras.First we hoose a language Eqn= Eqn(�) for de�ning equations overa signature � and transforming them in simple dedutions. Let Eqnhave onstants a; b; ; : : : and variables x; y; z; : : : for data; and variablesp; q; r; : : : for funtions. Using the basi operations of the signature, weindutively de�ne �-terms t; : : : in the usual way. An equation in Eqn isan expression e � (t1 = t2), where t1 and t2 are terms of the same sort.A dedution of an equation e from a set of equationsE is a list e1; : : : ; ekof equations suh that for eah i = 1; : : : ; k one of the following holds:(i) ei 2 E;(ii) ei is obtained from ej for some j < i by replaing every ourreneof a variable x in ej by a onstant ;(iii) ei is obtained from ej for some j < i by replaing at least one o-urrene of a subterm t of ej by a onstant , where t has no freevariables, and for some j0 < i, ej0 � (t = ).An equation e is de�ned to be formally derivable or deduible from E,written E ` e, if there is a dedution of e from E.Thus, it remains to formulate equational dedutions with respet to agiven algebra A of signature � in order to formulate what it means for afuntion f on A to be equationally de�nable on A. This is essentially givingour system a semantis. The �rst semantial problem is to allow the basioperations of A to play a role in dedutions from a set of equations E, andthis is aomplished by permittingE ` p(1; : : : ; n) =  if FA(A1 ; : : : ; An ) = A:This is the reason why we add the onstants to Eqn.The seond semantial problem is to prove a single-valuedness propertyof the form:E ` p(1; : : : ; n) = a1 and E ` p(1; : : : ; n) = a2 =) a1 = a2:This done, we an de�ne f : Au ! A to be equationally de�nable over Aif for some �nite set of equations E and some funtion symbol p,E ` p(1; : : : ; n) =  =) f(A1 ; : : : ; An ) = Afor all onstants of Eqn.Let Eqn(A) denote the set of all equationally de�nable funtions on A.Theorem 8.14.



492 J. V. Tuker and J. I. Zuker(a) For any standard �-algebra A,Eqn(A) = FAPS(A).(b) For any N-standard �-algebra A,Eqn(A) = FAPCS(A) = While�(A).8.6 Indutive de�nitions and �xed-point methodsThe familiar de�nition of the reursive funtions on N based on the prim-itive reursion sheme of Dedekind and G�odel, and the least number op-erator of Kleene, appeared in Kleene [1936℄. Kleene provided a thoroughrevision of the proess of reursion on N suÆiently general to inlude re-ursion in objets of higher funtion type: see Kleene [1959; 1963℄. InPlatek [1966℄ there is an abstrat aount of higher-type reursion.Studies of higher type indutive de�nitions have been taken up by D.Sott and Y. Ershov, whose work forms part of domain theory (see, forexample, Stoltenberg-Hansen et al. [1994℄). The entral tehnial notionis that of �xed points of higher type operators.In Moldestad et al. [1980a℄ Platek's methods were analysed and lassi-�ed in terms of the mahine models of setion 8.2. Like equational de�n-ability, de�nability by �xed-point operators applies to an arbitrary algebraA and is there equivalent to fapS omputability. Thus, this notion oinideswith While� de�nability in an N -standard struture. We will sketh themethod (adapted to many-sorted algebras).First we onstrut the language FPD= FPD(�) for de�ning �xed-point operators. Let FPD have the data and funtion variables of Eqn,the equation language of setion 8.5. Using the basi operations of thesignature � and the �-abstration notation, we reate a set of �xed-pointterms of both data and funtion types:t ::= x j p j F j T (t1; : : : ; tn) j fp[�p � y1; : : : ; yn � t℄:Here p is a funtion variable, F is a basi operation of �, T is a term oftype funtion, t1; : : : ; tn and t are terms of type data, and y1; : : : ; yn aredata variables.Eah term de�nes a funtion on eah algebra A of signature �. Thede�nition of the semantis of terms is by indution on their onstrution,the terms of the form fp[�p � y1; : : : ; yn � t℄being assigned the unique least �xed point of the ontinuous monotonioperator de�ned by the notation �p � y1; : : : ; yn � t.A funtion f : Au ! A is de�nable by �xed-point terms over A if thereis a term t suh that for all x 2 Au, f(x) ' t(x).Let FPD(A) denote the set of all funtions de�nable by �xed-pointterms over A.



Computable funtions on algebras 493Theorem 8.15.(a) For any standard �-algebra A,FPD(A) = FAPS(A).(b) For any N-standard �-algebra A,FPD(A) = FAPCS(A) = While�(A).For more details see Moldestad et al. [1980a℄.An approah to omputation on abstrat data types, alternative to thatpresented in this hapter, is the development in Feferman [1992a; 1992b℄of a theory of abstrat omputation proedures, de�ned by least �xed-pointshemes, inuened by Moshovakis [1984; 1989℄. The `abstrat data types'here are lasses of strutures similar to our standard partial many-sortedalgebras, abstrat in the sense that they are losed under isomorphism,and the omputation proedures are abstrat in the sense that they areisomorphism invariant on the data types; f. Theorem 3.24. Types (orsorts) and operations an have an intensional or extensional interpretation.Another treatment of indutive de�nitions (also inuened by Moshov-akis) and a survey of their onnetions with mahine models is given inHinman [1999℄.8.7 Set reursionGiven a struture on A one an onstrut a set-theoreti hierarhy H(A)over A, taking A as so-alled urelements, and, depending upon the on-strution, develop a reursion theory on H(A). This is the methodology inNormann [1978℄ where ombinatorial operations on sets are employed tomake a generalisation of omputability. In Moldestad and Tuker [1981℄,Normann's set reursion shemes are applied to the domain HF (A), theset of hereditarily �nite subsets, so as to invest the general onstrutionwith omputational ontent. HF (A) is indutively de�ned as follows:(i) A � HF (A);(ii) if a1; : : : ; an 2 HF (A) then fa1; : : : ; ang 2 HF (A), n � 0.Thus, ; 2HF (A), a opy of N is imbedded in HF (A), and opiesof An (n = 2; 3; : : : ) are embedded in HF (A). From omputability onHF (A) a notion of omputability on A, set reursiveness, is easily ob-tained. Then, writing SR(A) for the lass of set-reursive funtions on A,we have:Theorem 8.16. For any standard �-algebra A,SR(A) = While�(A).8.8 A generalised Churh{Turing thesis for omput-abilityThe While� omputable funtions are a mathematially interesting anduseful generalisation of the partial reursive funtions on N to abstrat



494 J. V. Tuker and J. I. Zukermany-sorted algebras A and lasses K of suh algebras. Do they also giverise to an interesting and useful generalisation to A and K of the Churh{Turing thesis, onerning e�etive omputability on N?They do; though this answer is diÆult to explain fully and briey. Inthis setion we will only sketh some reasons. The issues are disussed inmore detail in Tuker and Zuker [1988℄.Consider the following naive attempt at a generalisation of the Churh{Turing thesis.Thesis 8.17 (A naive generalised Churh{Turing thesis foromputability).(a) The funtions `e�etively omputable' on a many-sorted algebra Aare preisely the funtions While� omputable on A.(b) The families of funtions `e�etively omputable' uniformly over alass K of suh algebras are preisely the families of funtions uni-formly While� omputable over K .Consider now: what an be meant by `e�etive omputability' on anabstrat algebra or lass of algebras?In the standard situation of alulation with N, the idea of e�etiveomputability is ompliated, as it is made up from many philosophialand mathematial ideas about the nature of �nite omputation with �-nite or onrete elements. For example, its analysis raises questions aboutthe mehanial representation and manipulation of �nite symbols; aboutthe equivalene of data representations; and about the formalisation ofonstituent onepts suh as algorithm; deterministi proedure; mehan-ial proedure; omputer program; programming language; formal system;mahine; and the funtions de�nable by these entities.The idea of e�etive omputability is partiularly deep and valuablebeause of the lose relationships that an be shown to exist between itsdistint onstituent onepts. However, only some of these onstituentonepts an be reinterpreted or generalised to work in an abstrat setting;and hene the general onept, and term, of `e�etive omputability' doesnot belong in a generalisation of the Churh{Turing thesis. In addition,sine �nite omputation on �nite data is truly a fundamental phenomenon,it is approriate to preserve the term with its established speial meaning.In seeking a generalisation of the Churh{Turing thesis we are tryingto make expliit ertain primary informal onepts that are formalised bythe tehnial de�nitions, and hene to larify the nature and use of theomputable funtions.We will start by trying to larify the nature and use of abstrat stru-tures. There are three points of view from whih to onsider the step fromonrete strutures to abstrat strutures, and hene three points of viewfrom whih to onsider the While� omputable funtions.First, there is abstrat algebra, whih is a theory of alulation basedupon the `behaviour' of elements in alulations without referene to their



Computable funtions on algebras 495`nature'. This abstration is ahieved through the onept of isomorphismbetween onrete strutures; an abstrat algebra A is `a onrete algebraonsidered unique only up to isomorphism'.Seondly, there is formal logi, whih is a theory about the sope andlimits of axiomatisations and formal reasonings. Here strutures and lassesof strutures are used to disuss formal systems and axiomati theories interms of onsisteny, soundness, ompleteness, and so on.Thirdly, in programming language theory, there is data type theory,whih is about data types that users may are to de�ne and that ariseindependently of programming languages. Here strutures are employedto disuss the semantis of data types, and isomorphisms are employedto make the semantis independent of implementations. In addition, ax-iomati theories are employed to disuss their spei�ations and implemen-tation.Data type theory is built upon and developed from the �rst two sub-jets: it is our main point of view.Computation in eah of the three ases is thought of slightly di�erently.In algebra, it is natural to think informally of algorithms built from thebasi operations that ompute funtions and sets in algebras, or over lassesof algebras uniformly. In formal logi, it is natural to think of formulae thatde�ne funtions and sets, and their manipulation by algorithms. In datatype theory, we use programming languages to de�ne a omputation. Eahof these theories, beause of its speial onerns and tehnial emphasis,leads to its own theory of omputability on abstrat strutures.Suppose, for example, theWhile� omputable funtions are onsideredwith the needs of doing algebra in mind. Then the ontext of studyingalgorithms and deision problems for algebrai strutures (groups, ringsand �elds, et.) leads to a formalisation of a generalised Churh{Turingthesis tailored to the language and use of an algebraist:Thesis 8.18 (Generalised Churh{Turing thesis for algebrai om-putability).(a) The funtions omputable by �nite deterministi algebrai algorithmson a many-sorted algebra A are preisely the funtions While�omputable on A.(b) The families of funtions uniformly so omputable over a lass Kof suh algebras are preisely the families of funtions uniformlyWhile� omputable over K .An aount of omputability on abstrat strutures from the point of viewof algebra is given in Tuker [1980℄.Now suppose that the While� omputable funtions are onsideredwith the needs of omputer siene in mind. The ontext of studies of datatypes, programming and spei�ation onstruts, et., leads to a formula-tion tailored to the language and use of a omputer sientist:Thesis 8.19 (Generalised Churh{Turing thesis for programming



496 J. V. Tuker and J. I. Zukerlanguages). Consider a deterministi programming language over an ab-strat data type dt.(a) The funtions that an be programmed in the language on an algebraA whih represents an implementation of dt, are the same as thefuntions While� programmable on A.(b) The families of funtions that an be programmed in the languageuniformy over a lass K of implementations of dt, are the same asthe families of funtions While� programmable over K .The thesis has been disussed in Tuker and Zuker [1988℄.The logial view of omputable funtions and sets, with its fous onaxiomati theories and reasoning, is a more abstrat view of omputationthan the view from algebra and data type theory, with their fous on al-gorithms and programs. The logial view is direted at the spei�ation ofomputations.8.9 A Churh{Turing thesis for spei�ationIn the ourse of our study, we have met logial and non-deterministi lan-guages that de�ne in a natural way the projetively omputable sets (and,equivalently, the projetively semiomputable sets). These languages aremotivated by the wish to speify problems and omputations, and to leaveopen all or some of the details of the programs that will solve the problemsand perform the omputations.To better understand the role of the projetive omputable sets, weintrodue the idea of an algorithmi spei�ation language whih inludessome ideas about non-deterministi programming languages. The prop-erties that haraterise an algorithmi spei�ation language are forms ofalgorithmially validating a spei�ation. An algorithmi spei�ation lan-guage is an informal onept that is intended to omplement that of adeterministi programming language. The problem we onsider is that offormalising the informal notion of an algorithmi spei�ation language bymeans of a generalised Churh{Turing thesis for spei�ation, based onprojetively omputable sets.There are four basi omponents to a omputation:(0) a data type;(1) a spei�ation of a task to be performed or problem to be solved;(2) spei�ations for algorithms whose input/output behaviour aom-plishes the task or solves the problem; and(3) algorithms with appropriate i/o behaviour.We model mathematially these omponents of a omputation, by assumingthat:(0Æ) a data type is a many-sorted algebra, or lass of algebras;(1Æ) a spei�ation of the task or problem is de�ned by a relation on thealgebra;



Computable funtions on algebras 497(2Æ) spei�ations of algorithms for the task or problem are de�ned byfuntions on the algebra; and(3Æ) algorithms are de�ned by programs that ompute funtions on thealgebra.Usually, the relations, funtions and programs are de�ned uniformly overa lass of algebras.Given a spei�ation S � Au �Avon an algebra A, the task is: for all x 2 Au, to alulate all or some y 2 Avsuh that R(x; y) holds, if any suh y exist. The setD =df fx 2 Au j 9yR(x; y)gmay be alled the domain of the task.Thus the task of omputing the relation an be expressed in the follow-ing funtional form: R̂ : Au ! P(Av)(where P(Av) is the power set of Av), de�ned for x 2 Au byR̂(x) =df fy 2 Av j R(x; y)g:Quite ommonly, the task is `simpli�ed' to omputing one or more so-alledseletion funtions for the relation.De�nition 8.20 (Seletion funtions). Let R � Au�Av be a relation.A funtion f : Au ! Avis a seletion funtion for R if(i) 8x[9yR(x; y) ) f(x) # and R(x; f(x))℄; and(ii) 8x[f(x) # ) R(x; f(x))℄.Notie that the domain and range of a seletion funtion f are projetions:dom(f) = fx 2 Au j 9yR(x; y)g;ran(f) = fy 2 Av j 9xR(x; y)g:Note also thatany partial funtion f is de�nable as the unique seletion fun-tion for its graph G(f) = f(x; y) j f(x) # yg.Other sets of use in spei�ation theory an be derived from these sets(e.g. weakest preonditions and strongest postonditions | see Tuker andZuker [1988℄).



498 J. V. Tuker and J. I. ZukerTo de�ne and reason about omputations on a data type, we must de�nea lass of relations, funtions and programs on an algebra A. The key ideasare those of formal languages that de�ne funtions, alled programminglanguages, and those that de�ne relations, alled spei�ation languages.The relation between a programming language P and a spei�ationlanguage S is that of satisfationj= � P � Sde�ned for p 2 P and s 2 S byp j= s () the funtion de�ned by p is a seletion funtionfor the relation de�ned by s.What properties of relations are needed for a spei�ation language?We propose two properties. The �rst is that it should be possible to`validate' (`test', `hek', ...) data against eah spei�ation. A basi ques-tion is, therefore:For any given data x and y, an we validate whether or not thegiven y is a valid output for the given input x?We de�ne the following informal onept:De�nition 8.21 (Algorithmi spei�ation language). An algorith-mi speifiation language is a language in whih any data for any task anbe validated.The proess of validation depends on the relations de�ned by the spe-i�ation. Our theory of omputability on algebras presents three ases:De�nition 8.22 (Algorithmi validation of spei�ations). Let Sbe a speifiation language.(a) S has deidable validation if eah relation it de�nes is omputable.(b) S has semideidable validation if eah relation it de�nes is semiom-putable.() S has projetively deidable validation if eah relation it de�nes isprojetively omputable.The seond property is `adequay'. A spei�ation language may bequite expressive, ontaining spei�ations for tasks for whih there does notexist an algorithmi solution. It should, however, be apable of expressingat least all those tasks whih are algorithmi. We therefore de�ne thefollowing informal onept:De�nition 8.23 (Adequate spei�ation language). A spei�ationlanguage is adequate if all omputations an be spei�ed in it.



Computable funtions on algebras 499To speify a funtion is to de�ne a relation for whih it is a seletionfuntion. Reall that any funtion is de�nable as the unique seletion fun-tion for its graph. Consider the adequay of an algorithmi spei�ationlanguage with eah of the three types of algorithmi validation above.(a) If a spei�ation language has deidable validation then not every par-tial omputable funtion an be spei�ed uniquely, sine the graph ofa partial omputable funtion need not be omputable (by a standardresult of lassial omputation theory).(b) If a spei�ation language has semideidable validation then everypartial omputable funtion an be spei�ed uniquely, sine the graphof a partial omputable funtion is semiomputable.() Thus a spei�ation language with projetively deidable validation isalso adequate for the de�nition of all possible omputations.Furthermore, there are many oasions when the adequay of a spei�-ation formalism demands greater expressiveness. The problem is to allowa lass of spei�ations that extends that of the semiomputable relations,and yet retains some hane of an e�etive test or hek.For example, let E � A be a omputable subset of an algebra A andonsider the membership relation for the subalgebra hEi of A generatedby E; using established notations, this is de�ned by:a 2 hEi , 9k � 09e1; : : : ; ek 2 E9t 2 Term(�)[TE(t; e1; : : : ; ek) = a℄:This relation is not semiomputable, nor even projetively omputable overA, but projetively omputable over A�.In examples of the above kind, the omputation and spei�ation of yfrom x involves a �nite sequene of auxiliary data z� that is `hidden' fromR, but an be reovered from the spei�ation and algorithm. This typeof spei�ation R has the formR(x; y) , 9z�R0(x; y; z�);where R0 is omputable. That is, R is projetively omputable (or semi-omputable) over A�.This is a weak form of the onept of a spei�ation that an be valid-ated algorithmially.We have seen a number of methods, involving logial and non-deterministilanguages, all of whih de�ne the projetions of omputable sets (or, equiv-alently, of semiomputable sets); we reall them briey:(i) Projetions in �rst-order languages. Consider the �rst-order lan-guages Lang(�) and Lang(��)over the signatures � and �� with their usual semantis. The rela-tions that are �1 de�nable in these languages are the projetivelyWhile and While� omputable sets.



500 J. V. Tuker and J. I. Zuker(ii) Horn lause languages. In Tuker and Zuker [1989; 1992a℄ we stud-ied a generalisation of logi programming languages based on Hornlauses, and a semantis based on resolution. The relations de�nablein this spei�ation-um-programming language were the projetivelyWhile� omputable sets. The logi programming model was shownto be equivalent to ertain lasses of logially de�nable funtions (Fit-ting [1981℄).(iii) Other de�nabilities. In Fitting [1981℄ the relations are shown to beequivalent to those de�nable in Montague [1968℄. Hene, by work inGordon [1970℄, these all oinide with the searh omputable fun-tions of Moshovakis [1969a℄. A summary of these results is ontainedin Tuker and Zuker [1988, setion 7℄.(iv) Non-deterministi programming languages. Finally, reall from se-tion 5 that we have seen that onstruts allowing non-deterministihoies of data, state, or ontrol in programming languages also leadto the projetively omputable sets. In partiular, the modelsWhile� omputability with initialisation andWhile� omputability with random assignmentswere analysed.The equivalene results suggest that the onepts of projetive om-putablity and semiomputability are stable in the analysis of models ofspei�ation. The onept of an algorithmi spei�ation language in itsweak form, together with all the above equivalene results, leads us to for-mulate the following generalised Churh{Turing thesis for spei�ation, toomplement that for omputation:Thesis 8.24 (Generalised Churh{Turing thesis for spei�ationon abstrat data types). Consider an adequate algorithmi spei�ationlanguage S over an abstrat data type dt.(a) The relations on a many-sorted algebra A implementing dt that anbe spei�ed in S are preisely the projetively While� omputablerelations on A.(b) The families of relations over a lass K of suh algebras implementingdt, that an be spei�ed in S, uniformly over K , are preisely thefamilies of uniformly projetivelyWhile� omputable relations overK .This thesis has been disussed in Tuker and Zuker [1988℄.8.10 Some other appliationsComputations on many-sorted algebras lead to many investigations andappliations. We onlude by mentioning two.



Computable funtions on algebras 501(i) Provably omputable seletion funtions. In this hapter we have notdealt with proof systems, or the onnetions between provability and om-putability. In Tuker and Zuker [1988℄ we developed one suh onnetion,namely the use of proof systems for verifying program orretness.Another onnetion is based on lassial proof theory, and its applia-tion to omputability on the naturals. In Tuker et al. [1990℄ and Tukerand Zuker [1993℄ we investigated the generalisation of a partiular problemin lassial proof theory to the ontext of N -standard many-sorted signa-tures and algebras. Spei�ally, we developed lassial and intuitionistiformal systems for theories over N -standard signatures �. We showed, inthe ase of universal theories (i.e., theories with axioms ontaining onlyuniversal quanti�ers) that, in either of these systems:if an existential assertion is provable, then it has a PR�(�) seletionfuntion.(Reall the disussion of seletion funtions in setion 8.9.) It follows thatif a �PR�(�) funtion sheme is provably total, then it is ex-tensionally equivalent over � to a PR�(�) sheme.The methods are proof-theoretial, involving ut elimination. These resultsgeneralise to an abstrat setting previous results of Parsons [1971; 1972℄ andMints [1973℄ over the natural numbers.(ii) Computation on stream algebras. A stream over a set A is a sequeneof data from A : : : ; a(t); : : :indexed by time t 2 T . Disrete time T is modelled by the naturals N,and the spae of all streams over A is the set [N !A℄ of funtions from Nto A.Streams are ubiquitous in omputing. In hardware, where lokingand timing are important, most systems proess streams (see MEvoy andTuker [1990℄ and M�oller and Tuker [1998℄). Models of stream omputa-tion are needed for any wide spetrum spei�ation method suh as FOCUS(see Broy et al. [1993℄).A general theory of stream proessing is given in Stephens [1997℄.There is a strong need to inorporate stream omputation in a gen-eral theory of omputation on many-sorted algebras. Some �rst steps inthis diretion, partly motivated by tehnial questions arising in an al-gebrai study of stream proessing by synhronous onurrent algorithms(see Thompson and Tuker [1991℄), were taken in Tuker and Zuker [1994;1998℄.Another approah to this problem has been developed in Feferman[1996℄, within (an extensional version of) the framework of omputationtheory on abstrat data types presented in Feferman [1992a; 1992b℄, assummarised in setion 8.6.The relationship between these two theories of stream omputationsremains to be investigated.



502 J. V. Tuker and J. I. ZukerWe onlude with a brief survey of the former approah (Tuker andZuker [1994℄). Here we onsider the following problem: Given a algebraA (whih we suppose for notational simpliity is single-sorted), onsiderstream transformations of the formf : [N !A℄m ! [N !A℄as well as their artesian or unurried formsart(f) : [N !A℄m � N ! Ade�ned by art(f)(�; n) = f(�)(n):We ask the following questions.For any algebra A, what are the omputable stream transformationsover A?What is their relation to the omputable funtions on A?To answer these, we extend A to the stream algebra �A (setion 2.8), andonsider various models of omputation MC(A) over A, as well as theorresponding models of omputation MC( �A) over �A. These models ofomputation MC inlude the shemesPR, PR�, �PR, �PR�.We also onsider the operation of stream abstration or urrying inverse toart: for any funtion g : D � N ! A;where D is any artesian produt of arriers of �A, onstrut the funtion�abs(g) : D ! [N !A℄de�ned by (�abs(g))(d)(n) = g(d; n):The addition of this onstrut to models of omputation MC leads to mod-els of omputation �MC( �A):�PR; �PR�; ��PR; ��PR�:We investigate the relationships between these various models; for ex-ample, we prove some omputational onservativity results: for any fun-tion f on A, f 2 PR( �A) () f 2 PR(A)and similarly for �PR�, ��PR and ��PR�. We also show that om-putability is not invariant under Cartesian forms, i.e., there are funtionsf suh that



Computable funtions on algebras 503f =2 PR( �A) but art(f) 2 PR( �A)and similarly for �PR�, ��PR and ��PR�. Further, `�-elimination' doesnot hold, i.e., there are funtions f suh thatf 2 �PR( �A) but f =2 PR( �A);for example, the funtion onstA: A! [N !A℄, whih maps data a 2 A tothe stream onstA(a) 2 [N !A℄ with onstant value a, is in �PR( �A) butnot in PR( �A), or even in �PR�( �A). However, we do have �-elimination+ artesian form, in the sense thatf 2 �PR( �A) () art(f) 2 PR( �A);and similarly for �PR�, ��PR and ��PR�.There are advantages to working with stream transformers via theirartesian forms. It is then true, but diÆult to show, that the lass ofomputable funtions so de�ned is losed under omposition (Stephens andThompson [1996℄).Suppose now we ask for a model of omputability to satisfy a generalisedChurh{Turing thesis for stream omputations. The model �PR�( �A) ob-tained from our previous generalised Churh{Turing thesis on arbitrarystandard algebras (setion 8.8, substituting �A for A) would be too weak,sine (as we have seen) even the onstant stream funtion onstA is notomputable in it. However, we an show, as a orollary of the omputa-tional onservativity results, that the following models of omputation areequivalent:��PR( �A), ��PR( ��A), ��PR�( �A), ��PR( �A�).This shows that the model ��PR( �A)is robust, and suggests it as a good andidate for a generalised Churh{Turing thesis for stream omputations.(iii) Equational spei�ation of omputable funtions. Many funtions arede�ned as solutions of systems of equations from, for example, datatypetheory or real analysis. Sometimes onsiderable e�ort is expended in devis-ing algorithms to implement or ompute these funtions; this is the raisond'être of numerial methods for di�erential and integral equations.It is possible to develop a theory of equational spei�ations for fun-tions on algebras, inluding topologial algebras. In Tuker and Zuker[2000b℄ it is shown that any While� approximable funtion on a totalmetri algebra is the unique solution of a �nite system of onditional equa-tions, whih an be hosen uniformly over all algebras of the signature, andover all While� omputations. The onverse however is not true; spei-�ability by onditional equations is a more powerful devie than While�approximation { how muh more powerful, remains to be investigated.
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