
Universality and Semicomputability for
Nondeterministic Programming

Languages
over Abstract Algebras

Wei Jiang∗, Yuan Wang†, and Jeffery Zucker‡

September 11, 2006

Abstract

The Universal Function Theorem (UFT) originated in 1930s with the work
of Alan Turing, who proved the existence of a universal Turing machine for
computations on strings over a finite alphabet. This stimulated the develop-
ment of stored-program computers.

Classical computability theory, including the UFT and the theory of semi-
computable sets, has been extended by Tucker and Zucker to abstract many-
sorted algebras, with algorithms formalized as deterministic While programs.

This paper investigates the extension of this work to the nondeterministic
programming languages WhileRA consisting of While programs extended by
random assignments, as well as sublanguages of WhileRA formed by restrict-
ing the random assignments to booleans or naturals only. It also investigates
the nondeterministic language GC of guarded commands. There are two top-
ics of investigation: (1) the extent to which the UFT holds over abstract
algebras in these languages; (2) concepts of semicomputability for these lan-
guages, and the extent to which they coincide with semicomputability for the
deterministic While language.

Key words and phrases: many-sorted algebras, computation on ab-
stract data types, abstract computability, random assignments, guarded com-
mands, nondeterminism.

∗School of Computer Science, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
†IBM Canada, 820 Warden Ave., Markham, Ontario L6G 1C7, Canada
‡Dept of Computing and Software, McMaster University, Hamilton, Ontario L8S 4K1, Canada

1

1 Introduction

1.1 Nondeterministic languages

Computability theory over abstract algebras can be developed in many directions

and can be applied in many areas [8]. In this paper we will emphasize computations

of nondeterministic programs on abstract many-sorted algebras.

To compute on such algebras, a simple deterministic model based on the While

language was introduced in [8], in which basic computations are performed by con-

current assignments, and control and sequencing by the three constructs: sequential

composition, conditional, and iteration.

In this paper, we will study constructs for nondeterministic algorithms. We

will consider two nondeterministic computation models. The main one that we will

study is the WhileRA programming language, which extends the While language

with random assignments

x := ?

The other nondeterministic computational model that we will study is the

Guarded Command Language (GC) due to Dijkstra [1]. The “guarded command”

has the form b → S, where b is a boolean test and S is a statement. The constructs

of GC includes: the guarded command conditional

if b1 → S1 | . . . | bk → Sk fi

and the guarded command iteration

do b1 → S1 | . . . | bk → Sk od

(k ≥ 0), together with concurrent assignment and sequential composition.

1.2 Universal functions

The idea of universal computable functions originated in 1930s with the work of

Turing [11],who proved the existence of a universal Turing machine for computations

on strings over a finite alphabet. This concept helped to stimulate the development

of stored-program computers.

The Universal Function Theorem (UFT) was extended to abstract many-sorted

algebras with deterministic algorithms formalized as While programs in [8]. Let A

2

be an algebra with booleans and naturals. The While procedures P0, P1, P2, . . . of a

fixed type u → v are effectively coded by natural numbers. Consider the “universal”

enumerating function

UnivA : N× Au → Av

defined by

UnivA(n, x) = Pn(x).

for any x ∈ Au. It has been proved [8] that UnivA is While computable on A

assuming a computable “term evaluation function”.

In this paper we will examine universality for the WhileRA and GC languages

over many-sorted algebras. GC is shown to be equivalent to WhileRA(bool), i.e., While

programs with random assignments restricted to the sort bool (Theorem 3.9.4), so

we will concentrate on WhileRA. We consider two cases: (1) WhileRA(nat/bool), where

random assignments are restricted to the sorts nat and/or bool; and (2) the general

case, with unrestricted random assignments.

These two cases require quite different techniques: (1) For WhileRA(nat/bool),

we prove the UFT (assuming the same term evaluation property) by using locality

of computation, which means that the output of any procedure is always in the

subalgebra generated by the input (Theorem 5.4.3). (2) With unrestricted random

assignments, locality of computation no longer holds, so here we use another tech-

nique, based on coding arbitrary many auxiliary variables by a fixed number of

arrays. Thus we can also prove the UFT for WhileRA with unrestricted random

assignments on array algebras (Theorem 5.5.3).

1.3 Nondeterministic semicomputability

The notion of recursive enumerability or semicomputability was generalized to many-

sorted algebras in [8]. In deterministic programming languages, a set is semicom-

putable if, and only if, it is the halting set of a procedure.

In this paper, we generalize this definition to nondeterministic languages, and

investigate the equivalence of (a suitable notion of) semicomputability with the

deterministic case. This constitutes the second part of this paper.

Again, we consider two cases: (1) WhileRA(nat/bool) semicomputability: this is

found to be equivalent to WhileN semicomputability, i.e., While semicomputability

with auxiliary counters (nat variables) (Theorem 6.3.3 and 6.4.1); (2) unrestricted

3

WhileRA semicomputability: this is, in general, not equivalent to While (or WhileN)

semicomputability. A counterexample is again found (Theorem 6.5.5) by considering

array algebras, in which WhileRA semicomputability is shown to be equivalent to

projective While semicomputability, which is, in general, not equivalent to While

semicomputablity [8].

1.4 Overview of the sections

This paper is divided into seven sections. Section 1 is this introduction. Section 2

presents the basic algebraic notions we will need. Section 3 presents the syntax and

semantics of the nondeterministic programming languages WhileRA and GC, and

proves the equivalence of GC and WhileRA(bool). In Section 4, we represent or code

the syntax and semantics of WhileRA computations in the algebra itself. In Section

5, we will explore the existence of a universal function for WhileRA, and its sublan-

guages WhileRA(nat/bool). In Section 6, we investigate concepts of nondeterministic

semicomputability, and see to what extent it coincides with semicomputability for

the deterministic While language. Section 7 draws conclusions and lists some open

problems for future work.

This paper developed from Master’s theses of two of the authors [3, 12]. It is

part of an ongoing research program in computation theory on many-sorted abstract

algebras [7, 8, 9, 10].

1.5 Acknowledgments

This research was supported by a grant from the Natural Sciences and Engineering

Research Council of Canada. We thank an anonymous referee for helpful sugges-

tions.

2 Basic concepts

In this section, we give a brief introduction to basic algebraic concepts and notations.

This section follows closely the treatment in [8].

4

2.1 Signatures

Definition 2.1.1 (Many-sorted signatures). A many-sorted signature Σ consists of

(1) a finite set Sort(Σ) of sorts s, . . ., and (2) a finite set Func(Σ) of (primitive or

basic) function symbols F : s1× . . .× sm → s (m ≥ 0), with s1, . . . , sm, s ∈ Sort(Σ).

The case m = 0 corresponds to constant symbols; we then write F : → s or F : s.

Definition 2.1.2 (Product types over Σ). A (Σ-)product type is a symbol of the

form s1 × · · · × sm (m ≥ 0), where s1, . . . , sm are Σ-sorts. We define ProdType(Σ)

to be the set of Σ-product types, denoted as u, v, w,

Definition 2.1.3 (Σ-algebras). .

A Σ-algebra A has, for each sort s of Σ, a non-empty set As, called the carrier of

sort s, and for each Σ-function symbol F : s1 × · · · × sm → s, a total1 function

FA : As1 × · · · × Asm → As. For m = 0, this gives an element FA ∈ As.

For a Σ-product type u = s1 × · · · × sm, we define

Au =df As1 × · · · × Asm .

So each Σ-function symbol F : u → s has an interpretation FA : Au → As.

Example 2.1.4 (Signature and algebra of booleans). The signature of booleans can

be defined as

signature Σ(B)

sorts bool

functions true, false : → bool,

and, or : bool2 → bool

not : bool → bool

end

The algebra B of booleans contains the carrier B = {tt, ff} of sort bool, and, as

functions and constants, the standard interpretations of the function and constant

symbols of Σ(B).

Definition 2.1.5 (Function types). Let A be a Σ-algebra.

1See Section 7, item (4).

5

(a) A function type over Σ, or Σ-function type, is a symbol of the form u → v,

with domain type u and range type v, where u and v are Σ-product types.

(b) For any Σ-function type u → v, a function of type u → v over A is a (not

necessarily total) function f : Au ⇀ Av.

We use the following notation: if f : Au ⇀ As and x ∈ Au, then f(x)↑
(“f(x) diverges”) means that x /∈ dom(f); f(x)↓ (“f(x) converges”) means that

x ∈ dom(f); and f(x) ↓ y (“f(x) converges to y”) means that x ∈ dom(f) and

f(x) = y.

Definition 2.1.6 (Relations; projections of relations). A relation on A of type u is

a subset of Au. We write R : u if R is a relation of type u.

Suppose R : u where u = s1× s2× s3× s4× s5. Now let v = s1× s2× s3 and

w = s4 × s5. Then the projection of R on v (or on Av), or the projection of R off w

(or off Aw), or the Aw-projection of R, is the relation S : v defined by existentially

quantifying over Aw:

S(x1, x2, x3) ⇐⇒ ∃x4, x5 ∈ Aw : R(x1, . . . , x5).

Definition 2.1.7 (Generated subalgebras). Let X ⊆ ⋃
s ∈ Sort (Σ) As. Then 〈X〉A

is the (Σ-)subalgebra of A generated by X, i.e., the smallest subalgebra of A which

contains X, and 〈X〉As is the carrier of 〈X〉A of sort s.

Definition 2.1.8 (Closed terms over Σ). We define the class T(Σ) of closed terms

over Σ, and for each Σ-sort s, the class T(Σ)s of closed terms of sort s. These are

generated inductively by the rule:

If F : u → s is in Func (Σ) and ti ∈ T(Σ)si
for i = 1, . . . , m, where u =

s1 × · · · × sm, then F (t1, . . . , tm) ∈ T(Σ)s. For m = 0, this corresponds to a

constant F (), written F .

An important assumption we make throughout this paper is:

Assumption 2.1.9 (Instantiation). T(Σ)s is non-empty for each s ∈ Sort(Σ).

Definition 2.1.10 (Default terms; Default values). (a) For each sort s, we pick a

closed term of sort s. (There is at least one, by the Instantiation Assumption.)

6

We call this the default term of sort s, written δs. Further, for each product

type u = s1 × · · · × sm of Σ, the default (term) tuple of type u, written δu,

is the tuple of default terms (δs1 , . . . , δsm).

(b) Given a Σ-algebra A, for any sort s, the default (value) of sort s in A is

the valuation δs
A ∈ As of the default term δs; and for any product type

u = s1 × · · · × sm, the default (value) tuple of type u in A is the tuple of

default values δu
A = (δs1

A , . . . , δsm
A) ∈ Au.

Definition 2.1.11 (Minimal carriers; minimal algebra). Let A be a Σ-algebra, and

s a Σ-sort.

(a) A is minimal at s (or the carrier As is minimal in A) if As = 〈∅〉As , i.e., As is

generated by the closed Σ-terms of sort s.

(b) A is minimal if it is minimal at every Σ-sort.

2.2 Adding booleans: Standard signatures and algebras

Definition 2.2.1 (Standard signatures and algebras). (a) A signature Σ is stan-

dard if (i) Σ(B) ⊆ Σ, and (ii) the function symbols of Σ include an equality

operator eqs : s2 → bool for certain sorts s, called equality sorts.

(b) Given a standard signature Σ, a Σ-algebra A is standard if the carrier Abool

is the set of truth values B = {tt, ff}, the standard boolean operations have

their standard interpretations, and the equality operator eqs is interpreted as

identity on each equality sort s.

Let StdAlg (Σ) denote the class of standard Σ-algebras.

Note that any many-sorted signature Σ can be standardised to a signature ΣB

by adjoining the sort bool together with the standard boolean operations; and,

correspondingly, any algebra A can be standardised to an algebra AB by adjoining

the algebra B.

Throughout this paper, we will assume:

Assumption 2.2.2 (Standardness). The signature Σ and the Σ-algebra A are

standard.

7

2.3 Adding counters: N-standard signatures and algebras

Definition 2.3.1 (N-Standard signatures and algebras). (a) A standard signature

Σ is called N-standard if it includes (as well as bool) the numerical sort nat, and also

function symbols for the standard arithmetic operations of zero, successor, equality

and order on the naturals:

0 : → nat

S : nat → nat

eqnat, lessnat : nat2 → bool.

as well as the equality operator eqnat on nat.

(b) The corresponding Σ-algebra A is N-standard if the carrier Anat is the set

of natural numbers N= {0,1,2,. . . }, and the standard arithmetic operations have

their standard interpretations on N.

Note that any standard Σ-algebra A can be N-standardised to a ΣN -algebra

AN by adjoining the carrier N together with the standard arithmetic operations.

Let N-StdAlg (Σ) denote the class of N-standard Σ-algebras.

2.4 Adding arrays: Algebras A∗ of signature Σ∗

Definition 2.4.1 (Signature Σ∗ and Algebras A∗). Given a standard signature Σ,

and standard Σ-algebra A, we extend Σ to Σ∗, and expand A to A∗ in two stages:

first, N-standardise Σ and A to form ΣN and AN ; then define, for each sort s of Σ,

the carrier A∗
s to be the set of finite sequences or arrays a∗ over As, of “starred sort”

s∗. The resulting algebras A∗ have signature Σ∗, which extends ΣN by including,

for each sort s of Σ, the new starred sorts s∗, and also the following new function

symbols:

(i)the operator Lgths : s∗ → nat, where Lgth(a∗) is the length of the array a∗;

(ii) the application operator Aps : s∗ × nat → s, where

ApA
s (a∗, k) =

{
a∗[k] if k < Lgth(a∗),

δs otherwise,

where δs is the default value at sort s;

8

(iii) the null array Nulls : s∗ of zero length;

(iv) the operator Updates : s∗× nat× s → s∗, where UpdateA
s (a∗, n, x) is the array

b∗ ∈ A∗
s such that for all k ∈ N,

b∗[k] =

a∗[k] if k < Lgth(a∗), k 6= n,

x if k < Lgth(a∗), k = n,

δs otherwise;

(v) the operator Newlengths : s∗ × nat → s∗, where NewlengthA
s (a∗,m) is the array

b∗ of length m such that for all k < m,

b∗[k] =

{
a∗[k] if k < Lgth(a∗),

δs otherwise;

(vi) the equality operator on A∗
s for each equality sort s.

The significance of arrays or “starred variables” for computation is that they

provide finite but unbounded memory. The reason for introducing them is the lack

of effective coding of finite sequences in abstract algebras in general, in contrast to

N.

3 Nondeterministic languages: WhileRA and GC

In this section, we will study the two nondeterministic languages, WhileRA and GC

on standard many-sorted algebras. The emphasis will be on WhileRA, since (as we

will see) GC is equivalent to WhileRA(bool).

3.1 Syntax of WhileRA

We begin with the syntax of the language WhileRA(Σ), which is generated by ex-

tending While(Σ) [8] with the random assignment ‘x :=?’.

Definition 3.1.1. Var(Σ) is the class of Σ-variables, and Vars(Σ) is the class

of variables of sort s.

9

We write x : s to mean that x ∈ Vars(Σ), and for u = s1 × · · · × sm, we

write x : u to mean that x is a u-tuple of distinct variables of sorts s1, . . . , sm,

respectively. We write VarTup(Σ) for the class of all tuples of distinct Σ-variables,

and VarTupu(Σ) for the class of all u-tuples of distinct Σ-variables.

Definition 3.1.2. Term(Σ) is the class of Σ-terms t, . . . , and for each Σ-sort s,

Terms(Σ) is the class of terms of sort s. These are defined by:

ts ::= xs | F (ts1
1 , ..., tsm

m) | if b then ts1 else ts2 fi,

where xs : s, F : u → s is in Func (Σ), and u = s1 × · · · × sm(m ≥ 0), and

b ∈ Termbool(Σ).

We write TermTup(Σ) for the class of all tuples of Σ-terms, and, for u =

s1 × · · · × sm, TermTupu(Σ) for the class of u-tuples of terms.

We write t : s or ts to indicate that t ∈ Terms(Σ). We write t : u to indicate

that t is a u-tuple of terms, i.e., a tuple of terms of sorts s1, . . . , sm.

Definition 3.1.3. AtSt(Σ) is the class of atomic statements Sat, . . . , defined by:

Sat ::= skip | x := t | x :=?

where x := t is a concurrent assignment with x : u and t : u for some product type

u, and x :=? is a random assignment to a variable x of some Σ-sort s.

Definition 3.1.4. Stmt(Σ) is the class of statements S, . . . , generated by:

S ::= Sat | S1; S2 | if b then S1 else S2 fi | while b do S od

Definition 3.1.5. Proc(Σ) is the class of procedures P, Q, . . . , which have the

form

P ≡ proc D begin S end

where D is the variable declaration and S is the body. Here D has the form

D ≡ in a : u out b : v aux c : w

where a, b and c are lists of input variables, output variables and auxiliary variables

respectively.

10

If a : u and b : v, then P has type u → v, written P : u → v. Its input type

is u, and its output type is v. We write Proc(Σ)u → v for the class of Σ-procedures

of type u → v.

We often write Term for Term(Σ), Proc for Proc(Σ), etc. when the signature

Σ is known or not important.

We write ‘≡’ for syntactic identity.

3.2 States

A state on a Σ-algebra A is a family 〈σs |s ∈ Sort(Σ)〉 of functions σs : Vars → As.

Let State(A) be the set of states on A, with elements σ, For x ∈ Vars, we

often write σ(x) for σs(x). Also, for a tuple x ≡ (x1, . . . , xm), we write σ[x] for

(σ(x1), . . . , σ(xm)).

Definition 3.2.1 (Variant of a state). Let σ be a state over A, x ≡ (x1, . . . , xm) : u

and a = (a1, . . . , am) ∈ Au (for m ≥ 1). Then σ{x/a} is the variant of σ at x by

a, i.e., the state defined by:

σ{x/a}(y) =

{
σ(y) if y 6≡ xi for i = 1, . . . , m

ai if y ≡ xi.

3.3 Semantics of terms

For t ∈ Terms, we define the function [[t]]A : State(A) → As where [[t]]Aσ is the

value of t in A at state σ. The definition is by structural induction on t:

[[x]]Aσ = σ(x)

[[F (t1, . . . , tm)]]Aσ = FA([[t1]]
Aσ, . . . , [[tm]]Aσ)

[[if b then t1 else t2 fi]]Aσ =

{
[[t1]]

Aσ if [[b]]Aσ = tt

[[t2]]
Aσ if [[b]]Aσ = ff.

Note that for a constant F :→ s, this gives [[F ()]]Aσ = FA ∈ As.

For a tuple of terms t = (t1, . . . , tm), we write [[t]]Aσ =df ([[t1]]
Aσ, . . . , [[tm]]Aσ).

Definition 3.3.1. For any M ⊆ Var, and states σ1 and σ2, σ1 ≈ σ2 (rel M)

means σ1 ¹ M = σ2 ¹ M .

11

Lemma 3.3.2 (Functionality lemma for terms). For any term t and states σ1 and

σ2, if σ1 ≈ σ2 (rel var(t)), then [[t]]Aσ1 = [[t]]Aσ2.

Proof: By structural induction on t.

3.4 Algebraic operational semantics

We will interpret WhileRA programs as many-valued state transformations, and

their meaning functions as many-valued functions on A. Our approach follows and

extends the algebraic operational semantics of [8].

Notation 3.4.1 (Many-valued functions). (a) We write F : X ⇒ Y and F : X ⇒+

Y for F : X → P(Y) and F : X → P+(Y) respectively, where P(X) and P+(X)

are (respectively) the sets of all subsets of Y , and all non-empty subsets of Y .

(b) We write Y ↑ for Y ∪ {↑}, where ‘↑’ denotes divergence.

Definition 3.4.2 (Many-valued function composition). Given many-valued func-

tions g : A ⇒ B and h : B ⇒ C, we define the composed function h ◦ g : A ⇒ C as

follows:

h ◦ g(x) = {h(y) |y ∈ g(x)}
for all x ∈ A. We write h(g(x)) for h ◦ g(x).

For the WhileRA language, we will define the meaning of a statement S to be

a state transformation:

[[S]]A : State(A) ⇒+ State(A)↑

The definition is by structural induction on S. First we define

〈|Sat|〉Aσ : State(A) ⇒+ State(A).

for atomic statements Sat:

〈|skip|〉Aσ = { σ}
〈|x := t|〉Aσ = { σ{x/[[t]]Aσ}}
〈|x :=?|〉Aσ = { σ′ | σ′(y) = σ(y) for all y 6≡ x}

12

Next we define the functions

First : Stmt → AtSt

Rest A : Stmt× State(A) → Stmt,

where, for a statement S and state σ, First(S) is an atomic statement which gives

the first step in the execution of S (in any state), and Rest A(S, σ) is a statement

which gives the rest of the execution in state σ. The definitions of First(S) and

Rest A(S, σ) proceed by structural induction on S:

(i)

First(S) =

S if S is atomic

First(S1) if S ≡ S1; S2

skip otherwise.

(ii) Rest A(S, σ) is defined as follows.

Case 1. S is atomic.

Rest A(S, σ) = skip.

Case 2. S ≡ S1; S2.

Rest A(S, σ) =

{
S2 if S1 is atomic

Rest A(S1, σ); S2 otherwise.

Case 3. S ≡ if b then S1 else S2 fi.

Rest A(S, σ) =

{
S1 if [[b]]Aσ = tt

S2 if [[b]]Aσ = ff.

Case 4. S ≡ while b do S0 od.

Rest A(S, σ) =

{
S0; S if [[b]]Aσ = tt

skip if [[b]]Aσ = ff.

Now we define the one-step computation function

CompStepA : Stmt× State(A) ⇒+ State(A)

as

CompStepA(S, σ) = 〈|First(S)|〉Aσ

13

Note that CompStepA is a many-valued function.

Finally, we construct a semantic computation tree CompTreeA(S, σ) for a

WhileRA statement S at a state σ. This tree branches according to all possible

outcomes of the one-step computation function CompStepA(S, σ). Each node is

labelled by a state σ′, with the initial state σ as the root. Each edge is labelled with

an atomic statement.

First, we need to define a bounded computation tree, CompTree bddA(S, σ, n),

which is the computation tree CompTreeA(S, σ) up to stage n, by recursion on n:

Base case: CompTree bddA(S, σ, 0) consists of only the root node:

µ´
¶³

σ

Induction step: (i) For S atomic, there are 3 cases:

1. S ≡ skip. Then CompTree bddA(S, σ, n + 1) is:

?

µ´
¶³

µ´
¶³

σ

σ

skip

2. S ≡ x := t. Then CompTree bddA(S, σ, n + 1) is:

?

µ´
¶³

µ´
¶³

σ

σ{x/[[t]]Aσ}

x := t

14

3. S ≡ x :=?. Then CompTree bddA(S, σ, n + 1) is:

?

µ´
¶³

µ´
¶³

Z
Z

Z
Z

Z
Z

Z
Z~

µ´
¶³

À

µ´
¶³

½
½

½
½

½
½

½
½=

µ´
¶³

.

σ

σ′ σ′′ σ′′′

x :=?x :=? x :=?

The leaves are the outcomes of the execution of S, i.e. the set { σ′, σ′′, σ′′′, . . . }
of all states which are variants of σ at x. Each edge is labelled by S.

(ii) For S not atomic, CompTree bddA(S, σ, n + 1) is formed by attaching the

subtree CompTree bddA(Rest A(S, σ), σ′, n) to each σ′ ∈ 〈|First(S)|〉Aσ:

µ´
¶³

¡
¡

¡
¡

¡
¡

@
@

@
@

@
@

CompTree bddA(Rest A(S, σ), σ′, n)

σ′

From the construction, any actual computation of statement S at state σ cor-

responds to a path from the root. There are two possibilities for any such path:

(1) finite, ending in a leaf labelled with a final state of the computation; and (2)

infinite, indicating divergence. Now we can define

CompTreeA(S, σ) =
∞⋃

n=0

CompTree bddA(S, σ, n)

where ‘
⋃∞

n=0’ is a suitable “limiting” operation on increasing sequence of trees. The

following lemma is needed for the semantics of WhileRA statements (Theorem 3.5.1).

Lemma 3.4.3. Let n > 0.

(a) If S ∈ AtSt, then CompTree bddA(S, σ, n) is formed by attaching to the root

{σ}, the leaf set 〈|S|〉Aσ and edges between them labelled with S;

(b) If S ≡ S1; S2, then CompTree bddA(S, σ, n) is formed by attaching subtrees

CompTree bddA(S2, σ
′, n −m) to each leaf σ′ of CompTree bddA(S1, σ, n),

of depth m ≤ n;

15

(c) If S ≡ if b then S1 else S2 fi, then CompTree bddA(S, σ, n) is formed by

attaching to the root {σ}, the subtree CompTree bddA(Si, σ, n− 1), where if

[[b]]Aσ = tt then i = 1, else i = 2;

(d) If S ≡ while b do S1 od, then CompTree bddA(S, σ, n) is formed by attaching

to the root {σ}, the subtree CompTree bddA(S1; S, σ, n − 1) if [[b]]Aσ = tt;

nothing, otherwise.

Proof:

See Appendix 1 for details.

3.5 Semantics of WhileRA statements

We define the i/o semantics of WhileRA statements

[[S]]A : State(A) ⇒+ State(A)↑

as follows: [[S]]Aσ consists of:

(1) the set of states of all leaves of CompTreeA(S, σ), and also

(2) ↑, provided that CompTreeA(S, σ) has an infinite path.

This definition satisfies the usual desirable properties, as shown by:

Theorem 3.5.1. (a) For S atomic, [[S]]A = 〈|S|〉A, i.e.,

[[skip]]Aσ = { σ}
[[x := t]]Aσ = { σ{x/[[t]]Aσ}}
[[x :=?]]Aσ = { σ′ | σ′(y) = σ(y) for all y 6≡ x}

(b)

[[S1; S2]]
Aσ ' [[S2]]

A([[S1]]
Aσ).

Note the use of multi-valued function composition (Definition 3.4.2) here.

(c)

[[if b then S1 else S2 fi]]Aσ '
{

[[S1]]
Aσ if [[b]]Aσ = tt

[[S2]]
Aσ if [[b]]Aσ = ff

(d)

[[while b do S od]]Aσ '
{

[[S; while b do S od]]Aσ if [[b]]Aσ = tt

{σ} if [[b]]Aσ = ff

16

Proof: The proof uses Lemma 3.4.3. See Appendix 2 for details.

Definition 3.5.2. For M ⊆ Var and U1, U2 ⊆ State(A)↑:

(a) U1 ⊆ U2 (rel M) means:

(i) ∀ σ1 ∈ U1 ∃ σ2 ∈ U2, σ1 ≈ σ2 (rel M), and

(ii) ↑∈ U1 ⇒ ↑∈ U2.

(b) U1 ≈ U2 (rel M) means: U1 ⊆ U2 (rel M) and U2 ⊆ U1 (rel M).

Definition 3.5.3. For M ⊆ Var and trees T1, T2 with nodes labelled by states:

T1 ≈ T2 (rel M) means that there is an isomorphism between T1 and T2, such that

for every pair of corresponding nodes labelled σ1 and σ2, σ1 ≈ σ2 (rel M).

Lemma 3.5.4. Suppose Var(S) ⊆ M . If σ1 ≈ σ2 (rel M) then

CompTree bddA(S, σ1, n) ≈ CompTree bddA(S, σ2, n)(rel M).

Proof: Induction on n. For the case S ≡ x := t, use the functionality lemma (3.3.2)

for terms.

Lemma 3.5.5 (Functionality lemma for semantic computation trees). Suppose

Var(S) ⊆ M . If σ1 ≈ σ2 (rel M) then

CompTreeA(S, σ1) ≈ CompTreeA(S, σ2)(rel M).

Proof: From Lemma 3.5.4.

Lemma 3.5.6 (Functionality lemma for WhileRA statements). Suppose Var(S) ⊆
M . If σ1 ≈ σ2 (rel M) then [[S]]Aσ1 ≈ [[S]]Aσ2 (rel M).

Proof: From the functionality lemma (3.5.5) for semantic computation trees.

3.6 Semantics of WhileRA procedures

Now let a : u, b : v, c : w. If

P ≡ proc in a out b aux c begin S end

17

is a procedure of type u → v, then its meaning is a function

[[P]]A : Au ⇒ Av↑.

We write PA for [[P]]A. For a ∈ Au, let σ be any state on A such that σ[a] = a,

σ[b] = δv, and σ[c] = δw, where δv and δw are the default tuples of type v and w.

Then

PA(a) = {σ′[b] | σ′ ∈ [[S]]Aσ} ∪ {↑ | ↑∈ [[S]]Aσ}.
The following lemma shows that PA is well defined.

Lemma 3.6.1 (Functionality lemma for procedures). Suppose

P ≡ proc in a out b aux c begin S end.

If σ1 ≈ σ2 (rel a), then [[S]]Aσ1 ≈ [[S]]Aσ2 (rel b).

Proof: From the functionality lemma (3.5.2) for statements.

3.7 The language GC

Another nondeterministic computational model is the Guarded Command Language

GC(Σ) introduced by Edsger W.Dijkstra [1]. The class of statements S is generated

by the rules

S ::= skip ‖ x := t ‖ S1; S2 ‖ if . . . fi ‖ do . . . od.

The nondeterminism here arises not from random assignments, but from the two

constructs which replace the conditional and iteration in WhileRA:

(i) the guarded command conditional

if b1 → S1 | . . . | bk → Sk fi (3.1)

(ii) the guarded command iteration

do b1 → S1 | . . . | bk → Sk od (3.2)

where k ≥ 0, and bi are Σ-terms of sort bool.

We give only informal semantics for GC, since, as we will see, it can be replaced

by WhileRA(bool).

18

(i) For the guarded command conditional (3.1), if any of the boolean tests is true,

then one of the corresponding statements is executed; otherwise, the procedure

halts. (Hence, for k = 0, if fi corresponds to halt.)

(ii) For the guarded command iteration (3.2), repeatedly execute any one of the

statements for which the corresponding boolean test is true, until none of these

boolean tests is true. (Hence, for k = 0, do od corresponds to skip.)

3.8 WhileRA∗ computability

Recall that While(Σ) is the WhileRA(Σ) language without random assignments.

Then a WhileN(Σ) procedure is a While(ΣN) procedure in which the input and

output variables have sorts in Σ (but the auxiliary variables may have sort nat).

Similarly a While∗(Σ) procedure is a While(Σ∗) procedure in which the input and

output variables have sorts in Σ (but the auxiliary variables may have sort nat or

“starred”).

Thus WhileN(Σ) and While∗(Σ) procedures P define functions PA on Σ-

algebras A.

In the same way, we define WhileRA∗(Σ) procedures as WhileRA(Σ) procedures

in which the auxiliary variables (only) may be of sort nat or starred.

3.9 Equivalence of WhileRA(bool) and GC

WhileRA(bool) is the restriction of the WhileRA language to random assignments on

booleans only. Its semantic computation tree shares the property with GC that at

each level, there are only finitely many leaves. This leads us to the question: Is

WhileRA(bool) equivalent to GC? In order to answer these questions precisely, we

must first give some definitions.

Definition 3.9.1. Let L1(Σ) and L2(Σ) be two programming languages over Σ.

(i) L1(Σ) ¹ L2(Σ) means that L1(Σ) can be compiled in L2(Σ), i.e., there exists

an effective transformation of L1-procedures to L2-procedures, which preserves

semantics.

(ii) L1(Σ) ≈ L2(Σ) means: L1(Σ) ¹ L2(Σ) and L2(Σ) ¹ L1(Σ).

19

Definition 3.9.2. For any Σ-language L and Σ-structure A, L(A) is the set of all

L-computable functions over A.

Remark 3.9.3. (i)L1(Σ) ¹ L2(Σ) =⇒ L1(A) ⊆ L2(A).

(ii)L1(Σ) ≈ L2(Σ) =⇒ L1(A) = L2(A)

Theorem 3.9.4 (Equivalence Theorem).

WhileRA(bool)(Σ) ≈ GC(Σ)

Proof: (1) First we will prove WhileRA(bool)(Σ) ¹ GC(Σ), by defining an effective

transformation of WhileRA(bool) procedures to GC procedures. Clearly, the state-

ments skip, x := t, and S1; S2 can be translated to themselves. Next, the conditional

if b then S1 else S2 fi

is translated into the GC statement

if b → S1 | ¬b → S2 fi.

Also the iteration

while b do S od

is translated into the GC statement

do b → S | ¬b → skip od.

Finally, we translate the random boolean assignment b :=? into the following GC

procedure:

proc out b : bool

begin

if true → b := true

true → b := false

fi

end

This completes the proof in the one direction.

(2) We must prove that GC(Σ) ¹ WhileRA(bool)(Σ). We do this in two stages.

Stage 1: Show that

GC(Σ) ¹ WhileRA(bool)(Σ) + halt

20

We must transform the two kinds of guarded commands (3.1) and (3.2) into WhileRA(bool)

procedures. We illustrate (3.1) with the simple case k = 2:

if b1 → S1 | b2 → S2 fi

which is translated into the following WhileRA(bool) procedure

proc aux b : bool

begin

if b1 ∧ ¬b2

then S1

else if ¬b1 ∧ b2

then S2

else if b1 ∧ b2

then b :=?;

if b then S1

else S2

fi

else halt

fi

fi

fi

end

Likewise, we illustrate (3.2) with the simple case

do b1 → S1 | b2 → S2 od

21

which is translated as:

proc aux b : bool

begin

while b1 ∨ b2 do

if b1 ∧ ¬b2 then S1

else if¬b1 ∧ b2 then S2

else b :=?;

if b then S1

else S2

fi

fi

fi

od

end

Similar procedures can be used to simulate the more general case where k > 2.

Stage 2: Show that

WhileRA(bool)(Σ) + halt ¹ WhileRA(bool)(Σ).

By Mirkowska’s theorem [6, 2, 4], every while program can be efficiently transformed

into one with a single while loop (with additional boolean variables), i.e.,

While(Σ) ¹ While1(Σ), (3.3)

where While1 is the set of While procedures with only one ‘while’ loop. This trans-

formation can be easily modified so as to show

While(Σ) + halt ¹ While1(Σ) (3.4)

(some details are given in Lemma 3.9.5 below), and similarly:

WhileRA(bool)(Σ) + halt ¹ WhileRA(bool)(Σ). (3.5)

Combining stages 1 and 2, we get:

GC(Σ) ¹ WhileRA(bool)(Σ),

proving the theorem.

22

Remark 3.9.5. (Proof of Mirkowska’s Theorem for WhileRA + halt). We give an

outline of the proof for (3.4), modifying Mirkowska’s proof for (3.3). More details

of the latter can be found in [6, 2, 4]. Consider a While program S.

First, rewrite S as a ‘goto’ program S ′ ≡

1 : S1;

2 : S2;
...

L : SL

with L elementary statements labelled by the integers 1, . . . , L. Each Si is either

(1) an assignment, or (2) a conditional jump ‘if b then goto j else goto k’, where b

is some boolean term, and 1 ≤ j, k ≤ L, or (3) halt.

Now represent the labels 1, . . . , L by K-tuples of truth values, where K =

dlog(L + 1)e:

1̄ ≡ (true, true, . . . , true)

2̄ ≡ (true, true, . . . , false)
...

L̄ ≡ (true, false, . . . , false)

L + 1 ≡ (false, false, . . . , false).

Here L + 1 will represent the ‘halt’ condition. Also introduce a variable (actually

a K-tuple of boolean variables) for the labels:

label = (b1, b2, · · · , bK) : boolK

and a boolean variable over.

Finally, rewrite S ′ as a While(Σ) statement S̃, which first initializes the variable

over to false, and then has a single loop containing (using some obvious pseudo-

code) a huge case statement:

23

while not over do

case label of

1̄ : S̃1;

2̄ : S̃2;
...

L̄ : S̃L;

L + 1 : over := true

esac

od

where for i = 1, . . . , L:

(1) if Si is an assignment, then

S̃i ≡ Si; label := i + 1,

(2) if Si is if b then goto j else k fi, then

S̃i ≡ label := if b then j̄ else k̄ fi,

(3) if Si ≡ halt, then

S̃i ≡ label := L + 1,

This is clear that S is semantically equivalent to S ′, which in turn is semantically

equivalent to S.

This proves (3.4). The assertion (3.5) is proved similarly.

Remark 3.9.6. This theorem fails for WhileRA(nat), which has random assignments

on naturals, i.e.,

WhileRA(nat)(Σ) 6¹ GC(Σ).

Consider, for example, the simple WhileRA(nat) procedure

P ≡ proc out n : nat begin n :=? end

24

Suppose we try to simulate this by a GC procedure P ′ ≡

proc out n : nat

aux b : bool

begin

n := 0;

b := true

do b→ n := n + 1 | b→ b := false od

end

Then the semantic computation tree for P ′ contains an infinite path (indicating the

possibility of divergence), which does not occur in the semantic computation tree

for P . So, P ′ is not semantically equivalent to P .

In fact there is no GC procedure which simulates P . For suppose Q is such a

procedure, then the semantic computation tree for Q must (1) be finitely branching,

like all GC trees, (2) have infinitely many leaves, like the tree for P , and (3) not

have an infinite path, again like the tree for P . But these 3 conditions together

contradict König’s Lemma.

Because of the above equivalence theorem, from now on we focus our attention

on the WhileRA programming language rather than GC.

4 Representations of WhileRA semantic functions

To examine to what extent the WhileRA language and its various sublanguages

satisfy the Universal Function Theorem, we need to represent faithfully the syntax

and semantics of WhileRA computations using functions on A.

In this section, we apply the techniques of Gödel numbering and state represen-

tations. More accurately, for Gödel numbering to be possible, we need the sort nat,

and so we will investigate the possibility of representing the syntax of a standard

Σ-algebra A (not in A itself, but) in its N-standardisation AN , or (failing that) in

the array algebra A∗.

25

4.1 Gödel numbering of syntax

We assume given a family of numerical codings, or Gödel numberings, of the classes

of syntactic expressions of Σ and Σ∗, i.e., a family gn of effective mappings from ex-

pressions E to natural numbers pEq = gn(E), which satisfy certain basic properties:

(i) pEq increases strictly with the complexity of E, and in particular, the code of

an expression is larger than those of its subexpressions; (ii) sets of codes of the var-

ious syntactic classes, and of their respective subclasses, such as {ptq | t ∈ Term},
{ptq | t ∈ Terms}, etc., are primitive recursive; (iii) we can go primitive recursively

from codes of expressions to codes of their immediate subexpressions, and vice versa.

This means that we can primitive recursively simulate all operations involved

in processing the syntax of the programming language.

We will use the notation pTermq =df {ptq | t ∈ Term}, etc., for sets of Gödel

numbers of syntactic expressions.

4.2 Representation of states

Let x be a u-tuple of program variables. A state σ on A is represented (relative to

x) by a tuple of elements a ∈ Au if σ[x] = a.

The state representing function, Rep A
x : State(A)↑ → Au↑, is defined by

Rep A
x (σ) = σ[x]

and

Rep A
x (↑) = ↑ .

4.3 Representation of term evaluation

Let x be a u-tuple of variables. Let Term x(Σ) be the class of all Σ-terms with

variables among x only, and for all sorts s of Σ, let Term x,s(Σ) be the class of

such terms of sort s. Similarly we write TermTupx(Σ) for the class of all term

tuples with variables among x only, and TermTupx,v(Σ) for the class of all v-tuples

of such terms.

The term evaluation function on A relative to x, TE A
x,s : Term x,s×State(A) →

As, defined by

TE A
x,s(t, σ) = [[t]]Aσ,

26

is represented by the function, te A
x,s : pTerm x,sq× Au → As, defined by

te A
x,s(ptq, a) = [[t]]Aσ,

where σ is any state on A such that σ[x] = a. This is well defined, by the function-

ality lemma (3.3.2) for terms. In other words, the following diagram commutes:

?

-

HHHHHHHHHHHHHHHj

Term x,s × State(A)

pTerm x,sq× Au As

TE A
x,s

te A
x,s

〈gn, Rep A
x 〉

Similarly, for a product type v, we will define an evaluating function for tuples

of terms, te A
x,v : pTermTupx,vq× Au → Av, by

te A
x,v(ptq, a) = [[t]]Aσ.

4.4 Representation of the First and Rest functions

For x : u, let Stmt x be the class of statements with variables among x only, and

define

Rest A
x =df Rest A ¹ (Stmt x × State(A)).

(see § 3.4). Then First and Rest A
x are represented by the functions

�rst : pStmtq → pAtStq
rest A

x : pStmt xq× Au → pStmt xq

27

which are defined so as to make the following diagrams commute:

?

-

-

?

Stmt

pStmtq pAtStq

First

�rst

gn gn

AtSt

?

-

-

?

Stmt x × State(A)

pStmt xq× Au pStmt xq

Rest A
x

rest A
x

〈gn, Rep A
x 〉 gn

Stmt x

4.5 Representation of statement evaluation

For x : u, let AtSt x be the class of atomic statements with variables among x only.

The atomic statement evaluation function on A relative to x, AE A
x : AtSt x ×

State(A) ⇒+ State(A), defined by

AE A
x (S, σ) = [[S]]Aσ,

is represented by the function, ae A
x : pAtSt xq× Au ⇒+ Au, defined by

ae A
x (pSq, a) = {σ′[x] | σ′ ∈ 〈|S|〉Aσ},

28

where σ is any state such that σ[x] = a. This commutes the following diagram:

?

--
+

--
+

?

AtSt x × State(A)

pAtSt xq× Au Au

AE A
x

ae A
x

〈gn, Rep A
x 〉 Rep A

x

State(A)

Now let Stmt x be the class of statements with variables among x only. The

statement evaluation function on A relative to x, SE A
x : Stmt x × State(A) ⇒+

State(A)↑, defined by

SE A
x (S, σ) = [[S]]Aσ,

is represented by the function, se A
x : pStmt xq× Au ⇒+ Au↑, defined by

se A
x (pSq, a) = {σ′[x] | σ′ ∈ [[S]]Aσ}∪{↑ | CompTreeA(S, σ) has an infinite path}

where σ is any state on A such that σ[x] = a. This makes the following diagram

commute:

?

--
+

--
+

?

Stmt x × State(A)

pStmt xq× Au Au↑

SE A
x

se A
x

〈gn, Rep A
x 〉 Rep A

x

State(A)↑

4.6 Representation of procedure evaluation

It is a rather subtle matter to represent the class Procu → v of all WhileRA procedures

of type u → v, since it requires a coding for arbitrary tuples of auxiliary variables.

29

For now we consider a restricted version, for the subclass of Procu → v with auxiliary

variables of a given fixed type.

So let a, b, c be pairwise disjoint lists of variables, with types a : u, b : v

and c : w. Let Proc a, b, c be the class of WhileRA procedures of type u → v, with

declaration in a : u out b : v aux c : w. The procedure evaluation function on A

relative to a, b, c, PE A
a, b, c : Proc a, b, c × Au ⇒ Av↑, defined by

PE A
a, b, c(P, a) = PA(a),

is represented by the function, pe A
a, b, c : pProc a, b, cq× Au ⇒ Av↑, defined by

pe A
a, b, c(pPq, a) = PA(a).

This makes the following diagram commute:

?

--

HHHHHHHHHHHHHHHj

HHHHHHHHHHHHHHHj

Proc a, b, c × Au

pProc a, b, cq× Au Av↑

PE A
a, b, c

pe A
a, b, c

〈gn, idAu〉

In the next section, we will investigate the computability of these sematic rep-

resenting functions.

5 WhileRA computability and universality

In this section, we will explore the problem of the existence of a Universal Function

Theorem (UFT) for WhileRA: Is there a universal WhileRA procedure of a given

type that can compute all the WhileRA computable functions on A? We will investi-

gate this problem in two cases: (1) for WhileRA(nat/bool), i.e., WhileRA with random

assignments restricted to sorts nat and/or bool; (2) for the unrestricted WhileRA

language.

30

5.1 Term evaluation property

In order to study further the computability of the representing functions given in

Section 4, we must make an assumption on the algebra.

Definition 5.1.1 (Term evaluation property). The algebra A has the term evalua-

tion property (TEP) if and only if for all x and s, the term evaluation representing

function te A
x,s is While computable on AN .

Remark 5.1.2. (a) Many well-known varieties (i.e., equationally axiomatisable

classes of algebras) have the TEP; for example, semigroups, groups and rings with

or without unity. This follows from the effective normalizability of the terms of these

varieties. It is therefore a very reasonable assumption to make on algebras, as in

the UFT for WhileRA(nat/bool) (Theorem 5.4.3 below), where we actually prove the

equivalence of the TEP with the UFT. For more on the UFT, see [8, Examples 4.5].

(b) Also, by [8, Corollary 4.7], te A
x,s is always While∗ computable on AN . Therefore,

for any algebra A, the algebra A∗ always has the TEP.

5.2 Locality of computation

A programming language L over a signature Σ is said to satisfy locality of compu-

tation if for any L-procedure P : u → v, and any (N-)standard Σ-algebra A, the

output of PA applied to any input in A is contained in the subalgebra of A generated

by that input.

In [8, §3.8], it is shown that the While language satisfies locality of computation.

The issue of locality of computation is important in investigating the UFT for

various languages, as we will see below (§5.3 and §5.4). For now, we point out that

(1) Full WhileRA clearly does not satisfy locality, since random assignments for

arbitrary sorts take us, in general, out of the subalgebra generated by the

input.

(2) However WhileRA(nat/bool) does satisfy locality. The proof extends that in [8]

for While, by noting that for (N-)standard algebras, random assignments for

sorts bool and nat do not take us out of the subalgebra generated by the input,

since all of B and N are contained in any such subalgebra.

31

5.3 Computability of semantic representing functions

By examining the definitions of the various semantic functions in Section 3, we can

infer the computability of the corresponding representing functions, as shown below

(Theorem 5.3.4).

Remark 5.3.1 (Procedure calls; Many-valued composition). (a) In the fragments

of program code below, we use extensions of the WhileRA (etc.) languages by (non-

recursive) procedure calls

x := P (t)

where t is a term tuple of the same type as the input variables. This can be elimi-

nated by the well-known method of replacing the procedure’s name P by its body

[TZ00, Sec. 3.9] which also works for many-valued procedures.

(b) Also, many-valued composition of procedures (see Definition 3.4.2) can be

handled similarly, e.g.

x := P1(P2(t))

can be rewritten as

z := P2(t);

x := P1(z)

and the procedure calls can then be eliminated as in part (a).

Lemma 5.3.2. The function �rst : N→ N is primitive recursive, and hence While

computable on AN , for any standard Σ-algebra A [8, §4.7].

Lemma 5.3.3. Let x be a tuple of program variables and A a standard Σ-algebra.

(a) rest A
x is While computable in 〈te A

a,s | s ∈ Sort(Σ)〉 on AN .

(b) ae A
x is WhileRA computable in 〈te A

a,s | s ∈ Sort(Σ)〉 on AN .

(c) se A
x is WhileRA computable in ae A

x and rest A
x on AN .

(d) pe A
a, b, c is While computable in se A

x on AN , where x ≡ a, b, c.

Proof:

We prove parts (a)–(d) by examining the definitions of the semantic functions

and giving informal algorithms.

32

(a) The semantic definition of Rest A is a structural recursion on statements with

one inductive case S ≡ S1; S2, and the other three as basic cases. Therefore,

the representing function rest A
x is definable by course of values recursion on N.

Here we need 〈te A
a,s | s ∈ Sort(Σ)〉 to evaluate the boolean tests.

(b) With the input pSq and a = (a1, · · · , an) ∈ Au (where u = s1 × · · · × sn), to

evaluate ae A
x (pSq, a), there are 3 cases, for the 3 kinds of atomic statements,

which can be distinguished primitive recursively in pSq:

(i) S ≡ skip, then output = {a};
(ii) S ≡ y := t, then output = {(b1, · · · , bm)}, where for i = 1, · · · ,m:

bi =

{
te A

x,si
(ptiq, a) if xi is in the tuple y,

ai otherwise.

(iii) S ≡ xi :=?, then output = {(a1, · · · , ai−1, b, ai+1, · · · , an) | b ∈ Asi
}.

It follows that ae A
x is WhileRA computable in 〈te A

a,s | s ∈ Sort(Σ)〉 on AN .

(c) The following procedure computes se A
x .

proc in s : nat, a : u

out b : u

begin

while s 6= pskipq do

s, a := rest A
x (s, a), ae A

x (�rst(s), a);

od

b := a

end

Note that the while loop iterates single steps in the (nondeterministic) updating

of the “snapshot” (s,a), where s and a represent the current statement and

current state respectively. The computation terminates if and when s = pskipq.

(d) Finally, pe A
a, b, c(pPq, a) is easily computable from se A

x (pSq, x), where x =

(a, b, c).

Theorem 5.3.4 (Computability theorem for the semantic representing functions).

Under the TEP assumption:

33

(a) ae A
x is WhileRA computable, and rest A

x is While computable, on AN ;

(b) se A
x is WhileRA computable on AN ;

(c) pe A
a, b, c is WhileRA computable on AN .

Proof: From Lemma 5.3.3, and transitivity of relative computability [8, Lemma

3.32].

5.4 Universal procedure for WhileRA(nat/bool)

We use the notation WhileRA(nat/bool) for any of the following: WhileRA(nat),

WhileRA(bool), or WhileRA(nat,bool), i.e., the WhileRA language with random assign-

ments restricted (respectively) to variables of sorts nat, bool, or both.

First we must define uniform (in x) versions of ae A
x , rest A

x and se A
x . The new

definitions differ from the old in that their outputs are not sets of tuples of values,

but sets of Gödel numbers of tuples of terms in the input variables, which is made

possible by locality of computation (as discussed in §5.2).

The problem, in general, is that we cannot deal with procedures with unbounded

sequences of auxiliary variables using the procedure evaluation pe A
a, b, c(see Theorem

5.3.4). However, by locality of computation again, we can represent all the procedure

variables (including auxiliary variables) by tuples of terms in the input variables,

which can be coded by single Gödel numbers.

We will prove the UFT for WhileRA(nat/bool) (assuming the TEP). We give

the details for WhileRA(nat), but note that exactly the same reasoning holds for

WhileRA(bool) and WhileRA(nat,bool).

Definition 5.4.1 (Uniform versions of the semantic representing functions). (a) The

function

aeuA : pVarTupq× pAtStq ⇒+ pTermTupq

is defined by: for any x : w and S ∈ AtSt x, we have aeuA(pxq, pSq) ⊆
pTermTupx,wq, such that for any x ∈ Aw,

te A
x,w(aeuA(pxq, pSq), x) = ae A

x (pSq, x).

34

(b) The function

restu A
a : pVarTupq× pStmtq× Au → pStmtq

is defined by: for any x : w extending a : u, S ∈ Stmt and a ∈ Au (putting

w = u× v):

restu A
a (pxq, pSq, a) = rest A

x (pSq, (a, δv
A)).

(c) The function

seu A
a : pVarTupq× pStmtq× Au → pTermTupq

is defined by: for any x : w extending a : u, S ∈ Stmt and a ∈ Au (putting

w = u× v):

seu A
a (pxq, pSq, a) = se A

x (pSq, (a, δv
A)).

Lemma 5.4.2. The function seu A
a is WhileRA(nat/bool) computable on AN , for any

standard Σ-algebra A with the TEP.

Proof:

We must show that

(i) aeuA is WhileRA(nat/bool) computable on AN .

Similar to the proof of Lemma 5.3.3 (a).

(ii) restu A
a is While computable on AN .

Similar to the proof of Lemma 5.3.3 (b). Note that to evaluate terms in the

course of computing restu A
a (e.g. boolean tests) t ∈ Term x,s, which may contain

variables in x other than a, we use (assuming x ≡ (a, y) where a : u, y : v)

te A
a,s(t

′, a), where t′ is formed from t by replacing the variables y by δv.

(iii) seu A
a is WhileRA(nat) computable in aeuA and restu A

a on A.

Similar to the proof of Lemma 5.3.3 (c).

These three results together give the desired conclusion.

Theorem 5.4.3 (Universal Function Theorem for WhileRA(nat/bool)). For any N-

standard Σ-algebra A, the following are equivalent:

(i) A has the TEP,

35

(ii) For all Σ-product types u, v, there is a WhileRA(nat/bool)(ΣN) procedure

Univu → v : pProcRA(nat/bool)
u → v q× Au ⇒+ Av↑

which is universal for WhileRA(nat/bool) procedures of type u → v on A, in the

sense that for all WhileRA(nat/bool) procedures P : u → v and a ∈ Au,

UnivA
u → v(pPq, a) ' PA(a).

Proof:

(i) ⇒ (ii) Assume A has the TEP. We give an informal description of the

algorithm represented by the procedure Univu → v. With input (pPq, a), where

P ∈ Procu → v and a ∈ Au, suppose

P ≡ proc in a out b aux c begin S end

where a : u, b : v and c : w. The output is then

te A
a,v(seu A

a (pa, b, cq, pSq, (a, δv
A, δw

A)), a), (5.1)

which is WhileRA(nat/bool) computable by Lemma 5.4.2.

(ii) ⇒ (i) This is the “easy” direction, as in the proof of [8, Theorem 4.14].

Note the use of many-valued composition in (5.1) (cf. Remark 5.3.1 (b)).

As an immediate consequence, we have:

Corollary 5.4.4 (Universal Function Theorem for WhileRA(nat)). .

If A has the TEP, then for A ∈ StdAlg (Σ) and all Σ-product types u, v, there is

a WhileRA(nat)(ΣN) procedure

UnivA
u → v : pProcRA(nat)

u → v q× Au ⇒ Av↑

which is universal for WhileRA(nat) procedures of type u → v on A, in the sense that

for all WhileRA(nat) procedures P : u → v and a ∈ Au,

UnivA
u → v(pPq, a) ' PA(a).

Corollary 5.4.5 (Universal Function Theorem for WhileRA(bool)). .

For A ∈ StdAlg (Σ) and all Σ-product types u, v, there is a WhileRA(bool)(ΣN)

procedure

UnivA
u → v : pProcRA(bool)

u → v nat×u→vq× Au ⇒ Av↑

36

which is universal for WhileRA(bool) procedures of type u → v on A, in the sense

that for all WhileRA(bool) procedures P : u → v and a ∈ Au,

UnivA
u → v(pPq, a) ' PA(a).

Corollary 5.4.6 (Universal Function Theorem for GC). .

For A ∈ StdAlg (Σ) and all Σ-product types u, v, there is a GC(Σ) procedure

UnivA
u → v : pProcu → vq× Au ⇒ Av↑

which is universal for GC procedures of type u → v on A, in the sense that for all

GC(Σ) procedures P : u → v and a ∈ Au,

UnivA
u → v(pPq, a) ' PA(a).

Proof: From the Equivalence Theorem (3.9.4).

5.5 Universal procedure for WhileRA

We now consider the WhileRA language over Σ, extending While by the random

assignment x :=? for variables x of every sort of Σ.

Since the variable x in a random assignment can have any sort s, for which

the carrier As might not be minimal (for example, As could be R), we cannot code

the possible new values of x with closed terms of sort s, and represent the output

as a term in the input variables. In other words, locality of computation fails (as

discussed in §5.2). Therefore we cannot use the method for WhileRA(nat/bool) to prove

the UFT over WhileRA.

To solve this problem, we use arrays or starred variables (cf. Section 2.4).

Definition 5.5.1. Suppose Sort(Σ) = {s1, . . . , sk}.
(i) A sequence of variables is in Σ-standard form if it has the form

c∗1, t1, c
∗
2, t2, . . . , c

∗
k, tk,

where c∗i : s∗i , ti : si.

(ii) A procedure is in Σ-standard auxiliary form if its auxiliary variables are in

Σ-standard form.

37

Let Proc∗u → v(Σ) be the class of WhileRA∗ procedures of type u → v.

Lemma 5.5.2. Any WhileRA∗ procedure P on A can be effectively transformed

into a WhileRA∗ procedure P̂ of the same type in Σ-standard auxiliary form.

Proof: Suppose

P ≡ proc in a out b aux c begin S end

where a : u, and b : v. Note that c could include starred variables.

It is clear how to code a finite sequence of (starred and unstarred) variables of

each sort by a single starred variable of that sort [4, Chapter 6]. Therefore, for each

sort si ∈ Sort(Σ), we have a starred variable ĉi
∗, and an unstarred variable ti (for

“temporary”, to help with random assignments, as we will see).

Assignments to variables of sort s or s∗ can be simulated by Updates in an

obvious way. For random assignment, consider (for simplicity) the case of a random

assignment to a simple variable of sort si: x :=?. Suppose x is coded as ĉ∗i [j], then

we simulate this random assignment with the pair of statements:

ti := ?;

ĉ∗i := UpdateA
si
(ĉ∗i , j, ti).

Similarly, a random assignment to a starred variable can be simulated with Updates

using a loop.

In this way, we effectively transform P into a procedure in Σ-standard auxiliary

form

P̂ ≡ proc in a out b aux ĉ begin Ŝ end

where ĉ ≡ ĉ∗1, t1, ĉ
∗
2, t2, . . . , ĉ

∗
k, tk.

Theorem 5.5.3 (Universal Function Theorem for WhileRA∗). For A ∈ StdAlg (Σ)

and all Σ-product types u, v, there is a WhileRA∗ procedure

Univu → v : pProc∗u → vq× Au ⇒ Av↑

which is universal for WhileRA∗ procedures of type u → v on A, in the sense that

for all P ∈ Proc∗u → v and a ∈ Au,

UnivA
u → v(pPq, a) ' PA(a).

38

Proof:

Let P be any WhileRA∗ procedure of type u → v. By Lemma 5.5.2, we effec-

tively transform P to a procedure P̂ ∈ Proc∗u → v in Σ-standard auxiliary form

P̂ ≡ proc in a out b aux ĉ begin Ŝ end

where ĉ : ŵ (say).

By Theorem 5.3.4, there is a WhileRA∗ procedure pe A
a, b, ĉ which is universal for

While∗RA procedures of type u → v with auxiliary variables of type ŵ. The required

universal WhileRA∗ procedure for type u → v,

Univu → v : pProcu → vq× Au ⇒ Av↑

cam then be defined by

Univu → v ≡ pe a, b, ĉ.

Note that we have proved the Universal Function Theorem for WhileRA∗, not

WhileRA. We return to this point in Section 7.

6 WhileRA semicomputability

The notion of recursive enumerability and While semicomputability was generalised

to many-sorted algebras in [8]. We now consider the question: Is WhileRA semi-

computability equivalent to While semicomputability? In other words:

Given a WhileRA(Σ) procedure P and standard Σ-algebra A, is there a While(Σ)

procedure with the same halting set as P in A? (The concept of “halting set” will

be explained below.) We will consider this question separately for WhileRA(bool),

WhileRA(nat), and “full” WhileRA.

6.1 WhileRA computability

Before exploring WhileRA semicomputability, we review WhileRA computability.

We distinguish two types of WhileRA functions on A:

39

(i) multi-valued functions,

F : Au ⇒ Av↑,

(ii) single-valued functions, i.e., partial functions

f : Au ⇀ Av.

Actually, a single-valued function is a special case of a multi-valued function.

Definition 6.1.1 (WhileRA computability). Let P : u → v be a WhileRA proce-

dure.

(i) A multi-valued function F : Au ⇒+ Av↑ is WhileRA computable on A by P if

F = PA.

(ii) A single-valued function f : Au ⇀ Av is WhileRA computable on A by P if

for any a ∈ Au,

PA(a) =

{
{f(a)} if f(a) ↓
{↑} if f(a) ↑.

Before tackling the question about WhileRA semicomputability, we first ask

whether random assignments enhance the computing power of While(A) for single-

valued functions on any standard algebra A, i.e., for any single-valued WhileRA

computable (partial) function f : Au ⇀ Av, is f While computable?

The answer is “Yes”. We will prove it as follows.

Theorem 6.1.2. For any A ∈ StdAlg(Σ) and any single-valued function f : Au ⇀

Av, if f is WhileRA computable, then f is While computable.

Proof: By replacing all random assignments in the WhileRA procedure with assign-

ments of default values of the same sort using the Instantiation Assumption (2.1.10),

we effectively construct a While procedure which must also compute f .

Remark 6.1.3. There are two notions of deterministic computation [9, Remark

3.2.6]: (i) strong deterministic computation, the common concept, in which each

step of the computation is determinate; and (ii) weak deterministic computation, in

which the output (or divergence) is uniquely determined by the input, but the steps

in the computation are not necessarily determinate.

In this sense, a single-valued WhileRA function results from a weak determinis-

tic computation. Hence Theorem 6.1.2 indicates that (weak) WhileRA determinism

is equivalent to (strong) While determinism.

40

6.2 Definition of WhileRA Semicomputability

We first clarify the definition of WhileRA semicomputability for nondeterministic

languages. Since there exist many computation sequences for a given input, we have

two possible definitions of WhileRA semicomputability. We say that a relation R is

WhileRA semicomputable if it is the halting set of a WhileRA procedure, which can

be defined as either (1) the set of inputs for which all computation sequences halt,

or (2) the set of inputs for which some computation sequence halts.

The second definition turns out to be more tractable mathematically, so we

choose to work with it.

Definition 6.2.1. Let P be a WhileRA procedure, with input variables a : u. The

halting set of P on A is the set of tuples a ∈ Au such that when a is initialised to a,

then execution of P halts for some sequence of values for the random assignments.

Definition 6.2.2. A relation on A is WhileRA semicomputable on A if it is the

halting set of a WhileRA procedure on A.

Since we are only concerned with the domains or halting sets of procedures, we

will ignore their output variables (or assume they have been re-labelled as auxiliary

variables).

6.3 WhileRA(bool) Semicomputability

In this section, we will show that, given a WhileRA(bool) procedure

P ≡ proc in a aux c begin S end, (6.1)

(with a : u and c : w), there is a WhileN procedure with the same halting set as P .

For x ≡ a, c in (6.1), we define a function isleaf A
x (pSq, a, n), which tests whether

any leaves, indicating terminating computations, occur in the semantic computation

tree for S with input a, by a depth of n.

Definition 6.3.1. The function

isleaf A
x : pStmt xq× Au × N ⇒ B

is defined by tail recursion:

Base case: isleaf A
x (pSq, a, 0) = ff.

Inductive step:

41

(i) for S atomic, isleaf A
x (pSq, a, n + 1) = tt

(ii) for S not atomic, if First(S) is not a random assignment, then

isleaf A
x (pSq, a, n + 1) = isleaf A

x (rest A
x (pSq, a), ae A

x (First(pSq, a)), n),

otherwise, if First(S) ≡ b :=? then

isleaf A
x (pSq, a, n + 1) = isleaf A

x (rest A
x (pSq, a), a{b/tt}, n)

or isleaf A
x (rest A

x (pSq, a), a{b/ff}, n).

where if x ≡ (x1, · · · , xn), a ≡ (a1, · · · , an) and b ≡ xi (1 ≤ i ≤ n), then a{b/tt} =

(a1, · · · , ai−1, tt, ai+1, · · · , an), and similarly for a{b/ff}.

Lemma 6.3.2. The function isleaf A
x is While computable on AN .

Proof: This follows from the While computability of �rst, rest A
x and ae A

x (Lemmas

5.3.1 and 5.3.2, and Theorem 5.3.3).

Theorem 6.3.3 (WhileRA(bool) Semicomputability Theorem). .

Let A be a standard Σ-algebra with the TEP. For any WhileRA(bool) procedure P ,

there is a WhileN procedure P ′ with the same halting set on A as P .

Proof: Here is an informal algorithm for P ′. With P and S as in (6.1), and input a,

test isleaf A
x (pSq, (a, δw), n) for n = 0, 1, 2, · · · . Halt if and when this gives a result

of tt. More formally, P ′ can be defined as follows.

proc in a : u

aux n : nat, c : w, continue : bool

begin

n := 0;

continue := true;

while continue do

if isleaf A
x (pSq, (a, δw), n)

then continue := false

else n := n + 1

fi

od

end

42

Since the function isleaf A
x is While computable on AN by Lemma 6.3.2, its call

in the above procedure can be eliminated, resulting in a WhileN procedure (see

Remark 5.3.1 (a)).

Remark 6.3.4. The proof actually gives an algorithm for a transformation

P 7→ P ′

of a WhileRA(bool)(Σ) procedure P to a WhileN(Σ) procedure P ′ with the same

halting set as P , on any standard Σ-algebra with TEP. This transformation is

uniform relative to the term evaluation subroutine.

Note the use of WhileN, rather than While, semicomputability. We return to

this point in Section 7. In any case, we have:

Corollary 6.3.5. For any N-standard Σ-algebra A with the TEP, WhileRA(bool)

semicomputability is equivalent to While semicomputability on A.

6.4 WhileRA(nat) Semicomputability

In the this section, we turn to WhileRA(nat) semicomputability. The method in

the proof of Theorem 6.3.3 cannot be applied directly to WhileRA(nat), since with

random assignments to nat, the semantic computation tree has (computably) infinite

branching, causing a problem with the definition of isleaf A
x .

We solve this problem by dovetailing the traversal of nodes. So at stage n,

we only consider the finite set of nodes that are not only of depth ≤ n, but also

(hereditarily, up to the root) among the first n children of the parent nodes. The

predicate isleaf A
x (pSq, n) is re-defined so as to search only these nodes at stage n.

(We omit details.)

From this we can prove, in exactly the same way as for Theorem 6.3.3:

Theorem 6.4.1 (WhileRA(nat) Semicomputability Theorem). .

Let A be an N-standard Σ-algebra with the TEP. For any WhileRA(nat) procedure

P , there is a While procedure P ′ with the same halting set on A as P .

Corollary 6.4.2. For any N-standard Σ-algebra A with the TEP, WhileRA(nat)

semicomputability is equivalent to While semicomputability on A.

43

Corollary 6.4.3. For any N-standard Σ-algebra A with the TEP, WhileRA(nat,bool)

semicomputability is equivalent to While semicomputability on A.

Remark 6.4.4. By similar reasoning, the same result holds for languages WhileRA(s)

over any standard A with the TEP, with random assignments on sort s only, where

the carrier As is minimal, since the elements of As can then be (While) effectively

enumerated.

6.5 WhileRA Semicomputability

In this sections, we turn to (unrestricted) WhileRA, and ask: for any standard (or

N-standard) Σ-algebra A with the TEP, and WhileRA procedure P , is there a While

procedure with the same halting set on A? We will show that the answer is negative

in general. For our counterexample, we actually work with computations over A∗.

First we must introduce another notion of semicomputability: projective While

semicomputability. The definition is taken from [8].

Definition 6.5.1. R is projectively While(Σ) semicomputable on A if, and only if,

R is a projection of a While(Σ) semicomputable relation on A.

Definition 6.5.2. R is projectively While∗(Σ) semicomputable on A if, and only if,

R is a projection on A of a While(Σ∗) semicomputable relation on A∗.

Lemma 6.5.3. On any standard Σ-algebra with the TEP,

WhileRA∗ semicomputability ⇐⇒ projective While∗ semicomputability.

Proof: A proof is given in [8, Theorem 5.75], using Engeler’s Lemma.

Lemma 6.5.4. On any standard Σ-algebra with the TEP,

projective While∗ semicomputability
⇐=
6=⇒ While∗ semicomputability.

Proof: A counterexample for the direction “=⇒” is given in [8, § 6.2].

Theorem 6.5.5 (WhileRA Semicomputability Theorem). There is a standard sig-

nature Σ, and a standard Σ-algebra A, and a relation on A∗ which is WhileRA

semicomputable, but not While semicomputable.

44

Proof: By Lemmas 6.5.3 and 6.5.4 applied to A∗.

Remark 6.5.6. (a) The same counterexample for Lemma 6.5.4 also works for The-

orem 6.5.5.

(b) This counterexample was only obtained by considering array algebras. We return

to this point in the next section.

7 Conclusion

In this paper, we have studied nondeterministic languages over abstract many-sorted

algebras, specifically (1) the WhileRA language, which extends the While language

with random assignments, as well as its sublanguage WhileRA(nat/bool) formed by

random assignments to nat and/or bool; (2) the guarded command language GC,

which is equivalent to WhileRA(bool). The investigation was made in two directions:

generalizing the Universal Function Theorem for deterministic languages in [8] to the

nondeterministic case, and examining semicomputability for such nondeterministic

languages.

An interesting aspect of this investigation is the extension of algebraic opera-

tional semantics [8] by the use of many-valued semantic functions. Instead of the

computation sequences used in the deterministic languages, we use semantic compu-

tation trees to indicate the computations of WhileRA statements, and multi-valued

functions to represent the semantics of WhileRA procedures.

Many questions concerning these issues remain open. To name some of them:

(1) For the nondeterministic WhileRA language, does the UFT hold for procedures

without arrays variables? (See Theorem 5.5.3 and the comment following it.)

(2) Does the result

WhileRA(bool) semicomputability ⇐⇒ While semicomputability

also hold for non-N-standard algebras? (See Corollary 6.3.5.)

(3) Our counterexample to the equivalence

WhileRA semicomputability ⇐⇒ While semicomputability

(Theorem 6.5.5) uses random assignments to array variables (see Remark 6.5.6 (b)).

Can one find a counterexample with random assignments to simple variable only?

45

(4) In order to focus on the problems at hand, we have avoided issues of partiality by

assuming that the algebras are total, i.e., all the function symbols of the signature

are interpreted as total functions. With partial algebras (as studied, for example,

in [9] and [5]), subtle problems arise in connection with the semantics. We predict

that our main results hold also in that case; however, this should be investigated.

Appendix. Proofs omitted from previous sections

A1. Proof of Lemma 3.4.3.

Proof:

(a) It is trivial by the definition of CompTree bddA.

(b) We prove it by two cases.

Case 1: S1 ∈ AtSt.

By the definition, CompTree bddA(S, σ, n) is formed by attaching to the root {σ}
the subtree CompTree bddA(Rest A(S, σ), σ′, n−1), for each σ′ ∈ CompTreeA(S, σ).

Since in the case that S1 is atomic,

CompTreeA(S, σ) = 〈|First(S)|〉Aσ = 〈|First(S1)|〉Aσ = 〈|S1|〉Aσ,

and Rest A(S, σ) = S2, what we want turns to be that CompTree bddA(S, σ, n) is

formed by attaching to the root {σ} the subtree CompTree bddA(S2, σ
′, n− 1), for

each σ′ ∈ 〈|S1|〉Aσ.

By (a), CompTree bddA(S1, σ, n) is a one-step tree with each leaf σ′ ∈ 〈|S1|〉Aσ,

with the depth of 1. Therefore (b) is proved for this case.

Case 2: S1 is not atomic. We use induction on n to prove this.

Base case: n = 1.

By the definition, CompTree bddA(S, σ, 1) is formed by attaching to the root {σ}
the subtree CompTree bddA(Rest A(S, σ), σ′, 0), for each σ′ ∈ CompStepA(S, σ),

i.e., attaching to the root {σ} the node {σ′} for each σ′ in CompStepA(S, σ).

Since S1 is not atomic, CompTree bddA(S1, σ, 1) has no leaf. Therefore, (b)

amounts to saying that CompTree bddA(S, σ, 1) is formed by

46

CompTree bddA(S1, σ, 1), i.e., attaching to the root {σ} the node {σ′} for each

σ′ inCompStepA(S1, σ).

Since S ≡ S1; S2,

CompStepA(S, σ) = 〈|First(S)|〉Aσ = 〈|First(S1)|〉Aσ = CompStepA(S1, σ).

So (b) is proved for the base case.

Inductive step:

Induction hypothesis: Assume that CompTree bddA(S, σ, n) is formed by attaching

subtrees CompTree bddA(S2, σ
′, n−m) to each leaf σ′ of CompTree bddA(S1, σ, n),

where m is the depth of σ′ in CompTree bddA(S1, σ, n).

We want to prove that CompTree bddA(S, σ, n + 1) is formed by attaching

subtrees

CompTree bddA(S2, σ
′, n+1−m) to each leaf σ′ of CompTree bddA(S1, σ, n+1),

where m is the depth of σ′ in CompTree bddA(S1, σ, n + 1).

By the definition, CompTree bddA(S, σ, n + 1) is formed by attaching to the

root {σ} the subtree CompTree bddA(Rest A(S, σ), σ′, n), for each

σ′ ∈ CompStepA(S, σ). And in this case we have

CompStepA(S, σ) = 〈|First(S)|〉Aσ = 〈|First(S1)|〉Aσ = CompStepA(S1, σ).

and Rest A(S, σ) = Rest A(S1, σ); S2.

Then, CompTree bddA(S, σ, n + 1) is formed by attaching to the root {σ} the

subtree

CompTree bddA(Rest A(S1, σ); S2, σ
′, n), for each σ′ ∈ CompStepA(S1, σ).

By induction hypothesis, CompTree bddA(Rest A(S1, σ); S2, σ
′, n) is formed by

attaching the subtree CompTree bddA(S2, σ
′′, n−m) to each leaf σ′′ of

CompTree bddA(Rest A(S1, σ), σ′, n), for each σ′ ∈ CompStepA(S1, σ), where m is

the depth of {σ′′} in

CompTree bddA(Rest A(S1, σ), σ′, n).

Now, CompTree bddA(S, σ, n + 1) is formed by,

(i) attaching to the root {σ}, CompTree bddA(Rest A(S1, σ), σ′, n), for each σ′ ∈
CompStepA(S1, σ).

47

(ii) attaching the bounded computation tree CompTree bddA(S2, σ
′′, n − m) to

each leaf σ′′ of CompTree bddA(Rest A(S1, σ), σ′, n), where m is the depth of

σ′′ in

CompTree bddA(Rest A(S1, σ), σ′, n).

Obviously, step (i) is the definition of CompTree bddA(S1, σ, n + 1), and the

depth of leaf σ′′ in CompTree bddA(S1, σ, n + 1), we say, m′ = m + 1, where m is

the depth of σ′′ in CompTree bddA(Rest A(S1, σ), σ′, n).

Therefore we reach the result that CompTree bddA(S, σ, n + 1) is formed by

attaching subtrees CompTree bddA(S2, σ
′′, n+1−m) to each leaf σ′′ of the subtree

CompTree bddA(S1, σ, n + 1), where m is the depth of σ′′ in the subtree

CompTree bddA(S1, σ, n + 1).

(c) Since S ≡ if b then S1 else S2 fi,

CompStepA(S, σ) = 〈|First(S)|〉Aσ = 〈|skip|〉Aσ = {σ}

and

Rest A(S, σ) = Si

where if [[b]]Aσ = tt then i = 1, else i = 2.

By the definition, (c) is true.

(d) Since S ≡ while b do S1 od.

CompStepA(S, σ) = 〈|First(S)|〉Aσ = 〈|skip|〉Aσ = {σ}

and

Rest A(S, σ) =

{
S1; S if [[b]]Aσ = tt

skip if [[b]]Aσ = ff.

By the definition, it is easy to prove (d) holds.

A2. Proof of Theorem 3.5.1.

Proof:

Each part of this proof uses the corresponding part of Lemma 3.4.3.

48

(a) This is trivial.

(b) From Lemma 3.4.3 (b), take the “union” over n for all CompTree bddA(S, σ, n),

then we get that the set of nodes of CompTreeA(S, σ) is formed by attaching the

set of nodes of CompTreeA(S2, σ
′) to each leaf {σ′} of CompTreeA(S1, σ).

Hence, the leaves of CompTreeA(S, σ) are formed from the leaves of computa-

tion tree

CompTreeA(S2, σ
′) for each leaf {σ′} of CompTreeA(S1, σ), i.e., [[S2]]

A([[S1]]
Aσ).

Particularly, if there is an infinite path in CompTreeA(S1, σ) or any subtree

CompTreeA(S2, σ
′) for each leaf {σ′} of CompTreeA(S1, σ), the extension of this

path in CompTreeA(S, σ) is also an infinite path.

(c) From Lemma 3.4.3 (c), take the “union” over n for all CompTree bddA(S, σ, n),

then we get that the nodes of CompTreeA(S, σ) is formed by attaching to the root

{σ}, the nodes of the subtree CompTreeA(Si, σ), where if [[b]]Aσ = tt then i = 1,

else i = 2.

So the leaves of CompTreeA(S, σ) are formed from the leaves of

CompTreeA(Si, σ), where if [[b]]Aσ = tt then i = 1, else i = 2.

Also, if there exists an infinite path in CompTreeA(Si, σ), where if [[b]]Aσ = tt

then i = 1, else i = 2, there must be an infinite path in CompTreeA(S, σ), by

extending the infinite path in CompTreeA(Si, σ) one step up to the root {σ}.
Therefore, we proved (c) is true.

(d) From Lemma 3.4.3 (d), take the “union” over n for all CompTree bddA(S, σ, n),

then we get that the nodes of CompTreeA(S, σ) are formed by attaching to the root

{σ}:
(i) the nodes of the subtree CompTreeA(S1; S, σ), if [[b]]Aσ = tt;

(ii) otherwise, the leaf {σ}.
So the leaves of CompTreeA(S, σ) are formed from,

(i) the leaves of the subtree CompTreeA(S1; S, σ), if [[b]]Aσ = tt;

(ii) otherwise, the leaf {σ}.
If there exists an infinite path in CompTreeA(S1, σ), when [[b]]Aσ = tt, there

must be an infinite path in CompTreeA(S, σ), by extending the infinite path in the

subtree CompTreeA(S1, σ) one step up to the root {σ}.

49

Therefore, (d) has been proved.

References

[1] Dijkstra, E. W. A Discipline of Programming. Prentice Hall, Englewood Cliffs,

New Jersey, 1976.

[2] Harel, D. On folk theorems. In Communications of the ACM 23, vol. 7. 1980,

pp. 379–389.

[3] Jiang, W. Universality and semicomputability for non-deterministic program-

ming languages over abstract algebras. Master’s thesis, Department of Comput-

ing and Software, McMaster University, 2002. Technical Report CAS 03-01-JZ,

Department of Computing and Software, McMaster University, 2003.

[4] Koster, J. Relative strengths of while-programs with and without counters and

stacks. Master’s thesis, Department of Computing and Software, McMaster

University, 2002. Technical Report CAS 02-05-JZ, Department of Computing

and Software, McMaster University, 2002.

[5] Luo, L. Specifiability and computability of functions by equations on partial

algebras. Master’s thesis, Department of Computing and Software, McMaster

University, 2003. Technical Report CAS 03-07-JZ, Department of Computing

and Software, McMaster University, 2003.

[6] Mirkowska, G. Algorithmic logic and its applications. PhD thesis, University

of Warsaw, 1972.

[7] Tucker, J. V., and Zucker, J. I. Computability by ‘while’ programs on topo-

logical partial algebras. Theoretical Computer Science 219 (1999), 379–420.

[8] Tucker, J. V., and Zucker, J. I. Computable functions and semicomputable sets

on many-sorted algebras. In Handbook of Logic in Computer Science, D. M. G.

S. Abramsky and T. S. E. Maibaum, Eds., vol. 5. Oxford University Press,

2000, pp. 317–523.

[9] Tucker, J. V., and Zucker, J. I. Abstract versus concrete computation on metric

partial algebras. ACM Transactions on Computational Logic 5 (2004), 611–668.

50

[10] Tucker, J. V., and Zucker, J. I. Computable total functions on metric algebras,

algebraic specifications and dynamical systems. Journal of Logic and Algebraic

Programming 62 (2005), 71–108.

[11] Turing, A. M. On computable numbers, with an application to the entschei-

dungs problem. Proceedings of the London Mathematical Society 42 (1936),

230–265. With correction, ibid., 43, 544–546, 1937. Reprinted in The Undecid-

able, M. Davis, ed., Raven Press, 1965.

[12] Wang, Y. Semantics of non-deterministic programs and the universal function

theorem over abstract algebras. Master’s thesis, Department of Computing

and Software, McMaster University, 2001. Technical Report CAS 01-03-JZ,

Department of Computing and Software, McMaster University, 2001.

51

