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Abstract. We undertake a study of imperative computation. Beginning
with a philosophical analysis of the distinction between imperative and
functional language features, we define a (pure) imperative language as
one whose constructs are (inherently) referentially opaque. We then give
a definition of a computation language by identifying desirable properties
for such a language.
We present a new pure imperative computation language, Assignment
Calculus AC. The main idea behind AC is based on the insight of T.
Janssen that Montague’s modal operators of intension and extension,
developed for the study of natural language semantics, are also useful for
the semantics of programming language features such as assignments and
pointers. AC consists of only four basic constructs, assignment ‘X :=== t’,
sequence ‘t ; u’, procedure formation ‘¡t’ and procedure invocation ‘!t’.
Two interpretations are given for AC: an operational semantics and a
term-rewriting system; these interpretations turn out to be equivalent.

1 Introduction

What is a pure imperative language? This paper attempts to answer this question
by pursuing one possible definition: a pure imperative language is one whose
operators are fundamentally referentially opaque.

In Section 2 we give a discussion of this approach, involving referential trans-
parency and opacity , the substitutivity principle and intensionality , with natural-
language examples. We show that these problems are also present in imperative
programming languages, and introduce our imperative computation language
Assignment Calculus, AC.

Section 3 presents the syntax and operational semantics of AC, with a run-
ning example which will be used throughout the paper. We examine an important
aspect of AC: state backtracking .

In Section 4 a term rewriting system for AC is presented, and used with
our running example. We state the equivalence of the operational semantics and
rewriting system, and (without proof) a confluence theorem for this system. We
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conclude in Section 5 with a summary of the significance of the ideas presented
here, a brief examination of similar work, and possible lines of research.

A comment on notation: syntax is represented by bold text; the equivalence
of two syntactic entities is indicated by ‘≡’.

This paper is based on the thesis [Ben10], which contains full proofs of most
of the results stated here. The thesis also provides, among other things, a full
denotational semantics for AC, along with related results including the equiva-
lence of operational, denotational, and rewriting semantics. This paper extends
our work by presenting a stronger syntax-directed proof of equivalence between
the operational semantics and term rewriting system.

2 Imperative Computation

To program a computer, we must provide it with instructions to arrive at the de-
sired result. There are two types of instructions: commands (or statements) and
goals. The latter provide a “specification,” and the computer (or compiler) must
figure out how to arrive at a solution. Goals are generally written as declarations,
often presented in a “functional” style [Bac78].

This distinction between types of instructions forms the basis of the two
types of programming language: a language that is based on commands is called
imperative, and one that is based on goals is called declarative.

This distinction can be traced back to two pioneers in computation theory,
Alan Turing and Alonzo Church. Turing’s analysis of computation [Tur36] is
via a machine that executes tasks sequentially, reading from and writing to a
storage device (the “tape”). Church’s system [Chu41] is more abstract, taking
the mathematical notion of function as basic, and employing only the operations
of (functional) abstraction and application to express computational goals. Tur-
ing proved that their systems have the same computational power, and argued
convincingly that they are universal (the Church-Turing Thesis).

The benefit of Turing’s approach is its suggestion of a real computer; a vari-
ant, due to von Neumann, lies at the core of virtually every computing device in
use today. Since computers are basically built on Turing’s idea, so are impera-
tive languages. Thus any imperative language contains operations for sequencing
(‘ ; ’) and reading from and writing to memory (assignments). Imperative lan-
guages are thus closely connected to practice. However, dealing with imperative
languages’ semantics can be tricky, and the Turing machine can be a clumsy
theoretical tool.

Church’s λ-calculus stems from research into the foundations of mathemat-
ics. Its language of functional abstraction and application is small, elegant, and
powerful, and makes it immediately amenable to theoretical study [Bar84]. Many
“functional languages” have been designed around the λ-calculus. However, a
major drawback to functional languages is their lack of “machine intuition”,
which can make them difficult to implement.

Real computers are based on the imperative model, so compilers for func-
tional languages are needed to translate Church-style computation into Tur-



ing’s model. Conversely, for those working in denotational semantics, giving a
mathematical meaning to imperative programming languages means interpreting
Turing-style computation in a Church-style language.

Can we “short-circuit” these interpretations in either direction? In other
words, can we either (a) build a computer on Church’s notion, or (b) design a
formal language that embodies Turing’s conception? In this paper we focus on
question (b). In this regard, it is somewhat surprising that there is no accepted
canonical theoretical computation language that is fundamentally imperative in
character. Our goal is to present such a language. It is not presented as “the”
basic language for imperative computation, but simply as a potential candidate.
First, however, we must answer a pressing question: what, exactly, is “imperative
computation”?

2.1 What is Imperative Computation?

A first attempt to define imperative computation could be made from the point
of view of machine behaviour. If functional features are seen as “high-level,” then
we should remain close to a machine-based intuition.

The problem is that this does not sufficiently restrict our definition: there
are many different machine architectures, instruction sets, abstractions from
machine to assembly languages, and implementations of control structures; in
short, there is too much freedom when working with machine intuition alone.

So we want an imperative language which is (a) as simple as possible, (b)
Turing complete, and (c) “pure”. How do we understand (c)? A good approach
is to take the concepts of pure imperative and pure functional as “orthogonal”
in some sense.

We begin by asking: what is functional purity?
Purely functional languages are referentially transparent [FH88]. This allows

for call-by-name or lazy evaluation, as in Haskell [HHJW07]. Referential trans-
parency as a concept goes back to Quine [Qui60, §30] and essentially embodies
Leibniz’s principle of substitutivity of equals:

e1 = e2 =⇒ e(· · · e1 · · · ) = e(· · · e2 · · · ).

The benefit of this is clear: “computation” proceeds by substituting expressions
for variables. This idea is taken to an extreme in the pure λ-calculus, which
reduces functional computation to its smallest possible core. Its (only!) operators
are λ-abstraction and application; its only atoms are variables. Syntactically,
application of a function to an argument is accomplished by substitution, taking
advantage of referential transparency.

In fact we take the λ-calculus as the paragon of theoretical computation
languages: (a) it is small, elegant and intuitive; (b) its operators represent well-
understood, fundamental concepts; (c) we can rewrite its terms using simple
rules; and (d) it has multiple equivalent forms of semantics. Our aim is to develop
a formal language for imperative computation that has as many of the above
virtues as possible.



Going back to our question: what is a pure imperative language? We now
propose: it is a language whose features are fundamentally non-transparent, or
opaque, i.e., substitutivity is the exception rather than the rule.

2.2 Referential Opacity

We begin with an example in natural language. Consider the sentence:

The temperature is twenty degrees and rising.

Formalizing this gives us

twenty(temp) ∧∧∧ rising(temp) (1)

Suppose the temperature is 20◦. Substituting this for temp in (1) (using sub-
stitutivity of equals) yields ‘twenty(20◦)’ for the first conjunct, which is fine,
but ‘rising(20◦)’ for the second, which is not even false, but nonsense: “tem-
perature” here means not its current value, but its value over time.

The problem is that although the predicate ‘twenty ’ introduces a transparent
context, the predicate ‘rising ’ creates an opaque context.

Such intensional phenomena abound in natural language, and have been stud-
ied by philosophers and linguists for some time [Fre92]. They can be recognized
by apparent violations of substitutivity as above. This is also the case for im-
perative programming languages, to which we now turn.

Consider the assignment statement X :=== X ++++++++ 1. Clearly, we can substi-
tute the current value of X for ‘X’ on the right-hand side, but not on the
left-hand side; attempting the latter gives a meaningless expression. Janssen
[JvEB77,Jan86] noticed that these are simple examples of transparent and opaque
contexts in programming languages; and he was able to develop a compositional
semantics for programming languages, dealing with assignments and pointers,
comparable to what Montague had done for natural languages. This penetrating
insight of Janssen’s was the starting point for a line of investigation continued
in [Hun90,HZ91], and further in [Ben10] and the present paper.

In fact, it turns out that opaque contexts are inherent in all the fundamental
imperative operations.

2.3 Intensions

Frege [Fre92] analyzed the substitutivity problem. He distinguished between two
kinds of meaning: sense (Sinn) and denotation (Bedeutung). He showed that,
in cases where substitutivity does not hold in terms of the denotations of ex-
pressions, it can be restored if we consider, not the denotation of the expression,
but its sense, which can be understood as a function from “contexts,” “states,”
“settings,” or (as in example (1)) “time instants” to values.

A formal system implementing Frege’s ideas was developed by Church [Chu51],
and a semantic interpretation by Carnap [Car47], who introduced the terms in-
tension and extension for sense and denotation. Kripke [Kri59] rounded out the



semantic treatment by providing the setting of possible worlds for modal logic.
By combining his work with Carnap’s, we can treat intension as a function from
possible worlds to values.

The next major step was accomplished by Montague [Mon70,Mon73], who
developed a system IL of intensional logic for the mathematical treatment of
natural language. Next, Janssen and van Emde Boas [JvEB77,Jan86] applied
Montague’s techniques to imperative programming languages. By identifying
possible worlds with machine states, they provide a strikingly elegant treatment
of assignment statements and pointers.

A significant extension was accomplished by Hung and Zucker [Hun90,HZ91],
who provided compositional denotational semantics for quite intricate language
features such as blocks with local identifiers; procedure parameters passed by
value, by reference and by name; and pointers which can be dereferenced any-
where, including the left-hand side of assignment statements. Janssen’s system —
specifically, Hung’s version — is the genesis of Assignment Calculus AC, the
language to be presented in this paper.

2.4 Intentions

We begin with the observation that

the intension operator generalizes the (parameterless) procedure. (2)

A procedure is a function from states to states, and an intension is a function
from states to values. If we include states in the set of values, then the general-
ization is clear. The reason that it was not noticed by Janssen or Hung is that,
in Montague’s systems, states cannot be treated as values.

Another observation is that we can allow “storage” of intensions in the state.
Stored procedures are a well-known but difficult feature of imperative languages
[Sco70,SS71]. They allow general recursion, and also a generalization of the treat-
ment of pointers given by Janssen and Hung.

The resulting system is sufficiently interesting to be studied in “isolation”,
removing all the functional and logical components in DIL, such as variables,
abstraction and application. The resulting language AC is a case study in pure
imperative computation.

3 Assignment Calculus AC

In attempting to create a pure imperative computation language, it is important
to remain as close as possible to existing imperative languages.

An imperative programming language can perhaps be defined as a language
L with the following characteristics:

1. The interpretation of L depends on some form of computer memory (state)
through which data can be stored and retrieved.



2. The state consists of contents of discrete memory locations that can be read
from or written to independently.

3. An L-program consists of a sequence of explicit commands or instructions
that fundamentally depend on (and often change) the state.

4. L contains some form of looping, branching or recursion mechanism to allow
for repeated execution of program parts.

The first three characteristics are common to all imperative languages. Therefore
AC includes them directly.

Characteristic 4 can be embodied in many ways: conditional branching,
“goto” statements; looping constructs (“while” etc.); and recursion.

AC’s approach to 4 is to employ Montague’s intension operator as a gener-
alization of parameterless procedure, in accordance with our observation above.
In AC, intensions are treated as first-class values: they can be defined anony-
mously, assigned to locations, and invoked freely.

The goals of AC are twofold: first to continue the line of research initiated by
Janssen and continued by Hung and Zucker in applying Montague’s work to pro-
gramming languages, and secondly to attempt to provide a small, elegant, useful
core language for imperative-style computation—a pure imperative computation
language as defined in Section 2.

3.1 Introduction to AC

Term is the set of AC terms t, u, . . .. Before defining Term formally, we go
over the basic constructs of AC and their intuitive meanings.

1. Locations: X, Y , . . . correspond to memory locations. The collection of all
locations is the store.

2. Assignment : X :=== t. Overwrites the contents of location X with whatever
t computes. This operation computes the store that results from such an
update.

3. Sequence: t ;u. Interpreted as follows: first compute t, which returns a store,
then compute u in this new context.

4. Intension: ¡t. This is procedure formation. It “stops” evaluation of t so that
¡t is the procedure that, when invoked, returns whatever t computes.

5. Extension: !t. This is procedure invocation, that is, it “runs” the procedure
computed by t.

An easy way to remember our notation (different from Montague’s) for intension
and extension is that ‘¡’ looks like a lowercase ‘i’, for intension, and that ‘!’, an
exclamation mark, is used for extension.

This constitutes pure AC. For convenience, we can add supplementary op-
erators: numerals n, . . . , booleans b, . . . and their standard operations.

We will use the following as a running example of an AC term:

P :=== ¡X; X :=== 1; !P . (3)

This term sets P to the procedure that returns X, then sets X to 1. Finally, P
is invoked thus returning the current value of X which is 1.



3.2 Types and Syntax of AC

AC is a simply typed language in the sense of Church [Chu40].

Definition 3.1 (Types). The set Type of types τ , . . ., is generated by:

τ ::= B | N | S | S→→→τ ,

where B, N and S are the types of booleans, naturals and stores respectively, and
S→→→τ is that of intensions (procedures) which return values of type τ . (The base
types B and N are added only to handle the supplementary operators described
above; for pure AC, they can be removed.)

Now we define the set of terms Term of AC. For each type τ , the sets
Termτ of terms of type τ are defined by mutual recursion:

Definition 3.2 (Syntax of AC).

1. X ∈ Locτ ⇒ X ∈ Termτ

2. t ∈ Termτ ⇒ ¡t ∈ TermS→→→τ

3. t ∈ TermS→→→τ ⇒ !t ∈ Termτ

4. X ∈ Locτ , t ∈ Termτ ⇒ Xτ :=== tτ ∈ TermS

5. t ∈ TermS, u ∈ Termτ ⇒ t ;u ∈ Termτ

Supplementary operators are defined in a standard way [Ben10].

Notice that the intension of a term t of type τ is of type S→→→τ , and the extension
of an (intensional) term t of type S→→→τ is of type τ . The assignment construct
is (always) of type S. Most interestingly, the sequence operator allows terms of
type other than S to the right of assignments; for example we have the term
Xτ :=== X ++++++++ 1 ;X of type N. This is discussed further in §3.5.

Assignments are of type S due to the fact that they return stores, and the
type of the location (on the left-hand side) and the assigned term must be in
agreement. We do not allow locations of type S, but we do allow locations of
type S→→→τ for any τ . This amounts to storage of intensions in the store, which
accounts for much of AC’s expressive power.

As an example, think of ¡t as representing the “text” of t, which, in an actual
computer, is the way that procedures and programs are stored. Now consider
the term

X :=== ¡!X,

which is read “store in X the procedure that invokes X”. Once this action is
performed, an invocation of X

X :=== ¡!X; !X

will proceed to invoke X again and again, leading to divergence.



3.3 Operational Semantics of AC

We access the contents of X in a store ς by function application ς(X).
We will use the standard notion of function variant to update the contents

of a location, where the variant f [x/d] of a function f at x for d is defined by:
(f [x/d])(x) = d and (f [x/d])(y) = f(y) for y 6= x.

We employ “big-step” operational semantics [Win93]. The rules define the
computation relation ⇓ ⊂ ((Term × Store) × (Term ∪ Store)). Really, since
a term can compute either a store (if the term is of type S) or another term
(if it is of any type other than S), the computation relation can be broken into
two disjoint relations ⇓c ⊂ ((TermS × Store) × Store) and ⇓v ⊂ ((Termτ ×
Store) × Term). However, since the rules are so simple, we choose instead to
use the metavariable d to range over both terms and stores, and give the rules
as follows:

Definition 3.3 (Operational semantics of AC). First, the rules for loca-
tions, assignment and sequence are standard [Win93]:

ς(X) = t

X, ς ⇓ t

t, ς ⇓ u

X :=== t, ς ⇓ ς[X/u]

t, ς ⇓ ς ′ u, ς ′ ⇓ d

t; u, ς ⇓ d

The interesting new rules are those for intension and extension:

¡t, ς ⇓ ¡t

t, ς ⇓ ¡u u, ς ⇓ d

!t, ς ⇓ d

The rules for supplementary operators are standard, and omitted here.

The intuition for the rules for intension and extension are as follows:

• intension “holds back” the computation of a term,
• extension “induces” computation.

Note that there are no side-effects in AC; if a term is of type τ 6= S then it
only results in a value. This is further discussed in §3.5.

Lemma 3.4. Computation is unique and deterministic, i.e., there is at most
one derivation for any t, ς.

We return to our running example (3). Its operational interpretation is as
follows. For any ς, ς ′ = ς[P /¡X] and ς ′′ = ς[P /¡X][X/1],

¡X, ς ⇓ ¡X

P :=== ¡X, ς ⇓ ς ′

1, ς ′ ⇓ 1

X :=== 1, ς ′ ⇓ ς ′′

ς ′′(P ) = ¡X

P , ς ′′ ⇓ ¡X

ς ′′(X) = 1

X, ς ′′ ⇓ 1

!P , ς ′′ ⇓ 1

X :=== 1; !P , ς ′′ ⇓ 1

P :=== ¡X; X :=== 1; !P , ς ⇓ 1



3.4 Rigidity, Modal Closedness, and Canonicity

Definition 3.5 (Operational rigidity). A term t is called operationally rigid
iff there is a u s.t. all stores ς give t, ς ⇓ u. A term for which this is not the case
is called operationally non-rigid.

To provide a syntactic approximation to rigidity, we follow Montague and
define the set of modally closed terms as follows:

Definition 3.6 (Modal Closedness). The set of modally closed terms MC,
ranged over by mc, is generated by

mc ::= b | n | ¡t | mc1 ++++++++mc2 | . . .

with similar clauses for other arithmetic, comparison and boolean operators.

Lemma 3.7. t ∈MC =⇒ t is operationally rigid.

Modal closedness captures the intuitive notion of a completed imperative
computation, but it can leave arithmetic and boolean computations “unfinished”.
Terms in which all of these computations are also complete are called canonical
and are defined by:

Definition 3.8 (Canonical terms). The set of canonical terms Can, ranged
over by c, is generated by:

c ::= b | n | ¡t

Clearly, Can ⊆MC. Hence:

t ∈ Can ⇒ t ∈MC ⇒ t is operationally rigid.

Definition 3.9 (Properness of Stores). A store ς is proper if it maps loca-
tions only to canonical terms.

The main result of this section is that the operational semantics is well defined,
i.e., it only produces canonical terms or proper stores:

Theorem 3.10 (Properness of Operational Semantics). If ς is proper,
then for any t where t, ς converges:

1. If t is of type S then there is a proper store ς ′ s.t. t, ς ⇓ ς ′;
2. Otherwise, there is a (canonical) c s.t. t, ς ⇓ c.

Proof. By induction on derivations. Details in [Ben10].



3.5 State Backtracking

A significant difference between AC and traditional imperative languages is that
there are no side-effects. In AC, terms represent either stores (effects), if they
are of type S, or values if they are of some other type.

In this respect, note that a language based on side-effects can easily be trans-
lated into AC. Further, the absence of side-effects in AC leads to an interesting
phenomenon: state backtracking .

State backtracking, or non-persistent or local state update, occurs when we
have terms of the form

t ;uτ where τ 6= S (4)

because state changes caused by t are “lost,” “localized” or “unrolled” when the
value of u is returned. Consider the following example:

Y :=== (X :=== 1; X).

Changes to X are local to the computation of Y , so in fact the above term is
equivalent to ‘Y :=== 1’, a result which can be confirmed easily by the reader (for
details, see [Ben10]).

The inclusion of terms of the form (4), makes possible a clean rewriting
system for AC: it gives us a way to “push assignments into terms”. We discuss
this further in §4; for now, consider this example: X :=== 1; X :=== (X ++++++++X). By
intuition and the operational semantics, we know that this term is equivalent
to X :=== 2. But how can it be possible, without overly complicated rules, to
rewrite the former to the latter? By admitting terms like (4), we can express
intermediate steps of the computation that could not otherwise be written. Using
the rewriting rules (Definition 4.1),

X :=== 1; X :=== (X ++++++++X) X :=== (X :=== 1; (X ++++++++X))

X :=== ((X :=== 1; X) ++++++++ (X :=== 1; X))

X :=== (1 ++++++++ 1) X :=== 2

Thus, based on its usefulness and the simplicity of the resulting rewriting rules,
we believe that

State backtracking is a natural part of imperative computation.

4 Term Rewriting

In this section we explore AC by examining meaning-preserving transformations
of terms. What we will develop is essentially the “calculus” part of Assignment
Calculus—a term rewriting system whose rules are meant to capture and exploit
its essential equivalences.1

1 In developing these rules, we find significant guidance in Janssen’s [Jan86] and
Hung’s [Hun90] work on state-switcher reductions.



4.1 Rewrite rules and properties

In order to make the rewriting definitions simpler, we adopt the convention that
terms are syntactically identical regardless of parenthesization of the sequencing
operator; to wit, (t ;u) ; v ≡ t ; (u ; v) This convention makes it much easier to
express rewriting rules that govern the interaction of assignment operators.

The heart of the rewriting system is the rewriting function : Term →
Term. Recall the definition (3.6) of modally closed terms mc.

Definition 4.1. The rewriting function is given by

1. !¡t t
2. X :=== mc1; mc2 mc2
3. X :=== t; X t
4. X :=== mc; Y Y
5. X :=== mc; X :=== u X :=== (X :=== mc; u)
6. X :=== mc; Y :=== t Y :=== (X :=== mc; t); X :=== mc
7. X :=== mc; !t X :=== mc; !(X :=== mc; t)

Definition 4.2. The rewrite relation ⊂ (Term × Term) is defined by:
t u iff u results from applying to a subterm of t. If t · · · u (includ-
ing if t ≡ u), then we write t u; that is, is the reflexive-transitive closure
of .

Some brief remarks are in order to explain the rewrite rules. Rule 1 expresses a
basic property of Montague’s intension and extension operators. In our setting,
it embodies the execution of a procedure. Rule 7 is very important: it is the
recursion rule. It may be difficult to see immediately why we identify this rule
with recursion; the following special case, which combines the use of rules 7, 3
and 1, illustrates the concept more clearly:

X :=== ¡t ; !X X :=== ¡t ; t.

This amounts to simple substitution of a procedure body for its identifier, while
“keeping a copy” of the procedure body available for further substitutions.

Our first order of business is to show that the rewrite function does not
change the meaning of a term.

Theorem 4.3 (Validity of rewrite rules). t u =⇒ (t, ς ⇓ d ⇔ u, ς ⇓ d)

Proof. By cases on the rewrite rules. This proof also provides constructive “rules
of replacement” for parts of operational derivation trees: each rewrite rule cor-
responds to a transformation on derivation trees. �

We can gain some valuable insight into how to use the rewriting rules by using
them to interpret our running example (3):

P :=== ¡X; X :=== 1; !P X :=== 1; P :=== ¡X; !P

X :=== 1; P :=== ¡X; !(P :=== ¡X; P )

X :=== 1; P :=== ¡X; !¡X

X :=== 1; P :=== ¡X; X 1



4.2 Equivalence of Interpretations

In this subsection we demonstrate that the rewriting system provided by the
relation is equivalent to the operational interpretation. Before stating this

theorem, however, we need to address some technicalities.
In order to use the rewriting rules to arrive at the same result as the oper-

ational semantics, we need to take into account the store. That means that we
need a way to take the required information from the store and actualize it as a
term. For example, take the term t ≡ X ++++++++X and a store ς that maps X to 1;
then, t, ς ⇓ 2. We can accomplish this in rewriting by prepending t with X :=== 1,
which gives X :=== 1; (X ++++++++X) 2 as needed. For technical convenience, we
take the set of locations Loc to be finite ([Ben10] extends the treatment to a
countable set).

Definition 4.4 (Store terms, store actualization and store abstraction).
The store-actualization of ς, assuming Loc = {X1, . . . ,Xn}, is defined as

〈ς〉 =
def

X1 :=== ς(X1) ; . . . ; Xn :=== ς(Xn).

Terms like those above we call store-terms. The set of store-terms STerm,
ranged over by s, is the set of terms of the form

X1 :=== c1 ; . . . ; Xn :=== cn

We also define an inverse to the store-actualization operator, store abstraction,
which takes a store term and returns the corresponding store, such that [〈ς〉] =
ς and 〈[s]〉 is s with its assignment statements reordered into some arbitrary
canonical ordering.

A convenient lemma shows the operational soundness of the above notions.

Lemma 4.5. t, ς ⇓ d ⇐⇒ ∀ς ′ · (〈ς〉 ; t), ς ′ ⇓ d. �

We now present the first part of the proof of equivalence between the oper-
ational semantics and term rewriting.

Theorem 4.6 (Operational adequacy).

1. If t, ς ⇓ c, then 〈ς〉 ; t c;
2. If t, ς ⇓ ς ′, then 〈ς〉 ; t 〈ς ′〉.

Proof. By induction on derivations. Details can be found in [Ben10]. �

The above theorem only works in one direction, in that it only shows that the
rewriting system is at least as strong as the operational semantics. In fact it is
(syntactically speaking) even stronger; as a simple demonstration of this, con-
sider the term ¡(1 ++++++++ 1). Operationally, it is inert: it returns itself. However, the
rewrite rules allow us to “reach inside” the intension and rewrite it to ¡2.2

2 This was not an issue in [Ben10] because the equivalence proof there was stated in
terms of denotational semantics; here we strive for a stronger result about the syntax
itself.



The operational semantics and rewriting system are therefore syntactically
equivalent only up to rewriting of unevaluated intensions. The following theorem
completes the equivalence result.

Theorem 4.7 (Rewriting adequacy).

1. If t c, then there is a c′ s.t. c c′ and for any ς ′, t, ς ′ ⇓ c′.
2. If t s, then there is a s′ s.t. s s′ and for any ς ′′, t, ς ′′ ⇓ [s′].

Proof. By induction on the length of the rewrite sequence t c or t s. The
inductive step consists roughly of identifying the affected parts of the operational
derivation tree and substituting a suitably modified tree (using Theorem 4.3);
or, if the rewrite step affects only an uninterpreted (i.e., bound by intension)
part of the term, to add the rewrite to c c′ or s s′ as applicable. �

By combining Theorems 4.6 and 4.7, using Lemma 4.5, we obtain our desired
equivalence result.

We conclude this section by mentioning that we have also attained a conflu-
ence result for our term rewriting system [Ben10, App. B]. It will be discussed
in detail in a forthcoming publication.

Theorem 4.8 (Confluence). If t u and t v, then there is a w s.t. u w
and v w.

5 Conclusion

We hope to have convinced the reader, in the last four sections, that AC does
indeed possess the desirable properties listed in §2.1. (a) It is small, elegant
and (hopefully) intuitive: as discussed in §2, AC’s set of four basic operators is
simple and understandable; (b) its operators represent well-understood, funda-
mental concepts: by taking only assignment, sequence, procedure formation and
procedure invocation as basic, we remain close to practical imperative languages;
(c) we can rewrite its terms using simple rules: Definition 4.1 demonstrates this;
and (d) it has multiple forms of semantics that are equivalent: in this paper
we demonstrated this equivalence for operational semantics and term rewriting,
[Ben10] extends this equivalence to denotational semantics as well.

We believe that the above points show that Assignment Calculus is a real-
ization of our goal to develop a true imperative computation language.

5.1 Related Work

The final step in our presentation is to explore related and otherwise relevant
work. First, note that there has been no other attempt, as far as the authors
are aware, to define a pure imperative computation language as we have done.
Therefore all of the other work that we will examine is only indirectly related to
our aims; nevertheless there are certainly interesting connections to be explored.



The first and perhaps most striking language of interest that can be found
in the literature is (unfortunately!) nameless; it is defined in the seminal report
of Strachey and Scott [SS71, §5]. Here we find a language that has features that
closely resemble those of AC: there are operators for referencing and dereferenc-
ing, and operators for treating a procedure as an expression and an expression as
a procedure. This language does not appear to have been revisited in subsequent
work.

Insofar as rewriting systems for imperative-style languages, the prime example
is the work of Felleisen [FH92]. He adds facilities for handling state and control
operators to Plotkin’s call-by-value λ-calculus, which results in a quite elegant
system. There could be a good deal of interesting work in comparing our work
with Felleisen’s; the main problem that we immediately encounter is that his
work depends fundamentally on the λ-calculus, which is precisely what we have
tried to avoid incorporating into AC.

5.2 Future Work

We now discuss interesting avenues of further research. First, we should like to
continue exploring, expanding, and improving the rewriting system of §4. Our
present goal was to arrive at a small set of rules that was sufficient to achieve
our equivalence proof; however, it would be useful to develop more powerful
rules that might be more intuitive in terms of real-world use. In fact we have
already made significant progress in this direction while developing the proof of
confluence in [Ben10, App. B]; the work will be elaborated in forthcoming work.

It would be interesting to examine more carefully the concept of state back-
tracking in AC. As mentioned in §3.5, we believe that state backtracking is a
fundamental part of imperative computation; therefore, we would like to provide
an improved analysis of what it comprises and how it takes part in and affects
imperative computation. Along these lines, it is important to explore connections
with Separation Logic [Rey02], particularly its interesting store model, and with
Felleisen’s work as mentioned above.

The aim of this paper was to provide an analysis of imperative computa-
tion. We have done this on multiple levels: from a philosophical dissection of
the concept of imperative computation in §2, to developing the actual types and
syntax of AC, and finally to AC’s operational and rewriting-based meanings.
We believe that this broad approach leaves AC well-prepared for further inves-
tigations, and we hope that it will stimulate future work in what we consider to
be an exciting new approach to an old paradigm.
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