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Abstract. Most of the physical processes arising in nature are modeled by differential equations,
either ordinary (example: the spring/mass/damper system) or partial (example: heat diffusion).
From the point of view of analog computability, the existence of an effective way to obtain solutions
(either exact or approximate) of these systems is essential.

A pioneering model of analog computation is the General Purpose Analog Computer (GPAC),
introduced by Shannon as a model of the Differential Analyzer and improved by Pour-El, Lipshitz
and Rubel, Costa and Graça and others. The GPAC is capable of manipulating real-valued data
streams. Its power is known to be characterized by the class of differentially algebraic functions,
which includes the solutions of initial value problems for ordinary differential equations.

We address one of the limitations of this model, concerning the notion of approximability, a
desirable property in computation over continuous spaces that is however absent in the GPAC. In
particular, the Shannon GPAC cannot be used to generate non-differentially algebraic functions such
as the gamma function, which can be approximately computed in other models of computation. We
extend the class of data types using networks with channels which carry information on a general
complete metric space X ; for example X = C(R,R), the class of continuous functions of one real
(spatial) variable.

We consider the original modules in Shannon’s construction (constants, adders, multipliers,
integrators) and we add (continuous or discrete) limit modules which have one input and one output.
For input u, they output the continuous limit g = lim

t→∞
u(t) or the discrete limit g = lim

n→∞
un.

We then define an L-GPAC to be a network built with X -stream channels and the above-mentioned
modules. This leads us to a framework in which the specifications of such analog systems are given
by fixed points of certain operators on continuous data streams. Such a framework was considered
by Tucker and Zucker. We study these analog systems and their associated operators, and show
how some classically non-generable functions, such as the gamma function and the Riemann zeta
function, can be captured with the L-GPAC.

1. Introduction

Analog computation, as conceived by Kelvin [TT80], Bush [Bus31], and Hartree [Har50], is a
form of experimental computation with physical systems called analog devices or analog computers.
Historically, data are represented by measurable physical quantities, including lengths, shaft rotation,
voltage, current, resistance, etc., and the analog devices that process these representations are made
from mechanical, electromechanical or electronic components [Sma93, Hol96, Joh96].

A general purpose analog computer (GPAC) was introduced by Shannon [Sha41] as a model of
Bush’s Differential Analyzer [Bus31]. Shannon discovered that a function can be generated by a
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GPAC if, and only if, it is differentially algebraic, but his proof was incomplete. A basic study was
made by Pour-El [PE74] who gave some good characterizations of the class of analog computable
functions, focusing on the classical analog systems built from constants, adders, multipliers and
integrators. This yielded a stronger model and a new proof of the Shannon’s equivalence (and some
new gaps, corrected by Lipshitz, Rubel [LR87], Graça and Costa [GC03]). Using this characterization
in terms of algebraic differential equations, Pour-El showed that not all computable functions on
the reals (in the sense of computable analysis) can be obtained with these analog networks. The
well-known counterexample is the gamma function

Γ(t) =

∫ ∞
0

xt−1e−xdx

which is not differentiable algebraic and so cannot be generated by a GPAC, as noted by Shannon
himself. However, one could expect that, in a “sensible” model of computability on continuous data,
this function would be computable.

Indeed, the gamma function is effectively computable in the sense of computable analy-
sis, a branch of constructive mathematics studied by Grzegorczyk [Grz55, Grz57], Lacombe
[Lac55a, Lac55b, Lac55c], Pour-El, Richards [PER79], Weihrauch [Wei00], Tucker, Zucker [TZ07],
among others. These researchers have in one way or another tried to answer what is perhaps
the fundamental question for analog computation: which functions are computable? For the case
of digital computation, all empirical evidence corroborates the celebrated Church-Turing Thesis,
showing that various models (such as Turing machines, λ-calculus and recursive functions) are
equivalent. This picture is not so clear for analog computability on continuous spaces, despite the
abundance of progress made and (partial) equivalence results [BCGH06, Ko91, SHT99, Wei00].

Returning to the Shannon GPAC and the (non-)computability of the gamma function, some
researchers have attempted to include approximability in the model (which is an important ingredient
in many models of real computation such as computable analysis); in particular, Graça [Gra04]
redefined the notion of GPAC-computability in order to show that the gamma function can indeed
be considered as GPAC-computable.

We are interested in defining models of computation via analog networks that extend well-known
results into spaces of functions of several variables. In our previous paper [PZ16] we considered a
modest family of linear evolution problems on Fréchet spaces. We studied how to describe solutions
to these problems as fixed points of certain analog networks and, inspired by Cauchy-Kowalevski
theorems, we attempted to produce such fixed points via iterating sequences. In a later paper [PZ17]
we presented an extension to the Shannon GPAC model, which we called X-GPAC, that can reason
about functions of more than one variable. In that paper we considered a differential module (that
produces spatial derivatives) and we established an equivalence theorem, characterizing the class
of X-GPAC-generable functions in terms of solutions to partial differential algebraic systems of
equations.

In this paper we present a different extension to the Shannon GPAC model. In particular, we
wish to incorporate the procedure of taking limits into our model of analog networks. In abstract
terms, one may want to define a class of ‘computable’ elements C such that

If f ∈ C, then lim f ∈ C.
Of course, part of the problem is understanding what kinds of ‘limit’ we are allowed to consider.

Usually, in computability theory on continuous spaces, we must demand that limits be ‘effective’, in
the sense that the modulus of convergence is known a priori and thus we can effectively obtain an
approximation to the limit within a prescribed precision. The notion of limit must also agree with
the topology of the underlying space, which can be induced by a metric, a norm, or a family of
pseudonorms. Thus if X is a function space we may be interested in ‘uniform’ or ‘locally uniform’
as opposed to ‘pointwise’ limits.
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The paper is structured as follows. We begin by introducing the Shannon GPAC and how we
intend to extend it with additional channel types. We then define the notions of Cauchy sequence,
Cauchy stream and effective convergence. With those ingredients, we are able to consider a new
module that takes (discrete or continuous) limits and an extension to the Shannon GPAC, which
we call L-GPAC. Afterwards we prove some auxiliary results and briefly discuss other interesting
(yet equivalent) possibilities for limits and limit modules. In the latter part of the paper, we show
how to generate some non-differentially algebraic functions, such as the gamma and Riemann zeta
functions, which are our main motivation for including limits.

We briefly summarize the original content of this paper. It is important to remark that the
idea of introducing approximability into the GPAC model is not new and can attributed to Graça,
[Gra04]. In particular, the paper [BCGH07] provides a notion of GPAC-computability also based
on limits, remarkably showing an equivalence with the class of computable functions on a compact
interval. However, we claim that (to the best of our knowledge) the approach of including a module
that performs limits is original. In our framework, approximability is incorporated on the GPAC
model itself, and not just in the way we define the GPAC semantics. This is how we suggest our
results be contrasted to those of Bournez, Campagnolo, Graça, Hainry and other authors. Therefore,
the main original content of this paper consists in the introduction of limit modules (Definition 3.4)
and the notion of L-GPAC (Definition 3.5); the computability of the gamma and Riemann zeta
functions (Theorems 7.4 and 8.2) can be seen as applications of this theory.

2. Channels and modules

The main objects of our study are analog networks or analog systems, [TZ07, TZ11, JZ13, TZ14],
whose main components are described as follows:

Analog network = data + time + channels + modules.

We can model data as elements of a complete metric vector space X , such as a Banach or
Fréchet space. We will use the nonnegative real numbers as a continuous model of time T = [0,∞).
There are two types of channels we can consider: a scalar channel carries a constant value x ∈ X ,
whereas a stream channel carries a continuously differentiable stream, represented as a function
u : T → X (this space is denoted by C1(T,X )). Each module M has zero, one or more input
channels, and must have a single output channel; thus it can be specified by a (possibly partially
defined) stream function

FM : X k × C1(T,X )` ⇀ C1(T,X ) (k, ` ≥ 0).

In the case that X = R, we obtain the Shannon GPAC. We can use four types of modules to describe
this model, which are equivalent to the ones originally used by Shannon.

Definition 2.1 (Shannon modules). The Shannon modules are defined as follows:

• for each c ∈ R, there is a constant module with zero inputs and one output v, given by

v(t) = c;

• the adder module has two inputs u, v and one output w, given by

w(t) = u(t) + v(t);

• the multiplier module has two inputs u, v and one output w, given by

w(t) = u(t)v(t);
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• the integrator module has a scalar input c (also called initial setting), two stream inputs u, v and
one output w, given by the Riemann-Stieltjes integral

w(t) = c+

∫ t

0
u(s)v′(s)ds;

We can depict the four Shannon modules in box diagrams, as in Figure 1. We also introduce
the symbol ‘ ’ to denote the operator associated with the integrator module, in order to differentiate
from the actual integral; we can then write (c, u, v) = c+

∫
udv.

c
c

c :→ C1(T,R)

c(t) = c

+

u

v
u+ v

+ : C1(T,R)× C1(T,R)→ C1(T,R)

+(u, v)(t) = u(t) + v(t)

×
u

v
uv

× : C1(T,R)× C1(T,R)→ C1(T,R)

×(u, v)(t) = u(t)v(t)

c
u
v

c+
∫
udv

: R× C1(T,R)× C1(T,R)→ C1(T,R)

(c, u, v)(t) = c+
∫ t

0 u(s)dv(s)

Figure 1. The four Shannon modules.

The continuous differentiability of the streams u, v ensures that the integrator module is well
defined; indeed, the Riemann-Stieltjes integral is well defined for continuous integrand and contin-

uously differentiable integrator. In other words, for any u, v ∈ C1(T,R), the formula
∫ t

0 u(s)dv(s)

defines a function in C1(T,R).
In a previous paper [PZ17] we presented an extension of the Shannon GPAC, which we called

X -GPAC, that allowed the study of functions of more than one variable. The main idea present
in that paper is to extend the output space, that is, replacing C1(T,R) with C1(T,X ), where X
is a metric vector space. For example, we can think of X as the space of continuous real-valued
functions on Rn, that is, X = C(Rn,R). In this way, our channels will now carry X -valued streams
of data u : T→ X , which correspond to functions of n+ 1 real variables, under the “uncurrying”

T→ (Rn → R) ' T× Rn → R.
It is evident that one of the independent variables, namely the “time” variable, plays a different

role from the others. Our approach is, to some extent, motivated by the theory of partial differential
equations, in which some fundamental problems (such as the heat equation, wave equation and
Schrödinger equation) can be expressed as time evolution problems in a function space.

In this paper we will present another extension of the Shannon GPAC, which can be described
as a multityped GPAC. We consider a metric vector space of the form X = C(Ω,R), where Ω is a
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closed interval in R (either bounded or unbounded). This model comes equipped with four channel
types:

• R-scalar channels, which carry a constant k ∈ R;
• X -scalar channels, which carry a constant x ∈ X ;
• R-stream channels, which carry a stream a ∈ C1(T,R);
• X -stream channels, which carry a stream u ∈ C1(T,X ).

The reason for introducing a variety of channel types will become clear when we introduce the
limit module (Definition 3.4). We also observe that the basic Shannon modules (constants, adders,
multipliers and integrators) can be easily generalized from R-channels into X -channels.

Remark 2.2 (Discrete channel types). We mention in passing that discrete channel types could
also be considered. If we wished to do so, the resulting model could be seen as a hybrid between
discrete and continuous computation. The addition of more channels would undoubtedly increase
the difficulty of studying the power of the GPAC; we make the important remark that these discrete
channel types are not essential to the main purpose of this chapter, which is to generate some
non-differentially algebraic functions. Therefore they are included only as an illustration. In any
case, here are the further channel types we may wish to consider:

• N-scalar channels, which carry a constant k ∈ N;
• N-sequence channels, which carry a sequence {kn} ∈ NN;
• R-sequence channels, which carry a sequence {kn} ∈ RN;
• X -sequence channels, which carry a sequence {gn} ∈ XN.

We remark that the channel type corresponding to N-streams is not necessary, since any
continuous function of type T→ N must be constant.

3. The limit operator and the limit GPAC

Let us make precise what we mean by effective limit. If we take X to be a complete metric
space with a metric d, then

• a sequence {gn} ∈ XN is a Cauchy sequence whenever

for all ε > 0 there exists N ∈ N such that for m,n ∈ N with m,n ≥ N one has d(gm, gn) < ε;

• a stream u ∈ C1(T,X ) is a Cauchy stream whenever

for all ε > 0 there exists T ∈ T such that for s, t ∈ T with s, t ≥ T one has d(u(s), u(t)) < ε;

To write the effective version of these limits, we begin by replacing the existential quantifiers
with functions on the precision ε. A possible approach is given in the following definitions.

Definition 3.1 (Moduli of convergence).

(1) A discrete modulus of convergence is a nondecreasing function N : N→ N.
(2) A continuous modulus of convergence is a nondecreasing function T ∈ C1(T,R).

Remark 3.2 (Effective moduli of convergence). Both definitions of moduli of convergence can
be effectivized in an intuitive manner. To effectivize the notion of discrete modulus of convergence
N : N→ N, we can require that N be computable (in the traditional sense). To effectivize the notion
of continuous modulus of convergence T ∈ C1(T,R), we can require that T be GPAC-generable. In
the latter case we may further specify what type of GPAC we are interested: either the Shannon
GPAC or the limit GPAC which we will develop in this paper. However, for most of the time we
will desire T to be a somewhat “simple” function, such as a monomial, an exponential, or a chain of
exponentials, in which case the notion of Shannon GPAC-generability suffices. In fact, we expect
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the computational richness of the construction to be in the stream for which we are taking limits,
but not on the modulus of convergence itself.

Definition 3.3 (Effective limits on metric spaces).

(1) Let N be a discrete modulus of convergence and {gn} ∈ XN. Then {gn} is an N-convergent
Cauchy sequence if

for all ν ∈ N, for all m,n ∈ N with m,n ≥ N(ν) one has d(gm, gn) < 2−ν .

(2) Let T be a continuous modulus of convergence and u ∈ C1(T,X ). Then u is a T -convergent
Cauchy stream if

for all τ ∈ T, for all s, t ∈ T with s, t ≥ T (τ) one has d(u(s), u(t)) < 2−τ .

(3) A sequence {gn} ∈ XN is called an effective Cauchy sequence if there is an effective discrete
modulus of convergence N such that {gn} is N -convergent.

(4) A stream u ∈ C1(T,X ) is called an effective Cauchy stream if there is an effective continuous
modulus of convergence T such that u is T -convergent.

An example of a modulus of convergence is given by the identity function, either discrete
(id : N → N) or continuous (id ∈ C1(T,R)). We note that any effective Cauchy sequence may
be effectively replaced by an id-convergent Cauchy sequence via a composition with its modulus
of convergence; in other words, if {gn} is an N -convergent Cauchy sequence, then {gN(n)} is an
id-convergent Cauchy sequence. Similarly, an effective Cauchy stream may be effectively replaced
by an id-convergent Cauchy stream. Thus we may assume, for convenience, that the modulus of
convergence for a given effective limit is given by the identity map.

The final ingredient of our construction is the notion of a limit operator, and again this may be
done in a discrete or continuous manner.

Definition 3.4 (Limit modules).

(1) For the data type X , there is a discrete limit module with one input of type XN and one output
of type X . For input {gn}, it outputs the id-convergent limit lim

n→∞
gn (if it exists).

(2) For the data type X , there is a continuous limit module with one input of type C1(T,X ) and
one output of type X . For input u, it outputs the id-convergent limit lim

t→∞
u(t) (if it exists).

Ld
{gn} Ld{gn}

Ld : XN ⇀ X

Ld{gn} = lim
n→∞

gn

Lc
u Lcu

Lc : C1(T,X ) ⇀ X

Lcu = lim
t→∞

u(t)

Figure 2. Limit modules.

A few comments are in order. Firstly, it should be clear that the limit modules define partial-
valued operators; they are only defined for those sequences in XN (or those functions in C1(T,X ))
that have an id-convergent limit. Secondly, the choice of the identity as the ‘canonical’ modulus of
convergence allows us to specify the limit operator as a one-input, one-output module. A different
approach could be taken, in which a two-input limit module is considered, having one input for the
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sequence (or stream) and another input for the discrete (or continuous) modulus of convergence,
such as in Figure 3.

L̃d
{gn}
N

L̃d{gn}
L̃d : XN × NN ⇀ X

L̃d({gn}, N) = lim
n→∞

gn

L̃c
u

T
L̃cu

L̃c : C1(T,X )× C1(T,R) ⇀ X

L̃c(u, T ) = lim
t→∞

u(t)

Figure 3. Two-input limit modules.

Since, as explained above, any effective limit may be converted to an id-convergent limit via a
composition with the modulus of convergence, we can derive the two-input limit module from the
one-input limit module using a composition, as depicted on Figure 4.

u

T

L̃c
t

u

T

L̃c(u, T )
T u Lc

t T u ◦ T Lc(u ◦ T )

Figure 4. Derivation of the two-input continuous limit module; the discrete case is
done similarly.

Definition 3.5 (L-GPAC). A limit general purpose analog computer (L-GPAC) is a network built
with:

• R-channels and X -channels (carrying either constants or streams);
• the basic modules (constants, adders, multipliers, integrators) and the one-input continuous limit

module.

Moreover, the channels connect the inputs and outputs of the modules, with the following restrictions:

• the only connections allowed are between an output and an input;
• each input may be connected to either zero or one output;

Remark 3.6 (L-GPAC semantics). We must mention that some non-obvious choices were made
in Definition 3.5:

• Should we have included the discrete channel types from Section 2 and the discrete limit module
from Definition 3.4?
• Should we have opted for the two-input instead of one-input limit modules?
• Should we have considered various notions of effective moduli of convergence (cf. Remark 3.2)?

Clearly, as we increase the variety (in both channel types and modules) of our construction, we
get more inclusive models of computation, but finding characterization results becomes increasingly
difficult and technical. Keeping in mind that our goal is to compute some non-differentially algebraic
functions such as the gamma function and the Riemann zeta function, we can limit our construction
to the minimum that makes that goal achievable. As will be seen in Sections 7 and 8, this can
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x ×
g

u1

u2 u2

u3 u4

Figure 5. Example of an L-GPAC.

be accomplished by considering only continuous channel types and a one-input continuous limit
module.

We can follow the same program as in [PZ17] and define the notions of induced operator, well-
posedness, L-GPAC semantics and L-GPAC-generability which follow from the notion of L-GPAC.
We shall only sketch this construction; the interested reader may wish to consult [PZ17] for more
details.

Definition 3.7 (L-GPAC semantics). Given an L-GPAC G,

(1) we denote the induced operator (also called input-output operator) by Φ : I ×M ⇀M×O,
where I corresponds to proper input channels, O corresponds to proper output channels and M
corresponds to mixed input/output channels;

(2) the fixed point equation is given by

Φ(inp,mix) = (mix,out), (3.1)

where inp ∈ I, mix ∈M, out ∈ O;
(3) consider an open subset U ⊆ I; we say that G is well-posed on U if for all inp ∈ U there is a

unique (mix,out) such that (3.1) holds; and moreover the map inp 7→ (mix,out) is continuous;
(4) if G is well-posed on U , then we say it generates the function F : I ⇀M×O with domain U such

that (inp, F (inp)) solves the fixed point equation (3.1); we also say that F is L-GPAC-generable.

Example 3.8. To achieve a better understanding of Definition 3.7 we provide an example of an
L-GPAC with one constant and four channels, as in Figure 5. We assume that X = C(R,R) so that
channels u ∈ C1(T,X ) can be seen as functions of two variables, u = u(t, x).

In this example there is one constant input (labeled g, associated with the integrator module),
one stream input, (labeled u1), two mixed channels (labeled u2 and u3) and one output channel
(labeled u4). The induced operator simply formalizes the input/output relation between these
channels,

I = X × C1(T,X ), M = C1(T,X )2, O = C1(T,X );

Φ : I ×M⇀M×O

Φ(g, u1, u2, u3) =

(
g +

∫
u2du1, x, u2u3

)
= (ũ2, ũ3, u4).

The corresponding fixed point equation is then given by the system

u2 = g +

∫ t

0
u2du1, u3 = x, u4 = u2u3; (3.2)

which after some calculations can be seen to yield the solution

u2(t, x) = g(x)eu1(t,x)−u1(0,x), u3(t, x) = x, u4(t, x) = xg(x)eu1(t,x)−u1(0,x). (3.3)

Thus, this L-GPAC (actually a GPAC) is well-posed for any u1 ∈ C1(T,X ) and g ∈ X . It
generates the function F : X × C1(T,X ) ⇀ C1(T,X )3 given by F (g, u1) = (u2, u3, u4), as in (3.3).
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× −1 ×
k

b

a

Figure 6. A GPAC generating the inverter functional.

4. Preliminaries

In this section we present some auxiliary results that are used in the later sections of the paper.
We recall that a Fréchet space is a vector space X equipped with a countable family of pseudonorms
{‖ · ‖n}n∈N such that X is complete with respect to {‖ · ‖n}n∈N (that is, for all sequences (xm) such
that (xm) is Cauchy with respect to each pseudonorm ‖ · ‖n, there exists x ∈ X such that (xm)
converges to x with respect to each pseudonorm ‖ · ‖n).1

Proposition 4.1 (Metric from family of pseudonorms). Let X be a Fréchet space and {‖ ·
‖n}n∈N a corresponding family of pseudonorms. Let γ : R≥0 → [0, 1] be a continuous function which
is also positive definite, increasing and subadditive, that is,

• γ(0) = 0 and for all t ∈ R+ we have 0 < γ(t) ≤ 1;
• for all t1, t2 ∈ R+

0 such that t1 ≤ t2 we have γ(t1) ≤ γ(t2);
• for all t1, t2 ∈ R+

0 we have γ(t1 + t2) ≤ γ(t1) + γ(t2).

Let {wn}n∈N be a summable family of positive weights, that is,

∞∑
n=0

wn <∞. Then we can define a

metric on X by

d(x, y) =

∞∑
n=0

wnγ(‖x− y‖n). (4.1)

Moreover, this metric induces the same topology over X and X is complete under it.

Proposition 4.2 (Bounds on the pseudonorms and bounds on the metric). Let X be a
Fréchet space with pseudonorms ‖ · ‖n, n ∈ N+. Let d be the metric on X given by

d(x, y) =
∞∑
n=1

2−n min(‖x− y‖n, 1). (4.2)

(1) Let 0 < ε < 1 and M ∈ N. Then, for any δ ≤ ε2−M and x, y ∈ X , one has

if d(x, y) < δ, then ‖x− y‖n < ε for n = 1, . . . ,M .

(2) Let 0 < ε < 1. Then for any δ ≤ ε/2 and M ∈ N such that 2−M ≤ ε/2 and x, y ∈ X , one has

if ‖x− y‖n < δ for n = 1, . . . ,M , then d(x, y) < ε.

The proofs of the above two propositions are straightforward.

Example 4.3. We exemplify the usefulness of the Shannon GPAC by building an inverter, a
partially defined function given by

F : R× C1([0, T ],R) ⇀ C1([0, T ],R); F (k, b)(t) =
k

1 + k(b(t)− b(0))
. (4.3)

Let us show that F is GPAC-generable by considering the GPAC in Figure 6.
This GPAC induces a system of four equations on six variables, which is reducible to a single

equation on the channels labeled k, a and b, given by

a′(t) = −a(t)2b′(t), a(0) = k;

1A detailed exposition of Fréchet spaces can be found in [RS80, Chapter V].
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after some calculations we find the unique solution to be

a(t) =
k

1 + k(b(t)− b(0))
.

Therefore, F is a (component of a) GPAC-generable partial function; its domain is given by

D(F ) = {(k, b) ∈ R× C1(T,R) : k = 0 or b(t) 6= b(0)− 1/k for all t ∈ T}.
It is worth noticing that, when k = 1 and b = t is linear time, the corresponding solution is

a(t) = 1
1+t , which provides an example for a GPAC-generable rational function.

5. Infinite speedup, infinite slowdown

The composition presented in Figure 4 can be thought of as a time speedup by T (or slowdown,
if T grows slower than the identity). The goal of this section is to observe that infinite speedups
can also be expressed in our model. Thus, the choice of limit t→∞ is not the only possibility, as
one may consider limits of the form t→ T− for any positive time T ∈ T. In order to see this, we
consider the following functions that continuously maps the interval [0, 1) to [0,∞) and vice versa.

Proposition 5.1. The following functions are Shannon GPAC-generable:

(1) t 7→ t
1−t , with domain [0, 1) and range [0,∞);

(2) t 7→ t
1+t , with domain [0,∞) and range [0, 1).

Proof. Recall the inverter functional Φ : (k, b) 7→ a(t) = k
1+k(b(t)−b(0)) constructed in Example 4.3.

The function s↑(t) = 1
1−t can be obtained as the output of Φ with k = 1 and b(t) = −t. The function

s↓(t) = 1
1+t can be obtained as the output of Φ with k = 1 and b(t) = t. The desired functions can

then be obtained by multiplying s↑ or s↓ with t.

Figure 7. Plot of the functions t 7→ t
1−t (left) and t 7→ t

1+t (right).

Therefore, if we have a function u(t) with a desired limit as t→∞, we can perform a composition
of u with the infinite speedup to obtain the desired limit as t→ 1−. We must note that the reverse
case is also possible; that is, if we consider a function that continuously maps the interval [0,∞) to
[0, 1), then we can convert a limit as t→ 1− into a limit as t→ +∞ via an infinite slowdown.

10



6. Pseudonorm effectiveness

Our construction of the limit module relies on the notion of effective limit, which is given by
the metric associated to the underlying space X . The advantage of this approach is that it requires
only a minimal structure on X (complete metric space), and thus it can be applied quite generally.
However, previous work [PZ16, PZ17] provided evidence for the prevalence of Fréchet spaces in our
research. Since the topology in these spaces is induced by a family of pseudonorms, we may desire
to define a suitable notion of effective limits that takes this into consideration. Since a metric can
be inferred from the pseudonorms (recall Proposition 4.1), we may expect some equivalence between
both notions. In this section we formalize this argumentation.

Definition 6.1 (Moduli of convergence for pseudonorms).

(1) A discrete modulus of convergence for pseudonorms is a function N : N× N→ N such that for
each n ∈ N, N(n, ·) is nondecreasing.

(2) A continuous modulus of convergence for pseudonorms is a function T : N → C1(T,R) such
that for each n ∈ N, T (n) ∈ C1(T,R) is nonnegative and nondecreasing.

Observe that for each n ∈ N, the n-section of a (discrete or continuous) modulus of convergence
for pseudonorms is itself a (discrete or continuous) modulus of convergence for the underlying space.

Definition 6.2 (Effective limits on Fréchet spaces).

(1) Let N be a discrete modulus of convergence for pseudonorms and {gn} ∈ XN. Then {gn} is an
N -Fréchet Cauchy sequence (or an N -FC sequence) if

for all ν ∈ N, n ∈ N, for all j, k ∈ N with j, k ≥ N(n, ν) one has ‖gj − gk‖n < 2−ν .

(2) Let T be a continuous modulus of convergence for pseudonorms and u ∈ C1(T,X ). Then u is a
T -Fréchet Cauchy stream (or a T -FC stream) if

for all τ ∈ T, n ∈ N, for all s, t ∈ T with s, t ≥ T (n, τ) one has ‖u(s)− u(t)‖n < 2−τ .

For the following Lemma, we shall assume that the metric in X is induced by the pseudonorms
as

d(u, v) =
∑
n∈N

wnγ(‖u− v‖n), with wn = 2−n and γ(t) = min(t, 1), (6.1)

which satisfy the assumptions in Proposition 4.1 (see also Proposition 4.2).

Lemma 6.3 (Equivalence between effective limits).

(1) Let N be a discrete modulus of convergence and g ∈ XN an N-convergent Cauchy sequence.

Then g is an Ñ -FC sequence, where Ñ(n, ν) = N(n+ ν); moreover, if N is computable, so is Ñ .
(2) Let T be a continuous modulus of convergenge and u ∈ C1(T,X ) a T -convergent Cauchy stream.

Then u is a T̃ -FC stream, where T̃ (n, τ) = T (n+ τ); moreover, if T is GPAC-generable, so is

T̃ (n) for each n.

(3) Let Ñ be a discrete modulus of convergence for pseudonorms and g ∈ XN an Ñ-FC sequence.

Then g is an N -convergent Cauchy sequence, where N(ν) = max
n≤ν+1

Ñ(n, ν + 1); moreover, if Ñ

is computable, so is N .
(4) Let T̃ be a continuous modulus of convergence for pseudonorms and u ∈ C1(T,X ) a T̃ -FC

stream. Then u is a T -convergent Cauchy stream, where

T (τ) = max
n≤τ+2

T̃ (n, τ + 1).

11



Proof. To prove claim 1, we first observe that for each n, the function Ñ(n, ·) : ν 7→ N(n + ν) is

nonnegative and nondecreasing (since N is nonnegative and nondecreasing), so that Ñ is a discrete
modulus of convergence for pseudonorms. It is also clear from inspection that if N is computable,
so is Ñ .

Next, we take ν ∈ N, n ∈ N and j, k ∈ N with j, k ≥ Ñ(n, ν). By construction of Ñ this
means that j, k ≥ N(n+ ν) and thus, since g is an N -convergent Cauchy sequence, it follows that
d(gj , gk) < 2−n−ν . By applying Proposition 4.2 we conclude that ‖gj − gk‖n < 2−ν , so that g is an

Ñ -FC sequence.
To prove claim 2, we first observe that for each n, the function t 7→ T (n+ t) is nonnegative and

nondecreasing (since T is a nonnegative and nondecreasing), so that T̃ is a continuous modulus of
convergence for pseudonorms. Moreover, each t 7→ T (n+ t) is computable since it is the composition
of T with the function t 7→ t+ n, which can be obtained using one constant and one adder module.
As a side remark, the procedure that maps n into a GPAC Gn generating the corresponding T̃ (n) is
also computable on n.

The remainder of the claim can be proved, mutatis mutandis, as in claim 1.
To prove claim 3, we first see that the function ν 7→ max

n≤ν+1
Ñ(n, ν + 1) is nonnegative and

nondecreasing, since Ñ(n, ·) is nonnegative and nondecreasing for each n, so that N is a discrete

modulus of convergence. It is also clear that if Ñ is computable, so is N , since taking maxima is a
computable operation in N.

Next, we take ν ∈ N and j, k ∈ N with j, k ≥ N(ν). By construction of N this means

that j, k ≥ Ñ(n, ν + 1) for all n ≤ ν + 1 and thus, since g is an Ñ -FC sequence, it follows that
‖gj − gk‖n < 2−ν−1 for all n ≤ ν + 1. By applying Proposition 4.2 we conclude that d(gj , gk) < 2−ν ,
so that g is an N -convergent Cauchy sequence.

To prove claim 4, we first see that the function t 7→ maxn≤τ+2 T̃ (n, τ + 1) is nonnegative and
nondecreasing, so that T is a continuous module of convergence. The remainder of the claim can be
proved, mutatis mutandis, as in claim 3.

7. Computability of the Gamma function

Our motivation for considering limit operators is the computability of the gamma function,

Γ(x) =

∫ ∞
0

tx−1e−tdt,

which is not differentially algebraic (and thus, not Shannon GPAC-generable)2. There are known
differential equations in two variables related to the gamma function; for example (see [OLBC10, p.
174]), if we define the incomplete gamma functions

γi1(t, x) =

∫ t

0
sx−1e−sds; (7.1)

γi2(t, x) =

∫ ∞
t

sx−1e−sds, (7.2)

then both incomplete gamma functions satisfy the differential equation (for w = w(t, x))

d2w

dt2
+

(
1 +

1− x
t

)
dw

dt
= 0; (7.3)

we shall now try to implement such relations on our analog networks.

2Proved in [Höl86], mentioned in [Sha41].
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Figure 8. Plot of the gamma function.

Observe that GPAC models include a constant3 module for any function in X , and in particular
we could include a constant module for the gamma function itself! Of course, this is not an
interesting way to obtain the gamma function.

The main idea is instead to obtain the gamma function as the limit of a function in two variables,

Γ(x) = lim
t→∞

γ(t, x),

for some function γ ∈ C1(T,X ) which will be specified shortly. As remarked in Section 5, the choice
of limit t → ∞ is arbitrary, as we can take infinite speedups and consider, e.g., a limit t → 1−.
Since Γ(x) has a pole at x = 0, we need to consider a space where functions are defined in a region
“away from” x = 0. For simplicity, we shall take X = C([1,+∞),R). Note that this is a Fréchet
space with pseudonorms ‖g‖n = sup

1≤x≤n
|g(x)|. We also observe that (7.3) is undetermined at t = 0,

and it would allow initial conditions w|t=0 = dw
dt |t=0 = 0, for which w ≡ 0 is a different solution.

Since well-posedness is desired, we must avoid starting at t = 0; therefore, we consider integrals
starting at t = 1, writing

Γ(x) =

∫ ∞
0

tx−1e−tdt =

∫ 1

0
tx−1e−tdt+

∫ ∞
1

tx−1e−tdt.

The next step is to apply a change of variables in order to obtain integrals of the form
∫∞

0 ; to

be precise, we apply t 7→ s = 1−t
t on the first integral and t 7→ s = t − 1 on the second integral,

obtaining ∫ 1

0
tx−1e−tdt =

∫ ∞
0

(
1

1 + s

)x+1

e−1/(1+s)ds = lim
t→+∞

γ1(t, x);∫ ∞
1

tx−1e−tdt =

∫ ∞
0

(1 + s)x−1e−(1+s)ds = lim
t→+∞

γ2(t, x),

where

γ1(t, x) =

∫ t

0
(1 + s)−(x+1)e−1/(1+s)ds;

3That is, not dependent on the time variable t.
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γ2(t, x) =

∫ t

0
(1 + s)x−1e−(1+s)ds.

We proceed to show that γ1, γ2 are L-GPAC-generable.
Computation of γ1: by taking derivatives in time, we see that

dγ1

dt
= (1 + t)−(x+1)e−1/(1+t);

d2γ1

dt2
= −(x+ 1)(1 + t)−(x+2)e−1/(1+t) + (1 + t)−(x+3)e−1/(1+t) = −x+ xt+ t

(1 + t)2

dγ1

dt
; (7.4)

moreover, we have initial conditions

γ1(0, x) = 0,
dγ1

dt
(0, x) = 1/e.

We can look at the PDE (7.4) as an ODE in t with a parameter x. It is then easy to check that it
defines a well-posed problem since the multiplying factor u1(t, x) = −x+xt+t

(1+t)2
is defined for all t ∈ T.

As an intermediate step in generating γ1 with an L-GPAC, via (7.4), we generate the multiplying
factor u1, and to achieve this we consider the function s↓(t) = 1

1+t , which is GPAC-generable by

the proof of Proposition 5.1. We can thus construct u1 = −(x+ xt+ t)s2
↓ and obtain γ1 with an

L-GPAC as in Figure 9, which implements (7.4).

t

x

×

s↓

+

+

−1

×

×
×
u1

u1
×

t

γ′′1 γ′1 γ1

Figure 9. Construction of u1(t) = −x+xt+t
(1+t)2

and γ1(t, x).

Computation of γ2: by taking derivatives in time, we see that

dγ2

dt
= (1 + t)x−1e−(1+t);

d2γ2

dt2
= (x− 1)(1 + t)x−2e−(1+t) − (1 + t)x−1e−(1+t) =

x− t− 2

1 + t

dγ2

dt
; (7.5)

moreover, we have initial conditions

γ2(0, x) = 0,
dγ2

dt
(0, x) = 1/e.

As with γ1, we can look at the PDE (7.5) as an ODE in t with a parameter x. It is then easy to
check that it defines a well-posed problem, since the multiplying factor u2(t, x) = x−t−2

1+t is defined

for all t ∈ T. As an intermediate step in generating γ2 with an L-GPAC, via (7.5), we generate the
multiplying factor u2, and to achieve this we again consider the function s↓(t) = 1

1+t from the proof

of Proposition 5.1. We can thus construct u2 = (x− t− 2)s↓ and obtain γ2 with an L-GPAC as in
Figure 10, which implements (7.5).

Construction of Γ: We finally obtain Γ(x) as the limit

Γ(x) = lim
t→∞

γ1(t, x) + γ2(t, x),

which can be obtained using a continuous limit module. However, we must still find an effective
modulus of convergence for our approximation. This will be done with two technical lemmas.

14



t

−1

−2

x

×

+

s↓

+

×
u2

u2
×

t

γ′′2 γ′2 γ2

Figure 10. Construction of u2(t) = x−t−2
1+t and γ2(t, x).

Lemma 7.1. Let T ∈ T. For any x ∈ [1,+∞) and any t1, t2 ≥ T one has

|γ1(t1, x)− γ1(t2, x)| ≤ 1/T.

Proof. Under the assumptions of the lemma, we have

|γ1(t1, x)− γ1(t2, x)| =
∣∣∣∣∫ t1

t2

(1 + s)−(x+1)e−1/(1+s)ds

∣∣∣∣ < ∫ ∞
T

(1 + s)−(x+1)e−1/(1+s)ds

<

∫ ∞
T

(1 + s)−2ds =
1

1 + T
<

1

T
.

Lemma 7.2. Let T ∈ T, and k ∈ N. For any x ∈ [1, k + 1] and any t1, t2 ≥ T one has

|γ2(t1, x)− γ2(t2, x)| ≤ (k + 1)!(T + 1)ke−(T+1).

Proof. Under the assumptions of the lemma, we have

|γ2(t1, x)− γ2(t2, x)| =
∣∣∣∣∫ t1

t2

(1 + s)x−1e−(1+s)ds

∣∣∣∣ < ∫ ∞
T

(1 + s)x−1e−(1+s)ds

≤
∫ ∞
T

(1 + s)ke−(1+s)ds =

∫ ∞
T+1

ske−sds ≤ (k + 1)!(T + 1)ke−(T+1),

where the last inequality can be proved by induction on k ∈ N (using integration by parts).

Therefore, the limits in γ1, γ2 become effective for suitable moduli of convergence. We can
merge these two results and prove effectiveness of our construction, as in the next result. We
continue to use the metric given by (6.1). Recall that X = C([1,∞),R) is a Fréchet space with
pseudonorms ‖g‖n = sup

1≤x≤n
|g(x)|.

Lemma 7.3. Let γ = γ1 + γ2, where γ1, γ2 are defined as in (7.4), (7.5). Then lim
t→∞

γ(t) = Γ;

moreover, γ is a T -convergent Cauchy stream for T (τ) = C2τ with a suitably large constant C.

Proof. Only the effectiveness of the limit remains to be proven. Let τ ∈ T, T = T (τ) = C2τ and
take t1, t2 ∈ T with t1, t2 ≥ T . We can write d(γ(t1), γ(t2)) ≤ d(γ1(t1), γ1(t2)) + d(γ2(t1), γ2(t2))
and thus we can treat γ1 and γ2 separately.

To deal with γ1, we use Lemma 7.1 to conclude that, for any n ∈ N+, we have

‖γ1(t1)− γ1(t2)‖n ≤
1

T
≤ 1

C
2−τ ;
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thus, we obtain the bound

d(γ1(t1), γ1(t2)) =

∞∑
n=1

2−n min{1, ‖γ1(t1)− γ1(t2)‖n}

≤
∞∑
n=1

2−n‖γ1(t1)− γ1(t2)‖n ≤
∞∑
n=1

2−n
1

C
2−τ =

1

C
2−τ ,

which is smaller than 2−τ−1 for a suitably large C (namely, for C > 2).
To deal with γ2, we use Lemma 7.2 to conclude that, for any n ∈ N+, we have

‖γ2(t1)− γ2(t2)‖n ≤ n!(T + 1)n−1e−(T+1);

next, we shall take N = dτe+ 2, so that τ + 2 ≤ N < τ + 3. By splitting the sum, we obtain the
bound

d(γ2(t1), γ2(t2)) =

∞∑
n=1

2−n min{1, ‖γ1(t1)− γ1(t2)‖n} (7.6a)

≤
N∑
n=1

2−n‖γ1(t1)− γ1(t2)‖n +

∞∑
n=N+1

2−n (7.6b)

≤
N∑
n=1

2−nn!(T + 1)n−1e−(T+1) + 2−N (7.6c)

≤ N !(T + 1)N−1e−(T+1)
N∑
n=1

2−n + 2−τ−2 (7.6d)

< eNN+1/2e−N (T + 1)N−1e−(T+1) + 2−τ−2 (7.6e)

= exp{(N + 1/2) log(N)−N + (N − 1) log(T + 1)− T}+ 2−τ−2 (7.6f)

< exp{(τ + 7/2) log(τ + 3)− τ − 2 + (τ + 2) log(C2τ + 1)− C2τ}+ 2−τ−2,
(7.6g)

where (7.6e) is justified by Stirling’s approximation [Rud76, Chapter 8],

√
2πkk+ 1

2 e−k ≤ k! ≤ ekk+ 1
2 e−k. (7.7)

For the last step, we wish to bound the first term as

exp{(τ + 7/2) log(τ + 3)− τ − 2 + (τ + 2) log(C2τ + 1)− C2τ} ≤ exp{− log(2)(τ + 2)},
which means that we need to find C such that, for all τ ∈ T,

(τ + 7/2) log(τ + 3)− τ − 2 + (τ + 2) log(C2τ + 1)− C2τ ≤ − log(2)(τ + 2).

But this certainly holds for a suitably large C that does not depend on τ , because the term C2τ

largely dominates all other terms (numerically, we have found that C > 2.85216 suffices). Thus the
bound in (7.6g) can be further taken to be smaller than exp{− log(2)(τ + 2)}+ 2−τ−2 = 2−τ−1.

Combining the two bounds, we conclude that d(γ(t1), γ(t2)) < 2−τ and therefore γ is a T -
convergent Cauchy stream.

Theorem 7.4. The gamma function is L-GPAC-generable.

Proof. By Lemma 7.3, the gamma function Γ can be seen as the T -convergent limit of some function
γ. Moreover, by the preceding discussion, both γ and T can be seen to be L-GPAC-generable; in
particular, γ is the sum of two L-GPAC-generable functions. Thus we can devise an L-GPAC that
generates Γ, as in Figure 11.

16



T

γ1

γ2

+ Lc
t T (t) Γ

Figure 11. Construction of the gamma function; T indicates an exponential speedup
T (τ) = C2τ .

8. Computability of the Riemann zeta function

Our next case study concerns the computation of the Riemann zeta function, which for complex
numbers with real part greater than 1 is given by

ζ(z) =

∞∑
n=1

1

nz
. (8.1)

This function has a pole at z = 1 and thus we should consider a space of functions defined in a
region “away from” z = 1. In particular, we take X = C([2,∞),R); in other words, we shall be
interested in computing ζ(x) for real values of x larger or equal than 2. Note that X is a Fréchet
space with pseudonorms ‖g‖n = sup

1≤x≤n
|g(x)|.

We need a representation of the Riemann zeta function that is amenable to our framework of
analog networks. Fortunately, there are known integral representations that we can use, such as

ζ(x) =
1

Γ(x)

∫ ∞
0

tx−1

et − 1
dt, (8.2)

or the Abel-Plana formula [Abe65, Pla20]

ζ(x) =
2x

x− 1
− 2x

∫ ∞
0

sin(x arctan t)

(1 + t2)x/2(eπt+1)
dt. (8.3)

The latter formula will allow us to express the zeta function as the limit of a function in two
variables,

ζ(x) = lim
t→∞

ζ1(t, x),

for a function ζ1 which computes the bounded integral

ζ1(t, x) =
2x

x− 1
− 2x

∫ t

0

sin(x arctan s)

(1 + s2)x/2(eπs+1)
ds. (8.4)

For such a function, we have ζ1(0, x) = 2x

x−1 and dζ1
dt = −2xζ2, where

ζ2(t, x) =
sin(x arctan t)

(1 + t2)x/2(eπt+1)
. (8.5)

Lemma 8.1. The function ζ2 defined in (8.5) is L-GPAC-generable.

Proof. This requires several steps, so we just provide a sketch of the construction:

(1) the function t 7→ 1
1+t2

is GPAC-generable; it can be given as the output of the inverter (from

Example 4.3) with inputs k = 1 and b(t) = t2;
(2) the function t 7→ arctan t is GPAC-generable; observe that (arctan t)′ = 1

1+t2
and use step 1;
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(3) the function (t, x) 7→ sin(x arctan t) is L-GPAC-generable; compose (t, x) 7→ x arctan t (from
step 2) with t 7→ sin(t);

(4) the function (t, x) 7→ (1+t2)−x/2 is L-GPAC-generable; if u(t, x) = (1+t2)−x/2 then du
dt = − xt

1+t2
u,

with u(0, x) = 1; use step 1 (see Figure 12 for more details);
(5) the function t 7→ e−πt−1 is GPAC-generable; compose t 7→ −πt− 1 with t 7→ et;

(6) the function ζ2 is L-GPAC-generable; write ζ2(t, x) = sin(x arctan t)(1 + t2)−x/2e−πt−1 and use
steps 3, 4, 5.

Step 1 × × ×

−x 1

t

1
1+t2 u

Figure 12. Construction of the function u(t, x) = (1 + t2)−x/2 appearing in step 4
of the proof of Lemma 8.1.

Theorem 8.2. The Riemann zeta function is L-GPAC-generable.

Proof. We can obtain ζ1 (from (8.4)) by feeding ζ2 (which is L-GPAC-generable by Lemma 8.1)
into an integrator module and using constants 2x

x−1 , 2x. We can obtain the Riemann zeta function
by feeding ζ1 into an effective limit module. Thus we can devise an L-GPAC that generates ζ, as in
Figure 13.

−2x

ζ2

2x

x−1

×

T

L̃c
t

ζ1

ζ

Figure 13. Construction of the Riemann zeta function; T denotes a suitable
continuous modulus of convergence.

The only thing left is to prove the effectiveness of the convergence. In order to do that we shall
prove that a linear modulus of convergence T (τ) = Cτ , for a suitable large constant C, is sufficient.
The following calculations are similar to those done for Lemmas 7.1, 7.2 and 7.3. To start, we recall
that X = C([2,∞),R) is a Fréchet space with pseudonorms ‖g‖n = sup

2≤x≤n
|g(x)|. Let T ∈ T, k ∈ N

with k ≥ 2, x ∈ [2, k] and t1, t2 ∈ T with t1, t2 ≥ T ; then we have the bound
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|ζ1(t1, x)− ζ1(t2, x)| =
∣∣∣∣2x ∫ t1

t2

sin(x arctan t)

(1 + t2)x/2eπt+1
dt

∣∣∣∣
< 2x

∫ ∞
T

∣∣∣∣ sin(x arctan t)

(1 + t2)x/2eπt+1

∣∣∣∣ dt
≤ 2k

∫ ∞
T

1

eπt+1
dt =

2k

eπ
e−πT .

Thus, for any k ≥ 2 and any t1, t2 ≥ T (τ) we have

‖ζ1(t1)− ζ1(t2)‖k ≤
2k

eπ
e−πT =

2k

eπ
e−πCτ . (8.6)

Next, let us take N = dτe+ 1, so that τ + 1 ≤ N < τ + 2. By splitting the sum, we obtain

d(ζ1(t1), ζ1(t2)) =
∞∑
n=2

2−n min(‖ζ1(t1)− ζ1(t2)‖n, 1) (8.7a)

≤
N∑
n=2

2−n‖ζ1(t1)− ζ1(t2)‖n +
∞∑

n=N+1

2−n (8.7b)

≤
N∑
n=2

2−n
2n

eπ
e−πCτ + 2−N (8.7c)

≤ N − 1

eπ
e−πCτ + 2−τ−1 (8.7d)

<
τ + 1

eπ
e−πCτ + 2−τ−1 (8.7e)

= exp{−πCτ + log(τ + 1)− log(eπ)}+ 2−τ−1, (8.7f)

where (8.7c) is justified by (8.6). Finally, the expression in (8.7f) can be further taken to be smaller
than exp{− log(2)(τ + 1)}+ 2−τ−1 = 2−τ for a suitably large C that does not depend on τ , because
the term πCτ dominates all other terms (numerically, we have found that C > 0.25079 suffices).
Thus

d(ζ1(t1), ζ1(t2)) < 2−τ ,

so that ζ1 is a T -convergent Cauchy stream. Incidentally, since C can be chosen to be equal to 1,
the stream ζ1 is id-convergent (meaning that the one-input continuous limit module can be applied
directly).

9. Conclusion and further work

In this paper we introduced limit modules to the Shannon GPAC computational model, arriving
at a generalization which we called L-GPAC. The main motivation was to prove that some non-
differentially algebraic functions such as the gamma function can be generated in this framework.
In some sense, that result was obtained before (see [Gra04]) by changing the notion of GPAC-
generability to allow for approximability of functions.

The idea of approximability is a cornerstone in many models of computability on continuous
spaces, especially those that use classically computable functions (i.e. computable functions on the
naturals) as a starting point. This is a consequence of the fact that many continuous spaces are
typically represented using a dense countable subset and codes of convergent sequences. Then, to
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X -GPAC

C([0,∞),X )

L-GPAC

X

limits

initial constants

Figure 14. Recursive definition of a hierarchy of GPAC-generable functions.

say that a function is computable is to assert that its values can be obtained up to a prescribed
precision in an effective way.

As we have seen, the limit module is an operation of type C(T,X )→ X whose output is of ‘one
arity less’ than the input. This can be seen as the reverse of the integrator module, whose initial
constant g ∈ X is of ‘one arity less’ than the output in C(T,X ). This suggests one possible way
of defining a hierarchy of ‘computable functions’ on X based on the X -GPAC model presented in
[PZ17], which we sketch as follows (see also Figure 14):

(1) Assume X = C(R,R) and take the subset X0 ⊆ X of Shannon GPAC-generable functions
(ignore momentarily the fact that C(R,R) is not the same as the class C1(T,R) appearing in
the Shannon GPAC); in this way, X0 corresponds to the class of differentially algebraic real
functions as proven by Shannon and others.

(2) Using X0 as a class of ‘valid initial constants’ for integration in an X -GPAC, define a class of
X -GPAC-generable functions in C([0,∞),X ).

(3) Using continuous limit modules (that is, the L-GPAC framework), define a subclass X1 ⊆ X of
valid limits of the X -GPAC-generable functions from the previous step; observe that this new
class contains the gamma and Riemann zeta function, so X1 is strictly larger than X0.

(4) The procedure can be iterated to get a hierarchy X0 ⊆ X1 ⊆ X2 ⊆ . . . ⊆ X of ‘computable
functions’ on X .

We leave as an open problem the task of defining this hierarchy precisely and studying its
properties. We conjecture that this hierarchy actually collapses at level n = 1, which would mean
that using the limit operation just once is enough to capture the full class of L-GPAC-generable
functions. Our intuition comes from the discrete case, where we know that, given an effective
sequence of fast effective sequences of approximations, a diagonal argument can produce a new fast
effective sequence. This argument also appears in the framework of α-tracking computability, where
it is used to show that Cᾱ(Cᾱ(X)) = Cᾱ(X) [TZ04, Remark 8.1.1] and it should be applicable to

the case of continuous limits as well. Nevertheless, we hope that the union
⋃
n∈N
Xn is different from

X , in order to have a non-trivial model of computation.
Another direction for further research would consist in comparing our model of computation

(the L-GPAC) with other models of computability in continuous spaces. For example, we could look
at the notion of tracking computability presented in [TZ04] and find out suitable conditions under
which the functions generated by a GPAC are tracking computable (and vice-versa). There is a
large volume of research and literature dedicated to the task of defining an analog counterpart to
the Church-Turing thesis, and this could be considered as an important step towards that goal.

We also remark that similar results have been achieved; for example, the paper [BCGH07] already
shows an equivalence between a GPAC model (which includes approximability) and computable
analysis. Thus, with some care, their techniques may be adaptable to our framework.

We hope that in tackling these problems new insights can be acquired about the power of analog
networks, and in particular the GPAC, as a model of analog computability.
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iii. Comptes Rendus des Séances d l’Académie des Sciences, Paris, 241:151–153, 1955.
[LR87] Leonard Lipshitz and Lee Rubel. A differentially algebraic replacement theorem. Proceedings of the

American Mathematical Society, 99(2):367–372, 1987.
[OLBC10] Frank W. J. Olver, Daniel W. Lozier, Ronald F. Boisvert, and Charles W. Clark. NIST Handbook of

Mathematical Functions. Cambridge University Press, 2010.
[PE74] Marian Pour-El. Abstract computability and its relations to the general purpose analog computer. Trans-

actions of the American Mathematical Society, 199:1–28, 1974.
[PER79] Marian Pour-El and Ian Richards. A computable ordinary differential equation which possesses no

computable solution. Annals of Mathematical Logic, 17:61–90, 1979.
[Pla20] Giovanni Antonio Amedeo Plana. Sur une nouvelle expression analytique des nombres bernoulliens, propre
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