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2The Compositionality Principle thus says that \the meaning of a compound expression is afunction of the meanings of its parts". The idea can be found in the writings of Frege. It iscarefully discussed in Janssen [1986, Chapter 1], where it is used in the framework of many-sorted algebras and homomorphisms (op. cit., Chapter 2). Janssen gives many arguments foraccepting this principle: usefulness, elegance, generality, comprehensibility, power, value as aheuristic tool, and others.Its signi�cance for the correctness and veri�cation of concurrent systems is discussed in Zwiers[1989].Consider a simple Algol-like programming language, with assignments, sequential compositionand conditionals. Whether we de�ne the meaning [[S]] of a program S in this language as a statetransformer (De Bakker [1980]) or as a predicate transformer (forward or backward) (Dijkstra[1976]) it is not hard to see that the resulting semantics is compositional.Consider now, however, the language extended by procedures with value and reference (ad-dress) parameters, and by blocks. For such a language, compositional semantics is more dif-�cult to de�ne. De Bakker [1980], for example, uses \syntactic application", which is non-compositional.So how can we \restore" compositionality in such a framework? The answer is in the use ofintensional logic, as we will now see.1.2 Sense and Denotation. Frege [1892] distinguished between two notions of mean-ing: (1) denotation (or reference or extension), and (2) sense (or intension). We illustratethe application of each with a well-known example. Note �rst that compositionality implies theprinciple of substitutivity of equals, which states that substituting one term for another with thesame meaning in an expression should not alter the meaning of that expression. Consider, forexample, the sentence(S1) I see the morning star nowwhich has a de�nite denotation (= truth value) (relative to a particular valuation of the index-icals `I' and `now'). Now the phrases `the morning star' and `the evening star' have the samedenotation (= the planet Venus), so substituting `the evening star' for `the morning star' in (S1)should result in a sentence with the same truth value:(S2) I see the evening star nowwhich is the case. But now consider the sentence(S3) I believe that the morning star is the morning starwhich is obviously true. Now, however, if we substitute `the evening star' for (say) the secondoccurrence of `the morning star' in (S3), we get a sentence(S4) I believe that the morning star is the evening starwhich may very well be false!The explanation for this (apparent) violation of the principle of substitutivity of equals is thatthe context after a verb of attitude (expressing a belief etc.) is referentially opaque (compared toa referentially transparent context such as `: : : is visible'). Frege's insight was that the meaningof an expression in an opaque context is given not by its denotation, but by its sense. Now theexpressions `morning star' and `evening star' have di�erent senses (since we can easily imaginea world in which they refer to di�erent objects), and hence di�erent meanings in an opaque



3context. Hence (S3) and (S4) do not give a counterexample to the principle of substitutivity ofequals!To summarize this discussion: taking the senses of expressions to be their meanings in opaquecontexts restores the principle of substitutivity of equals, and (hence) compositionality.1.3 Intensional logic. In order to reason about senses or intensions (as opposed todenotations or extensions), we use intensional logic. An early axiomatization of intensional logicwas given by Church [1951]. Carnap [1947] gave a semantics, in which the sense of an expressionis a function from \states" to (extensional) values. Kripke [1963] gave a more mathematicallydeveloped semantics, in which the sense of an expression is a function from possible worlds to(extensional) values.Montague [1974] gave a compositional semantics for a fragment of English, including opaquecontexts, by de�ning a translation of it into a system of intensional logic.Janssen & Van Emde Boas [1977] and Janssen [1986] applied Montague's approach to animperative programming language | essentially a fragment of Algol. Their insight was thatcertain contexts in such a language can be viewed as opaque contexts; for example, the left handside of an assignment.Example. Suppose the locations x and y each store the value 2. Compare �rst the twoassignments x := x+ 1 and x := y+ 1: (1)They both have the same e�ect (x = 3; y = 2).But compare now the two assignmentsx := x+ 1 and y := x+ 1: (2)They have di�erent e�ects. (The �rst results in x = 3; y = 2 and the second in x = 2; y = 3).So substitutivity of equals works in (1), but not in (2). From this we infer that the rhs(right hand side) of an assignment is referentially transparent, but the lhs (left hand side) isreferentially opaque.The solution is to de�ne the the sense of a program variable (or identi�er) of type N asa function from \possible worlds" to numbers, interpreting \possible worlds" as computationstates.This amounts to taking the sense of an identi�er as a memory address or location, the contentsof which depends on the state of the computation; and its denotation as the (current) contents.Remark. In common progam language terminology, the lhs of an assignment is said to de-note a reference (or location), and the rhs an object. The assignment causes the reference to\possess" the object as its value, and the object can then be accessed through the reference bydereferencing. This is quite a di�erent concept of \reference" from the one used in philosophy(denotation) that we have been discussing.Janssen and Van Emde Boas proceeded by translating the programming language into asystem of higher-order intensional logic. The semantics thus inherited by the programminglanguage turns out to be compositional!



41.4 An overview of this paper. The approach has been applied for fragments of Algol inthree areas:(1) Assignments (Janssen & Van Emde Boas [1977]);(2) Blocks and procedures with parameters, passed by value and by reference (Hung [1989,1990]);(3) Assignments to pointer identi�ers; parameters passed by name (Hung & Zucker [1991]).We will consider each of these three areas in turn: in Sections 2, 3 and 4 respectively. (We havealready touched on the �rst in x1.3.) In each case, as we will see, one gets a semantics which iscompositional and implementation independent.This paper is intended as a brief survey of these areas; details can be found in the abovereferences and in a forthcoming publication.We thank Peter Grogono, Garrel Pottinger and Bob Tennent for helpful remarks followingthe talk on which this paper is based.2 The formal system IL of intensional logic2.1 Syntax. We de�ne a typed system IL of intensional logic. The types �; : : : are generatedaccording to the de�nition: � ::= N j B j (�1 ! �2) j (S! �)where N and B are the basic types of numbers and booleans (or propositions), and S is the typeof states. (Note that S is a \hidden type" | there are no terms of type S.) For each type �there is a countable set V ar� of variables of type � . There are also constants of certain types,including the constant 0. Typed expressions are generated, according to the typing rules, fromthese variables and constants, by the arithmetical operations of +, �, �; the relations of `=' and`<' on the numbers; the propositional connectives and existential quanti�er; the operations ofapplication � ( � ) and lambda abstraction at all types; and the modal operators ^ (intension), _(extension) and h � = � i (state switcher).Definition. Reference variables x; : : : are variables of type (S! N). There is also a countableset Ref of reference constants X; : : : of type (S! N). (The reference variables and constantswill represent the number \references" or locations).Remarks. (1) For an expression � : � (i.e., � of type �), the expression ^� gives the sense orintension of �, i.e., its values in all states.(2) For � : (S ! �), _� gives the extension of �, i.e., its value in the current state. This canbe thought of as the dereferencing of � (see Remark in x1.3).(3) For � : � , reference variable or constant � and expression e : N, the state switcherexpression �h�=ei : � gives an \explicit representation of syntactic substitution". (See theSubstitution Lemma in x2.4.)2.2 Semantics. Let N be the set of natural numbers, and B = ftt; ffg the set of truth values.Then de�ne State to be the set of states, i.e., functions � : Ref ! N.For each type � there is a domain D� of objects of type � : DN = N, DB = B, D�1!�2 isa (suitable) subset of the set of functions from D�1 to D�2 , and DS!� is a (suitable) subset ofthe set of functions from State to D� .A valuation is a functions � from V ar� to D� (for all �).



5For � : � , we de�ne the meaning of � relative to a state � and valuation �, [[�]]��, bystructural induction on �. The full de�nition can be found in Hung [1990] or Hung & Zucker[1991]. We give some of the more interesting clauses. (For k 2 V arN and n 2 N, �fk=ngdenotes the variant of � at k with respect to n, and similarly for �fX=ng.[[X]]�� = ��0 � �0(X)[[x]]�� = �(x)[[9k�]]�� = � tt if [[�]]��fk=ng for some n 2 Nff otherwise[[^�]]�� = ��0[[�]]�0�[[_�]]�� = ([[�]]��)�[[�hX=ei]]�� = [[�]]�fX=[[e]]��g�Note that the interpretation of terms is \two-dimensional": Quanti�cation and �-abstractionare interpreted by means of valuations �, and modal operators by means of states �.2.3 Translation of programming language into IL. Let ProgLang be the simpleprogramming language of x1.1. It contains(1) Variables u; v; : : : , consisting of both simple variables x; y; : : : and indexed variablesa[e]; : : :(2) Arithmetical expressions e; : : :(3) Booleans b; : : :(4) Program statements S; : : : , generated by:S ::= v := e j S1; S2 j if b then S1 else S2 if(5) Assertions �; : : : , or �rst order formulae, extending booleans by having quanti�ers.(Full details can be found in Hung [1990] or Hung & Zucker [1991].)We describe a translation of ProgLang into IL. (Again, we only give the more interestingcases. A full de�nition can be found in the above references.)First, we associate, with each simple variable x of type N, an IL variable x0 : (S! N), andwith each array variable a, an IL variable a0 : (N! (S! N)).Next, for each arithmetical expression e and boolean b, we de�ne their translations e0 : Nand b0 : B respectively, by structural induction on e and b. For example, the translation of x(viewed now as an arithmetical expression) is _x0 : N (its \dereferenced" value!), and similarly,the translation of a[e] is _(a0(e)) : N.Next, a statement S is translated as a \backward predicate transformer" S0 : ((S! B)! B).(Note that a (state) predicate has type (S ! B).) This is also de�ned by structural inductionon S. For example: (v := e)0 = �q(S!N) � qhv0=e0i(note the use of the state switcher!), and(S1; S2)0 = �q(S!N) � S01(^(S02(q))):



6The semantics of a program statement is then that induced by its translation. Now since(i) the translation is a homomorphism of the term algebras, and (ii) the semantics of IL iscompositional, therefore the induced semantics of ProgLang is compositional. (See Janssen[1986, Chapter 2].)We have dealt with the �rst of the three areas described in x1.4. Before moving on to thesecond, we will show that one can derive more from the translation, namely expressibility of theweakest precondition.2.4 State switcher elimination; Expressibility of weakest precondition.Lemma (Substitution Lemma). For any assertion �, reference variable x and arithmeticalexpression e, �0hx0=e0i ' (�[x=e])0;where `'' denotes semantic equivalence relative to instantiation of reference variables by refer-ence constants.The proof is by structural induction on �. It uses a number of \state switcher reductions".This lemma shows that the state switcher functions correctly as an explicit representation ofsyntactic substitution. The fact that it also correctly represents semantic substitution is shownby its semantic de�nition (see the last equation in x2.2).Theorem (Expressibility of weakest precondition). For any statement S and assertion� we can �nd an assertion  such that S0(^�0) '  0:The proof uses the Substitution Lemma.Discussion. It is trivial to apply a transformer associated with a statement S to a postcondition� to get a precondition in IL. (That is just S0(^�0) in the statement of the theorem.) Theinteresting question is whether the precondition is expressible in our assertion language (by , in the statement of the theorem.) The signi�cance of state switcher elimination and theSubstitution Lemma is that (in the context of this theorem) it provides a state switcher freeform of S0(^�0), which is the translation of such a precondition.3 Blocks and procedures with value and reference parameters3.1 The problem. Consider the procedure declaration:P( h val x; ref y i y := x endSuppose the locations u and v each store the value 2. Compare �rst the three procedure callsP(u; w); P(v; w); P(2; w):They all have the same e�ect (w 2).But compare now the two calls P(0; u); P(0; v):They have di�erent e�ects. (The �rst results in u = 0; v = 2 and the second in u = 2; v = 0.)



7So a value parameter is referentially transparent, and a reference parameter is referentiallyopaque.Compositional semantics for pass-by-reference is therefore di�cult. In fact, it also turns outto be di�cult for pass-by-value! For both of these, De Bakker [1980] uses \syntactic application",which is non-compositional.The solution, as we will see, is again by means of a translation into IL.There is a corresponding problem for blocks, and a corresponding solution, as we will alsosee.3.2 Syntax of procedures and blocks. We adjoin to ProgLang procedure identi�ers oftwo sorts: pass-by-value Pv; : : : , and pass-by-reference Pr; : : : .We also have procedure bodies of both sorts:Bv � h val x i S endBr � h ref x i S endand procedure declarations D � Pv ( Bv j Pr ( BrWe also adjoin blocks of two sorts:Kv � begin new x := e; S endKr � begin alias x := u; S endOur approach in these de�nitions is in accordance with the Correspondence Principle of Tennent[1981, x9.1]: \For any parameter mechanism, an analogous de�nition mechanism is possible, andvice versa." Here \de�nition mechanism" can be interpreted as \block mechanism". So `new'blocks correspond to `value' parameters and `alias' blocks to `reference' parameters. (We willextend the application of this principle in Section 4.)And correspondingly, the the rhs of the assignment is referentially transparent in the `new'block, and referentially opaque in the `alias' block.The syntax of program statements is extended by:S ::= : : : j Pv(e) j Pr(u) j Kv j Krand programs R are de�ned by R � h~D; S iwhere ~D a vector of procedure declarations.We assume our programs are closed, i.e., all procedures called in S are declared in ~D. We alsoforbid (for now) recursive procedures. (This is just to avoid having to deal with �xpoint domaintheory. We believe there is no di�culty in extending our semantic treatment to these.)3.3 Rigidity; �-conversion. Before we de�ne the translation of the extended ProgLangto IL, we need a little of the theory of IL.Definition. A term � of IL is rigid if its value is the same in all states, i.e., [[�]]�1 = [[�]]�2for all states �1; �2.



8 Versions of the following theorem on �-conversion in IL can be found in Dowty, Wall &Peters [1981], Gallin [1975] and Janssen [1986].Theorem (�-conversion). For any IL-term (�x ��)(�), if either of the following conditionsholds: (1) � is rigid; (2) no free occurrence of x in � lies in the scope of ^ or h � = � i; then(�x � �)(�) �= �[x=�]:(Here `�=' means semantic equivalence.)Let us see what goes wrong with �-conversion when neither condition above holds.Example. Let � = �k � ^(k = 1) : (N ! (S ! B)), let �0 be the \current state" and letx1 : (S! N) be any variable such that �(x1)(�0) = 1 Consider the term � � _x1. Now �-conversion of this term would lead to ^(_x1 = 1). Note that this �-conversion violates bothrestrictions in the above theorem. But, as can easily be seen, [[� � _x1]]�0� = �� � tt, theconstantly true predicate, whereas [[^(_x1 = 1)]]�0� = �� � ��(x1)(�) = 1�.Note that this problem is related to the one discussed in x1.2 (substituting non-rigid termsin \intensional" (= opaque) contexts).For later use we also stateProposition (_^-cancellation). For any IL-term �,_^� �= �:3.4 Translation of programming language into IL. We extend the translation of x2.3.We �rst consider blocks.We have two special IL-variables, j : (S! N) and l : (N! (S! N)) for the translation ofnew-blocks. Intuitively, l is an array and j is an index which points to next available element inl. The `alias' block is simple:begin alias x := u; S end 7�! (�x0 � S0)(u0);the `new' block less so:begin new x := e; S end 7�! �q � 9n�(((�x0 � S0)(l(n)))(^[n = _j ^ _qhj=_j + 1i]))hl(n)=e0i�Intuitively, this says that there is a number n = _j such that execution of the `new' block isequivalent to the execution of the following statement:l[n] := e; S[x=l[n]]; j := j+ 1;where S[x=l[n]] denotes the replacement of all free x in S by l[n].Remark. A suggestion for a simpler translation of `new' blocks might bebegin new x := e; S end 7�! (�x0 � S0)(e0):



9By simple type checking, we would discover that this is incorrectly typed, and come up insteadwith begin new x := e; S end 7�! (�x0 � S0)(^e0):But this is also incorrect, because ^e0 is rigid and hence permits a �-conversion (by the Theoremin x3.2), which (by _^-cancellation) will result in (S[x=e])0, which is clearly incorrect, since thiscould result in substituting e for x on the lhs of an assignment in S!The translation of procedures, with the two sorts of parameters, proceeds similarly. With eachprocedure identi�er we associate an IL-variable, whose value is a function from parameters topredicate transformers. The type of value parameters is N, and the type of reference parametersis (S! N). The translation thus has the form:Pv 7�! pv : (S! (N! �))Pr 7�! pr : (S! ((S! N)! �))where � = ((S ! B) ! B), the type of predicate transformers. Then procedure calls aretranslated by: Pv(e) 7�! _pv(e0)Pr(u) 7�! _pr(e0)Procedure bodies are translated by:hval xi S end 7�! �m � �q � 9n�(((�x0 � S0)(l(n)))(^[n = _j ^ _qhj=_j + 1i]))hl(n)=mi�href xi S end 7�! �y0 � S0Note the analogy with the translations of the corresponding blocks. This gives semantic supportto the Correspondence Principle.Finally, programs are translated by:hP1 ( B1 : : : ; Pk ( Bk ; S i 7�! (�p1 � (: : : (�pk � S0)(^B0k) : : : ))(^B01)The semantics of a program is then that induced by its translation. Again, since the translationis a homomorphism of the relevant term algebras, and the semantics of IL is compositional, theinduced semantics of ProgLang is compositional.Again (as in x2.4), we can prove a Substitution Lemma for state switchers, and expressibilityof the weakest precondition.4 Pointers; Pass by name; Macro blocksWe extend ProgLang with a number of concepts involving \double intensionality".4.1 Pointers. First, we introduce pointer variables z; : : : , which can occur on the lhs of anassignment, either in the form z := v, or in the \dereferenced" form dref z := e. Also, dref zmay form part of an arithmetical expression.



10 With each pointer variable z we associate an IL-variable z0 : (S ! (S ! N)). Then thetranslation of assignments is extended to the cases:z := v 7�! �q � _qhz0=v0idref z := e 7�! �q � _qh_z0=e0iNote that the second case is merely a special case of our previous rule (x2.3) for translatingassignments.Further, the translation of dref z (viewed as an arithmetical expression) is __z : N, a\doubly dereferenced" version of z.4.2 Procedures with pass-by-name parameters. We introduce pass-by-name procedureidenti�ers P n; : : : , with procedure bodiesBn � h name z i S end;and declarations P n ( Bn. The formal `name' parameter z may occur in the \extensionalized"form expand z inside the body S.For the translation into IL, we associate with each formal name parameter z an IL-vari-able z0 : (S! (S! N)), and with each procedure identi�er P n an IL-variable pn : (S !((S! (S! N))! �)), where, again, � = ((S! B)! B).Then expand z is translated as _z0, and pass-by-name bodies by:h name z i S end 7�! �z0 � S0:4.3 Macro blocks. In accordance with the Correspondence Principle, we introduce `macro'blocks to match pass-by-name parameters:Kn � begin macro z := v; S end:where, again, S may contain the \extensionalized" form expand z.The translation of macro blocks is analogous to that for pass-by-name parameters:begin macro z := v; S end 7�! (�z0 � S0)(^v0):4.4 Results. As before, we obtain compositional semantics for the extended language. Wealso obtain a Substitution Lemma for state switchers and (hence) expressibility of the weakestprecondition, by non-trivial extensions of the relevant proofs for the language of Section 3.5 Future workWe plan to extend our work in the following directions:� Compare our semantics with operational semantics for the languages considered here;� Extend our approach to higher order procedures, i.e., procedures with procedure parameters;� Apply this method also to object-oriented languages, for which compositional semantics seemto be lacking.
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