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Abstract

Most of the physical processes arising in nature are modeled by differential equations, either ordinary
(example: the spring/mass/damper system) or partial (example: heat diffusion). From the point of view
of analog computability, the existence of an effective way to obtain solutions (either exact or approximate)
of these systems is essential.

A pioneering model of analog computation is the General Purpose Analog Computer (GPAC), in-
troduced by Shannon [Sha41] as a model of the Differential Analyzer and improved by Pour-El [PE74],
Lipshitz and Rubel [LR87], Costa and Graça [GC03] and others. The GPAC is capable of manipulating
real-valued data streams. Its power is known to be characterized by the class of differentially algebraic
functions, which includes the solutions of initial value problems for ordinary differential equations.

We address one of the limitations of this model, which is its fundamental inability to reason about
functions of more than one independent variable (the ‘time’ variable), as noted by Rubel [Rub93]. In
particular, the Shannon GPAC cannot be used to specify solutions of partial differential equations. We
extend the class of data types using networks with channels which carry information on a general complete
metric space X; here we take X = C(R), the class of continuous functions of one real (spatial) variable.

We consider the original modules in Shannon’s construction (constants, adders, multipliers, integra-
tors) and we add a differential module which has one input and one output. For input u, it outputs the
spatial derivative v(t) = ∂xu(t).

We then define an X-GPAC to be a network built with X-stream channels and the above-mentioned
modules. This leads us to a framework in which the specifications of such analog systems are given by
fixed points of certain operators on continuous data streams. Such a framework was considered by Tucker
and Zucker [TZ07]. We study the properties of these analog systems and their associated operators, and
present a characterization of the X-GPAC-generable functions which generalizes Shannon’s results.

1 Introduction

Analog computation, as conceived by Kelvin [TT80], Bush [Bus31], and Hartree [Har50], is a form of
experimental computation with physical systems called analog devices or analog computers. Historically,
data are represented by measurable physical quantities, including lengths, shaft rotation, voltage, current,
resistance, etc., and the analog devices that process these representations are made from mechanical,
electromechanical or electronic components [Sma93, Hol96, Joh96].

A general purpose analog computer (GPAC) was introduced by Shannon [Sha41] as a model of Bush’s
Differential Analyzer [Bus31]. Shannon discovered that a function can be generated by a GPAC if, and
only if, it is differentially algebraic, but his proof was incomplete. A basic study was made by Pour-El
[PE74] who gave some good characterizations of the analog computable functions, focusing on the classic
analog systems built from constants, adders, multipliers and integrators. This yielded a stronger model
and a new proof of the Shannon’s equivalence (and some new gaps, corrected by Lipshitz and Rubel
[LR87]). Using this characterization in terms of algebraic differential equations, Pour-El showed that not
all computable functions on the reals (in the sense of computable analysis) can be obtained with these
analog networks.
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The theory of analog computing has also been developed by Moore with some very general mathe-
matical models [Moo96]. These models, using schemes rather like Kleene’s [Kle55], but with primitive
recursion replaced by integration and others added, define a hierarchy of functions on the reals, which
contains the GPAC generable functions at its lowest level, and uncomputable functions (in the sense of
computable analysis) at higher levels. Graça and Costa [GC03] have presented an improved model of
the GPAC, and shown this to be equivalent to the lowest level subclass of Moore’s functions.

The contributions of Campagnolo [CMC02] and Mycka [MC04] have also presented some fine results
concerning analog complexity classes. Finally, Pouly [Pou15] studied in his PhD thesis the GPAC (among
other models of computation) from the point of view of complexity classes, and with Bournez and Graça
[BGP16] they have defined a multidimensional GPAC (however, their model can be formulated as working
under a single, ‘implicit time’ variable, as will be discussed below).

The main objects of our study are analog networks or analog systems, [TZ07, TZ11, JZ13, TZ14],
whose main components are described as follows:

Analog network = data + time + channels + modules.

We will model data as elements of a complete metric vector space X, such as a Banach or Fréchet
space. We will use a bounded interval of the real numbers as a continuous model of time T = [0, T ],
where T denotes the final time. Each channel carries a continuously differentiable stream, represented
as a function u : T → X (this space is denoted by C1(T, X)). Each module M has zero, one or more
input channels, and must have a single output channel; thus it can be specified by a (possibly partially
defined) stream function

FM : Xk × C1(T, X)` ⇀ C1(T, X).

In the case that X = R, we obtain the Shannon GPAC. We can use four types of modules to describe
this model, which are equivalent to the ones originally used by Shannon.

Definition 1.1 (Shannon modules). The Shannon modules are defined as follows:

• for each c ∈ R, there is a constant module with zero inputs and one output v, given by

v(t) = c;

• the adder module has two inputs u, v and one output w, given by

w(t) = u(t) + v(t);

• the multiplier module has two inputs u, v and one output w, given by

w(t) = u(t)v(t);

• the integrator module has an initial setting c, two inputs u, v and one output w, given by the
Lebesgue-Stieltjes integral

w(t) = c+

∫ t

0

u(s)v′(s)ds;

We can depict the four Shannon modules in box diagrams, as in Figure 1. We also introduce the
symbol ‘ ’ to denote the operator associated with the integrator module, in order to differentiate from
the actual integral; we can then write (c, u, v) = c+

∫
udv.

The continuous differentiability of the streams u, v ensures that the integrator module is well defined;
indeed, the Lebesgue-Stieltjes integral is well defined for continuous integrand and continuously differen-
tiable integrator. In other words, for any u, v ∈ C1([0, T ],R), the formula

∫ t
0
u(s)dv(s) defines a function

in C1([0, T ],R).

Definition 1.2 (Shannon GPAC). A Shannon general purpose analog computer (GPAC) is a network
built with the four Shannon modules (constants, adders, multipliers and integrators) and connections
between their inputs and outputs, with the following restrictions:

• the only connections allowed are between an output and an input;

• each input may be connected to either zero or one output;
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Figure 1: The four Shannon modules.
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Figure 2: A GPAC for computing the exponential function.

Example 1.3. Of course, there can be cycles in a GPAC, for example, an output connected to an input
of its own module. This is called feedback and it is fundamental to develop an interesting theory. A simple
example of a Shannon GPAC can be seen in Figure 2. It has only one module, which is an integrator
module, and only one connection, between its output channel and one of its input channels.

In his paper Shannon sets out to characterize the class of functions which can be generated by a
GPAC and in doing so he found an equivalence with the class of differentially algebraic functions.

Definition 1.4 (Differentially algebraic function). A function f : [0, T ]→ R is said to be differen-
tially algebraic if there exists k ∈ N and a polynomial P in k + 2 variables (and real coefficients) such
that f ∈ Ck([0, T ]) and

P (t, f(t), f ′(t), . . . , f (k)(t)) = 0, for all t ∈ [0, T ]. (1)

An equation in the form (1) is called a differential algebraic equation.

Theorem 1 (GPAC characterization theorem). Let u ∈ C1(T,R). Then u is generable by a GPAC
if and only if u is differentially algebraic.

The original proof of Theorem 1 can be found in [Sha41], but that proof had flaws, which were
corrected in the papers [PE74], [LR87], [GC03].

In this paper we present a generalization of the Shannon GPAC for channels whose values lie in a
general complete metric vector space, i.e. a Banach or Fréchet space. This allows us to, for example,
work with functions of more than one variable. Our goal is to obtain an equivalence result similar to
Theorem 1, with a larger class of functions which include, in particular, solutions to well-known PDEs,
such as the heat equation and wave equation.
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The paper is organized as follows. In Section 2 we show some limitations to Shannon’s model and
motivate our transition to function data spaces. In Section 3 we present our new model, the X-GPAC, and
define its semantics. In Section 4 we introduce normal form systems which are used as an intermediate
step towards the main result. In Section 5 we introduce partial differential algebraic systems and prove
our main result: a characterization of X-GPAC-generable functions in terms of solutions to such systems.
In Section 6 we summarize our findings and propose directions for further research.

2 Limitations of the Shannon GPAC

The Shannon GPAC is regarded as an important and powerful method of analog computation, thanks
largely to Theorem 1. Despite this, many authors have pointed out some limitations to the model. For
example, the gamma function

Γ(t) =

∫ ∞
0

xt−1e−xdx

is not differentially algebraic, and so cannot be generated by a GPAC (this was noted by Shannon
himself). However, one could expect that, in a ‘sensible’ model of computability on continuous data,
this function would be computable. Indeed, the gamma function is effectively computable in the sense of
computable analysis, a branch of analog computability studied by Pour-El, Richards [PER79], Weihrauch
[Wei00], Grzegorczyk [Grz55, Grz57], Lacombe [Lac55a, Lac55b, Lac55c], Tucker, Zucker [TZ07], among
others. Some authors have addressed this limitation, and Graça [Gra04] showed that the gamma function
can indeed be considered as GPAC computable if

...we redefine our notion of GPAC-computability in a manner that it matches more closely the
philosophy underlying computable analysis...

There is, however, another limitation with the Shannon GPAC, that appears to have been overlooked
by Shannon, Pour-El and others. It lies in the fact that the Shannon GPAC can fundamentally reason only
about real-valued functions of one independent variable t. Ironically, it was stated in [Sha41] and [PE74]
that the generalization to more than one independent variable only requires an obvious modification,
but this is by no means the case. In fact, it is hard to conceive a realistic physical interpretation for a
formalism involving two (or more) independent “time” variables.

We briefly remark that this limitation was pointed out in [Rub93]. Rubel says

For one thing, the GPAC works in one (“time”) variable only, while the EAC [Extended
Analog Computer] produces functions of any finite number of real variables.

To address this problem, Rubel defined what he called an Extended Analog Computer (EAC).1

However, Rubel stressed that

... the EAC is a conceptual computer - the extent to which it can be realized by actual
physical, chemical, or biological devices or systems remains to be investigated.

A different attempt to deal with this problem was recently proposed by Bournez, Graça and Pouly
[Pou15, BGP16]. In their approach, channels can carry a n-variable real-valued data stream of type
Rn → R. In this way, they were able to introduce functions with multiple variables by extending the
input space; for example, replacing C1([0, T ],R) with C1([0, X1] × . . . × [0, Xn],R). This seems to be a
very natural way of generalizing the Shannon GPAC.

Despite the fact that [BGP16, Definition 14] uses Jacobians (which imply independent variables), we
would like to point out that their model can still be re-expressed in terms of only one (implicit “time”)
variable. This idea is present in [BGP16, Examples 12 and 13]. It also occurs in [BGP16, Remark 15],
where it is explained that the value of a generable function y at a given point x can be obtained by
solving an initial value problem in one independent variable (this is done by introducing a smooth curve
γ from x0, an initial point, to x).

In this paper we adopt an approach which in some way is orthogonal to the one in [BGP16]; our idea is
to extend the output space, that is, replacing C1([0, T ],R) with C1([0, T ], X), where X is a metric vector
space. For example, we can think of X as the space of continuous real-valued functions on a bounded

1An implementation of the EAC (or at least, of some of its components) has been achieved with the work of Mills, [Mil08].
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domain Ω ⊂ Rn, that is, X = C(Ω,R). In this way, our channels will now carry X-valued streams of
data u : [0, T ]→ X, which correspond to functions of n+ 1 real variables, under the uncurrying

[0, T ]→ (Ω→ R) ' [0, T ]× Ω→ R.

It is evident that one of the variables, namely the “time” variable, plays a different role from the others.
Our approach is, to some extent, motivated by the theory of Partial Differential Equations, in which some
fundamental problems (such as the Heat Equation, Wave Equation and Schrödinger Equation) can be
expressed as time evolution problems in a function space.

3 The X-GPAC

As discussed in the previous section we decide to change our data space X to become a function
space. In this paper we shall thus take X to be the space of continuous real functions of a real variable,

X = C(R).

We observe that X is a Fréchet space, with the family of pseudonorms

‖g‖M = sup
|x|≤M

|g(x)|. (2)

We also consider the subspace D = C1(R) of continuously differentiable functions. This is also a
Fréchet space, with the family of pseudonorms

‖g‖M = sup
|x|≤M

|g(x)|+ sup
|x|≤M

|∂xg(x)|. (3)

Note that D is a linear and dense (under the X-pseudonorms) subspace of X.
We can define a differential operator as

∂x : X ⇀ X
u(x) 7→ ∂xu(x).

(4)

We establish some important properties of the differential operator:

• ∂x is a partial function from X to X, with domain dom(∂x) = D;

• ∂x is linear, that is, for all u, v ∈ D and α, β ∈ R we have ∂x(αu+ βv) = α∂xu+ β∂xv;

• ∂x has dense domain, that is, D is dense in X (under the topology in X induced by its pseudonorms);

• ∂x has a closed graph, that is, if (un) is a sequence in D with un → u and ∂xun → v, then u ∈ D
and ∂xu = v;

We include here the definition of closed operator, which will play a role in our notion of well-posedness.

Definition 3.1. [Closed operator] Let X and Y be metric spaces and A : X ⇀ Y a partial function
with domain D(A). We say that A is closed if its graph is a closed subset of X × Y ; in other words, if
for all sequences (xn) in X, x ∈ X and y ∈ Y we have

if


xn → x as n→∞,
xn ∈ D(A) for all n,
Axn → y as n→∞;

 then x ∈ D(A) and Ax = y.

Hence ∂x is a closed operator on X. We remind the reader that closedness is, in general, a weaker
property than continuity. We also remark that both are equivalent in the space of total linear operators
between Banach spaces (this basic result is known as the Closed Graph Theorem).

Example 3.2. Consider the sequence an(x) = 1
n

sin(n2x), which converges in X = C(R) (that is, in the
pseudonorms of X) to 0; for any M , ‖an‖M = 1

n
→ 0. Moreover, each an ∈ D, and ∂xan(x) = n cos(n2x).

Note that, for any M , ‖a′n‖M = n, meaning that the suprema of a′n grow without bounds. Thus ∂x is a
discontinuous operator.
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Figure 3: Plot of an(x) (left) and a′n(x) (right) for n = 3 (red, bold), n = 5 (green, dashed), n = 10 (blue,
dotted).

We consider X-streams as elements in the space C1([0, T ], X) of X-valued, continuously differentiable
functions, for some T > 0. By continuous differentiability we mean that, for u ∈ C1([0, T ], X), the
expression

v(t) = lim
h→0

u(t+ h)− u(t)

h

is well-defined for all t ∈ [0, T ] and v is a continuous function of time.
In this way, C1([0, T ], X) is a Fréchet space under the family of pseudonorms

‖u‖T,M = sup
0≤t≤T

‖u(t)‖M + sup
0≤t≤T

‖u′(t)‖M ;

note that in the right-hand side we consider pseudonorms of X.
The Shannon modules are easily defined in this new setting, and we introduce a new module based

on the differential operator.

Definition 3.3. The differential module has one input u and one output v, given by

v(t) = ∂xu(t);

∂x
u ∂xu

∂x : C1([0, T ], X) ⇀ C1([0, T ], X)

∂x(u)(t) = ∂xu(t)

Figure 4: The differential module.

We remark that the differential module ∂x : C1([0, T ], X) ⇀ C1([0, T ], X) is partially defined and its
domain is C1([0, T ], D). As mentioned above, ∂x is a closed but discontinuous operator.

With the above considerations in mind we can arrive at the desired generalization of the Shannon
GPAC.

Definition 3.4 (X-GPAC). An X-valued general purpose analog computer (X-GPAC) is a network
built with the five X-modules (constants, adders, multipliers, integrators and differentials) and X-
channels connecting their inputs and outputs, with the following restrictions:

• the only connections allowed are between an output and an input;

• each input may be connected to either zero or one output;

Our next goal is to assign semantics to an X-GPAC, that is, determine how to define generable
functions. For that end, we introduce the notion of induced operator.

Definition 3.5 (X-GPAC induced operator). Let G be an X-GPAC;

• the constant space of G is the cartesian product of the spaces associated with all the initial settings
occuring in any integrator. The constant space can be written as C = Xp, for some p ≥ 0;

6



• the proper input space of G is the cartesian product of the spaces associated with all the unconnected
input channels. The input space can be written as I = C1([0, T ], X)q, for some q ≥ 0;

• the proper output space of G is the cartesian product of the spaces associated with all the un-
connected output channels. The output space can be written as O = C1([0, T ], X)m, for some
m ≥ 0;

• the mixed space of G is the cartesian product of the spaces associated with all the channels which
connect some input with some output. The mixed space can be written asM = C1([0, T ], X)r, for
some r ≥ 0;

• the induced operator of G is the function

F : C × I ×M⇀M×O, F (g,uI ,uM ) = (ũM ,uO), (5)

where g is an X-valued vector and each u is a vector of X-channels. Moreover, each of the
components in the codomain of F is given by the module with which it is associated. In other
words, for each ui component of either ũM or uO,

– if ui is associated with the output channel of a constant, then ui = g, where g is the constant
associated with that module;

– if ui is associated with the output channel of an adder, then ui = +(v1, v2), where v1 and v2
are the components in uI or uM associated with the input channels of that module;

– if ui is associated with the output channel of a multiplier, then ui = ×(v1, v2), where v1 and
v2 are the components in uI or uM associated with the input channels of that module;

– if ui is associated with the output channel of an integrator, then ui = (g, v1, v2), where v1, v2
are the components in uI or uM associated with the input channels of that module, and g is
the component in g associated with the initial setting of that module;

– if ui is associated with the output channel of a differential, then ui = ∂x(v), where v is the
component in uI or uM associated with the input channel of that module.

We remark that F may be partially defined; for each differential module occuring in G, there is a
component of I ×M which is restricted to C1([0, T ], D). Hence, to describe the domain of F we must
take into special consideration those channels which are inputs of differential modules.

Example 3.6. To achieve a better understanding of Definition 3.5 we provide an example in Figure 5
of an X-GPAC with one constant and four X-channels.

∂x ∂x

g
u3

u1

u2 u3 u4

Figure 5: An X-GPAC implementing a transport equation.

In this example there is one constant (associated with the integrator module), one input channel
(labeled u1), two mixed channels (labeled u2 and u3) and one output channel (labeled u4). The induced
operator simply formalizes the input/output relation between these channels,

C = X, I = C1(T, X), M = C1(T, X)2, O = C1(T, X);

F : C × I ×M⇀M×O

F (g, u1, u2, u3) =

(
g +

∫
u3du1, ∂xu2, ∂xu3

)
= (ũ2, ũ3, u4).

Definition 3.4 gives a lot of freedom in the construction of X-GPACs and it turns out that not all of
the possible networks lead to ‘valid and interesting’ X-GPACs (similarly to the fact that not all ASCII
expressions lead to ‘valid and interesting’ computer programs). Thus we present a well-posedness-like
notion to restrict the space of X-GPACs that we wish to consider.

Definition 3.7 (Quasi-well-posedness of X-GPAC). Let G be an X-GPAC and F : C × I ×M⇀
M×O be its induced operator. Let U ⊆ C × I. We say that G is quasi-well-posed on U if
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• (existence) for every (g,uI) ∈ U , there exists (uM ,uO) ∈M×O such that

F (g,uI ,uM ) = (uM ,uO); (6)

• (uniqueness) for every (g,uI) ∈ U , the tuple (uM ,uO) such that (6) holds is unique;

• (closedness) the map (g,uI) 7→ (uM ,uO), with domain U and codomain M× O, given as the
unique solution of (6), defines a closed operator.

We may refer to (6) as the fixed point equation; note that the mixed variables uM are the only ones
that appear in both sides of the equation.

If we required continuity instead of closedness (that is, if we required U to be an open set, and the
map (g,uI) 7→ (uM ,uO) to be continuous), then our definition would match the three usual principles
for well-posedness - existence, uniqueness, continuity of solutions - as presented by Hadamard [Had52]
(see also [CH53]). Instead, we choose to use closedness (and a non-necessarily open domain U), which
is a strictly weaker criterion, hence the term ‘quasi-well-posed’. The reason for choosing closedness is
the presence of the differential module, which defines a closed function of type X ⇀ X which is not
continuous.

Admittedly, some could argue that a discontinuous operation is of little interest in the study of
computable functions of continuous spaces. We must then make the important remark that continuity
can be obtained from closedness (and thus well-posedness can be obtained by quasi-well-posedness) if
we define a finer topology in the domain, induced by graph (pseudo)norms. To be precise, we recall the
following basic result in functional analysis.

Proposition 3.8 ([RR06, p. 240, Exercise 8.7]). Let (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) be Banach spaces and
A : X ⇀ Y a closed linear operator with domain D(A). Then

• (D(A), ‖ · ‖G(A)) is a Banach space with the graph norm given by

‖x‖G(A) = ‖x‖X + ‖Ax‖Y ;

• the restriction A : D(A)→ Y is a continuous linear map between Banach spaces.

Proof. We first prove that ‖ · ‖G(A) defines a norm:

• if x ∈ D(A), then ‖x‖G(A) = 0 iff ‖x‖X + ‖Ax‖Y = 0 iff ‖x‖X = 0 iff x = 0;

• if x ∈ D(A) and α ∈ R, then ‖αx‖G(A) = ‖αx‖X + ‖A(αx)‖Y = |α|‖x‖X + |α|‖Ax‖Y = |α|‖x‖G(A);

• if x, y ∈ D(A), then ‖x+ y‖G(A) = ‖x+ y‖X + ‖A(x+ y)‖Y ≤ ‖x‖X + ‖y‖X + ‖Ax‖Y + ‖Ay‖Y =
‖x‖G(A) + ‖y‖G(A).

Next we prove that D(A) is complete. Let {xn}n be a Cauchy sequence in D(A), so that ‖xN+k −
xN‖G(A) = ‖xN+k − xN‖X + ‖A(xN+k − xN )‖Y vanishes (uniformly on k) as N →∞. In particular, we
must have that {xn}n is a Cauchy sequence in X (under the X-norm) and {Axn} is a Cauchy sequence
in Y . Since X and Y are Banach spaces it follows that there exist x ∈ X and y ∈ Y such that xn → x
and Axn → y. By closedness of A we conclude that x ∈ D(A) and Ax = y, so that xn → x in D(A)
(under the graph norm). Thus (D(A), ‖ · ‖G(A)) is a Banach space.

Finally we prove that A : D(A)→ Y is continuous. Let {xn}n be a sequence in D(A) and x ∈ D(A)
such that xn → x in D(A). Then ‖xn−x‖G(A) → 0, which implies ‖xn−x‖X → 0 and ‖A(xn−x)‖Y → 0,
so that, in particular, Axn → Ax in Y .

Proposition 3.9. Let X and Y be Fréchet spaces with families of pseudonorms {‖·‖X,n}n and {‖·‖Y,m}m
and A : X ⇀ Y a closed linear operator with domain D(A). Consider the Fréchet space D(A) with graph
pseudonorms given by

‖x‖G(A),n,m = ‖x‖X,n + ‖Ax‖Y,m.
Then the restriction A : D(A)→ Y is a continuous linear map between Fréchet spaces.

Proof. The proof is similar to that of Proposition 3.8.
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This finer topology is usually equivalent to a topology of interest in the domain space. For example,
consider the differential operator ∂x : C(R) ⇀ C(R) given by (4), which is closed but not continuous
under the usual family of pseudonorms in C(R). However, it becomes a continuous operator if we restrict
it to the space C1(R) and consider the graph pseudonorms

‖f‖n,m = ‖f‖n + ‖∂xf‖m = sup
|x|≤n

|f(x)|+ sup
|x|≤m

|∂xf(x)|,

under whose topology C1(R) is a Fréchet space. Moreover, this family of pseudonorms can be seen to be
equivalent to the usual family of pseudonorms in C1(R) given by (3).

We shall then adopt the notion of quasi-well-posedness in this paper, while reminding ourselves that,
if needed, we can in principle express our results in terms of well-posed operators.

The final step in this section is to assign semantics to X-GPACs, that is, to define the notion of
X-GPAC-generable functions.

Definition 3.10 (Semantics of X-GPAC).

(a) Let G be an X-GPAC and F : C × I ×M⇀M×O be its induced operator. Let U ⊆ C × I such
that G is quasi-well-posed on U . We define the specification of G as the (partial) function

Φ : C × I ⇀M×O;
Φ(g,uI) = (uM ,uO),

whose domain is U and where (uM ,uO) is given by (6). We also say that G generates Φ on
U = dom(Φ).

(b) A function Φ : C × I ⇀M×O is X-GPAC-generable if there exists an X-GPAC G such that G is
quasi-well-posed on the domain of Φ and Φ is the specification of G.

We remark that every integrator in an X-GPAC has an initial setting (which is one of the constants
in the space C) and an output (which is one of the mixed/output channels in M×O). Since we can
define an injective map from the initial settings to the mixed/output channels, we have the following
basic property.

Proposition 3.11. If Φ : C × I ⇀M×O is X-GPAC-generable, then dim(C) ≤ dim(M) + dim(O).

4 Normal form systems

We have defined in the previous section the class of X-GPAC-generable functions, which constitute
our space of interest. We can state our objective as follows.

Problem. Characterize the class of X-GPAC-generable functions in terms of a suitable generalization
of the class of differential algebraic equations.

In the study of the GPAC, an intermediate step is usually taken in the transition from generable
functions to differential algebraic equations. For example, in [Sha41] a system of equations called a
fundamental solvability condition was considered (Theorem I in that paper). Also in [PE74] a similar
system of equations is used in the actual definition of GPAC generable functions (Definition 10 in that
paper) instead of the usual definition involving analog networks. We shall generalize that notion into our
framework, and refer to the resulting objects as normal form systems.

Definition 4.1 (Normal form equation). Let N ∈ N. A normal form equation on the N variables
y1, . . . , yN is an equation of the form

N∑
i=0

N∑
j=1

bijyiy
′
j +

N∑
j=1

cj∂xy
′
j = 0, (7)

under the conventions that y0 ≡ 1 and bij , cj are real numbers.
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We remark that y0 ≡ 1 is not a variable, just a notational convenience to obtain a more compact
equation. We also note that index i starts at 0 whereas index j starts at 1; thus (7) will not include the
term y′0 (which would be equal to 0, and therefore irrelevant).

We also alert the reader to our choice of terms of the form ∂xy
′
j in the second summation in (7), with

derivatives both in time and space. One could think that a similar definition of normal form equations
with terms of the form ∂xyj would be more ‘natural’. In fact, both definitions would be equivalent, and
we could move from the former to the latter by adding extra variables (namely, one would have to add
the extra variable t that specifies “linear time”, t(t, x) = t). The main reason for choosing (7) as our
template for normal form equations is of practicality, as it makes the proof of Lemma 4.7 (below) much
simpler.

Here are some examples of normal form equations:

y′1 = y1y
′
2;

y′1 = y′2 + y′3;

y′1 = ∂xy
′
1.

Definition 4.2 (Normal form system over X). Let K,L ∈ N and N = K + L. A normal form
system (NFS) on the N variables y1, . . . , yN is a system of the form

N∑
i=0

N∑
j=1

bij`yiy
′
j +

N∑
j=1

cj`∂xy
′
j = 0 , for ` = 1, . . . , L;

yK+`(0) = g` , for ` = 1, . . . , L,

(8)

under the conventions that y0 ≡ 1, bij`, cj` are real numbers and g` ∈ X.
We say that g1, . . . , gL are the (initial) constants, y1, . . . , yK are the inputs or independent variables

and yK+1 . . . , yK+L are the outputs or dependent variables.

We briefly remark that, in a well-posed system of equations, the number of equations and the
number of unknowns must be the same. In the previous definition, these correspond to the outputs
yK+1, . . . , yK+L; hence there must be L equations.

Definition 4.3 (Quasi-well-posedness of NFS). Let K,L ∈ N and N = K + L. Let N be an NFS
given by (8) with K inputs and L outputs and consider the spaces

C = XL, I = C1([0, T ], X)K , O = C1([0, T ], X)L.

Let U ⊆ C × I. We say that N is quasi-well-posed on U if

• (existence) for every (g,yI) ∈ U , there exists yO ∈ O such that (8) holds for (g,yI ,yO), where
g = (g1, . . . , gL), yI = (y1, . . . , yK), yO = (yK+1, . . . , yK+L);

• (uniqueness) for every (g,yI) ∈ U , the tuple yO such that (8) holds is unique;

• (closedness) the map (g,yI) 7→ yO, with domain U and codomain O, given as the unique solution
of (8), defines a closed operator.

Definition 4.4 (Semantics of NFS).

(a) Let K,L ∈ N and N = K + L. Let N be an NFS with K inputs and L outputs. Let U ⊆ C × I
such that N is quasi-well-posed on U . We define the solution of N as the (partial) function

Φ : C × I ⇀ O;
Φ(g,yI) = yO,

whose domain is U and where yO is given by (8). We also say that N generates Φ on U = dom(Φ).

(b) A function Φ : C×I ⇀ O is NFS-generable if there exists an NFS N such that N is quasi-well-posed
on the domain of Φ and Φ is the solution of N .

We remark that in an NFS, there is a bijection between the initial conditions and the outputs; thus
we have the following basic property (cf. Proposition 3.11).

Proposition 4.5. If Φ : C × I ⇀ O is NFS-generable, then dim(C) = dim(O).

10



We have established semantics for NFS, and the next step is to show that every X-GPAC-generable
function is a projection of an NFS-generable function, as in the following definition.

Definition 4.6 (Function projection). Let F : A ⇀ B and F ′ : A×A′ ⇀ B ×B′, and let

G(F ) = {(a, b) : a ∈ dom(F ) and F (a) = b} ⊆ A×B,
G(F ′) = {(a, a′, b, b′) : (a, a′) ∈ dom(F ′) and F ′(a, a′) = (b, b′)} ⊆ A×A′ ×B ×B′

be their graphs. We say that F is a projection of F ′ if for all (a, b) ∈ A×B,

• if (a, b) 6∈ G(F ) then for all a′ ∈ A′, b′ ∈ B′ we have (a, a′, b, b′) 6∈ G(F ′);

• if (a, b) ∈ G(F ) then there exist unique a′ ∈ A′ and b′ ∈ B′ such that (a, a′, b, b′) ∈ G(F ′).

We briefly remark that the notion of projection induces a partial order in the class of functions. We
have the following lemma.

Lemma 4.7 (X-GPAC-generable implies NFS-generable). Let ΦG : CG × IG ⇀ MG × OG be
X-GPAC-generable with domain UG ⊆ CG × IG. Then there exists ΦN : CN × IN ⇀ ON which is
NFS-generable with domain UN ⊆ CN × IN with the following properties:

• dim(IN ) = dim(IG) and dim(ON ) = dim(MG) + dim(OG);

• for every (g,uI) ∈ CG × IG such that (g,uI) 6∈ UG, we have (g,g∗,uI) 6∈ UN for any X-vector g∗;

• for every (g,uI) ∈ CG × IG such that (g,uI) ∈ UG, there exists a unique X-vector g∗ such that
(g,g∗,uI) ∈ UN ; moreover, we have

ΦG(g,uI) = ΦN (g,g∗,uI).

In other words, ΦG is a projection of ΦN .

Proof. Let ΦG : CG × IG ⇀MG × OG be X-GPAC-generable with domain UG ⊆ CG × IG. Denote by
G the X-GPAC that generates ΦG and F : CG × IG ×MG ⇀MG ×OG the induced operator.

The important idea of the proof is understanding how to write the equational specification of F as
an NFS. We apply the following conversions, for every u appearing in MG ×OG:

u = g  

{
u′ = 0
u(0) = g

u = v + w  

{
u′ = v′ + w′

u(0) = v(0) + w(0)

u = v · w  

{
u′ = vw′ + wv′

u(0) = v(0) · w(0)

u = g +
∫
vdw  

{
u′ = vw′

u(0) = g

u = ∂xv  

{
u′ = ∂xv

′

u(0) = ∂xv(0)

We observe that the input/output relation of each module of G can be written as a normal form
equation coupled with an initial condition. Therefore, we can construct an NFS, N , from G, including
an initial condition for each channel.

However, the constant space CG appearing in the specification of G only takes into account those
constants appearing as initial settings of integrators. In order to define the solution mapping, ΦN , we
need to extend the constant space to include the initial settings of the other types of operations, as they
appear in the list of conversions above.

Let IN = C1([0, T ], X)K and ON = C1([0, T ], X)L, where K,L are the number of inputs, outputs
of N . By construction each input of N corresponds to an input channel of G and each output of
N corresponds to either a mixed or output channel of G. Therefore, we have that IN = IG and
ON =MG ×OG, so that dim(IN ) = dim(IG) and dim(ON ) = dim(MG) + dim(OG), which proves the
first bullet.
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The next step is to find a suitable UN for the domain of ΦN . By quasi-well-posedness of G on
UG, we know that, for every (g,uI) ∈ UG, there exists a unique (uM ,uO) ∈ MG × OG such that
F (g,uI ,uM ) = (uM ,uO). Thus, if we define (g,g∗) as the vector of initial conditions2 of (uM ,uO), we
can infer that g∗ depends uniquely on (uM ,uO), and thus it depends uniquely on (g,uI). With this in
mind we define

UN = {(g,g∗,uI) : (g,uI) ∈ UG and (g,g∗) = ΦG(g,uI) �t=0};

ΦN (g,g∗,uI) =

{
ΦG(g,uI) if (g,g∗,uI) ∈ UN ;
undefined otherwise.

By the above construction, UN and ΦN satisfy the second and third bullets, and all is left is to
show that ΦN is the solution of N on UN . By quasi-well-posedness of G on UG, it is clear that for
(g,g∗,uI) ∈ UN , the tuple (uM ,uO) ∈ ON that solves the NFS exists, is unique and given by ΦG(g,uI).

To prove closedness of ΦN , consider a sequence (gn,g
∗
n,u

I
n) ∈ UN such that

(gn,g
∗
n,u

I
n)→ (g,g∗,uI) and ΦN (gn,g

∗
n,u

I
n)→ (uM ,uO);

then we have

(gn,u
I
n)→ (g,uI) and ΦG(gn,u

I
n) = ΦN (gn,g

∗
n,u

I
n)→ (uM ,uO).

By closedness of ΦG, we have

(g,uI) ∈ UN and ΦG(g,uI) = (uM ,uO);

Now define (uMn ,u
O
n ) = ΦG(gn,u

I
n), so that

(gn,g
∗
n) = ΦG(gn,u

I
n) �t=0= (uMn ,u

O
n ) �t=0;

by taking limits, we conclude that (g,g∗) = (uM ,uO) �t=0. Thus,

(g,g∗,uI) ∈ UN and ΦN (g,g∗,uI) = (uM ,uO),

which concludes the proof.

Example 4.8. In order to better understand the construction in the proof of Lemma 4.7, we apply it
to the X-GPAC seen on Example 3.6 (repeated in Figure 6).

∂x ∂x

g
u3

u1

u2 u3 u4

Figure 6: An X-GPAC implementing a transport equation.

It can be checked that this X-GPAC is well-posed for u1 ∈ C1([0, T ], X) and g ∈ C2(R). It generates
the function ΦG : X1 × C1([0, T ], X)1 ⇀ C1([0, T ], X)3, given by ΦG(g, u1) = (u2, u3, u4), where

u2(t, x) = g(x+ u1(t)− u1(0)), u3(t, x) = g′(x+ u1(t)− u1(0)), u4(t, x) = g′′(x+ u1(t)− u1(0));

if u1 is linear time, u1(t, x) = t, this has the simpler form

u2(t, x) = g(x+ t), u3(t, x) = g′(x+ t), u4(t, x) = g′′(x+ t).

Let us construct an NFS with solution ΦN such that ΦG is a projection of ΦN . The X-GPAC
generates the equational relations

u2 = g +

∫ t

0

u3du1, u3 = ∂xu2, u4 = ∂xu3; (9)

2Possibly after reordering the mixed and output channels; this can be done without loss of generality.
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which can be converted into an NFS with three constants, one input and three outputs,

u′2 = u3u
′
1, u′3 = ∂xu

′
2, u′4 = ∂xu

′
3,

u2(0) = g, u3(0) = g3, u4(0) = g4.
(10)

We can see that the constant space of the NFS has three parameters g, g3 and g4, which is two
more than in the constant space of the X-GPAC. Therefore any solution of the NFS must be of type
X3 × C1([0, T ], X)1 ⇀ C1([0, T ], X)3.

We also see that if (g, u1, u2, u3, u4) produces a specification of the X-GPAC, then (u1, u2, u3, u4)
produces a solution of the NFS for the initial conditions g, g3 = u3(0), g4 = u4(0); in other words, the
NFS generates a function ΦN such that

if ΦG(g, u1) = (u2, u3, u4), then ΦN (g, u3(0), u4(0), u1) = (u2, u3, u4).

Thus ΦG is a projection of ΦN , as expected.

5 Partial differential algebraic equations

In this section we will define partial differential algebraic systems, which will prove to be the correct
generalization of differentially algebraic equations for our purposes, as will be made clear from our main
result (Theorem 2).

Definition 5.1 (Partial differential algebraic equation). Let N ∈ N. A partial differential algebraic
equation (PDAE) on the N variables y1, . . . , yN is an equation of the form

P (t, y1, . . . , yN , . . . , ∂
α1
x y

(β1)
1 , . . . , ∂αN

x y
(βN )
N ) = 0, (11)

where P is a polynomial in y1, . . . , yN and some of their derivatives, with real coefficients.

Definition 5.2 (System of PDAEs). Let K,L ∈ N and N = K + L. A partial differential algebraic
system (PDAS), also referred to as system of PDAEs, on the N variables y1, . . . , yN is a system of the
form{

P`(t, y1, . . . , yN , . . . , ∂
α1
x y

(β1)
1 , . . . , ∂αN

x y
(βN )
N ) = 0 , for 1 ≤ ` ≤ L;

y
(β)
` (0) = g`,β , for K + 1 ≤ ` ≤ K + L and 0 ≤ β < β`,

(12)

under the conventions that P` are polynomials in y1, . . . , yN and some of their derivatives, with real
coefficients, and g`,β ∈ X.

We say that y1, . . . , yK are the inputs or independent variables and yK+1 . . . , yK+L are the outputs
or dependent variables.

We provide a short explanation on the notation in the previous definition. Each variable yi can appear
in the polynomial expressions with space derivatives of order at most αi and time derivatives of order at
most βi; for each y` which is an output, we need to provide β` initial conditions; they correspond to the
values of y` and its space derivatives y

(β)
` of order up to β` − 1 at time t = 0,

y`(0), y′`(0), . . . , y
(β`−1)
` (0).

This is a standard assumption in the theory of PDEs and is a necessary condition for well-posedness
(with fewer initial conditions, the system is underdetermined; with more initial conditions, the system is
overdetermined).

Definition 5.3 (Quasi-well-posedness of PDAS). Let L,K ∈ N and N = L+K. Let P be a PDAS
given by (12) with K inputs, L outputs and J initial conditions and consider the spaces

C = XJ , I = C1([0, T ], X)K , O = C1([0, T ], X)L.

Let U ⊆ C × I. We say that P is quasi-well-posed on U if

• (existence) for every (g,yI) ∈ U , there exists yO ∈ O such that (12) holds for (g,yI ,yO), where g
is the vector of initial conditions, yI = (y1, . . . , yK), yO = (yK+1, . . . , yK+L);

• (uniqueness) for every (g,yI) ∈ U , the tuple yO such that (12) holds is unique;
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• (closedness) the map (g,yI) 7→ yO, with domain U and codomain O, given as the unique solution
of (12), defines a closed operator.

Definition 5.4 (Semantics of PDAS).

(a) Let K,L ∈ N and N = K + L. Let P be a PDAS with K inputs and L outputs. Let U ⊆ C × I
such that P is quasi-well-posed on U . We define the solution of P as the (partial) function

Φ : C × I ⇀ O;
Φ(g,yI) = yO,

whose domain is U and where yO is given by (12). We also say that P generates Φ on U = dom(Φ).

(b) A function Φ : C × I ⇀ O is PDAS-generable if there exists a PDAS P such that P is quasi-well-
posed on the domain of Φ and Φ is the solution of P.

We remark that in a PDAS, there is a correspondence between the outputs and a subset of the initial
conditions (namely, those for which β = 0), and so we have the following basic property (cf. Propositions
3.11 and 4.5).

Proposition 5.5. If Φ : C × I ⇀ O is PDAS-generable, then dim(O) ≤ dim(C).

Our next two results will complete the cycle

X-GPAC

NFSPDAS

showing that generable functions in each mode can be seen as projections of generable functions in the
other modes.

Lemma 5.6 (NFS-generable implies PDAS-generable). Any NFS-generable function is PDAS-
generable.

Proof. Any normal form equation is a partial differential algebraic equation where the variables occur
with time (and space) derivatives of order at most 1; thus the initial conditions in an NFS are exactly those
appearing as initial conditions in the corresponding PDAS; in other words, every NFS is a PDAS.

Lemma 5.7 (PDAS-generable implies X-GPAC-generable). Let ΦP : CP × IP ⇀ OP be PDAS-
generable with domain UP ⊆ CP ×IP . Then there exists ΦG : CG ×IG ⇀MG ×OG which is X-GPAC-
generable with domain UG ⊆ CG × IG with the following properties:

• dim(IG) = dim(IP ) + 1 and dim(CG) ≥ dim(CP );

• for every (g,yI) ∈ CP × IP such that (g,yI) 6∈ UP , we have (g,g∗,yI , y) 6∈ UG for any X-vector
g∗ and any X-stream y;

• for every (g,yI) ∈ CP ×IP such that (g,yI) ∈ UP , there exists a unique X-vector g∗ and X-stream
y such that (g,g∗,yI , y) ∈ UG; moreover, there exists a unique X-stream vector y∗ such that

ΦG(g,g∗,yI , y) = (y∗,ΦP (g,yI)).

In other words, ΦP is a projection of ΦG.

The equality and inequality in the first bullet will be explained below.

Proof. Let ΦP : CP ×IP ⇀ OP be PDAS-generable with domain UP ⊆ CP ×IP . Denote by P the PDAS
that generates ΦP .

The important idea of the proof is understanding how to write partial differential algebraic equations
with X-GPAC modules. We start with channels for all variables y1, . . . , yN . To obtain derivatives in
time, we include modules and connections as in Figure 7.

Note that the channels on Figure 7 must obey the system
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+ + ×
−1

yi v1 v2 v3 v4

t

gi,0

Figure 7: An X-GPAC for computing time derivatives.


v1 = yi + v4;
v2 = v1 + v2;
v3 = gi,0 +

∫
v2dt;

v4 = −v3;
yi(0) = gi,0;

⇒


v1 = 0;
v2 = y′i;
v3 = yi;
v4 = −yi;

so that we obtain y′i in the channel labeled v2. Observe that we must include an initial setting (in
the above case, the initial value yi(0)) every time we need to take a time derivative. We also need to
include the linear channel t ∈ C1([0, T ], X) given by the map (t, x) 7→ t. By composing several of these

modules, we can get all time derivatives that appear in P, that is, we obtain y
(β)
i for i = 1, . . . , N and

β = 0, . . . , βi − 1.
Next, by successive applications of the differential module (see Figure 8) we obtain all the partial

derivatives appearing in P, which are of the form ∂αx y
(β)
i for i = 1, . . . , N , α = 0, . . . , αi and β =

0, . . . , βi − 1.

∂x ∂x ∂x· · ·y
(β)
i ∂xy

(β)
i ∂αx y

(β)
i

Figure 8: An X-GPAC for computing spatial derivatives.

Next, we compute the polynomial expressions P` from the partial derivative terms using constants,
multipliers and adders. Any term appearing in the polynomials P` is of the form atd11 · · · tdnn , where a ∈ R
(obtainable from a constant module), each ti is either t (obtainable using the linear input t) or some

∂αx y
(β)
i , and thus can be obtained by a constant module and a sequence of multipliers. Each polynomial

P` is a finite sum of such terms, and thus can be obtained by a sequence of adders.
Finally, to enforce the relation P`(t, y1, . . . , yN , . . . , ∂

α1
x y

(β1)
1 , . . . , ∂αN

x y
(βN )
N ) = 0, we add yK+` to both

sides of the equation and include an adder and feedback loop, as shown on Figure 9. We can then loop
the channel labeled yK+` back to the start, enforcing it to be a mixed channel.

+P`
yK+`

Figure 9: Feedback loop implementing P` = 0.

Figure 10 illustrates the several steps of our construction, which results in an X-GPAC G. We must
next address the underlying spaces of G. The constant space is constructed with the initial settings
of integrators, which only appear in the phase where we build time derivatives. For every original
variable yi which appears in P with time derivatives of order up to βi, we have included the βi initial
settings gi,β = y

(β)
i (0), 0 ≤ β < βi. Hence, the constant space of G, denoted by CG, is an extension

of CP , which only takes into account the initial settings associated with the output variables; therefore
dim(CG) ≥ dim(CP ).

In regards to the input space, the original input variables yi, i = 1, . . . , L appear in G as proper input
channels. The only other proper input channel is the linear input t, which can be seen as an ‘explicit
time’ inserted into the system. In this way, dim(IG) = dim(IP ) + 1, which proves the first bullet.

15



time
derivatives differentials

constants,
multipliers,

adders
+

{gi,β}
{yi}

{yK+`}
t

{y(β)i } {∂αx y
(β)
i } {P`}

{yK+`}

Figure 10: Construction of X-GPAC from a PDAS.

Observe that the original output variables yK+`, ` = 1, . . . , L, all appear in G as mixed channels
because of the feedback loop that ensures P` = 0. There are (potentially many) other mixed and

proper output channels in G, which carry the value of either partial derivatives ∂αx y
(β)
i , multiplying terms

atdii · · · t
dn
n or sums of multiplying terms; hence dim(MG ×OG) ≥ dim(OP ).

The next step is to find a suitable UG for the domain of ΦG. By quasi-well-posedness of P, we know
that, for every (g,yI) ∈ UP , there exists a unique yO ∈ OP that solves P. Thus, if we define (g∗,g) as
the vector of initial conditions of all time derivatives of the input and output variables, which are of the
form y

(β)
i (0) for i = 1, . . . , N and β = 0, . . . , βi − 1, we can infer that g∗ depends uniquely on (yI ,yO),

and thus it depends uniquely on (g,yI). With this in mind we define

UG = {(g∗,g,yI , t) : (g,yI) ∈ UP and (g∗,g) = (y1, . . . , y
(β1−1)
1 , . . . , yN , . . . , y

(βN−1)
N ) �t=0,

where (y1, . . . , yK) = yI and (yK+1, . . . , yK+L) = yO = ΦP (g,yI)}.

To define ΦG, we need to define the value of all the mixed and output channels appearing in G. As
described above, these are either the output variables yK+1, . . . , yK+L, or uniquely obtained from the
tuple (yI ,yO, t) = (y1, . . . , yK , yK+1, . . . , yK+L, t) via partial derivatives, products and sums. If we let
y∗ denote the value of all the mixed and output channels which are not the output variables, then y∗

depends uniquely on (yI ,yO, t) and thus also on (g,yI), so that we can define

ΦG(g∗,g,yI , t) =

{
(y∗,ΦP (g,yI)) if (g,g∗,yI , t) ∈ UG;
undefined otherwise.

By this construction, UG and ΦG satisfy the second and third bullets, and all is left is to show that
ΦG is the specification of G on UG. By quasi-well-posedness of P on UP and the above discussion, it
is clear that for (g∗,g,yI , t) ∈ UG, the tuple (y∗,yO) ∈ OG that solves the equational specification of
G exists and is unique; that is to say, yO is given by ΦP (g,yI) and y∗ is obtained from (yI ,yO, t) via
partial derivatives, produts and sums.

To prove closedness of ΦG, consider a sequence3 (g∗n,gn,y
I
n, t) ∈ UG such that

(g∗n,gn,y
I
n, t)→ (g∗,g,yI , t) and ΦG(g∗n,gn,y

I
n, t)→ (y∗,yO);

by defining (y∗n,y
O
n ) = ΦG(g∗n,gn,y

I
n, t), we have

(gn,y
I
n)→ (g,yI) and ΦP (gn,y

I
n) = yOn → yO.

By closedness of ΦP , we have

(g,yI) ∈ UP and ΦP (g,yI) = yO.

Now (g∗n,gn) corresponds to the values of the variables in (yIn,y
O
n ) and some of their derivatives at t =

0. By closedness of the differential operator, we can take limits and conclude that (g∗,g) corresponds to
the values of the variables in (yI ,yO) and their derivatives at t = 0; thus, (g∗,g,yI , t) ∈ UG. Also, since
partial derivatives, products and sums are closed operators, we infer that (y∗n,y

O
n )→ ΦG(g∗,g,yI , t), so

that ΦG(g∗,g,yI , t) = (y∗,yO), which concludes the proof.

3Since the last component of any tuple in UG must be the linear input t, we only need to consider sequences for the other
three subtuples.
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Example 5.8. We provide an example of the construction in the previous Lemma by applying it to the
one-dimensional heat equation, which can be written as the following PDAS,

u′ = ∂2
xu, u(0) = x.

To produce a solution to the heat equation, we consider, for example, a square-integrable initial
condition g ∈ C(R) ∩ L2(R), for which the solution can be obtained via the heat kernel, that is, ΦP :
X ⇀ C1([0, T ], X) is given by ΦP (g) = u, where

u(t, x) =

∫
R
K(t, x− y)g(y)dy, K(t, x) =

1√
4πt

e−x
2/4t.

Let us construct an X-GPAC with specification ΦG such that ΦP is a projection of ΦG. We start
with a channel for the variable u. Using the constructions on Figures 7 and 8 we obtain channels
with the derivatives u′, ∂xu and ∂2

x. We can then construct the partial differential algebraic expression
P (u, u′, ∂xu, ∂

2
xu) = u′ − ∂2

xu using one constant module, one multiplier module and one adder module.
Finally, we include an adder and feedback loop as on Figure 9 and loop the variable u to the beginning.
The final X-GPAC can be seen on Figure 11.

+ + ×

∂x ∂x × + +

−1

−1

−u u′

u′ −u
u 0

g

t
u

u′ u
u ∂xu u

∂2
xu −∂2

xu P = 0

Figure 11: Construction of X-GPAC from the heat equation.

We can see that the X-GPAC has one additional input t, which specifies linear time. It should also
be noted that the heat equation has only one variable u, whereas the X-GPAC has a total of twelve
channels and thus twelve variables (of course, most of those are redundant). Therefore, any specification
of the X-GPAC must be of type X1 × C1([0, T ], X)1 ⇀ C1([0, T ], X)11.

We can also see that if ΦP (g) = u produces a solution to the heat equation, then there is a unique
tuple u of values that satisfy F (g, t,u) = u, where F is the induced operator of the X-GPAC in Figure
11, g is the initial condition of the integrator and t is the input channel (linear time). In other words,
we can construct a specification ΦG(g, t) = u of the X-GPAC such that ΦP is a projection of ΦG, as
expected.

It should be clear from this example that the construction in Lemma 5.7 is universal (in the sense that
it works for any PDAS) but is not necessarily optimal (in the sense that it does not add a minimal number
of new variables). In fact, one could construct a much simpler X-GPAC (with only three modules!) that
generates solutions to the heat equation, as in Figure 12. The reader can verify that ΦP is also a
projection of the specification of this X-GPAC.

∂x ∂x
u

g

t

Figure 12: An X-GPAC that generates solutions to the heat equation.

Finally we can state and prove our main result.

Theorem 2 (X-GPAC Characterization Theorem). Let Φ : Xj ×C1([0, T ], X)k ⇀ C1([0, T ], X)`.
Then the following are equivalent:
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• Φ is the projection of an X-GPAC-generable function;

• Φ is the projection of an NFS-generable function;

• Φ is the projection of a PDAS-generable function;

Proof. We prove each implication:
(X-GPAC ⇒ NFS) Let Φ be the projection of an X-GPAC-generable function ΦG. By Lemma 4.7,

ΦG is the projection of an NFS-generable function ΦN , and so Φ is a projection of ΦN .
(NFS ⇒ PDAS) Similar to the previous case, but use Lemma 5.6 instead.
(PDAS ⇒ X-GPAC) Similar to the previous case, but use Lemma 5.7 instead.

6 Conclusion

In this paper we have seen a model of analog computation based on the Shannon GPAC. In this model
we have taken streams whose value lie in a general function space X. Theorem 2 is evidence that our
model of computation provides a suitable generalization of the original work on the GPAC. We can thus
think of solutions to certain differential equations as outputs or fixed points of certain analog networks.
We have also seen that (quasi)well-posedness conditions play an important role in this study.

We have only considered the case X = C(R). A possible direction for research would be considering
other function spaces, such as

X = Cp(Ω) or X = Hp(Ω),

where Ω is, for example, a domain in Rn, either unbounded (for example, Ω = Rn) or bounded (for
example, Ω = [0, 1]n), and Hp denotes Sobolev spaces. In the case that Ω is bounded, we may further
restrict our space X to functions with prescribed behaviour on the boundary, such as Dirichlet boundary
conditions (f = 0 on ∂Ω). We believe that such a direction could allow us to make interesting connections
with the field of partial differential equations, where such spaces are ubiquitous.

Another possible direction would be to consider modules operating on multiple data types, which
could be written as

F : τ `11 × . . .× τ
`n
n → τ ;

in this way we would have channels of different types and would be able to define a notion of many-typed
analog networks. This direction will probably have a strongly technical aspect, but it could lead to a
model of computation on many-sorted algebras as studied by Tucker and Zucker [TZ00, TZ07, TZ14].

As an interesting question we may wonder whether our framework allows computability of functions
which are known not to be Shannon GPAC-generable, such as the gamma function (as noted by Shannon)

Γ(t) =

∫ ∞
0

xt−1e−xdx.

There are well-known differential equations in two variables related to the gamma function; for ex-
ample (see [OLBC10, p. 174]), if we define the incomplete gamma functions

γ(t, z) =

∫ z

0

xt−1e−xdx;

Γ(t, z) =

∫ ∞
z

xt−1e−xdx,

then both incomplete gamma functions satisfy the differential equation (for w = w(t, z))

d2w

dz2
+

(
1 +

1− t
z

)
dw

dz
= 0

and we have in addition

γ(t, z) + Γ(t, z) = Γ(t), γ(t, 0) = 0, Γ(t,∞) = 0;

we may ask whether such relations could be implemented on a more general analog network.
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