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kerof natural numbers. The theory establishes what 
an and 
annot be 
om-puted in an expli
it way using �nitely many simple operations on numbers.The set of naturals and a sele
tion of these simple operations together forman algebra. A mathemati
al obje
tive of the theory is to develop, analyseand 
ompare a variety of models of 
omputation and formal systems forde�ning fun
tions over a range of algebras of natural numbers.Computability theory on N is of importan
e in s
ien
e be
ause it es-tablishes the s
ope and limits of digital 
omputation. The numbers arerealised as 
on
rete symboli
 obje
ts and the operations on the numbers
an be 
arried out expli
itly, in �nitely many 
on
rete symboli
 steps. Moregenerally, the numbers 
an be used to represent or 
ode any form of dis
retedata. However, the question arises:Can we develop theories of fun
tions that 
an be de�ned bymeans of algorithms on other sets of data?The obvious examples of numeri
al data are the integer, rational, real and
omplex numbers; and asso
iated with these numbers there are data su
has matri
es, polynomials, power series and various types of fun
tions. Inaddition, there are geometri
 obje
ts that are represented using the real and
omplex numbers, in
luding algebrai
 
urves and manifolds. Examples ofsynta
ti
 data are �nite and in�nite strings, terms, formulae, trees andgraphs. For ea
h set of data there are many 
hoi
es for a 
olle
tion ofoperations from whi
h to build algorithms.How spe
i�
 to the set of data and 
hosen operations are these
omputability theories? What properties do the 
omputabilitytheories over di�erent sets of data have in 
ommon?The theory of the 
omputable fun
tions on N is stable, ri
h and useful;will the theory of 
omputable fun
tions on the sets of real and 
omplexnumbers, and the other data sets also be so?The theory of 
omputable fun
tions on arbitrary many-sorted algebraswill answer these questions. It generalises the theory of fun
tions 
omput-able on algebras of natural numbers to a theory of fun
tions 
omputableon any algebra made from any family of sets and operations. The notionof `
omputable' here presupposes an algorithm that 
omputes the fun
tionin �nitely many steps, where a step is an appli
ation of a basi
 operationof the algebra. Sin
e the data are arbitrary, the algorithm's 
omputationsare at the same level of abstra
tion as the data and basi
 operations ofthe algebra. For example, this means that 
omputations over the �eld Rof real numbers are exa
t rather than approximate. Thus, the algorithmsand 
omputations on algebras are intimately 
onne
ted to their algebrai
properties; in parti
ular, the 
omputability theory is invariant under iso-morphisms.Already we 
an see that, in the general 
ase, there is likely to be arami�
ation of 
omputability notions. For example, in the 
ase of 
omput-able fun
tions on the set R of real numbers it is also natural to 
onsider
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omputability in terms of 
omputing approximations to the values of afun
tion. The use of approximations re
ognises the fa
t that data likethe real numbers are in�nite obje
ts and 
an, or must, be algorithmi
allyapproximated. This is the approa
h of 
omputable analysis. We wll presenttwo approa
hes to 
omputation on the reals: `algebrai
' and `topologi
al'.In our algebrai
 approa
h we are looking for what 
an be 
omputed exa
tly,knowing only what the operations reveal about the reals. The operationsmay have been 
hosen to reveal properties that are spe
i�
 to the reals,of 
ourse. In the topologi
al approa
h we are looking for what 
an be
omputed with essentially in�nite data on the basis of a �nite amount ofinformation. A
tually, this is again, at bottom, an algebrai
 approa
h, forthe performan
e of approximate 
omputations.In this 
hapter our obje
tive is to show the following:1. There is a general theory of 
omputable fun
tions on an arbitrary al-gebra that possesses generalisations of many of the important resultsin 
omputability theory on natural numbers.2. The theory provides te
hni
al 
on
epts and results that improve ourunderstanding of the foundations of 
lassi
al 
omputability and de-�nability theory on N.3. The theory has a wide range of appli
ations in mathemati
s and
omputer s
ien
e.4. The theory 
an be developed using many models of 
omputation thatare equivalent in that they de�ne the same 
lass of 
omputable fun
-tions.5. The theory possesses a generalisation of the Chur
h{Turing thesis forfun
tions and sets 
omputed by algorithms on any abstra
t algebrai
stru
ture.6. The theory generalises other less general but still abstra
t and alge-brai
, theories of �nite 
omputation, in
luding e�e
tive algebra and
omputable analysis.Computability theories on parti
ular and general 
lasses of algebras ad-dress 
entral 
on
erns in mathemati
s and 
omputer s
ien
e. Some, su
has e�e
tive algebra, have a long history and several sub�elds with deepresults, su
h as the theory of 
omputable rings and �elds and the wordproblem for groups. However, abstra
t 
omputability theories of the kindwe will develop have a short and less eventful history: starting in the late1950s, with theoreti
al work on 
ow
harts, many approa
hes have been pre-sented that vary in their generality and obje
tives; indeed, there has beena remarkable amount of reinventing of ideas and results, sometimes withnew motivations, su
h as obtaining results on: the stru
ture of 
ow
harts;the power of programming 
onstru
ts; the design of program 
orre
tnesslogi
s; the development of axiomati
 foundations for generalised re
ursiontheories based on ordinals and higher types; and the study of algorithmi
aspe
ts of ring and �eld theory, and of dynami
al system theory.
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kerIn this se
tion we will introdu
e in a very informal way the model of
omputation we will use (in se
tion 1.1) and pose some questions aboutexamples of 
omputable fun
tions (in se
tion 1.2). Then, in se
tion 1.3, wewill outline the relationship between our model and other models of 
om-putation, espe
ially e�e
tive algebra and 
omputable analysis. In se
tion1.4 the history of the theory of 
omputable fun
tions on abstra
t algebrasis sket
hed. In se
tions 1.5 and 1.6 the stru
ture of the 
hapter and itsprerequisites are dis
ussed in more detail.The 
hapter is 
losely linked s
ienti�
ally with the 
hapters in thisHandbook on universal algebra (Volume I), 
omputability (Volume I), ande�e
tive algebra (Volume IV); it also 
onne
ts with other subje
ts (e.g.,topology (Volume I) and those on semanti
s (Volumes III and IV)). Furtherinformation on prerequisites is given in se
tion 1.6.1.1 Computing in algebrasLet us begin with a basi
 question:Let S be a non-empty set of data and let f : Sn ! S be a totalor partial fun
tion. How do we 
ompute f?The methods we have in mind start with postulating an algebra A 
on-taining the set S. The algebra may 
onsist of a �nite family of non-emptysets A1; : : : ; Ak
alled the 
arriers of the algebra, one of whi
h is the set S and another isthe set B of Booleans. The algebra is also equipped with a �nite family
1; : : : ; 
pof elements of the sets, 
alled 
onstants, and a �nite familyF1; : : : ; Fqof fun
tions on the sets 
alled operations; these fun
tions are of the formF : As1 � : : :�Asn ! Asand 
an be total or partial. Among the operations are some standardfun
tions on the Booleans. Su
h an algebra is 
alled a standard many-sorted algebra; we say it is standard be
ause it 
ontains the Booleans andtheir spe
ial operations. An algebra is often written(A1; : : : ; Ak; 
1; : : : ; 
p; F1; : : : ; Fq):A set � of names for the data set, 
onstants and operations (and theirarities) of the algebra A is 
alled a signature.
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tions on algebras 323For most of the time we will use many-sorted algebras with �nitelymany 
onstants and total operations, but we will need the 
ase of partialoperations to dis
uss the relationship between our 
omputable fun
tionsand 
ontinuous fun
tions on topologi
al algebras su
h as algebras of realnumbers, and algebras with in�nite data streams.The problem is to develop and 
lassify models of 
omputation thatdes
ribe ways of 
onstru
ting new fun
tions on the set S from the basi
operations of the algebra A. In parti
ular, ea
h model of 
omputationM isa method or te
hnique whi
h we use to de�ne the notion that the fun
tionf on the 
arriers of A is 
omputable from the operations on A by meansof method M; and we 
olle
t all su
h fun
tions into the setM-Comp(A)of fun
tions M-
omputable over the algebra A.There are many useful 
hoi
es for a model of 
omputation M withwhi
h to develop a 
omputability theory|we list several in a survey inse
tion 8. In this 
hapter we fo
us on a theory for 
omputing with a simpleimperative model, namely the While programming language.In this programming language, basi
 
omputations on an algebra A areperformed by 
on
urrent assignment statements of the formx1; : : : ; xn := t1; : : : ; tnwhere x1; : : : ; xn are program variables and t1; : : : ; tn are terms or expres-sions built from variables and the operation symbols from the signature ofthe algebra A; and xi and ti 
orrespond in their types (1 � i � n).The 
ontrol and sequen
ing of the basi
 
omputations are performed bythree 
onstu
ts that form new programs from given programs S1, S2 andS, and Boolean test b:(i) the sequential 
omposition 
onstru
tS1;S2(ii) the 
onditional bran
hing 
onstru
tif b then S1 else S2 �(iii) the iteration 
onstru
t while b do S od:The set of all programs so 
onstru
ted over the signature � is denotedWhile(�).The operational semanti
s of a While program is a fun
tion that,given an initial state, enumerates every state of a resulting 
omputation.The input/output (i/o) semanti
s of a while program is a fun
tion that
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kertransforms initial states to �nal states, if they exist. To 
ompute a fun
tionon A by means of aWhile program we formulate a simple 
lass of fun
tionpro
edures based onWhile programs; a fun
tion pro
edure P has the formP � pro
 in a out b aux 
 begin S endwhere a, b, 
 are lists of input, output and auxiliary variables, respe
tively,and S is a While program, satisfying some simple 
onditions. The se-manti
s of a pro
edure P is a fun
tion [[P ℄℄A on A whose input and outputtypes are determined by the types of the lists of input and output variablesa and b.A fun
tion f is While 
omputable on algebra A if there is a Whilefun
tion pro
edure that 
omputes it, i.e., [[P ℄℄A = f . All While 
omput-able fun
tions on A are 
olle
ted in the set While(A).A set is de�ned to be While 
omputable, or de
idable, if its 
hara
-teristi
 fun
tion is While 
omputable. It is While semi
omputable, orsemide
idable, if it is the domain of a partialWhile 
omputable fun
tion;in other words, if it is the halting set of a While program.A 
ru
ial property of an abstra
t model of 
omputation is that it isdesigned to apply to any algebra or 
lass of algebras. Two important
onsequen
es are the following.Firstly, it is easy to explore uniform 
omputation where programs gen-erate 
omputations over a 
lass of implementations or representations ofdata types in a uniform way. For example, think of aWhile program thatis intended to implement Eu
lid's algorithm to 
al
ulate greatest 
ommondivisors in a way that is uniform over a 
lass of algebras. By su
h a `
lass'we 
ould mean, for example, any of the following: (i) the 
lass of all Eu-
lidean domains, (ii) the isomorphism 
lass of all (ideal, in�nite) imple-mentations of the ring of integers, (iii) the 
lass of (a
tual, �nite) ma
hineimplementations of the integers.Se
ondly, it is easy to employ 
ertain forms of type 
onstru
tions. Sin
ewe 
an 
ompute on any algebra (possessing the Booleans) using the pro-gramming model, we 
an augment an algebra A to form a new algebra A0,by adding new types and operations, and apply the programming modelto A0. Adding new data sets and operations is a key a
tivity in theory andpra
ti
e. In parti
ular, three modest expansions of an algebra A that havesigni�
ant pra
ti
al e�e
ts and (as we shall show) interesting mathemati
altheories are:(a) adding the set N of natural numbers and its standard operations toA to make a new algebra AN ;(b) adding �nite sequen
es, and appropriate operations, to A to make analgebra A�.(
) adding in�nite streams, and appropriate operations, to A to make analgebra �A.
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tions on algebras 325We apply the model of 
omputation to form new 
lasses of 
omputablefun
tions, namely:While(AN ); While(A�) and While( �A).By this means it is trivial to add 
onstru
ts like 
ounters, �nite arrays andin�nite data streams to the theory of 
omputation, though it is not trivialto 
hart the 
onsequen
es.In summary, what me
hanisms are available for 
omputing in an alge-bra? The methods of 
omputation are merely:(i) basi
 operations of the algebra; and(ii) sequen
ing, bran
hing and iterating the operations.Is equality 
omputable? Do we have available unlimited data storage?Can we sear
h the algebra for data?We will see that for any many-sorted algebra A with the Booleans, byadding the naturals, we 
an add(iii) any algorithmi
 
onstru
tion on a numeri
al data representation;and, by adding A�, we 
an add(iv) lo
al sear
h through all elements of the subalgebra generated by giveninput data;(v) unlimited storage for data in 
omputations.To obtain equality we have to postulate it as a basi
 operation of thealgebra.We will study these models of 
omputation. The most important turnsout to be the programming language While�, whi
h 
onsists of Whileprograms with the naturals and �nite arrays, and is de�ned simply byWhile�(A) = While(A�).This is the fundamental model of imperative programming that yields afull generalisation, to an arbitrary many-sorted algebra A, of the theory of
omputable fun
tions on the set N of natural numbers, and for whi
h thegeneralised Chur
h{Turing thesis for 
omputation on A will be formulatedand justi�ed.1.2 Examples of 
omputable and non-
omputable fun
-tionsFirst, let us look at the raw material of our theory, namely problems 
on-
erning 
omputing fun
tions and sets on spe
i�
 algebrai
 stru
tures. Wewill give a list of questions about 
omputing with While programs ondi�erent algebras and invite the reader to spe
ulate on their answers; it isnot essential that the reader understand or re
ognise all the 
on
epts inthe examples. The idea is to prepare the reader for the role of algebrai
stru
tures in the theory of 
omputable fun
tions and sets, and arouse hisor her 
uriosity.
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kerLet B be the set of Booleans and let N, Z, Q, R and C be the sets ofnatural, integer, rational, real and 
omplex numbers, respe
tively.1. Are the sets of fun
tionsWhile 
omputable over the following alge-bras the same as those 
omputable over (N; 0; n+ 1)?(N; 0; n+ 1; n+m; n �m; n = m)(N; 0; n+ 1; n+m; n �m; nm; n = m)(N; 0; 1; n+m; n �m; n = m)(N; 0; n+m; n �m; n = m)(N; 0; n+m; n = m)(N; 0; n �m; n = m)2. Consider ea
h of the following fun
tions:f(n) = 4f(n) = nf(n) = n+ 1f(n;m) = n+mf(n;m) = n�mIn ea
h 
ase is f 2 While(N; 0; n� 1)?3. Let B be the set of Booleans and f : B k ! B . Is f 2While(B ; tt; ff;and; not)?4. Let A be a �nite set and f : A! A. Is f 2While(A; 
1; : : : ; 
p; F1;: : : ; Fq) for any 
hoi
e of 
onstants 
i and operations Fj on A?5. Consider the algebra(B ;N ; [N ! B ℄; tt; ff; and, not, 0; n+ 1; eval)of Booleans expanded by adding the set N of naturals with zero andsu

essor, and the set [N ! B ℄ of in�nite sequen
es, or streams, ofBooleans, with the evaluation map eval:[N ! B ℄ � N ! B de�nedby eval(b; n) = b(n). Are the following fun
tionsWhile 
omputableover this algebra:shift: [N ! B ℄ � N ! B de�ned by shift(a; n) = a(n+ 1);Shift: [N ! B ℄ ! [N ! B ℄ de�ned by Shift(a)(n) = a(n+ 1)?6. Whi
h of the following sets of Boolean streams are(i) While 
omputable, and(ii) While semi
omputable, over the stream algebra in question 5?f a j for some n; a(n) =ttgf a j for all n; a(n) =ttgf a j for in�nitely many n; a(n) = ttgf a j a(0) = tt , : : : ; a(n) =ttg for some �xed n7. Consider ea
h of the following fun
tions:f(x) = 4 f(x) = 
oor(px)f(x) = p2 f(x) = 2xf(x) = � f(x) = sin(x)f(x) = x f(x) = 
os(x)f(x) = x5 f(x) = tan(x)f(x) = px f(x) = ex
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h 
ase, is f While 
omputable over (R; 0; 1; x + y;�x;x � y; x�1)8. Are 
os(x) and tan(x) While 
omputable over (R; 0; 1; x + y;�x;x � y; x�1; sin(x))?9. Let f : R2 ! R be the step fun
tionf(x; r) = (0 if x < r1 if x � r:Is f While 
omputable over (R; 0; 1; x+ y; �x; x � y; x�1)?10. Whi
h of the following subsets of R are(a) While 
omputable, and(b) While semi
omputable, over the �eld of real numbers?(i) The rational sub�eld Q of the �eld of reals(ii) The sub�eld Q(p2) of the �eld of reals generated by Q and p2(iii) The sub�eld Q(pp j p prime) of the �eld of reals generated byQ and the set fpp j p primeg(iv) The sub�eld Q(r) of the �eld of reals generated by Q and anon-
omputable real number r(v) The sub�eld A R of the �eld of reals 
ontaining pre
isely the realalgebrai
 numbers11. Is the subalgebra A of (R; 0; 1; x + y; �x; x � y; x�1; ex) generatedby Q While semide
idable?12. Is there a While program over (R; 0; 1; x + y; �x; x � y; x�1; px)that 
omputes all the real roots of all quadrati
 equations with real
oeÆ
ients?13. Consider the polynomialp(X) � a0 + a1X + a2X2 + : : :+ anXn (a0; : : : ; an 2 R):(a) Is the set fx 2 R j p(x) = 0g of roots of pWhile de
idable over(R; 0; 1; x+ y; �x; x � y; x�1; a0; : : : ; an)?(b) For ea
h n �nd operations to add to the algebra (R; 0; 1; x +y; �x; x � y; x�1) to 
al
ulate the n roots of the polynomial as fun
-tions of the 
oeÆ
ients.14. Consider the algebra (R; B ; 0; 1; x+ y; �x; x � y; x�1; x = y) whi
hadds equality =: R2 ! B to the �eld of reals. What new fun
tionsf : Rk ! R 
an be 
omputed?15. Consider the algebra (R; B ; 0; 1; x+ y; �x; x � y; x�1; x = y; x < y)whi
h adds ordering <: R2 ! B to the �eld of reals. What newfun
tions f : Rk ! R 
an be 
omputed?16. Is every 
y
li
 subgroup hti of the 
ir
le group S1 While de
idable?
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ker17. If f : R ! R isWhile 
omputable on (R; 0; 1; x+y; �x; x�y; x�1),is f 
ontinuous?18. Can any 
ontinuous fun
tion f : R ! R be approximated (in somesuitable metri
) by a fun
tionWhile 
omputable over (R; 0; 1; x+y; �x; x � y; x�1)?19. What is the relationship, for fun
tions on R, between 
omputabilityin the sense of 
omputable analysis, and While 
omputability on(R; 0; 1; x+ y; �x; x � y; x�1)?20. Is there an algebra A(R) 
ontaining R, for whi
hRe
(R) = While(A(R)),where Re
(R) is the set of fun
tions 
omputable on R in the senseof re
ursive or 
omputable analysis?21. Consider the many-sorted algebra(R; N; [N ! R℄; 0R; 1R; x+ y; �x; 0N; n+ 1; eval)that is an expansion of the additive Abelian group of reals, madeby adding the naturals with zero and su

essor, in�nite sequen
es orstreams of real numbers, and the evaluation map eval : [N ! R℄�N !R de�ned by eval(a; n) = a(n). Are the following fun
tions While
omputable on this algebra:add: [N ! R℄2 � N ! R de�ned by add(a; b; n) = a(n) + b(n);Add: [N ! R℄2 ! [N ! R℄ de�ned by Add(a; b)(n) = a(n) + b(n)?22. Are 
omplex 
onjugation �z and modulus jzj of a 
omplex numberz While 
omputable over the following algebras?(i) (C ; 0; 1; x+ y; �x; x � y; x�1)(ii) (C ; 0; 1; i; x+ y; �x; x � y; x�1)23. Is the set fig While de
idable over either of the �elds listed inquestion 22?24. Consider the fun
tion f(x) = 4x(1� x) on the reals. Is the orbit off , de�ned by orb(f; x) = ffn(x) j n 2 N; 0 � x � 1gWhile 
omputable over the �eld of real numbers?25. Are the fra
tal subsets of C , su
h as the Mandelbrot and Julia sets,While de
idable over the �eld of 
omplex numbers?26. Are the following subsets of C either While de
idable, or Whilesemide
idable, over the algebra (C ; B ; 0; 1; i; jzj; x+y; �x; x�y; x�1;=)?(i) The set fig(ii) The set of all roots of unity(iii) The set of all algebrai
 
omplex numbers



Computable fun
tions on algebras 32927. Consider the rings Z[X1; : : : ; Xn℄ of all polynomials in n indeter-minates over the integers. Is the ideal membership relationq 2 (p1; : : : ; pm)(in q; p1; : : : ; pm) While de
idable over this ring?28. Consider the rings F [X1; : : : ; Xn℄ of all polynomials in n indeter-minates over a �eld F . Is the ideal membership relation Whilede
idable over this ring?29. Consider the algebra T(�, X) of all terms over signature � in the�nite set X of indeterminates. Let AX be the set of assignments toX in an algebra A. De�ne the term evaluation fun
tionT : TE(�, X)�AX ! Aby TE(t; a) = t(a). Is TE While 
omputable over the algebraformed by simply 
ombining the algebras T (�; X) and A?30. (a) Are all �rst-order de�nable subsets of natural numbers While
omputable with respe
t to the following algebras?(i) (N; 0; n+ 1; n+m; n �m)(ii) (N; 0; n+ 1; n+m)(iii) (N; 0; n+ 1)(b) Are the While semi
omputable sets pre
isely the �1-de�nablesets with respe
t to these algebras?31. Is any set of 
omplex numbers that is �rst-order de�nable over the�eld of 
omplex numbersWhile de
idable over this �eld? Is any setof real numbers that is �rst-order de�nable over the ordered �eld ofreal numbers While de
idable over this �eld?1.3 Relations with e�e
tive algebraIn 
omputer s
ien
e, many-sorted algebras are used to provide a generaltheory of data and, indeed, of whole 
omputing systems. They have beenemployed tospe
ify and analyse many new forms of data types;
lassify data representations;
hara
terise whi
h data types are implementable;model systems;analyse the modularisation of 
omputing systems;formalise the 
orre
tness of systems; andreason about systems.A many-sorted algebra models a 
on
rete representation of a data type orsystem; su
h representations are 
ompared by homomorphisms, axiomat-ised by equations and 
onditional equations, and prototyped by term rewrit-ing methods. There is a 
onsiderable theoreti
al and pra
ti
al literature
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keravailable whi
h may be a

essed through survey works su
h as Meseguerand Goguen [1985℄, Wirsing [1991℄, We
hler [1992℄ and Meinke and Tu
ker[1992℄.The theory of 
omputable fun
tions and sets on many-sorted algebrasis intended to provide an abstra
t theory of 
omputing to 
omplement thisabstra
t algebrai
 theory of data. With this in mind we ask the question:How is the theory of While 
omputable fun
tions and sets onmany-sorted algebras related to other theories of 
omputabilityon su
h algebras?We have mentioned earlier that there are many models of 
omputationthat 
an be applied to an arbitrary algebra and that turn out to de�ne thesame 
lass of fun
tions and sets as the While language; these equivalentmodels belong to the 
omputability theory and are the subje
t of se
tion8. Here we will dis
uss an important approa
h to analysing 
omputabilityon algebras 
alled e�e
tive algebra. E�e
tive algebra is 
on
erned withwhat algebras are 
omputable, or e�e
tive, and what fun
tions and setson these algebras are 
omputable, or e�e
tive. The subje
t is explained inStoltenberg-Hansen and Tu
ker [1995; 1999a℄.A starting point for the dis
ussion is the theory of the 
omputablefun
tions on the set N = f0; 1; 2; : : :g of natural numbers. A

ording tothe Chur
h{Turing thesis, the 
lass Comp(N) of 
omputable fun
tion onN, de�ned by any one of a number of models of 
omputation, is pre
isely the
lass of fun
tions de�nable by means of algorithms on the natural numbers.As we have noted, the algorithms are often over some algebrai
 stru
tureon N. In fa
t, seen from the algebrai
 theory of data, the algebras usedform a 
lass of 
on
rete representations of the natural numbers that isparameterised by both the 
hoi
e of operations and the pre
ise nature ofthe number representations (e.g.,binary, de
imal and roman). The extentto whi
h the theory of 
omputable fun
tions on N varies over the 
lass ofthese algebras of numbers is an important question, but one that is notoften asked. We expe
t there to be very little variation in pra
ti
e (but
ompare questions 1 and 2 of se
tion 1.2).In general terms, a 
omputability theory 
onsists of(a) a 
lass of algebrai
 or relational stru
tures to de�ne data and opera-tions; and(b) a 
lass of methods, whi
h we 
all a model of 
omputation, to de�nealgorithms and 
omputations on the data using the operations.A generalised 
omputability theory is one whi
h 
an be appliedto a stru
ture 
ontaining the set N of natural numbers to de�ne the setComp(N) of 
omputable fun
tions onComp(N). An abstra
t 
omputabil-ity theory is a 
omputability theory in whi
h the theory is invariant up toisomorphism (in some appropriate sense).To develop an abstra
t generalised 
omputability theory for any algebraA, and 
lassify the 
omputable fun
tions and sets on A, one 
an pro
eed
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tions. One 
an apply 
omputability the-ory on N to algebras using maps from sets of natural numbers to algebras
alled numberings. The long-established theories of de
ision problems insemigroups, groups, rings and �elds, et
. are examples of this approa
h.Furthermore, the theory of 
omputable fun
tions Comp(R) on the setR of real numbers in 
omputable analysis uses 
omputability theory onComp(N) to formalise how real number data and fun
tions are approxi-mated e�e
tively. Theories based on these approa
hes are parts of whatwe here 
all e�e
tive algebra.Alternatively, one 
an generalise the 
omputability theory on N to a
-
ommodate abstra
t stru
tures; the theory of 
omputable fun
tions onmany-sorted algebras developed in this 
hapter is an example, of 
ourse,and more will be said about equivalent models of 
omputation in se
tion8. However, there are examples of generalised 
omputation theories thatare stri
tly stronger, su
h as ordinal re
ursion theory, set re
ursion the-ory, higher type re
ursion theory and domain theory. Typi
ally thesefour generalised 
omputability theories allow in�nite 
omputations to re-turn outputs. To appre
iate the diversity of some of these theories itis ne
essary to examine 
losely their original motivations; seen from oursimple �nitisti
 algebrai
 point of view, generalised re
ursion theories havea surprisingly untidy histori
al development.Let us fo
us on the �rst dire
tion. E�e
tive algebra is a theory thatprovides answers for questions su
h as:When is an algebra A 
omputable? What fun
tions on A are
omputable? What sets on A are de
idable or, at least, semide-
idable?It attempts to establish the s
ope and limits of 
omputation by means ofalgorithms for any set of data, by applying the theory of 
omputation on Nto universal algebras 
ontaining the set of data using numberings. Thus, it
lassi�es what data 
an be represented algorithmi
ally, and what sets andfun
tions 
an be de�ned by algorithms, in the same terms as those of theChur
h{Turing thesis for algorithms on N. Assuming su
h a thesis, we maythen use the theory of the re
ursive fun
tions on N to give pre
ise answersto the above questions about algebras, and to the question:What sets of data and fun
tions on those data 
an be imple-mented on a 
omputer in prin
iple?The numberings 
apture the s
ope and limits of digital data represen-tation and, thus, e�e
tive algebra is a general theory of the digital view of
omputation. More spe
i�
ally, in e�e
tive algebra we 
an investigate the
onsequen
es of the fa
t that1. an algebra is 
omputable;2. an algebra is e�e
tive in some weaker senses; and
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ker3. a topologi
al algebra 
an be approximated by a 
omputable or e�e
t-ive algebra.Among the weaker senses are the 
on
epts of semi
omputable, 
osemi
om-putable and, most generally, e�e
tive algebras. For an algebra to be e�e
t-ive it must be 
ountable, so that its elements may be enumerated. For analgebra to be e�e
tively approximable it must have a topologi
al stru
ture,so that its elements may be approximated; the bulk of interesting topolo-gi
al algebras are un
ountable. A full a

ount of these 
on
epts is given inStoltenberg-Hansen and Tu
ker [1995℄. At the heart of the theory of e�e
t-ive algebra is the notion of a 
omputable algebra: a 
omputable algebra isan algebra that 
an be faithfully represented using the natural numbers ina re
ursive way. Here is the de�nition for a single-sorted algebra:De�nition 1.1. An algebra A = (A; 
1; : : : ; 
p; F1; : : : ; Fq) is 
omputableif: (i) the data of A 
an be 
omputably enumerated|there exists a re
ur-sive subset 
� � N and a surje
tion� : 
� ! N
alled a numbering, that lists or enumerates, possibly with repetitions,all the elements of A; (ii) the operations of A are 
omputable in theenumeration|for ea
h operation Fi : An(i) ! A of A there exists a re-
ursive fun
tion Fi : 
�n(i) ! 
�that tra
ks the Fi in the set 
� of numbers, in the sense that for allx1; : : : ; xn(i) 2 
�,Fi(�(x1); : : : ; �(xn(i))) = �(fi(x1; : : : ; xn(i)));(iii) the equivalen
e of numeri
al representations of data in A is de
idable|the equivalen
e relation �� de�ned byx1 �� x2 () �(x1) = �(x2)is re
ursive.An equivalent formulation, in the algebrai
 theory of data, is that A is
omputable if it is the image of a re
ursive algebra 
� of numbers under ahomomorphism � : 
� ! A whose kernel �� is de
idable. (This simplealgebrai
 
hara
terisation leads to new methods of generalising 
omputabil-ity theories: see Stoltenberg-Hansen and Tu
ker [1995℄).What me
hanisms are available for 
omputing in a 
omputable algebra?Via the enumeration, the methods in
lude:(i) basi
 operations of the algebra;(ii) sequen
ing, bran
hing and iterating the operations;



Computable fun
tions on algebras 333(iii) any algorithmi
 
onstru
tion on the numeri
al data representation;(iv) global sear
h through all elements of the algebra;(v) unlimited storage for data in 
omputations;(vi) the equality relation on the algebra via the 
ongruen
e.Conditions (i) and (ii) are shared with our While programming modeland, indeed, are ne
essary for an algebrai
 theory: re
all se
tion 1.1. Thereare also a number of features that extend the methods of ourWhilemodel,in
luding 
onditions (iii) and, more dramati
ally, (iv). Using the propertiesof the numbers that represent the data we 
an perform global sear
hesthrough the data sets (by means of an ordering on the 
ode set), andstore data dynami
ally without limitations on data storage (by means of apairing on the 
ode set). Note that 
ondition (vi) is a de�ning feature of
omputable algebras and 
an be relaxed (as in the 
ase of semi
omputableor e�e
tive algebras, for instan
e).Note that an algebra A is 
omputable if there exists some 
omputablenumbering � for A. The 
omputability of fun
tions and sets over A maydepend on the numbering �; thus, to be more pre
ise, we should say thatA, its fun
tions and subsets et
. are �-
omputable. Let us de�ne the 
om-putable subsets and fun
tions for su
h an algebra.De�nition 1.2 (Sets and maps). Let A be an algebra of signature �,
omputable under the numbering � : 
� ! A.(1) A set S = Ak is �-de
idable, �-semide
idable or �-
osemide
idable ifthe 
orresponding set��1(S) = f(x1; : : : ; xk) 2 
�k j (�(x1); : : : ; �(xk) 2 Sgof numbers is re
ursive, re
ursively enumerable (r.e.) or 
o-re
ursivelyenumerable (
o-r.e.) respe
tively.(2) A fun
tion � : A ! A is an �-
omputable map if there exists are
ursive fun
tion f : 
� ! 
� su
h that for all x 2 
�, f(�(x)) =�(f(x)); or, equivalently, f 
ommutes the following diagram:A ������������! A�x?? x??�
� �����������!f 
�Let Comp�(A) be the set of all �-
omputable maps on A.For any 
omputable algebra, there are many 
omputable numberings,some of whi
h may have desirable properties; for example, it is the 
asethat every 
omputable algebra has a bije
tive numbering with 
ode set N.
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kerLet C(A) be the set of all 
omputable numberings of the algebra A. The
hoi
e of a numbering � 2 C(A) suggests that the e�e
tiveness of a subsetor fun
tion on A may depend on �. To illustrate, let S � A and 
onsiderthe following questions:Is S de
idable for all 
omputable numberings of A; or de
id-able for some, and unde
idable in others; or unde
idable for all
omputable numberings of A?Another question 
on
erns the invarian
e of 
omputable maps.If A is 
omputable under two numberings � and � then whatis the relation between the sets Comp�(A) and Comp�(A)?What is \�2C(A) Comp�(A)?Consider our abstra
t model based on While programs. We have notedthat While(N; 0; n+ 1) = Comp(N).The question then arises for our algebras:What is the relationship between While(A) and Comp�(A)for an arbitrary 
omputable representation �?We 
an prove that if A is 
omputable thenWhile(A) � \�2C(A)Comp�(A): (1.1)(In fa
t this in
lusion holds for mu
h weaker hypotheses on A.) The 
on-verse in
lusion does not hold in general. To see why, 
onsider the algebra(N; 0; n� 1);and the use of a While program to 
ompute a fun
tion f : Nn ! N. Itturns out that for any x1; : : : ; xn 2 N,f(x1; : : : ; xn) � max(x1; : : : ; xn)be
ause assignments 
an only redu
e the value of the inputs. It followsthat While(N; 0; n� 1) $ \�2C(A)Comp�(N; 0; n� 1) (1.2)be
ause in any numbering the su

essor fun
tion S(x) = x + 1 
an be
omputed.
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ult to answer is the question: When isWhile(A) = \�2C(A)Comp�(A)?Some results in this dire
tion are known.Inequality (1.2) is not a weakness of the abstra
t theory. Rather it isan indi
ation of the fa
t that the abstra
t models provide a more sensitiveanalysis of �nite 
omputations. For example, the abstra
t theory revealsthe spe
ial properties of the algebras of numbers that give 
omputabilitytheory on N its spe
ial 
hara
teristi
s: the theory of Comp�(A) is thesame as the theory of While�(A) when A is an algebra �nitely generatedby 
onstants.1.4 Histori
al notes on 
omputable fun
tions on alge-brasThe generalisation of the theory of 
omputable fun
tions to abstra
t alge-bras has a 
ompli
ated history. On the one hand the 
onne
tions between
omputation and algebra are intimate and an
ient: algebra grew from prob-lems in 
omputation. However, the fa
t that it is now ne
essary to explainhow 
omputation theory 
an be 
onne
ted or applied to algebra is an aber-ration, and is the result of interesting intelle
tual and so
ial mutations inthe past. It is a signi�
ant task to understand the history of generalisa-tions of 
omputability theory, with questions for resear
h by historians ofmathemati
s, logi
 and 
omputing, as well as so
iologists of s
ien
e.The story that underlies this work involves the development of alge-bra; the development of 
omputability theory; intera
tions between 
om-putability theory and algebra; and appli
ations to 
omputing. Some of the
onne
tions between 
omputation theory and algebra have been providedin other Handbook 
hapters: for notes on the histories ofe�e
tive algebra, see Stoltenberg-Hansen and Tu
ker [1995℄;
omputable rings and �elds, see Stoltenberg-Hansen and Tu
ker [1999a℄;algebrai
 methods in 
omputer s
ien
e, see Meinke and Tu
ker [1992℄.In the following notes we dis
uss the nature of generalisations and pointout the earliest work on abstra
t 
omputability theory. Se
tion 8 is devotedto a fairly detailed survey of the literature.We �rst list some 
ommon-sense reasons for generalising 
omputabilitytheory. A 
ommon view is to say that the purpose of a generalisation of
omputability theory is one or more of the following:(i) to say something new and useful about the original theory;(ii) to provide new methods of use in 
omputer s
ien
e and mathemati
s;(iii) to illuminate and in
rease our understanding of the nature of 
om-putation.
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kerAs will be seen, the theory of 
omputable fun
tions on many-sorted algebrasis 
ertainly able to meet the goals (i){(iii). For a dis
ussion of these andother reasons for generalising 
omputability theory, see Kreisel [1971℄.Broadly speaking, it is often the 
ase that a new mathemati
al gener-alisation of an old theory fo
uses on a few basi
 te
hni
al ideas, results orproblems in the old theory and makes them primary obje
ts of study in thenew theory. If the generalised theory is te
hni
ally satisfying then a sub-stantial subje
t 
an be built on foundations 
onsisting of little more thansome modest te
hni
al motivations. Re
ent history re
ords many attemptsat generalisations of 
omputability theory that have di�erent, narrower,te
hni
al aims than those of the original theory. Indeed, in some 
ases, ifthe generalisation 
an be applied to analyse 
omputation on algebras thenits aims need not be parti
ularly useful or meaningful.Generalised 
omputability theories bear witness to the fa
t that 
om-putability theory has several 
on
epts, results and problems that 
an bearthe weighty load of a satisfying generalisation. For instan
e, on general-ising �niteness, and allowing in�nite 
omputations, theoreti
al di�eren
es
an be found that allow models of 
omputation to 
leverly meet goal (i),but not (ii) or (iii).Computability theory 
an also support a good axiomati
 framework inwhi
h deep results 
an be proved, and generalised 
omputability theoriesare models. For example, the axiomati
 notion of 
omputation theorydeveloped by by Mos
hovakis and Fenstad elegantly 
aptures basi
 resultsand advan
ed degree theory: see Stoltenberg-Hansen [1979℄ and Fenstad[1980℄.There is usually a good market for general frameworks in theoreti
alsubje
ts be
ause there is more spa
e in whi
h to seek ideas and show res-ults. Generality is attra
tive: there are many new te
hni
al 
on
epts andthe original theory 
an underwrite their value. Generalisations are devel-oped, gain an audien
e and reputation, and, like so many other te
hni
aldis
overies, await an appli
ation. Appli
ations 
an arise in more exoti
 or
ommonpla
e areas than their 
reators expe
ted. In the 
ase of generalis-ing 
omputability theory, some theories have useful appli
ations (e.g. in settheory), and some languish in the museum of possible models of axiomati
theories of 
omputation.Abstra
t 
omputability theory developed rather slowly, and owes mu
hto the development of programming languages.A starting point is the notion of the 
ow
hart. The idea was �rst seenin examples of programs for the ENIAC from 1946, published in Goldstineand von Neumann [1947℄. Flow
harts were adapted and used extensivelyin pra
ti
al work. For example, standards were provided by the Amer-i
an Standards Asso
iation (see Ameri
an Standards Asso
iation [1963℄and Chaplin [1970℄).To de�ne mathemati
ally the informal idea of a 
ow
hart requireda number of papers on 
ow diagrams, graph s
hemata and other mod-
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ommonly remembered papers are: Ianov [1960℄, P�eter [1958℄,Voorhes [1958℄, Asser [1961℄, Gorn [*1961℄ and Kaluzhnin [1961℄. By thetime of the 
elebrated B�ohm and Ja
opini [1966℄ paper on the 
onstru
tionof normal forms for 
ow
harts, the subje
t of 
ow
harts was well estab-lished.In some of these papers the underlying data need not be the naturalnumbers, strings or bits. In parti
ular, in Kaluzhnin [1961℄ 
ow
harts aremodelled using �nite 
onne
ted dire
ted graphs. These have verti
es eitherwith one edge to whi
h are assigned an operation, for 
omputation, or twoexit edges to whi
h are assigned a dis
riminator, for tests. The graphhas one vertex with no in
oming edge, for input, and one vertex with nooutgoing edge, for output. To interpret a so-
alled graph s
heme, a set offun
tions is used for the operations, and a set of properties is used for thedis
riminators.Kaluzhnin's work was used in various studies, su
h as Elgot's early work,and in Thiele [1966℄, a major study of programming, in whi
h 
ow diagramsare presented that are not ne
essarily 
onne
ted graphs. The semanti
s of
ow diagrams is de�ned here formally, in terms of the fun
tionsEl�;�(n) = obje
t or data after the nth step in 
ow diagram �starting at state �,Kl�;�(n) = edge in 
ow diagram � traversed after the n-th stepstarting at state �.using simultaneous re
ursions. Thiele's work in
uen
ed the formal develop-ment of operational semanti
s as found in the Vienna De�nition Language:see Lauer [1967; 1968℄ and Lu
as et al. [1968℄. The important point isthat predi
ate 
al
ulus with fun
tion symbols and equality is extended byadding expressions that 
orrespond with 
ow diagrams to make an algo-rithmi
 language involving graphs.Thus, in the period 1946{66, some of the basi
 topi
s of a theory of 
om-putation over any set of data had been re
ognised, in
luding: equivalen
eof 
ow
harts; substitution of 
owarts into other 
ow
harts; transforma-tions and normal forms for 
ow 
harts; and logi
s for reasoning about 
ow
harts.Flow
harts were not the only abstra
t model of 
omputation to be de-veloped.Against the ba
kground of early work on the prin
iples of programmingby A. A. Lyapunov and theoreti
al work by Ianov and others in the for-mer Soviet Union, Ershov [1958℄ 
onsidered 
omputation with any set ofoperations on any set of data. In Ershov [1960; 1962℄ the 
on
ept of oper-ator algorithms is developed. These are imperative 
ommands made fromexpressions over a set of operations; the algorithms allow self-modi�
ation.The model was used in early work on 
ompilation in the former SovietUnion. See Ershov and Shura-Bura [1980℄ for information on early pro-gramming.
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ker and J. I. Zu
kerOf parti
ular interest is M
Carthy [1963℄, whi
h reviewed the require-ments and 
ontent of a general mathemati
al theory of 
omputation. Itemphasises the idea that 
lasses of fun
tions 
an be de�ned on arbitrarysets of data. Starting with a (�nite) 
olle
tion F of base fun
tions on some
olle
tion of sets, we 
an de�ne a 
lass CfFg of fun
tions 
omputable interms of F . The me
hanism used is that of re
ursion equations with aninformal operational meaning based on term substitution. An abstra
t
omputability theory is an aim|not `merely' a model of programmingstru
ture et
.|and M
Carthy writes (p. 63):Our 
hara
terisation of CfFg as the set of fun
tions 
omputablein terms of the base fun
tions in F 
annot be independentlyveri�ed in general sin
e there is no other 
on
ept with whi
h it
an be 
ompared. However it is not hard to show that all partialre
ursive fun
tions in the sense of Chur
h and Kleene are inCfzero, su

g.This, of 
ourse, falls short of a generalised Chur
h{Turing thesis. Thepaper also mentions fun
tionals and the 
onstru
tion of new sets of datafrom old, in
luding a produ
t, union and fun
tion spa
e 
onstru
tion fortwo sets, and re
ursive de�nition of strings. M
Carthy's paper is eloquent,per
eptive and an early milestone in the mathemati
al development of thesubje
t.E. Engeler's innovative work on the subje
t of abstra
t 
omputabilitybegins in Engeler [1967℄. This 
ontains a mathemati
ally 
lear a

ount ofprogram s
hemes whose operations and tests are taken from a �rst-orderlanguage over a single-sorted signature. The programs are lists of labelled
onditional and operational instru
tions of the formk : if � then goto p else goto qk : do  then goto pwhere k, p and q are natural numbers a
ting as labels for instru
tions, � isa formula of the language and  is an assignment of one of the formsx:=
, x:=y or x:=f (y1; : : : ; yk)where x,y,... are variables, and 
 and f are any 
onstant and operationof the signature. Interpretations are given by means of a notion of state,mapping program variables to data in a model. A basi
 result proved hereis this:To ea
h program � one 
an asso
iate a formula � that is a
ountable disjun
tion of open formulae su
h that for all models,� terminates on all inputs from A () A j= �.Results involving the de�nability of the halting sets of programs in termsof 
omputable fragments of in�nitary languages will be proved in se
tion5 and applied in se
tion 6, where we refer to them as versions of Engeler'slemma.
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tions on algebras 339In Engeler [1968a℄ two new models of 
omputation are given: one isbased on a new form of Kleene �-re
ursion, the other on a dedu
tive sys-tem. The fun
tions 
omputable by the programs and these two modelsare shown to be equivalent. Engeler's development of the subje
t in theperiod 1966{76 addresses original and yet basi
 questions in
luding the
omputability of geometri
al 
onstru
ts, exa
t and approximate 
ompu-tation, and a Galois theory for spe
i�
ations and programs: see Engeler[1993℄.The study of program s
hemes and their interpretation on abstra
tstru
tures grew in the early 1970s, along with the theoreti
al 
omputer s
i-en
e 
ommunity. Problems 
on
erning program equivalen
e, de
idabilityand the expressive power of 
onstru
ts were studied and formed a sub-je
t 
alled program s
hematology (see, for example, Greiba
h [1975℄). Theproblem of �nding de
idable properties, and espe
ially �nding de
idableequivalen
e results, is work dire
tly in
uen
ed by Ianov [1960℄. The sub-je
t of program s
hemes, and the promise of de
idability results on abstra
tstru
tures, was addressed in the unpublished Lu
kham and Park [1964℄, andearly unde
idability results appeared in Lu
kham et al. [1970℄. Programs
hematology was part of the response to the need to develop a 
omprehen-sive theory of programming languages, joining early work on programminglanguage semanti
s, program veri�
ation and data abstra
tion also 
hara
-teristi
 of the period. We will look at the subje
t again in se
tion 8.The next milestone is that of Friedman [1971a℄. Friedman's paperhas re
eived a �ne exegesis in Shepherdson [1985℄ whi
h we re
ommend.Against a ba
k
loth of growing interest in the generalisations of 
om-putability theory by mathemati
al logi
ians, and inspired by the work ofMos
hovakis on 
omputation, Friedman 
onsidered the mathemati
al ques-tion (in Shepherdson's words):What be
omes of the 
on
epts and results of elementary re
ur-sion theory if, instead of 
onsidering only 
omputations on nat-ural numbers, we 
onsider 
omputations on data obje
ts fromany relational stru
ture?In this he gave four models of 
omputation for an algebra A. The �rst twowere based on register ma
hines, the programs for whi
h were 
alled �nitealgorithmi
 pro
edures (or faps). The third was a generalisation of Turingma
hines. The fourth was a model based a set of r.e. lists of 
onditionalformulae of the form Ri1& : : :&Riki ! tifor i = 1; 2; : : : , where the Rij are tests and the ti is a term, 
allede�e
tive de�nitional s
hemes. In se
tion 8 we will dis
uss these modelsagain.All four models 
ompute the partial re
ursive fun
tions on the naturalnumbers. Freidman organised some 22 basi
 theorems of 
omputabilitytheory on the natural numbers N into six groups whi
h were de�ned by
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kerthe properties of a stru
ture A that are suÆ
ient to prove the theorems onA. Also noteworthy are results whi
h showed some of these models are notequivalent in the abstra
t setting.Friedman's paper is te
hni
ally intense, with several good ideas andresults. Looking ba
k at the literature, one wonders why su
h an indis-pensable paper had not appeared before.The theory of 
omputation on natural numbers and strings began inmathemati
al logi
, motivated by questions in the foundations of mathe-mati
s. However, the theory of 
omputation on arbitrary algebrai
 and re-lational stru
tures began and was sustained in 
omputer s
ien
e, motivatedby the need to model programming language 
onstru
ts. Mathemati
allogi
 plays two roles: �rstly, it provides knowledge of abstra
t stru
tures,formal languages and their semanti
s; and se
ondly, it provides a deeptheory of 
omputation on natural numbers.Both the 
ompli
ated history of algebra and 
omputability theory men-tioned earlier (and sket
hed in the histori
al notes of other Handbook 
hap-ters), and the development of abstra
t 
omputability sin
e the 1950s, havemu
h to o�er those interested in the histori
al development of mathemati
altheories. In the matter of the development of abstra
t 
omputability thesebrief notes, 
oupled with our survey in se
tion 8, suggest some questions ahistori
al analysis might answer. Why have there been many independentattempts at making models of 
omputation but relatively few attemptsto show equivalen
ies, or undertake sustained programmes of theoreti
aldevelopment and appli
ations? Why have there been so many demonstra-tions of an ability to ignore earlier work and to reinvent ideas and results?Why was the development of the theory so slow and messy? Why was
omputability theory on the natural numbers not generalised to rings and�elds, or even relational stru
tures, before the Se
ond World War? Whydid the subje
t not �nd a home in mathemati
al logi
?It is 
lear that 
omputer s
ien
e played an essential role in 
reating thetheory of 
omputable fun
tions on abstra
t algebras. One is reminded ofM
Carthy's [1963℄ 
ommonly quoted words:It is reasonable to hope that the relationship between 
omputa-tion and mathemati
al logi
 will be as fruitful in the next 
enturyas that between analysis and physi
s in the last. The develop-ment of this relationship demands a 
on
ern for both appli
a-tions and for mathemati
al elegan
e.It also demands patien
e.1.5 Obje
tives and stru
ture of the 
hapterComputability theory over algebras 
an be developed in many dire
tionsand 
an be used in many appli
ations. In this short introdu
tion we have
hosen to emphasise 
omputation on general many-sorted algebras.We see algebra as providing a general theory of data that is theoreti
allysatisfying and pra
ti
ally useful. Therefore, theories of what is 
omputable
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tions on algebras 341over algebras are fundamental for a general theory of data.In se
tion 2 we de�ne the basi
 algebrai
 notions we will need: alge-bras with Booleans and naturals, relative homomorphisms, terms and theirevaluation, abstra
t data types, et
. In parti
ular, we look at expandingan algebra A, by adding new types su
h as �nite sequen
es to make a newalgebra A� that models arrays, and adding in�nite sequen
es to make anew algebra �A that models in�nite streams of data.In se
tion 3 we begin the study of 
omputing on algebras with Whileprograms. For a satisfa
tory theory, the algebras are required to in
ludethe Booleans and standard Boolean operations. Su
h algebras are 
alledstandard algebras. The semanti
s of While programs on A is given by anew te
hnique 
alled algebrai
 operational semanti
s (AOS). This involvesaxiomatising a fun
tion CompA that de�nes the state CompA(S; �; t) attime t in the 
omputation by program S starting in intial state �. Fromthis we obtain a state transformer semanti
s in whi
h a program S, appliedto a state �, may give rise to a �nal state [[S℄℄A(�).Simple but important properties of 
omputations are examined. First,the invarian
e of 
omputations under homomorphisms and isomorphisms:if algebras A and B are isomorphi
, then the semanti
al interpretationsof any While program S on A and B are isomorphi
. This result hasmany 
onsequen
es; for example, it 
om�rms that exe
uting aWhile pro-gram on equivalent implementations of a data type results in equivalent
omputations.The se
ond property is that ea
h 
omputation by a While programS takes pla
e in the subalgebra of A generated by the input. This is akey to understanding the nature of abstra
t 
omputation: in any algebra
omputations are lo
al to the input in this sense and, for instan
e, sear
hesare at best lo
al.Next, in se
tion 4, we 
onsider the universality of 
omputation byWhile programs. Let A be an algebra with Booleans and naturals. We
an 
ode the While programsS0; S1; S2; : : :by the natural numbers in A and ask if there exists a universal Whileprogram to 
ompute the fun
tion UnivA on A su
h thatUnivA(n; �) = [[Sn℄℄A(�):We prove that the universal fun
tion is While 
omputable on A if, andonly if, the term evaluation fun
tion is While 
omputable on A.The evaluation of terms is not always 
omputable. However, it isWhile 
omputable in several 
ommonly used algebras su
h as: semi-groups, groups, rings, �elds, latti
es, Boolean algebras; this be
ause su
halgebras have 
omputationally eÆ
ient normal forms for their terms. Forany algebra A, the algebra A� of �nite sequen
es from A has the property
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kerthat term evaluation is alwaysWhile 
omputable on it; hen
e, the modelof While� programs is universal.In se
tion 5 we turn our attention to sets. We begin with a study of
omputable and semi
omputable sets. We prove Post's theorem in thepresent setting. We also study the ideas of proje
tions of 
omputable andsemi
omputable sets. It turns out that the 
lasses of 
omputable and semi-
omputable sets are not 
losed under proje
tion. The notion of proje
tion isvery important sin
e it distinguishes 
learly between forms of spe
i�
ationand 
omputation. Furthermore, it fo
uses our attention to the di�eren
ebetween lo
al sear
h and global sear
h in 
omputation.Proje
tions also lead us to 
onsider the relationship between Whileprogramming and 
ertain non-deterministi
 
onstru
ts on data. These in-
lude: sear
h pro
edures; initialisation me
hanisms; and random assign-ments.Next, with ea
hWhile program is asso
iated a 
omputation tree. Withthis te
hnique, we prove that every semi
omputable set is de�nable by ane�e
tive in�nite disjun
tion of Boolean terms over the signature.In se
tion 6 we illustrate the 
ore of the theory with a study of itsappli
ation to 
omputing sets of real and 
omplex numbers over variousmany sorted algebras. We in
lude some pleasing examples from dynami
alsystems.In Se
tion 7 we return to the spe
ial properties and problems of 
om-putation of the reals. More generally, we study 
omputation on topologi
alalgebras. A key 
onsideration is the property that if a fun
tion is 
ompu-table then it is 
ontinuous. To guarantee a good sele
tion of appli
ationswe use partial fun
tions, whi
h raises interesting topologi
al issues. Thisstudy of programming over topologi
al algebras 
ontains new material.We also 
ontrast exa
t versus approximate 
omputation on the reals.The following fa
t was observed in Shepherdson [1976℄. Let f be a fun
tionon the reals. Then f is 
omputable in the sense of 
omputable analysis if,and only if, there is a fun
tion g whi
h is While 
omputable over thealgebra (R; B ;N ; 0; 1; x+ y; x:y; �x; : : : ) su
h thatjf(x)� g(n; x)j < 2�nfor all n 2 N and x 2 R. We extend and adapt this result to topologi
alalgebras.In se
tion 8 we survey other models of 
omputation and see their re-lation with While programs. We 
onsider brie
y: �-re
ursive fun
tions;register ma
hines; 
ow
harts; axiomati
 methods; set re
ursion; and equa-tional de�nability. A generalised Chur
h{Turing thesis is dis
ussed.There are many subje
ts that we have omitted from the dis
ussion, forexample: the deli
ate 
lassi�
ation of the power of 
onstu
ts, in
ludingtypes; 
omputations with streams; program veri�
ation; 
onne
tions withproof theory; 
onne
tions with model theory; degree theory; and gener-alised 
omplexity theory. There will be good work by many authors that
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tions on algebras 343we have negle
ted to mention, from ignoran
e or forgetfulness. We willbe pleased to re
eive reminders, information and suggestions. Abstra
t
omputability theory is a subje
t that o�ers its students 
onsiderable the-oreti
al s
ope, many areas of appli
ation, and s
ienti�
 longevity. We hopethis 
hapter provides a �rst introdu
tion that is satisfying, stimulating andpleasurable.We thank Jan Bergstra (Amsterdam), Martin Davis (NYU and Berke-ley), Jens Erik Fenstad (Oslo), Dag Norman (Oslo), Viggo Stoltenberg-Hansen (Uppsala) and Karen Stephenson (Swansea) for useful dis
ussionson aspe
ts of this work. We thank Peter Lauer (M
Master) and Ithel Jones(Swansea) for dis
ussions and information on the history of programminglanguage semanti
s. We also thank our 
olleagues and students in Swanseaand M
Master for their helpful responses to the material in 
ourses andseminars, espe
ially Je� Koster, Matthew Poole, Dafydd Rees, KristianStewart, Anton Wilder and Ian Woodhouse.Spe
ial thanks are due to Sol Feferman, who presented some of thematerial of this 
hapter at a graduate 
ourse in 
omputation theory atStanford University in spring 1999, and provided us with valuable feedba
k.We are parti
ularly grateful to Jane Spurr for her ex
ellent and essentialwork in produ
ing the �nal version of the 
hapter.The se
ond author is grateful for funding by a grant from the NaturalS
ien
e and Engineering Resear
h Coun
il of Canada.1.6 PrerequisitesFirst, we assume the reader is familiar with the theory of the re
ursivefun
tions on the natural numbers. It is treated in many books su
h asRogers [1967℄, Mal'
ev [1973℄, Cutland [1980℄ and Ma
htey and Young[1978℄. An introdu
tion to the subje
t is 
ontained in this Handbook (seePhillips [1992℄) and other handbooks (e.g. Enderton [1977℄).Se
ondly, we assume the reader is familiar with the basi
s of universalalgebra. Some mathemati
al text-books are: Burris and Sankappanavar[1981℄ and M
Kenzie et al. [1987℄. An introdu
tion to the subje
t with theneeds of 
omputer s
ien
e in mind is 
ontained in this Handbook (see Meinkeand Tu
ker [1992℄) and in We
hler [1992℄. The appli
ation of universalalgebra to the spe
i�
ation of data types is treated in Ehrig and Mahr[1985℄, Meseguer and Goguen [1985℄ and Wirsing [1991℄. The theory of
omputable and other e�e
tive algebras is 
overed by Stoltenberg-Hansenand Tu
ker [1995℄.Thirdly, we will need some topology. This is 
overed in many books,su
h as Dugundji [1966℄ and Kelley [1955℄ and in a 
hapter in this Handbook(see Smyth [1992℄).Finally, we note that the subje
t 
onne
ts with other subje
ts, in
ludingterm rewriting (see, for example, Klop [1992℄) and domain theory (see, forexample, Stoltenberg-Hansen et al. [1994℄).
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ker2 Signatures and algebrasIn this se
tion we de�ne some basi
 algebrai
 
on
epts, establish notationsand introdu
e three 
onstru
tions of many-sorted algebras. We will usemany-sorted algebras equipped with Booleans, whi
h we 
all standard al-gebras. Sometimes we use algebras with the natural numbers as well, whi
hwe 
all N-standard algebras. All our algebras have total operations, ex
eptin se
tion 7, where we 
ompute on topologi
al partial algebras.We are parti
ularly interested in the e�e
ts on 
omputations of addingand removing operations in algebras. To keep tra
k of these 
hanges, weuse expansions and redu
ts of algebras, and relative homomorphisms.The 
onstru
tions of new algebras from old involve adding (i) unspe
i-�ed elements, (ii) �nite arrays, and (iii) in�nite streams.2.1 SignaturesDe�nition 2.1 (Many-sorted signatures). A signature � (for a many-sorted algebra) is a pair 
onsisting of (1) a �nite set Sort(�) of sorts,and (2) a �nite set Fun
(�) of (primitive or basi
) fun
tion symbols, ea
hsymbol F having a type s1� : : :� sm ! s, where m � 0 is the arity of F ,and s1; : : : ; sm 2 Sort(�) are the domain sorts and s 2 Sort(�) is therange sort; in su
h a 
ase we writeF : s1 � : : :� sm ! s:The 
asem = 0 
orresponds to 
onstant symbols; we then write F :! sor just F : s.Our signatures do not expli
itly in
lude relation symbols; relations willbe interpreted as Boolean-valued fun
tions.De�nition 2.2 (Produ
t types over �). A produ
t type over �,or �-produ
t type, is a symbol of the form s1 � : : : � sm (m � 0),where s1; : : : ; sm are sorts of �, 
alled its 
omponent sorts. We de�neProdType(�) to be the set of �-produ
t types, with elements u; v; w; : : : .If u = s1 � : : :� sm, we put lgth(u) = m, the length of u. Whenlgth(u) = 1, we identify u with its 
omponent sort. When lgth(u) = 0, uis the empty produ
t type.For a �-produ
t type u and �-sort s, let Fun
(�)u!s denote the setof all �-fun
tion symbols of type u! s.De�nition 2.3 (�-algebras). A �-algebra A has, for ea
h sort s of �,a non-empty set As, 
alled the 
arrier of sort s, and for ea
h �-fun
tionsymbol F : s1 � : : :� sm ! s, a fun
tion FA : As1 � � � � �Asm ! As.For a �-produ
t type u = s1 � : : :� sm, we writeAu =df As1 � : : :�Asm :Thus x 2 Au if, and only if, x = (x1; : : : ; xm), where xi 2 Asi for i =1; : : : ;m. So ea
h �-fun
tion symbol F : u ! s has an interpretation
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tions on algebras 345FA : Au ! As. If u is empty, i.e., F is a 
onstant symbol, then FA is anelement of As.We will sometimes use the same notation for a fun
tion symbol F andits interpretation FA. The meaning will be 
lear from the 
ontext.For most of this 
hapter, we make the following assumption.Assumption 2.4 (Totality). The algebras A are total, i.e., FA is totalfor ea
h �-fun
tion symbol F .Later (in se
tion 7) we will drop this assumption, in our study of partialalgebras.We will sometimes write �(A) to denote the signature of an algebra A.We will also 
onsider 
lasses K of �-algebras. In parti
ular, Alg(�)denotes the 
lass of all �-algebras.We will use the following perspi
uous notation for signatures �:signature �sorts ...s, (s 2 Sort(�))...fun
tions ...F : s1 � : : :� sm ! s, (F 2Fun
(�))...endand for �-stru
tures A:algebra A
arriers ...As, (s 2 Sort(�))...fun
tions ...FA : As1 � : : :�Asm ! As, (F 2Fun
(�))...endExamples 2.5. (a) The algebra of naturals N0 = (N; 0; su

) has a sig-nature 
ontaining the sort nat and the fun
tion symbols 0: !nat andsu

:nat!nat. We 
an display this signature thus:
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kersignature �(N0)sorts natfun
tions 0: !nat,S:nat!natendIn pra
ti
e, we 
an display the algebra thus:algebra N0
arriers Nfun
tions 0: ! N,S: N ! Nendfrom whi
h the signature 
an be inferred. Below, we will often display thealgebra instead of the signature.(b) The ring of reals R0 = (R; 0, 1,+, -,�) has a 
arrier R of sort real, and
an be displayed as follows:algebra R0
arriers Rfun
tions 0,1: ! R,+;� : R2 ! R;� : R ! Rend(
) The algebra C0 of 
omplex numbers has two sorts, 
omplex and real, andhen
e two 
arriers, C and R. It in
ludes the algebra R0, and therefore hasall the operations on R listed in (b), as well as operations on C , as follows:algebra C0import R0
arriers Cfun
tions 0; 1; i : ! C ;+;� : C 2 ! C ;� : C ! C ;re,im: C ! R,� : R2 ! Cendwhere � is the inverse of re and im.(d) A group has the form
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arriers Gfun
tions 1 : ! G;� : G2 ! G;inv: G! Gendwhere the 
arrier G has sort grp.The 
on
epts of redu
t and expansion will be important in our work.De�nition 2.6 (Redu
ts and expansions). Let � and �0 be signatures.(a) We write � � �0 to mean Sort(�)� Sort(�0)and Fun
(�)�Fun
(�0).(b) Suppose � � �0. Let A and A0 be algebras with signatures � and�0 respe
tively.(i) The �-redu
t A0j� of A0 is the algebra of signature �, 
onsistingof the 
arriers of A0 named by the sorts of � and equipped withthe fun
tions of A0 named by the fun
tion symbols of �.(ii) A0 is a �0-expansion of A i� A is the �-redu
t of A0.Example 2.7. The algebra C0 (see Example 2.5(
)) is an expansion of R0to �(C0).De�nition 2.8 (Fun
tion types). We 
olle
t some de�nitions and no-tation. Let A be a �-algebra.(a) A fun
tion type over �, or �-fun
tion type, is a symbol of the formu ! v, with domain type u and range type v, where u and v are�-produ
t types.(b) For any �-fun
tion type u! v, a fun
tion of type u! v over A is afun
tion f : Au ! Av : (2.1)If v = s1 � : : :� sn then the 
omponent fun
tions of f are f1; : : : ; fn,where fj : Au ! Asj (2.2)for j = 1; : : : ; n, and for all x 2 Au,f(x) ' (f1(x); : : : ; fn(x)): (2.3)(We will explain the `'' in (
) below.) Conversely, given n fun
tionsfj as in (2.2), all with the same domain type u, and with range types(or sorts) s1; : : : ; sn respe
tively, we 
an form their ve
torisation asa fun
tion f satisfying (2.1) and (2.3).
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kerWe will investigate 
omputable ve
tor-valued fun
tions (2.1) over A.(
) Although all the primitive fun
tions of � are total, the 
omputablefun
tions on the �-algebra may very well be partial, as we will see.We use the following notation: if f : Au ! As and x 2 Au, then f(x)"(`f(x) diverges') means that x =2 dom(f); f(x) # (`f(x) 
onverges')means that x 2 dom(f); and f(x)#y (`f(x) 
onverges to y') meansthat x 2 dom(f) and f(x) = y.We also make the following 
onvention for 
onvergen
e of ve
tor-valued fun
tions: in the notation of (2.1) and (2.2), for any x 2 Au,we say that f(x)# if, and only if, fj(x)# for every 
omponent fun
tionfj of f , in whi
h 
ase f(x) = (f1(x); : : : ; fn(x)). Otherwise (i.e., iffj(x) " for any j with 1 � j � n); we say that f(x) ". (That is themeaning of the symbol `'' in (2.3) above.)De�nition 2.9 (Relations; proje
tions of relations). We 
olle
t somemore de�nitions and notation.(a) A relation on A of type u is a subset of Au. We write R : u if R is arelation of type u.Let R be a relation on A of type u = s1 � : : :� sm.(b) The 
hara
teristi
 fun
tion of R is the fun
tion �R : Au ! B whi
htakes the values tt on R and ff o� R.(
) The 
omplement of R in A is the relationR
 = AunR = fa 2 Au j a =2 Rg;also of type u.(d) (Proje
tions.) To explain this notion, we begin with an example.Suppose R : u where u = s1�s2�s3�s4�s5. Now let v = s1�s2�s3and w = s4 � s5. Then the proje
tion of R on v (or on Av), orthe Aw-proje
tion of R, is the relation S : v de�ned by existentiallyquantifying over Aw:S(x1; x2; x3) () 9x4; x5 2 Aw : R(x1; : : : ; x5):More generally (with R : u where u = s1 � : : :� sm) let !i be anylist of numbers i1; : : : ; ir su
h that 1 � i1 < : : : < ir � m, andlet !j = j1; : : : ; jm�r ,list f1; : : : ;mg n !i . Then uj!i denotes therestri
tion of u to !i , that is, the produ
t type si1 � : : : � sir ; andproj[uj!i ℄(R) is the proje
tion of R on !i (or on Auj!i ), or the Auj!j -proje
tion of R, that is, the relation S : uj!i de�ned by existentiallyquantifying over Auj!j :S(xi1 ; : : : ; xir ) () 9xj1 ; : : : ; xjm�r 2 Auj!j : R(x1; : : : ; xm):
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tions on algebras 3492.2 Terms and subalgebrasDe�nition 2.10 (Closed terms over �). We de�ne the 
lass T (�) of
losed terms over �, denoted t; t0; t1; : : : , and for ea
h �-sort s, the 
lassT (�)sof 
losed terms of sort s. These are generated indu
tively by therule: if F 2 Fun
(�)u!s and ti 2 T (�)si for i = 1; : : : ;m, whereu = s1 � : : :� sm, then F (t1; : : : ; tm) 2 T (�)s.Note that the impli
it base 
ase of this indu
tive de�nition is that ofm = 0, whi
h yields: for all 
onstants 
 : ! s; 
() 2 T (�)s. In this 
ase wewrite 
 instead of 
(). Hen
e if � 
ontains no 
onstants, T (�) is empty.De�nition 2.11 (Valuation of 
losed terms). For A 2Alg(�) and t 2T (�)s, we de�ne the valuation tA 2 As of t in A by stru
tural indu
tionon t: F (t1; : : : ; tm)A = FA((t1)A; : : : ; (tm)A):In parti
ular, for m = 0, i.e., for a 
onstant 
 : ! s,
A = 
A:We want a situation where T (�) is non-empty, and, in fa
t, T (�)s isnon-empty for ea
h s 2 Sort(�). We therefore pro
eed as follows.De�nition 2.12. The signature � is said to be:(a) non-void at sort s if T (�)s 6= ;;(b) non-void if it is non-void at all �-sorts.Assumption 2.13 (Instantiation). � is non-void.Throughout this paper we will make this assumption, ex
ept whereexpli
itly stated: see, for example, Remark 2.31(e). It simpli�es the theoryof many-sorted algebras (see Meinke and Tu
ker [1992℄).De�nition 2.14 (Default terms; default values).(a) For ea
h sort s, we pi
k a 
losed term of sort s. (There is at least one,by the instantiation assumption.) We 
all this the default term of sorts, written Æs. Further, for ea
h produ
t type u = s1 � : : :� sm of �,the default (term) tuple of type u, written Æu, is the tuple of defaultterms (Æs1 ; : : : ; Æsm).(b) Given a �-algebra A, for any sort s, the default value) of sort s in Ais the valuation ÆsA2 As of the default term, Æs; and for any produ
ttype u = s1 � : : :� sm, the default (value) tuple of type u in A is thetuple of default values ÆuA = (Æs1A ; : : : ; ÆsmA ) 2 Au.De�nition 2.15 (Generated subalgebras). Let X � Ss2Sort(�) As.Then hXiA is the (�-)subalgebra of A generated by X , i.e., the smallestsubalgebra of A whi
h 
ontains X , and hXiAs is the 
arrier of hXiA of sort



350 J. V. Tu
ker and J. I. Zu
kers. (See Meinke and Tu
ker [1992, xx3.2.6 �.℄ for de�nitions.) Also for aprodu
t type u = s1 � : : :� sm,hXiAu = hXiAs1 � : : :� hXiAsm :Similarly, for a tuple a 2 Au, haiA is the (�-)subalgebra of A generated bya, et
.Remark 2.16.(a) Using the terminology of se
tions 3.1{3.3, we 
an 
hara
terise (for all�-sorts s and �-produ
t types u) the sets hXiAs and hXiAu byhXiAs =f[[t℄℄A� j t 2 Terms(�) and for all x 2var(t); �(x) 2 XghXiAu=f[[t℄℄A� j t 2 TermTupu(�) and for all x 2var(t); �(x) 2 X:g(b) The smallest subalgebra of A is its 
losed term subalgebra, given byh;iA = ftA j t 2 T (�)g:(
) The instantiation assumption implies that for any X and every sorts, hXiAs 6= ;.De�nition 2.17 (Minimal 
arriers; minimal algebra).Let A be a �-algebra, and s a �-sort.(a) A is minimal at s (or the 
arrier As is mimimal in A) if As =h;iAs ,i.e., As is generated by the 
losed �-terms of sort s.(b) A is minimal if it is minimal at every �-sort.Example 2.18. To take examples from later:(a) Every N -standard algebra (se
tion 2.5) is minimal at sorts bool andnat.(b) The ring of reals R0 (Example 2.5) (or its standardisation (se
tion2.4) or N -standardisation (se
tion 2.5)) is not minimal at sort real.2.3 Homomorphisms, isomorphisms and abstra
t datatypesGiven a signature �, the notions of �-homomorphism as well as �-epi-morphism (surje
tive), �-monomorphism (inje
tive), �-isomorphism (bi-je
tive) and �-automorphism are de�ned as usual (see [Meinke and Tu
ker,1992, x3.4℄). We need a more sophisti
ated notion, that of relative homo-morphism.De�nition 2.19 (Relative homomorphism and isomorphism). Let� and �0 be signatures with � � �0. Let A and B be two standard �0-algebras su
h that Aj� = Bj�:
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tions on algebras 351(a) A �0-homomorphism relative to� fromA toB, or a �0/�-homomorph-ism � : A! B, is a Sort(�0)-indexed family of mappings� = h�s : As ! Bs j s 2 Sort(�0)iwhi
h is a �0-homomorphism from A to B, su
h that for all s 2Sort(�), �s is the identity on As.(b) A �0/�-isomorphism from A to B is a �0/�-homomorphism whi
h isalso a �0-isomorphism from A to B.(
) A and B are �0/�-isomorphi
, written A �=�0=� B, if there is a �0/�-isomorphism from A to B.De�nition 2.20 (Abstra
t data types). An abstra
t data type of sig-nature � (�-adt) is de�ned to be a 
lass K of �-algebras 
losed under�-isomorphism. Examples of �-adt's are:(a) the 
lass Mod(�,T) of all models of a �rst-order �-theory T ;(b) the isomorphism 
lass of a parti
ular �-algebra.2.4 Adding Booleans: Standard signatures and alge-brasAn very important signature for our purposes is the signature of Booleans:signature �(B)sorts boolfun
tions true, false: !bool,and, or: bool2 !boolnot: bool!boolendThe algebra B of Booleans, with signature �(B), has the 
arrier B =ftt; ffg of sort bool, and, as 
onstants and fun
tions, the standard interpre-tations of the fun
tion and 
onstant symbols of �(B). Thus, for example,trueB = tt and falseB = ff.Of parti
ular interest to us are those signatures and algebras whi
h
ontain �(B) and B.De�nition 2.21 (Standard signatures and algebras).(a) A signature � is a standard signature if(i) �(B) � �, and(ii) the fun
tion symbols of � in
lude a dis
riminatorifs : bool� s2 ! sfor all sorts s of � other than bool, and an equality operator
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kereqs : s2 ! boolfor 
ertain sorts s.(b) Given a standard signature �, a �-algebra A is a standard algebra if(i) it is an expansion of B, and(ii) the dis
riminators and equality operators have their standardinterpretation in A; i.e., for b 2 B and x; y 2 As,ifs(b; x; y) = (x if b = tty if b = ff;and eqs is interpreted as the identity on ea
h equality sort s.Let EqSort(�)�Sort(�) denote the set of equality sorts of �, and letStdAlg(�) denote the 
lass of standard �-algebras.Remark 2.22.(a) Stri
tly speaking, the de�nition of standardness of a signature � oralgebra depends on the 
hoi
e of the set EqSort(�) of equality sortsof �. However, our terminology and notation will not make thisdependen
e expli
it.(b) The exa
t 
hoi
e of the set of propositional 
onne
tives in B is not
ru
ial; any 
omplete set would do.(
) Ex
luding the sort bool from the sorts of the dis
riminator is notsigni�
ant; we 
an easily de�ne ifbool from the other Boolean oper-ators. Also, eqbool 
an easily be de�ned. (Exer
ise.)(d) Any many-sorted signature � 
an be standardised to a signature �Bby adjoining the sort bool together with the standard Boolean op-erations; and, 
orrespondingly, any algebra A 
an be standardisedto an algebra AB by adjoining the algebra B and the dis
riminatorand equality operators. Note that both A and B are redu
ts of thisstandardisation AB . (See the examples below.)(e) If A and B are two standard �-algebras, then any �-homorphismfrom A to B is a
tually a �/�(B)-homomorphism, i.e., it �xes theredu
t B.Examples 2.23.(a) The simplest standard algebra is the algebra B of the Booleans.(b) The standard algebra of naturals N is formed by standardising thealgebra N0 of Example 2.5(a), with nat as an equality sort, and,further, adjoining the order relation1 lessnat on N:1The reason for adjoining lessnat will be 
lear later: in the proof of Theorem 3.63(��=� 
onservativity for terms), we need it for the translation of ��-terms to �N -terms.
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tions on algebras 353algebra Nimport N0;Bfun
tions ifnat : B � N2 ! N;eqnat,lessnat:N2 ! Bend(
) The standard algebraR of reals is formed similarly by standardisingthe ring R0 of Example 2.5(b), with real as an equality sort:algebra Rimport R0;Bfun
tions ifreal:B � R2 ! R;eqreal:R2 ! Bend(d) We will also be interested (in se
tion 5) in the expansion R< of Rformed by adjoining the order relation on the reals lessreal: R2 ! B ,thus: algebra R<import Rfun
tions lessreal:R2 ! Bend(e) The standard algebra C of 
omplex numbers C is formed similarlyby standardising the algebra C0 of Example 2.5(
), with equality onboth R and C .(f) Again, we will 
onsider the expansion C< of C formed by adjoininglessreal.(g) The standard group G is formed similarly by standardising the groupG0, with equality on G .Throughout this 
hapter, we will assume the following, unless otherwisestated.Assumption 2.24 (Standardness). The signature � and the �-algebraA are standard.2.5 Adding 
ounters: N-standard signatures and alge-brasDe�nition 2.25.(a) A standard signature � is 
alled N-standard if it in
ludes (as wellas bool) the numeri
al sort nat, as well as fun
tion symbols for thestandard operations of zero, su

essor and order on the naturals:0: ! natS: nat ! natlessnat: nat2 ! bool
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keras well as the dis
riminator ifnat and the equality operator eqnat onnat.(b) The 
orresponding �-algebra A is N-standard if the 
arrier Anat is theset of natural numbers N = f0; 1; 2; : : :g, and the standard operations(listed above) have their standard interpretations on N.De�nition 2.26.(a) The N -standardisation �N of a standard signature � is formed byadjoining the sort nat and the operations 0; S, eqnat, lessnat and ifnat.(b) The N -standardisation AN of a standard �-algebra A is the �N -algebra formed by adjoining the 
arrier N together with 
ertain stand-ard operations to A, thus:algebra ANimport A
arriers Nfun
tions 0 : ! NS:N ! Nifnat:B � N2 ! Neqnat,lessnat:N2 ! Bend(
) The N -standardisation KN of a 
lass K of �-algebras is (the 
losurewith respe
t to �N/�-isomorphism of) the 
lass fAN j A 2 K g.Examples 2.27.(a) The simplestN -standard algebra is the algebraN of Example 2.23(b).(b) We 
an N -standardise the real and 
omplex rings R and C, and thegroup G of Examples 2.23, to form the algebras RN , CN and GN ,respe
tively.Remark 2.28.(a) For any standard A, both A and N are �-redu
ts of the N -standard-isation AN (
f. Remark 2.22(d)).(b) If A and B are two N -standard �-algebras, then any �-homorphismfrom A to B is a
tually a �/�(N )-homomorphism, i.e., it �xes theredu
t N (
f. Remark 2.22(e)).(
) A �-homomorphism (or �-isomorphism) between two standard �-algebras A and B 
an be extended to a �-homomorphism (or �-isomorphism) between AN and BN . (Exer
ise.)(d) If A is already N -standard, then AN will 
ontain a se
ond 
opy of N,with (only) the standard operations on it. Further, AN 
an be e�e
t-ively 
oded within A, using a standard 
oding of N2 in N. (Che
k.)(e) In parti
ular, (AN )N 
an be e�e
tively 
oded within AN .We will o

asionally have use of a notion stri
ter than N -standardness.
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tions on algebras 355De�nition 2.29 (Stri
t N-standardness).(a) An N -standard signature � is said to be stri
tly N-standard if itsonly fun
tion symbols with range sort nat are `0', `S' and `ifnat'.(b) An N -standard algebra is stri
tly N-standard if its signature is.Note that the N -standardisation of any algebra is stri
tly N -standard.2.6 Adding the unspe
i�ed value up; Algebras Au ofsignature �uIn this subse
tion, we need not assume that � and A are standard. For ea
hsort s of � let up be a new obje
t, representing an `unspe
i�ed value', and letAus = As[fupsg. For ea
h fun
tion symbol F of � of type s1 � : : :� sm !s, extend its interpretation FA on A to a fun
tionFA;u : Aus1 � : : :�Ausm �! Ausby stri
tness | i.e. the value is de�ned as up whenever any argument is up.Then the algebra Au, with signature �u, 
ontains:(i) the original 
arriers As of sort s, and fun
tions FA on them;(ii) the new 
arriers Aus of sort su, and fun
tions FA;u on them;(iii) a 
onstant unspe
ss : su to denote ups as a distinguished element ofAus; and(iv) an embedding fun
tion is : s ! su to denote the embedding of Asinto Aus, and the inverse fun
tion js : su ! s, mapping ups to thedefault term Æs for ea
h sort s.Further, if A is a standard algebra, we assume Au also in
ludes:(v) a Boolean-valued fun
tion Unspe
ss : su ! bool, the 
hara
teristi
fun
tion of ups;(vi) the dis
riminator on Aus for ea
h sort s; and(vii) the equality operator on Aus for ea
h equality sort s.Thus, if A is standard, Au is 
onstru
ted from A as follows:algebra Auimport A
arriers Aus (s 2 S)fun
tions ups : ! Aus (s 2 S),FA;u : Aus1 � : : :�Ausm ! Aus (F : s1 � : : :� sm ! s in �);is : As ! Aus (s 2 S);js : Aus ! As (s 2 S);Unspe
s : Aus ! B (s 2 S);ifsu : B � (Aus)2 ! Aus (s 2 S);eqsu : (Aus)2 ! B (s 2 Se)end
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kerwhere S=Sort(�)and Se = EqSort(�)(and the supers
ript A has beendropped from the new fun
tion symbols).Also, K u is (the 
losure with respe
t to �u=�-isomorphism of) the 
lassfAu j A 2 Kg.Remark 2.30.(a) The algebra Au is a �u-expansion of A. If � has r sorts, then �u has2r sorts.(b) If A is standard, then so is Au.(
) Suppose A (and hen
e Au) is standard. Then Au 
an be e�e
tively
oded within A. Ea
h element y of Aus is represented by the pair(b; js(y)) 2 B � As, where b = tt if y 6= ups and b = ff otherwise.This indu
es, in an obvious way, a 
oding of the operations on Auby operations on A. (The 
oding is des
ribed in [Tu
ker and Zu
ker,1988℄ for a slightly di�erent de�nition of Au|however, it is 
lear howto modify that for the present 
ontext.)(d) (Two- and three-valued Boolean operations.) Suppose again that Ais standard. Then Au 
ontains the 
arrier B u = ftt; ff; upg as wellas B , with asso
iated extensions of the original standard Booleanoperations, leading to a weak three-valued logi
 (see [Kleene, 1952;Tu
ker and Zu
ker, 1988℄). Further, there are two equality operationson Aus for ea
h equality sort s:(i) the extension by stri
tness of eqAs to a three-valued fun
tioneqA;us : Aus �Aus ! B uwhi
h has the value upbool if either argument is ups; (ii) the standard(two-valued) equality on Aus,eqAus : Aus �Aus ! B ;whi
h we will usually denote by `=' in in�x.(e) Some of the fun
tions in Au are not stri
t, namely the (interpretationsof) the dis
riminator ifus , the fun
tion Unspe
s and the two-valuedequality operator equ (see (d)(ii) above).(f) A �-homomorphism (or �-isomorphism) between two standard �-algebras A and B 
an be extended to a �-homomorphism (or �-isomorphism) between Au and Bu. (Exer
ise.)2.7 Adding arrays: Algebras A� of signature ��Given a standard signature �, and standard �-algebra A, we extend � andexpand A in three stages:(1Æ) Constru
t �u and Au, as in se
tion 2.6.(2Æ) N-standardise these to form �u;N and Au;N , as in se
tion 2.5.(3Æ) De�ne, for ea
h sort s of �, the 
arrier A�s to be the set of pairs
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tions on algebras 357a� = (�; l)where � : N ! Aus, l 2 N and, for all n � l,�(n) = ups:So l is a witness to the \�niteness" of �, or an `e�e
tive upper bound' fora�. The elements of A�s have \starred sort" s�, and 
an be 
onsidered as�nite sequen
es or arrays. The resulting algebras A� have signature ��,whi
h extends �u;N by in
luding, for ea
h sort s of �, the new starred sortss� (in addition to su), and also the following new fun
tion symbols:(i) the null array Nulls of type s�, whereNullAs = (�n � ups; 0) 2 A�s ;(ii) the appli
ation operator Aps of type s� � nat! su, whereApAs ((�; l); n) = �(n);(iii) the Updates operator of type s� � nat � su ! s�, where for (�; l) 2A�s ; n 2 N and x 2 Aus, UpdateAs ((�; l); n; x) is the array (�; l) 2 A�ssu
h that for all k 2 N,�(k) = 8><>:�(k) if k < l; k 6= nx if k < l; k = nups otherwise;(iv) the Lgths operator, of type s� ! nat, whereLgthAs ((�; l)) = l;(v) the Newlengths operator of type s� � nat ! s�, where NewlengthAs((�; l);m) is the array (�;m) su
h that for all k,�(k) = (�(k) if k < mups if k � m;(vi) the dis
riminator on A�s for ea
h sort s; and(vii) the equality operator on A�s for ea
h equality sort s.The justi�
ation for (vii) is that if a sort s has `
omputable' equality,then 
learly so has the sort s�, sin
e it amounts to testing equality of �nitelymany pairs of obje
ts of sort s, up to a 
omputable length.For a� 2 A�s and n 2 N, we write a�[n℄ for jAs (ApAs (a�; n)). Thus a�[n℄is the element of As `
orresponding to' Ap(a�; n) 2 Aus.
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kerTo depi
t this 
onstru
tion of A� from a standard A: suppose we have
onstru
ted Au as in se
tion 2.6, and then N -standardised it to Au;N as inse
tion 2.5. We now pro
eed as follows:algebra A�import Au;N
arriers A�s (s 2 S)fun
tions Nulls : ! A�s (s 2 S)Aps : A�s � N ! Aus (s 2 S)Updates : A�s � N �Aus ! A�s (s 2 S)Lgths : A�s ! N (s 2 S)Newlengths : A�s � N ! A�s (s 2 S)ifs� : B � (A�s)2 ! A�s (s 2 S)eqs� : (A�s)2 ! B (s 2 Se)endwhere again S = Sort(�)and Se = EqSort(�)(and the supers
ript A hasbeen dropped from the new fun
tion symbols).Also, K � is (the 
losure with respe
t to ��=�-isomorphism of) the 
lassfA� j A 2 Kg.Remark 2.31.(a) The algebra A� is a ��-expansion of Au, and (hen
e) of A. If � hasr sorts, then �� has 3r +1 sorts, namely s, su and s� for ea
h sort sof �, and also nat.(b) �� and A� are N -standard.(
) (Internal versions of A� and ��.) Suppose A is N -standard. ThenAN has a se
ond 
opy of N, and, a

ording to our de�nition above,A� is 
onstru
ted on AN using this se
ond 
opy of N. Let A�0 (ofsort ��0) be an alternative version of A� 
onstru
ted on A, usingthe `original' 
opy of N. Then A� and A�0 
an be e�e
tively 
oded inea
h other. (Che
k; 
f. Remark 2.28(d).) We 
all A�0 and ��0 internalversions of A� and ��, respe
tively.(d) We may also need to speak of �nite sequen
es of starred sorts. How-ever, we do not have to introdu
e an algebra (A�)� of `doubly starred'
arrier sets 
ontaining `two-dimensional arrays'; su
h an algebra 
anbe e�e
tively 
oded in A�, sin
e we 
an e�e
tively 
ode a �nite se-quen
e of starred obje
ts of a given sort as a single starred obje
tof the same sort, thanks to the expli
it Lgth operation. More pre-
isely, a sequen
e x�0; : : : ; x�k�1 of elements of A�s (for some sort s) 
anbe 
oded as a pair (y�; n�) 2 A�s � N� , where Lgth(n�) = k, and, for0 � j < k, n�[j℄ = Lgth(x�j ), and Lgth(y�) = n�[0℄+: : :+n�[k�1℄, andfor 1 � j � k and 0 � i < n�[j℄, y�[n�[0℄ + : : :+n�[j� 1℄+ i℄ = x�j [i℄.(e) A �-homomorphism (or �-isomorphism) between two standard �-algebras A and B 
an be extended to a �-homomorphism (or �-isomorphism) between A� and B�. (Exer
ise; 
f. Remarks 2.28(
)
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tions on algebras 359and 2.30(f).)(f) The reason for introdu
ing starred sorts is the la
k of e�e
tive 
odingof �nite sequen
es within abstra
t algebras in general.(g) Starred sorts have signi�
an
e in programming languages, sin
estarred variables 
an be used to model arrays, and (hen
e) �nite butunbounded memory.2.8 Adding streams: Algebras �A of signature �Let, again, � be a standard signature, and A a standard �-algebra. Wede�ne an extension of � and a 
orresponding expansion of A, alternativeto �� and A�.First we N -standardise � and A, to form �N and AN .Then we 
hoose a set S � Sort(�) of pre-stream sorts. We then extend�N to a stream signature �S relative to S, in the following way.(a) With ea
h s 2 S, we asso
iate a new stream sort �s, also written nat!s. Then Sort(�S)=Sort(�)[�S, where �S =df f�s j s 2 Sg.(b) Fun
 (�S)
onsists of Fun
(�), together with the evaluation fun
-tion evals : (nat! s)� nat! s;for ea
h s 2 S.Now we 
an expand AN to a �S-stream algebra �AS by adding for ea
hpre-stream sort s:(i) the 
arrier for nat! s, whi
h is the setAnat!s = �As = [N ! As℄of all streams on A, i.e. fun
tions � : N ! A;(ii) the interpretation of evals on A as the fun
tion evalAs : [N !As℄�N !As whi
h evaluates a stream at an index, i.e.,evalAs (�; n) = �(n);(iii) the dis
riminator on �As, for all s 2 S.The algebra �AS is the (full) stream algebra over A with respe
t to S.This 
onstru
tion of �AS from a standard A is depi
ted by:algebra �ASimport AN
arriers [N !As℄ (s 2 S)fun
tions evalAs : [N !As℄� N ! As (s 2 S)ifA�s : B � ([N !As℄)2 ! [N !As℄ (s 2 S)endwhere now S is the set of stream sorts.
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ker and J. I. Zu
kerAlso, �KS is (the 
losure with respe
t to �S=�-isomorphism of) the 
lassf �A j A 2 Kg.Remark 2.32.(a) The algebra �AS is a �S-expansion of A. If � has r sorts, then �Shas r + k + 1 sorts, where k is the 
ardinality of S.(b) �S and �AS are N -standard.(
) Be
ause we have taken �As to be the set of all streams on As, we 
all�AS the full stream algebra (with respe
t to S). Note that if As has
ardinality greater than 1 for some s 2 S, then �As, and hen
e �A, isun
ountable.(d) A �-homomorphism (or �-isomorphism) between two standard �-algebras A and B 
an be extended to a �-homomorphism (or �-isomorphism) between �A and �B. (Exer
ise; 
f. Remarks 2.28(
),2.30(f) and 2.31(e).)(e) Note that the instantiation assumption does not hold (in general) onstream algebras.3 While 
omputability on standard algebrasIn this se
tion, we begin to study the 
omputation of fun
tions and rela-tions on algebras by means of imperative programming models. We startby de�ning a simple programming language While = While(�), whoseprograms are 
onstru
ted from 
on
urrent assignments, sequential 
ompo-sition, the 
onditional and the `while' 
onstru
t, and may be interpreted onany many-sorted �-algebra; this takes up se
tions 3.1{3.6. We will de�nein detail the abstra
t syntax and semanti
s of this language, and methodsby whi
h its programs 
an 
ompute fun
tions and relations. In se
tions3.7 and 3.8 we prove some algebrai
 properties of 
omputation on algebras,with regard to homomomorphisms and lo
ality.In se
tions 3.9{3.13, we will add to the basi
 language a number ofnew 
onstru
ts, namely `for', pro
edure 
alls and arrays, and extend ourmodel of 
omputation a

ordingly. In se
tion 3.14 we study the 
on
eptof a sequen
e of `snapshots' of a 
omputation, whi
h will be useful laterin investigating the solvability of the halting problem in 
ertain (lo
ally�nite) algebras.We 
on
lude (se
tion 3.15) with a useful synta
ti
 
onservativity the-orem for ��-terms over �-terms.We illustrate the theory with several examples of 
omputations on thealgebras of real and 
omplex numbers.Throughout se
tion 3, we assume (following Convention 1.4.3) that� is a standard signature,and A is a standard �-algebra.
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tions on algebras 3613.1 Syntax of While(�)We begin with the syntax of the languageWhile(�). First, for ea
h �-sorts, there are (program) variables as; bs; : : : ; xs; ys : : : of sort s.We de�ne four synta
ti
 
lasses: variables, terms, statements and pro-
edures.(a) V ar = V ar(�) is the 
lass of �-variables, and V ars is the 
lass ofvariables of sort s.For u = s1 � : : :� sm, we write x : u to mean that x is a u-tuple ofdistin
t variables, i.e., a tuple of distin
t variables of sorts s1; : : : ; sm,respe
tively.Further, we write V arTup= V arTup(�)for the 
lass of all tuplesof distin
t �-variables, and V arTupu for the 
lass of all u-tuples ofdistin
t �-variables.(b) Term = Term(�) is the 
lass of �-terms t; : : : , and for ea
h �-sorts, Terms is the 
lass of terms of sort s. These are generated by thefollowing rules.(i) A variable x of sort s is in Terms.(ii) If F 2 Fun
(�)u!s and ti 2 Termsi for i = 1; : : : ;m whereu = s1 � : : :� sm, then F (t1; : : : ; tm) 2 Terms.Note again that �-
onstants are 
onstrued as 0-ary fun
tions, and soenter the de�nition of Term(�) via 
lause (ii), with m = 0.The 
lass Term(�) 
an also be written (in more 
ustomary notation)as T(�;V ar), i.e., the set of terms over � using the set V ar ofvariables (
lause (i) in the de�nition). Analogously, the set T (�) of
losed terms over � (2.10) 
an be written as T(�; ;).We write type(t) = s or t : s to indi
ate that t 2 Terms.Further, we write TermTup=TermTup(�)for the 
lass of all tu-ples of �-terms, and, for u = s1 � : : :� sm, TermTupu for the 
lassof u-tuples of terms, i.e.,TermTupu =df Terms1 � : : :� Term sm .We write type(t) = u or t : u to indi
ate that t is a u-tuple of terms,i.e.,, a tuple of terms of sorts s1; : : : ; sm.For the sort bool, we have the 
lass of Boolean terms or BooleansBool(�) =df Termbool, denoted either tbool : : : (as above) or b; : : : .This 
lass is given (a

ording to the above de�nition of Terms) by:b ::= xbooljF (t)jeqs(ts1; ts2)j true j falsej not(b)j and (b1; b2)j or(b1; b2)j if(b; b1; b2)where F is a �-fun
tion symbol of type u! bool (other than one ofthe standard Boolean operations, whi
h are listed expli
itly) and s isan equality sort.(
) Stmt = Stmt(�) is the 
lass of statements S; : : : . The atomi
 state-ments are `skip' and the 
on
urrent assignment x := t where for someprodu
t type u, x : u and t : u.
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ker and J. I. Zu
kerStatements are then generated by the rulesS ::= skipjx := tj S1;S2jif b then S1 else S2 �jwhile b do S od(d) Pro
 = Pro
(�) is the 
lass of pro
edures P;Q; : : : . These havethe form P � pro
 D begin S endwhere D is the variable de
laration and S is the body. Here D hasthe form D � in a out b aux 
where a, b and 
 are lists of input variables, output variables andauxiliary (or lo
al) variables, respe
tively. Further, we stipulate:� a, b and 
 ea
h 
onsist of distin
t variables, and they are pairwisedisjoint;� every variable o

urring in the body S must be de
lared in D(among a, b or 
);� the input variables a must not o

ur on the lhs of assignmentsin S;� (initialisation 
ondition:) S has the form Sinit;S0, where Sinitis a 
on
urrent assignment whi
h initialises all the output andauxiliary variables, i.e., assigns to ea
h of them the default term(se
tion 2.12) of the same sort.Ea
h variable o

urring in the de
laration of a pro
edure binds allfree o

urren
es of that variable in the body.If a : u and b : v, then P is said to have type u ! v, writtenP : u! v. Its input type is u.We write Pro
u!v= Pro
(�)u!v for the 
lass of �-pro
edures oftype u! v:Notation 3.1.(a) We will often drop the sort supers
ript or subs
ript s.(b) We will use E;E0; E1; : : : to denote synta
ti
 expressions of any ofthe three 
lasses Term, Stmt and Pro
.(
) For any su
h expression E, we de�ne var(E) to be the set of variableso

urring in E.(d) We use `�' to denote synta
ti
 identity between two expressions.Remark 3.2 (Stru
tural indu
tion; indu
tion on 
omplexity). Wewill often prove assertions about, or de�ne 
onstru
ts on, expressions E ofa parti
ular synta
ti
 
lass (su
h as Term, Stmt or Pro
) by stru
turalindu
tion (or re
ursion) on E, following the indu
tive de�nition of that
lass.Alternatively, we may give su
h proofs or de�nitions by 
ourse-of-valuesindu
tion (or re
ursion) on 
ompl(E), the stru
tural 
omplexity of E. One
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tions on algebras 363suitable de�nition of this is the length of the maximum bran
h of theparse tree of E. Thus, for example, for a program term t�F (t1; : : : ; tm);
ompl(t) = maxi(
ompl(ti) + 1). Another possible de�nition of
ompl(E), whi
h would in fa
t be satisfa
tory for our purposes, is simplythe length of E as a string of symbols.Se
tions 3.2{3.6 will be devoted to the semanti
s of While.3.2 StatesFor ea
h standard �-algebra A, a state on A is a family h�sj s 2 Sort(�)iof fun
tions �s : V ars ! As: (3.1)Let State(A) be the set of states on A, with elements �; : : : . Note thatState(A) is the produ
t of the state spa
es States(A) for all s 2 Sort(�),where ea
h States(A) is the set of all fun
tions as in (3.1).We use the following notation. For x 2 V ars, we often write �(x) for�s(x). Also, for a tuple x� (x1; : : : ; xm), we write �[x℄ for (�(x1); : : : ; �(xm)).Now we de�ne the variant of a state. Let � be a state overA, x� (x1; : : : ;xn) : u and a = (a1; : : : ; an) 2 Au (for n � 1). We de�ne �fx=ag to be thestate overA formed from � by repla
ing its value at xi by ai for i = 1; : : : ; n.That is, for all variables y:�fx=ag(y) = (�(y) if y 6� xi for i = 1; : : : ; nai if y�xi:We 
an now give the semanti
s of ea
h of the three synta
ti
 
lasses:Term, Stmt and Pro
, relative to any A 2StdAlg(�). For an expres-sion E in ea
h of these 
lasses, we will de�ne a semanti
 fun
tion [[E℄℄A.These three semanti
 fun
tions are de�ned in se
tions 3.3, 3.4{3.5 and 3.6,respe
tively.3.3 Semanti
s of termsFor t 2 Terms, we de�ne the fun
tion[[t℄℄A: State(A)! Aswhere [[t℄℄A(�) is the value of t in A at state �.The de�nition is by stru
tural indu
tion on t:[[x℄℄A� = �(x)[[F (t1; : : : ; tm)℄℄A� = FA([[t1℄℄A�; : : : ;[[tm℄℄A�)Note that this de�nition of [[t℄℄A� extends that of tA for t 2 T (�)(De�nition 2.11). Also the se
ond 
lause in
orporates the 
ases that (a) Fis a 
onstant; (b) F is a standard Boolean operation, e.g. the dis
riminator:
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ker and J. I. Zu
ker[[if(b; t1; t2)℄℄A� = ([[t1℄℄� if [[bA� = tt[[t2℄℄� if [[bA� = ff:For a tuple of terms t = (t1; : : : ; tm), we use the notation[[t℄℄A� =df ([[t1℄℄A�; : : : ; [[tm℄℄A�):De�nition 3.3. For anyM � V ars, and states �1 and �2, �1 � �2(rel M)means �1 �M = �2 �M , i.e., 8x 2M��1(x) = �2(x)�.Lemma 3.4 (Fun
tionality lemma for terms). For any term t andstates �1 and �2, if �1 � �2 (rel var(t)), then [[t℄℄A�1 = [[t℄℄A�2.Proof. By stru
tural indu
tion on t.3.4 Algebrai
 operational semanti
sIn this subse
tion we will des
ribe a general method for de�ning the mean-ing of a statement S, in a wide 
lass of imperative programming languages,as a partial state transformation, i.e., a partial fun
tion[[S ℄℄A : State(A)! State(A).We de�ne this via a 
omputation step fun
tionCompA: Stmt�State(A)�N ! State(A)[f�gwhere `�' is a new symbol or obje
t. The idea is thatCompA(S; �; n) is the nth step, or the state at the nth time
y
le, in the 
omputation of S on A, starting in state �.The symbol `�' indi
ates that the 
omputation is over. Thusif for any n, CompA(S; �; n) = �, then for all m � nCompA(S; �;m) = �.If we put �n = CompA(S; �; n), then the sequen
e of states� = �0; �1; �2; : : : ; �n; : : :is 
alled the 
omputation sequen
e generated by S at �, writtenCompSeqA(S; �). It is either in�nite, or terminates in a �nal state �l, where CompA(S; �; l + 1) = �.We will use an algebrai
 method in whi
h CompA is de�ned equa-tionally. In se
tion 3.5 we will apply this general method to the presentprogramming language While(�). In later se
tions we will apply it toother languages.
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tions on algebras 365Assume, �rstly, that (for the language under 
onsideration) there isa 
lass AtSt� Stmt of atomi
 statements for whi
h we have a meaningfun
tion hj S jiA : State(A)! State(A),for S 2 AtSt, and se
ondly, that we have two fun
tionsFirst : Stmt ! AtStRestA : Stmt � State(A)! Stmt,where, for a statement S and state �,First(S) is an atomi
 statement whi
h gives the �rst step inthe exe
ution of S (in any state), and RestA(S; �) is a state-ment whi
h gives the rest of the exe
ution in state �.For the languages under 
onsideration here, First(S), unlikeRestA(S; �),will be independent of A and �.In ea
h language we 
an de�ne these three fun
tions (hj � ji; First andRestA).First we de�ne the `one-step 
omputation of S at �'CompA1 : Stmt � State(A)! State(A)by CompA1 (S; �) = hjFirst(S) jiA�.The de�nition of CompA(S; �; n) now follows by a simple re
ursion(`tail re
ursion') on n:CompA(S; �; n+ 1) = 8<: � if n > 0 and S is atomi
CompA(RestA(S; �);CompA1 (S; �); n)otherwise: (3.2)Note that for n = 1, this yieldsCompA(S; �; 1) = CompA1 (S; �):We 
all this approa
h algebrai
 operational semanti
s, �rst used in Tu
kerand Zu
ker [1988℄, and developed and applied in Stephenson [1996℄.From this semanti
s we 
an easily derive the i/o semanti
s as follows.First we de�ne the length of a 
omputation of a statement S, starting instate �, as the fun
tionCompLengthA : Stmt� State(A)! N [ f1gwhere
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ker and J. I. Zu
kerCompLengthA(S; �) = 8><>: least ns:t: CompA(S; �; n+ 1) = �if su
h an n exists1 otherwise:Then, putting l = CompLengthA(S; �) and noting that 0 < l � 1,we de�ne [[S℄℄A(�) ' (CompA(S; �; l) if l 6=1" otherwise:Remark 3.5 (Tail re
ursion). Consider the re
ursive de�nition (3.2) ofCompA. In the `re
ursive 
all' (the se
ond expression on the right-handside of the se
ond equation), noti
e that (1Æ) CompA is on the `outside',and (2Æ) the parameter 
hanges (from � to CompA1 (S; �; n)). Su
h a de�-nitional s
heme is said to be tail re
ursive. Be
ause of (2Æ), these equations(as they stand) do not form a de�nition by primitive re
ursion. However,at least in the 
lassi
al 
ase, where all the arguments and values rangeover N; it 
an be shown that su
h a s
heme 
an be redu
ed to a primitivere
ursive de�nition. (See, for example, Goodstein [1964, x6.1℄, where thisis 
alled `re
ursion with parameter substitution', or P�eter [1967, x7℄, wherea more general s
heme, not satisfying (1Æ) only, is 
onsidered.)An alternative, primitive re
ursive, de�nition of CompA is given belowin se
tion 3.14.3.5 Semanti
s of statements for While(�)We now apply the above theory to the languageWhile(�). Here there aretwo atomi
 statements: skip and 
on
urrent assignment. We de�ne hj S jiAfor these: hj skipjiA� = �hj x:= t jiA� = �fx/[[t℄℄A�g.Next we de�ne First and RestA. The de�nitions of First(S) andRestA(S; �) pro
eed by stru
tural indu
tion on S.Case 1. S is atomi
. First (S) = SRestA(S; �) = skip.Case 2. S� S1;S2 (the interesting 
ase!).First(S) = First(S1)RestA(S; �) = (S2 if S1 is atomi
RestA(S1; �);S2 otherwise:Case 3. S � if b then S1 else S2 �.
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tions on algebras 367First (S) = skipRestA(S; �) = (S1 if [[b℄℄A� = ttS2 if [[b℄℄A� = ff:Case 4. S � while b do S0 od.First (S) = skipRestA(S; �) = (S0;S if [[b℄℄A� = ttskip if [[b℄℄A� = ff:This 
ompletes the de�nition of First and RestA. Note (in 
ases 3and 4) that the Boolean test in an `if' or `while' statement S is assumed totake up one time 
y
le; this is modelled by taking First(S)� skip.The following shows that the i/o semanti
s, derived from our algebrai
operational semanti
s, satis�es the usual desirable properties.Theorem 3.6.(a) For S atomi
, [[S ℄℄A = hj S jiA, i.e.,hj skip jiA� = �hj x := t jiA� = �fx=hj t jiA�g:(b) [[S1;S2℄℄A� ' [[S2℄℄A([[S1℄℄A�):(
) [[if b then S1 else S2 �℄℄A� ' ([[S1℄℄A� if [[b℄℄A� = tt[[S2℄℄A� if [[b℄℄A� = ff:(d) [[while b do S od℄℄A� ' ([[S;while b do S od℄℄A� if [[b℄℄A� = tt� if [[b℄℄A� = ff:Proof. Exer
ise. Hint: For part (b), prove the following lemma. Formu-late and prove analogous lemmas for parts (a), (
) and (d).Lemma 3.7. CompA(S1;S2; �; n) =8>>><>>>:CompA(S1; �; n) if 8k < nCompA(S1; �; k + 1) 6= �CompA(S2; �0; n� n0) if 9k < nCompA(S1; �; k + 1) = �where n0 is the least su
h k; and�0 = CompA(S1; �; n0):
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ker and J. I. Zu
kerRemark 3.8.(a) The four suitably formulated lemmas needed to prove parts (a){(d) ofTheorem 3.6 (of whi
h Lemma 3.7 is an example for part (b)) providean alternative de�nition of CompA(S; �; n), whi
h does not makeuse of First or RestA. This de�nition is by stru
tural indu
tion onS, with a se
ondary indu
tion on n.(b) The meaning fun
tion [[S ℄℄A (i.e., our i/o semanti
s) was derived fromour operational semanti
s, i.e., the CompA fun
tion. We 
ould alsogive a denotational i/o semanti
s for While statements. Theorem3.6 would then provide (one dire
tion of) a proof of the equivalen
eof the two semanti
s (as in de Bakker [1980℄).(
) The semanti
s given here is simpler than that given in Tu
ker andZu
ker [1988℄ where the states have an `error value' almost everywhere(for uninitialised variables), and there is an `error state' 
orrespond-ing to an aborted 
omputation. While su
h an `error semanti
s' issuperior (we feel) to the one given here, the semanti
s given here issimpler, and adequate for our purposes.For the semanti
s of pro
edures, we need the following. LetM � V ars,and �; �0 2 State(A).Lemma 3.9. Suppose var(S) � M . If �1 � �2 (rel M), then for alln � 0, CompA(S; �1; n) � CompA(S; �2; n) (rel M):Proof. By indu
tion on n. Use the fun
tionality lemma (3.4) for terms.Lemma 3.10 (Fun
tionality lemma for statements). Suppose var(S)�M . If �1 � �2 (rel M), then either(i) [[S℄℄A�1 # �01 and [[S℄℄A�2 # �02 (say), where �01 � �02 (rel M), or(ii) [[S℄℄A�1 " and [[S℄℄A�2 ".Proof. From Lemma 3.9.3.6 Semanti
s of pro
eduresNow if P � pro
 in a out b aux 
 begin S endis a pro
edure of type u! v, then its meaning is a fun
tion[[P ℄℄A : Au ! Avde�ned as follows. For a 2 Au, let � be any state on A su
h that �[a℄ = a.Then [[P ℄℄A(a) ' (�0[b℄ if [[S℄℄A� # �0 (say)" if [[S℄℄A� " :
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tions on algebras 369For [[P ℄℄A to be well de�ned, we need the fa
t that the pro
edure P isfun
tional, as follows.Lemma 3.11 (Fun
tionality lemma for pro
edures). SupposeP � pro
 in a out b aux 
 begin S end:If �1 � �2 (rel a), then either(i) [[S℄℄A�1 # �01 and [[S℄℄A�2 # �02 (say), where �01 � �02 (rel b) or(ii) [[S℄℄A�1 " and [[S℄℄A�2 ".Proof. Suppose �1 � �2 (rel a). We 
an put S�Sinit;S0, where Sinit
onsists of an initialisation of b and 
 to 
losed terms (see se
tion 3.1).Then, putting [[Sinit℄℄A�1 = �001 and [[Sinit℄℄A�2 = �002 ;it is easy to see that �001 � �002 (rel a; b; 
):The result then follows from the fun
tionality lemma 3.10 for statements(with S0, �001 and �002 in pla
e of S, �1 and �2, respe
tively).Remark 3.12.(a) Fun
tionality of pro
edures amounts to saying that there are no sidee�e
ts from the output variables or auxiliary variables.(b) The initialisation 
ondition (se
tion 3.1) is a suÆ
ient (but not ne
-essary) synta
ti
 
ondition for fun
tionality of pro
edures. A moregeneral synta
ti
 
ondition ensuring fun
tionality was given in Jervis[1988℄. A semanti
 approa
h to fun
tionality was taken in Tu
ker andZu
ker [1988, x4.3.2℄.We 
an now de�ne:De�nition 3.13 (While 
omputable fun
tions).(a) A fun
tion f on A is 
omputable on A by a While pro
edure P iff = [[P ℄℄A. It is While 
omputable on A if it is 
omputable on A bysome While pro
edure.(b) A family f =hfA j A 2 K i of fun
tions is While 
omputable uni-formly over K if there is a While pro
edure P su
h that for allA 2 K , fA = [[P ℄℄A.(
) While(A) is the 
lass of fun
tions While 
omputable on A.We will often write PA for [[P ℄℄A.Example 3.14.(a) Re
all the standard algebra N of naturals (Example 2.23(b)). Thefun
tionsWhile 
omputable on N of type natk ! nat are pre
iselythe partial re
ursive fun
tions over N (Kleene [1952℄). This follows
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ker and J. I. Zu
kerfrom the equivalen
e of partial re
ursiveness andWhile 
omputabil-ity on the naturals (see, for example, M
Naughton [1982℄), or fromthe results in se
tion 8. Hen
eevery partial re
ursive fun
tion over N is While 
ompu-table on every N-standard algebra.(b) In the N -standardised group GN (Example 2.27(b)), the partial fun
-tion ord: G! N, de�ned byord(g) ' (least n s:t: gn = 1; if su
h an n exists" otherwise;whi
h gives the order of group elements, isWhile 
omputable, sin
ethe `
onstru
tive least number operator' is (see se
tion 8). Altern-atively, we 
an give dire
tly a While pro
edure in the signature�(GN ): pro
 in g:grpout n:nataux prod:grp ftemporary produ
tgbeginprod:=g;n:=1;while not(prod=1)do prod:=prod* g;n:=su

(n)odendWe emphasise that this order fun
tion is de�ned uniformly over all N-standardised groups (of the given signature �(GN )).The following proposition will be useful.Proposition 3.15 (Closure of While 
omputability under 
ompo-sition). The 
lass of While 
omputable fun
tions on A is 
losed under
omposition. In other words, given (partial) fun
tions f : Au ! Av andg : Av ! Aw (for any �-produ
t types u; v; w), if f and g are While
omputable on A, then so is the 
omposed fun
tion g Æ f : Au ! Aw.Proof. Exer
ise. (Constru
t the appropriate While pro
edure for the
omposed fun
tion.)Remark 3.16. Similarly, we have 
losure under 
omposition for the re-lated notions of 
omputability still to be 
onsidered in this se
tion, namelyWhileN , While�, For, ForN and For� 
omputability, and the rela-tivised versions of these. The results for For 
omputability (et
.) 
an bederived from its equivalen
e with PR 
omputability (et
.) (
f. se
tion 8).
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tions on algebras 3713.7 Homomorphism invarian
e theoremsWe will investigate how our semanti
s of While programs intera
ts withhomomorphisms between standard �-algebras.Let A and B be two standard �-algebras. Let � = f�s js 2 Sort(�)gbe a �-homomorphism from A to B.For a 2 As, we will write �(a) for �s(a); and for a tuple a =(a1; : : : ; am) 2 Au, we will write �(a) for (�(a1); : : : ; �(am)).Lemma 3.17.(a) �bool is the identity on B :(b) �s is inje
tive on all equality sorts s.Proof. Exer
ise.De�nition 3.18. The mapping � indu
es a mapping�̂ : State(A) [ f�g ! State(B) [ f�gby �̂(�) = � Æ �;i.e., if � = h�s js 2 Sort(�)i, then �̂(�) = �0 = h�0s js 2 Sort(�)i,where for all s 2 Sort(�) and x 2 V ars, �0s(x) = �s(�s(x)). Further, westipulate �̂(�) = �:Now we state some homomorphism invarian
e theorems.Theorem 3.19 (Homomorphism invarian
e for terms). For t 2Terms �([[t℄℄A�) = [[t℄℄B �̂(�):Proof. By stru
tural indu
tion on t.Theorem 3.20 (Homomorphism invarian
e for atomi
 statements).For S 2 AtSt, �̂(hj S jiA�) = hj S jiB �̂(�):Proof. The 
ase where S � skip is trivial. The 
ase that S is an assignmentfollows from Theorem 3.19.Corollary 3.21 (Homomorphism invarian
e for the Comp1 predi-
ate). �̂(CompA1 (S; �)) = CompB1 (S; �̂(�)):Theorem 3.22 (Homomorphism invarian
e for the Comp predi-
ate). �̂(CompA(S; �; n)) = CompB(S; �̂(�); n):
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kerProof. By indu
tion on n. For the base 
ase n = 1, use Corollary 3.21.Theorem 3.23 (Homomorphism invarian
e for statements). Either(i) [[S℄℄A� # �0 and [[S℄℄B�̂(�) # �00 (say), where �̂(�0) = �00, or(ii) [[S℄℄A� " and [[S℄℄B�̂(�) ".Proof. From Theorem 3.22.Theorem 3.24 (Homomorphism invarian
e for pro
edures). For apro
edure P : u! v and a 2 Au,�(PA(a)) ' PB(�(a)):Proof. From Theorem 3.23.3.8 Lo
ality of 
omputationWe will investigate how the semanti
s of While programs relates to thesubalgebra generated by the input. (Re
all De�nition 2.15.)We want to prove the lo
ality theorem: for any While 
omputablefun
tion f on A of type u! v, and any a 2 Au;if f(a) # then f(a) � haiA:This will follow immediately from Theorem 3.30 below.Lemma 3.25. For a term t : s with var(t) � x,[[t℄℄A� 2 h�[x℄iAs :(Re
all the de�nition of �[x℄ in se
tion 3.2.)Proof. By stru
tural indu
tion on t.Lemma 3.26. For an atomi
 statement S with var(S) � x : u,hj S jiA(�)[x℄ � h�[x℄iAu :Proof. There are two 
ases to 
onsider. If S is an assignment, the resultfollows from Lemma 3.25. If S � skip, then it is trivial.Lemma 3.27. If var(S) � x : u, thenCompA1 (S; �)[x℄ � h�[x℄iA:Proof. From Lemma 3.26.Lemma 3.28. If var(S) � x and CompA(S; �; n) 6= �, then
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tions on algebras 373CompA(S; �; n)[x℄ � h�[x℄iA:Proof. By indu
tion on n (with S and � varying). For the base 
ases(n = 1), use Lemma 3.27. For the indu
tion step, use the fa
ts thatvar(RestA(S; �)) � var(S) and thatX � hY iA ) hXiA � hY iA:The details are left as an exer
ise.Theorem 3.29 (Lo
ality for statements). If var(S) � x : u and[[S℄℄A(�) # then [[S℄℄A(�)[x℄ 2 h�[x℄iAu :Proof. From Lemma 3.28.Theorem 3.30 (Lo
ality for pro
edures). For a pro
edure P : u! vand a 2 Au su
h that PA(a) #,PA(a) 2 haiAu :Proof. SupposeP � pro
 in a out b aux 
 begin Sinit;S0 endwhere Sinit 
onsists of an initialisation of b and 
 to 
losed terms (seese
tion 3.1). Put x � a,b,
, and suppose�[a℄ = a; [[Sinit℄℄A� = �00 and [[S0℄℄A�00 # �0:Then haiA = h�[a℄iA = h�00[x℄iA; (3.3)sin
e Sinit 
onsists (only) of the initialisation of b and 
 to the 
losed terms,the values of whi
h lie in every �-subalgebra of A. Also, by the syntax ofpro
edures (se
tion 3.1(
)), var(Sinit;S0) � x. Hen
e by Theorem 3.29,applied to S0 and �00,PA(a) =df �0[b℄ � �0[x℄ � h�00[x℄iA: (3.4)The result follows from (3.3) and (3.4).Certain useful additions to, or modi�
ations of, the While languagede�ned in se
tion 3.1, with 
orresponding notions of 
omputability, will bede�ned in se
tions 3.9{3.13.
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ker3.9 The language WhilePro
(�)In the language While(�), we use pro
edures not in the 
onstru
tion ofstatements, but only as a 
onvenient devi
e for de�ning fun
tions (se
tion3.6). We 
an, however, de�ne a language WhilePro
(�) whi
h extendsWhile(�) by the adjun
tion of a new kind of atomi
 statement, the pro-
edure 
all x := P (t); (3.5)where P is a pro
edure of type u! v (say), t is a tuple of terms of type u(the a
tual parameters) and x : v.The semanti
s ofWhile is then extended by adding the following 
lauseto the semanti
s of atomi
 statements (se
tion 3.4):hj x := P (t) jiA� = (�fx=ag if PA([[t℄℄A�) # a (say)" if PA([[t℄℄A�) " :Note that the fun
tionhj � jiA : AtSt! (State(A)! State(A))is now partial (
ompare se
tion 3.4).However, it is easy to `eliminate' all su
h pro
edure 
alls from a programstatement, i.e., to e�e
tively transformWhilePro
 statements toWhilestatements with the same semanti
s, as follows. For any pro
edure 
all(3.5), suppose P � pro
 in a out b aux 
 begin S end: (3.6)Then repla
e (3.5) by the statementSha,b,
=t; x,zi; (3.7)where z is a tuple of distin
t `fresh' variables of the same type as 
, andh: : : i denotes the simultaneous substitution of t,x,z for a,b,
.Note that the result of this substitution (3.7) is a synta
ti
ally 
orre
tstatement, by the stipulation (se
tion 3.1) that the input variables a noto

ur on the left-hand side of assignments in S.Remark 3.31.(a) A

ording to our syntax, in the pro
edure 
all (3.5) above, `P ' is notjust a name for a pro
edure but the pro
edure itself, i.e., the 
ompletetext (3.6)! In pra
ti
e, it is of 
ourse mu
h more 
onvenient | and
ustomary | to `de
lare' the pro
edure before its 
all, introdu
ingan identi�er for it, and then 
alling the pro
edure by means of thisidenti�er.
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ase, our syntax prevents re
ursive pro
edure 
alls. The situ-ation with re
ursive pro
edures would be quite di�erent from thatdes
ribed above | they 
annot be eliminated so simply (de Bakker[1980℄).(b) Another way of in
orporating pro
edure 
alls into statements is byexpanding the de�nition of terms, as was done in Tu
ker and Zu
ker[1994℄. The problem with that approa
h here is that it would 
om-pli
ate the semanti
s by leading to partially de�ned terms. In Tu
kerand Zu
ker [1994℄ this problem does not o

ur, sin
e the pro
edures,being in the For language rather than While, produ
e total fun
-tions.3.10 Relative While 
omputabilityLet g = hgA j A 2 K i be a family of (partial) fun
tionsgA : Au ! Av :We de�ne the programming language While(g) whi
h extends the lan-guageWhile by in
luding a spe
ial fun
tion symbol g of type u! v. We
an think of g as an `ora
le' for gA.The atomi
 statements of While(g) in
lude the ora
le 
allx := g(t)where t : u and x : v. The semanti
s of this is given byhj x := g(t) jiA� ' (�fx=ag if gA([[t℄℄A�) # a (say)" if gA([[t℄℄A�) " :Similarly, for a tuple of (families of) fun
tions g1; : : : ; gn, we 
an de�nethe programming languageWhile(g1; : : : ; gn) with ora
les g1; : : : ; gn forg1; : : : ; gn, or (by abuse of notation) the programming language While(g1;: : : ; gn).In this way we 
an de�ne the notion ofWhile(g1; : : : ; gn) 
omputabil-ity, orWhile 
omputability relative to g1; : : : ; gn; orWhile 
omputabilityin g1; : : : ; gn; of a fun
tion on A.Similarly, we 
an de�ne the notion of relativeWhile semi
omputabilityof a relation on A.We 
an also de�ne the notion of uniform relative While 
omputability(or semi
omputability) over a 
lass K :Lemma 3.32 (Transitivity of relative 
omputability). If f isWhile
omputable in g1; : : : ; gm; h1; : : : ; hn, and g1; : : : ; gm are While 
ompu-table in h1; : : : ; hn; then f is While 
omputable in h1; : : : ; hn:Proof. Suppose that gi is 
omputable by a While(h1; : : : ; hn) pro
e-dure Pi for i = 1; : : : ;m. Now, given a While(g1; : : : ; gm; h1; : : : ; hn)
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kerpro
edure P for f , repla
e ea
h ora
le 
all x := gi(t) in the body of Pby the pro
edure 
all x := Pi(t). This results in a While(h1; : : : ; hn)pro
edure | a
tually, a WhilePro
(h1; : : : ; hn) pro
edure (se
tion 3.9)| whi
h also 
omputes f .Note that this result holds over a given algebra A, or uniformly over a
lass K of �-algebras.3.11 For(�) 
omputabilityWe 
onsider brie
y another programming language, For = For(�), whi
halso plays a role in this paper.Assume now that � is an N-standard signature, and A an N-standardalgebra. The syntax for For is like that forWhile, ex
ept that Stmt(�)is de�ned by repla
ing the loop statement while b do S od byfor t do S od; (3.8)where t : nat, with the informal semanti
s: exe
ute S k times, where tevaluates to k. More formally: �rst we de�ne the notation Sk (k � 0) tomean the k-fold iterate of S, i.e.,Sk � (S; : : : ;S (k times) if k > 0skip if k = 0:We now de�ne the semanti
s of For by modifying the de�nitions (se
tion3.5) of the fun
tions First and RestA, repla
ing 
ase 4 with:Case 40. S � for t do S0 od.First(S) = skipRestA(S; �) = (S0)kwhere k = [[t℄℄A�.Note that t is evaluated (to k) on
e, upon initial entry into the loop,whi
h is then exe
uted exa
tly k times (even if the value of t 
hanges inthe 
ourse of the exe
ution). Thus [[S℄℄A is always total, and fun
tions
omputable by For pro
edures are always total.We de�ne For(A) to be the 
lass of fun
tions For 
omputable on A.As in se
tion 3.10, we 
an de�ne the notion of relative For(�) 
om-putability, and prove a transitivity lemma for this, analogous to Lemma3.32.Example 3.33. The fun
tions For 
omputable on N of type natk !natare pre
isely the primitive re
ursive fun
tions over N.This follows from the equivalen
e of primitive re
ursiveness and For
omputability on the naturals (proved in Meyer and Rit
hie [1967℄; see,Davis and Weyuker [1983℄, for example) or from se
tion 8. Hen
e
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ursive fun
tion over N is For 
omputable onevery N-standard algebra.(Compare Example 3.14(a).)Proposition 3.34.(a) For(�) 
omputability implies While(�) 
omputability. More pre-
isely, there is an e�e
tive translation S ! S0 of For(�) state-ments to While(�) statements, and (
orrespondingly) a transla-tion P ! P 0 of For(�) pro
edures to While(�) pro
edures whi
his semanti
s preserving, i.e., for all For(�) pro
edures P and N-standard �-algebras A, [[P ℄℄A = [[P 0℄℄A.(b) More generally, relative For(�) 
omputability implies relativeWhile(�) 
omputability.Proof. Simple exer
ise.3.12 WhileN and ForN 
omputabilityConsider now the While and For programming languages over �N :De�nition 3.35.(a) AWhileN (�) pro
edure is aWhile(�) pro
edure in whi
h the inputand output variables have sorts in �. (However the auxiliary variablesmay have sort nat.)(b) Pro
N (�) is the 
lass of WhileN (�) pro
edures.De�nition 3.36 (WhileN 
omputable fun
tions).(a) A fun
tion f on A is 
omputable on A by a WhileN pro
edure P iff = PA. It is WhileN 
omputable on A if it is 
omputable on A bysome WhileN pro
edure.(b) A family f = hfA j A 2 K i of fun
tions is WhileN 
omputable uni-formly over K if there is a WhileN pro
edure P su
h that for allA 2 K , fA = PA.(
) WhileN (A) is the 
lass of fun
tions WhileN 
omputable on A.The 
lass of ForN (�) pro
edures, and ForN (�) 
omputability, arede�ned analogously.Remark 3.37.(a) If A is N -standard (so that For 
omputability is de�ned on A), thenAN has two 
opies of N, whi
h we 
an 
all N and N0 , of sort natand nat0, respe
tively (ea
h with 0, S and < operations). To avoidte
hni
al problems, we assume then that in the for 
ommand ((3.8) inse
tion 3.11), the term t 
an have sort nat or nat0. This assumptionhelps us prove 
ertain desirable results, for example:(i) There are For(AN ) 
omputable bije
tions, in both dire
tions,between the two 
opies of N:
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omputability implies ForN 
omputability (the seeminglytrivial dire
tion `(=' of Proposition 3.38).(b) ForN 
omputability impliesWhileN 
omputability (
f. Proposition3.34).(
) Relativised versions ofWhileN and ForN 
omputability 
an be de-�ned as withWhile 
omputability (se
tion 3.10), and 
orrespondingtransitivity lemmas (
f. Lemma 3.32) proved. Also, relative ForN
omputability implies relative WhileN 
omputability.Proposition 3.38. If A is N-standard, then WhileN (or ForN) 
om-putability 
oin
ides with While (or For) 
omputability on A.Proof. For the dire
tion `WhileN (or ForN ) 
omputability =)While(or For) 
omputability', we 
an use the 
oding of AN in A (see Remark2.28(d)), or, more simply, represent the 
omputation over AN by 
omputa-tion over A, by `identifying' the two 
arriers N0 and N with ea
h other, or(equivalently) `identifying' the two sorts nat0 and nat, renaming variablesof these sorts suitably to avoid 
on
i
ts. (See also Remark 3.37(a).)3.13 While� and For� 
omputabilityRe
all the algebra A� of arrays over A, with signature �� (se
tion 2.7).Consider now the While and For programming languages over ��.De�nition 3.39.(a) A sort of �� is 
alled simple, augmented or starred a

ording as it hasthe form s, su or s� (respe
tively), for some s 2 Sort(�).(b) A variable is 
alled simple, augmented or starred a

ording as its sortis simple, augmented or starred.Note that every sort of �� is simple, augmented, starred or nat.De�nition 3.40.(a) AWhile�(�) pro
edure is aWhile(��) pro
edure in whi
h the in-put and output variables are simple. (However the auxiliary variablesmay be augmented or starred or nat.)(b) Pro
�= Pro
�(�) is the 
lass of While�(�) pro
edures.(
) Pro
�u!v= Pro
�(�)u!v is the 
lass of While�(�) pro
edures oftype u! v, for any �-produ
t types u and v.Remark 3.41. We 
an assume that the auxiliary variables of a While�pro
edure are either simple or starred or nat, sin
e a pro
edure with aug-mented variables as auxiliary variables 
an be repla
ed by one with simplevariables, by the devi
e of 
oding Au in A (see Remark 2.30(
)).De�nition 3.42 (While� 
omputable fun
tions).(a) A fun
tion f on A is 
omputable on A by a While� pro
edure P iff = PA. It is While� 
omputable on A if it is 
omputable on A bysome While� pro
edure.
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tions is While� 
omputable uni-formly over K if there is a While� pro
edure P su
h that for allA 2 K , fA = PA.(
) While�(A) is the 
lass of fun
tions While� 
omputable on A.The 
lass of For�(�) pro
edures, and For�(�) 
omputability, are de-�ned analogously.Remark 3.43.(a) While� 
omputability will be the basis for a generalised Chur
h{Turing thesis, as we will see in se
tion 8.8.(b) For�(�) 
omputability impliesWhile�(�) 
omputability (
f. Propo-sition 3.34).(
) Relativised versions of While� and For� 
omputability 
an be de-�ned as withWhile 
omputability (se
tion 3.10) and 
orrespondingtransitivity lemmas (
f. Lemma 3.32) proved. Also, relative For�
omputability implies relative While� 
omputability.(d) In N ,WhileN andWhile� 
omputability are equivalent toWhile
omputability, whi
h in turn is equivalent to partial re
ursivenessover N (Example 3.14(a)). Similarly, in N ; For, ForN and For�
omputability are all equivalent to primitive re
ursiveness (Example3.33).Theorem 3.44 (Lo
ality of 
omputation for While� pro
edures).For a While� pro
edure P : u! v and a 2 Au su
h that PA(a) #,PA(a) 2 haiAv :Proof. This follows from the 
orresponding Theorem 3.30 forWhile 
om-putability, applied to A�, together with ��=� 
onservativity of subalgebrageneration (to be proved below, in Corollary 3.65).The following observation will be needed later.Proposition 3.45. On A�, While� (or For�) 
omputability 
oin
ideswith While (or For) 
omputability.This follows from the e�e
tive 
oding of (A�)� in A� (Remark 2.31(d)).Remark 3.46 (Internal versions of While� and For� 
omputabil-ity). If A is N -standard, we 
an 
onsider `internal versions' of While�and For� 
omputability, based on the `internal version' of A�, whi
h usesthe 
opy of N already in A instead of a `new' 
opy (see Remark 2.31(
)).We 
an show that these versions provide the same models of 
omputationas our standard (`external') versions.Proposition 3.47. Suppose A is N-standard. Let While�0 and For�0
omputability on A be the `internal versions' of While� and For� (re-spe
tively) 
omputability on A (see previous remark). Then While�0 and
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omputability 
oin
ide with While� and For�(respe
tively) 
om-putability on A.Proof. Exer
ise. (Cf. Proposition 3.38.)3.14 Remainder set of a statement; snapshotsWe now return to the operational semanti
s of se
tion 3.4. The 
on
eptsdeveloped here will be useful in investigating the solvability of the haltingproblem for 
ertain algebras (Se
tion 5.6). First we de�ne the remainderset RemSet(S) of a statement S, whi
h is (roughly) the set of all possibleiterations of the RestA operation on S at any state.De�nition 3.48. The remainder setRemSet(S) of S is de�ned by stru
-tural indu
tion on S:Case 1. S is atomi
. RemSet(S) = fSg:Case 2. S � S1;S2.RemSet(S) = fS01;S2 j S01 2 RemSet(S1)g [RemSet(S2):Case 3. S � if b then S1 else S2 �.RemSet(S) = fSg [RemSet(S1) [RemSet(S2):Case 4. S � while b do S0 od.RemSet(S) = fSg [ fS00;S j S00 2 RemSet(S0)g:Example 3.49. Consider a statement of the formS � a1;while b do a2; a3; a4 od; a5where the ai are atomi
 statements (using ad ho
 notation) and b is aBoolean test. Then RemSet(S) 
onsists of the following:S,while b do a2; a3; a4 od; a5;a2; a3; a4; while b do a2; a3; a4 od; a5;a3; a4; while b do a2; a3; a4 od; a5;a4; while b do a2; a3; a4 od; a5;a5:The next proposition says that RemSet(S) 
ontains S, and is 
losedunder the `Rest' operation (for any state).
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tions on algebras 381Proposition 3.50.(a) S 2 RemSet(S).(b) S0 2 RemSet(S) =) RestA(S0; �) 2 RemSet(S) for any state�.Proof. By stru
tural indu
tion on S.Proposition 3.51. RemSet(S) is �nite.Proof. Stru
tural indu
tion on S.De�nition 3.52. The statement remainder fun
tionRemA : Stmt�State(A)�N !Stmtis the fun
tion su
h that RemA(S; �; n) is the statement (the `remainderof S') about to be exe
uted at step n of the 
omputation of S on A,starting in state � (or skip when the 
omputation is over). This is de�nedby re
ursion on n (tail re
ursion again):RemA(S; �; 0) = SRemA(S; �; n+ 1) = 8<: skip if n > 0 and S is atomi
RemA(RestA(S; �);CompA1 (S; �); n)otherwise.Note the similarity with the tail re
ursive de�nition of CompA (se
tion3.4). Note also that for n = 1, this yieldsRemA(S; �; 1) = RestA(S; �):The two fun
tions Comp and Rem also satisfy the following pair ofrelationships, whi
h (together with suitable base 
ases n = 0) 
ould betaken as a (re-)de�nition of them by simultaneous primitive re
ursion:Proposition 3.53.(a) CompA(S; �; n+ 1) = CompA1 (RemA(S; �; n);CompA(S; �; n))(b) RemA(S; �; n+ 1) = RestA(RemA(S; �; n);CompA(S; �; n))provided CompA(S; �; n) 6= �.Proof. Exer
ise.Proposition 3.54. For all n, RemA(S; �; n) 2 RemSet(S)[fskipg.Proof. Indu
tion on n. Use Proposition 3.50.If we put Sn =RemA(S; �; n), then the sequen
e of statements S �S0; S1; S2; : : : is 
alled the remainder sequen
e generated by S at �, writtenRemSeqA(S; �).
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kerCorollary 3.55. For �xed S and �, the range of RemSeqA(S; �) is�nite.Proof. From Propositions 3.51 and 3.54.Now we introdu
e the notion of a `snapshot'.De�nition 3.56.(a) A snapshot is an element (�; S) of (State(A)[f�g)� Stmt.(b) The snapshot fun
tionSnapA : Stmt � State(A) � N ! (State(A)[f�g) � Stmtis de�ned bySnapA(S; �; n) = ( CompA (S; �; n); RemA (S; �; n)):If we put SnapA(S; �; n) = (�n; Sn), so that �n = CompA(S; �; n)and Sn = RemA(S; �; n), then the sequen
e(�; S) = (�0; S0); (�1; S1); (�2; S2); : : :is 
alled the snapshot sequen
e generated by S at �, written SnapSeqA(S; �).It is either in�nite, or terminates in a `�nal snapshot' (�n; Sn), whereCompA(S; �; n+ 1) = � and RemA(S; �; n) = skip.Its importan
e lies in the following:Proposition 3.57. If the snapshot sequen
e generated by S at � repeats avalue at some point, then it is periodi
 from that point on. In other words,if for some m;n with m 6= nSnapA(S; �;m) = SnapA (S; �; n) 6= (�; skip)i.e., �m = �n 6= � and Sm = Sn, then for all k > 0SnapA(S; �;m+ k) = SnapA(S; �; n+ k) 6= (�; skip):Proof. Exer
ise.Corollary 3.58. If the snapshot sequen
e generated by S at � repeats avalue, then it is in�nite.Remark 3.59.(a) The snapshot fun
tion will be used later, in 
onsidering the solvabilityof the halting problem for lo
ally �nite algebras (se
tion 5.5).(b) The snapshot fun
tion is adapted from Davis and Weyuker [1983℄ (orDavis et al. [1994℄). There a `snapshot' or `instantaneous des
ription'
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tions on algebras 383of a program P is de�ned as a pair (i; �) 
onsisting of an instru
tionnumber (or line number) i of P , and the state �. The relian
e oninstru
tion numbers is possible here be
ause programs 
onsist of se-quen
es of elementary instru
tions, in
luding the 
onditional jump.However, in the 
ontext of our While programming language, thespe
i�
ation of an instantaneous des
ription by a simple `instru
tionnumber' is impossible; we need the more 
omplex notion of a parti
-ular `remainder' of the given program (or statement).3.15 ��=� 
onservativity for termsWe 
on
lude this se
tion with a very useful synta
ti
 
onservativity the-orem (Theorem 3.63) whi
h says that every ��-term with sort in � ise�e
tively semanti
ally equivalent to a �-term. This theorem will be usedin se
tions 4 (universality for While� 
omputations: Corollary 4.15) and5 (strengthening Engeler's lemma: Theorem 5.58).First we review and extend our notation for 
ertain synta
ti
 
lasses ofterms.Notation 3.60.(a) Terma = Terma(�) is the 
lass of �-terms t with var(t) � a, andTerma;s = Terma;s(�) is the 
lass of su
h terms of sort s.(b) Further, we de�ne:Term�a = Terma(��)TermNa = Terma(�N )Termu;Na = Terma(�u;N )and similarly,Term�a;s = Terma;s(��) for any sort s, et
.(
) For any �0 � �, we write Terma(�0=�) for the 
lass of �0-termsof sort in � (but possibly with subterms of sort in �0 n �), andTerma;s(�0=�) for the 
lass of su
h terms of sort s (in �).We will show that for all s 2 Sort(�), every term in Term�a;s (i.e.,��-term of sort s) is e�e
tively equivalent to a term in Terma;s (i.e., a�-term of sort s). We will do this in three stages:(1Æ) De�ne an e�e
tive transformation of ��-terms (of sort in �u;N) to�u;N -terms.(2Æ) De�ne an e�e
tive transformation of �u;N -terms (of sort in �N ) to�N -terms.(3Æ) De�ne an e�e
tive transformation of �N -terms (of sort in �) to �-terms.here, in all 
ases, the program variables of the terms are among a.In preparation for this, we must de�ne the notion of the maximum valueof a term in Term�a;nat: This is the maximum possible numeri
al value thatsu
h a term 
ould have, under any assignment to the variables a.
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kerDe�nition 3.61. For t 2 Term�a;nat, its maximum valuemaxval(t) 2 Nis de�ned by indu
tion on the 
omplexity of t (whi
h we 
an take as thelength of t as a string of symbols: 
f. Remark 3.2). There are four 
ases:(a) t�0 :maxval(t) = 0.(b) t�St0 :maxval(t) =maxval(t0) + 1.(
) t�if(b; t1; t2) : maxval(t) = max(maxval(t1); maxval(t2)).(d) t�Lgths(r), where r is of starred sort. There are four sub
ases, a
-
ording to the form of r:(i) r�Null : maxval(t) = 0.(ii) r�Update(r0; t1; t2) : maxval(t) =maxval(Lgth(r0)).(iii) r�Newlength(r0; t1) : maxval(t) =maxval(t1).(iv) r� if(b; r1; r2) : maxval(t) = max(maxval(Lgth(r1));maxval(Lgth(r2))).Remark 3.62.(a) This de�nition, whi
h is used in stage 1 of the synta
ti
 transforma-tion des
ribed in Theorem 3.63 below, uses the assumption that thevariables of t all have sorts in �. If, for example, t (or a subterm of t)was a variable of sort nat, or was of the form Lgth(z�) for a variablez� of starred sort, we 
ould not de�ne maxval(t).(b) Suppose (i) � is stri
tly N -standard (and so in
ludes the sort nat),and (ii) the sorts of a do not in
lude nat. Then, with Term�a;s =Terma;s(��) with the `internal' version of �� (using this sort natinstead of a `new' sort, 
f. Remark 2.31(
)), we 
an still give an ap-propriate de�nition of maxval(t) for t 2 Term�a;nat. (Che
k.)Theorem 3.63 (��=� 
onservativity for terms). Let a be an (ar-bitary but �xed) tuple of �-variables. For all s 2 Sort(�), every term inTerm�a;s is e�e
tively semanti
ally equivalent to a term in Terma;s.Proof. This 
onstru
tion (or transformation) of terms pro
eeds in threestages:Stage 1: from ��-terms (of sort in �u;N) to �u;N -terms;Stage 2: from �u;N -terms (of sort in �N ) to �N -terms;Stage 3: from �N -terms (of sort in �) to �-terms.In all 
ases, the program variables of the terms are among a.Stage 1: From Terma(��=�u;N) to Terma(�u;N ). This amounts toremoving subterms of starred sort from a term of unstarred sort.
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e that if a term of unstarred sort 
ontains a subterm of starredsort, then it must 
ontain a (maximal) subterm r of starred sort in one ofthe three 
ontexts: r = r0; Ap(r; t); Lgth(r):We will show how to eliminate ea
h of these three 
ontexts in turn.Step a. Transform all 
ontexts of the form r1 = r2 (ri of starred sort) toLgth(r1) = Lgth(r2) ^ M̂k=1�Ap(r1; �k) = Ap(r2; �k)�;where M =maxval(Lgth(r1)), and �k is the numeral for k (that is, `0'pre
eded by `S' k times).Now all (maximal) o

urren
es of a subterm r of starred sort are in a
ontext of the form either Ap(r; t) or Lgth(r).Step b. Transform all 
ontexts of the form Ap(r; t), by stru
tural indu
tionon r. There are four 
ases, a

ording to the form of r:(i) r�Null:Ap(r; t) 7�! unspe
:(ii) r�Update(r0; t0; t1):Ap(r; t) 7�! if(t = t0 < Lgth(r0); t1; Ap(r0; t)):(iii) r�Newlength(r0; t0):Ap(r; t) 7�! if(t < t0; Ap(r0; t); unspe
):(iv) r� if(b; r1; r2):Ap(r; t) 7�! if(b; Ap(r1; t); Ap(r2; t)):Note the use of the `if' operator in 
ases (ii) and (iii). Hen
e the in
lusionof `if' in the de�nition of standard algebra (se
tion 2.4). Note also the useof `<' in 
ases (ii) and (iii). Hen
e the in
lusion of `<' in the de�nition ofthe standard algebraN (Example 2.23(b)) andN -standardisations (se
tion2.5).Step 
. Transform all 
ontexts of the form Lgth(r), by stru
tural indu
tionon r. Again there are four 
ases, a

ording to the form of r:(i) r�Null: Lgth(r) 7�! 0:(ii) r�Update(r0; t0; t1):Lgth(r) 7�! Lgth(r0).(iii) r�Newlength(r0; t0):Lgth(r) 7�! t0.(iv) r� if(b; r1; r2):Lgth(r) 7�! if(b; Lgth(r1); Lgth(r2)):
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kerBy these three steps, we transform a starred term (i.e., a term ofTerma(��)), into an unstarred term (i.e., a term of Terma(�u;N )), asdesired, 
ompleting stage 1.Stage 2: From Terma(�u;N=�N) to Terma(�N ). Let t be a term of�u;N , with sort in �N : We note the two following assertions:(1Æ) A maximal subterm ru of t of augmented sort su must o

ur in oneof the following 
ontexts:(a) js(ru),(b) Unspe
s(ru),(
) ru = r0u or r0u = ru (for s an equality sort).(2Æ) Any term ru 2 Terma(�u;N) of sort su is semanti
ally equivalentto a term having one of the following forms:(i) is(r), where r 2 Term(�N ),(ii) unspe
s.Assertion (1Æ) is proved by a simple inspe
tion of the possibilities, and (2Æ)is proved by stru
tural indu
tion on ru: (Details are left to the reader.)Stage 2 is 
ompleted by 
onsidering all 
ombinations of 
ases (a), (b)and (
) in (1Æ) with 
ases (i) and (ii) in (2Æ), and (writing `'' for semanti
equivalen
e over �u;N) noting that(a) js(is(r)) ' r,js(unspe
s) ' Æs (
f. se
tion 2.6),(b) Unspe
s(is(r)) ' false,Unspe
s(unspe
s)) ' true,(
) (is(r) = is(r0)) ' (r = r0),(is(r) = unspe
s) ' false,(unspe
s = is(r)) ' false,(unspe
s =unspe
s) ' true.Stage 3: From Terma(�N=�) to Terma(�). Let t be a term of �N , withsort in �. We note the two following assertions:(1Æ) A maximal subterm r of t of sort nat must o

ur in one of the 
ontextsr < r0; r0 < r; r = r0; r0 = rfor some subterm r0 of sort nat.(2Æ) Any term r 2 Terma(�N ) of sort nat is semanti
ally equivalent to anumeral �n.Again, assertion (1Æ) is proved by a simple inspe
tion of the possibilities,and (2Æ) is proved by stru
tural indu
tion on r. (Details are left to thereader.)
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e the proof of the lemma, is 
ompleted by noting thatall four 
ases listed in (1Æ) are then equivalent to �m < �n or �m = �n, andhen
e (depending on m and n) to either true or false.Remark 3.64.(a) The transformation of terms given by the 
onservativity theorem isprimitive re
ursive in G�odel numbers.(b) Suppose (i) � is stri
tly N -standard (and so in
ludes a sort nat),and (ii) the sorts of a do not in
lude nat. Then, with Term�a;s =Terma;s(��) with the `internal' version of �� (as in Remark 3.62(b)),the 
onservativity theorem still holds. (Che
k.)Re
all De�nition 2.15 on generated subalgebras.Corollary 3.65 (��=� 
onservativity of subalgebra generation).Let X � Ss2Sort(�)As. Then for any �-sort s,hXiA�s = hXiAs :We 
an apply this to strengthen Theorem 3.30:Theorem 3.66 (Lo
ality for While, WhileN or While� 
ompu-table fun
tions). Let f be a (partial) fun
tion on A of type u ! v, leta 2 Au; and suppose f(a) #. If f is While, WhileN or While� 
ompu-table, then fA(a) 2 haiAv :4 Representations of semanti
 fun
tions; universal-ityIn this se
tion we examine whether or not the While programming lan-guage is a so-
alled universal model of 
omputation. This means answeringquestions of the form:Let A be a �-algebra. Does there exist a universal While pro-gram Uprog 2 While(�) that 
an simulate and perform the
omputations of all programs in While(�) on all inputs fromA? Is there a universalWhile pro
edure Upro
 2 Pro
(�) that
an 
ompute all the While 
omputable fun
tions on A?These questions have a number of pre
ise and deli
ate formulations whi
hinvolve representing faithfully the syntax and semanti
s ofWhile 
ompu-tations using fun
tions on A.To this end we need the te
hniques of G�odel numbering, symboli
 
om-putations on terms, and state lo
alisation. Spe
i�
ally, for G�odel number-ing to be possible, we need the sort nat, and so we will investigate thepossibility of representing the syntax of a standard �-algebra A (not in
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kerA itself, but) in its N -standardisation AN , or (failing that) in the arrayalgebra A�. Among a number of results, we will show thatfor any given �-algebra A, there is a universal While pro-
edure over A if, and only if, there is a While program forterm evaluation over A.In 
onsequen
e, be
ause term evaluation is alwaysWhile 
omputable onA�, we have thatfor any �-algebra A, there is a universal While program anduniversal While pro
edure over A�.Thus, for any algebra A our While� model of 
omputation is univer-sal. In parti
ular, we 
an enumerate the While� 
omputable fun
tions�0; �1; �2; : : : of any type u ! v on A, and evaluate them by a universalfun
tion Uu!v : N �Au ! Av de�ned byUu!v(i; a) = �i(a)whi
h is While� 
omputable, uniformly in the types u; v.If the �-algebra A has aWhile program to 
ompute term evaluation,then While�(A) = WhileN (A).We 
onsider also the uniformity of universal programs and pro
edures overa 
lass K of algebras. Many familiar 
lasses of algebras, su
h as groups,rings and �elds, have While programs to 
ompute term evaluation uni-formly over these 
lasses.4.1 G�odel numbering of syntaxWe assume given a family of numeri
al 
odings, or G�odel numberings, of the
lasses of synta
ti
 expressions of � and ��, i.e., a family gn of e�e
tivemappings from expressions E to natural numbers pEq = gn(E), whi
hsatisfy 
ertain basi
 properties:� pEq in
reases stri
tly with 
ompl(E), and in parti
ular, the 
ode ofan expression is larger than those of its subexpressions.� sets of 
odes of the various synta
ti
 
lasses, and of their respe
tivesub
lasses, su
h as fptq j t 2 Termg, fptq j t 2 Termsg, fpSqj S 2 Stmtg, fpSq j S is an assignmentg, et
. are primitive re
ur-sive;� We 
an go primitive re
ursively from 
odes of expressions to 
odesof their immediate subexpressions, and vi
e versa; thus, for example,pS1q and pS2q are primitive re
ursive in pS1;S2q, and 
onversely,pS1;S2q is primitive re
ursive in pS1q and pS2q.In short, we 
an primitive re
ursively simulate all operations involved inpro
essing the syntax of the programming language. This means that the
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ti
 
lasses form a 
omputable (in fa
t, primitive re
ursive) algebra,in the sense of De�nition 1.1. We will use the notationpTermq =df f ptq j t 2 Termg,et
., for sets of G�odel numbers of synta
ti
 expressions.We will be interested in the representation of various semanti
 fun
tionson synta
ti
 
lasses su
h as Term(�), Stmt(�) and Pro
(�) by fun
-tions on A or A�, and in the 
omputability of the latter. These semanti
fun
tions have states as arguments, so we must �rst de�ne a representationof states.4.2 Representation of statesLet x be a u-tuple of program variables. A state � on A is represented(relative to x) by a tuple of elements a 2 Au if �[x℄ = a. (Re
all thede�nition of �[x℄ in se
tion 3.2.)The state representing fun
tionRepAx : State(A) ! Auis de�ned by RepAx (�) = �[x℄.The modi�ed state representing fun
tionRepAx�: State(A)[f�g ! B �Auis de�ned by RepAx�(�) = (tt; �[x℄)RepAx�(�) = (ff; ÆuA)where ÆuA is the default tuple of type u in A (se
tion 2.14).4.3 Representation of term evaluationLet x be a u-tuple of variables. Let Termx = Termx(�) be the 
lassof all �-terms with variables among x only, and for all sorts s of �, letTermx;s = Termx;s(�) be the 
lass of su
h terms of sort s. Similarly, wewrite TermTupx for the 
lass of all term tuples with variables among xonly, and TermTupx;v for the 
lass of all v-tuples of su
h terms.The term evaluation fun
tion on A relative to xTEAx;s: Termx;s� State(A) ! As;de�ned by TEAx;s(t; �) = [[t℄℄A�,is represented by the fun
tionteAx;s: pTermx;sq �Au ! As
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kerde�ned by teAx;s( ptq, a) = [[t℄℄A�;where � is any state on A su
h that �[x℄ = a. (This is well de�ned, byLemma 3.4.) In other words, the following diagram 
ommutes:
-? j AspTermx;sq�Au teAx;s

TEAx;sTermx;s � State(A)hgn,RepAx i
Stri
tly speaking, if gn is not surje
tive on N, then teAx;s is not uniquelyspe
i�ed by the above de�nition, or by the diagram. However, we mayassume that for n not a G�odel number (of the required sort), teAx;s(n; a)takes the default value of sort s (2.12). Similar remarks apply to the otherrepresenting fun
tions given below.Further, for a produ
t type v, we will de�ne a evaluating fun
tion fortuples of terms teAx;v: pTermTupx;vq�Au ! Avsimilarly, by teAx;v(ptq, a) = [[t℄℄A�.We will be interested in the 
omputability of these term evaluationrepresenting fun
tions.4.4 Representation of the 
omputation step fun
tionLet AtStx be the 
lass of atomi
 statements with variables among x only.The atomi
 statement evaluation fun
tion on A relative to x,AEAx : AtStx� State(A) ! State(A),de�ned by AEAx (S; �) = [[S℄℄A�is represented by the fun
tionaeAx : pAtStxq�Au ! Au,de�ned by aeAx ( pSq, a) = (hjSjiA�)[x℄,where � is any state on A su
h that �[x℄ = a. (Again, this is well de�ned,by Lemma 3.14.) In other words, the following diagram 
ommutes:
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tions on algebras 391AtStx�State(A) AEAx���������! State(A)hgn,RepAx ix?? x??RepAxpAtStxq�Au ���������!aeAx AuNext, let Stmtx be the 
lass of statements with variables among x only,and de�ne RestAx =df RestA� (Stmtx�State(A)).Then First and RestAx are represented by the fun
tionsfirst: pStmtq ! pAtStqrestAx : pStmtxq�Au ! pStmtxqwhi
h are de�ned so as to make the following diagrams 
ommute:Stmt First����������! AtStgnx?? x??gnpStmtq ����������!first pAtStq
Stmtx�State(A) RestAx����������! Stmtxhgn,RepAx ix?? x??gnpStmtxq�Au ����������!restAx pStmtxqNote that first is a fun
tion from N to N, and (unlike restAx and mostof the other representing fun
tions here) does not depend on A or x.Next, the 
omputation step fun
tion (relative to x)CompAx = CompA�(Stmtx�State(A)�N):Stmtx�State(A)�N ! State(A) [ f�gis represented by the fun
tion
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ompAx : pStmtxq�Au � N ! B �Auwhi
h is de�ned so as to make the following diagram 
ommute:Stmtx�State(A)�N CompAx�����������! State(A)[f�ghgn,RepAx idNix?? x??RepAxpStmtxq�Au � N �����������!
ompAx B �AuWe put
ompAx (pSq; a; n) = (notoverAx (pSq; a; n); stateAx (pSq; a; n))with the two `
omponent fun
tions'notoverAx : pStmtxq�Au � N ! BstateAx : pStmtxq�Au � N ! Auwhere notoverAx (pSq; a; n) tests whether the 
omputation of pSq at a isover by step n, and stateAx (pSq; a; n) gives the value of the state (repre-sentative) at step n.4.5 Representation of statement evaluationLet Stmtx be the 
lass ofWhile statements with variables among x only.The statement evaluation fun
tion on A relative to x,SEAx : Stmtx� State(A) ! State(A),de�ned by SEAx (S; �) = [[S ℄℄A�;is represented by the (partial) fun
tionseAx : pStmtxq�Au ! Au;de�ned by seAx (pSq,a) = ([[S℄℄A�)[x℄where � is any state on A su
h that �[x℄ = a. (This is also well de�ned, bythe fun
tionality lemma for statements, 3.10.) In other words, the followingdiagram 
ommutes.
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tions on algebras 393Stmtx�State(A) SEAx���������! State(A)hgn,RepAx ix?? x??RepAxpStmtxq�Au ���������!seAx AuWe will also be interested in the 
omputability of seAx .4.6 Representation of pro
edure evaluationWe will want a representation of the 
lass Pro
u!v of all While pro
e-dures of type u ! v, in order to 
onstru
t a universal pro
edure for thattype. This turns out to be a rather subtle matter, sin
e it requires a 
od-ing for arbitrary tuples of auxiliary variables. We therefore postpone su
ha representation to se
tion 4.8, and meanwhile 
onsider a lo
al version, forthe sub
lass of Pro
u!v of pro
edures with auxiliary variables of a given�xed type, whi
h is good enough for our present purpose (Lemma 4.2 andTheorem 4.3).So let a,b,
 be pairwise disjoint lists of variables, with types a : u, b : vand 
 : w. Let Pro
a;b;
 be the 
lass ofWhile pro
edures of type u! v,with de
laration in a out b aux 
. The pro
edure evaluation fun
tion on Arelative to a,b,
 PEAa;b;
: Pro
a;b;
�Au ! Avde�ned by PEAa;b;
(P; a) = PA(a)is represented by the fun
tionpeAa;b;
: pPro
a;b;
q�Au ! Avde�ned by peAa;b;
(pPq; a) = PA(a).In other words, the following diagram 
ommutes:
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-? j AvpTermx;sq�Au pe Aa;b;


PE Aa;b;
Pro
 a;b;
 �Auhgn; idAui
We will also be interested in the 
omputability of peAa;b;
.4.7 Computability of semanti
 representing fun
tions;term evaluation propertyBy examining the de�nitions of the various semanti
 fun
tions in Se
tion3, we 
an infer the relative 
omputability of the 
orresponding representingfun
tions, as follows.Lemma 4.1. The fun
tion first: N ! N is primitive re
ursive, andhen
e While 
omputable on AN , for any standard �-algebra A.Lemma 4.2. Let x be a tuple of program variables and A a standard �-algebra.(a) aeAx and restAx are While 
omputable in h teAa;sj s 2 Sort(�)i onAN :(b) 
ompAx , and its two 
omponent fun
tions notoverAx and stateAx ,are While 
omputable in aeAx and restAx on AN .(
) seAx is While 
omputable in 
ompAx on AN .(d) peAa;b;
 is While 
omputable in seAx on AN , where x�a,b,
.(e) teAx;s is While 
omputable in peAx;y;hi on AN , where y is a variableof sort s, not in x.The above relativeWhile 
omputability results all hold uniformly for A 2StdAlg(�).Proof. Note �rst that if a semanti
 fun
tion is de�ned from others bystru
tural re
ursion on a synta
ti
 
lass of expressions, then a representingfun
tion for the former is de�nable from representing fun
tions for the latterby 
ourse of values re
ursion on the set of G�odel numbers of expressions ofthis 
lass, whi
h forms a primitive re
ursive subset of N.We 
an then prove parts (a){(d) by examining the de�nitions of thesemanti
 fun
tions, and applying Lemma 4.1 and (relativised versions of)the following fa
ts:(1Æ) If a fun
tion f on AN is de�ned by primitive re
ursion or tail re
ur-sion on nat from fun
tions g; h; : : : on AN , then f is For(g; h; : : : )
omputable on AN . (Used in (a) and (b).)
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ursion on nat with range sort nat is redu
ible toprimitive re
ursion on nat. (Used in (a).)(3Æ) The 
onstru
tive least number operator, used in part (
) (
f. thede�nition of CompLength in se
tion 3.4), is While 
omputableon AN .Referen
es for fa
ts (1Æ) and (3Æ) are given later (Theorem 8.5). Fa
t(2Æ) 
an be proved by an analogue of a 
lassi
al te
hnique for 
omputabilityon N whi
h 
an be found in P�eter [1967℄ or Kleene [1952℄.We 
omplete the 
y
le of relative 
omputability by proving (e) as fol-lows: given a term t 2Termx;s, 
onsider the pro
edureP � pro
 in x out y begin y:=t end.Then sin
e pPq is primitive re
ursive in ptq and teAx;s(ptq; a) =pex;y;hi(pPq; a) (and sin
e For 
omputability impliesWhile 
omputabil-ity), the result follows from (1Æ).Theorem 4.3. The following are equivalent, uniformly for A 2StdAlg(�).(i) For all x and s, the term evaluation representing fun
tion teAx;s isWhile 
omputable on AN .(ii) For all x, the atomi
 statement evaluation representing fun
tion aeAx ,and the representing fun
tion restAx , are While 
omputable on AN .(iii) For all x, the 
omputation step representing fun
tion 
ompAx , and itstwo 
omponent fun
tions notoverAx and stateAx , are While 
om-putable on AN .(iv) For all x, the statement evaluation representing fun
tion seAx isWhile
omputable on AN .(v) For all a,b,
, the pro
edure evaluation representing fun
tion peAa;b;
is While 
omputable on AN .Proof. From the transitivity lemma for relative 
omputability (3.32) andLemma 4.2.De�nition 4.4 (Term evaluation).(a) The algebra A has the term evaluation property (TEP) if for all xand s, the term evaluation representing fun
tion teAx;s (or, equiva-lently, any of the other sets of semanti
 representing fun
tions listedin Theorem 4.3) is While 
omputable on AN .(b) The 
lass K has the uniform TEP if the term evaluation representingfun
tion is uniformly While 
omputable on KN .Examples 4.5.(a) Many well-known varieties (i.e., equationally axiomatisable 
lasses ofalgebras) have (uniform versions of) the TEP. Examples are: semi-groups, groups, and asso
iative rings with or without unity. This
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tive normalisability of the terms of these varie-ties. In the 
ase of rings, this means an e�e
tive transformation ofarbitrary terms to polynomials. Consequently, the unordered andordered algebras of real and 
omplex numbers (R;R<; C and C<, de-�ned in Example 2.23), whi
h we will study in se
tion 6, have theTEP. (See Tu
ker [1980, x5℄.)(b) An (arti�
ial) example of an algebra without the TEP is given inMoldestad et al. [1980b℄.Proposition 4.6. The term evaluation representing fun
tion on A� isFor (and hen
eWhile) 
omputable on A�, uniformly for A 2StdAlg(�).Hen
e the 
lass StdAlg(��) has the uniform TEP.Proof. (Outline.) The fun
tion te A�x;s is de�nable by 
ourse of values re-
ursion (
f. Remark 8.6) on G�odel numbers of ��-terms, uniformly forA 2StdAlg(�). It is therefore uniformly For 
omputable on A�, by The-orem 8.7(a).Corollary 4.7.(a) The term evaluation representing fun
tion on A is For� (and hen
eWhile�) 
omputable on AN , uniformly for A 2StdAlg(�).(b) The other semanti
 representing fun
tions listed in Theorems 4.3 areWhile� 
omputable on AN , uniformly for A 2StdAlg(�).Remark 4.8. Suppose � and A are N -standard. Then the semanti
 rep-resenting fun
tions listed above (su
h as teAx;s) 
an all be de�ned over Ainstead of AN . In that 
ase, Lemma 4.2, Theorem 4.3, De�nitions 4.4 andCorollary 4.7 
an all be restated, repla
ing `AN ', `�N ' and `KN ' by `A', `�'and `K ', respe
tively. Similar remarks apply to the de�nitions and resultsin Se
tions 4.8{4.12.Re
all the de�nitions of generated subalgebras, and minimal 
arriersand algebras (De�nitions 2.15 and 2.17 and Remark 2.16).Corollary 4.9 (E�e
tive lo
al enumerability).(a) Given any �-produ
t type u and �-sort s, there is a For� 
omputableuniform enumeration of the 
arrier set of sort s of the subalgebra haiAgenerated by a 2 Au, i.e., a total mappingenumAu;s: Au � N ! Aswhi
h is For� 
omputable on AN , su
h that for ea
h a 2 Au, themapping enumAu;s(a; � ) : pTermx;sq ! haiAs(where x : u) is surje
tive.(b) If A has the TEP, then enumAu;s is also While 
omputable on AN .
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tions on algebras 397Proof. De�ne enumAu;s simply from the appropriate term evaluation rep-resenting fun
tion: enumAu;s(a; n) = teAx;s(n; a).Corollary 4.10 (E�e
tive global enumerability).(a) If A is minimal at s, then there is a For� 
omputable enumerationof the 
arrier As, i.e., a surje
tive total mappingenumAs : N ! As,whi
h is For� 
omputable on AN .(b) If in addition A has the TEP, then enumAs is also While 
ompu-table on AN .Proof. From Corollary 4.9, using the empty list of generators.4.8 Universal WhileN pro
edure for WhileIt is important to note that the pro
edure representing fun
tion peAa;b;
 ofse
tion 4.6 is not universal forPro
(�)u!v (where a :u and b : v). It is only`universal' forWhile pro
edures of type u! v with auxiliary variables oftype type(
). In this subse
tion we will 
onstru
t a universal pro
edureUnivAu;v(pPq; a) for all P 2Pro
u!vand a 2 Au. This in
orporates notthe auxiliary variables of P themselves, but representations of their valuesas (G�odel numbers of) terms in the input variables a. These 
an then allbe 
oded by a single number variable.We will, assuming the TEP for A, 
onstru
t a universal pro
edure forPro
u!v on A. For this we need another representation of the 
omputa-tion step fun
tion whi
h di�ers in two ways from 
ompAx in se
tion 4.4:(1Æ) it is de�ned relative to a tuple a of program variables (`input vari-ables'), whi
h does not ne
essarily in
lude all the variables in S;(2Æ) it has as output not a tuple of values in A, but a tuple of terms inthe input variables | or rather, the G�odel number of su
h a tuple ofterms.More pre
isely, given a produ
t type u = s1 � : : :� sm and a u-tupleof variables a : u, we de�ne
ompuAa : pV arTupq� pStmtq� Au � N ! B � pTermTupqas follows: for any produ
t type w extending u, i.e., w = s1 � : : :� sp forsome p � m, and for any x : w extending a (i.e., x�a; xsm+1 ; : : : ; xsp),and for any S 2Stmtx, a 2 Au and n 2 N,
ompuAa (pxq,pSq; a; n) = (bn; ptnq)where
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ker(i) bn =notoverAx (pSq, (a; ÆA); n), and(ii) tn 2 TermTupx;w and teAx;w(ptnq, (a; ÆA)) = stateAx (pSq,(a; ÆA);n),where ÆA is the default tuple of type sm+1 � : : :� sp. This use of defaultvalues follows from the initialisation 
ondition for output and auxiliaryvariables in pro
edures (se
tion 3.1(d)). (This is also what lies behind thefun
tionality lemma 3.11 for pro
edures.)(If p is not a G�odel number of a tuple of variables x whi
h extends a,or if q is not a G�odel number of a statement S with var(S)� x, thenwe de�ne 
ompuAa (p; q; a; n) = 0 (say). This 
ase is de
idable primitivere
ursively in p and q. Similarly for the other fun
tions de�ned below.)The fun
tion 
ompuAa has the two `
omponent fun
tions'notoveruAx : V arTup�pStmtq�Au � N ! BstateuAa : V arTup�pStmtq�Au � N ! pTermTupqwhere, for x extending a and s 2 Stmtx,notoveruAx (pxq,pSq,a; n) = bnstateuAa (pxq,pSq,a; n) = ptnq.Compare these fun
tions with 
ompAx and its 
omponents notoverAx andstateAx (se
tion 4.4). Note that for any x extending a and S 2Stmtx,notoverAx (pSq, (a; ÆA); n) = notoveruAx (pxq,pSq, a; n) = bnstateAx (pSq, (a; ÆA); n) = teAx;w(ptnq, (a; ÆA)).Think of 
ompuAa and its 
omponent fun
tions as uniform (in x) versionsof 
ompAx and its 
omponent fun
tions. Only the `input variables' a arespe
i�ed.We need a synta
ti
 operation on terms and variables.De�nition 4.11. For any term or term tuple t and variable tuple a,subex(t; a) is the result of substituting the default terms Æs for all variablesxs in t ex
ept for the variables in a.Remark 4.12.(a) For all t 2 TermTup, subex(t; a) 2 TermTupa.(b) subex is primitive re
ursive in G�odel numbers.(
) Suppose t : w and var(t) � x�a; z where a : u. Then for a 2 Au,teAa;w(psubex(t; a)q, a) = teAx;w(ptq,(a; ÆA))where ÆA is the default tuple of type type(z). This follows from the `sub-stitution Lemma' in logi
; see, for example, Spers
hneider and Antoniou[1991℄.Lemma 4.13. The fun
tion 
ompuAa , and its 
omponent fun
tionsnotoveruAx and stateuAa , are While 
omputable in hte Aa;s j s 2Sort(�)i on AN , uniformly for A 2StdAlg(�).
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tions on algebras 399Proof. (Outline.) We essentially redo parts (a) and (b) of Lemma 4.2,using uniform (in x) versions of aeAx and restAx , i.e., we de�ne (1Æ) thefun
tion aeuA: pV arTupq�pAtStq ! pTermTupqwhere for any x : w and S 2AtStx, we haveaeuA(pxq, pSq) 2 pTermTupx;wq, su
h that for any x 2 Aw,teAx;w(aeuA(pxqpSq); x) = aeAx (pSq,x);and (2Æ) the fun
tionrestuAa : pV arTupq�pStmtq�Au ! pStmtqwhere for any x : w extending a : u, S 2AtSt0 and a 2 Au,restuAa (pxq,pSq, a) = restAx (pSq, (a; ÆA)).We 
an then show that(i) aeuA is primitive re
ursive;(ii) 
ompuAa is While 
omputable in restuAa on A; and(iii) restuAa is While 
omputable in hteAa;s j s 2 Sort(�)i.Combining these three fa
ts gives the result.Note, in (iii), that the term evaluation fun
tions teAa;s are used toevaluate Boolean tests in the 
ourse of de�ning restuAa . The one tri
kypoint is this: how do we evaluate, using teAa;s, a (G�odel number of) a termt 2Termx;s, whi
h 
ontains variables in x other than a? (This is the issueof `uniformity in x'.) The answer is that by Remark 4.12(
) the evaluationof t is given by teAa;s(psubex(t,a)q; a).Theorem 4.14 (Universality 
hara
terisation theorem forWhile(�) 
omputations). The following are equivalent, uniformly forA 2StdAlg(�).(i) A has the TEP.(ii) For all �-produ
t types u; v, there is a While(�N ) pro
edureUnivu;v: pPro
u!vq� u ! vwhi
h is universal for Pro
u!v on A, in the sense that for all P 2Pro
u!v and a 2 Au,UnivAu;v(pPq, a) ' PA(a).Proof.(i) =) (ii): Assume A has the TEP. We give an informal des
riptionof the algorithm represented by the pro
edure Univu;v. With input(pPq; a), where P 2Pro
u!v and a 2 Au, suppose
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 in a out b aux 
 begin S endwhere a : u and b : v. Putting x�a,b,
, evaluate notoveruAx(pxq,pSq, a; n) for n = 0; 1; 2; : : : , until you �nd the (least) n forwhi
h the 
omputation of S at a terminates (if at all), i.e.,, the leastn = n0 su
h thatnotoveruAx (pxq,pSq, a; n0 + 1) = ff.Note that notoveruAx is While 
omputable by Lemma 4.13 andassumption. Now let us putstateuAa (pxq,pSq, a; n0) = pt; t0; t00q,where the term tuples t, t0 and t00 represent the 
urrent values of a, band 
, respe
tively. This is also While 
omputable by Lemma 4.13and assumption. Finally, the output isteAa;v(psubex(t0; a)q, a)(
f. Remark 4.12(
)). By assumption and Remark 4.12(b), this isWhile 
omputable in pt0q and a, and hen
e in pPq and a.(ii) =) (i): Note that for any a,b,
,peAa;b;
 = UnivAu;v� (Pro
a;b;
�Au)where a : u and b : v. Hen
e peAa;b;
 is While(�N ) 
omputable ifUnivAu;v is. The result follows from Theorem 4.3.Corollary 4.15 (Universality for A�). For all �-produ
t types u; v,there is a While�(�N) pro
edureUniv�u;v: nat�u ! vwhi
h is universal for Pro
�u!v, in the sense that for all P 2 Pro
�u!v,A 2 StdAlg(�) and a 2 Au,Univ�;Au;v (pPq, a) ' PA(a).Proof. StdAlg(��) has the uniform TEP, by Proposition 4.6.Remark 4.16.(a) For all u; v, the 
onstru
tion of Univu;v (dire
tion (i) ) (ii) in theproof of Theorem 4.14) is uniform over � in the following sense.There is a relative While(�N ) pro
edure Uu;v : nat � u ! v 
on-taining ora
le pro
edure 
alls hhs j s 2 Sort(�)i (se
tion 3.12) withhs : nat�u! s, su
h that for any A 2StdAlg(�), if hs is interpretedas teAa;s on A (where a : u), then Uu;v is universal for Pro
u!v onA. (We ignore the question of whether teAa;s is 
omputable on A.)(b) The use of term evaluation o

urs at two points in the 
onstru
tionof Univu;v (dire
tion (i)=)(ii)): (1Æ) in the evaluation of Booleantests in the 
onstru
tion of the sequen
e
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ompuAa (pxq,pSq; a; 0); 
ompuAa (pxq,pSq; a; 1); : : : ; (4.1)and (2Æ) in the evaluation of the output variables t0 (see proof of The-orem 4.14). We 
an separate, and postpone, both these appli
ationsof term evaluation by modifying the 
onstru
tion of the universalpro
edure as follows.Step 1: Constru
t from S, not a 
omputation sequen
e as in (4.1) butrather a 
omputation tree (se
tion 5.10), spe
i�
ally 
omptree(pxq,pSq,n) (where x�a; b; 
), whi
h is the G�odel number of the �rstn levels of the 
omputation tree from S 2 Stmtx labelled by w-tuples of terms in TermTupx;w. Note that 
omptree:N3 ! N isprimitive re
ursive.Step 2: Sele
t a path in this tree by evaluating Boolean tests (using teAa;booltogether with the subex operation) until you 
ome (if at all) to aleaf. Evaluate the terms representing the output variables at this leaf(again using teAa;s with the subex operation).4.9 Universal WhileN pro
edure for While�We 
an strengthen the universal 
hara
terisation theorem forWhile 
om-putations (4.14) using the ��=� 
onservativity thorem (3.63).Theorem 4.17. (Universality 
hara
terisation theorem forWhile�
omputations) The following are equivalent, uniformly for A 2StdAlg(�).(i) A has the TEP.(ii) For all �-produ
t types u; v, there is a While(�N ) pro
edureUnivu;v: nat�u ! vwhi
h is universal for Pro
�u!v on A, in the sense that for all P 2Pro
�u!v and a 2 Au,UnivAu;v(pPq, a) ' PA(a).Proof. (i) =) (ii): Modify the proof of Theorem 4.14, following thealgorithm of Remark 4.16(b). Constru
t a 
omputation tree as in`step 1. Then, in step 2 (term evaluation), repla
e all Boolean terms(in sele
ting a path) and the output terms (at the leaf) by the 
or-responding �-terms given by Theorem 3.63, and apply teAa;s (for s 2Sort(�)) to these. Sin
e this transformation of terms is primitivere
ursive in G�odel numbers (Remark 3.64(a)), the whole algorithm
an be formalised as a While(�N ) pro
edure.(ii) =) (i): This follows trivially from Theorem 4.14.
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kerCorollary 4.18. The following are equivalent, uniformly for A 2StdAlg(�).(i) A has the TEP.(ii) While�(A) = WhileN (A).4.10 Snapshot representing fun
tion and sequen
eNext we 
onsider the statement remainder and snapshot fun
tions (se
-tion 3.14) whi
h will be useful in our investigation of the halting problem(se
tion 5.6). Let x : u.The statement remainder fun
tion (relative to x)RemAx = RemA�(Stmtx�State(A)�N) :Stmtx�State(A)�N ! Stmtx(
f. De�nition 3.52) is represented by the fun
tionremAx : pStmtxq�Au � N ! pStmtxqwhi
h is de�ned so as to make the following diagram 
ommute:Stmtx�State(A)�N RemAx����������! Stmtxhgn;RepAx ,idNix?? x??gnpStmtxq�Au � N ����������!remAx pStmtxq(Again, this is well de�ned, by Lemma 3.10.)The snapshot fun
tion (relative to x)SnapAx = SnapA�(Stmtx�State(A)�N):Stmtx�State(A)�N ! (State(A)[f�g)�Stmtx(
f. De�nition 3.56) is represented by the fun
tionsnapAx : pStmtxq�Au � N ! (B �Au)�pStmtxqwhi
h 
an be de�ned simply assnapAx (pSq,a; n) = (
ompAx (pSq,a; n), remAx (pSq,a; n))= ((notoverAx (pSq,a; n); stateAx (pSq,a; n)),remAx (pSq,a; n))or (equivalently) so as to make the following diagram 
ommute:
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tions on algebras 403Stmtx�State(A)�N SnapAx�����������! (State(A) [ f�g)�Stmtxhgn,RepAx ,idNix?? x??hRepAx�,gnipStmtxq�Au � N ����������!snapAx (B �Au)�pStmtxqFix x : u, s 2 Stmtx and a 2 Au. Put bn = notoverAx (pSq,a; n), an =stateAx (pSq,a; n) and pSnq = remAx (pSq; a; n). Then the sequen
es(tt; a) = (b0; a0); (b1; a1); (b2; a2); : : :pSq = pS0q, pS1q, pS2q, : : :((tt; a);pSq) = ((b0; a0);pS0q); ((b1; a1);pS1q); ((b2; a2);pS2q); : : :are 
alled, respe
tively, the 
omputation representing sequen
e, the remain-der representing sequen
e and the snapshot representing sequen
e gener-ated by S (or pSq) at a (with respe
t to x), denoted respe
tively by
ompseqAx (pSq,a), remseqAx (pSq,a) and snapseqAx (pSq,a). (Comparethe sequen
es CompSeqA(S; �), RemSeqA(S; �) and SnapSeqA(S; �)introdu
ed in se
tion 3.)The sequen
es 
ompseqAx (pSq,a) and snapseqAx (pSq,a) are said tobe non-terminating, if, for all n, notoverAx (pSq,a; n) = tt, i.e., for no n is
ompAx (pSq,a; n) = (ff; ÆuA).These representing sequen
es satisfy analogues of the results listed inse
tion 3.14; for example:Proposition 4.19. If snapseqAx (pSq,a) repeats a value at some point,then it is periodi
 from that point on, and hen
e non-terminating. In otherwords, if for some m;n with m 6= nsnapAx (pSq, a; m) = snapAx (pSq, an) 6= ((ff; ÆuA); skip)then, for all k > 0,snapAx (pSq, a; m+ k) = snapAx (pSq, an+ k) 6= ((ff; ÆuA); skip)(Cf. Proposition 3.57 and Corollary 3.58.)With the fun
tion snapAx , we 
an extend the list of relative 
omputabil-ity results (Lemma 4.2), and add a 
lause to Theorem 4.3:Lemma 4.20. (Cf. Lemma 4.2.) The fun
tion snapAx , and its two 
om-ponent fun
tions 
ompAx and remAx , are While 
omputable in hteAa;s js 2 Sort(�)i on AN , uniformly for A 2StdAlg(�).Proof. Simple exer
ise.Theorem 4.21. (Cf. Theorem 4.3.) The following are equivalent, uni-formly for A 2StdAlg(�):
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tion teAx;s isWhile 
omputable on AN .(ii) For all x, the snapshot representing fun
tion snapAx , and its two
omponent fun
tions 
ompAx and remAx , are While 
omputable onAN .Proof. As for Theorem 4.3.A uniform (in x) version of snapAx will be used in se
tion 5.6 in ourinvestigation of the `solvability of the halting problem'.4.11 Order of a tuple of elementsLet u be a �-produ
t type, s a �-sort and A a �-algebra. The orderfun
tion of type u; s on A is the fun
tionordAu;s: Au ! Nwhere, for all x 2 Au, ordAu;s(x) ' 
ard(hxiAs )i.e., the 
ardinality of the 
arrier of sort s of the subalgebra of A generatedby x. (It is unde�ned when the 
ardinality is in�nite.)Note that this is a generalisation of the order operation for single ele-ments of groups (Example 3.14(b)).Note that for a tuple x 2 Au, the subalgebra hxiAs 
an be generated instages as �nite sets: hxiAs;0 � hxiAs;1 � hxiAs;2 � : : :where hxiAs;n is de�ned by indu
tion on n, simultaneously for all �-sorts s(
f. Meinke and Tu
ker [1992, 3.12.15�.℄ for the single-sorted 
ase), andhxiAs = [n hxiAs;n.Also hxiAs is �nite if, and only if, there exists n su
h thathxiAs;n = hxiAs;n+1 (4.2)in whi
h 
asehxiAs;n = hxiAs;n+1 = hxiAs;n+2 = : : : = hxiAs .Lemma 4.22. For any tuple of variables x : u, there is a primitivere
ursive fun
tion SubAlgStagex;u;s: N ! Nsu
h that SubAlgStagex;u;s(n) is the G�odel number of a list (pt1q : : :ptknq) of G�odel numbers of the set of terms generated by stage n, i.e.,,
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tions on algebras 405hxiAs;n = f teAx;s(ti; x) j i = 1; : : : ; kn g.Example 4.23. Suppose s is an equality sort.(a) The order fun
tion ordAu;s isWhile 
omputable in teAx;s (where x :u) on AN , uniformly for A 2StdAlg(�).(b) Hen
e if A has the TEP, then ordAu;s is While 
omputable on AN .Proof. The algorithm to 
ompute ordAu;s is (brie
y) as follows. Supposegiven an input x 2 Au. With the help of the fun
tions SubAlgStagex;u;sand teAx;s and the equality operator on As, test for n = 0; 1; 2; : : : whether(4.2) holds. If and when su
h an n is found, determine 
ard(hxiAs;n), againusing the equality operator on As (this time to determine repetitions in thelist hxiAs;n).4.12 Lo
ally �nite algebrasDe�nition 4.24. An algebra A is lo
ally �nite if every �nitely generatedsubalgebra of A is �nite, i.e., if for every �nite X � Ss2Sort(�)As andevery sort s, hXiAs is �nite.Note that A is lo
ally �nite if, and only if, ordAu;s (se
tion 4.11) is totalfor all u and s.Example 4.25. Consider the algebraN�0 = (N� ; 0, pred)where N� is just (a 
opy of) N, and `pred' is the prede
essor operation onthis: pred(n + 1) = n and pred(0) = 0. We write `N� ' to distinguish this
arrier from the `standard' naturals N, whi
h we 
an adjoin to form theN -standardised algebra. We also write the sort of N� as nat�. LetN� = (N� , B ; 0, pred, eqnat� , : : : )be the standardised version of N�0 (with nat� an equality sort). Then bothN�0 and N� are lo
ally �nite; in fa
t for any k1; : : : ; km 2N� ,hfk1; : : : ; kmgiN�nat� = f0; 1; 2; : : : ; kgwhere k = max(k1; : : : ; km). (Che
k.) Hen
eordN�(nat�)m; nat�(k1; : : : ; km) = max(k1; : : : ; km) + 1.Theorem 4.26. Suppose A is lo
ally �nite. Then for any x : u,s 2 Stmtx and a 2 Au:(a) snapseqAx (pSq,a) has �nite range.(b) snapseqAx (pSq,a) (or, equivalently, 
ompseqAx (pSq,a)) is non-term-inating() snapseqAx (pSq,a) repeats a value (other than ((ff; ÆuA),skip)).
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al element of the snapshot representing sequen
e gen-erated by S at a: (an; pSnq) (4.3)where an = 
ompAx (pSq,a; n) and pSnq = remAx (pSq,a; n) for somen. By Lemma 3.28, an must be in haiAu , whi
h is �nite byassumption. Also, by Proposition 3.54, Sn must be in RemSet(S)[fskipg, whi
h is �nite, by Proposition 3.51. Hen
e the pair (4.3) mustbe in the produ
t set haiAu � pRemSet(S)q, whi
h is also �nite.(b) The dire
tion `=)' follows from (a). The dire
tion `(=' followsfrom Corollary 3.58 or (equivalently) Proposition 4.19.Lo
al �niteness will be used later, in 
onsidering `solvability of the halt-ing problem' (Se
tion 5.6).4.13 Representing fun
tions for spe
i�
 terms or pro-gramsThe representing fun
tions that we 
onsidered in se
tions 4.3{4.6 and 4.10have as arguments (typi
ally)(i) G�odel numbers of terms, statements or pro
edures, and(ii) representations of states.Computability of all these fun
tions is equivalent to the TEP (Theorems4.3 and 4.21).Another form of representation whi
h will be useful is to use (i) theterm, statement, et
. as a parameter, not an argument, and just have (ii)the state representation as an argument.More pre
isely, we de�ne (for x : u, t 2Termx;s, s 2 Stmtx, a : u,b : v and P 2Pro
a;b;
) the fun
tionsteAx;s;t : Au ! AsaeAx;S : Au ! AurestAx;S : Au ! pStmtxqnotoverAx;S : Au � N ! BstateAx;S : Au � N ! Au
ompAx;S : Au � N ! B �Au (4.4)
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tions on algebras 407remAx;S : Au � N ! pStmtxqsnapAx;S : Au � N ! (B � Au)� pStmtxqseAx;S : Au ! AupeAa;b;
;P : Au ! Avsu
h that teAx;s;t(a) = teAx;s(ptq, a);
ompAx;S(a; n) = 
ompAx (pSq, a; n),and similarly for the other fun
tions listed in (4.4). We then have:Theorem 4.27.(a) The fun
tions teAx;s;t and aeAx;S are While 
omputable on A. Thefun
tions restAx;S, notoverAx;S, stateAx;S, 
ompAx;S, remAx;S andsnapAx;S are While 
omputable on AN . The fun
tions seAx;S andpeAa;b;
;P are WhileN 
omputable on A.(b) Suppose A is N-standard. Then all the fun
tions listed in (4.4) areWhile 
omputable on A.Proof. For (a): 
omputability of teAx;s;t is proved by stru
tural indu
tionon t 2Termx. To prove 
omputability of restAx;S on AN , put S � S0;S1,where S0 does not have the form S0;S00 (and `;S1' may be empty), andrewrite the de�nition of RestA in se
tion 3.5 as an expli
it de�nition by
ases, a

ording to the di�erent forms of S0. For 
omputability of 
ompAx;Son AN , show that the family of fun
tions h
ompAx; S0 jS0 2 RemSet(S)iis de�nable by simultaneous primitive re
ursion. (Compare the de�nitionof CompA in se
tion 3.4.) Use the fa
t that this family is �nite, by Propo-sition 3.51.Part (b) follows immediately from (a).5 Notions of semi
omputabilityWe want to generalise the notion of re
ursive enumerability to many-sortedalgebras. There turn out to be many non-equivalent ways to do this.The primary idea is that a set is While semi
omputable if, and onlyif, it is the domain or halting set of a While pro
edure; and similarly forWhileN and While� semi
omputability. There are many useful appli-
ations of these 
on
epts, and they satisfy 
losure properties and Post'stheorem:A set is 
omputable if, and only if, it and its 
omplement aresemi
omputable.The se
ond idea of importan
e is that of a proje
tion of a semi
ompu-table set. In 
omputability theory on the set N of natural numbers, the
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lass of semi
omputable sets is 
losed under taking proje
tions, but this isnot true in the general 
ase of algebras, even with While� 
omputability.(A reason is the restri
ted form of 
omputable lo
al sear
h available inour models of 
omputation.) Proje
tive semi
omputability is stri
tly morepowerful (and less algorithmi
) than semi
omputability.In this se
tion we will study the two notions of semi
omputability andproje
tive semi
omputability in some detail. We will 
onsider the invari-an
e of the properties under homomorphisms. We will prove equivalen
es,su
h asproje
tive While� semi
omputability = proje
tive For� 
omputability.In the 
ourse of the se
tion, we also 
onsider extensions of the Whilelanguage by non-deterministi
 
onstru
ts, in
luding allowing:(i) arbitrary initialisations of some auxiliary variables in programs;(ii) random assignments in programs.We prove that in these non-deterministi
 languages, semi
omputability isequivalent to the 
orresponding notion of proje
tive semi
omputability. Wealso show an equivalen
e between proje
tive semi
omputability and(iii) de�nability in a weak se
ond-order language.We 
hara
terise the semi
omputable sets as the sets de�nable by somee�e
tive 
ountable disjun
tion 1_k=0 bkof Boolean-valued terms. This result was �rst observed by E. Engeler.There are a number of attra
tive appli
ations, e.g. in 
lassifying the semi-
omputable sets over rings and �elds, where Boolean terms 
an be repla
edby polynomial identities; we 
onsider this topi
 in se
tion 6.These 
on
epts and results are developed for 
omputations with thethree languages based on the While, WhileN and While� 
onstru
ts;and their uniformity over 
lasses of algebras is dis
ussed.We assume throughout this se
tion that � is a standard signature, andA a standard �-algebra.5.1 While semi
omputabilityDe�nition 5.1. The halting set of a pro
edure P : u ! v on A is therelation HaltA(P ) =df fa 2 Au j PA(a) #g.Now let R be a relation on A.
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tions on algebras 409De�nition 5.2.(a) R is While 
omputable on A if its 
hara
teristi
 fun
tion is.(b) R isWhile semi
omputable on A if it is the halting set on A of someWhile pro
edure.(
) A family R =hRA j A 2 K i of relations is While semi
omputableuniformly over K if there is a While pro
edure P su
h that for allA 2 K , RA is the halting set of P on A.It follows from the de�nition that R is While semi
omputable on Aif, and only if, R is the domain of a While 
omputable (partial) fun
tionon A.Remark 5.3. As far as de�ning relations by pro
edures is 
on
erned, we
an ignore output variables. More pre
isely, if R =HaltA(P ), then we mayassume that P has no output variables, sin
e otherwise we 
an remove alloutput variables from P simply by re
lassifying them as auxiliary variables.We will 
all any pro
edure without output variables a relational pro
edure.De�nition 5.4 (Relative While semi
omputability). Given a tupleg1; : : : ; gn of fun
tions on A, a relation R on A isWhile semi
omputablein g1; : : : ; gn if it is the halting set on A of aWhile(g1; : : : ; gn) pro
edure,or (equivalently) the domain of a fun
tionWhile 
omputable in g1; : : : ; gn(
f. se
tion 3.10).Example 5.5.(a) On the naturals N (Example 2.23(b)), the While semi
omputablesets are pre
isely the re
ursively enumerable sets, and the While
omputable sets are pre
isely the re
ursive sets.(b) Consider the standard algebra R of reals (Example 2.23(
)). The setof naturals (as a subset of R) isWhile semi
omputable on R, beingthe halting set of the following pro
edure:is nat � pro
 in x: realbegin while not x= 0do x := x-1 odend(
) Similarly, the set of integers is While semi
omputable on R. (Ex-er
ise.)(d) However, the sets of naturals and integers areWhile 
omputable onR< (se
tion 2.23(d)). (Exer
ise.)(e) The set of rationals isWhile semi
omputable onR. (Exer
ise. Hint:Prove this �rst for RN .)5.2 Merging two pro
edures: Closure theoremsIn order to prove 
ertain important results forWhile semi
omputable sets,namely (a) 
losure under �nite unions, and (b) Post's theorem, we need todevelop an operation of merging two pro
edures, i.e., interleaving their
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edure. In the 
ontext of N -standard stru
tures,and assuming the TEP, this is a simple 
onstru
tion (as in the 
lassi
al 
aseover N). In general, however, the merge 
onstru
tion is quite non-trivial,as we shall now see.Lemma 5.6. Given two relational While(�) pro
edures P1 and P2, ofinput type u, we 
an 
onstru
t a While(�) pro
edureQ � mg(P1; P2) : u! bool;the merge of P1 and P2, with Boolean output values (written `1' and `2' for
larity) su
h that for all A 2StdAlg(�) and a 2 Au:QA(a) # () PA1 (a) # or PA2 (a) #;QA(a) # 1 =) PA1 (a) #;QA(a) # 2 =) PA2 (a) # :Proof. We may assume without loss of generality thatP1 � pro
 in x aux z1 begin S1 endP2 � pro
 in x aux z2 begin S2 endwhere x : u and z1\z2 = ;. We 
an 
onstru
t a pro
edureQ � pro
 in x aux z1,z2; : : : out whi
h begin S endwhere S�mg(S1; S2), the `merge' of S1 and S2, and `whi
h' is a Booleanvariable with values written as `1' and `2'. The operation mg(S1; S2) isa
tually de�ned for all pairs S1; S2 su
h that var(S1)\var(S2)� x, andnone of the x o

ur on the lhs of any assignment in S1 or S2. It has thesemanti
 property that for all A; �:[[mg(S1; S2)℄℄A� # () [[S1℄℄A� # or [[S2℄℄A� #;and if [[mg(S1; S2)℄℄A� # �0 then�0(whi
h) = 1 =) [[S1℄℄� # and [[mg(S1; S2)℄℄A� � [[S1℄℄A� (rel varS1),�0(whi
h) = 2 =) [[S2℄℄� # and [[mg(S1; S2)℄℄A� � [[S2℄℄A� (rel varS2).The de�nition of mg(S1; S2) is by 
ourse of values re
ursion on the sumof 
ompl(S1) and 
ompl(S2). Details are left as a (
hallenging) ex-er
ise. (Hint: The tri
ky 
ase is when both S1 and S2 have the formSi�while bi do S0i od;S0i (i = 1; 2), where `;S0i' may be empty).Remark 5.7. The 
onstru
tion ofmg(P1; P2) for A is mu
h simpler if we
an assume that (i) A is N-standard, and (ii) A has the TEP. In that 
ase,by Theorem 4.3, the 
omputation step representing fun
tion 
ompAx isWhile 
omputable on A. Using this, we 
an 
onstru
t aWhile pro
edurewhi
h interleaves the 
omputation steps of S1 and S2, tests at ea
h step
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omputation has halted, and (a

ordingly) gives an outputof 1 or 2.Theorem 5.8 (Closure of While semi
omputability under unionand interse
tion). The union and interse
tion of two While semi
om-putable relations of the same type are againWhile semi
omputable. More-over, this result is uniformly e�e
tive over StdAlg(�), in the sense thatgiven two While pro
edures P1 and P2 of the same input type u, there aretwo other pro
edures P1[2 and P1\2 of input type u, e�e
tively 
onstru
tiblefrom P1 and P2, su
h that on any standard �-algebra A,(a) HaltA(P1[2) = HaltA(P1)[ HaltA(P2);(b) HaltA(P1\2) = HaltA(P1)\ HaltA(P2).Proof. Suppose again without loss of generality thatP1 � pro
 in x aux z1 begin S1 endP2 � pro
 in x aux z2 begin S2 endwhere z1 \ z2 = ;.(a) P1[2 
an be de�ned asmg(P1; P2), as in Lemma 5.6. (We ignore itsoutput here.)(b) P1\2 
an be de�ned, more simply, as in the 
lassi
al 
ase:P1\2 � pro
 in x aux z1, z2 begin S1;S2 end.If R is a relation on A of type u, we write the 
omplement of A asR
 =df AunR:Theorem 5.9 (Post's theorem for While semi
omputability). Forany relation R on AR is While 
omputable () R and R
 are While semi
omputable.Moreover, this equivalen
e is uniformly e�e
tive over StdAlg(�), i.e.,(
onsidering the reverse dire
tion) given any pro
edures P1 and P2 of thesame input type u, there is a pro
edure P3 : u ! bool, e�e
tively 
on-stru
tible from P1 and P2, su
h that on any standard �-algebra A, if thehalting sets of P1 and P2 are RA and R
A respe
tively, then P3 
omputesthe 
hara
teristi
 fun
tion of RA.Proof.(=)) This follows, as in the 
lassi
al 
ase, by modifying a pro
edurewhi
h 
omputes the 
hara
teristi
 fun
tion of R into two pro
edureswhi
h have R and R
 respe
tively as halting sets.((=) Again, we 
an just take P3 � mg(P1; P2), as in Lemma 5.6. �Another useful 
losure result, appli
able to N -standard stru
tures, is:Theorem 5.10 (Closure ofWhile semi
omputability under N-pro-je
tions). Suppose A is N-standard. If R � Au�nat is While semi
om-putable on A, then so is its N-proje
tion fx 2 Au j 9n 2 NR(x; n)g.
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edure P whi
h halts on R, we 
an e�e
tively 
onstru
tanother pro
edure whi
h halts on the required proje
tion. Brie
y, for inputx, we sear
h by dovetailing for a number n su
h that P halts on (x; n). Inother words, the algorithm pro
eeds in stages (1,2, : : : ), given by theiterations of a `while' loop. At stage n, test whether P halts in at most nsteps, with input (x; k), for some k < n. This 
an be done by 
omputingnotoverAx;S(x; k) for all k < n (see se
tion 4.13). The algorithm halts ifand when we get an output ff.Note that if A has the TEP, we 
ould just as well use the 
omputationstep representing fun
tion 
ompAx in the above proof instead of 
ompAx;S .(Cf. Remark 5.7.)We 
an generalise Theorem 5.10 to the 
ase of an As-proje
tion for anyminimal 
arrier As (re
all De�nition 2.17), provided A has the TEP:Corollary 5.11 (Closure of While semi
omputability under pro-je
tions o� minimal 
arriers). Suppose A is N-standard and has theTEP. Let As be a minimal 
arrier of A. If R � Au�s is While semi
om-putable on A, then so is its proje
tion fx 2 Au j 9y 2 As R(x; y)g.Proof. Re
all that by Corollary 4.10, there is a total While 
omputableenumeration of As, enumAs : N ! As.So for all x 2 Au,9y 2 AsR(x; y) () 9nR(x; enumAs (n)) () 9nR0(x; n)where (as is easily seen) the relationR0(x; n) =df R(x; enumAs (n))is While semi
omputable. The result follows from Theorem 5.10.Note that there are relativised versions (
f. De�nition 5.4) of all theresults of this subse
tion so far.Dis
ussion 5.12 (Minimality and sear
h). Corollary 5.11 is a many-sorted version of (part of) Theorem 2.4 of [Friedman, 1971a℄, 
ited in[Shepherdson, 1985℄. The minimality 
ondition (a version of Friedman'sCondition III) means that sear
h in As is 
omputable (or, more stri
tly,semi
omputable) provided A has the TEP. Thus in minimal algebras, manyof the results of 
lassi
al re
ursion theory 
arry over, e.g.,� the domains of semi
omputable sets are 
losed under proje
tion (asabove);� a semi
omputable relation has a 
omputable sele
tion fun
tion;� a fun
tion with semi
omputable graph is 
omputable.(Cf.Theorem 2.4 of Friedman [1971a℄.) If, in addition, there is 
omputableequality at the appropriate sorts, other results of 
lassi
al re
ursion theory
arry over, e.g.,
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omputable fun
tion is semi
omputable.(Cf. Theorem 2.6 of Friedman [1971a℄.)5.3 Proje
tive While semi
omputability: semi-
omputability with sear
hWe introdu
e and 
ompare two new notions of semi
omputability: (1Æ)proje
tive While semi
omputability and (2Æ) While semi
omputabilitywith sear
h. First, for (1Æ):De�nition 5.13.(a) R is proje
tively While 
omputable on A if, and only if, R is a pro-je
tion of aWhile 
omputable relation on A (see De�nition 2.9(d)).(b) R is proje
tive While semi
omputable on A if, and only if, R is aproje
tion of a While semi
omputable relation on A.The notions of uniform proje
tive While 
omputability and semi
om-putability over K of a family of relations, are de�ned analogously (
f. De�-nition 5.2(
)).Note that proje
tive While semi
omputability is, in general, weakerthan While semi
omputability. Example 6.15 will show this, using En-geler's lemma.We do, however, have 
losure of semi
omputability in the 
ase of N-proje
tions, i.e., existential quanti�
ation over N, as we saw in Theorem5.10. Further, we have from Corollary 5.11:Proposition 5.14. Suppose A is N-standard and minimal and has theTEP. Then on Aproje
tive While semi
omputability = While semi
omputability.Now, for (2Æ), we introdu
e a new feature: de�nability with the poss-ibility of arbitrary initialisation of sear
h variables. For this, we de�ne anew type of pro
edure.De�nition 5.15. A sear
h pro
edure has the formPsr
h � pro
 in a out b aux 
 sr
h d begin S end; (5.1)with sear
h variables d as well as input, output and auxiliary variables, andwith the stipulations (
ompare se
tion 3.1(d)):� a, b, 
 and d ea
h 
onsist of distin
t variables, and they are pairwisedisjoint;� every variable in S is in
luded among a, b, 
 or d;� the input and sear
h variables a,d 
an o

ur only on the right-handside of an assignment in S;� (initialisation 
ondition): S has the form Sinit;S0, where Sinit
onsists of an initialisation of the output and auxiliary variables, butnot of the sear
h variables d.
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h has no output variables, i.e.,that b is empty. (See Remark 5.3.)De�nition 5.16. The halting set of a sear
h pro
edure as in (5.1) on A(assuming a : u and d : w) is the setHaltA(Psr
h) =df fa 2 Auj for some � with �[a℄ = a, [[S℄℄� #g.In other words, it is the set of tuples a 2 Au su
h that when a is ini-tialised to a, then for some (non-deterministi
) initialisation of d, S halts.Note that this redu
es to De�nition 5.1 when Psr
h has no sear
h vari-ables.Now let R be a relation on A.De�nition 5.17. R is While semi
omputable with sear
h on A if R isthe halting set on A of some While sear
h pro
edure.Again, the notion of uniformWhile semi
omputability with sear
h overK of a family of relations, is de�ned analogously.Now we 
ompare the two notions introdu
ed above.Theorem 5.18.(a) R isWhile semi
omputable with sear
h on A () R is proje
tivelyWhile semi
omputable on A.(b) This equivalen
e is uniform over StdAlg(�), in the sense that thereare e�e
tive transformations Psr
h 7! P and P 7! Psr
h betweensear
h pro
edures Psr
h and ordinary pro
edures P , su
h that for allA 2StdAlg(�), HaltA(Psr
h) is a proje
tion of HaltAP .Proof. The equivalen
e follows easily from the de�nitions. Suppose R isthe halting set on A by a sear
h pro
edure Psr
h with input variables a : uand sear
h variables d : w. Let P be the pro
edure formed from Psr
hsimply by relabelling d as additional input variables. (So the input type ofP is u�w.) Then R is the proje
tion onto Au of the halting set of P . Theopposite dire
tion is just as easy.5.4 WhileN semi
omputabilityLet R be a relation on A.De�nition 5.19.(a) R isWhileN 
omputable on A if its 
hara
teristi
 fun
tion is (se
tion3.12).(b) R is WhileN semi
omputable on A if it is the halting set of someWhileN pro
edure P on AN .Again, we may assume that P has no output variables. (See Remark5.3.)From Proposition 3.38 we have:



Computable fun
tions on algebras 415Proposition 5.20. If A is N-standard, then WhileN semi
omputabilityon A 
oin
ides with While semi
omputability on A.Theorem 5.21 (Closure ofWhileN semi
omputability under unionand interse
tion). The union and interse
tion of two WhileN semi-
omputable relations of the same input type are again WhileN semi
om-putable, uniformly over StdAlg(�).Proof. From Theorem 5.8, applied to AN .Theorem 5.22 (Post's theorem for WhileN semi
omputability).For any relation R on AR is WhileN 
omputable ()R and R
 are WhileN semi
omputable,uniformly for A 2StdAlg(�).Proof. From Theorem 5.9, applied to AN .Note that if A has the TEP, then the 
onstru
tion of a `merged'WhileNpro
edure mg(P1; P2) from two WhileN pro
edures P1 and P2, used inthe above two theorems, is mu
h simpler than the 
onstru
tion given inLemma 5.6 (
f. Remark 5.7).Also Theorem 5.10 and Corollary 5.11 
an respe
tively be restated forWhileN semi
omputability:Theorem 5.23 (Closure of WhileN semi
omputability under N-proje
tions). Suppose R � Au�nat, where u 2ProdType(�), and Ris While semi
omputable on AN . Then its N-proje
tion fx j 9n 2NR(x; n)g is WhileN semi
omputable on A.Corollary 5.24 (Closure ofWhileN semi
omputability under pro-je
tions o� minimal 
arriers). Suppose A has the TEP. Let As be aminimal 
arrier of A. If R � Au�s isWhileN semi
omputable on A, thenso is its proje
tion fx 2 Au j 9y 2 As R(x; y)g.Example 5.25.(a) (WhileN semi
omputability of the subalgebra relation.) For a stand-ard signature �, equality sort s, produ
t type u and standard �-algebra A, the subalgebra relationf(y; x) 2 As �Au j y 2 hxiAs g(where hxiAs is the 
arrier of sort s of the subalgebra of A generated byx 2 Au) is While semi
omputable (on AN ) in the term evaluationrepresenting fun
tion teAx;s, where x : u (se
tion 4.3). To show this,we note that y 2 hxiAs () 9z 2 N (teAx;s(z; x) = y)(
f. Remark 2.16) and apply (a relativised version of) Theorem 5.23.Hen
e if A has the TEP, this relation isWhileN semi
omputable onA.
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ker(b) On the standard group G (Examaple 2.23(g)) the set fg 2 G j9n(gn = 1)g of elements of �nite order is WhileN semi
omputable,being the domain of the order fun
tion on GN , whi
h isWhile 
om-putable on GN (Example 3.14(b)). In fa
t, this set is even Whilesemi
omputable on G. (Exer
ise.)(
) More generally, for any �-produ
t type u and �-equality sort s, theset fx 2 Au jhxiAs is �nitegis WhileN semi
omputable in teAx;s. This follows from the fa
t thatit is the domain of the fun
tion ordAu;s, whi
h isWhile 
omputablein teAx;s on AN (Example 4.23). Hen
e if A has the TEP, then thisset is WhileN semi
omputable on A.5.5 Proje
tive WhileN semi
omputabilityLet R be a relation on A.De�nition 5.26.(a) R is proje
tively WhileN 
omputable on A if, and only if, R is aproje
tion of a While(�N ) 
omputable relation on AN .(b) R is proje
tively WhileN semi
omputable on A if R is a proje
tionof a While(�N ) semi
omputable relation on AN .Proposition 5.14 
an be restated for WhileN semi
omputability:Proposition 5.27. Suppose A is a minimal and has the TEP. Then on Aproje
tive WhileN semi
omputability = WhileN semi
omputability.De�nition 5.28. R is WhileN semi
omputable with sear
h on A if R isthe halting set of a While(�N ) sear
h pro
edure on AN .Note that the While(�N ) sear
h pro
edure in this de�nition hassimple input variables. However, the auxiliary, sear
h and output variablesmay be simple or nat.Again, the following equivalen
e follows easily from the de�nitions. (Cf.Theorem 5.18.)Theorem 5.29.(a) R is WhileN semi
omputable with sear
h on A () R is proje
-tively WhileN semi
omputable on A.(b) This equivalen
e is uniform over StdAlg(�).5.6 Solvability of the halting problemThe 
lassi
al question of the solvability of the halting problem ([Davis,1958℄; impli
it in [Turing, 1936℄) applies to the algebra of naturals N0(Example 2.5(a)) or its standardised version N (Example 2.23(b)). We
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tions on algebras 417want to generalise this question to any standard signature � and standard�-algebra A. We will �nd that the problem 
an only be formulated inN -standard algebras.De�nition 5.30. Suppose � � �0, where � is standard and �0 is N -standard, and suppose A is a standard �-algebra and A0 is a �0-expansionof A. Then we say the halting problem (HP) for While(�) 
omputationon A is While(�0)-solvable on A0, or the HP for While(A) is solvable inWhile(A0), if for every �-produ
t type u there is aWhile(�0) pro
edureHaltTestu: nat�u! bool,su
h that HaltTestAu is total, and for every While(�) pro
edure P of inputtype u, and all a 2 Au,HaltTestAu (pPq; a) = (tt if PA(a) #ff otherwise:The pro
edure HaltTestu in the above de�nition is 
alled a universalhalting test for type u on While(A).Proposition 5.31. If the HP for While(A) is solvable in While(A0),then every While(�) semi
omputable set in A is While(�0) 
omputablein A0.Proof. Simple exer
ise.The two typi
al situations are:(i) �0 = �N and A0 = AN ;(ii) � is N -standard, �0= � and A0 = A.Example 5.32. For the algebra N (Example 2.23(b)), the HP is not solv-able in While(N ). This is a version of the 
lassi
al result of [Kleene,1952℄.Theorem 5.34 makes use of the 
on
ept of lo
al �niteness (se
tion4.12). In preparation for it, we de�ne uniform (in x) representations ofthe statement remainder fun
tion and the snapshot fun
tion (
f. se
tion4.10). Namely, given a produ
t type u = s1 � : : :� sm and a u-tuple ofvariables a : u (whi
h we think of as input variables), we de�neremuAa : pV arTupq�pStmtq�Au � N !pStmtqsnapuAa : pV arTupq�pStmtq �Au � N !(B�pTermTupaq)�pStmtqas follows: for any produ
t type w extending u, i.e.,w = s1 � : : : � sp for some p � m, for any x : w extending a (i.e.,x�a; xsm+1 ; : : : ; xsp), and for any S 2Stmtx, a 2 Au and n 2 N,remuAa (pxq,pSq,a; n; ) = remAx (pSq,a; ÆA); n)where ÆA is the default value of type sm+1 � : : :� sp; and
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kersnapuAa (pxq; pSq; a; n) = (
ompuAa (pxq; pSq; a; n);remuAa (pxq; pSq; a; n))= ((bn; ptnq); pSnq) (5.2)where bn = notoveruAx (pxq; pSq; a; n)ptnq = stateuAa (pxq; pSq; a; n)pSnq = remuAa (pxq; pSq; a; n).Lemma 5.33. The fun
tion snapuAa , and its 
omponents 
ompuAa andremuAa , areWhile 
omputable in hteAa;s j s 2 Sort(�)i on AN , uniformlyfor A 2StdAlg(�).Proof. Similar to Lemma 4.20.Theorem 5.34. Suppose(1Æ) � has equality at all sorts,(2Æ) A has the TEP, and(3Æ) A is lo
ally �nite.Then the HP for While(A) is solvable in While(AN ).Proof. Given a �-produ
t type u = s1 � : : :� sm, we will give an informaldes
ription of an algorithm over AN for a universal halting test for typeu on While(A). (Compare the 
onstru
tion of the universal pro
edure inse
tion 4.8.)With input (pPq, a), where P has input type u, and a 2 Au, supposeP � pro
 in a out b aux 
 begin S endwhere a : u. Put x � a; b; 
. Then for n = 0; 1; 2; : : :snapuAa (pxq; pSq; a; n) = ((bn; ptnq), pSnq)as in (5.2) above. Now putxn = teAa;w(ptnq, a) = stateAx (pSq,a; ÆA); n).By Lemma 5.33 and assumption (2Æ), snapuAa is While 
omputable onAN . In other words, its three 
omponents bn, ptnq and pSnq (as fun
tionsof n) areWhile 
omputable on AN . Hen
e by assumption (2Æ) again, the
omponents of the w-tuple xn areWhile 
omputable on AN (as fun
tionsof n).Now for n = 0; 1; 2; : : : , evaluate the w-tuple xn, and 
ompare it (
om-ponentwise) to xm for all m < n (whi
h is possible by assumption (1Æ)),until either(a) bn = ff, whi
h means that the 
omputation of S (and hen
e of P ata) terminates; or
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t m and n, bm = bn = tt, xm = xn and pSmq =pSnq, whi
h means that the 
omputation of S never terminates, byProposition 3.34.Exa
tly one of these two 
ases must happen, by Theorem 4.26 and assump-tion (3Æ). In 
ase (a) halt with output tt, and in 
ase (b) halt with outputff. Note that Assumption (1Æ) 
an be weakened to:(1Æ0) Equality on As is WhileN 
omputable, for all �-sorts s.Also, for all u, the above 
onstru
tion of HaltTestu is uniform over �in the following sense: t`here is a relative While(�N ) pro
edure Hu :nat � u ! bool 
ontaining ora
le pro
edure 
alls hgs j s 2 Sort(�)i andhhs j s 2 Sort(�)i with gs : s2 ! bool and hs : nat� u! s, su
h thatfor any A 2StdAlg(�), if A is lo
ally �nite, then, interpreting gs and hsas eqAs and teAx;s respe
tively on A (where x : u), Hu is a universal haltingtest for type u on A. (Cf. Remark 4.16(a).)Corollary 5.35. Suppose(1Æ) � has equality at all sorts,(2Æ) A has the TEP,(3Æ) A is lo
ally �nite, and(4Æ) A is N-standard.Then the HP for While(A) is solvable in While(A).Example 5.36 (A set whi
h isWhileN but notWhile semi
ompu-table). The above theory allows us to produ
e an example to distinguishbetween While and WhileN semi
omputability. Let A be the algebraN� (Example 4.25). We present an outline of the argument. Che
k ea
hof the following points in turn.(i) In AN there is a 
omputable bije
tion (n 7! n) from N� to N.(ii) Hen
e the WhileN 
omputable subsets of N� are pre
isely there
ursive sets of natural numbers (
f. Remark 3.43(d)).(iii) Similarly the WhileN semi
omputable subsets of N� are pre
iselythe re
ursively enumerable sets of natural numbers (
f. Example 5.5).(iv) Sin
e N� is lo
ally �nite (4.25) and has the TEP, the HP forWhile(A) is solvable in While(AN ). Therefore, by Proposition5.31, every While semi
omputable subset of N� is WhileN 
om-putable, and hen
e re
ursive.The result follows from (iii) and (iv).The same algebra, N�, 
an be used to distinguish between Whileand WhileN 
omputable fun
tions. (Exer
ise. Hint: There is a univer-sal WhileN (N�) pro
edure for all total While(N�) fun
tions of typenat�!nat�.)
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omputabilityLet R be a relation on A.De�nition 5.37.(a) R isWhile� 
omputable on A if, and only if, its 
hara
teristi
 fun
-tion is.(b) R is While� semi
omputable if, and only if, it is the halting set ofsome While pro
edure P on A�.Again, we may assume that P has no output variables. (See Remark5.3.)From Proposition 3.45 we have:Proposition 5.38. On A�,While� semi
omputability 
oin
ides withWhilesemi
omputability.Theorem 5.39 (Closure ofWhile� semi
omputability under unionand interse
tion). The union and interse
tion of twoWhile� semi
om-putable relations of the same type are again While� semi
omputable, uni-formly over StdAlg(�).Proof. From Theorem 5.8, applied to A�Theorem 5.40 (Post's theorem for While� semi
omputability).For any relation R on AR is While� 
omputable ()both R and R
 are While� semi
omputable,uniformly for A 2StdAlg(�).Proof. From Theorem 5.9, applied to A�.Note that if A has the TEP, then the 
onstru
tion of a `merged'WhileNpro
edure mg(P1; P2) from two WhileN pro
edures P1 and P2, used inthe above two theorems, is mu
h simpler than the 
onstru
tion given inLemma 5.6 (
f. Remark 5.7).Note that sin
e A� has the TEP for all A 2StdAlg(�), there is auniform 
onstru
tion of a `merged' While� pro
edure mg(P1; P2) fromtwoWhile� pro
edures P1 and P2, used in the above two theorems, whi
his mu
h simpler than the 
onstru
tion given in Lemma 5.6 (
f. Remark5.7).Also Theorem 5.10 (and 5.23) and Corollary 5.11 (and 5.24) 
an berestated for While� semi
omputability:Theorem 5.41. Suppose R � Au�nat, where u 2ProdType(�), andR is While� semi
omputable on AN . Then its N-proje
tion fx j 9n 2NR(x; n)g is While� semi
omputable on A.Corollary 5.42 (Closure of While� semi
omputability under pro-je
tions o� minimal 
arriers). Let As be a minimal 
arrier of A, andlet u 2ProdType(�).
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omputable on A, then so is its proje
-tion fx 2 Au j 9y 2 AsR(x; y)g.(b) If R � Au�s� is While semi
omputable on A�, then its proje
tionfx 2 Au j 9y� 2 A�s R(x; y�)g is While� semi
omputable on A.Proof. In (b) we use the fa
t that if As is minimal in A, then A�s is minimalin A�. (Exer
ise.)Remark 5.43. Unlike the 
ase with Corollaries 5.11 and 5.24, we do nothave to assume the TEP here, sin
e the term evaluation representing fun
-tion is alwaysWhile� 
omputable.Example 5.44. The subalgebra relation is While� semi
omputable onA. This follows from its WhileN semi
omputability in term evaluation(Example 5.25(a)), and While� 
omputability of the latter (Corollary4.7.)The semi
omputability equivalen
e theorem, whi
h we prove later (Theo-rem 5.61), states that for algebras with the TEP,While� semi
omputabil-ity 
oin
ides with WhileN semi
omputability.5.8 Proje
tive While� semi
omputabilityLet R be a relation on A.De�nition 5.45.(a) R is proje
tively While� 
omputable on A if R is a proje
tion of aWhile(��) 
omputable relation on A�.(b) R is proje
tively While� semi
omputable on A if R is a proje
tion ofa While(��) semi
omputable relation on A�.Proposition 5.14 (or 5.27) 
an be restated forWhile� semi
omputabil-ity:Proposition 5.46. Suppose A is a minimal. Then on Aproje
tive While� semi
omputability = While� semi
omputability.Note again that the TEP does not have to be assumed here (
f. Remark5.43). Also we are using the fa
t that if A is minimal then so is A�.De�nition 5.47. R is While� semi
omputable with sear
h on A if R isthe halting set of a While(��) sear
h pro
edure on A�.Note that theWhile(��) sear
h pro
edure in this de�nition has simpleinput variables. However the auxiliary, sear
h and output variables may besimple, nat or starred.Again, we have (
f. Theorems 5.18 and 5.29):Theorem 5.48.(a) R isWhile� semi
omputable with sear
h on A () R is proje
tivelyWhile� semi
omputable on A.(b) This equivalen
e is uniform over StdAlg(�).
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on
epts we have listed|While,WhileN and While� semi
omputability, as well as proje
tive While,WhileN andWhile� semi
omputability|all redu
e to re
ursive enumer-ability over N (
f. 5.5(a)).In general, however, proje
tive While� semi
omputability is stri
tlystronger than proje
tive While or WhileN semi
omputability. In otherwords, proje
ting along starred sorts is stronger than proje
ting alongsimple sorts or nat. (Intuitively, this 
orresponds to existentially quan-tifying over a �nite, but unbounded, sequen
e of elements.) An exampleto show this will be given in se
tion 6.4.We do, however, have the following equivalen
e:proje
tive While� semi
omputability =proje
tive For� 
omputability.This is the proje
tive equivalen
e theorem, whi
h will be proved in se
tion5.14.Proje
tiveWhile� semi
omputability is the model of spe
i�ability whi
hwill be the basis for a se
ond generalised Chur
h{Turing thesis (se
tion 8.9).5.9 Homomorphism invarian
e for semi
omputablesetsFor a �-homomorphism � : A! B and a relation R : u on A, we write�[R℄ =df f�(x) j x 2 Rgwhi
h is a relation of type u on B.Theorem 5.50 (Epimorphism invarian
e for halting sets). For any�-epimorphism � : A! B,�[HaltA(P )℄ = HaltB(P ):Proof. From Theorem 3.24.Noti
e that the above result holds for a given pro
edure P , and anyepimorphism � : A! B. In parti
ular, taking the 
ase B = A, we obtain:Corollary 5.51 (Automorphism invarian
e for semi
omputabil-ity).(a) If R is While semi
omputable on A, then for any �-automorphism� of A, �[R℄ = R.(b) Similarly for While� semi
omputable sets.Corollary 5.52 (Automorphism invarian
e for proje
tive semi-
omputability).(a) If R is proje
tively While semi
omputable on A, then for any �-automorphism � of A, �[R℄ = R.(b) Similarly for proje
tively While� semi
omputable sets.
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omplex numbers (Example 2.23(e)without the 
onstant i, the singleton set fig is notWhile semi
omputable,or even proje
tively While� semi
omputable. This is be
ause there isan automorphism of C� with itself whi
h maps i to �i. However the setf�i; ig is While semi
omputable, and in fa
t 
omputable, in C�, by thepro
edure pro
 in x:
omplex out b:boolbeginb:= x�x= -1end.5.10 The 
omputation tree of a While statementWe will de�ne, for anyWhile statement S over �, and any tuple of distin
tprogram variables x � x1; : : : ; xn of type u = s1 � : : :� sn su
h thatvar(S) � x, the 
omputation tree T [S; x℄, whi
h is like an `unfolded 
ow
hart' of S.The root of the tree T [S; x℄ is labelled `s' (for `start'), and the leavesare labelled `e' (for `end'). The internal nodes are labelled with assignmentstatements and Boolean tests.Furthermore, ea
h edge of T [S; x℄ is labeled with a synta
ti
 state, i.e., atuple of terms t : u, where t � t1; : : : ; tn, with ti 2 Termx;si . Intuitively,t gives the 
urrent state, assuming exe
ution of S starts in the initial state(represented by) x.In the 
ourse of the following de�nition we will make use of the restri
tedtree T �[S; x ℄, whi
h is just T [S; x℄ without the `s' node.We also use the notation T [S; t℄ for the tree formed from T [S; x℄ byrepla
ing all edge labels t0 by t0hx=ti.The de�nition is by stru
tural indu
tion on S.(i) S� skip. Then T [S; x℄ is as in Fig. 1.s ...............................................................................................................................................................................................................e ..................................................................................................................xFig. 1.(ii) S � y := r, where y � y1; : : : ; ym and r � r1; : : : ; rm, with ea
h yjin x. Then T [S; x℄ is as in Fig. 2, where t � t1; : : : ; tn is de�nedby: ti � (rj if xi�yj for some jxi otherwise:



424 J. V. Tu
ker and J. I. Zu
kers ............................................................................................................................................................................................................... xy := r............................................................................................. te ..................................................................................................................Fig. 2.(iii) T � S1;S2. Then T [S; x℄ is formed from T [S1; x℄ by repla
ing ea
hleaf (Fig. 3) by the tree in Fig. 4.............................................................................................. te ..................................................................................................................Fig. 3.............................................................................................. t................................................................................................................................................................................................................................................................................................................................................................ T �[S2; t℄Fig. 4.(iv) S � if b then S1 else S2 �. Then T [S; x℄ is as in Fig. 5.(v) S � while b do S1 od. For the sake of this 
ase, we temporarily adjoinanother kind of leaf to our tree formalism, labelled `i' (for `in
omplete
omputation'), in addition to the e-leaf (representing an end to the
omputation). Then T [S; x℄ is de�ned as the `limit' of the sequen
eof trees Tn, where T0 is as in Fig. 6, and Tn+1 is formed from Tn byrepla
ing ea
h i-leaf (Fig. 7) by the tree in Fig. 8, where T �i [S1; t℄is formed from T �[S1; t℄ by repla
ing all e-leaves in the latter byi-leaves. Note that the Boolean test b shown in Fig. 8 is evaluatedat the `
urrent synta
ti
 state' t (whi
h amounts to evaluating bhx=tiat `the initial state' x). Note also that the `limiting tree' T [S; x℄ doesnot 
ontain any i-leaves. (Exer
ise.)
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tions on algebras 425s ............................................................................................................................................................................................................... x................................................................................................................................................................................................................b.........................................................................................................................................................Y x................................................................................................................................................................................................................................................................................................................................................................................................................................ T �[S1; x℄ ...................................................................................................................................... ................... Nx ................................................................................................................................................................................................................................................................................................................................................................................................................................ T �[S2; x℄Fig. 5.s ...............................................................................................................................................................................................................i ..................................................................................................................xFig. 6.Remark 5.54.(a) In 
ase (v) the sequen
e Tn[S; x℄ is de�ned by primitive re
ursionon n. An equivalent de�nition by tail re
ursion is possible (Exer
ise;
ompare the two de�nitions of CompA(S; �; n) in se
tions 3.4 and3.14; see also Remark 3.5).(b) The 
onstru
tion of T [S; x℄ is e�e
tive in S and x. More pre
isely:T [S; x℄ 
an be 
oded as a re
ursive set of numbers, with index prim-itive re
ursive in pSq and pxq.Example 5.55. Let S � while x > 0 do x := x � 1 od, where x is anatural number variable. Then (in the notation of 
ase (v)) T0, T1 and T2are, respe
tively, as shown in Figs. 9, 10 and 11, and T [S; x℄ is the in�nitetree shown in Fig. 12.Noti
e that ea
h tree in the sequen
e of approximations is obtainedfrom the previous tree by repla
ing ea
h i-leaf by one more iteration of the`while' loop.5.11 Engeler's lemmaUsing the 
omputation tree for aWhile statement 
onstru
ted in the pre-vious subse
tion, we will prove an important stru
ture theorem forWhilesemi
omputabilty due to Engeler [1968a℄. One of the 
onsequen
es of thisresult will be the semi
omputability equivalen
e thorem (5.61).
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ker............................................................................................. ti ..................................................................................................................Fig. 7.............................................................................................. t....................................................................................................................................................................................................................................................................................................................b.............................................................................................................................................Y t................................................................................................................................................................................................................................................................................................................................................................................................................................ T �i [S1; t℄ .......................................................................................................................... ................... Nt ................................................................ e ..................................................................................................................
Fig. 8.For ea
h leaf � of the 
omputation tree T [S; x℄, there is a Boolean bS;�,with variables among x, whi
h expresses the 
onjun
tion of results of all thesu

essive tests, that (the 
urrent values of) the variables x must satisfy inorder for the 
omputation to `follow' the �nite path from the root s to �.Consider, for example, a test node in T [S; x℄:If the path goes to the right here (say), then it 
ontributes to bS;� the
onjun
t : : : ^ :bhx/ti ^ : : :Next, let (�0; �1; �2; : : : ) be some e�e
tive enumeration of leaves of T [S; x℄(e.g., in in
reasing depth, and, at a given depth, from left to right). Then,writing bS;k� bS;�k , we 
an express the halting formula for S as the 
ount-able disjun
tion haltS �df 1_k=0 bS;k (5.3)whi
h expresses the 
onditions under whi
h exe
ution of S eventually halts,if started in the initial state (represented by) x.
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tions on algebras 427s ............................................................................................................................................................................................. xi ..................................................................................................................Fig. 9.s ............................................................................................................................................................................................. x................................................................................................................................................................................................................x>0....................................................................... ................... xN .......................... e ............................................................................................................................................................................................................x Y..........................x := x�1........................................................................... x�1i ..................................................................................................................Fig. 10.Note that although the Booleans bS;k, and (hen
e) the formula haltS ,are 
onstru
ted from a 
omputation tree T [S; x℄ for some tuple x 
ontainingvar(S), their 
onstru
tion is independent of the 
hoi
e of x.Remark 5.56.(a) The Booleans bS;k are e�e
tive in S and k. More pre
isely, pbS;kq ispartial re
ursive in pSq and k.(b) Further, by a standard te
hnique of 
lassi
al re
ursion theory, for a�xed S, if T [S; x℄ has at least one leaf, then the enumerationbS;0; bS;1; bS;2; : : :
an be 
onstru
ted (with repetitions) so that bS;k is a total fun
tionof k, and, in fa
t, primitive re
ursive in k.Now 
onsider a relational pro
edureP � pro
 in a aux 
 begin S end
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kers ............................................................................................................................................................................................. x................................................................................................................................................................................................................x>0....................................................................... ................... xN .......................... e ............................................................................................................................................................................................................x Y..........................x := x�1........................................................................... x�1................................................................................................................................................................................................................x>0....................................................................... ................... x�1N .......................... e ............................................................................................................................................................................................................x�1 Y..........................x := x�1........................................................................... x�2i .................................................................................................................. Fig. 11.with input variables a : u and auxiliary variables 
 : w. Then S � Sinit;S0,where Sinit is an initialisation of the auxiliary variables 
 to the defaulttuple Æw. The 
omputation tree for P is de�ned to beT (P ) =df T [S0; a; 
℄with a 
orresponding halting formulahaltS0 � 1_k=0 bS0;k (5.4)(
f. (5.3)). Now, for k = 0; 1; : : : , let bk be the Boolean whi
h results fromsubstituting Æw for 
 in bS0;k. Note that var(bk) � a. Let bk[a℄ 2 Bbe the evaluation of bk when a 2 Au is assigned to a. Then by (5.4), thehalting set of P (5.1) is 
hara
terised as an e�e
tive 
ountable disjun
tiona 2 HaltA(P ) () 1_k=0 bk[a℄ (5.5)for all a 2 Au. Now suppose R is a While semi
omputable relation onA. That means, by de�nition, that R =HaltA(P ) for a suitable Whilepro
edure P . Hen
e, by (5.5), we immediately derive the following theorem
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tions on algebras 429s ............................................................................................................................................................................................. x................................................................................................................................................................................................................x>0....................................................................... ................... xN .......................... e ............................................................................................................................................................................................................x Y..........................x := x�1........................................................................... x�1................................................................................................................................................................................................................x>0....................................................................... ................... x�1N .......................... e ............................................................................................................................................................................................................x�1 Y..........................x := x�1........................................................................... x�2................................................................................................................................................................................................................x>0....................................................................... ................... x�2N .......................... e ............................................................................................................................................................................................................x�2 Y..........................x := x�1........................................................................... x�3... Fig. 12.due to Engeler [1968a℄:Theorem 5.57 (Engeler's lemma). Let R be a While semi
omput-able relation on a standard �-stru
ture A. Then R 
an be expressed as ane�e
tive 
ountable disjun
tion of Booleans over �.A
tually, we need a stronger version of Engeler's lemma, applied toWhile� programs, whi
h we will derive next.5.12 Engeler's lemma for While� semi
omputabilityWe will use the results of the previous subse
tion, applied to While�
omputation, together with the ��/� 
onservativity theorem for terms(Theorem 3.63), to prove a strengthened version of Engeler's lemma.
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ker........................................................................... t................................................................................................................................................................................................................b ....................................................................... ................... N....................................................................................................................Y .......................... Fig. 13.Theorem 5.58 (Engeler's lemma for While� semi
omputability).Let R be a While� semi
omputable relation on a standard �-stru
ture A.Then R 
an be expressed as an e�e
tive 
ountable disjun
tion of Booleansover �.Proof. Suppose R has type u (over �). By assumption, R is the halting setHaltA(P ) for aWhile� pro
edure P . By (5.5) of the previous subse
tion,R(a) () 1_k=0 bk[a℄ (5.6)for all a 2 Au, where (now) bk 2Term�a;bool, i.e., the Booleans bk, thoughnot of starred sort, may 
ontain subterms of starred sort | for example,they may be equations or inequalities between terms of starred sort. Asbefore, bk[a℄ is the evaluation of bk when a 2 Au is assigned to a.Now for any Boolean b 2Term�a;bool, let b0 be the Boolean inTerma;bool asso
iated with b by the 
onservativity theorem (3.63). Thenfrom (5.6), for all a 2 Au, R(a) () 1_k=0 b0k[a℄: (5.7)Be
ause the disjun
tion in (5.6) and the transformation b 7! b0 are bothe�e
tive, the disjun
tion in (5.7) is also e�e
tive.For the 
onverse dire
tion:Lemma 5.59. Let R be a relation on a standard �-algebra A. If R 
anbe expressed as an e�e
tive 
ountable disjun
tion of Booleans over �, thenR is While� semi
omputable.Proof. Suppose R is expressed by an e�e
tive disjun
tionR(a) () 1_k=0 bk[a℄
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tions on algebras 431for all a 2 Au, where bk 2Terma;bool. Then for all a 2 Au,R(a) () 9k �teAa;bool (pbkq; a) = tt� (5.8)where pbkq is (total) re
ursive in k. Hen
e, by Corollary 4.7, Remark 3.16and Theorem 5.41, R is While� semi
omputable.Combining Engeler's lemma for While� semi
omputability with thislemma gives the following `stru
tural' 
hara
terisation of While� semi-
omputable relations.Corollary 5.60. Let R be a relation on a standard �-algebra. Then R
an be expressed as an e�e
tive 
ountable disjun
tion of Booleans over �if, and only if, R is While� semi
omputable.If, moreover, A has the TEP, then we 
an say more:Theorem 5.61 (Semi
omputability equivalen
e theorem). Supposethat A is a standard �-algebra with the TEP, and that R is a relation onA. Then the following assertions are equivalent:(i) R is WhileN semi
omputable on A;(ii) R is While� semi
omputable on A;(iii) R 
an be expressed as an e�e
tive 
ountable disjun
tion of Booleansover �.Proof. The step (i) ) (ii) is trivial, and (ii) ) (iii) is just Engeler'slemma forWhile�. The new step here ((iii)) (i)) follows from (5.8) andTheorem 5.23.Corollary 5.62. Suppose that A is a standard �-algebra with the TEP,and that R is a relation on A. ThenR is WhileN 
omputable on A () R is While� 
omputable on A.Proof. From Theorem 5.61, or from Corollary 4.18.5.13 ��1 de�nability: Input/output and haltingformulaeFor any standard signature �, let Lang�= Lang(��) be the �rst-orderlanguage with equality over ��.The atomi
 formulae of Lang�are equalities between pairs of terms ofthe same sort, for any sort of ��, i.e., sort s, su and s�, for all sorts s of �(whether equality sorts or not), and for the sort nat.Formulae of Lang� are formed from the atomi
 formulae by means ofthe propositional 
onne
tives and universal and existential quanti�
ationover variables of any sort of ��.We are more interested in spe
ial 
lasses of formulae of Lang�.
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kerDe�nition 5.63 (Classes of formulae of Lang�).(a) A bounded quanti�er has the form `8k < t' or `9k < t', where t : nat.(b) An elementary formula is one with only bounded quanti�ers.(
) A ��1 formula is formed by pre�xing an elementary formula withexistential quanti�ers only.(d) An extended ��1 formula is formed by pre�xing an elementary for-mula with a string of existential quanti�ers and bounded universalquanti�ers (in any order).Proposition 5.64. For any extended ��1 formula P , there is a ��1 formulaQ whi
h is equivalent to P over �, in the sense thatStdAlg(��)j= P$Q.Proof. The 
onstru
tion of Q from the P is given in Tu
ker and Zu
ker[1993℄. (In that paper, the equivalen
e is a
tually shown relative to aformal system over K with ��1 indu
tion. However, we are not 
on
ernedwith issues of provability in this 
hapter.)Be
ause of this result, we will use the term `��1' to denote (possibly)extended ��1 formulae.Proposition 5.65. If P is an elementary formula all of whose variablesare of equality sort, then the predi
ate de�ned by P is For� 
omputable.Proof. By stru
tural indu
tion on P . Equations between variables ofequality sort, and Boolean operations, are trivially 
omputable. Boundedquanti�
ation uses the `for' loop.In general, formulae over the stru
ture A� (or rather, over the signature��) may have simple, augmented, starred or nat variables (De�nition 3.39).We are interested in formulae with the property that all free variables aresimple, sin
e su
h formulae de�ne relations on A. For su
h formulae, allbound augmented variables may be repla
ed by bound simple variables, bythe e�e
tive 
oding of Au in A (see Remark 2.30(
)).Theorem 5.66 (The ��1 i/o formula for a pro
edure). Given aWhile� pro
edure P : u! vP � pro
 in a out b aux 
� begin S end (5.9)where a : u, b : v and 
� : w�, we 
an e�e
tively 
onstru
t a ��1 formulaIOP � IOP (a; b), with free variables among a,b, 
alled the input/output(or i/o) formula for P , whi
h satis�es: for all A 2StdAlg(�), a 2 Au andb 2 Av, A j= IOP [a; b℄ () PA(a) # b:Note: The left-hand side means that A satis�es IOP at any state whi
hassigns a to a and b to b.
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tions on algebras 433Proof. First we 
onstru
t an elementary formulaCompuS(x,y,z�)(where var(S)� x), as in Tu
ker and Zu
ker [1988, x2.6.11℄, by stru
turalindu
tion on S, with the meaning: `z� represents a 
omputation sequen
egenerated by statement S, starting in a state in whi
h all the variablesof S have values (represented by) x, and ending in a state in whi
h thesevariables have value y'. From this it is easy to 
onstru
t a ��1 formulaCompuP (a, b, z�)with the meaning: `z� represents a 
omputation sequen
e generated bypro
edure P , starting in a state in whi
h the input variables have values(represented by) a, and ending in a state in whi
h the output variables havevalues b'.Finally we obtain the ��1 i/o formulaIOP (a; b) =df 9z� CompuP (a, b, z�)as required.Remark 5.67 (Quanti�
ation over N suÆ
ient). We 
an 
onstru
ta ��1 i/o formula in whi
h there is only existential quanti�
ation over N.Brie
y, a formula similar to CompuS (in the above proof) is 
onstru
tedin whi
h the variable z� representing the 
omputation sequen
e is repla
edby a G�odel number. (Cf. point (2Æ) in se
tion 4.8, 
on
erning the repla
e-ment of the fun
tion 
ompAx by 
ompuAa .)Remark 5.68 (Alternative 
onstru
tion of IOP ). Let � be the �PR�s
heme (se
tion 8.1) whi
h 
orresponds to P a

ording to the 
onstru
tiongiven by the proof of Theorem 8.5(d). By stru
tural indu
tion on �, we
onstru
t the formula IO�(� IOP ), as in Tu
ker et al. [1990℄ or Tu
kerand Zu
ker [1993, x5℄ (where it is 
alled P�).Corollary 5.69 (The ��1 halting formula for a pro
edure). Given aWhile� pro
edure P : u! v as in (5.9), we 
an 
onstru
t a ��1 de�nitionfor the halting formula haltP � haltP (a) for P .Proof. We de�ne haltP (a) � 9b IOP (a; b)Alternatively, re
alling (Remark 5.3) that in the 
ontext of semi
omputabil-ity we may assume that P has no output variables, we 
an put, more simply,haltP (a) � IOP (a):Sin
e IOP is ��1, so is haltP (in either 
ase).Remark 5.70 (Quanti�
ation over N suÆ
ient). Again, by the useof G�odel numbers, we 
an 
onstru
t a ��1 halting formula in whi
h thereis only existential quanti�
ation over N. (Cf. Remark 5.67.)Note �nally that by Corollary 5.69, sin
e for all A 2StdAlg(�) and alla 2 Au,
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ker and J. I. Zu
kera 2HaltA(P ) () A j= haltP (a);it follows thatthe halting set for While� pro
edures is ��1 de�nable, uniformly overStdAlg(�).5.14 The proje
tive equivalen
e theoremTheorem 5.71. Let R be a relation on a standard �-algebra A. ThenR is proje
tively While� semi
omputable ()R is proje
tively For� 
omputable.We present two proofs of this theorem. The �rst uses ��1 de�nability ofthe halting set (and the assumption that � has equality at all sorts) whilethe se
ond uses Engeler's lemma (without any assumption about equalitysorts).First proof. First we restate the theorem suitably.Suppose � has an equality operator at all sorts. Let R be a relation on A.Then the following are equivalent:(i) R is proje
tively While� semi
omputable;(ii) R is ��1 de�nable;(iii) R is proje
tively For� 
omputable.(i)=)(ii): Suppose R : u, and for all x 2 Au,R(x)()9y� 2 Av�R1(x; y�) (5.10)where v� is a produ
t type of ��, and R1 : u�v� isWhile semi
om-putable on A�. Then R1 is the halting set of aWhile(��) pro
edureP on A�. By Corollary 5.69, R1 is ��1 de�nable on A�, sayR1(x; y�)()9z�� 2 Aw��R0(x; y�; z��); (5.11)where w�� is a produ
t type of ���, and R0(: : : ) is given by an ele-mentary formula over ���. Combining (5.10) and (5.11):R(x)()9y� 2 Av�9z�� 2 Aw��R0(x; y�; z��): (5:12)Finally, by the 
oding of (A�)� in A� (Remark 2.31(d)), we 
anrewrite the existential quanti�
ation over (A�)� in (`5.12) (`9z�� 2Aw�� ') as existential quanti�
ation over A�, yielding a ��1 de�nitionof R on A.(ii)=)(iii): Suppose R is de�ned by the formula 9z�P (x; z�), where z�is a tuple of starred and unstarred variables, and P is elementary.Then R is a proje
tion of P , whi
h, by Proposition 5.65, is For�
omputable. (Here we use the assumption about equality sorts.)
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tions on algebras 435(iii)=)(i): Trivial (using Proposition 3.34). �Se
ond proof. (Here we make no assumption about equality sorts.) Sup-pose R : u is proje
tivelyWhile� semi
omputable on A. Then (as before)for some produ
t type v� of ��,R(x) () 9y� 2 Av�R1(x; y�)where R1 : u� v� is While semi
omputable on A�.By Engeler's lemma (Theorem 5.57) applied to A�, there is an e�e
t-ive sequen
e bk�(x; y�) (k = 0; 1; 2; : : : ) of Booleans over �� su
h thatR1(x; y�) is equivalent over A to the disjun
tion of bk�[x; y�℄. Further,by Remark 5.56(b), this sequen
e 
an be de�ned so that pbk�q is primitivere
ursive in k. (Assume here that R is non-empty, otherwise the theoremis trivial.) ThenR1(x; y�) () for some k; teA�x;y�;bool(pbk�q,x; y�) = tt:Further, teA�x;y�;bool is For 
omputable on A� (by Proposition 4.6).Hen
e the fun
tion g de�ned on A� byg(k; x; y�) =df teA�x;y�;bool(pbk�q; x; y�)is For 
omputable on A� (by Equation 3.8 and Remark 3.16). Hen
e therelation R0(k; x; y�) ()df g(k; x; y�) = ttis For 
omputable on A� (
omposing g with equality on bool), and so therelation R(x) () 9 y�9k R0(k; x; y�)is proje
tively For� 
omputable on A.The other dire
tion is trivial. �5.15 Halting sets of While pro
edures with randomassignmentsWe now 
onsider the While programming language over �, extended bythe random assignment x := ?for variables x of every sort of �. This is an example of non-deterministi

omputation.The semanti
s of the While-random programming language 
an beobtained by a modi�
ation of the semanti
s of the While language givenin se
tion 3, by taking the meaning of a statement S to be a fun
tion [[S℄℄Afrom states to sets of states. In the 
ase that S is a random assignmentx := ?, [[S℄℄A� is the set of all states whi
h agree with � on all variablesex
ept x.
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kerHowever we are only interested here in the While-random languagefor de�ning relations, not fun
tions, as the following de�nition 
lari�es.De�nition 5.72. Let P be a While-random pro
edure, with input vari-ables a : u (and, we may assume, no output variables). The halting set ofP on A is the set of tuples a 2 Au su
h that when a is initialised to a, thenfor some values of the random assignments, exe
ution of P halts.De�nition 5.73. Let R be a relation on A.(a) R isWhile-random semi
omputable on A if R is the halting set of aWhile-random pro
edure on A.(b) R is While�-random semi
omputable on A if R is the halting set ofa While(��)-random pro
edure on A�.Note that in (b), there 
ould be random assignments to starred (auxili-ary) variables.Remark 5.74. Clearly, semi
omputability with random assignments 
anbe viewed as a generalisation of the notion of semi
omputability withsear
h, i.e., initialisation of sear
h variables (se
tion 5.3), sin
e initialisationamounts to random assignments at the beginning of the program. We mayask how these two notions of semi
omputability 
ompare. We will showthat, at least over A�, they 
oin
ide: both are equivalent to proje
tiveWhile� semi
omputability.Theorem 5.75. Let R be a relation on A. ThenR is While�-random semi
omputable ()R is proje
tively While� semi
omputable.Proof. The dire
tion ((=) follows from Remark 5.74 and Theorem 5.18.We turn to the dire
tion (=)). For ease of exposition, we will assume �rstthat R is While-random semi
omputable.We will de�ne a 
omputation tree T [S; x℄ for While-random state-ments S with varS � x � x1; : : : ; xn, extending the de�nition forWhilestatements given in Se
tion 5.10. There is one new 
ase:(vi) S � xi := ?. Then T [S; x℄ is as in Fig. 14.So xi is repla
ed by a new variable x0i of the same sort.Noti
e that for a `?'-assignment S, and for terms t � t1; : : : ; tn, the treeT [S; t℄ is asn in Fig. 15.where x0i does not o

ur in x or t. The intuition here is that there is nothingwe 
an say about the `new' value of xi, so we 
an only represent it by abrand new variable x0i. If this assignment is followed by another assignmentxi := ?, we introdu
e another new variable x00i , and so on.In this way the variables proliferate, and the tree 
ontains (possibly)in�nitely many variables. Hen
e we 
annot simply 
onstru
t a haltingformula as an (in�nite) disjun
tion of Booleans in a �xed �nite number ofvariables over �, as we did in se
tion 5.11.
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tions on algebras 437s ............................................................................................................................................................................................................... xxi := ?............................................................................................. x1; : : : ; xi�1; x0i; xi+1; : : : ; xne .................................................................................................................. Fig. 14.s ............................................................................................................................................................................................................... txi := ?............................................................................................. t1; : : : ; ti�1; x0i; ti+1; : : : ; tne .................................................................................................................. Fig. 15.The solution is to represent all the variables xi; x0i; x00i ; : : : whi
h arisein this way for ea
h i (1 � i � n) by a single starred variable x�i (withx�i [0℄; x�i [1℄; x�i [2℄; : : : representing xi; x0i; x00i ; : : : ). Then to ea
h leaf � ofT [S; x℄ there 
orresponds (as in se
tion 5.11) a Boolean bS;�, but now inthe starred variables x��x�1; : : : ; x�n.Again, as in se
tion 5.11, we 
an de�ne the halting formula for S as a
ountable disjun
tion of Booleans:haltS �df 1_k=0 bS;kwhere the bS;k are e�e
tive, in fa
t primitive re
ursive, in S and k. Notehowever that the program variables in haltS are now among x�, not x.Now suppose that the relation R : u is the halting set of a While-
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kerrandom pro
edure on A,P � pro
 in a aux 
 begin Sinit;S0 endwhere a : u = s1 � : : :� sm and 
 : w.As in se
tion 5.11, let bk be the Boolean whi
h results from substitutingthe default tuple Æw for 
 in bS0;k. Note that var(bk)� a; 
� : u � w�.Then for all a 2 Au:a 2 R () 9
� 2 Aw�9k " m̂i=1(Æi = 
�i [0℄)^teA�a;
�;bool(pbkq; a; 
�) = tt#(
f. (5.8) in se
tion 5.12) whi
h (by Proposition 4.6) is proje
tively For�
omputable on A, and hen
e proje
tively While� semi
omputable on A.This proves the theorem for the 
ase that R is While-random semi-
omputable on A.Assume, �nally, that R is While�-random semi
omputable, i.e., thepro
edure for R may 
ontain starred auxiliary variables, and there may berandom assignments to these. Now we 
an represent a sequen
e of randomassignments to a starred variable by a single doubly starred variable, ortwo-dimensional array, whi
h 
an then be e�e
tively 
oded in A� (Remark2.31(d)), and pro
eed as before.6 Examples of semi
omputable sets of real and
omplex numbersIn this se
tion we look at the various notions of semi
omputability in the
ase of algebras based on the set R of real numbers and the set C of 
omplexnumbers. By doing so, we will �nd examples proving the inequivalen
e ofthe following notions:(i) While 
omputability;(ii) While semi
omputability;(iii) proje
tive While semi
omputability;(iv) proje
tive While� semi
omputability.We will also �nd interesting examples of sets of real and 
omplex num-bers whi
h are semi
omputable but not 
omputable. Some of these setsbelong to dynami
al system theory: orbits and periodi
 sets of 
haoti
systems turn out to be semi
omputable but not 
omputable.Finally we will also re
onsider an example of a semi
omputable, non-
omputable set of 
omplex numbers des
ribed in Blum et al. [1989℄. Thee�e
tive 
ontent of their work 
an be obtained from the general theory.Our main tool will be Engeler's lemma.We will 
on
entrate on the following algebras introdu
ed in Example2.23: the standard algebras
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tions on algebras 439R = (B; R; 0; 1; +; �; �; ifreal, eqreal)of reals, and C = (R; C ; 0; 1; i;+; �; �; re; im; �)of 
omplex numbers, and their expansionsR< = (R; lessreal) and C< = (C; lessreal)formed by adjoining the order relation on the reals lessreal: R2 ! B (whi
hwe will write as in�x `<'). We will show that:(a) the order relation on R is proje
tively While semi
omputable, butnot While semi
omputable, on R; and(b) a 
ertain real 
losed sub�eld of R is proje
tively While� semi
om-putable, but not proje
tivelyWhile semi
omputable, on R<.6.1 Computability on R and CBased on the general theory of 
omputability developed so far, we 
an seethat ea
h of these four algebras has a 
omputability theory with severalstandard properties (e.g., universality, se
tion 4.9). First, we will list somepreliminary results for 
omputability on the real and 
omplex numbers thatwill entail simpli
ity and elegan
e of 
omputation on these stru
tures, butwill also show that the analogy with the 
lassi
al 
ase of 
omputation onN often breaks down. To begin with, we have:Proposition 6.1. For A = R;R<; C or C<;WhileN (A) = While(A). (6.1)This is proved essentially by simulating the algebraN , i.e., the 
arrier N,with zero, su

essor, et
., in the 
arrier R, using the non-negative integerstogether with 0, the operation +1, et
.As an exer
ise, the reader should formulate a theorem expressing asuÆ
ient 
ondition on an algebra A for (6.1) to hold, from whi
h the aboveproposition will follow as a simple 
orollary.This situation should be 
ontrasted with that in Example 5.36.Re
all De�nition 4.4 and Examples 4.5:Lemma 6.2 (TEP). The algebras R;R<; C and C< all have the TEP.The TEP has a profound impa
t on the 
omputability theory for analgebra. For example, from Corollary 4.18 we know that on R;R<; C andC<: While� 
omputability = WhileN 
omputabilityand hen
e (or from the semi
omputability equivalen
e theorem (5.61))While� semi
omputability = WhileN semi
omputability
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kerfor these four algebras. We will give more detailed formulations of thesefa
ts for ea
h of these algebras shortly.Example 6.3 (Non-
omputable fun
tions). Re
all Theorem 3.66 whi
hsays that the output of a While, WhileN orWhile� 
omputable fun
-tion is 
ontained in the subalgebra generated by its inputs. From this we
an derive some negative 
omputability results for these algebras:(a) The square root fun
tion is not While� 
omputable on R or R<.This follows from the fa
t that the subset of R generated from theempty set by the 
onstants and operations of R or R< is the set Zof integers. But p2 is not in this set. (For 
omputability in orderedEu
lidean �elds in
orporating the square root operation, see Engeler[1975a℄).(b) The mod fun
tion (z 7! jzj) is not While� 
omputable on C or C<.This follows from the fa
t that the subset of R generated from theempty set by the 
onstants and operations of C or C< is again Z. Butagain, j1 + ij = p2 is not in this set.(
) The mod fun
tion would be 
omputable in C if we adjoined the squareroot fun
tion to the algebra R (as a redu
t of C).In the rest of this subse
tion, we will apply Engeler's lemma forWhile�semi
omputability (se
tion 5.12) to the algebras R;R<; C and C<.From the semi
omputability equivalen
e theorem (5.61) (whi
h followsfrom Engeler's lemma) and from the TEP lemma (6.2), we get:Theorem 6.4 (Semi
omputability equivalen
es for R;R<; C; C<).Suppose A is R or R<, and R � Rn ; or A is C or C<, and R � C n .Then the following are equivalent:(i) R is WhileN semi
omputable on A;(ii) R is While� semi
omputable on A;(iii) R 
an be expressed as an e�e
tive 
ountable disjun
tion of Booleansover A.For appli
ations of this theorem, we need the following normal formlemmas for Booleans over R and R<.Lemma 6.5 (Normal form for Booleans over R). A Boolean over R,with variables x = x1; : : : ; xn of sort real only, is e�e
tively equivalent overR to a �nite disjun
tion of �nite 
onjun
tions of equations and negationsof equations of the formp(x) = 0 and q(x) 6= 0;where p and q are polynomials in x with 
oeÆ
ients in Z.Lemma 6.6 (Normal form for Booleans over R<). A Boolean overR<, with variables x = x1; : : : ; xn of sort real only, is e�e
tively equival-ent over R< to a �nite disjun
tion of �nite 
onjun
tions of equations and
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tions on algebras 441inequalities of the formp(x) = 0 and q(x) > 0;where p and q are polynomials in x with 
oeÆ
ients in Z.The proofs of these are left as exer
ises.6.2 The algebra of reals; a set whi
h is proje
tivelyWhile semi
omputable but not While� semi
om-putableIn this subse
tion we obtain results distinguishing various notions of semi-
omputability, using the algebra R of reals. In the next subse
tion we willobtain other results in a similar vein, using the ordered algebraR< of reals.We begin with a restatement of the semi
omputability equivalen
e thorem(6.4) for the parti
ular 
ase of R.Theorem 6.7 (Semi
omputability for R). Suppose R � Rn . Thenthe following are equivalent:(i) R is WhileN semi
omputable on R;(ii) R is While� semi
omputable on R;(iii) R 
an be expressed as an e�e
tive 
ountable disjun
tionx 2 R () _ibi(x) (6.2)where ea
h bi(x) is a �nite 
onjun
tion of equations and negations of equa-tions of the form p(x) = 0 and q(x) 6= 0; (6.3)where p and q are polynomials in x � (x1; : : : ; xn) 2 Rn , with 
oeÆ
ientsin Z.Proof. From Theorem 6.4 and Lemma 6.5.Thus we see that there is an intimate 
onne
tion between 
omputability,polynomials and algebrai
 �eld extensions on R.De�nition 6.8 (Algebrai
 and trans
endental points). Let us de�nea point � = (�1; : : : ; �n) 2 Rn to be (i) algebrai
 if it is the root of a poly-nomial in n variables with 
oeÆ
ients in Z; and (ii) trans
endental if it isnot algebrai
, or, equivalently, if for ea
h i = 1; : : : ; n, �i is trans
endental(in the usual sense) over Q(�1; : : : ; �i�1).The following 
orollary was stated for n = 1 in Herman and Isard [1970℄.
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kerCorollary 6.9. If R � Rn isWhile� semi
omputable on R, and 
ontainsa trans
endental point �, then R 
ontains some open neighbourhood of �.Proof. In the notation of (6.2): � satis�es bi(x) for some i. Then (for thisi) bi(x) 
annot 
ontain any equations (as in (6.3)) sin
e � is trans
endental,and so it must 
ontain negations of equations only. The result follows fromthe 
ontinuity of polynomial fun
tions.An immediate 
onsequen
e of this is:Corollary 6.10 (Density/
odensity 
ondition). Any subset of Rn whi
his both dense and 
o-dense in Rn (or in any non-empty open subset of Rn )
annot be While� 
omputable on R.Example 6.11. The following subsets of Rn are easily seen to beWhileNsemi
omputable on R | in fa
t While semi
omputable (by Proposition6.1). However, they are not While (= WhileN= While�) 
omputable,by the density/
odensity 
ondition:(a) the set of points with rational 
oordinates;(b) the set of points with algebrai
 
oordinates;(
) the set of algebrai
 points.Of 
ourse, a standard example of a While semi
omputable but notWhile� 
omputable set 
an be found in N , namely any re
ursively enu-merable, non-re
ursive set of naturals (Example 5.49).Next, spe
ialising to n = 1:Corollary 6.12 (Countability/
o�niteness 
ondition). If R � R isWhile� semi
omputable on R, then R is either 
ountable or 
o�nite (i.e.,the 
omplement of a �ne set) in R.Proof. By the fundamental theorem of algebra, ea
h polynomial equationwith 
oeÆ
ients in Z has at most �nitely many roots in R. Hen
e, regardingthe disjun
tion in (6.2), there are two 
ases:Case 1. For some i, bi(x) 
ontains only negations of equations. Then (forthis i) bi(x) holds for all but �nitely many x 2 R. Hen
e R is 
o-�nite inR.Case 2. For all i, bi(x) 
ontains at least one equation. Then (for all i)bi(x) holds for at most �nitely many x 2 R. Hen
e R is 
ountable.Hen
e we have:Corollary 6.13. A subset of R whi
h is (Whileor WhileNor While�)
omputable on R it is either �nite or 
o�nite.Example 6.14. From Corollary 6.13 we have another example of a subsetof R whi
h isWhile semi
omputable but notWhile� 
omputable, namelythe integers (Example 5.5(
)).Example 6.15 (Proje
tively While semi
omputable, not While�semi
omputable set). The order relation on R is a primitive operation
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tions on algebras 443in R<, but, as we shall see, is not even semi
omputable in R. Consider�rst the relation R0(x; y) ()df x = y2on R. R0 is 
learlyWhile 
omputable on R, and so its proje
tion on the�rst argument, R =df fx j 9y(x = y2)gi.e., the set fx j x � 0g of all non-negative reals, is proje
tively Whilesemi
omputable. From the 
ountability/
o�niteness 
ondition (6.12) how-ever, it is not (even While�) semi
omputable on R. From this it is easyto see that the order relationx < y () (y � x) 2 R and x 6= yis also proje
tivelyWhile semi
omputable, but notWhile� semi
omput-able, on R.6.3 The ordered algebra of reals; sets of reals whi
hare While semi
omputable but not While� 
om-putableIn the previous subse
tion we saw that the order relation on R is not (even)While� semi
omputable on the algebra R. Let us add it now to R, toform the algebra R<, and see how this a�e
ts the 
omputability theory.We begin again with a restatement of the semi
omputability equivalen
etheorem (6.4), this time for the algebra R<.Theorem 6.16 (Semi
omputability for R<). Suppose R � Rn . Thenthe following are equivalent:(i) R is WhileN semi
omputable on R<,(ii) R is While� semi
omputable on R<,(iii) R 
an be expressed as an e�e
tive 
ountable disjun
tionx 2 R () _ibi(x)where ea
h bi(x) is a �nite 
onjun
tion of equations and inequalities of theform p(x) = 0 and q(x) > 0;where p and q are polynomials in x � (x1; : : : ; xn) 2 Rn , with 
oeÆ
ientsin Z.Proof. From Theorem 6.4 and Lemma 6.5.To pro
eed further, we need some de�nitions and lemmas about pointsand sets de�ned by polynomials. (Ba
kground information on algebrai
geometry 
an be found, for example, in Shafarevi
h [1977℄ or Br�o
ker and
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kerLander [1975, Chapter 12℄. For the appli
ation below (se
tion 6.4), werelativise our 
on
epts to an arbitrary subset D of R.De�nition 6.17.(a) An interval in R (open, half-open or 
losed) is algebrai
 in D if, andonly if, its end-points are.(b) A pat
h in R is a �nite union of points and intervals.(
) A D-algebrai
 pat
h in R is a �nite union of points and intervalsalgebrai
 in D.De�nition 6.18. A set in Rn is D-semialgebrai
 if, and only if, it 
anbe de�ned as a �nite disjun
tion of �nite 
onjun
tions of equations andinequalities of the formp(x) = 0 and q(x) > 0;where p and q are polynomials in x with 
oeÆ
ients in Z[D℄.We will drop the `D' when it denotes the empty set.Note that 
lause (iii) of Theorem 6.16 
an, by De�nition 6.18, be writ-ten equivalently in the form:(iii0) R 
an be expressed as an e�e
tive 
ountable union of semialgebrai
sets.Lemma 6.19. A semialgebrai
 set in Rn has a �nite number of 
onne
ted
omponents.(See Be
ker [1986℄. This will be used in se
tion 6.6.) It follows that asemialgebrai
 subset of R is a pat
h. However, for n = 1 we need a strongerresult:Lemma 6.20. A subset of R is D-semialgebrai
 if, and only if, it is aD-algebrai
 pat
h.Lemma 6.21. A proje
tion of a D-semialgebrai
 set in Rn on Rm (m <n) is again D-semialgebrai
.This follows from Tarski's quanti�er-elimination theorem for real 
losed�elds (see, for example, Kreisel and Krivine [1971, Chapter 4℄). From thisand Lemma 6.20:Corollary 6.22. A proje
tion of a D-semialgebrai
 set in Rn on R is aD-algebrai
 pat
h.Remark 6.23. Corollaries 6.9 and 6.10 (the density/
odensity 
ondition)hold for R< as well as R, leading to the same examples (6.11) of subsetsof Rn whi
h areWhileN semi
omputable, but notWhileN (=While�)
omputable, on R<. Another example is given below (6.26).The following 
orollary, however, points out a 
ontrast with R.Corollary 6.24. In R<, the following three notions 
oin
ide for subsetsof Rn :
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omputability;(ii) While� semi
omputability;(iii) proje
tive WhileN semi
omputability.This follows from Theorem 6.16 and Lemma 6.21. (This 
orollary failsin the stru
ture R, sin
e in that stru
ture, Lemma 6.21, depending onTarski's quanti�er-elimination theorem, does not hold.)However, the above three notions of semi
omputability di�er in R<from a fourth:(iv) proje
tive While� semi
omputability,as we will see in se
tion 6.4. But �rst we need:Corollary 6.25 (Countable 
onne
tivity 
ondition).(a) If R � R is While� semi
omputable on R<, then R 
onsists of
ountably many 
onne
ted 
omponents.(b) If R � R is While� semi
omputable on R<, then either R is 
ount-able or R 
ontains an interval.(This is a re�nement of the 
ountability/
o�niteness 
ondition (6.12).)This follows from Theorem 6.16 and Lemma 6.19, sin
e the 
onne
ted sub-sets of R are pre
isely the singletons and the intervals.Example 6.26.(a) The Cantor set in [0; 1℄ is not While� semi
omputable on R<, bythe 
ountable 
onne
tivity 
ondition.(b) The 
omplement of the Cantor set in [0; 1℄ isWhile semi
omputableon R< (Exer
ise), but (by (a)) it is not (even While�) 
omputableon R<.Other interesting examples of semi
omputable, non-
omputable sets aregiven in se
tions 6.5 and 6.6.6.4 A set whi
h is proje
tively While� semi
omput-able but not proje
tivelyWhileN semi
omputableFirst we must enri
h the stru
ture R<. Let E = fe0; e1; e2; : : : g be asequen
e of reals su
h thatfor all i; ei is trans
endental over Q(e0 ; : : : ; ei�1): (6.4)We de�ne R<;E to be the algebra R< augmented by the set E as aseparate sort E, with the embedding j : E ,! R in the signature, thus:algebra R<;Eimport R<
arriers Efun
tions j : E ,! Rend
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losure of Q(E).It is easy to see that �E is proje
tivelyWhile� semi
omputable inR<;E .(In fa
t, �E is the proje
tion on R of a While semi
omputable relation onR �E�.) We will now show that, on the other hand, �E is not proje
tivelyWhileN semi
omputable in R<;E .Theorem 6.27. Let F � �E be proje
tively WhileN semi
omputable inR<;E. Then F 6= �E. Spe
i�
ally, suppose for some While 
omputablefun
tion ' on R<;E;N :F = fx 2 R j (9y 2 Er)(9z 2 Rs )(9u 2 Nk )(9v 2 B l )'(x; y; z; u; v) #g(6.5)(with existential quanti�
ation over all four sorts in R<;E;N). Then for allx 2 F , x is algebrai
 over some subset of E of 
ardinality r (= the numberof arguments of ' of sort E in (6.5)).The rest of this subse
tion is a sket
h of the proof.Lemma 6.28. (In the notation of the Theorem 6.27,) F 
an be representedas a 
ountable union of the form F = S1i=0 Fi, whereFi = fx j (9y 2 Er)(9z 2 Rs )bi(x; y; z)gand bi is a �nite 
onjun
tion of equations and inequalities of the formp(x; y; z; ) = 0 and q(x; y; z) > 0where p and q are polynomials in x; y; z with 
oeÆ
ients in Z.Proof. Apply Engeler's lemma. Also repla
e existential quanti�
ation overnat and bool by 
ountable disjun
tions.Lemma 6.29. (In the notation of Lemma 6.28,) for any r-tuple e = (ei1 ;: : : ; eir ) of elements of E, putFi[e℄ =df fx j (9z 2 Rs )bi(x; e; z)g:Then for all e 2 Er, Fi[e℄ is a (�nite) set of points, all algebrai
 in e.Proof. Note that Fi[e℄ is a proje
tion on R of an e-semialgebrai
 set inRs+1 . Hen
e, by Corollary 6.22, it is an e-algebrai
 pat
h. Sin
e by as-sumption Fi[e℄ � F � �E;Fi[e℄ is 
ountable, and hen
e 
annot 
ontain any (non-degenerate) interval.The result follows from the de�nition of e-algebrai
 pat
h.Sin
e F is the union of Fi[e℄ over all i, and all r-tuples e from E, thetheorem follows from Lemma 6.29 and the following:
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h is algebrai
 over E butnot over any subset of E of 
ardinality n.Proof. Take x = e0 + e1 + : : : + en (more stri
tly, j(e0) + : : : + j(en)).The result follows from the 
onstru
tion (6.4) of E.We have shown that �E (although a proje
tion on R of a While semi-
omputable relation on R�E�) is not a proje
tion of aWhileN semi
om-putable relation in R<;E . In fa
t, we 
an see (still using Engeler's lemma)that �E is not even a proje
tion of a While� semi
omputable relation onRn � Em (for any n;m > 0). Thus to de�ne �E, we must proje
t o� thestarred sort E�, or (in other words) existentially quantify over a �nite, butunbounded sequen
e of elements of E.6.5 Dynami
al systems and 
haoti
 systems on R; setswhi
h are WhileN semi
omputable but notWhile� 
omputableWe will examine algorithmi
 aspe
ts of 
ertain dynami
al systems. Manyphysi
al, biologi
al and 
omputing systems are deterministi
 and share a
ommon mathemati
al form.Consider a deterministi
 system (S; F ) modelled by means of a set Sof states, whose dynami
al behaviour in dis
rete time is given by a systemfun
tion F : T� S ! Swhere T = N = f0; 1; 2; : : :g and for t 2 T and s 2 S, F (t; s) is the stateof the system at time t given initial state s.The orbit of F at state s is the setOrb(F; s) = fF (t; s) j t 2 Tg:The set of periodi
 points of F isPer(F ) = fs 2 S j 9t 2 T(F (t; s) = s)g:In modelling a dynami
al system (S; F ), the 
omputability of the F andof sets su
h as the orbits and periodi
 points is of immediate interest andimportan
e.Now suppose, more spe
i�
ally, that the evolution of the system in timeis determined by a next state fun
tionf : S ! Sthrough the equations F (0; s) = sF (t+ 1; s) = f(F (t; s))whi
h have the solution
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kerF (t; s) = f t(s)for t 2 T and s 2 S. We 
all su
h systems iterated maps. In this 
ase, wewriteorb(f; s) = Orb(F; s) = ff t(s) j t 2 Tgper(f) = Per(F ) = fs 2 S j 9t > 0(F (t; s) = s)g:Theorem 6.31. Let A be an N-standard algebra (with N = T), and 
on-taining the state spa
e S. If the next state fun
tion f isWhile 
omputableon A then so is the system fun
tion F . Furthermore, the orbits orb(f; s)and the set of periodi
 points per(f) are While semi
omputable on A.Proof. By 
omputability of primitive re
ursion (Theorem 8.5) and 
lo-sure of semi
omputability under existential quanti�
ation over N (Theorem5.23).Now we will 
onsider the 
omputability of some simple dynami
al sys-tems with one-dimensional state spa
es. More spe
i�
ally, suppose thestate spa
e is an interval S = I = [a; b℄ � Rand so the next state fun
tion and system fun
tion have the formf : I ! IF : T� I ! I:F is 
alled an iterated map on the interval I . Dynami
al systems based onsu
h maps have a wide range of uses and a beautiful theory. For example,su
h systems will under 
ertain 
ir
umstan
es exhibit `
haos'. The follow-ing dis
ussion is taken from Devaney [1989℄. Let (I; F ) be a dynami
alsystem based on the iterated map F .De�nition 6.32.(a) (I; F ) is sensitive to initial 
onditions if there exists Æ > 0 su
h thatfor all x 2 I and any neighbourhood U of x, there exist y 2 U andt 2 T su
h that jF (t; x)� F (t; y)j > Æ:(b) (I; F ) is topologi
ally transitive if for any open sets U1 and U2 thereexist x 2 U1 and t 2 T su
h that F (t; x) 2 U2.Note that if I is 
ompa
t then (I; F ) is topologi
ally transitive if, andonly if, Orb(F; x) is dense in I for some x 2 I . (The dire
tion `(' is
lear. The proof of `)' depends on the Baire 
ategory theorem.)
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haoti
 if:(a) it is sensitive to initial 
onditions;(b) it is topologi
ally transitive;(
) the set Per(F ) of periodi
 points of F is dense in I .Consider the quadrati
 family of dynami
al systems (I; F�) for � real,where I = [0; 1℄ and the next state fun
tion isf�(x) = �x(1� x):For � = 4 we have:Theorem 6.34. The system (I; F4) is 
haoti
. Thus, for the algebras Rand R<:(a) for some x 2 [0; 1℄, the set Orb(F4; x) is WhileN semi
omputablebut not WhileN (= While�) 
omputable;(b) the set Per(F ) is WhileN semi
omputable, but not WhileN (=While�) 
omputable.Proof. That (I; F4) is 
haoti
 is proved in Devaney [1989℄. The semi
om-putability of f4 is 
lear. Semi
omputability of Orb(F4; x) and Per(F )follows from Theorem 6.31. Further, it 
an be shown that Orb(F4; x) andPer(F ) are both dense and 
odense in I . (Exer
ise.) Non-
omputabilitythen follows from the density/
odensity 
ondition (see Remark 6.23).6.6 Dynami
al systems and Julia sets on C ; sets whi
hareWhileN semi
omputable but notWhile� 
om-putableWe re
onsider an example from Blum et al. [1989℄, and show how it followsfrom our general theory of semi
omputability. We work from now on inC<. First, we must relate 
omputability in the 
omplex and real algebras.We 
onsider the algebras C and C<.Notation 6.35. If S � C n , we writeŜ =df f(re(z1); im(z1); : : : ; re(zn); im(zn)) j (z1; : : : ; zn) 2 C ng � R2n :Lemma 6.36 (Redu
tion lemma). Let S � C n .(a) S is While (or WhileN or While�) semi
omputable in C if, andonly if, Ŝ is While (orWhileN or While�) semi
omputable in R.(b) S is While (or WhileN or While�) semi
omputable in C< if,and only if, Ŝ is While (or WhileN or While�) semi
omputablein R<.This lemma will enable us to redu
e problems of semi
omputabilityin the algebras C or C< to those in the 
orresponding real algebras. Forexample, from this lemma and Corollary 6.24 we have:
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kerCorollary 6.37. In C<, the notions of WhileN , While� and proje
tiveWhileN semi
omputability all 
oin
ide for subsets of C n .Note that the redu
tion lemma would not be true if we in
luded themod fun
tion (z 7! jzj) in C or C<, by Example 6.3(b).We work from now on in C<.Let g : C ! C be a fun
tion. For z 2 C , the orbit of g at z (as inse
tion 6.5) is the setorb(g; z) = fgn(z) j n = 0; 1; 2; : : :g:Let U(g) = fz 2 C j orb(g; z) is unboundedgand F (g) =fz 2 C j orb(g; z) is boundedg=C nU(g):The set F (g) is the �lled Julia set of g; the boundary J(g) of F (g) is theJulia set of g.For any r 2 R de�neVr(g) = fz 2 C j 9n(jgn(z)j > r)g:Clearly, U(g) � Vr(g) for all r.Theorem 6.38. For g(z) = z2 � 
, with j
j > 4, we have U(g) isWhile semi
omputable but not (even While�) 
omputable. Thus, F (g)is not While� semi
omputable.Proof. Assume for now that j
j � 1, and 
hoose r = 2j
j. Then for jzj > r,jg(z)j = jz2 � 
j � jzj2 � j
j � 32 jzj:Hen
e for all n, jgn(z)j � �32�n jzj;and so gn(z)!1 as n!1:Hen
e for su
h r, Vr(g) � U(g), and soU(g) = Vr(g) = fz 2 C j 9n(jgn(z)j > r)g:To show that U(g) is semi
omputable is routine; for example, as thehalting set of the pro
edure
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 in a: 
omplexaux b: 
omplexbeginb:= a;while j b j2� 4j
j2 do b := b2 � 
 odend.(Note that although the fun
tion z 7! jzj is not 
omputable, the fun
tionz 7! jzj2 = re(z)2 + im(z)2 is.)To 
on
lude the proof we must show that F (g) is not While� semi-
omputable. Suppose it was, then (by the 
ountable 
onne
tivity 
onditionand the redu
tion lemma) it would 
onsist of 
ountably many 
onne
ted
omponents. But if we 
hoose j
j > 4 it 
an be shown that F (g) is 
ompa
t,totally dis
onne
ted and perfe
t, i.e., homeomorphi
 to the Cantor set (see,for example, Ho
king and Young [1961℄), and so we have a 
ontradi
tion(
f. Example 6.26(a)).7 Computation on topologi
al partial algebrasWe have 
onsidered While 
omputations on algebras of reals in se
tion6. Conne
tions were made between notions of semi
omputability and fa-miliar rational polynomial de�nability; we also made some observations on
onne
tions between proje
tive semi
omputability and �eld extensions ofQ. There is thus a 
lose relationship between 
omputability properties, andalgebrai
 properties of sets of reals. (Of 
ourse many of these properties
an be reformulated for arbitrary rings and �elds.)In this se
tion we explore the relationship between 
omputability prop-erties and topologi
al properties of sets of reals. We will analyse While
omputations on general topologi
al algebras, and using these general 
on-
epts and results, we will be able to give a qui
k guide to the primary 
aseof 
omputation on R.The outline of this se
tion is as follows. In se
tion 7.1 we indi
ate thebasi
 problem: although 
omputability implies 
ontinuity (to be provedlater), total Boolean-valued fun
tions on R su
h as equality and order aredis
ontinuous. The solution is to work with partial fun
tions. We there-fore de�ne partial algebras in se
tion 7.2, and topologi
al partial algebrasin se
tion 7.3. In se
tion 7.4 we 
ompare the two approa
hes to 
omputa-tion on the reals: the algebrai
 model of se
tion 6, and the stream modelwhi
h lies behind the models studied in this se
tion. In se
tion 7.5 weprove that 
omputable fun
tions are 
ontinuous, from whi
h it follows thatsemi
omputable or proje
tively semi
omutable sets are open, and hen
e
omputable sets are 
lopen (= 
losed and open). In se
tion 7.6 we infer a
onverse of this last statement in the 
ase of 
ompa
t algebras with opensubbases of semi
omputable sets. In se
tion 7.7 we spe
ialise to metri
partial algebras, and in se
tion 7.8 show the equivalen
e between 
om-
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kerputability and expli
it de�nability in the 
ase of a 
onne
ted domain. Thisresult is used in the study of approximable 
omputability in se
tion 7.9, inwhi
h e�e
tive Weierstrass 
omputability (generalising the 
lassi
al notionof Weierstrass approximability) is shown to be equivalent on 
onne
teddomains (under 
ertain broad assumptions) to e�e
tive uniform While(or While�) approximability. Finally, in se
tion 7.10, we dis
uss the re-lationship between abstra
t and 
on
rete models of 
omputability, withparti
ular referen
e to 
omputation on the reals.The material of this se
tion is based on Tu
ker and Zu
ker [1999℄. Ba
k-ground information on topology 
an be found in any standard text, su
has Kelley [1955℄, Ho
king and Young [1961℄, Simmons [1963℄ or Dugundji[1966℄.7.1 The problemConsider again the standard algebrasR = (R; B ; 0; 1; +; �; �; ifreal; eqreal; : : : )and R<, whi
h extends R with lessreal (or `<').Not all the fun
tions in While(R) and While(R<) are 
ontinuous.This is obvious, be
ause both algebras 
ontain 
ertain basi
 operations,namely eqreal and lessreal (`=' and `<'), that are not 
ontinuous (with re-spe
t to the usual topology on R).If A is an algebra built on R su
h that all its basi
 operations are
ontinuous, then is every fun
tion in While(A) 
ontinuous?Let us immediately 
onsider this question more generally.De�nition 7.1.(1) A topologi
al (total) �-algebra is a pair (A; T ), where A is a �-algebraand T is a family hTs j s 2 Sort(�)i, where for ea
h s 2 Sort(�),Ts is a topology on As, su
h that for ea
h basi
 fun
tion symbolF : u! s of �, the fun
tion FA : Au ! As is 
ontinuous.(2) A standard total topologi
al algebra (A; T ) is a total topologi
al al-gebra in whi
h A is standard, and the 
arrier Abool = B has thedis
rete topology.We will often speak of a `topologi
al algebra A', without stating thetopology expli
itly.Remark 7.2. In a topologi
al algebra, the 
arriers of all equality sortsmust be dis
rete, in order for the equality operation on them to be 
ontinu-ous. In parti
ular, if A is N -standard, then the 
arrier Anat = N must bedis
rete.To provide motivation, we state the following theorem here. (It will beformulated and proved later in a more general 
ontext.)
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al algebra.(a) If f 2While(A) then f is 
ontinuous on A.(b) If f 2WhileN (A) then f is 
ontinuous on A.(
) If f 2While�(A) then f is 
ontinuous on A.At �rst sight this gives a satisfa
tory answer to the above questionabout 
ontinuity of While 
omputable fun
tions. However, a standardtotal topologi
al algebra based on R has the following problem. There 
anbe no non-
onstant basi
 operations of the form F : Rq ! B su
h as `<'or even `='. This is be
ause if f : Rq ! B is 
ontinuous, then f�1[tt℄ andf�1[ff℄ are disjoint open sets whose union is Rq . So one must be Rq , andthe other ;, by the 
onne
tness of R. (We investigate 
onne
tedness intopologi
al algebras in se
tion 7.8.)Hen
e the problem with the above theorem is the pau
ity of usefulappli
ations. In fa
t, the only 
ontinuous equality test is on a dis
retespa
e.However, equality and order on R do have some properties 
lose to
ontinuity. For example, given two points x and y with x < y, there aredisjoint neighbourhoods Ux and Uy of x and y respe
tively su
h that forall u 2 Ux and v 2 Uy, u < v. (Similarly for inequality 6̀='.)We will develop notions that allow us to express these `
ontinuity' prop-erties as follows. De�ne partial fun
tionslessp : R2 ! Beqp : R2 ! Bso that lessp(x; y) = 8><>:tt if x < yff if x > y" if x = y;and eqp(x; y) = (" if x = yff if x 6= y:These partial fun
tions are 
ontinuous, in the sense that the inverse imagesof fttg and fffg are always open subsets of R2 .We will exploit these observations about `<' and `=' to the full bystudying topologi
al partial algebras. We will also prove a more generalversion of Theorem 7.3 for su
h partial algebras (Theorem 7.12).7.2 Partial algebras and While 
omputationA partial �-algebra is de�ned in the same way as a �-algebra (se
tion 2.3),ex
ept that for ea
h F : u! s in Fun
(�), the fun
tion FA : Au ! Asmay be partial.
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kerStandard and N-standard partial �-algebras are de�ned analogously,as are the standardisation and N-standardisation of partial �-algebras (
f.se
tions 2.4, 2.5).Suppose � is a standard signature, and A is a standard partial �-algebra.The error partial algebra Au, of signature �u, is 
onstru
ted as before(
f. se
tion 2.6). In parti
ular, for ea
h F 2Fun
(�), its interpretationFA on A is extended by stri
tness to a partial fun
tion FA;up on Au.The array partial algebra A�, of signature ��, is 
onstru
ted as before(
f. se
tion 2.7).The stream partial algebra �A, of signature �, is 
onstru
ted as before(
f. se
tion 2.8).The semanti
s of While programs on A is similar to that for totalalgebras (
f. se
tions 3.3{3.8), ex
ept that many of the semanti
 fun
tionsare now partial, namely: the term evaluation fun
tion [[t℄℄A (se
tion 3.3),the fun
tions hjSjiA, CompA1 , CompA, CompLengthA(se
tion 3.4), and(as before) the statement evaluation fun
tion [[S ℄℄A (se
tion 3.5) and pro-
edure evaluation fun
tion PA (se
tion 3.6). For example, the de�nition of[[t℄℄Abe
omes (
f. se
tion 3.3):[[x℄℄A� = �(x)[[F (t1; : : : ; tm)℄℄A� ' FA([[t1℄℄A�; : : : ;[[tm℄℄A�).Here the se
ond 
lause is interpreted as[[F (t1; : : : ; tm)℄℄A� ' 8><>:FA([[t1℄℄A�; : : : ; [[tm℄℄A�) if [[ti℄℄A� #for i = 1; : : : ;m" otherwise:ex
ept for the 
ase that F (: : : ) is the dis
riminator if(b; t1; t2), in whi
h 
asewe have a `non-stri
t' 
omputation of either [[t1℄℄A� or [[t2℄℄A�, dependingon the value of [[b℄℄A�:[[if(b; t1; t2)℄℄A� ' 8><>:[[t1℄℄� if [[b℄℄A� # tt[[t2℄℄� if [[b℄℄A� # ff" if [[b℄℄A� " :The results in se
tions 3.3{3.10 (fun
tionality lemmas, homomorphisminvarian
e and lo
ality theorems) still hold, with 
ertain obvious modi�
a-tions related to divergen
e. For example, the fun
tionality lemma for temrs(3.4) be
omes:Lemma 7.4 (Fun
tionality lemma for terms). For any term t andstates �1 and �2, if �1 � �2 (rel vart), then either(i) [[t℄℄A�1 # and [[t℄℄A�2 # and [[t℄℄A�1 = [[t℄℄A�2, or
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al partial algebrasNote that in, this se
tion, by `fun
tion' we generally mean partial fun
tion.De�nition 7.5. Given two topologi
al spa
es X and Y , a fun
tion f :X ! Y is 
ontinuous if for every open V � Y , f�1[V ℄ =df fx 2 X j x 2dom(f) and f(x) 2 Y g is open in X .De�nition 7.6.(1) A topologi
al partial �-algebra is a partial �-algebra with topologieson the 
arriers su
h that ea
h of the basi
 fun
tions is 
ontinuous.(2) A standard topologi
al partial algebra is a topologi
al partial algebrawhi
h is also a standard partial algebra, su
h that the 
arrier B hasthe dis
rete topology. (Cf. De�nition 7.1.)Examples 7.7.(a) (Real algebra.) An important standard topologi
al partial algebra forour purpose is the algebraRp = (R; B ; 0; 1; +; �; �; ifreal, eqp, lessp, : : : )whi
h is formed from R< by the repla
ement of eqreal and lessreal bythe partial operations eqp and lessp (de�ned in se
tion 7.1). It be-
omes a topologi
al partial algebra by giving R its usual topology, andB the dis
rete topology. An open base for the standard topology onR is given by the 
olle
tion of open intervals with rational endpoints.These intervals are all While semi
omputable on Rp. (Exer
ise.)(b) (Interval algebras.) Another useful 
lass of topologi
al partial alge-bras are of the formalgebra Ipimport Rp
arriers Ifun
tions iI : I ! R,F1 : Im1 ! I ,: : :Fk : Imk ! Iendwhere I is the 
losed interval [0; 1℄ (with its usual topology), iI is theembedding of I into R, and Fi : Imi ! I are 
ontinuous partial fun
tions.These are 
alled (partial) interval algebras on I .Example 7.8 (While 
omputable fun
tions on Rp). We give twoexamples of fun
tions 
omputable by While programs, using the aboveBoolean-valued fun
tions (eqp and lessp) as tests. (In both 
ases, the in-puts are taken to be positive reals to simplify the programs, although the
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kerprograms 
ould easily be modi�ed to apply to all reals, positive and non-positive).(a) The 
hara
teristi
 fun
tion of Z on R, is int : R+ ! B , whereis int(x) = (" if x is an integerff otherwise:This is de�ned by the pro
edurepro
 in x : pos-realout b : boolbeginb : =false;while x>0 fif x = 0, test diverges!gdo x := x-1odend(b) The trun
ation fun
tion trun
 : R+ ! Z, wheretrun
(x) = (xxy if x is not an integer" otherwise:The pro
edure for this is similar:pro
 in x : pos-realout 
 : intbegin
 := 0;while x > 1 fif x = 1, test divergesgdo x :=x�1;
 := 
+1odendUntil further noti
e (se
tion 7.8) let A be a standard topologi
al partial�-algebra.De�nition 7.9 (Expansions of topologi
al partial algebra).(a) The topologi
al partial algebra Au, of signature �u, is 
onstru
tedfrom A by giving ea
h new 
arrier Aus the disjoint union topology ofAs and fupg. (This makes up an isolated point of Aus.)(b) The topologi
al partial algebra AN , of signature �N , is 
onstru
tedfrom A by giving the new 
arrier N the dis
rete topology.
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al partial algebra A�, of signature ��, is 
onstru
tedfrom AN as follows. Viewing the elements of ea
h new 
arrier A�sas (essentially) in�nite sequen
es of elements of Aus, whi
h take thevalue up for all indi
es greater than Lgth(a�), we give A�s the subspa
etopology of the set (Aus)N of all in�nite sequen
es from Aus, with theprodu
t topology over Aus. Equivalently, viewing the elements of A�sas (essentially) arrays of elements of Aus of �nite length, we 
an giveA�s the disjoint union topology of the sets (Aus)n of arrays of lengthn, for all n � 0, where ea
h set (Aus)n is given the produ
t topology ofits 
omponents Aus. It is easy to 
he
k that A� is indeed a topologi
alalgebra, i.e., all the new fun
tions of A� are 
ontinuous.(d) The topologi
al partial algebra �A, of signature �, is 
onstru
ted bygiving ea
h new 
arrier �As the produ
t topology over As. Note that,if As is 
ompa
t for any sort s, then so is �As, by Ty
hono�'s theorem(see Remark 7.28).De�nition 7.10. A is Hausdor� if ea
h 
arrier of A is Hausdor� (i.e., anydistin
t pair of points 
an be separated by disjoint neighbourhoods.)Proposition 7.11. If A is Hausdor�, then so are the expansions Au; AN ;A� and �A:Theorem 7.12. Let A be a standard topologi
al partial algebra.(a) If f 2While(A) then f is 
ontinuous on A.(b) If f 2WhileN (A) then f is 
ontinuous on A.(
) If f 2While�(A) then f is 
ontinuous on A.The proof will be given in se
tion 7.5. For now we observe that thistheorem implies the following.Theorem 7.13. If R is(a) While� semi
omputable on A, or(b) proje
tively While� semi
omputable on A,then R is open in A.Proof.(a) Suppose R is the halting set of a While� 
omputable fun
tion f :Au ! As. By Theorem 7.12, f is 
ontinuous. Hen
e R = f�1[As℄is open.(b) From (a) and sin
e a proje
tion of an open set is open. (Che
k.)Note that in the above proof, we used the fa
t that a proje
tion of anopen set is open. (Che
k.)Corollary 7.14. A While� 
omputable relation on A is 
lopen in A.Proof. By Post's theorems (5.40) and Theorem 7.13.
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ussion: Two models of 
omputation on therealsThe purpose of this subse
tion is to explain the 
on
eptual ba
kground forour models of 
omputation on the reals.There are two types of models of reals, and 
omputations on them:(1) The algebrai
 model. Here we work with a many-sorted algebra likeR = (R;N ; B ; 0; 1;+;�; : : : );This was the approa
h in se
tion 6.(2) The stream model. A real number input or output is given as astream of(i) digits (representing a de
imal expansion), or(ii) rationals (representing a Cau
hy sequen
e), or(iii) integers (representing a 
ontinued fra
tion).This idea lies behind the partial algebras of reals Rp and Ip studied in thisse
tion. For 
onvenien
e, we 
on
entrate on (i). (The de
imal representa-tion may be to any base.)Then a pro
edure for a 
omputable real-valued fun
tion f : Rn ! Rhas as input n streams of digits, and as output a stream of digits. Sim-ilarly a pro
edure for a 
omputable relation on the reals, or Boolean-valuedfun
tion, R : Rn ! B has as input n streams of digits, and as output aBoolean value (or bit).In the algebrai
 approa
h, the input and output reals are just `points'(elements of R) given in one step. Continuity of the 
omputable fun
tions,or even of the primitive fun
tions (with respe
t to the usual topology onR), is not for
ed on us | and our models in se
tion 6 violated it.In the stream model, however, the reals form in�nite data; at any �nitetime, only a �nite part has been pro
essed (written or read). Continuityof the 
omputable fun
tions (whi
h we will prove formally in the next sub-se
tion) is then for
ed on us 
on
eptually by 
omputability requirements,i.e.,:(a) For f : Rn ! R to be 
omputable, we must be able to get theoutput real (= stream of digits) to any desired degree of a

ura
y(= length) by inputting suÆ
iently long input streams. (Brie
y: thelonger the inputs, the longer the output.)(b) For R : Rn ! B to be 
omputable, we must be able to get an outputbit after �nite (su�
iently long) input streams.We often work with the algebrai
 model, be
ause of its simpli
ity. It isa good sour
e of examples to distinguish various notions of abstra
t 
om-putability and semi
omputability (as we saw in se
tion 6). However, thestream model is more satisfying 
on
eptually, 
onforming to our intuition
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ur to us, e.g., in physi
al measurements and 
al
ula-tions. So we 
an use the stream model as a sour
e of insights for ourrequirements or assumptions regarding the algebrai
 model, notably the
ontinuity requirement for 
omputable fun
tions.Re
all the problem dis
ussed in Se
tion 7.1 
on
erning the 
ontinuityrequirement for 
omputable relations, i.e., Boolean-valued fun
tions R :Rn ! B : the only 
ontinuous total fun
tions from Rn to any dis
rete spa
esu
h as B are the 
onstant funtions.The solution, we saw, was to work with partial algebras, i.e., to interpretthe fun
tion symbols in the signature by partial fun
tions. We use thestream model for insight. Consider, for example, the equality and orderrelations on the reals. Suppose we have two input reals (between 0 and 1)de�ned by streams of de
imal digits, whi
h we read, one digit at a time:� = 0:a0a1a2 : : :� = 0:b0b1b2 : : :Consider the various possibilities:(a) � < �. Then for some n, this will be determined by the initialsegments a0 : : : an and b0 : : : bn.(b) � > �. Similarly, this will be determined by some pair of initialsegments.(
) � 6= �. This is the disjun
tion of 
ases (a) and (
), so again it will bedetermined by some pair of initial segments.(d) � = �. This 
ase, however, 
annot be determined by initial segmentsof any length! (Note that this analysis is not a�e
ted by the doublede
imal representation of rationals.)This analysis suggests the following de�nitions for partial fun
tions in thesignature of R:(i) eqp(x; y) = (" if x = yff if x 6= y;(ii) uneqp(x; y) = (tt if x 6= y" if x = y (
ompare (i));(iii) lessp(x; y) = 8><>:tt if x < y" if x = yff if x > y;(iv) lseqp(x; y) = 8><>:tt if x < y" if x = yff if x > y (same as (iii)!).Note that examples (i) and (iii) were in
orporated as basi
 operations inthe topologi
al partial algebras Rp and Ip in se
tion 7.3.
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kerFurther, we 
an add real-valued fun
tions su
h as division:(v) x divR y = (x=y if y 6= 0" if y = 0:Note that in the above de�nitions, `"' (unde�nedness or divergen
e) mustnot be 
onfused with `�' (error), whi
h o

urs in integer division:(vi) x divZ y = (xx/yy if y 6= 0� if y = 0:In the integer 
ase, we 
an e�e
tively test whether the input y is 0, and so(if y = 0) give an output, namely an error message (or default value, if weprefer). In the real 
ase, if y = 0, this 
annot be e�e
tively de
ided, andso no output (error or other) is possible. (Suppose the �rst n digits of theinput y are 00 : : :0. The (n+ 1)th digit may or may not also be 0.)We remark that the 
on
ept of reals as streams is reminis
ent of Brou-wer's notion of reals de�ned by lawless sequen
es or 
hoi
e sequen
es. Infa
t, for Brouwer, a fun
tion was a 
onstru
tively de�ned fun
tion, and he`proved' that every fun
tion on R is 
ontinuous! (See, for example, thedis
ussion in Troelstra and van Dalen [1988, Chapter 12℄).We 
on
lude this dis
ussion by pointing out a related, intensional, ap-proa
h by Feferman to 
omputation on the reals, based on Bishop's 
on-stru
tive approa
h to higher analysis (Bishop [1967℄, Bishop and Bridges[1985℄). This is outlined in Feferman [1992a; 1992b℄.7.5 Continuity of 
omputable fun
tionsIn this se
tion we will prove that 
omputational pro
esses asso
iated withWhile� programs over topologi
al partial algebras are 
ontinuous. Morepre
isely, we will prove Theorem 7.12:(a) If f 2While(A) then f is 
ontinuous on A.(b) If f 2WhileN (A) then f is 
ontinuous on A.(
) If f 2While�(A) then f is 
ontinuous on A.Clearly, part (a) follows trivially from parts (b) and (
). Note that, 
on-versely, parts (b) and (
) follow easily from (a). For example, if f 2While�(A) then f 2While(A�), therefore f is 
ontinuous on A�, andhen
e on A. We will prove part (a) by demonstrating the 
ontinuity ofthe operational semanti
s developed in se
tion 3 (as modi�ed for partialalgebras). We will see the advantage of the algebrai
 approa
h to opera-tional semanti
s used there, sin
e these fun
tions are built up from simplerfun
tions using 
omposition, thus preserving 
ontinuity.We pro
eed with a series of lemmas. Let X;Y; : : : be topologi
al spa
es.Remember, fun
tions are (in general) partial.Lemma 7.15 (Basi
 lemmas on 
ontinuity).(a) A 
omposition of 
ontinuous fun
tions is 
ontinuous.
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omponent fun
tions fi : X !Yi for i = 1; : : : ; n, i.e., f(x) ' (f1(x); : : : ; fn(x)) for all x 2 X.Then f is 
ontinuous if, and only if, all the fi are 
ontinuous fori = 1; : : : ; n.(
) If D is a dis
rete spa
e, then a fun
tion f : X�D! Y is 
ontinuousif, and only if, f( � ; d) : X ! Y is 
ontinuous for all d 2 D.Proof. Exer
ise.Corollary 7.16. The dis
riminator f : B�X2 ! X, de�ned by f(tt; x; y) =x and f(ff; x; y) = y, is 
ontinuous.Proof. Exer
ise.Corollary 7.17. Let f : X ! Y be de�ned byf(x) ' 8><>:g1(x) if h(x) # ttg2(x) if h(x) # ff" otherwise;where g1; g2 : X ! Y and h : X ! B are 
ontinuous. Then f is 
ontinu-ous.Proof. From Corollary 7.16 and Lemma 7.15(a).Lemma 7.18 (Least number operator). Let g : X � N ! Y be 
on-tinuous, and let y0 2 Y be su
h that fy0g is 
lopen in Y . Let f : X ! Nbe de�ned by f(x) ' �k[g(x; k) # y0℄;i.e., f(x) # k () 8i < k(g(x; i) #6= y0)^ (g(x; k) # y0)Then f is 
ontinuous.Proof. Sin
e N has the dis
rete topology, it is suÆ
ient to show that forany k 2 N, f�1(fkg) is open. We havef�1(fkg) = k�1\i=0fx j g(x; i) #6= y0g \ fx j g(x; k) # y0g= k�1\i=0 g( � ; i)�1(Y nfy0g) \ g( � ; k)�1(fy0g)whi
h is a �nite interse
tion of open sets, sin
e by assumption both fy0gand Y nfy0g are open.The rest of the proof 
onsists of showing the 
ontinuity of the varioussemanti
 operations de�ned in se
tion 3.
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ify topologies on the various spa
es involved in theoperational semanti
s.For a produ
t type u = s1� : : :�sm, the spa
e Au =df As1 � : : :�Asmhas (of 
ourse) the produ
t topology of the Asi 's.The state spa
e State(A) is the (�nite) produ
t of the state spa
esStates(A) for all s 2 Sort(�) (se
tion 3.2), where ea
h States(A) is an(in�nite) produ
t of the 
arriers As (indexed by V ars). Thus State(A)is an in�nite produ
t of all the 
arriers As, and takes the produ
t topologyof the As's. The spa
e State(A)[f�g is formed as the union of State(A)and the singleton spa
e f�g. Note that this makes the point � 
lopen inState(A)[f�g.The synta
ti
 sets Stmt and AtSt have the dis
rete topology, as dothe sets B and N of Booleans and naturals.Lemma 7.19. For t 2 Terms, the fun
tion [[t℄℄A: State(A) ! As (se
-tion 3.3) is 
ontinuous.Proof. By stru
tural indu
tion on t. Use the fa
ts that the basi
 fun
-tions of � are 
ontinuous, and that 
ontinuity is preserved by 
omposition(Lemma 7.15(a)).Re
all that [[t℄℄A and the other semanti
 fun
tions 
onsidered below area
tually the partial algebra analogues of the fun
tions de�ned in se
tion 3(as dis
ussed in se
tion 7.2).Lemma 7.20. The state variant fun
tion��; a � �fx=ag : State(A) �Au ! State(A)(for some produ
t type u and �xed tuple of variables x : u) is 
ontinuous.Proof. Exer
ise.Lemma 7.21. For S 2 AtSt, the fun
tion hjSjiA: State(A)! State(A)(se
tion 3.5) is 
ontinuous.Proof. For S�skip, this is trivial. For S�x := t, use Lemmas 7.19, 7.20and 7.15(b).Lemma 7.22. The fun
tions First and RestA (se
tion 3.6) are 
ontin-uous.Proof. For First, this is trivial (a mapping with dis
rete domain spa
e).For RestA, it is suÆ
ient, by Lemma 7.15(
), to show that for any �xedS 2Stmt, the fun
tionRestA(S; � ) : State(A)! Stmtis 
ontinuous. This is proved by stru
tural indu
tion on S, making use (inthe 
ase that S is a 
onditional or `while' statement) of Corollary 7.17.Lemma 7.23. The one-step 
omputation fun
tion
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tion 3.4) is 
ontinuous.Proof. Again, by Lemma 7.15(
), it is suÆ
ient to show that for any �xedS 2Stmt, the fun
tion CompA1 (S; �) is 
ontinuous. But by de�nition,this is hjFirst(S)jiA, whi
h is 
ontinuous by Lemma 7.22.Lemma 7.24. The 
omputation step fun
tion CompA (se
tion 3.4) is
ontinuous.Proof. Again, it is suÆ
ient to show that for any �xed S 2Stmt andn 2 N, the fun
tionCompA(S; � ; n) : State(A)!State(A)[f�gis 
ontinuous. This is proved by indu
tion on n, using (in the base 
ase)Lemma 7.23 and (in the indu
tion step) Lemmas 7.22 and 7.23.Lemma 7.25. The 
omputation length fun
tion CompLengthA (se
tion3.4) is 
ontinuous.Proof. This fun
tion is de�ned byCompLengthA(S; �) ' �n[CompA(S; �; n+ 1) # �℄:Its 
ontinuity follows from Lemma 7.18, sin
e f�g is 
lopen inState(A)[f�g, and by Lemma 7.24.Lemma 7.26. For S 2 Stmt, the fun
tion [[S℄℄A: State(A)! State(A)(se
tion 3.5) is 
ontinuous.Proof. Sin
e[[S℄℄A(�) ' CompA(S; �;CompLengthA(S; �));the result follows from Lemmas 7.24 and 7.25.Lemma 7.27. For anyWhile pro
edure P , the fun
tion PA (se
tion 3.6)is 
ontinuous.Proof. Suppose P � pro
 in a out b aux 
begin S end, where a : u andb : v, so that PA : Au ! Av . Fix any state �0 2State(A). Theimbedding and proje
tion fun
tions�a : Au !State(A) and �b : State(A)! Avde�ned by �a(x) = �0fa=xg and �b(�) = �[b℄are 
ontinuous. (Exer
ise.) Hen
e the 
omposition�bÆ [[S℄℄AÆ�a : Au ! Av :is 
ontinuous. But this is just PA, independent of the 
hoi
e of �0, by thefun
tionality lemma (3.11) for pro
edures.Theorem 7.12(a) follows from this.
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al 
hara
terisation of 
omputable sets in
ompa
t algebrasFor ba
kground on 
ompa
tness, see any of the books listed at the begin-ning of se
tion 7.Remark 7.28 (Compa
tness).(a) By Ty
hono�'s theorem, the produ
t of 
ompa
t spa
es is 
ompa
t.(b) The unit interval I is 
ompa
t. Hen
e so is the produ
t spa
e Iq forany q.Now we have seen (Theorem 7.13 and Corollary 7.14) that for sets:semi
omputable =) open
omputable =) 
lopen.We 
an reverse the dire
tion of the impli
ation in the se
ond of these as-sertions, under the assumption of 
ompa
tness.Theorem 7.29. Let A be a topologi
al partial algebra, and let u = s1 � : : :� sm 2ProdType(�), where, for i = 1; : : : ; n,(a) Asi is 
ompa
t, and(b) Asi has an open subbase of While semi
omputable sets.Then for any relation R � Au, the following are equivalent:(i) R is While 
omputable;(ii) R is While� 
omputable;(iii) R is 
lopen in Au.Proof. (i)=)(ii) is trivial.(ii)=)(iii) follows from Corollary 7.14.(iii)=)(i): Note �rst that from assumptions (a) and (b), the produ
t spa
eAu (with the produ
t topology) is 
ompa
t, and has an open subbaseofWhile semi
omputable sets. Suppose now that R is 
lopen in Au.Sin
e R is open, we 
an writeR = [i2I Biwhere the Bi are basi
 open sets. Ea
h Bi is a �nite interse
tion ofsubbasi
 open sets, and hen
e semi
omputable, by Theorem 5.8.Sin
e R is 
losed, R is 
ompa
t, and hen
e R is the union of �nitelymany of the Bi's, and so R is semi
omputable, by Theorem 5.8.Repeating the above argument for R
, we infer by Post's theorem (5.9)that R is 
omputable.
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 partial algebraA parti
ular type of topologi
al partial algebra is a metri
 partial algebra.This is a pair (A; d) where d is a family of metri
s hds j s 2 Sort(�)i, andfor ea
h s 2 Sort(�), ds is a metri
 on As, su
h that for ea
h basi
 fun
tionsymbol F : u! s of �, the fun
tion FA : Au ! As is 
ontinuous (where
ontinuity of a partial fun
tion is as per De�nition 7.5).This indu
es or de�nes a topologi
al partial algebra in the standard way.Note that if A is standard, then the 
arrier B , as well as the 
arriers ofall equality sorts, will have the dis
rete metri
, de�ned byd(x; y) = (0 if x = y1 if x 6= y;whi
h indu
es the dis
rete topology (see Remark 7.2).Again, we will often speak of a `metri
 algebra A', without stating themetri
 expli
itly.Example 7.30. The real algebra Rp and interval algebras Ip (Examples7.7) 
an be viewed (or re
ast) as metri
 algebras in an obvious way.Remark 7.31. If A is a metri
 partial algebra, then for ea
h produ
t sortu = s1 � : : :� sm, we 
an de�ne a metri
 du on Au, whi
h indu
es theprodu
t topology on Au, bydu((x1; : : : ; xm); (y1; : : : ; ym)) = mmaxi=1 �dsi(xi; yi)�or more generally, by the `p metri
du((x1; : : : ; xm); (y1; : : : ; ym)) = � mXi=1(dsi(xi; yi))p�1=p (1 � p �1)Metri
 algebras will be used in our study of approximable 
omputability(se
tion 7.9).7.8 Conne
ted domains: 
omputability and expli
itde�nabilityIn this subse
tion we investigate the relationship between 
omputabilityand expli
it de�nability for a fun
tion on a 
onne
ted domain.First we review the 
on
ept of 
onne
tedness.Remark 7.32 (Conne
tedness).(a) A topologi
al spa
eX is said to be 
onne
ted if the only 
lopen subsetsof X are X and ;.(b) It is easy to see thatX is 
onne
ted if, and only if, the only 
ontinuous
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kertotal fun
tions fromX to B (or to any dis
rete spa
e) are the 
onstantfun
tions. (Exer
ise.)(
) A �nite produ
t of 
onne
ted spa
es is 
onne
ted. (See any of thereferen
es listed at the beginning of se
tion 7.) Hen
e in a topologi
al�-algebra A, if u = s1 � : : :� sm 2 ProdType(�), and Asi is
onne
ted for i = 1; : : : ;m, then so is Au.(d) The spa
e R of the reals, with its usual topology, is 
onne
ted. There-fore, so is the produ
t spa
e Rq for any q. Hen
e, by Corollary 7.14,for any topologi
al partial algebra over R, su
h as the algebra Rp(Example 7.7(a)), the only While or While� 
omputable subsetsof Rq are Rq itself and ;.(e) Similarly, by the 
onne
tedness of the unit interval I (and hen
e ofIq), the only While or While� 
omputable subsets of Iq in anyinterval algebra over I (Example 7.7(b)) are Iq itself and ;, : : : ,regardless of the 
hoi
e of (
ontinuous) fun
tions F1; : : : ; Fk as basi
operations!We will only develop the theory in this se
tion for total fun
tions ontotal algebras. The essential idea is that if f is a 
omputable total fun
tionon A, then f is 
ontinuous, and so, by Remark 7.32(b), its de�nition 
annotdepend non-trivially on any Boolean tests involving variables of sort s ifAs is 
onne
ted. (We will make this pre
ise below, in the proof of Lemma7.40.)Note that many of these results 
an be extended to the 
ase of totalfun
tions f on 
onne
ted domains in partial algebras. We intend to inves-tigate this more fully in future work. However, for now we assume in thissubse
tion:Assumption 7.33. A is a total topologi
al algebra.Examples 7.34 (Topologi
al total algebras on the reals). Two im-portant total topologi
al algebras based on the reals whi
h will be import-ant for our purposes are:(a) The algebra RNt (`t' for `total topologi
al'), de�ned byalgebra RNtimport R0;N ; Bfun
tions ifreal : B � R2 ! R;divnat : R � N ! R;endHere R0 is the ring of reals (R; 0; 1; +; �; �) (Example 2.5(b)), Nis the standard algebra of naturals (Example 2.23(b)), divnat is divisionof reals by naturals (where division by zero is de�ned as zero), andR has its usual topology.Note that RNt does not 
ontain the (total) Boolean-valued fun
tionseqreal or lessreal, sin
e they are not 
ontinuous (
f. the partial fun
tions
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)) whi
h 
ontains eqreal. (Comparethe N-standardisationRN ofR (Example 2.27(b)) whi
h does 
ontaineqreal.)(b) (The interval algebra of reals.) Here the unit interval I = [0; 1℄ isin
luded as a separate 
arrier of sort `intvl', again with the usualtopology. This is useful for studying real 
ontinuous fun
tions with
ompa
t domain. (We 
ould also 
hoose I = [�1; 1℄, et
.) The totaltopologi
al algebra INt is de�ned byalgebra INtimport RNt
arriers Ifun
tions iI : I ! RendHere iI is the embedding of I into R.Remark 7.35. Note that both algebras RNt and INt are stri
tly N-stand-ard. The reason why N, and the fun
tion divnat, are in
luded in these totalalgebras (unlike the partial algebras Rp and Ip of 7.7) is be
ause of theirappli
ability in the theory of approximable 
omputability in se
tion 7.9.De�nition 7.36. Let f be a fun
tion on A.(a) f is �-expli
itly de�nable on A if f is de�nable on A by a �-term.(b) f is ��-expli
itly de�nable on A if f is de�nable on A by a ��-term.By the ��=� 
onservativity theorem (3.63)`, the two 
on
epts de�nedabove are equivalent:Proposition 7.37. A fun
tion on A is �-expli
itly de�nable if, and onlyif, it is ��-expli
itly de�nable.Remarks 7.38.(a) Suppose (i) A is stri
tly N -standard (e.g., RNt and INt ), and (ii) thedomain and range types of f do not in
lude nat (e.g., f : Rq ! R orf : Iq ! R in these algebra, respe
tively). Then this proposition alsoholds with the `internal' version of �� (Remark 2.31(
)), by Remark3.64(b).(b) Be
ause of Proposition 7.37, we shall usually use `expli
it de�nability'over an algebra to mean either �- or ��-expli
it de�nability.In the following lemma, A is any total algebra, not ne
essarily topolo-gi
al.Lemma 7.39. Expli
it de�nability on A =) While 
omputability on A.Proof. Simple exer
ise.In preparation for the 
onverse dire
tion, we need the following:
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kerLemma 7.40. Suppose Au is 
onne
ted. Let P : u! v be a (While orWhile�) pro
edure whi
h de�nes a total fun
tion on A, i.e., HaltA(P )=Au. Then the 
omputation tree T (P ) for P is essentially �nite, or (morea

urately) semanti
ally equivalent to a �nite, unbran
hing tree.(The 
omputation tree for a pro
edure was de�ned in se
tion 5.11.)Proof. Put P � pro
 in a out b aux 
 begin S endwhere a : u, b : v and 
 : w, and S � Sinit;S0, where Sinit is aninitialisation of the variables b,
 to their default values. Let T = T (P ).First, we show that all bran
hes in T 
an be eliminated. Consider a bran
hat a test node in T (Fig. 16). ........................................................................... t................................................................................................................................................................................................................b ....................................................................... ................... N....................................................................................................................Y .......................... Fig. 16.This Boolean test de�nes a fun
tionfb;t : Au ! Bwhere (putting x � a; b; 
)fb;t(a) = bhx=ti[a; ÆvA; ÆwA℄i.e., fb;t(a) is the evaluation of bhx/ti when a is assigned to a and thedefault tuples Æv; Æw are assigned to b,
 respe
tively. The fun
tion fb;tis 
learly (While or While�) 
omputable, by Lemma 7.39, and hen
e
ontinuous, by Theorem 7.12. It is also total, sin
e A is total by assumption(7.33). By Remark 7.32(b) it must therefore be 
onstant on Au. If it is
onstantly tt, we 
an repla
e this test node by its left bran
h (i.e., deletethe node and the right bran
h), and if it is 
onstantly ff, we 
an similarlyrepla
e the node by its right bran
h only.By repeating this pro
ess, we 
an repla
e T by a semanti
ally equivalenttree T 0 without any Boolean tests, and (hen
e) without any bran
hing. Thetree T 0 
onsists of a single path, whi
h must be �nite, sin
e PA is total byassumption.Remarks 7.41.
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ation of this lemma are the total topologi
alalgebras RNt and INt , and pro
edures of type realq ! real andintvlq ! real, respe
tively. Note that the result also holds with the`internal' version of While� 
omputability, by Proposition 3.47.(b) Without the assumption that Au be 
onne
ted, Lemma 7.40 is false,i.e., it is possible for PA to be total, but T (P ) to be in�nite. (Exer-
ise.)(
) Note that any 
omputation tree T is �nitely bran
hing; therefore,by K�onig's lemma, T is �nite if, and only if, all its paths are �nite.Hen
e any 
ounterexample to demonstrate (b) would be an exampleof a 
omputation tree for a pro
edure whi
h de�nes a total fun
tion,but nevertheless has in�nite paths!(d) The lemma also holds without the assumption that A be total, aslong as PA is total (and Au is 
onne
ted). (Exer
ise.)(e) In general, this transformation of T (P ) to a �nite unbran
hing treegiven by the proof of Lemma 7.40 is not e�e
tive in P , sin
e it de-pends on the evaluation of (
onstant) Boolean tests. If we want itto be e�e
tive in P (as we will in the next subse
tion, dealing withapproximable 
omputability), we will need a further 
ondition on A,su
h as the Boolean 
omputability property (De�nition 7.56).Lemma 7.42. If a 
omputation tree T (P ) for a (While or While�)pro
edure P is �nite and unbran
hing, then PA is (�-)expli
itly de�nableon A.Proof. Exer
ise.Remark 7.43. More generally, Lemma 7.42 holds if T (P ) is �nite but(possibly) bran
hing. (Use the dis
riminator in 
onstru
ting the de�ningterm.)Combining Lemmas 7.39, 7.40 and 7.42, we have 
onditions for an equi-valen
e between expli
it de�nability and While 
omputability:Theorem 7.44. Let A be a total topologi
al algebra, and suppose Au is
onne
ted. Let f : Au ! Av be a total fun
tion. Then the following areequivalent:(i) f is While 
omputable on A;(ii) f is While� 
omputable on A;(iii) f is expli
itly de�nable on A.Example 7.45. This theorem holds for the total topologi
al algebras RNtand INt , and total fun
tions f : Rq ! R and f : Iq ! I , respe
tively.Note that by Remarks 7.38(a) and 7.41(a), the theorem also holds inthese algebras with `internal' versions of While� 
omputability and ��-expli
it de�nability.
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omputabilityIt is often the 
ase that fun
tions are 
omputed approximately, by a se-quen
e of `polynomial approximations'. In this way we extend the 
lass of
omputable fun
tions to that of approximably 
omputable fun
tions. Thistheory will build on the work of se
tion 7.8.First we review some basi
 notions on 
onvergen
e of sequen
es of fun
-tions.De�nition 7.46 (E�e
tive uniform 
onvergen
e). Given a set X , ametri
 spa
e Y , a total fun
tion f : X ! Y and a sequen
e of totalfun
tions gn : X ! Y (n = 0; 1; 2; : : : ), we say that gn 
onverges e�e
tivelyuniformly to f on X (or approximates f e�e
tively uniformly on X) if, andonly if, there is a total re
ursive fun
tion e : N ! N su
h that for all n; kand all x 2 X , k � e(n) =) dY (gk(x); f(x)) < 2�n:Remark 7.47. Let M : N ! N be any total re
ursive fun
tion whi
h isin
reasing and unbounded. Then (in the notation of De�nition 7.46) thesequen
e gn 
onverges e�e
tively uniformly to f on X if, and only if, thereis a total re
ursive fun
tion e : N ! N su
h that for all n; k and all x 2 X ,k � e(n) =) dY (gk(x); f(x)) < 1=M(n):(Exer
ise.)The theory here will be developed for total fun
tions on metri
 totalalgebras (de�ned in se
tion 7.5). We therefore assume in this subse
tion:Assumption 7.48. A is a metri
 total algebra.Example 7.49 (Metri
 total algebras on the reals). The two totaltopologi
al algebras based on the reals given in Example 7.34 
an be viewedas metri
 algebras in an obvious way. The se
ond of these, the intervalalgebra INt ; will be parti
ularly useful here.We will present, and 
ompare, two notions of approximable 
omputabil-ity on metri
 total algebras: e�e
tive uniformWhile (orWhile�) approximabil-ity (De�nition 7.50) and e�e
tive Weierstrass approximability (De�nition7.54).So suppose A is a metri
 total �-algebra. Let u; v 2ProdType(�)and s 2 Sort(�).De�nition 7.50. A total fun
tion f : Au ! Av is e�e
tively uniformlyWhile (orWhile�) approximable on A if there is aWhile (orWhile�)pro
edure P : nat� u ! von AN su
h that PAN is total on AN and, putting gn(x) =df PAN (n; x),the sequen
e gn 
onverges to f e�e
tively uniformly on Au.
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tions on algebras 471Remark 7.51. If A is N-standard, we 
an repla
e `AN ' by `A' in the abovede�nition (by Proposition 3.38).Lemma 7.52. If Au is 
ompa
t, and f : Au ! As is e�e
tively uniformlyWhile� approximable on A, then f is 
ontinuous.Proof. By Theorem 7.12, the approximating fun
tions for f are 
ontinu-ous. The theorem follows by a standard result for uniform 
onvergen
e on
ompa
t spa
es.Remark 7.53. Note that a fun
tion from Rq to R is expli
itly de�nableover RNt if, and only if, it is de�nable by a polynomial in q variables overR with rational 
oeÆ
ients. Similarly, a fun
tion from Iq to R is expli
itlyde�nable over INt if, and only if, it is de�nable by a polynomial in q variablesover I with rational 
oeÆ
ients. This explains the following terminology,sin
e Weierstrass-type theorems deal typi
ally with approximations of realfun
tions by polynomial fun
tions (uniformly on 
ompa
t domains).De�nition 7.54 (E�e
tive Weierstrass approximability).(a) A total fun
tion f : Au ! As is e�e
tively �-Weierstrass approx-imable over A if, for some x : u, there is a total 
omputable fun
tionh : N ! pTermx;s(�)qsu
h that, putting gn(x) =df teAx;s(h(n); x), the sequen
e gn 
on-verges to f e�e
tively uniformly on Au.(b) E�e
tive ��-Weierstrass approximability is de�ned similarly, by re-pla
ing `�' by `��' and `teAx;s' by `teA�x;s '.(The term evaluation representing fun
tion teAx;s was de�ned in se
tion 4.3.)Proposition 7.55. A fun
tion on A is e�e
tively �-Weierstrass approx-imable if, and only if, it is e�e
tively ��-Weierstrass approximable.Proof. From a 
omputable fun
tionh� : N ! pTermx;s(��)qwe 
an 
onstru
t a 
omputable fun
tionh : N ! pTermx;s(�)qwhere, for ea
h n, h(n) and h�(n) are G�odel numbers for semanti
ally equi-valent terms, using the fa
t that the transformation of ��-terms to �-termsin the 
onservativity theorem (the2.15.4) is e�e
tive.We shall therefore usually speak of `e�e
tive Weierstrass approximabil-ity' over an algebra to mean e�e
tive Weierstrass approximability in eithersense.
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onne
tion between e�e
tive uniform Whileapproximability and e�e
tive Weierstrass approximability. We are lookingfor a uniform version of Theorem 7.44 (i.e., uniform over N-sequen
es offun
tions).To attain this uniformity, we need an extra 
ondition in ea
h dire
-tion: for `e�e
tive Weierstrass) e�e
tive uniformWhile' (i.e., a uniformversion of Lemma 7.39) we need the TEP (se
tion 4.7), and for `e�e
tiveuniformWhile ) e�e
tive Weierstrass' (i.e., a uniform version of Lemma7.40) we need a new 
ondition, the Boolean 
omputability property (
f.Remark 7.41(e)), whi
h we now de�ne.De�nition 7.56. A �-algebra A has the Boolean 
omputability property(BCP) if for any 
losed �-Boolean term b, its valuation bA (= tt or ff, 
f.De�nition 2.11) 
an be e�e
tively 
omputed, i.e., (equivalently) there is are
ursive fun
tion f : pT (�)boolq ! Bwith f(pbq) = bA.Remark 7.57. To avoid 
onfusion: the BCP is not a spe
ial 
ase of theTEP, for 
losed terms of sort bool. It requires the fun
tion f in De�nition7.56 to be re
ursive, i.e., 
omputable over N (and B ) in the sense of 
lassi
alre
ursion theory. The TEP entails only that f be 
omputable over A | aweaker assumption (in general).Example 7.58. Both RNt and INt have the TEP and the BCP. (Exer-
ise.)We will see how these two 
onditions (TEP and BCP) are applied inopposite dire
tions to obtain a uniform version of Theorem 7.44.In the following lemma, A is any total algebra, not ne
essarily metri
or even topologi
al (
f. Lemma 7.39).Lemma 7.59. Suppose A has the TEP. Given variables x : u, leth : N ! pTermx;s(�)qbe a total 
omputable fun
tion. Then there is a While(�N ) pro
edureP : nat� u! s su
h that for all x 2 Au and n 2 N,PAN (n; x) = teAx;s(h(n); x):Proof. Simple exer
ise.For the 
onverse dire
tion:Lemma 7.60. Suppose Au is 
onne
ted and A has the BCP. Let P :nat � u ! v be a (While or While�) pro
edure over AN whi
h de�nes
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tion on AN . Then there is a 
omputable fun
tion h : N !pTermx;s(�)q su
h that for all x 2 Au and n 2 N;teAx;s(h(n); x) = PAN (n; x):`Proof. Suppose P � pro
 in n; a out b aux 
 begin S endwhere n : nat. Consider the WhileN (�) pro
edures Pn : u ! v (n =0; 1; 2; : : : ) de�ned byPn � pro
 in a out b aux n; 
 begin n := �n;S endwhere �n is the numeral for n. It is 
lear that for all n 2 N and x 2 Au,PAn (x) = PAN (n; x):By Lemmas 7.40 and 7.42, PAn is de�nable by a �-term tn. Moreover,the sequen
e (tn) is 
omputable in n, by use of the BCP to e�e
tivise thetransformation of the tree T to T 0 in the 
onstru
tion given by the proofof Lemma 7.40. (Note that the evaluation of a 
onstant Boolean test 
anbe e�e
ted by the 
omputation of any 
losed instan
e of the Boolean term,whi
h exists by the instantiation assumption.) Hen
e the fun
tion h de�nedby h(n) = ptnqis 
omputable.We now have a uniform version of Theorem 7.44:Theorem 7.61. Suppose Au is 
onne
ted and A has the TEP and BCP.Let f : Au ! As be a total fun
tion. Then the following are equivalent:(i) f is e�e
tively uniformly While approximable on A;(ii) f is e�e
tively uniformly While� approximable on A;(iii) f is e�e
tively Weierstass approximable on A.Proof. From Lemmas 7.59 and 7.60.The requirement in the above theorem that f be total derives from theappli
ation of Lemma 7.60, whi
h in turn used Lemma 7.40, where totalitywas required.Remark 7.62. The equivalen
e of (i) and (iii) was noted for the spe
ial
ase A = INt , Au = Iq and As = R in Shepherdson [1976℄, in the 
ourse ofproving the equivalen
e of these with another notion of 
omputability onthe reals (Theorem 7.64).
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kerWe are espe
ially interested in 
omputability on the reals, and, in par-ti
ular, a notion of 
omputability of fun
tions from Iq to R, developedin Grzegor
zyk [1955; 1957℄ and La
ombe [1955℄. We repeat the versiongiven in Pour-El and Ri
hards [1989℄, giving also, for 
ompleteness, thede�nitions of 
omputable sequen
es of rationals and 
omputable reals. Fi-nally (Theorem 7.64),we state the equivalen
e of this notion with the otherslisted in Theorem 7.61.De�nition 7.63.(a) A sequen
e (rk) of rationals is 
omputable if there exist re
ursivefun
tions a; b; s : N ! N su
h that, for all k, b(k) 6= 0 andrk = (�1)s(k) a(k)b(k) :A double sequen
e of rationals is 
omputable if it is mapped ontoa 
omputable sequen
e of rationals by one of the standard re
ursivepairing fun
tions from N2 onto N.(b) A sequen
e (xk) of reals is 
omputable if there is a 
omputable doublesequen
e of rationals (rnk) su
h thatjrnk � xnj � 2�k for all k and n:(
) A total fun
tion f : Iq ! R is GL (or Grzegor
zyk{La
ombe) 
om-putable if:(i) f is sequentially 
omputable, i.e., f maps every 
omputable se-quen
e of points in Iq into a 
omputable sequen
e of points inR;(ii) f is e�e
tively uniformly 
ontinuous, i.e., there is a re
ursivefun
tion Æ : N ! N su
h that, for all x; y 2 Iq and all n 2 N,jx� yj < 2�Æ(n) =) jf(x)� f(y)j < 2�n:Theorem 7.64. Let f : Iq ! R be a total fun
tion. Then the followingare equivalent:(i) f is e�e
tively uniformly While approximable on INt ;(ii) f is e�e
tively uniformly While� approximable on INt ;(iii f is e�e
tively Weierstrass approximable on INt ;(iv) f is GL 
omputable.Proof. As we have noted, Iq is 
onne
ted and INt has the TEP and BCP.Hen
e the equivalen
e of the �rst three assertions is a spe
ial 
ase of The-orem 7.61. The equivalen
e of (iii) and (iv) is proved in detail in Pour-Eland Ri
hards [1989℄.Remark 7.65 (Histori
al). The equivalen
e (iii),(iv) was proved inPour-El and Caldwell [1975℄. An exposition of this proof is given in Pour-El
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hards [1989℄. Shepherdson [1976℄ gave a proof of (i),(iv) by (es-sentially) noting the equivalen
e (i),(iii) and reproving (iii),(iv). Thenew features in the present treatment are: (a) the equivalen
e (i),(iii)in a more general 
ontext (Theorem 7.61), and (b) the equivalen
e of (ii)with the rest (Theorems 7.61 and 7.64).7.10 Abstra
t versus 
on
rete models for 
omputingon the real numbersOur models of 
omputation 
an be applied to any algebrai
 stru
ture. Fur-thermore, our models of 
omputation are abstra
t: the 
omputable setsand fun
tions on an algebra are isomorphism invariant. Thus to 
omputeon the real numbers we have only to 
hoose an algebra A in whi
h (anyone of the representations of) the set R of reals is a 
arrier set. Thereare in�nitely many su
h algebras of representations or implementations ofthe reals, all with de
ent theories resembling the theory of the 
omputablefun
tions on the naturals. However, unlike the 
ase of the natural numbers,it is easy to list di�erent algebras of reals with di�erent 
lasses of While
omputable fun
tions (see below).In se
tions 6 and 7, we have let the abstra
t theory di
tate our devel-opment of 
omputation on the reals. The goal of making an attra
tive anduseful 
onne
tion with 
ontinuity led us to use partial algebras in se
tion 7.Be
ause of the fundamental role of 
ontinuity, this partial algebra approa
his important sin
e it enables us to relate abstra
t 
omputation on the realswith 
on
rete 
omputation on representations of the reals (via the naturalnumbers). This we saw in se
tion 7.4 and, espe
ially, in se
tion 7.9. Herewe will re
e
t further on the distin
tion between 
on
rete and abstra
t,following Tu
ker and Zu
ker [1999℄.The real numbers 
an be built from the rational numbers, and hen
e thenatural numbers, in a variety of equivalent ways, su
h as Dedekind 
uts,Cau
hy sequen
es, de
imal expansions, et
. Thus it is natural to investigatethe 
omputability of fun
tions on the real numbers, starting from the theoryof 
omputable fun
tions on the naturals. Su
h an approa
h we term a
on
rete 
omputability theory. The key idea is that of a 
omputable realnumber. A 
omputable real number is a number that has a 
omputableapproximation by rational numbers; the set of 
omputable real numbersforms a real 
losed sub�eld of the reals. Computable fun
tions on the realsare fun
tions that 
an be 
omputably approximated on 
omputable realnumbers. The study of the 
omputability of the reals began in Turing[1936℄, but only later was taken up in a systemati
 way, in Ri
e [1954℄,La
ombe [1955℄ and Grzegor
zyk [1955; 1957℄, for example.The di�erent representations of the reals are spe
i�ed axiomati
ally,uniquely up to isomorphism, as a 
omplete Ar
himedean ordered �eld.But 
omputationally they are far from being equivalent. For instan
e,representing real numbers by in�nite de
imals leads to the problem that thetrivial fun
tion 3x 
annot be 
omputable. If Cau
hy sequen
es are used,
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kerhowever, elementary fun
tions on the reals are 
omputable. The problemsof representation are worse when investigating 
omputational 
omplexity(see Ko [1991℄).It is a general problem to understand 
on
rete representations of in-�nite data and, to this end, to establish a 
omprehensive theory of 
om-puting in topologi
al algebras. There have been a number of approa
hesto 
omputability based on 
on
rete representations for the reals and othertopologi
al stru
tures. Only re
ently have these approa
hes been shown tobe equivalent.The ideas about 
omputable fun
tions on the reals were generalisedto metri
 spa
es in Mos
hovakis [1964℄ who proved some of the spe
ialtheorems of Ceitin [1959℄ obtained earlier with a 
onstru
tive point of view.An axiomati
 approa
h to 
omputability on Bana
h spa
es is givenin Pour-El and Ri
hards [1989℄. This gives general theorems about theindependen
e of 
omputation from representations, and provides a seriesof remarkable results 
hara
terising 
omputable operators.Computability theory on N in
ludes a theory of 
omputation for fun
-tionals on the set B =df [N ! N℄whi
h, with the produ
t topology, is 
alled Baire spa
e. The theory of
omputation on B is 
alled type 2 
omputability theory. Klaus Weihrau
hand his 
ollaborators, in a long series of papers, have 
reated a �ne general-isation of the theory of numberings of 
ountable sets (re
all se
tion 1.3) toa theory of type 2 numberings of un
ountable sets. In type 2 enumerationtheory, numberings have the following form. Let X be a topologi
al spa
e.A type 2 enumeration of X is surje
tive partial map� : B ! X(
f. De�nition 1.1). Computability on X is analysed using type 2 
om-putability on B. See, for example, Kreitz and Weihrau
h [1985℄ and, es-pe
ially, Weihrau
h [1987℄.A more abstra
t method for the systemati
 study of e�e
tive approx-imations of un
ountable topologi
al algebras has been developed by V.Stoltenberg-Hansen and J. V. Tu
ker. It is based on representing topolo-gi
al algebras with algebras built from domains and applying the theory ofe�e
tive domains. This method of applying domain theory to mathemat-i
al approximation problems was �rst developed for topologi
al algebrasand used on 
ompletions of lo
al rings in Stoltenberg-Hansen and Tu
ker[1985; 1988℄. It was further developed on universal algebras in Stoltenberg-Hansen and Tu
ker [1991; 1993; 1995℄; see also Stoltenberg-Hansen et al.[1994, Chapter 8℄. We will sket
h the basi
 method; an introdu
tion 
an befound in Stoltenberg-Hansen and Tu
ker [1995℄. Suppose A is a topologi-
al algebra. The idea is to build an algebra R that represents A by means
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ontinuous representation map � : R ! A and to 
omputablyapproximate R.We imagine building R from a set P of approximating data that is a
omputable stru
ture (in the sense of Se
tion 1.3). Ea
h datum in R isapproximated by some sequen
e of data from P . More spe
i�
ally, R is atopologi
al spa
e obtained from P by some form of 
ompletion pro
ess inwhi
h P is dense in R. The key feature of this approa
h is that, sin
e Pis 
omputable, some of the approximating sequen
es are 
omputable. Thesubset of R 
onsisting of the 
omputably approximable elements forms abasis for the 
omputable approximation of R and hen
e of A. We usu-ally use a spe
ial type of approximating stru
ture P 
alled a 
onditionalupper semilatti
e, and a 
ompletion pro
ess 
alled ideal 
ompletion. Thispro
ess yields an algebrai
 domain. The method e�e
tively approximatesa large 
lass of examples: ultrametri
 algebras, lo
ally 
ompa
t Hausdor�algebras (Stoltenberg-Hansen and Tu
ker [1995℄), and 
omplete metri
 al-gebras (Blan
k [1997℄).Similar ideas have been used in Edalat [1995a; 1995b℄, applying 
on-tinuous domains to analyti
al questions, su
h as integration and measure.The domain method is related to Weihrau
h's generalised 
omputabilitytheory: a type 2 enumeration is easily shown to give a domain representa-tion, and it is possible to 
onstru
t a type 2 enumeration for a large 
lass ofdomain representations (see also Weihrau
h and S
hreiber [1981℄). Indeed,in Stoltenberg-Hansen and Tu
ker [1999b℄ there is a series of theorems thatshow that for a wide 
lass of spa
es the 
on
rete models based on e�e
tivemetri
 algebras, axiomati
 
omputation theory, type 2 enumerability, alge-brai
 domain representability, and 
ontinuous domain representability areall equivalent. Thus there is a stable theory of 
omputable fun
tions basedon 
on
rete models.It is important to understand fully the relationship between the 
on
reteand abstra
t 
omputability theories developed here and elsewhere: in theone dire
tion, we 
onstru
t 
on
rete representations of abstra
t models, andin the other, we abstra
t from 
on
rete models. Let us examine this more
losely.The various 
on
rete 
omputability theories dis
ussed above have a
ommon form, whi
h is similar to that of the theory of 
omputable al-gebras (see se
tion 1.3), one di�eren
e being that, at present, the theory ofe�e
tive 
omputation on topologi
al algebras is not 
ompletely settled.Let A be a topologi
al algebra. To 
ompute in A, a 
on
rete represen-tation � : R ! A (7.1)of A must be made where:(i) R is a topologi
al algebra, made from 
omputable data types, onwhi
h we 
an 
ompute; and
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ker(ii) � is a surje
tive 
ontinuous homomorphism that allows us to 
omputeon A by 
omputing on R.In parti
ular, there is a set Comp�(A) of fun
tions on A 
omputable interms of the representation (7.1).In general terms, when 
omparing abstra
t and 
on
rete models of 
om-putation, we may expe
t the following situation.Let AbsComp(A) be a set of fun
tions on A that is 
omputable in anabstra
t model of 
omputation (e.g. the While language).Let Con
Rep(A) be a 
lass of 
on
rete representations of the form� : R! A (e.g., a type 2 enumeration, or domain representation).For � 2Con
Rep(A), let Comp�(A) be the set of fun
tions on A
omputable with the representation �.Computing with a 
on
rete representation R of an algebra A enablesmore fun
tions to be 
omputable than with an abstra
t model of 
omputa-tion based solely on the operations. In fa
t, for a 
lass of 
on
rete modelsof 
omputation, we expe
t the following abstra
tion 
ondition to hold:AbsComp(A) � T�2Con
Rep(A)Comp�(A).In the 
ase of 
lasses of 
on
rete models of 
omputation that are designedto 
hara
terise the set of fun
tions on A that 
an be 
omputed, we 
anfurther postulate (using the generalised Chur
h{Turing thesis, 
f. se
tion8.9): While�(A) � T�2Con
Rep(A)Comp�(A)(
ompare (1.1) of Se
tion 1.3). In the known 
on
rete models, the 
om-putable fun
tions are 
ontinuous, therefore the 
ontinuity of the abstra
t
omputable fun
tions is essential.There is mu
h to explore in the border between abstra
t and 
on
rete
omputability. In Stewart [1999℄ it is shown that if A is an e�e
tive metri
algebra with enumeration �, then the While� approximable fun
tions onA are �-e�e
tive. The 
onverse is not true. To bridge this gap, non-deterministi
 
hoi
e must be added to the `While' language, and many-valued fun
tions 
onsidered (see Tu
ker and Zu
ker [2000a℄).A theory of relations (or multi-valued fun
tions) de�ned by generalisedKleene s
hemes has been developed in Brattka [1996; 1997℄. Among severalimportant results is an equivalen
e between the abstra
t 
omputabilitymodel based on Kleene s
hemes and Weihrau
h's type 2 enumerability.The distin
tion between abstra
t and 
on
rete models made in Tu
kerand Zu
ker [1999℄ has pra
ti
al use in 
lassifying the many approa
hesto 
omputability in 
on
rete stru
tures. However, this distin
tion needsfurther theoreti
al re�nement. One is reminded of the distin
tion between`internal' and `external', applied to higher type fun
tionals, in Normann[1982℄.
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omputabilityIn this se
tion we will survey other abstra
t approa
hes to 
omputability onabstra
t algebras, and dis
uss two generalised Chur
h{Turing theses: onefor 
omputability of fun
tions, and one for spe
i�
ation of relations, thatdraw support from theorems estabilishing the equivalen
e of di�erent mod-els. Earlier we have surveyed the origins of these abstra
t generalisations(se
tion 1.4) and also the `independent' development of abstra
t models for
omputation on real and 
omplex numbers (se
tions 6 and 7.10).The alternative methods for de�ningWhile 
omputable fun
tions areto be found in various mathemati
al 
ontexts and have various obje
tives.Te
hni
ally, they share the abstra
t setting of a single-sorted abstra
t stru
-ture (i.e., an algebrai
 or a relational stru
ture). Here we 
onsider their
ommon purpose to be the 
hara
terisation of those fun
tions e�e
tively
omputable in an abstra
t setting: their generalisation to a 
lass of many-sorted abstra
t algebras is not diÆ
ult.The �rst alternative approa
h we look at in some detail, namely: the
lass of fun
tions de�ned from the operations of an algebra by the ap-pli
ation of 
omposition, simultaneous primitive re
ursion and least num-ber sear
h, whi
h we 
all the �PR 
omputable fun
tions. This model of
omputation was 
reated in Tu
ker and Zu
ker [1988℄ with the needs ofequational and logi
al de�nability in mind. A simpler generalisation usingindu
tion s
hemes was made early on, in Engeler [1968a℄. We have foundthe various re
ursion s
hemes on N to be a primary sour
e of te
hni
alideas about fun
tions 
omputable on an abstra
t algebra A, and a usefultool for appli
ations.TheWhile 
omputable fun
tions 
an also be 
hara
terised by approa
hesbased upon(i) ma
hine models;(ii) high-level programming 
onstru
ts;(iii) axiomati
 methods;(iv) equational 
al
uli;(v) �xed-point methods for indu
tive de�nitions;(vi) set-theoreti
 methods;(vii) logi
al languages.We will say something about ea
h in turn.8.1 Computability by fun
tion s
hemesWe will 
onsider 
omputability on N -standard algebras formalised bys
hemes, whi
h apply uniformly to all algebras of some �xed N -standardsignature �. These generalise the s
hemes in Kleene [1952℄, for 
onstru
t-ing fun
tions over N by starting with some basi
 fun
tions and applying tothese 
omposition, simultaneous primitive re
ursion and the 
onstru
tiveleast number operator. We write �; �; : : : for s
hemes.Ea
h s
heme � will have a �xed type u ! v, with domain type u and
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kerrange type v, both produ
t types over �; we will also write � : u ! v.The semanti
s of su
h a s
heme, for ea
h A 2NStdAlg(�)(the 
lass ofN -standard �-algebras), will then be a fun
tion[[�℄℄A : Au ! Av :We will usually write �A for [[�℄℄A.We will 
onsider four notions of 
omputability by s
hemes: PR, PR�,�PR and �PR�, and see how they 
orrespond with our basi
 notions of
omputability involvingWhile and For programs.De�nition 8.1 (PR 
omputability). Given a standard signature �, wewill de�ne the familyPR(�) = hPR(�)u!v j u; v 2 ProdType(�)iwhere PR(�)u!v is the set of s
hemes of type u ! v over �. Then forany s
heme � 2 PR(�)u!vand any A 2NStdAlg(�), we 
an de�ne afun
tion on A: �A : Au ! Avof type u! v. These s
hemes generalise the s
hemes for primitive re
ursivefun
tions over N in Kleene [1952℄. They are generated as follows.Basi
 fun
tion s
hemes(i) Initial fun
tions and 
onstants. For ea
h �-produ
t type u, �-sort sand fun
tion symbol F 2 Fun
(�)u!s, there is a s
heme F 2 PR(�)u!s.On ea
h A 2NStdAlg(�), it de�nes the fun
tionFA : Au ! As:(ii) Proje
tion. For all m > 0, u = s1 � : : :� sm and i with 1 � i � m,there is a s
heme Uu;i 2 PR(�)u!si . It de�nes the proje
tion fun
tionUAu;i : Au ! Asi on ea
h A 2NStdAlg(�), whereUAu;i(x1; : : : ; xm) = xifor all (x1; : : : ; xm) 2 Au.(iii) De�nition by 
ases. For every �-sort s there is a s
heme d
 2PR(�)B�s�s!s. It de�nes the fun
tion d
A : B � A2s ! As on ea
hA 2NStdAlg(�), whered
A(b; x; y) = (x if b = tty if b = fffor all b 2 B and x; y 2 As.
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tion: Building new fun
tion s
hemes from old(iv) Ve
torisation. For all �-produ
t types u; v, where v = s1 � : : :� sn,and for all s
hemes �1; : : : ; �n, where �i 2 PR(�)u!si for i = 1; : : : ; n,there is a s
heme � � ve
tu;v(�1; : : : ; �n) 2 PR(�)u!v . It de�nes thefun
tion �A : Au ! Av on ea
h A 2NStdAlg(�), where�A(x) = (�A1 (x); : : : ; �An (x))for all x 2 Au.(v) Composition. For all �-produ
t types u; v; w, and for all s
hemes� 2 PR(�)u ! v and 
 2 PR(�)v!w there is a s
heme � � 
ompu;v;w(�; 
) 2 PR(�)u!w. It de�nes the fun
tion �A : Au ! Aw on ea
hA 2NStdAlg(�), where �A(x) = 
A(�A(x))for all x 2 Au.(vi) Simultaneous primitive re
ursion. For all �-produ
t types u; v; w, andfor all s
hemes � 2PR(�)u!v and 
 2 PR(�)nat�u�v!v there is a s
heme� � primu;v(�; 
) 2 PR(�)nat�u!v . It de�nes the fun
tion �A : N�Au !Av on ea
h A 2NStdAlg(�), where�A(0; x) = �A(x)�A(z + 1; x) = 
A(z; x; �A(z; x))for all z 2 N and x 2 Au.Now, for any A 2NStdAlg(�), we de�nePR(A) = hPR(A)u!v j u; v 2 ProdType(�)iwhere PR(A)u!v = f�A j � 2 PR(�)u!vg:It turns out that a broader 
lass of fun
tions provides a better gen-eralisation of the notion of primitive re
ursiveness, namely PR�(�) 
om-putability.De�nition 8.2 (PR� 
omputability). We de�ne PR�(�) to be the
lass of PR(��) s
hemes for whi
h the domain and range types are in �,i.e.,PR�(�) =df hPR(��)u!v j u; v 2 ProdType(�) $ PR(��).Then any su
h s
heme � 2 PR�(�)u!v de�nes a fun
tion �A : Au ! Avon ea
h A 2NStdAlg(�).Also PR�(A) is the set of PR�(�)-
omputable fun
tions on A.Next we add the 
onstru
tive least number operator to the PR s
hemes.
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kerDe�nition 8.3 (�PR 
omputability). The 
lass of �PR s
hemes over�, �PR(�) = h�PR(�)u ! v j u; v 2 ProdType(�)i;is formed by adding to the PR s
hemes of De�nition 8.1 the following:(vii) Least number or � operator. For all �-produ
t types u and for alls
hemes � 2 �PRu�nat!bool there is a s
heme ��minu(�) 2 �PR(�)u!nat.It de�nes the fun
tion �A : Au ! N on ea
h A 2NStdAlg(�), where forall x 2 Au, �A(x) ' �z[�A(x; z) = tt℄:hat is, �A(x) # z if, and only if, �A(x; y) # ff for ea
h y < z and �A(x; z) # tt.Also �PR(A) is the set of �PR(�)
omputable fun
tions on A.Note that this s
heme (as well as the s
heme for simultaneous primitivere
ursion) uses the N -standardness of the algebra. Also, �PR 
omputablefun
tions are, in general, partial.Again, however, a broader 
lass turns out to be a better generalisation,namely:De�nition 8.4 (�PR� 
omputability). The 
lass �PR�(�) 
onsistsof those �PR(��) s
hemes for whi
h the domain and range types are in�, i.e.,�PR�(�) =df h�PR(��)u!v j u; v 2 ProdType(�)i $ �PR(��):Also, for anyA 2NStdAlg(�), �PR�(A) is the set of �PR�(�)-
omputablefun
tions on A.We now 
ompare the above notions of s
heme 
omputability with ournotions of 
omputability involving imperative programming languages.They 
orrespond as follows.Theorem 8.5. For any N-standard �-algebra A,(a) PR(A) = For(A),(b) PR�(A) = For�(A),(
) �PR(A) = While(A),(d) �PR�(A) = While�(A).These equivalen
es hold uniformly over �.`Uniformity over �' in the above theorem means (taking, for example,
ase (a), and writing ForPro
(�) for the 
lass of For(�) pro
edures)that there are e�e
tive mappings�: PR(�) ! ForPro
(�)and  : ForPro
(�) ! PR(�)
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ursive in the enumerated syntax) su
h that for all PR(�)s
hemes �, For(�) pro
edures P and N -standard �-algebras A,[[�(�)℄℄A = [[�℄℄A and [[ (P )℄℄A = [[P ℄℄A;and similarly for parts (b), (
) and (d).Similar uniformity results hold for the equivalen
es stated in the follow-ing subse
tions.The above theorem 
an be proved by the te
hniques of Tu
ker andZu
ker [1988℄ or Thompson [1987℄. Part (a), in the 
lassi
al 
ase over Nor Z, was originally proved in Meyer and Rit
hie [1967℄. For an expositionof parts (a) and (
) in the 
lassi
al 
ase, see, for example, Brainerd andLandweber [1974℄, Kfoury et al. [1982℄, Davis and Weyuker [1983, Chapter13℄ or Zu
ker and Pretorius [1993, Se
tion 13℄.Remark 8.6 (Course of values re
ursion). In our development above,we 
onsidered the 
lass PR(�) of primitive re
ursive s
hemes equivalentto For(�) 
omputability. From this we 
ould obtain the 
lass PR�(�)of s
hemes equivalent to For�(�) 
omputability by operating with thesame s
hemes PR, but over the extended array signature ��. An alter-native approa
h for strengthening PR(�) is to maintain the signature �,but strengthen the re
ursion s
heme. More pre
isely, we de�ne the 
lassCR(�) of 
ourse of values re
ursive s
hemes by repla
ing the s
heme (vi)for simultaneous primitive re
ursion by the s
heme(vi0) Simultaneous 
ourse of values re
ursion. For all �-produ
t typesu; v and positive integers d, and for all s
hemes � 2CR(�)u!v , 
 2CR(�)nat�u�vd!v and Æ1; : : : ; Æd where Æi 2CR(�)nat�u!nat (i = 1; : : : ; d),there is a s
heme� � 
valu;v;d(�; 
; Æ1; : : : ; Æd) 2 CR(�)nat�u!v :It de�nes the fun
tion �A : N � Au ! Av on ea
h A 2NStdAlg(�),where �A(0; x) = �A(x)and for z > 0�A(z; x) = 
(z; x; �A(Æ̂A1 (z; x); x); : : : ; �A(Æ̂Ad (z; x); x));where Æ̂i are the `redu
ing fun
tions' derived from Æi, de�ned byÆ̂i(z; x) ' min(Æ(z; x); z � 1) for z > 0:We also de�ne the 
lass �CR(�) of 
ourse of values re
ursive s
hemeswith the least number operator by adjoining the s
heme (vii) for the �
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keroperator to CR(�). We then obtain the two equivalen
es (
f. Theorem8.5):Theorem 8.7. For any N-standard �-algebra A,(a) CR(A) = PR�(A) ( = For�(A))(b) �CR(A) = �PR�(A) ( = While�(A)).Part (b) is proved in Tu
ker and Zu
ker [1988℄ by showing that �CR(A) =While�(A). (Part (a) 
an be proved similarly.) This proof is more deli
atethan the proofs for Theorem 8.5. The dire
tion `(' is based on lo
alrepresentability and term evaluation arguments.Remark 8.8 (Some appli
ations of the s
heme models).(1) These 
an be used easily in the mathemati
al modelling of many de-terministi
 systems, from 
omputers (e.g. Harman and Tu
ker [1993℄to spatially extended non-linear dynami
al systems (Holden et al.[1992℄).(2) The �PR s
hemes have been adapted and extended to 
hara
terisethe 
omputable relations on 
ertain metri
 algebras, in
luding thealgebra of reals (Brattka [1996; 1997℄).8.2 Ma
hine modelsPerhaps the most 
on
rete approa
h to generalising 
omputability theoryfrom N to an algebra A is that based upon models of ma
hines that handledata from A. To be spe
i�
, we 
onsider some models 
alled A-register ma-
hines that generalise, to a single-sorted relational stru
ture A, the registerma
hine models on N in Shepherdson and Sturgis [1963℄ (see also Cutland[1980℄ for a development of re
ursive fun
tion theory using register ma-
hines); the �rst A-register ma
hines appeared in Friedman [1971a℄.Some of these register ma
hine models are used in work on real number
omputation (Herman and Isard [1970℄, Shepherdson [1976℄ and Blum etal. [1989℄) and have been developed further independently of the earlierliterature (see our survey in se
tion 1.4).We will 
onsider four types of A-register ma
hine for an arbitrary single-sorted algebra.A (basi
) A-register ma
hine has a �xed number of registers, ea
h ofwhi
h 
an hold a single element of A. The ma
hine 
an perform the basi
operations of A and de
ide the basi
 relations of A; in addition, it 
anrelo
ate data and test when two registers 
arry the same element.Thus, the programming language that de�nes the A-register ma
hinehas register names or variables r0; r1; r2; : : : and labels 0; 1; 2; : : : , and al-lows instru
tions of the formr� := F (r�1 ; : : : ; r�m)r� := 
r� := r�if R(r�1 ; : : : ; r�m) then i else j
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tions on algebras 485and, if equality is required,if r� = r� then i else jwherein �; �; �1; �m 2 N; i; j 2 N are 
onsidered as labels; and F; 
; R aresymbols for a basi
 operation, 
onstant and relation, respe
tively.A program for an A-register ma
hine is 
alled, in Friedman [1971a℄, a�nite algorithmi
 pro
edure or fap, and it has the form of a �nite numberedor labelled list of A-register ma
hine instru
tions I1; : : : ; In: Given a formalde�nition of a ma
hine state, 
ontaining the 
ontents of registers and thelabel of a 
urrent instru
tion, is it easy to formalise an operational seman-ti
s for the �nite algorithmi
 pro
edures | one in whi
h the instru
tionsare given their 
onventional meaning.On setting 
onventions for input and output registers we obtain the 
lassFAP (A) of all partial fun
tions on A 
omputable by all �nite algorithmi
pro
edures on A-register ma
hines.Se
ondly, an A-register ma
hine with 
ounting is an A-register ma
hineenhan
ed with a �xed, �nite number of 
ounting registers. Ea
h 
ountingregister 
an hold a single element of N and the ma
hine is able to put 0into a 
ounting register, add or subtra
t 1 from a 
ounting register, andtest whether two 
ounting registers 
ontain the same number. Thus, anA-register ma
hine with 
ounting is an A-register ma
hine augmented bya 
onventional register ma
hine on N. (Impli
itly, this is 
on
erned withthe pro
ess of N -standardisation of the algebra A by the addition of thenatural numbers N.)The programming language that de�nes the A-register ma
hine with
ounting has new variables 
0; 
1; 
2; : : : for 
ounting registers, and newinstru
tions 
� := 0
� := 
� + 1
� := 
� � 1if 
� = 
� then i else jfor �; � 2 N and i; j 2 N 
onsidered as labels.A program for an A-register ma
hine with 
ounting is 
alled a �nitealgorithmi
 pro
edure with 
ounting or fapC, and is a �nite numbered listof ma
hine instru
tions. On
e again it is easy to give a formal semanti
sfor the language and to rigorously de�ne the 
lass FAPC(A) of all partialfun
tions on A 
omputable by A-register ma
hines with 
ounting. The pointof this model is that it enhan
es 
omputation on the abstra
t algebra A with
omputation on N.The A-register ma
hine and A-register ma
hine with 
ounting, and their
lasses of partial fun
tions FAP (A) and FAPC(A), were introdu
ed andstudied in Friedman [1971a℄.Next, an A-register ma
hine with sta
king is an A-register ma
hine aug-mented with a sta
king devi
e into whi
h the entire 
ontents of the algebrai
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kerregisters of the A-register ma
hine 
an be 
opied at various points in the
ourse of a 
omputation.The programming language that de�nes the A-register ma
hine withsta
king has a new variable s for the store or sta
k and the new instru
tions:sta
k (i; r0; : : : ; rm)restore (r0; : : : ; rj�1; rj+1; : : : ; rm)if s = empty then k else marker.Here i; j; k 2 N are 
onsidered as labels, and the ma
hine has m reg-isters and one sta
k. Intuitively, what they mean for the ma
hine is asfollows. The `sta
k' instru
tion 
ommands the devi
e to 
opy the 
ontentsof all the registers and store at the top of a (single) sta
k, along withthe instru
tion label i. The `restore' instru
tion returns to the registersr0; : : : ; rj�1; rj+1; : : : ; rm the values stored at the top of the sta
k; thevalue of rj is lost (in order not to destroy the result of the sub
omputationpre
eding the `restore' instru
tion), as is the instru
tion label. The testinstru
tion passes 
ontrol to instru
tion k if the sta
k is empty and to theinstru
tion indexed by the label 
ontained in the topmost element of thesta
k otherwise.A program for an A-register ma
hine with sta
king is 
alled a �nitealgorithmi
 pro
edure with sta
king or fapS, and is a �nite numbered list ofma
hine instru
tions. On formalising the semanti
s for the language, it iseasy to de�ne the 
lass FAPS(A) of all partial fun
tions on A 
omputableby A-register ma
hines with sta
king.Of 
ourse there are alternative designs for a sta
king devi
e of equivalent
omputational power. The point of this model is that �rst, it enhan
es thebounded �nite algebrai
 memory available in 
omputation by an A-registerma
hine with unbounded �nite algebrai
 storage, and se
ondly, it does notenable us to simulate 
ounting with natural numbers.Finally, an A-register ma
hine with 
ounting and sta
king is an A-register ma
hine augmented by both a 
ounting and sta
king devi
e. Aprogram for su
h a ma
hine is 
alled a �nite algorithmi
 pro
edure with
ounting and sta
king or fapCS, and the 
lass of all partial fun
tions on A
omputable by su
h ma
hines is denoted FAPCS(A). This sta
k devi
eand its asso
iated 
lasses of fun
tions FAPS(A) and FAPCS(A) wereintrodu
ed in Moldestad et al. [1980a; 1980b℄.Of 
ourse, in the 
ase of 
omputability of the natural numbers A = Nwe haveFAP (N) = FAPC(N) = FAPS(N) = FAPCS(N)but in the abstra
t setting we have:Theorem 8.9. For any single-sorted algebra A, the in
lusion relationshipbetween the sets of fun
tions is shown in Fig 17. Moreover, there exists analgebra on whi
h the above in
lusions are stri
t.
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tions on algebrasig. 17.This theorem is taken from Moldestad et al. [1980b℄. It and otherresults about these models make 
lear the fa
t that, when 
omputing inthe abstra
t setting of an algebra A, adding� 
omputation on N� unbounded algebrai
 memory over Aboth separately, and together, in
reases the 
omputational power of theformalism.The 
onne
tion with the imperative models is easily des
ribed. Assum-ing the straightforward generalisation of the ma
hine models to a

om-modate many-sorted algebra, we have:Theorem 8.10. For any standard �-algebra A,While(A) = FAP (A),WhileN (A) = FAPC(A),While�(A) = FAPCS(A).Three other ma
hine model formalisms of interest are the �nite algo-rithmi
 pro
edures with index registers (fapIR) and 
ountable algorithmi
pro
edures (
ap) in Shepherdson [1973℄ and the generalised Turing algo-rithms (gTa) in Friedman [1971a℄, all equivalent toWhile� 
omputability.In the obvious notation, we have:Theorem 8.11. For any standard �-algebra A,FAPCS(A) = GTA(A) = FAPIR(A) = CAP(A) = While�(A).In addition, it is 
onvenient at this point to mention Friedman's e�e
t-ive de�nitional s
hemes (eds) whi
h are a simple and transparent te
hni
aldevi
e for de�ning and analysing 
omputability on A. The e�e
tive de�ni-tional s
hemes have found a useful role in the logi
 of programs (see Tiuryn[1981b℄, for example).Theorem 8.12. For any standard �-algebra A,FAPCS(A) = EDS(A) = While�(A).
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ker and J. I. Zu
ker8.3 High-level programming 
onstru
ts; programs
hemesPra
ti
al programming languages, espe
ially imperative languages, are ari
h sour
e of theoreti
al ideas about 
omputation. However, their devel-opment, from the 1940s to the present, has not had a dominant role inshaping 
omputability theories. The development of high-level 
onstru
ts,abstra
t data types and non-deterministi
 
onstru
ts for algorithmi
 spe
-i�
ation is 
learly relevant.The study of 
omputability via ma
hine models is akin to low-levelprogramming, where there is a simple 
orresponden
e between instru
tionsand ma
hine operations. In high-level programming, abstra
tions awayfrom the ma
hine are a
hieved wherein a program statement or 
ommand
an set o� a sequen
e of ma
hine operations. This break with program-ming a spe
i�
 ar
hite
ture in
reases the pra
ti
al need for mathemati
alsemanti
s. All our algebrai
 models are high-level sin
e they are based onabstra
t data types that abstra
t from the data representations and theiralgorithms.We have, of 
ourse, already studied some high-level 
onstru
ts in thelanguages for While and While� programs. However, in 
ontemplatinghigh-level 
onstru
ts with regard to generalising 
omputability theory, 
loseattention must be paid to the ideas about algorithms that motivate theirintrodu
tion. Clearly, re
ursion and iteration are distin
t tools for de�ningalgorithms in 
onne
tion with pro
edures. Non-deterministi
 
onstru
ts,by 
ontrast, are proposed as tools for algorithm spe
i�
ation, in order toabstra
t away from algorithmi
 implementation. Non-deterministi
 
ontroland data 
ommands, su
h as those in the guarded 
ommand languageif b1 ! S1[j ; : : : ; [j bk ! Sk �do b1 ! S1[j ; : : : ; [j bk ! Sk od(Dijkstra [1976℄), or the non-deterministi
 assignmentx := y:�(x; y);where � is some 
ondition relating y to x (Ba
k [1983℄), or the randomassignment x := ?(Apt and Plotkin [1986℄), are needed to express appropriately the designof an algorithm. We have examined some of these non-deterministi
 
on-stru
ts in se
tion 5, where we showed, for example, that the random as-signment de�nes proje
tively semi
omputable sets.In building a generalisation, it is prudent to 
on
entrate on making a
omprehensive deterministi
 theory, having 
lear relations with `
lassi
al'
omputability theory on N, and its appli
ations to other data types su
h asR. Te
hni
ally, to appre
iate non-deterministi
 
onstru
ts, a deterministi
theory is a ne
essary prerequisite. Unfortunately, there are unanswered
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tions on algebras 489questions as to the nature of the relationships between non-determinism,spe
i�
ation and non-
omputability, and (
orrespondingly) between deter-minism, implementation and 
omputability. The programming of 
om-putations involving non-deterministi
 aspe
ts of 
ontrol, 
on
urren
y and
ommuni
ation is also an important topi
 that we leave unexplored. (Wehave dealt with syn
hronous 
on
urren
y in 
on
urrent assignments andin the s
heme of simultaneous primitive re
ursion in se
tion 8.1.) We willreturn to the broad theme of programming languages and 
omputabilitytheory in se
tion 8.9.Here we will brie
y draw attention to a body of early work on the
omputational power of elementary 
ontrol and data stru
tures.The systemati
 
lassi�
ation of programming features su
h as itera-tions, re
ursions, `goto's, arrays, sta
ks, queues and lists seems to havebegun in earnest with Lu
kham et al. [1970℄ and Paterson and Hewitt[1970℄. The 
entral notions are that of a program s
heme and its interpre-tation in a model, and that of the equivalen
e of program s
hemes in allmodels. These ideas may be 
onsidered as te
hni
al pre
ursors of the 
orre-sponding synta
ti
 and semanti
 
on
epts we use here, namely: program,state transformer semanti
s, abstra
t data type, equivalen
e on K . Theimportan
e of a general synta
ti
 notion of a program s
heme that 
an beapplied to abstra
t stru
tures was dis
ussed in Lu
kham and Park [1964℄and Engeler [1967℄. We note that in the latter paper 
omputation overarbitrary 
lasses of stru
tures is treated in the 
ourse of analysing programtermination by means of logi
al formulae from a simple fragment of L!1;!;Engeler [1967℄ is the origin of algorithmi
 and dynami
 logi
.The study of the power of programming features 
ame to be knownas program s
hematology. Like program veri�
ation, the subje
t was 
on-temporary with, but independent of, resear
h on programming languagesemanti
s. The ne
essity of introdu
ing abstra
t stru
tures in su
h a 
las-si�
ation proje
t is easy to understand. From the point of view of program-ming theory the equivalen
e of most algorithmi
 formalisms for 
omputingon N with the partial re
ursive fun
tions on N is a mixed blessing. Thisstability of the 
omputational models illuminates our per
eption of thes
ope and limits of 
omputer languages and ar
hite
tures, and has manyte
hni
al appli
ations in the mathemati
al theory of 
omputation. How-ever, the restri
tion to N fails to support an analysis of the intuitive dif-feren
es between programming with and without arrays, `goto's, Booleanvariables, and so forth.The resear
h on s
hematology has produ
ed several program 
onstru
tsand languages that are weaker than or equivalent to those of the four basi
ma
hine models dis
ussed in se
tion 8.2. We refer the reader to Greiba
h[1975℄ for a general introdu
tion to s
hematology and, in parti
ular, toShepherdson [1985℄ for a detailed dis
ussion of many important results andtheir relation to ma
hine models. Other signi�
ant referen
es are Constableand Gries [1972℄, Chandra [1973℄ and Chandra and Manna [1972℄.



490 J. V. Tu
ker and J. I. Zu
kerHigh-level imperative programming models were slow to enter main-stream 
omputability theory, despite attention being drawn to the valueof this approa
h in S
ott [1967℄. Some early textbooks to feature su
hprogramming models were Brainerd and Landweber [1974℄, Manna [1974℄,Bird [1976℄ and Clark and Cowell [1976℄.8.4 Axiomati
 methodsIn an axiomati
 method one de�nes the 
on
ept of a 
omputation theory asa set �(A) of partial fun
tions on an algebraA having some of the essentialproperties of the set of partial re
ursive fun
tions on N. To take an example,�(A) 
an be required to 
ontain the basi
 algebrai
 operators of A; be
losed under operations su
h as 
omposition; and, in parti
ular, possessan enumeration for whi
h appropriate universality and s-m-n properties(see, for example, Rogers [1967℄) are true. Thus in se
tion 4 we saw thatWhile�(A) is a 
omputation theory in this sense.It is important to note that 
omputation theory de�nitions, of whi
hthere are a number of equivalent examples, require N to be part of theunderlying stru
tures A for the indexing of fun
tions:axiomati
 methods spe
i�
ally address N-standard stru
turesand 
lasses of N-standard stru
tures.With referen
e to the de�nition sket
hed above, the following theoremis of importan
e here:Theorem 8.13. The setWhile�(A) of While� 
omputable fun
tions onan N-standard algebra A is the smallest set of partial fun
tions on A tosatisfy the axioms of a 
omputation theory; in 
onsequen
e, While�(A) isa subset of every 
omputational theory �(A) on A.The de�nition of a 
omputation theory used here is from Fenstad [1975;1980℄ whi
h take up the ideas in Mos
hovakis [1971℄. We note thatthe While 
omputable fun
tions 
oin
ide with the prime 
om-putable fun
tions of Mos
hovakis.Theorem 8.13 
an be dedu
ed using work in Moldestad et al. [1980b℄;see also Fenstad [1980, Chapter 0℄.The development of axiomatisations of 
omputable fun
tions in
ludesStrong [1968℄ and Wagner [1969℄. The axiomatisation of subre
ursive fun
-tions is ta
kled in Heaton and Wainer [1996℄.8.5 Equational de�nabilityOne of the earliest formalisations of e�e
tive 
omputability was by means offun
tions e�e
tively re
konable in an equational 
al
ulus, a method knownas equational or Herbrand{G�odel{Kleene de�nability. This was the methodemployed to de�ne the re
ursive fun
tions in important works su
h asChur
h [1936℄ and Kleene [1952℄.
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tions on algebras 491Equational de�nability may be generalised from N to an arbitrary al-gebra A with the natural result that, if A is an N -standard stru
ture,equational de�nability is equivalent withWhile� 
omputability. The �rstattempt at su
h a generalisation is Lambert [1968℄. We sket
h a simplertreatment from Moldestad and Tu
ker [1981℄, adapted to many-sorted al-gebras.First we 
hoose a language Eqn= Eqn(�) for de�ning equations overa signature � and transforming them in simple dedu
tions. Let Eqnhave 
onstants a; b; 
; : : : and variables x; y; z; : : : for data; and variablesp; q; r; : : : for fun
tions. Using the basi
 operations of the signature, weindu
tively de�ne �-terms t; : : : in the usual way. An equation in Eqn isan expression e � (t1 = t2), where t1 and t2 are terms of the same sort.A dedu
tion of an equation e from a set of equationsE is a list e1; : : : ; ekof equations su
h that for ea
h i = 1; : : : ; k one of the following holds:(i) ei 2 E;(ii) ei is obtained from ej for some j < i by repla
ing every o

urren
eof a variable x in ej by a 
onstant 
;(iii) ei is obtained from ej for some j < i by repla
ing at least one o
-
urren
e of a subterm t of ej by a 
onstant 
, where t has no freevariables, and for some j0 < i, ej0 � (t = 
).An equation e is de�ned to be formally derivable or dedu
ible from E,written E ` e, if there is a dedu
tion of e from E.Thus, it remains to formulate equational dedu
tions with respe
t to agiven algebra A of signature � in order to formulate what it means for afun
tion f on A to be equationally de�nable on A. This is essentially givingour system a semanti
s. The �rst semanti
al problem is to allow the basi
operations of A to play a role in dedu
tions from a set of equations E, andthis is a

omplished by permittingE ` p(
1; : : : ; 
n) = 
 if FA(
A1 ; : : : ; 
An ) = 
A:This is the reason why we add the 
onstants to Eqn.The se
ond semanti
al problem is to prove a single-valuedness propertyof the form:E ` p(
1; : : : ; 
n) = a1 and E ` p(
1; : : : ; 
n) = a2 =) a1 = a2:This done, we 
an de�ne f : Au ! A to be equationally de�nable over Aif for some �nite set of equations E and some fun
tion symbol p,E ` p(
1; : : : ; 
n) = 
 =) f(
A1 ; : : : ; 
An ) = 
Afor all 
onstants of Eqn.Let Eqn(A) denote the set of all equationally de�nable fun
tions on A.Theorem 8.14.



492 J. V. Tu
ker and J. I. Zu
ker(a) For any standard �-algebra A,Eqn(A) = FAPS(A).(b) For any N-standard �-algebra A,Eqn(A) = FAPCS(A) = While�(A).8.6 Indu
tive de�nitions and �xed-point methodsThe familiar de�nition of the re
ursive fun
tions on N based on the prim-itive re
ursion s
heme of Dedekind and G�odel, and the least number op-erator of Kleene, appeared in Kleene [1936℄. Kleene provided a thoroughrevision of the pro
ess of re
ursion on N suÆ
iently general to in
lude re-
ursion in obje
ts of higher fun
tion type: see Kleene [1959; 1963℄. InPlatek [1966℄ there is an abstra
t a

ount of higher-type re
ursion.Studies of higher type indu
tive de�nitions have been taken up by D.S
ott and Y. Ershov, whose work forms part of domain theory (see, forexample, Stoltenberg-Hansen et al. [1994℄). The 
entral te
hni
al notionis that of �xed points of higher type operators.In Moldestad et al. [1980a℄ Platek's methods were analysed and 
lassi-�ed in terms of the ma
hine models of se
tion 8.2. Like equational de�n-ability, de�nability by �xed-point operators applies to an arbitrary algebraA and is there equivalent to fapS 
omputability. Thus, this notion 
oin
ideswith While� de�nability in an N -standard stru
ture. We will sket
h themethod (adapted to many-sorted algebras).First we 
onstru
t the language FPD= FPD(�) for de�ning �xed-point operators. Let FPD have the data and fun
tion variables of Eqn,the equation language of se
tion 8.5. Using the basi
 operations of thesignature � and the �-abstra
tion notation, we 
reate a set of �xed-pointterms of both data and fun
tion types:t ::= x j p j F j T (t1; : : : ; tn) j fp[�p � y1; : : : ; yn � t℄:Here p is a fun
tion variable, F is a basi
 operation of �, T is a term oftype fun
tion, t1; : : : ; tn and t are terms of type data, and y1; : : : ; yn aredata variables.Ea
h term de�nes a fun
tion on ea
h algebra A of signature �. Thede�nition of the semanti
s of terms is by indu
tion on their 
onstru
tion,the terms of the form fp[�p � y1; : : : ; yn � t℄being assigned the unique least �xed point of the 
ontinuous monotoni
operator de�ned by the notation �p � y1; : : : ; yn � t.A fun
tion f : Au ! A is de�nable by �xed-point terms over A if thereis a term t su
h that for all x 2 Au, f(x) ' t(x).Let FPD(A) denote the set of all fun
tions de�nable by �xed-pointterms over A.
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tions on algebras 493Theorem 8.15.(a) For any standard �-algebra A,FPD(A) = FAPS(A).(b) For any N-standard �-algebra A,FPD(A) = FAPCS(A) = While�(A).For more details see Moldestad et al. [1980a℄.An approa
h to 
omputation on abstra
t data types, alternative to thatpresented in this 
hapter, is the development in Feferman [1992a; 1992b℄of a theory of abstra
t 
omputation pro
edures, de�ned by least �xed-points
hemes, in
uen
ed by Mos
hovakis [1984; 1989℄. The `abstra
t data types'here are 
lasses of stru
tures similar to our standard partial many-sortedalgebras, abstra
t in the sense that they are 
losed under isomorphism,and the 
omputation pro
edures are abstra
t in the sense that they areisomorphism invariant on the data types; 
f. Theorem 3.24. Types (orsorts) and operations 
an have an intensional or extensional interpretation.Another treatment of indu
tive de�nitions (also in
uen
ed by Mos
hov-akis) and a survey of their 
onne
tions with ma
hine models is given inHinman [1999℄.8.7 Set re
ursionGiven a stru
ture on A one 
an 
onstru
t a set-theoreti
 hierar
hy H(A)over A, taking A as so-
alled urelements, and, depending upon the 
on-stru
tion, develop a re
ursion theory on H(A). This is the methodology inNormann [1978℄ where 
ombinatorial operations on sets are employed tomake a generalisation of 
omputability. In Moldestad and Tu
ker [1981℄,Normann's set re
ursion s
hemes are applied to the domain HF (A), theset of hereditarily �nite subsets, so as to invest the general 
onstru
tionwith 
omputational 
ontent. HF (A) is indu
tively de�ned as follows:(i) A � HF (A);(ii) if a1; : : : ; an 2 HF (A) then fa1; : : : ; ang 2 HF (A), n � 0.Thus, ; 2HF (A), a 
opy of N is imbedded in HF (A), and 
opiesof An (n = 2; 3; : : : ) are embedded in HF (A). From 
omputability onHF (A) a notion of 
omputability on A, set re
ursiveness, is easily ob-tained. Then, writing SR(A) for the 
lass of set-re
ursive fun
tions on A,we have:Theorem 8.16. For any standard �-algebra A,SR(A) = While�(A).8.8 A generalised Chur
h{Turing thesis for 
omput-abilityThe While� 
omputable fun
tions are a mathemati
ally interesting anduseful generalisation of the partial re
ursive fun
tions on N to abstra
t
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ker and J. I. Zu
kermany-sorted algebras A and 
lasses K of su
h algebras. Do they also giverise to an interesting and useful generalisation to A and K of the Chur
h{Turing thesis, 
on
erning e�e
tive 
omputability on N?They do; though this answer is diÆ
ult to explain fully and brie
y. Inthis se
tion we will only sket
h some reasons. The issues are dis
ussed inmore detail in Tu
ker and Zu
ker [1988℄.Consider the following naive attempt at a generalisation of the Chur
h{Turing thesis.Thesis 8.17 (A naive generalised Chur
h{Turing thesis for
omputability).(a) The fun
tions `e�e
tively 
omputable' on a many-sorted algebra Aare pre
isely the fun
tions While� 
omputable on A.(b) The families of fun
tions `e�e
tively 
omputable' uniformly over a
lass K of su
h algebras are pre
isely the families of fun
tions uni-formly While� 
omputable over K .Consider now: what 
an be meant by `e�e
tive 
omputability' on anabstra
t algebra or 
lass of algebras?In the standard situation of 
al
ulation with N, the idea of e�e
tive
omputability is 
ompli
ated, as it is made up from many philosophi
aland mathemati
al ideas about the nature of �nite 
omputation with �-nite or 
on
rete elements. For example, its analysis raises questions aboutthe me
hani
al representation and manipulation of �nite symbols; aboutthe equivalen
e of data representations; and about the formalisation of
onstituent 
on
epts su
h as algorithm; deterministi
 pro
edure; me
han-i
al pro
edure; 
omputer program; programming language; formal system;ma
hine; and the fun
tions de�nable by these entities.The idea of e�e
tive 
omputability is parti
ularly deep and valuablebe
ause of the 
lose relationships that 
an be shown to exist between itsdistin
t 
onstituent 
on
epts. However, only some of these 
onstituent
on
epts 
an be reinterpreted or generalised to work in an abstra
t setting;and hen
e the general 
on
ept, and term, of `e�e
tive 
omputability' doesnot belong in a generalisation of the Chur
h{Turing thesis. In addition,sin
e �nite 
omputation on �nite data is truly a fundamental phenomenon,it is approriate to preserve the term with its established spe
ial meaning.In seeking a generalisation of the Chur
h{Turing thesis we are tryingto make expli
it 
ertain primary informal 
on
epts that are formalised bythe te
hni
al de�nitions, and hen
e to 
larify the nature and use of the
omputable fun
tions.We will start by trying to 
larify the nature and use of abstra
t stru
-tures. There are three points of view from whi
h to 
onsider the step from
on
rete stru
tures to abstra
t stru
tures, and hen
e three points of viewfrom whi
h to 
onsider the While� 
omputable fun
tions.First, there is abstra
t algebra, whi
h is a theory of 
al
ulation basedupon the `behaviour' of elements in 
al
ulations without referen
e to their
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tions on algebras 495`nature'. This abstra
tion is a
hieved through the 
on
ept of isomorphismbetween 
on
rete stru
tures; an abstra
t algebra A is `a 
on
rete algebra
onsidered unique only up to isomorphism'.Se
ondly, there is formal logi
, whi
h is a theory about the s
ope andlimits of axiomatisations and formal reasonings. Here stru
tures and 
lassesof stru
tures are used to dis
uss formal systems and axiomati
 theories interms of 
onsisten
y, soundness, 
ompleteness, and so on.Thirdly, in programming language theory, there is data type theory,whi
h is about data types that users may 
are to de�ne and that ariseindependently of programming languages. Here stru
tures are employedto dis
uss the semanti
s of data types, and isomorphisms are employedto make the semanti
s independent of implementations. In addition, ax-iomati
 theories are employed to dis
uss their spe
i�
ations and implemen-tation.Data type theory is built upon and developed from the �rst two sub-je
ts: it is our main point of view.Computation in ea
h of the three 
ases is thought of slightly di�erently.In algebra, it is natural to think informally of algorithms built from thebasi
 operations that 
ompute fun
tions and sets in algebras, or over 
lassesof algebras uniformly. In formal logi
, it is natural to think of formulae thatde�ne fun
tions and sets, and their manipulation by algorithms. In datatype theory, we use programming languages to de�ne a 
omputation. Ea
hof these theories, be
ause of its spe
ial 
on
erns and te
hni
al emphasis,leads to its own theory of 
omputability on abstra
t stru
tures.Suppose, for example, theWhile� 
omputable fun
tions are 
onsideredwith the needs of doing algebra in mind. Then the 
ontext of studyingalgorithms and de
ision problems for algebrai
 stru
tures (groups, ringsand �elds, et
.) leads to a formalisation of a generalised Chur
h{Turingthesis tailored to the language and use of an algebraist:Thesis 8.18 (Generalised Chur
h{Turing thesis for algebrai
 
om-putability).(a) The fun
tions 
omputable by �nite deterministi
 algebrai
 algorithmson a many-sorted algebra A are pre
isely the fun
tions While�
omputable on A.(b) The families of fun
tions uniformly so 
omputable over a 
lass Kof su
h algebras are pre
isely the families of fun
tions uniformlyWhile� 
omputable over K .An a

ount of 
omputability on abstra
t stru
tures from the point of viewof algebra is given in Tu
ker [1980℄.Now suppose that the While� 
omputable fun
tions are 
onsideredwith the needs of 
omputer s
ien
e in mind. The 
ontext of studies of datatypes, programming and spe
i�
ation 
onstru
ts, et
., leads to a formula-tion tailored to the language and use of a 
omputer s
ientist:Thesis 8.19 (Generalised Chur
h{Turing thesis for programming
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ker and J. I. Zu
kerlanguages). Consider a deterministi
 programming language over an ab-stra
t data type dt.(a) The fun
tions that 
an be programmed in the language on an algebraA whi
h represents an implementation of dt, are the same as thefun
tions While� programmable on A.(b) The families of fun
tions that 
an be programmed in the languageuniformy over a 
lass K of implementations of dt, are the same asthe families of fun
tions While� programmable over K .The thesis has been dis
ussed in Tu
ker and Zu
ker [1988℄.The logi
al view of 
omputable fun
tions and sets, with its fo
us onaxiomati
 theories and reasoning, is a more abstra
t view of 
omputationthan the view from algebra and data type theory, with their fo
us on al-gorithms and programs. The logi
al view is dire
ted at the spe
i�
ation of
omputations.8.9 A Chur
h{Turing thesis for spe
i�
ationIn the 
ourse of our study, we have met logi
al and non-deterministi
 lan-guages that de�ne in a natural way the proje
tively 
omputable sets (and,equivalently, the proje
tively semi
omputable sets). These languages aremotivated by the wish to spe
ify problems and 
omputations, and to leaveopen all or some of the details of the programs that will solve the problemsand perform the 
omputations.To better understand the role of the proje
tive 
omputable sets, weintrodu
e the idea of an algorithmi
 spe
i�
ation language whi
h in
ludessome ideas about non-deterministi
 programming languages. The prop-erties that 
hara
terise an algorithmi
 spe
i�
ation language are forms ofalgorithmi
ally validating a spe
i�
ation. An algorithmi
 spe
i�
ation lan-guage is an informal 
on
ept that is intended to 
omplement that of adeterministi
 programming language. The problem we 
onsider is that offormalising the informal notion of an algorithmi
 spe
i�
ation language bymeans of a generalised Chur
h{Turing thesis for spe
i�
ation, based onproje
tively 
omputable sets.There are four basi
 
omponents to a 
omputation:(0) a data type;(1) a spe
i�
ation of a task to be performed or problem to be solved;(2) spe
i�
ations for algorithms whose input/output behaviour a

om-plishes the task or solves the problem; and(3) algorithms with appropriate i/o behaviour.We model mathemati
ally these 
omponents of a 
omputation, by assumingthat:(0Æ) a data type is a many-sorted algebra, or 
lass of algebras;(1Æ) a spe
i�
ation of the task or problem is de�ned by a relation on thealgebra;
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i�
ations of algorithms for the task or problem are de�ned byfun
tions on the algebra; and(3Æ) algorithms are de�ned by programs that 
ompute fun
tions on thealgebra.Usually, the relations, fun
tions and programs are de�ned uniformly overa 
lass of algebras.Given a spe
i�
ation S � Au �Avon an algebra A, the task is: for all x 2 Au, to 
al
ulate all or some y 2 Avsu
h that R(x; y) holds, if any su
h y exist. The setD =df fx 2 Au j 9yR(x; y)gmay be 
alled the domain of the task.Thus the task of 
omputing the relation 
an be expressed in the follow-ing fun
tional form: R̂ : Au ! P(Av)(where P(Av) is the power set of Av), de�ned for x 2 Au byR̂(x) =df fy 2 Av j R(x; y)g:Quite 
ommonly, the task is `simpli�ed' to 
omputing one or more so-
alledsele
tion fun
tions for the relation.De�nition 8.20 (Sele
tion fun
tions). Let R � Au�Av be a relation.A fun
tion f : Au ! Avis a sele
tion fun
tion for R if(i) 8x[9yR(x; y) ) f(x) # and R(x; f(x))℄; and(ii) 8x[f(x) # ) R(x; f(x))℄.Noti
e that the domain and range of a sele
tion fun
tion f are proje
tions:dom(f) = fx 2 Au j 9yR(x; y)g;ran(f) = fy 2 Av j 9xR(x; y)g:Note also thatany partial fun
tion f is de�nable as the unique sele
tion fun
-tion for its graph G(f) = f(x; y) j f(x) # yg.Other sets of use in spe
i�
ation theory 
an be derived from these sets(e.g. weakest pre
onditions and strongest post
onditions | see Tu
ker andZu
ker [1988℄).
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ker and J. I. Zu
kerTo de�ne and reason about 
omputations on a data type, we must de�nea 
lass of relations, fun
tions and programs on an algebra A. The key ideasare those of formal languages that de�ne fun
tions, 
alled programminglanguages, and those that de�ne relations, 
alled spe
i�
ation languages.The relation between a programming language P and a spe
i�
ationlanguage S is that of satisfa
tionj= � P � Sde�ned for p 2 P and s 2 S byp j= s () the fun
tion de�ned by p is a sele
tion fun
tionfor the relation de�ned by s.What properties of relations are needed for a spe
i�
ation language?We propose two properties. The �rst is that it should be possible to`validate' (`test', `
he
k', ...) data against ea
h spe
i�
ation. A basi
 ques-tion is, therefore:For any given data x and y, 
an we validate whether or not thegiven y is a valid output for the given input x?We de�ne the following informal 
on
ept:De�nition 8.21 (Algorithmi
 spe
i�
ation language). An algorith-mi
 spe
ifi
ation language is a language in whi
h any data for any task 
anbe validated.The pro
ess of validation depends on the relations de�ned by the spe-
i�
ation. Our theory of 
omputability on algebras presents three 
ases:De�nition 8.22 (Algorithmi
 validation of spe
i�
ations). Let Sbe a spe
ifi
ation language.(a) S has de
idable validation if ea
h relation it de�nes is 
omputable.(b) S has semide
idable validation if ea
h relation it de�nes is semi
om-putable.(
) S has proje
tively de
idable validation if ea
h relation it de�nes isproje
tively 
omputable.The se
ond property is `adequa
y'. A spe
i�
ation language may bequite expressive, 
ontaining spe
i�
ations for tasks for whi
h there does notexist an algorithmi
 solution. It should, however, be 
apable of expressingat least all those tasks whi
h are algorithmi
. We therefore de�ne thefollowing informal 
on
ept:De�nition 8.23 (Adequate spe
i�
ation language). A spe
i�
ationlanguage is adequate if all 
omputations 
an be spe
i�ed in it.
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ify a fun
tion is to de�ne a relation for whi
h it is a sele
tionfun
tion. Re
all that any fun
tion is de�nable as the unique sele
tion fun
-tion for its graph. Consider the adequa
y of an algorithmi
 spe
i�
ationlanguage with ea
h of the three types of algorithmi
 validation above.(a) If a spe
i�
ation language has de
idable validation then not every par-tial 
omputable fun
tion 
an be spe
i�ed uniquely, sin
e the graph ofa partial 
omputable fun
tion need not be 
omputable (by a standardresult of 
lassi
al 
omputation theory).(b) If a spe
i�
ation language has semide
idable validation then everypartial 
omputable fun
tion 
an be spe
i�ed uniquely, sin
e the graphof a partial 
omputable fun
tion is semi
omputable.(
) Thus a spe
i�
ation language with proje
tively de
idable validation isalso adequate for the de�nition of all possible 
omputations.Furthermore, there are many o

asions when the adequa
y of a spe
i�-
ation formalism demands greater expressiveness. The problem is to allowa 
lass of spe
i�
ations that extends that of the semi
omputable relations,and yet retains some 
han
e of an e�e
tive test or 
he
k.For example, let E � A be a 
omputable subset of an algebra A and
onsider the membership relation for the subalgebra hEi of A generatedby E; using established notations, this is de�ned by:a 2 hEi , 9k � 09e1; : : : ; ek 2 E9t 2 Term(�)[TE(t; e1; : : : ; ek) = a℄:This relation is not semi
omputable, nor even proje
tively 
omputable overA, but proje
tively 
omputable over A�.In examples of the above kind, the 
omputation and spe
i�
ation of yfrom x involves a �nite sequen
e of auxiliary data z� that is `hidden' fromR, but 
an be re
overed from the spe
i�
ation and algorithm. This typeof spe
i�
ation R has the formR(x; y) , 9z�R0(x; y; z�);where R0 is 
omputable. That is, R is proje
tively 
omputable (or semi-
omputable) over A�.This is a weak form of the 
on
ept of a spe
i�
ation that 
an be valid-ated algorithmi
ally.We have seen a number of methods, involving logi
al and non-deterministi
languages, all of whi
h de�ne the proje
tions of 
omputable sets (or, equiv-alently, of semi
omputable sets); we re
all them brie
y:(i) Proje
tions in �rst-order languages. Consider the �rst-order lan-guages Lang(�) and Lang(��)over the signatures � and �� with their usual semanti
s. The rela-tions that are �1 de�nable in these languages are the proje
tivelyWhile and While� 
omputable sets.
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ker and J. I. Zu
ker(ii) Horn 
lause languages. In Tu
ker and Zu
ker [1989; 1992a℄ we stud-ied a generalisation of logi
 programming languages based on Horn
lauses, and a semanti
s based on resolution. The relations de�nablein this spe
i�
ation-
um-programming language were the proje
tivelyWhile� 
omputable sets. The logi
 programming model was shownto be equivalent to 
ertain 
lasses of logi
ally de�nable fun
tions (Fit-ting [1981℄).(iii) Other de�nabilities. In Fitting [1981℄ the relations are shown to beequivalent to those de�nable in Montague [1968℄. Hen
e, by work inGordon [1970℄, these all 
oin
ide with the sear
h 
omputable fun
-tions of Mos
hovakis [1969a℄. A summary of these results is 
ontainedin Tu
ker and Zu
ker [1988, se
tion 7℄.(iv) Non-deterministi
 programming languages. Finally, re
all from se
-tion 5 that we have seen that 
onstru
ts allowing non-deterministi

hoi
es of data, state, or 
ontrol in programming languages also leadto the proje
tively 
omputable sets. In parti
ular, the modelsWhile� 
omputability with initialisation andWhile� 
omputability with random assignmentswere analysed.The equivalen
e results suggest that the 
on
epts of proje
tive 
om-putablity and semi
omputability are stable in the analysis of models ofspe
i�
ation. The 
on
ept of an algorithmi
 spe
i�
ation language in itsweak form, together with all the above equivalen
e results, leads us to for-mulate the following generalised Chur
h{Turing thesis for spe
i�
ation, to
omplement that for 
omputation:Thesis 8.24 (Generalised Chur
h{Turing thesis for spe
i�
ationon abstra
t data types). Consider an adequate algorithmi
 spe
i�
ationlanguage S over an abstra
t data type dt.(a) The relations on a many-sorted algebra A implementing dt that 
anbe spe
i�ed in S are pre
isely the proje
tively While� 
omputablerelations on A.(b) The families of relations over a 
lass K of su
h algebras implementingdt, that 
an be spe
i�ed in S, uniformly over K , are pre
isely thefamilies of uniformly proje
tivelyWhile� 
omputable relations overK .This thesis has been dis
ussed in Tu
ker and Zu
ker [1988℄.8.10 Some other appli
ationsComputations on many-sorted algebras lead to many investigations andappli
ations. We 
on
lude by mentioning two.
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tions on algebras 501(i) Provably 
omputable sele
tion fun
tions. In this 
hapter we have notdealt with proof systems, or the 
onne
tions between provability and 
om-putability. In Tu
ker and Zu
ker [1988℄ we developed one su
h 
onne
tion,namely the use of proof systems for verifying program 
orre
tness.Another 
onne
tion is based on 
lassi
al proof theory, and its appli
a-tion to 
omputability on the naturals. In Tu
ker et al. [1990℄ and Tu
kerand Zu
ker [1993℄ we investigated the generalisation of a parti
ular problemin 
lassi
al proof theory to the 
ontext of N -standard many-sorted signa-tures and algebras. Spe
i�
ally, we developed 
lassi
al and intuitionisti
formal systems for theories over N -standard signatures �. We showed, inthe 
ase of universal theories (i.e., theories with axioms 
ontaining onlyuniversal quanti�ers) that, in either of these systems:if an existential assertion is provable, then it has a PR�(�) sele
tionfun
tion.(Re
all the dis
ussion of sele
tion fun
tions in se
tion 8.9.) It follows thatif a �PR�(�) fun
tion s
heme is provably total, then it is ex-tensionally equivalent over � to a PR�(�) s
heme.The methods are proof-theoreti
al, involving 
ut elimination. These resultsgeneralise to an abstra
t setting previous results of Parsons [1971; 1972℄ andMints [1973℄ over the natural numbers.(ii) Computation on stream algebras. A stream over a set A is a sequen
eof data from A : : : ; a(t); : : :indexed by time t 2 T . Dis
rete time T is modelled by the naturals N,and the spa
e of all streams over A is the set [N !A℄ of fun
tions from Nto A.Streams are ubiquitous in 
omputing. In hardware, where 
lo
kingand timing are important, most systems pro
ess streams (see M
Evoy andTu
ker [1990℄ and M�oller and Tu
ker [1998℄). Models of stream 
omputa-tion are needed for any wide spe
trum spe
i�
ation method su
h as FOCUS(see Broy et al. [1993℄).A general theory of stream pro
essing is given in Stephens [1997℄.There is a strong need to in
orporate stream 
omputation in a gen-eral theory of 
omputation on many-sorted algebras. Some �rst steps inthis dire
tion, partly motivated by te
hni
al questions arising in an al-gebrai
 study of stream pro
essing by syn
hronous 
on
urrent algorithms(see Thompson and Tu
ker [1991℄), were taken in Tu
ker and Zu
ker [1994;1998℄.Another approa
h to this problem has been developed in Feferman[1996℄, within (an extensional version of) the framework of 
omputationtheory on abstra
t data types presented in Feferman [1992a; 1992b℄, assummarised in se
tion 8.6.The relationship between these two theories of stream 
omputationsremains to be investigated.
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ker and J. I. Zu
kerWe 
on
lude with a brief survey of the former approa
h (Tu
ker andZu
ker [1994℄). Here we 
onsider the following problem: Given a algebraA (whi
h we suppose for notational simpli
ity is single-sorted), 
onsiderstream transformations of the formf : [N !A℄m ! [N !A℄as well as their 
artesian or un
urried forms
art(f) : [N !A℄m � N ! Ade�ned by 
art(f)(�; n) = f(�)(n):We ask the following questions.For any algebra A, what are the 
omputable stream transformationsover A?What is their relation to the 
omputable fun
tions on A?To answer these, we extend A to the stream algebra �A (se
tion 2.8), and
onsider various models of 
omputation MC(A) over A, as well as the
orresponding models of 
omputation MC( �A) over �A. These models of
omputation MC in
lude the s
hemesPR, PR�, �PR, �PR�.We also 
onsider the operation of stream abstra
tion or 
urrying inverse to
art: for any fun
tion g : D � N ! A;where D is any 
artesian produ
t of 
arriers of �A, 
onstru
t the fun
tion�abs(g) : D ! [N !A℄de�ned by (�abs(g))(d)(n) = g(d; n):The addition of this 
onstru
t to models of 
omputation MC leads to mod-els of 
omputation �MC( �A):�PR; �PR�; ��PR; ��PR�:We investigate the relationships between these various models; for ex-ample, we prove some 
omputational 
onservativity results: for any fun
-tion f on A, f 2 PR( �A) () f 2 PR(A)and similarly for �PR�, ��PR and ��PR�. We also show that 
om-putability is not invariant under Cartesian forms, i.e., there are fun
tionsf su
h that
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art(f) 2 PR( �A)and similarly for �PR�, ��PR and ��PR�. Further, `�-elimination' doesnot hold, i.e., there are fun
tions f su
h thatf 2 �PR( �A) but f =2 PR( �A);for example, the fun
tion 
onstA: A! [N !A℄, whi
h maps data a 2 A tothe stream 
onstA(a) 2 [N !A℄ with 
onstant value a, is in �PR( �A) butnot in PR( �A), or even in �PR�( �A). However, we do have �-elimination+ 
artesian form, in the sense thatf 2 �PR( �A) () 
art(f) 2 PR( �A);and similarly for �PR�, ��PR and ��PR�.There are advantages to working with stream transformers via their
artesian forms. It is then true, but diÆ
ult to show, that the 
lass of
omputable fun
tions so de�ned is 
losed under 
omposition (Stephens andThompson [1996℄).Suppose now we ask for a model of 
omputability to satisfy a generalisedChur
h{Turing thesis for stream 
omputations. The model �PR�( �A) ob-tained from our previous generalised Chur
h{Turing thesis on arbitrarystandard algebras (se
tion 8.8, substituting �A for A) would be too weak,sin
e (as we have seen) even the 
onstant stream fun
tion 
onstA is not
omputable in it. However, we 
an show, as a 
orollary of the 
omputa-tional 
onservativity results, that the following models of 
omputation areequivalent:��PR( �A), ��PR( ��A), ��PR�( �A), ��PR( �A�).This shows that the model ��PR( �A)is robust, and suggests it as a good 
andidate for a generalised Chur
h{Turing thesis for stream 
omputations.(iii) Equational spe
i�
ation of 
omputable fun
tions. Many fun
tions arede�ned as solutions of systems of equations from, for example, datatypetheory or real analysis. Sometimes 
onsiderable e�ort is expended in devis-ing algorithms to implement or 
ompute these fun
tions; this is the raisond'être of numeri
al methods for di�erential and integral equations.It is possible to develop a theory of equational spe
i�
ations for fun
-tions on algebras, in
luding topologi
al algebras. In Tu
ker and Zu
ker[2000b℄ it is shown that any While� approximable fun
tion on a totalmetri
 algebra is the unique solution of a �nite system of 
onditional equa-tions, whi
h 
an be 
hosen uniformly over all algebras of the signature, andover all While� 
omputations. The 
onverse however is not true; spe
i-�ability by 
onditional equations is a more powerful devi
e than While�approximation { how mu
h more powerful, remains to be investigated.
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