
Abstra
t Computability, Algebrai
 Spe
i�
ation and InitialityJ.V. Tu
kerDepartment of Computer S
ien
e,University of Wales, Swansea SA2 8PP, WalesJ.V.Tu
ker�swansea.a
.ukJ.I. Zu
ker*Department of Computing and Software,M
Master University, Hamilton, Ont. L8S 4L7, Canadazu
ker�m
master.
a
Abstra
tAbstra
t 
omputable fun
tions are de�ned by abstra
t �nite deterministi
 algorithms on many-sorted algebras. We show that there exist �nite universal algebrai
 spe
i�
ations that spe
ifyuniquely (up to isomorphism) (i) all absra
t 
omputable fun
tions on any many-sorted algebra;and (ii) all fun
tions e�e
tively approximable by abstra
t 
omputable fun
tions on any metri
algebra. We show that there exist universal algebrai
 spe
i�
ations for all the 
lassi
ally 
om-putable fun
tions on the set R of real numbers. The algebrai
 spe
i�
ations used are mainlybounded universal equations and 
onditional equations. We investigate the initial algebra seman-ti
s of these spe
i�
ations, and derive situations where algebrai
 spe
i�
ations de�ne pre
isely the
omputable fun
tions.Categories and Subje
t Des
riptors: F.1.1 (Computation by Abstra
t Devi
es): Modelsof Computation| 
omputability theory ; F.4.1 (Mathemati
al Logi
 and Formal Languages):Mathemati
al Logi
 | 
omputability theory; proof theoryGeneral Terms: Abstra
t Computability, Algebrai
 Spe
i�
ation, Computable Analysis, Con-ditional Equations, Equational Logi
, Metri
 AlgebrasAdditional Key Words and Phrases: Birkho�'s theorem, Grzegor
zyk-La
ombe 
omputabil-ity, initial algebras, term models, many-sorted algebras, Mal'
ev's theorem, topologi
al algebras* The resear
h of the se
ond author was supported by a grant from the Natural S
ien
es and EngineeringResear
h Coun
il (Canada), and by a Visiting Fellowship from the Engineering and Physi
al S
ien
esResear
h Coun
il (U.K.)ACM Transa
tions on Computational Logi
, Vol. TBD, No. TBD, TBD TBD, Pages TBD.



20 Introdu
tionAbstra
t 
omputability theory is the theory of 
omputable fun
tions and relations overmany-sorted algebras. It is a generalisation of 
lassi
al re
ursion theory on the naturalnumbers, based on notions of �nite deterministi
 
omputation on an arbitrary many-sorted algebra. An important feature of the theory is its analysis of 
omputations that areuniform over 
lasses of algebras, and a natural appli
ation of the theory is to analyse thes
ope and limits of models of 
omputation and spe
i�
ation over abstra
t data types andtheir implementations. Sin
e the 1960s, many abstra
t models of 
omputation have beende�ned and 
lassi�ed, starting with the models of E. Engeler, Y. Mos
hovakis, H. Fried-man and J.C. Shepherdson, and generalised Chur
h-Turing Theses for 
omputation andspe
i�
ation have been formulated and defended [TZ88, TZ92℄. Here we will use the modelof 
omputation �PR� (a generalised form of Kleene s
hemes), whi
h involves simultane-ous primitive re
ursion and least number sear
h over a many-sorted algebra augmentedby the booleans, natural numbers and �nite sequen
es of every sort. In [TZ88℄ the model�PR� is shown to be equivalent to `while'-array programs over these algebras, the primarymathemati
al model of imperative programming.Working with �nite 
omputation on any algebra enables us to develop a number of spe-
ial 
omputability theories for algebras, su
h as rings and �elds of real numbers [Tu
80,Eng93, BSS89, BCSS96, BCSS97℄ and topologi
al and metri
 algebras [TZ99℄. For a 
om-prehensive introdu
tion to abstra
t 
omputability, in
luding a survey of its origins in the1950s and prin
ipal literature, see our survey [TZ00℄.In this paper we prove theorems that show that fun
tions that are abstra
tly 
omputableover many-sorted algebras, or have abstra
tly 
omputable approximations on topologi
alalgebras, 
an be spe
i�ed by purely algebrai
 methods, but that the 
onverse does not holdin the absen
e of 
ertain topologi
al 
onditions.Algebrai
 spe
i�
ation methods 
hara
terise fun
tions as the solutions of systems ofalgebrai
 formulae; normally, the solutions are unique. By algebrai
 formulae, we meanequations t(x) = t0(x)or 
onditional equationst1(x) = t01(x) ^ : : : ^ tk(x) = t0k(x) �! t(x) = t0(x); (�)or, more generally, 
onditional formulaeR1 ^ : : : ^Rk �! R (��)where the formulae Ri and R are generalisations of equations, making use of the distin-guished sorts nat of naturals and real of reals (as we will see below). To de�ne a uniquesolution for a system of equations, in logi
 one often thinks of de�nability up to isomor-phism, and in 
omputing one often thinks in terms of initial algebra semanti
s (or possibly�nal algebra semanti
s). However, noti
e that there are many more equational methods,e.g., for spe
ifying 
on
urrent pro
esses using metri
 spa
e methods to solve equations[dBR92, dBdV99℄, or for 
omputing solutions of di�erential or integral equations.ACM Transa
tions on Computational Logi
, Vol. TBD, No. TBD, TBD TBD.



3In 
omputation over a many-sorted algebra A we use the booleans, natural numbersand �nite sequen
es over A. With regard to algebrai
 spe
i�
ations over su
h stru
tures,generalising 
onditional equations leads to the 
on
ept of 
onditional bounded universal(BU) equations, in whi
h the formulae Ri and R of (��) may have the formt1 = t2 or 8z < t [ t1 = t2 ℄where the variable z and term t are of sort nat.Conditional BU equations are new and provide us with more appropriate axiomatisa-tions for some properties using the natural number sort; we show they are equivalent with
onditional equations. The main theorems are �rst proved for 
onditional BU equationsand the redu
tion method applied to obtain 
onditional equational spe
i�
ations.In the �rst part of the paper, we begin with the \simple" situation where there is asystem E of 
onditional equations over a signature �, and a �-algebra A su
h that Ehas one and only one solution f on A. We 
all this method of 
hara
terising fun
tions
onditional equation de�nability on A. We address the obvious general question:Does abstra
t 
omputability imply 
onditional equation de�nability?The answer is yes, and we show that there exist universal spe
i�
ations that spe
ify all
omputable fun
tions, as follows (Se
tion 5, Theorem 4).Theorem A (Algebra). Given a signature � and fun
tion type � over �, there exists a�nite set of 
onditional equations E(z) (with a distinguished natural number variable z)over a �nite expansion �0 of �, su
h that for any abstra
t program � over �, if A is any�-algebra and f a total fun
tion on A of type � 
omputed by �, then f is de�ned uniquelyon A by E(�k), where �k is a numeral instantiating z whi
h is e�e
tively 
al
ulable from�. The system E(z) is uniformly 
omputable from � and � .Applying our abstra
t 
omputability theory to metri
 algebras, we 
an obtain an im-portant, stri
tly broader, 
lass of fun
tions: namely, those uniformly approximable by ab-stra
tly 
omputable fun
tions. In metri
 algebras, approximation is elegantly formulatedin terms of the distan
e fun
tion, whi
h uses the sort real. This gives rise to a broader
lass of 
onditional formulae than (�), 
alled 
onditional equations and inequalities, namelyformulae (��) in whi
h the formulae Ri and R may have the formt1 = t2 or t1 < t2where, in the 
ase of inequality (t1 < t2), t1 and t2 are of sort real.From Theorem A we then prove (Se
tion 6, Theorem 2):Theorem B (Metri
 algebra). Given a signature � and fun
tion type � over �, thereexists a �nite set of 
onditional equations and inequalities E(z) (with a distinguishednatural number variable z) over a �nite expansion �0 of �, su
h that for any abstra
tprogram � over �, if A is any metri
 �-algebra and f a total fun
tion on A of type � ,approximable by � in the following sense: for all a 2 A and all nd(f(a); [[�℄℄(n; a)) < 2�n;ACM Transa
tions on Computational Logi
, Vol. TBD, No. TBD, TBD TBD.



4then f is de�ned uniquely on A by E(�k), where �k is a numeral instantiating z whi
h ise�e
tively 
al
ulable from �. The system E(z) is uniformly 
omputable from � and � .Thus, there is a bound B(�; �) on the number of 
onditional equations and inequalitiesneeded to de�ne all 
omputable or 
omputably approximable fun
tions, that depends onlyon the signature � and the fun
tion type � .Using Theorem B, we show that all the 
lassi
ally 
omputable fun
tions of real analysisare unique solutions of �nite sets of 
onditional equations and inequalities. These 
lassi
ally
omputable fun
tions have several 
hara
terisations, starting with those of Grzegor
zyk[Grz55, Grz57℄ and La
ombe [La
55℄, and hen
e are often 
alled GL-
omputable. The fa-miliar fun
tions of analysis, su
h as sinx, ex, logx, et
., are all GL-
omputable. Now thereexists a 
ertain simple total metri
 algebra Id over the real unit interval I = [0; 1℄, su
hthat the total fun
tions on I whi
h are uniformly approximable by abstra
tly 
omputablefun
tions on Id are pre
isely the GL-
omputable fun
tions on I [TZ99, TZ00℄. We provethe following (Se
tion 6, Theorem 3).Theorem C (Metri
 algebra over a real interval). For ea
h positive integer mthere is a signature ��m whi
h is an expansion of the signature of Id by �nitely manyfun
tion symbols, and a �nite system of 
onditional equations and inequalities Em(z)(with a distinguished natural number variable z) over ��m, su
h that any total fun
tionf : [0; 1℄m ! R that is GL-
omputable, is the unique solution of E(�k) for some substitutionof a numeral �k for z. The spe
i�
ation (��m; Em(z)) is uniformly 
omputable from m.Thus there is a bound B(m) on the number of 
onditional equations and inequalitiesneeded to de�ne all m-ary GL-
omputable fun
tions on [0; 1℄.The signature ��m 
onsists of the sorts of booleans B and naturals N , with their standardoperations; the sort of reals R , with its ring operations, together with division of reals bynaturals; the sort of the unit interval I, with its embedding into R ; the sort of �nitearrays on R with their standard operations; the standard metri
s on all these sorts; a\universal fun
tion" whi
h approximably abstra
tly 
omputes all m-ary GL-
omputabletotal fun
tions on I, together with the auxiliary fun
tions used in its 
omputation; thefun
tion 2�n used for expressing approximations; and a fun
tion for 
omputing boundedquanti�
ation over N .This theorem has some interesting 
onsequen
es, one of whi
h we illustrate (Se
tion 6,Theorem 4):Corollary. For ea
h n > 0, there is a �nite universal algebrai
 spe
i�
ation, 
onsistingof 
onditional equations and inequalities, for all 
omputable �nite dimensional dynami
alsystems on the unit n-
ube and over the unit time interval.Next we 
onsider the 
onverse problem:Problem. Find (reasonable) 
onditions under whi
h algebrai
 de�nability implies ab-stra
t 
omputability.From Theorem C it follows that the 
onverse to Theorem A is false, at least for spe
i�-
ations 
onsisting of 
onditional equations and inequalities; for example, for the sine andACM Transa
tions on Computational Logi
, Vol. TBD, No. TBD, TBD TBD.



5
osine fun
tions on the unit interval.It is an open problem whether the 
onverse of the approximation result (Theorems Band C) holds. It seems that some extra topologi
al 
ondition su
h as 
ontinuity is requiredfor a 
onverse result. This suggests an interesting resear
h area; see the example anddis
ussion in Se
tion 6.3.In the se
ond part of the paper, we show how the 
onditional equational theories,and 
onditional BU equational theories, 
an be used with standard algebrai
 spe
i�
ationmethods asso
iated with proof systems, term rewriting and initial algebra semanti
s.Now, when using the booleans, natural numbers and �nite sequen
es, the algebrai
spe
i�
ations and their initial algebra semanti
s must de�ne the 
orresponding standardmodels of the booleans, natural numbers and �nite arrays. We develop extensions of theBirkho�-Mal'
ev Completeness Theorems that underlie the algebrai
 spe
i�
ation meth-ods, designed to ensure that these sorts have standard models. Then we prove (Se
tion 8,Theorems 4 and 5):Theorem D (Initial algebra). Given a signature � and fun
tion type � over �, thereexists a �nite set of 
onditional equations E(z) (with a distinguished natural numbervariable z) over a �nite expansion �0 of �, su
h that for any abstra
t program � over �, if� 
omputes a total fun
tion f on A of type � , and A has an initial algebra spe
i�
ation bya set E of either 
onditional equations or 
onditional BU equations (with hidden sorts andfun
tions), then (A; f) has an initial algebra spe
i�
ation by a set E [E(�k), where E(z)
onsists of 
onditional equations and �k is a numeral instantiating z whi
h is e�e
tively
al
ulable from �. The system E(z) is uniformly 
omputable from � and � . Furthermore,if the spe
i�
ation E of A has e axioms, then the spe
i�
ation of (A; f) is �nite, with e+e0axioms, where e0 is a 
onstant 
omputed uniformly from � and � .This paper is part of our series on abstra
t 
omputability theory on many-sorted algebrasand its appli
ations, starting in [TZ88℄ and most re
ently surveyed in [TZ00℄. Knowledgeof 
omputation and our studies of 
omputation versus spe
i�
ations [TZ92, TZ91℄ andveri�
ation [TZ93℄ will be helpful, but only our work on topologi
al data types [TZ99℄ isne
essary.The subje
t of this paper is also a generalisation of the theory of algebrai
 spe
i�
a-tions for 
omputable, semi
omputable and 
o-semi
omputable algebras developed by oneof us (JVT) with J.A. Bergstra: see [BT80b, BT80a, BT82, BT83, BT87, BT95℄ and thesurveys [MG85, SHT95℄. However, at least initially, the generalised 
omputability raisesnew questions 
on
erning topologi
al data types, uniformity and parameterisation, andstandard models. Knowledge of the theory for 
omputable algebras is not required for thispaper.In Se
tion 1 we de�ne how to augment stru
tures with the standard sorts of the booleansand naturals, and �nite sequen
es or arrays over all sorts, together with the 
orrespondingoperations. For the rest of the paper we 
onsider, without loss of generality, only N-standard signatures and stru
tures with the booleans and naturals.In Se
tion 2 we introdu
e a number of proof systems, all based in the 
al
ulus of se-ACM Transa
tions on Computational Logi
, Vol. TBD, No. TBD, TBD TBD.



6quents over a many-sorted signature �. These are systems for (i) �rst order logi
 over �with equality, (ii) 
onditional equational logi
, (iii) 
onditional bounded universal (BU)equational logi
, and (iv) 
onditional standard universal (SU) equational logi
. The sys-tems (ii) and (iii) are subsystems of the 
lassi
al predi
ate 
al
ulus (i), and are used inthe following se
tions, while (iv) is an in�nitary system introdu
ed for interest.In Se
tion 3 we de�ne the basi
 te
hni
al notion of a theory uniquely spe
ifying afun
tion on an arbitrary algebra with hidden sorts and fun
tions. This leads to a simplenotion of spe
i�able parameterisation whi
h we illustrate by showing how a 
onditionalequational (or 
onditional BU equational) spe
i�
ation of a standard stru
ture A 
an beextended to a similar spe
i�
ation of the array stru
ture A�. We also show how to \redu
e"a 
onditional BU equational spe
i�
ation over � to a 
onditional equational spe
i�
ationover an expansion of �.In Se
tion 4 we re
all the basi
 notions of 
omputability of fun
tions, in
luding univer-sality of the �PR� fun
tions.In Se
tion 5 we prove Theorem A above, 
on
erning the 
onditional equational de�n-ability of 
omputable fun
tions.In Se
tion 6 we prove Theorems B and C, 
on
erning the de�nability, by 
onditionalequations and inequalities, of 
omputably approximable fun
tions on metri
 algebras.In Se
tion 7 we des
ribe the 
onstru
tion of initial standard models for 
onditional equa-tional and 
onditional BU equational theories, and work out the 
ompleteness theoremsfor the 
orresponding proof systems in Se
tion 2. The redu
tion of a 
onditional BU equa-tional spe
i�
ation over � to a 
onditional equational spe
i�
ation over an expansion of� is proved for initial models.In Se
tion 8 we investigate the relationship between 
omputability and algebrai
 spe
i�a-bility of fun
tions on initial N-standard algebras, and prove Theorem D. Finally, in Se
tion9, we 
onsider the 
onverse problem of �nding suÆ
ient 
onditions for algebrai
 spe
i�a-bility to imply 
omputability on 
lasses of standard stru
tures. Two equivalen
e theoremsare proved.We wish to thank an anonymous referee for some very helpful 
omments.1 Many-sorted signatures and algebrasIn this se
tion we brie
y review 
on
epts de�ned and dis
ussed in [TZ00, x1℄, where moredetailed information 
an be found. Ba
kground information on universal algebra 
an befound in [MT92, EM85, We
92℄.1.1 Basi
 de�nitionsA signature � (for a many-sorted algebra) is a pair 
onsisting of (i) a �nite set Sort(�)of sorts, and (ii) a �nite set Fun
 (�) of (primitive) fun
tion symbols, ea
h symbol Fhaving a type s1 � � � � � sm ! s, where s1; : : : ; sm; s 2 Sort(�); in that 
ase we writeF : s1 � � � � � sm ! s, with dom(F ) =df s1 � � � � � sm. (The 
ase m = 0 
orrespondsto 
onstant symbols.) ACM Transa
tions on Computational Logi
, Vol. TBD, No. TBD, TBD TBD.



7A �-produ
t type has the form u = s1 � � � � � sm (m � 0), where s1; : : : ; sm are�-sorts. We use the notation u; v; w; : : : for �-produ
t types.A �-algebra A has, for ea
h sort s of �, a non-empty 
arrier set As of sort s, and forea
h �-fun
tion symbol F : u! s, a fun
tion FA : Au ! As (where, for the �-produ
ttype u = s1 � � � � � sm, we write Au =df As1 � � � � � Asm).Given an algebra A, we sometimes write �(A) for its signature.The algebra A is total if FA is total for ea
h �-fun
tion symbol F . Without su
h atotality assumption, A is 
alled partial.In this paper we deal with total algebras, ex
ept in x8.4.We will also 
onsider 
lasses K of �-algebras. A �-adt (abstra
t data type) is de�nedto be any su
h 
lass, 
losed under �-isomorphism. In parti
ular, Alg (�) denotes the 
lassof all �-algebras.Examples. (a) The algebra of booleans has the 
arrier B = ftt; ffg of sort bool. It 
anbe displayed as follows:algebra B
arriers Bfun
tions tt; ff : ! B ;andB; orB : B 2 ! BnotB : B ! Bend with signature signature �(B)sorts boolfun
tions true; false : ! bool;and; or : bool2 ! boolnot : bool! boolendFor notational simpli
ity, we will usually not distinguish between fun
tion names in thesignature (true, et
.) and their intended interpretations (trueB = tt, et
.)(b) The algebra N 0 of naturals has a 
arrier N of sort nat, together with the zero 
onstantand su

essor fun
tion: algebra N 0
arriers Nfun
tions 0 : ! N ;S : N ! Nend(
) The ring R0 of reals has a 
arrier R of sort real:algebra R0
arriers Rfun
tions 0; 1 : ! R ;+;� : R2 ! R ;� : R ! RendWe make the following assumption about the signatures �.ACM Transa
tions on Computational Logi
, Vol. TBD, No. TBD, TBD TBD.



8Instantiation Assumption. For every sort s of �, there is a 
losed term of that sort,
alled the default term Æs of that sort.This guarantees the presen
e of default values ÆsA in a �-algebra A at all sorts s, anddefault tuples ÆuA at all produ
t types u.1.2 Some de�nitionsDe�nition 1 (Subalgebra). Given �-algebras A and B, we say that B is a �-subalgebraof A (written B � A) i� (i) for all �-sorts s, Bs � As, and (ii) for every �-fun
tionsymbol F , FB = FA � B.De�nition 2 (Expansions and redu
ts). Let � and �0 be signatures with � � �0.(a) If A0 is a �0-algebra, then the �-redu
t of A0, A0 j�, is the algebra of signature �,
onsisting of the 
arriers of A0 named by the sorts of � and equipped with the fun
tionsof A0 named by the fun
tion symbols of �.(b) If A is a �-algebra and A0 is a �0-algebra, then A0 is a �0-expansion of A i� A is the�-redu
t of A0.(
) If K 0 is a �0-adt, then K 0 j� is the 
lass of �-redu
ts of algebras in K 0 .1.3 Adding booleans: Standard signatures and algebrasRe
all the algebra B of booleans (Example (a) in x1.1).A signature � is 
alled standard if (i) �(B) � �; (ii) the �-fun
tion symbols in
ludea 
onditional ifs : bool� s2 ! sfor all sorts s of � other than bool; and (iii) the �-fun
tion symbols in
lude an equalityoperation eqs : s2 ! boolfor all s 2 EqSort(�), where EqSort(�) � Sort(�) is the set of �-equality sorts.Given a standard signature �, a �-algebra A is standard if (i) it is an expansion of B;(ii) the 
onditionals have their standard interpretation in A, i.e., for b 2 B and x; y 2 As,ifs(b; x; y) = � x if b = tty if b = ff;and (iii) the equality operator eqs is interpreted as identity on ea
h �-equality sort s.Note that any many-sorted signature � 
an be standardised to a signature �B by ad-joining the sort bool together with the standard boolean operations; and, 
orrespondingly,any algebra A 
an be standardised to an algebra AB by adjoining the algebra B and theACM Transa
tions on Computational Logi
, Vol. TBD, No. TBD, TBD TBD.



9
onditional ifs at all �-sorts s, and the equality operator eqs at the spe
i�ed equalitysorts: algebra ABimport A; Bifs : B � A2s ! As (s 2 Sort(�));eqs : A2s ! B (s 2 EqSort(�))endThus the standardisation of a �-algebra A depends on the spe
i�
ation of EqSort(�).These will be the sorts for whi
h an equality test is 
onsidered to be \
omputable" in somesense.Examples. (a) The simplest standard algebra is the algebra B of the booleans.(b) The standard algebra of naturals N is formed by standardising the algebra N 0 (Ex-ample (b) in x1.1) with nat as an equality sort, and, further, adjoining the order relationlessnat as a boolean-valued operation on N :algebra Nimport N 0; Bfun
tions ifnat : B � N 2 ! N ;eqnat; lessnat : N 2 ! Bend(
) The standard algebra R of reals is formed similarly by standardising the ring R0(Example (
) in x1.1), with real not an equality sort. In fa
t, neither the equality northe order relation on R is in
luded as an operation on real. (The signi�
an
e of this isdis
ussed later; 
f. Remark 3 in x5.3.)StdAlg (�) denotes the 
lass of all standard �-algebras.1.4 Adding 
ounters: N-standard signatures and algebrasA standard signature � is 
alled N-standard if it in
ludes (as well as bool) the numeri
alsort nat, and also fun
tion symbols for the standard operations of zero and su

essor , aswell as the 
onditional and equality and order on the naturals:0 : ! natS : nat! natifnat : bool� nat! nateqnat : nat2 ! boollessnat : nat2 ! bool:The 
orresponding �-algebra A is N-standard if the 
arrier Anat is the set of naturalnumbers N= f0,1,2, : : : g, and the standard operations (listed above) have their standardinterpretations on N . ACM Transa
tions on Computational Logi
, Vol. TBD, No. TBD, TBD TBD.



10 Note that any standard signature � 
an be N-standardised to a signature �N by ad-joining the sort nat and the operations 0, S, eqnat, lessnat and ifnat. Correspondingly, anystandard �-algebra A 
an be N-standardised to an algebra AN by adjoining the 
arrier Ntogether with the 
orresponding standard fun
tions:algebra ANimport A; NendExamples. (a) The simplest N-standard algebra is N (Example (b) in x1.3).(b) The N-standard algebra RN of reals is formed by N-standardising the standard realalgebra R (Example (
) in x1.3).NStdAlg (�) denotes the 
lass of all N-standard �-algebras.N-standardness Assumption. We will assume throughout this paper that the signa-tures and algebras are N-standard, ex
ept where stated otherwise.We also 
onsider a notion stri
ter than N-standardness.1.5 Stri
tly N-standard signatures and algebrasAn N-standard signature � is stri
tly N-standard if the only operations of � with rangesort nat or bool are the standard numeri
al operations 0; S; ifnat eqnat; lessnat (x1.4) andthe boolean operations true; false; and; or; not (x1.1). An algebra is stri
tly N-standard ifits signature is.Remarks.(1) Any N-standardised signature and algebra are automati
ally stri
tly N-standard.(2) A stri
tly N-standard signature has no equality sorts other than nat.(3) Any subterm of a term of sort nat or bool of a stri
tly standard signature is itselfof sort nat or bool. (Proved by stru
tural indu
tion on the term.)The notion of stri
t N-standardness will be used in Se
tion 9.1.6 Adding arrays: Algebras A� of signature ��The signi�
an
e of arrays for 
omputation is that they provide �nite but unbounded mem-ory.Given a standard signature �, and standard �-algebra A, we expand � and A in twostages:(1Æ) N-standardise these to form �N and AN , as in x1.3.(2Æ) De�ne, for ea
h sort s of �, the 
arrier A�s to be the set of �nite sequen
es or arraysa� over As, of \starred sort" s�.ACM Transa
tions on Computational Logi
, Vol. TBD, No. TBD, TBD TBD.



11The reason for introdu
ing starred sorts is the la
k of e�e
tive 
oding of �nite sequen
eswithin abstra
t algebras in general. (Note that, for simpli
ity, our de�nition ex
ludes astarred sort nat�, whi
h would be redundant.)The resulting algebras A� have signature ��, whi
h expands �N by in
luding, for ea
hsort s of �, the new starred sort s�, and also the following new fun
tion symbols:(i) the operator Lgths : s� ! nat, where Lgth(a�) is the length of the array a�;(ii) the appli
ation operator Aps : s� � nat! s, whereApAs (a�; k) � a�[k℄ if k < Lgth(a�)Æs otherwisewhere Æs is the default value at sort s guaranteed by the Instantiation Assumption (x1.1)1;(iii) the null array Nulls : s� of zero length;(iv) the operator Updates : s� � nat � s ! s�, where UpdateAs (a�; n; x) is the arrayb� 2 A�s of length Lgth(b�) = Lgth(a�), su
h that for all k < Lgth(a�)b�[k℄ = � a�[k℄ if k 6= nx if k = n(v) the operator Newlengths : s� � nat! s�, where NewlengthAs (a�;m) is the array b�of length m su
h that for all k < m,b�[k℄ = � a�[k℄ if k < Lgth(a�)Æs if Lgth(a�) � k < m(vi) the 
onditional on A�s for ea
h sort s; and(vii) the equality operator on A�s for ea
h equality sort s.Note that A� is an N-standard ��-expansion of A.The justi�
ation for (vii) is that if a sort s has \
omputable" equality, then 
learly sohas the sort s�, sin
e it amounts to testing equality of �nitely many pairs of obje
ts of sorts, up to a 
omputable length.2 Proof systems and theories for �-algebrasTo reason about 
omputations, we 
hoose a �rst-order language based on � as a spe
i�-
ation language.Note, in this 
onne
tion, that the operations in � are used for 
omputation. In par-ti
ular, boolean-valued operations are used for tests in 
omputations. By 
ontrast, forspe
i�
ation and reasoning about these algebras, we may add predi
ates to the language,1We assume that a�[k℄ is unde�ned for k � Lgth(a�).ACM Transa
tions on Computational Logi
, Vol. TBD, No. TBD, TBD TBD.



12whi
h are not, in general, 
omputable or testable. For example, our spe
i�
ation languagewill in
lude the equality predi
ate at all sorts (as we will see), whereas only the equalitysorts s have the \
omputable" equality operator eqs (x1.3). In writing spe
i�
ations onthe reals we may also add the `<' predi
ate (again, not 
omputable, at least if de�ned to-tally), as we will do later (x5.3) for the spe
i�
ation of approximable 
omputability. Notethat these predi
ates added to the language do not form part of the signature. Intuitively,think of the equality operation as a \
omputable" boolean test, but the equality predi
ateas a \provable" assertion of equality between two terms.So let Lang(�) be the �rst order language over the signature �, with the equalitypredi
ate at all sorts. The syntax of Lang(�) is generated as follows. For ea
h �-sort sthere are 
ountably many variables of sort s, denoted a; b; : : : ; x; y; : : : . Next, for ea
h�-sort s, there are terms of sort s, generated from variables and the fun
tion symbols of� a

ording to the standard typing rules. We write ts or t : s if t is a term of sort s,and, for a produ
t type u = s1 � � � � � sm, we write t : u if t is a u-tuple of terms, i.e., anm-tuple of terms of type s1 � � � � � sm.The atomi
 formulae of Lang(�), then, are equations (ts1 = ts2) between terms ofsort s, for all �-sorts s (whether equality sorts or not), and the propositional 
onstantstrue and false. Formulae of Lang(�) are built up from these by the logi
al 
onne
tives^; _; !; :, and the quanti�ers 8s and 9s for all sorts s of �.We will 
onsider (in the following four subse
tions) four formal systems in Lang(�),
onveniently formulated as sequent 
al
uli . The �rst is our basi
 system FOL(�), full �rstorder logi
 with equality over �. The next two are subsystems of this, whi
h will be usedin Se
tion 7. The �nal system is a subsystem of FOL(�), extended by an in�nitary proofrule.Ba
kground information on sequent 
al
ulus proof systems 
an be found in [Tak87℄.Note that we do not assume (N-)standardness of � in subse
tions 2.1 and 2.2 (only)below.2.1 FOL(�): Full �rst order logi
 with equality over �This 
an be formulated in a system LKe(�), whi
h is an adaptation to the many-sortedsignature � of the systems LK and LKe of [Gen69, Tak87℄. The atomi
 formulae areequations at all �-sorts.A sequent of LKe(�) is a 
onstru
t of the form � 7�! �, where � and � are ea
h �nitesequen
es of formulae of Lang(�).Derivations (of sequents) are then 
onstru
ted from 
ertain spe
i�ed initial sequents(\axioms") by means of spe
i�ed inferen
e rules.The system LKe 
an be augmented in two ways:(a) Adding axioms of a theory, or rather all substitution instan
es of these, as initialsequents;(b) Adding indu
tion for a 
lass C of formulae (in 
ase � is N-standard), in the form ofACM Transa
tions on Computational Logi
, Vol. TBD, No. TBD, TBD TBD.



13the inferen
e rule C-Ind(�) : � 7�! �; F (0) F (a);� 7�! �; F (Sa)�;� 7�! �;�; F (t)where the indu
tion variable a has sort nat, and the indu
tion formula F (a) belongs tothe 
lass C. We write Ind(�) for full �-indu
tion, i.e., where C is the set of all �rst-order�-formulae.We will also be interested in the \intuitionisti
" version C-Indi of C-Ind, in whi
h thesequen
es � and � above are empty.Analogous augmentations 
an be made for the other systems 
onsidered below.In the next three subse
tions we will 
onsider three further systems, the �rst two of whi
hare subsystems of FOL(�) and the third of whi
h is a subsystem of FOL(�) augmentedby an in�nitary !-rule. These subsystems are, in fa
t, also subsystems of LJe(�), whi
his an adaptation to � of the \intuitionisti
" system LJe (lo
. 
it.), in whi
h the sequentshave only one formula on the rhs. (When we are working with these subsystems, thes
heme C-Ind will 
onsist of intuitionisti
 sequents, so that the sequen
es � and � aboveare empty.)2.2 CondEq(�): 
onditional equational logi
 over �A 
onditional equation is a formula of the formP1 ^ : : : ^ Pn ! P (�)where n � 0 and Pi and P are equations. A 
onditional equational theory is a set of su
hformulae (or their universal 
losures). An equational sequent is a sequent of the formP1; : : : ; Pn 7�! Pwhere n � 0 and Pi and P are equations. This sequent 
orresponds to the 
onditionalequation (�).The initial sequents are all substitution instan
es of the �-equality axioms (expressingthat equality is a 
ongruen
e relation with respe
t to �), and the inferen
es are stru
turalinferen
es, atomi
 
uts and substitution of terms for free variables in sequents.2.3 CondBUEq(�): Conditional BU equational logi
 over �A BU (bounded universal) quanti�er is a quanti�er of the form `8z < t', where z : nat andt : nat. (The most elegant approa
h is to think of this as a primitive 
onstru
t, with itsown introdu
tion rule: see below.) A (�-)BU equation is formed by pre�xing an equationby a string of 0 or more bounded universal quanti�ers. A 
onditional BU equation is aformula of the form Q1 ^ : : : ^Qn ! Q (��)ACM Transa
tions on Computational Logi
, Vol. TBD, No. TBD, TBD TBD.



14where n � 0 and Qi and Q are BU equations. A 
onditional BU equational theory is a setof su
h formulae (or their universal 
losures). A BU equational sequent is a sequent of theform Q1; : : : ; Qn 7�! Qwhere n � 0 and Qi and Q are BU equations. This sequent 
orresponds to the 
onditionalBU equation (��).The system CondBUEq(�) 
onsists of BU equational sequents. The initial sequents arethe �-equality axioms, as before, plus the boundedness axiomsBddAx(�): P (0); : : : ; P (n� 1) 7�! 8z < �kP (z)for all �-equations P and all n 2 N , where �n is the numeral for n, i.e., the term S : : :S0(n times `S'). The only inferen
es are stru
tural inferen
es, 
ut , substitution, and the rulesfor the BU quanti�ers:8bL : � 7�! s < t Q(s);� 7�! Q8z < tQ(z);�;� 7�! Q 8bR : a < t;� 7�! Q(a)� 7�! 8z < tQ(z)where s and t are terms of sort nat, `s < t' stands for `lessnat(s; t) = true', and thevariable a : nat is the `eigenvariable' of the inferen
e 8bR, whi
h does not o

ur in the
on
lusion of that inferen
e.Remark (Boundedness axioms). The boundedness axioms BddAx(�) hold (of 
ourse)in N-standard models. We remark here that they are derivable in FOL(�) from the N-standardness axioms NStdAx0(�) (a set of 
onditional equations de�ned in x7.2), plus thesingle formula z1 < Sz2 �! z1 < z2 _ z1 = z2whi
h is, however, not a 
onditional BU equation. This formula is derivable, in turn, inFOL(�) +QF-Ind(�) (indu
tion for quanti�er-free formulae), from NStdAx0(�). It is not
lear whether the boundedness axioms are derivable in 
onditional BU equational logi
alone from NStdAx0(�), whi
h is why we are adding them as axioms.2.4 CondSUEq!(�): Conditional SU equational logi
 over �The �nal two systems that interest us, in this and the next subse
tion, are not subsystemsof LKe, but in�nitary systems. They will be used for another illustration of a Mal
ev-typetheorem for N-standard algebras (see Se
tion 6, Theorem 4). However they will not be usedin the investigation of the relationship between 
omputability and algebrai
 spe
i�abilityin Se
tion 8.A (�-)SU (standard universal) equation is formed by pre�xing an equation by a stringof 0 or more universal quanti�ers of sort nat. A 
onditional SU equation is a formula ofthe form R1 ^ : : : ^Rn ! R (���)ACM Transa
tions on Computational Logi
, Vol. TBD, No. TBD, TBD TBD.



15where n � 0 and Ri and R are SU equations. A 
onditional SU equational theory is a setof su
h formulae (or their universal 
losures). An SU equational sequent is a sequent ofthe form R1; : : : ; Rn 7�! Rwhere n � 0 and Ri and R are SU equations. This sequent 
orresponds to the 
onditionalSU equation (���).The system CondSUEq!(�) 
ontains SU equational sequents. It 
ontains the equalityaxioms and the following inferen
es: the stru
tural inferen
es, 
ut, and the following rulesfor the universal number quanti�er (where t : nat):8L : R(t);� 7�! R8zR(z);� 7�! R 8!R : : : : � 7�! R(�n) : : : (all n 2 N )� 7�! 8zR(z) (�)Note that the rule 8!R is a
tually an in�nitary !-rule.2.5 FOL!(�): full �rst-order logi
 with equality and an !-rule over �This modi�es the system FOL(�) (x2.1) by repla
ing the usual universal number quanti�errule 8R by the in�nitary rule 8!R (x2.4), with also the 
orresponding rule 9!L dually.We omit details, ex
ept to point out that FOL+ Ind(�) 
an easily be interpreted in it.We write Eq(�), BUEq(�) and SUEq(�) for the 
lasses of equations, BU equationsand SU equations (respe
tively) over �.2.6 Conservativity lemmasOne reason for the importan
e of (�nite or in�nite) 
onditional equational logi
 lies inthe following lemmas. First we need a de�nition whi
h will be given again in 
ontext inSe
tion 7. Let F be a formal system (typi
ally CondEq(�) or CondEq!(�)), and let Tbe a theory over � (typi
ally a 
onditional equational or !-
onditional equational theory).We say that T determines nat in F if every 
losed term of sort nat is, provably in F fromT , equal to a numeral.(1) (FOL over CondEq.) Let E be a �-
onditional equational theory, and let � 7�! Pbe a �-equational sequent. Then � 7�! P is provable from E in FOL(�) if, and only if,it is provable from E in CondEq(�).(2) (FOL + Ind over CondEq.) Let E be a �-
onditional equational theory whi
h de-termines nat in CondEq(�), and let � 7�! P be a 
losed �-equational sequent. Then� 7�! P is provable from E in FOL(�) + Ind(�) if, and only if, it is provable from E inCondEq(�).(3) (FOL+ Ind over CondBUEq.) Let F be a �-
onditional BU equational theory whi
hdetermines nat in CondBUEq(�), and let � 7�! Q be a 
losed �-BU equational sequent.Then � 7�! Q is provable from F in FOL(�) + Ind(�) if, and only if, it is provable fromF in CondBUEq(�).(4) (FOL! over CondSUEq!.) Let G be a �-
onditional SU equational theory over �whi
h determines nat in CondSUEq!(�), and let � 7�! R be a 
losed �-
onditional SUACM Transa
tions on Computational Logi
, Vol. TBD, No. TBD, TBD TBD.



16equational sequent. Then � 7�! R is provable from G in FOL!(�) if, and only if, it isprovable from G in CondSUEq!(�).All four lemmas 
an be proved by 
ut elimination. We omit proofs, ex
ept to note brie
ythat the two 
onditions, that E determines nat and that � 7�! P is 
losed, are used in(2) and (3) to eliminate indu
tion inferen
es, and in (4) to eliminate 
uts of formulaeuniversally or existentially quanti�ed over nat.Remarks. (1) These 
onservativity lemmas (at least for simple equations) also followfrom the Birkho�-Mal'
ev-type 
ompleteness theorems 1{4 in Se
tion 7.(2) In�nitary systems 
ome into their own when reasoning about in�nite obje
ts su
h asin�nite streams of data. Some appli
ations in this dire
tion, using a related in�nitarysystem (CondEq!), are given in [TZ01b℄.3 Spe
i�ability of fun
tions by theories3.1 Spe
i�ability over algebras and over 
lasses of algebrasRe
all from Se
tion 2 that Lang(�) is the �rst order language over �, with equality asthe only predi
ate at all sorts.A �-theory is just a set T of formulae in Lang(�). The axioms of T are the formulae inT . We will be parti
ularly interested in theories T satisfying 
ertain synta
ti
 
onditions;for example, T might be a set of 
onditional equations. This is 
onsidered more 
arefullyin Se
tion 7.We are also interested (when � is N-standard) in 
lasses K of the N-standard modelsof su
h �-theories: K = NStdAlg(�; T ) � NStdAlg (�). In this 
ase we say also that(�; T ) is an (N-standard) spe
i�
ation for the adt K .Assume, for the rest of this se
tion, that �, �0 and �00 are N-standard signatures with� � �0 � �00. Also, A is an N-standard �-algebra and A0 is an N-standard �0-algebra.Also, T is a �-theory, T 0 is a �0-theory and T 00 is a �00-theory.Note that any expansion of a standard algebra is also standard, and any expansion ofan N-standard algebra is also N-standard.De�nition 1. Let A01 and A02 be two �0-algebras with A01 j� = A02 j�. Then A01 and A02are �0/�-isomorphi
, written A01 �=�0=� A02, if there is a �0-isomorphism from A01 to A02whose restri
tion to � is the identity on A01 j�.De�nition 2. Suppose A0 is a �0-expansion of A. We say that (�0; T 0) spe
i�es A0 overA i� A0 is the unique (up to �0/�-isomorphism) �0-expansion of A satisfying T 0; in otherwords:(i) A0 j= T 0; and(ii) for all �0-expansions B0 of A, if B0 j= T 0 then B0 �=�0=� A0.ACM Transa
tions on Computational Logi
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17We will o

asionally write: \T 0 spe
i�es A0 over A" instead of \(�0; T 0) spe
i�es A0over A".An important spe
ial 
ase of De�nition 2 is the following.De�nition 2f . Suppose �0 = � [ f f g. We say that (�0; T 0) spe
i�es f over A i�f is the unique (up to �0/�-isomorphism) fun
tion on A (of the type of f ) su
h that(A; f) j= T 0.De�nition 3. Suppose A0 is a �0-expansion of A. We say that (�00; T 00) spe
i�es A0over A with hidden sorts and/or fun
tions i� A0 is the unique (up to �0/�-isomorphism)�0-expansion of A su
h that some �00-expansion of A0 satis�es T 00; in other words:(i) A0 is a �0-redu
t of a �00-model of T 00; and(ii) for all �0-expansions B0 of A, if B0 is a �0-redu
t of a standard �00-model of T 00,then B0 �=�0=� A0.Again, an important spe
ial 
ase:De�nition 3f . Suppose �0 = � [ f f g. We say that (�00; T 00) spe
i�es f over A withhidden sorts and/or fun
tions i� f is the unique fun
tion on A (of the type of f ) su
h thatsome �00-expansion of (A; f) satis�es T 00.De�nition 4. An operator � : NStdAlg (�) ! NStdAlg(�0) is expanding (over �)i� for all N-standard �-algebras A, �(A) is a �0-expansion of A, i.e., �(A) j� = A.Example. The array 
onstru
tion A 7! A� is an expanding operator.Assume further, for the rest of this se
tion, that � : NStdAlg (�) ! NStdAlg(�0)is an expanding operator over �, and that K � NStdAlg (�).Notation. (1) We will write A� for �(A).(2) We write K� for (the 
losure w.r.t. �0-isomorphism of) the 
lass fA� j A 2 K g �NStdAlg(�0).De�nition 5.(a) (�0; T 0) spe
i�es � uniformly over K i� for all A 2 K , (�0; T 0) spe
i�es A� over A.(b) (�0; T 0) spe
i�es � uniformly over � i� (�0; T 0) spe
i�es � uniformly overNStdAlg (�).Proposition 1. Suppose (�0; T 0) spe
i�es � uniformly over K .(i) For A 2 K , A j= T () A� j= T + T 0.(ii) If K = NStdAlg(�; T ), then K � = NStdAlg(�0; T + T 0).ACM Transa
tions on Computational Logi
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18De�nition 6.(a) (�00; T 00) spe
i�es � uniformly over K with hidden sorts and/or fun
tions i� for allA 2 K , (�00; T 00) spe
i�es A� over A with hidden sorts and/or fun
tions.(b) (�00; T 00) spe
i�es � uniformly over � with hidden sorts and/or fun
tions i� (�00; T 00)spe
i�es � uniformly over NStdAlg (�) with hidden sorts and/or fun
tions.Proposition 2. Suppose (�00; T 00) spe
i�es � uniformly over � with hidden sorts and/orfun
tions.(i) A j= T () A� is a �0-retra
t of a �00-model of T + T 00.(ii) If K = NStdAlg(�; T ), then K � = �NStdAlg(�00; T + T 00)� j�0 .Interesting spe
ial 
ases of the above notions, in whi
h the theories T , T 0 and T 00 aresubje
t to 
ertain synta
ti
 
onditions, are 
onsidered below (x3.3) and in Se
tion 7. Firstwe give an important example of a spe
i�
ation of an expanding operator.We write 
onditional equational spe
i�
ation and 
onditional BU equational spe
i�
ationfor spe
i�
ations in whi
h the formulae are all 
onditional equations and 
onditional BUequations, respe
tively.3.2 Conditional BU equational spe
i�
ation of the array 
onstru
tionLet ArrAx(�) be the following set of axioms in A (dropping sort subs
ripts):Lgth(Null) = 0;lessnat(z; Lgth(a)) = false ! Ap(a; z) = Æ;Lgth(Update(a; z; x)) = Lgth(a);eqnat(z; z0) = false ! Ap(Update(a; z0; x); z) = Ap(a; z);lessnat(z; Lgth(a)) = true ! Ap(Update(a; z; x); z) = x;Lgth(Newlength(a; z)) = z;lessnat(z; z1) = true ! Ap(Newlength(a; z1); z) = Ap(a; z);Lgth(a1) = Lgth(a2) ^ 8z < Lgth(a1)�Ap(a1; z) = Ap(a2; z)� ! a1 = a2:The last axiom relates equality on s� to equality on s, for all equality sorts s ex
ept nat(sin
e there is no starred sort nat�, as explained in x1.6).Note that all the axioms of ArrAx(�) are 
onditional equations, ex
ept for the last one,whi
h is a 
onditional BU equation!Theorem 1. The spe
i�
ation (��; ArrAx(�)) spe
i�es the array 
onstru
tion A 7! A�uniformly over �.Proof (outline): Given an N-standard �-algebra A, and a �-sort s, the axioms for`Null', `Newlength' and `Update' guarantee that at least all the \standard" arrays over Asare present (or 
an be \
onstru
ted"). On the other hand, the axiom for array equalityACM Transa
tions on Computational Logi
, Vol. TBD, No. TBD, TBD TBD.



19guarantees that there are no \non-standard" arrays, i.e., no elements of A�s other thanthese. �This array spe
i�
ation will be 
onsidered again, from the viewpoints of spe
i�
ation of�PR� 
omputations (x5.2), and initial algebra spe
i�
ations (x8.2).3.3 Redu
ing 
onditional BU to 
onditional equational spe
i�
ationsTheorem 2 (BU elimination). Let � � �0, let A0 be a �0-expansion of A, and letF be a 
onditional BU equational �0-theory whi
h spe
i�es A0 over A. Then there is anexpansion �00 of �0 by fun
tion symbols, and a 
onditional equational �00-theory E whi
hspe
i�es A0 over A, with hidden fun
tions. If F 
ontains q o

urren
es of BU quanti�ers,then �00 expands �0 by q new fun
tion symbols. Moreover, if F is �nite, with e axioms(say), then so is E, with e+ 4q axioms.Proof: The idea is to in
orporate in the signature, for ea
h BU quanti�er o

urring inF , a 
hara
teristi
 fun
tion for that quanti�er, or (expressed di�erently) a fun
tion whi
h
omputes that quanti�er. Consider (for notational simpli
ity) the 
ase of an equation witha single BU quanti�er 8z < s(x) �t1(z; x) = t2(z; x)�: (�)with x : u. (In the general 
ase, we \eliminate" the quanti�ers su

essively, from the insideout.) We adjoin, for ea
h su
h BU quanti�er (�) o

urring in F , a boolean-valued fun
tionsymbol f : nat� u ! boolintended to satisfy in Af(n; x) = true () 8z < n�t1(z; x) = t2(z; x)�:for all n 2 N , x 2 Au. This interpretation is imposed on f by adjoining to F the followingaxioms giving the indu
tive de�nition for f:f(0; x) = truef(z; x) = true ^ t1(z; x) = t2(z; x) ! f(Sz; x) = truef(Sz; x) = true ! f(z; x) = truef(Sz; x) = true ! t1(z; x) = t2(z; x) (���)and repla
ing (�) in F by f(s(x); x) = true: (����)In this way we repla
e F by a 
onditional equational �00-theory E, with the stated prop-erties. �Note that if F 
ontains in�nitely many o

uren
es of BU quanti�ers, then �00 
ontains,
orrespondingly, in�nitely many new fun
tion symbols, whi
h is (stri
tly speaking) notallowed by our de�nition of signature, although it is harmless enough here.ACM Transa
tions on Computational Logi
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20 We will return to this topi
 in the 
ontext of initial algebra spe
i�
ations in x7.7.4 Computable fun
tionsIn this se
tion we 
onsider various notions of 
omputability over abstra
t algebras. (Anequivalent approa
h, using an imperative model of programming featuring the `while' 
on-stru
t, was developed in [TZ88, TZ00℄ where the equivalen
e of these two approa
hes areexplained.) In x4.1 two 
omputability 
lasses are introdu
ed. In x4.2 two more 
lasses areformed by adjoining the � operator to these.4.1 PR(�) and PR�(�) 
omputable fun
tionsGiven an N-standard signature �, we de�ne PR s
hemes over � whi
h generalise thes
hemes for primitive re
ursive fun
tions over N in [Kle52℄. They de�ne (total) fun
tions feither outright (as in the base 
ases (i)|(ii) below) or from other fun
tions (g; : : : ; h; : : : )(as in the indu
tive 
ases (iii)|(v)) as follows:(a) Basi
 s
hemes: Initial fun
tions(i) Primitive �-fun
tions: f(x) = F (x)f(x) = 
of type u! s, for all the primitive fun
tion symbols F : u! s and 
onstant symbols
 of �, where x : u.(ii) Proje
tion: f(x) = xiof type u! si, where x = (x1; : : : ; xm) is of type u = s1 � � � � � sm.(b) Indu
tive s
hemes:(iii) Composition: f(x) = h(g1(x); : : : ; gm(x))of type u! s, where gi : u! si (i = 1; : : : ;m) and h : s1 � � � � � sm ! s.(iv) De�nition by 
ases: f(b; x; y) = � x if b = tty if b = ffof type bool� s2 ! s.(v) Simultaneous primitive re
ursion on N : This de�nes, on ea
h A 2 NStdAlg (�), for�xed m > 0 (the degree of simultaneity), n � 0 (the number of parameters), andprodu
t types u and v = s1 � � � � � sm, an m-tuple of fun
tions f = (f1; : : : ; fm)with fi : nat� u! si, su
h that for all x 2 Au and i = 1; : : : ;m,fi(0; x) = gi(x)fi(z + 1; x) = hi(z; x; f1(z; x); : : : ; fm(z; x))ACM Transa
tions on Computational Logi
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21where gi : u! si and hi : nat� u� v ! s1 (i = 1; : : : ;m).Note that the last s
heme uses the N-standardness of the algebras, i.e. the 
arrier N .For details of the syntax and semanti
s of PR s
hemes, see [TZ88, x4.1.5℄, from whi
hit 
an be seen that a s
heme for a fun
tion 
ontains (hereditarily) the s
hemes for all theauxiliary fun
tions used to de�ne it.In the 
ontext of algebrai
 spe
i�
ation theory, it often turns out to be more 
onvenientto work with PR derivations instead of PR s
hemes. A PR derivation is, roughly, a \linearversion" of a PR s
heme, in whi
h all the auxiliary fun
tions are displayed in a list. Morepre
isely:De�nition (PR derivation). A PR(�) derivation � is a list of pairs� = ((f0; �0); (f1; �1); : : : (fn; �n)) (�)of fun
tions (a
tually fun
tion symbols) fi and PR s
hemes �i (i = 1; : : : ; n) where forea
h i, either fi is an initial fun
tion, or fi is de�ned by �i from fun
tions fj , for 
ertainj < i. The derivation � is said to be a PR derivation of fn, with auxiliary fun
tionsf0; : : : ; fn�1. The type of � is the type of fn.Notation. A PR(�)u!s s
heme (or derivation) is a PR(�) s
heme (or derivation) oftype u! s.Remarks. (1) The formalism of PR(�) derivations is equivalent to that of PR(�)s
hemes: from a PR s
heme we 
an derive an equivalent PR derivation by \linearising"the subs
hemes, and 
onversely, given the derivation (�), the s
heme �n is equivalent toit. Below, we will usually work with derivations.(2) A PR(�)u!s derivation � : u! s de�nes, or rather 
omputes, a fun
tion fA� : Au !As, or, more generally, a family of fun
tions f fA� j A 2 NStdAlg (�) g uniformly overNStdAlg (�).(3) We assume a standard G�odel numbering of PR(�) derivations, writing p�q for theG�odel number of derivation �.It turns out that a broader 
lass of fun
tions provides a better generalisation of thenotion of primitive re
ursiveness, namely PR� 
omputability. A fun
tion on A is PR�(�)
omputable if it is de�ned by a PR derivation over ��, interpreted on A� (i.e., usingstarred sorts for the auxiliary fun
tions used in its de�nition).4.2 �PR(�) and �PR�(�) 
omputable fun
tionsThe �PR s
hemes over � are formed by adding to the PR s
hemes of x4.1 the indu
tives
heme:(vi) Least number or � operator: f(x) ' �z[g(x; z) = tt℄ACM Transa
tions on Computational Logi
, Vol. TBD, No. TBD, TBD TBD.



22 of type u ! nat, where g : u � nat ! bool is �PR. Here f(x) # z if, and only if,g(x; y) # ff for ea
h y < z and g(x; z) # tt.Note that this s
heme also uses the N-standardness of the algebra. Also, �PR 
omputablefun
tions are, in general, partial. We use the notation f(x) # y to mean that f(x) isde�ned and equal to y. The notation `'' means that the two sides are either both de�nedand equal, or both unde�ned. The s
hemes for 
omposition and simultaneous primitivere
ursion are 
orrespondingly re-interpreted to allow for partial fun
tions.These s
hemes generalise the s
hemes given in [Kle52℄ for partial re
ursive fun
tionsover N .As before, we 
an de�ne the 
on
epts of �PR(�) derivations and �PR(�) 
omputability .Again, a broader 
lass turns out to be more useful, namely �PR� 
omputability. Thisis just PR� 
omputability with �.Notation. PR(A) is the 
lass of fun
tions PR 
omputable on A, and PR(A)u!s is thesub
lass of PR(A) of fun
tions of type u! s. Similarly for PR�(A), �PR(A), et
.There are many other models of 
omputability, due to Mos
hovakis, Friedman, Shep-herdson and others, whi
h turn out to be equivalent to �PR� 
omputability: see [TZ00, x7℄.All these equivalen
es have led to the postulation of a generalised Chur
h-Turing Thesisfor deterministi
 
omputation of fun
tions, whi
h 
an be roughly formulated as follows:Computability of fun
tions on many-sorted algebras by deterministi
 algorithms
an be formalised by �PR� 
omputability.4.3 Equivalent imperative programming models of 
omputationIn [TZ00℄ we investigate 
omputation on many-sorted �-algebras, using imperative pro-gramming models: While(�), based on the `while' loop 
onstru
t over �, For(�),based similarly on the ` for' loop, and While�(�) and For�(�), whi
h use arrays, i.e.,auxiliary variables of starred sort over �.Writing While(A) for the 
lass of fun
tions While-
omputable on A, et
., we 
anlist the equivalen
es between the \s
hemati
" and \imperative" 
omputational models asfollows.Theorem.(i) PR(A) = For(A)(ii) PR�(A) = For�(A)(iii) �PR(A) = While(A)(iv) �PR�(A) = While�(A),in all 
ases, uniformly for A 2 NStdAlg (�).These results are all stated in [TZ00℄, and 
an be proved by the methods of [TZ88℄.ACM Transa
tions on Computational Logi
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234.4 Universal Fun
tion Theorem for �PR�The following is a uniform version of a theorem proved in [TZ00, x4.9℄ (using the equivalentformalism of While� programs):Theorem. For any�-fun
tion type u! s, there is a �PR�(�) derivation � : nat� u! swhi
h is universal for �PR�(�) derivations of type u! s.In other words, we 
an enumerate all the �PR� derivations of type u! s:�0; �1; �2; : : :so that, putting 'Ai =df fA�i : Au ! Asand UnivAu!s = fA� : N �Au ! Aswe have UnivAu!s(i; a) = 'Ai (a)for all A 2 NStdAlg (�) and i = 0; 1; 2; : : : .Remarks (Canoni
al forms of �PR� derivations). (1) From the 
onstru
tionof the universal �PR�(�)u!s derivation � [TZ00, x4℄, it 
an be seen that � uses the�-operator exa
tly on
e.(2) For any �PR�(�)u!s derivation �, the universal derivation � : nat� u! s providesan equivalent 
anoni
al or normal form derivation �̂, su
h that fÂ� = fA� for all N-standard�-algebras A. This 
anoni
al derivation is formed in a simple way from �, essentially bysubstituting the G�odel number p�q of � for the distinguished nat variable of �, so thatfor all N-standard A, fÂ� = 'Ap�q = fA� :This is, in fa
t, a generalisation to NStdAlg (�) of Kleene's Normal Form Theorem for(essentially) �PR(N ) [Kle52℄.(3) From the 
onstru
tions in (1) and (2) it follows that �̂ also uses the �-operator exa
tlyon
e, and in su
h a way that for any N-standard A,fÂ� is total if, and only if, this appli
ation of the �-operator is total on A.5 Algebrai
 spe
i�
ations for 
omputable fun
tionsWe will 
onsider fun
tions f 
omputable on a �-algebra, by PR and �PR� derivations,and show that they are algebrai
ally spe
i�able by 
onditional equational, and 
onditionalBU equational, theories.We will also 
onsider, in the 
ontext of metri
 algebras (i.e., algebras with metri
ssu
h that the fun
tions in the signature are 
ontinuous) a broader 
lass of fun
tions thanACM Transa
tions on Computational Logi
, Vol. TBD, No. TBD, TBD TBD.



24�PR� 
omputable, namely those fun
tions uniformly approximable by �PR� 
omputablefun
tions, and show that su
h fun
tions are spe
i�able by 
onditional equations and in-equalities, whi
h are 
onditional formulae built up from inequalities (t1 < t2) on the realsas well as equations (t1 = t2) between terms of the same sort.5.1 Algebrai
 spe
i�
ations for PR 
omputable fun
tionsLet � be an N-standard signature. For ea
h PR(�) derivation �, there is a �nite setE� of \spe
ifying equations" for the fun
tion f , as well as the auxiliary fun
tions g =(g1; : : : ; gk�), de�ned by �.The set E� 
onsists of equations in an expanded signature �� = � [ fg�; f�g, whereg� � g�;1; : : : ; g�;k� . It is de�ned by 
ourse of values indu
tion on the length of thederivation �, with 
ases (i)|(v) (x4.1) a

ording to the last s
heme in �. In fa
t, E� isformed by adjoining, in ea
h 
ase, spe
ifying equation(s) like those shown for that 
asein x4.1. These are simple (i.e., not 
onditional) equations; for example, in the 
ase (iv)de�nition by 
ases, there are two equations:f(true; x; y) = xf(false; x; y) = yand in the 
ase (v) simultaneous primitive re
ursion, there are 2m equations (where m isthe degree of simultaneity):fi(0; x) = gi(x)fi(z+ 1; x) = hi(z; x; f1(z; x); : : : ; fm(z; x))for i = 1; : : : ;m.Thus we have an e�e
tive map � 7! (��; E�) from PR(�) derivations to (simple)equational spe
i�
ations.Now for ea
h PR derivation � and N-standard �-algebra A, let fA� be the fun
tion onA 
omputed by �, and let gA� be the 
orresponding auxiliary fun
tions on A. Considerthe operators A 7�! (A; fA� ) (�)and A 7�! (A; gA� ; fA� ): (��)Re
all the de�nition of uniform spe
i�
ation of an operator over a 
lass of �-algebras(x3.1, De�nitons 5 and 6).Theorem 1 (Equational spe
i�
ation of PR fun
tions). For ea
h PR(�) derivation�, the equational spe
i�
ation (��; E�) spe
i�es the operator (��) uniformly over A 2NStdAlg (�). Hen
e it spe
i�es the operator (�) uniformly over all N-standard �-algebrasA, with hidden fun
tions.Proof: By 
ourse of values indu
tion on the length of �. �ACM Transa
tions on Computational Logi
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25In other words, the equations E� spe
ify not only fA� , but also the auxiliary fun
tionsgA� , uniformly over all N-standard �-algebras A.Similarly with PR� 
omputability: for a PR�(�) derivation �, let E� be the set ofspe
ifying equations for the fun
tion f� and the auxiliary fun
tions g� de�ned by �, inthe signature ��� = �� [ fg�; f�g.Corollary. For ea
h PR�(�) derivation �, the equational spe
i�
ation (���; E�) spe
i�esthe operator (�) uniformly over �, with hidden sorts and fun
tions.5.2 Algebrai
 spe
i�
ations for �PR� 
omputable fun
tionsWe now 
onsider �PR�(�) derivations �. For ea
h su
h derivation there is again a �niteset F� of \spe
ifying equations" for the fun
tion f de�ned by � and its auxiliary fun
tionsg. This set is 
onstru
ted like E� (x5.1), by stru
tural indu
tion on �. Now, however, F�
onsists of 
onditional BU equations in a signature ��� = �� [ fg�; f�g, be
ause of thenew 
ase, i.e., s
heme (vi) for the �-operator (x4.2), whi
h results in the addition to F� ofthe 
onditional BU equation(F�) 8z < y (g0(x; z) = false) ^ (g0(x; y) = true) �! f(x) = y:Again we have an e�e
tive map � 7! (���; F�) from �PR�(�) derivations to 
ondi-tional BU equational spe
i�
ations.Now there are 
ompli
ations in the theory, sin
e �PR� 
omputable fun
tions are, ingeneral, partial. We intend to study spe
i�
ation theory for partial algebras systemati
allyin a future paper. Here we limit ourselves to the 
ase where the �PR� 
omputable fun
tionis, in fa
t, total.As before, for a �PR� derivation � and an N-standard �-algebra A, let fA� be thefun
tion on A de�ned by �, and let gA� be 
orresponding auxiliary fun
tions on A�. Afurther problem is that, even if fA� is total, the fun
tions gA� might not be. We will nowshow that we 
an, without loss of generality, restri
t attention to the 
ase that the gA�are also total. We a

omplish this by the use of the uniform derivations provided by theUniversal Fun
tion Theorem for �PR� (x4.4), as we now explain.De�nition. A �PR� derivation � is total on A i� the auxiliary fun
tions gA� , as well asfA� , are all total on A�.Totality Lemma. Given any �PR�(�) derivation � : u! s, we 
an e�e
tively �nd a�PR�(�) derivation �̂ : u! s su
h that for any N-standard �-algebra A,(i) fÂ� = fA� ;(ii) if fA� is total, then �̂ is total on A.Proof: This follows from the Universal Fun
tion Theorem and the three remarks followingit (x4.4). � ACM Transa
tions on Computational Logi
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26 Now 
onsider the operators (�) (x5.1 above) andA 7�! (A�; gÂ� ; fÂ� ) (���)where �̂ is 
onstru
ted from � as in the totality lemma. Let ��� = ��[f g�̂; f�̂ g. Re
all thede�nition of the array spe
i�
ation ArrAx(�) in x3.2, and the de�nition of the 
onditionalBU spe
i�
ation F�̂ of fÂ� (= fA� ).Theorem 2 (Conditional BU equational spe
i�
ation of �PR� fun
tions).For ea
h �PR�(�) derivation �, letF �� =df ArrAx(�) + F�̂where �̂ is 
onstru
ted from � as in the totality lemma. Then the 
onditional BU equationalspe
i�
ation (���; F ��) spe
i�es the operator (���) in the following sense: for any A onwhi
h fA� is total, (A�; gÂ� ; fÂ� ) j= F ��:Hen
e (���; F ��) spe
i�es the operator (�) uniformly over all N-standard �-algebras A onwhi
h fA� is total, with hidden sorts and fun
tions.Proof: As with Theorem 1, by 
ourse of values indu
tion on the length of �. �Note that the spe
i�
ation given in Theorem 2 is uniform over all N-standard �-algebrasA on whi
h � is total. In fa
t, there is a stronger form of uniformity for �PR� 
omputabil-ity, following from the Universal Fun
tion Theorem for �PR�. (A
tually, this is alreadyimpli
it in the 
onstru
tion of the derivation �̂ in the totality lemma, whi
h is really anormal form lemma for �PR� derivations.)Theorem 3 (Universal 
onditional BU equational spe
i�
ation). For ea
h �-fun
tion type u! s we 
an e�e
tively �nd a signature ��u;s whi
h expands �� by fun
-tion symbols, and a �nite 
onditional BU equational spe
i�
ation (��u;s; FUu;s(z)) whi
his universal for spe
i�
ations of total �PR�(�)-
omputable fun
tions of that type, inthe following sense: it 
ontains a distinguished number variable z su
h that for ea
h�PR�(�) derivation � : u! s, and ea
h N-standard �-algebra A, if fA� is total on A,then (��u;s; FUu;s(�k)), where k = p�q, spe
i�es fA� on A, with hidden sorts and fun
tions.(Here FUu;s(�k) is the result of substituting the numeral �k for z in FUu;s(z).)Next, by the BU Redu
tion Theorem (Theorem 2 in Se
tion 3), we derive as a 
orollaryto Theorem 3:Theorem 4 (Universal 
onditional equational spe
i�
ation). For ea
h �-fun
tiontype u! s we 
an e�e
tively �nd a signature ��0u;s whi
h expands ��u;s (of Theo-rem 3) by fun
tion symbols, and a �nite 
onditional spe
i�
ation (��0u;s; EUu;s(z)) whi
his universal for spe
i�
ations of total �PR�(�)-
omputable fun
tions of that type, inthe following sense: it 
ontains a distinguished number variable z su
h that for ea
hACM Transa
tions on Computational Logi
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27�PR�(�) derivation � : u! s, and ea
h N-standard �-algebra A, if fA� is total on A,then (��0u;s; EUu;s(�k)), where k = p�q, spe
i�es fA� on A, with hidden sorts and fun
tions.From the above uniformity theorems it follows trivially that for a given �-fun
tion typeu! s there is a uniform bound to the lengths of 
onditional BU ��-spe
i�
ations, or
onditional equational ��-spe
i�
ations respe
tively, for total �PR�-
omputable fun
tionson N-standard �-algebras.6 Algebrai
 spe
i�
ations for 
omputably approximable fun
tionsWe have shown that 
omputability =) algebrai
 spe
i�abilitywhere (for example) if \
omputability" means �PR� (or, equivalently, While�) 
ompu-tability, then \algebrai
 spe
i�ability" means spe
i�ability by 
onditional BU equations.It is natural to ask in what sense a 
onverse holds. We will see (below) that a full 
onverseto the above 
annot be expe
ted, sin
e algebrai
 spe
i�ability is more powerful, in somesense, than �PR�-
omputability. (In Se
tion 7 we will investigate partial 
onverses.) Weshow here in fa
t that, on metri
 algebras,
omputable approximability =) algebrai
 spe
i�ability.\Computable approximability", to be de�ned shortly, is a strong extension of the notionof 
omputability; while \algebrai
 spe
i�ability" will be (re-)de�ned so as to permit theorder relation (as well as equality) between pairs of terms of sort real.6.1 Metri
 algebrasWe refer to [TZ99℄ and [TZ00, x6℄ for de�nitions of (total) metri
 algebra and related
on
epts. We review some de�nitions and results from these referen
es. (Note that inthese referen
es the subje
t is dis
ussed in the broader 
ontext of partial algebras.)A metri
 �-algebra (A; d), based on a �-algebra A, is an algebra of the formalgebra (A; d)import A
arriers Rfun
tions ds : A2s ! R (s 2 Sort(�))endwhere d is a family hds j s 2 Sort(�)i of metri
s ds on the 
arriers As, where (in the 
asethat A is standard or N-standard) dbool and dnat are the dis
rete metri
s on B and Nrespe
tively, and su
h that the primitive fun
tions on A are all 
ontinuous under thesemetri
s.We will often write `d' for the metri
 ds, and `A' for the metri
 algebra (A; d).ACM Transa
tions on Computational Logi
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28Examples. (a) The metri
 algebra Rd on the reals (\d" for \distan
e") is de�ned byalgebra Rdimport RNfun
tions divnat : R � N ! R ;dreal : R2 ! R ;dnat : N 2 ! R ;dbool : B 2 ! Rendwhere RN is the N-standard algebra of reals (x1.4, Example (b)), divnat is division of realsby naturals (where division by zero is de�ned as zero), the metri
 on R is the standardone, and the metri
s on N and B are dis
rete.Note that Rd does not 
ontain the (total) boolean-valued fun
tions eqreal or lessreal,sin
e they are not 
ontinuous with respe
t to this metri
.(b) The interval metri
 algebra Id: Here the unit interval I = [0; 1℄ is in
luded as aseparate 
arrier of sort `intvl', again with the usual metri
. This is useful for studying real
ontinuous fun
tions with 
ompa
t domain. (We 
ould also 
hoose I = [�1; 1℄, et
.) Thealgebra Id is de�ned by algebra Idimport Rd
arriers Ifun
tions �I : I ! R ;dintvl : I2 ! Rendwhere �I is the embedding of I into R . Be
ause of the importan
e of the metri
 algebra Idas in our 
omputation theory, let us review its 
onstru
tion. It 
ontains R with its standardring operations, N and B with their standard operations, fun
tions for de�nition by 
aseson R , N and B , division of reals by naturals, the unit line interval I and its embedding inR , and the standard metri
s on all four 
arriers.6.2 De�nitions and theoremsNow let A be an N-standard metri
 �-algebra with metri
 d.De�nition 1 (�PR� 
omputably approximable fun
tions). A total fun
tion f :Au ! As on A is �PR� 
omputably approximable, uniformly on A, if there is a total�PR� 
omputable fun
tion G : N �Au ! Asand a total 
omputable fun
tion g : N ! N on A su
h that, putting Gn =df G(n; � ), thesequen
e Gn approximates f uniformly on Au with modulus of approximation g, i.e., forall n, k and all x 2 Au, k � g(n) =) d(Gk(x); f(x)) < 2�n:ACM Transa
tions on Computational Logi
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29De�nition 2 (Fast �PR� 
omputably approximable fun
tions). A total fun
tionf : Au ! As on A is fast �PR� 
omputably approximable, uniformly on A, if there is a total�PR� 
omputable fun
tion G : N �Au ! As on A su
h that, putting Gn =df G(n; � ),the sequen
e Gn approximates f uniformly fast on Au, i.e., for all n and all x 2 Au,d(Gn(x); f(x)) < 2�n: (�)Remark 1. It is easy to see that De�nitions 1 and 2 are equivalent; for given a (
om-putable) approximating sequen
e Gn with modulus of approximation g, we 
an e�e
tivelyrepla
e it by the fast (
omputable) approximating sequen
e G0n =df Gn Æg. We will there-fore usually ta
itly assume w.l.o.g. that our approximating sequen
es are fast, and workwith the (simpler) De�nition 2.De�nition 3 (Fast �PR� approximating derivations). Let A be a metri
 �-algebra.A derivation 
 : nat� u! s is an approximating derivation for a total fun
tion f : Au !As if (i) the fun
tion G : N � Au ! As 
omputed by 
 on A is total on A; and (ii) Gand f satisfy (�) above.Note that at most one fun
tion is �PR� approximable by a given derivation on anymetri
 algebra.De�nition 4 (Conditional equation or inequality).(a) A 
onditional equation or inequality is de�ned like a 
onditional equation, ex
ept thatthe atomi
 statements may be either equations (t1 = t2) between terms of the same sort,or order (t1 < t2) between terms of sort real.(b) A 
onditional BU equation or inequality is de�ned like a 
onditional equation, ex-
ept that the atomi
 statements may be either equations (t1 = t2) or BU equations(8z < t [ t1 = t2 ℄) between terms of the same sort, or inequalities (t1 < t2) betweenterms of sort real.Remark 2. Here we are treating the order relation on the reals as a new atomi
 predi
ateof Lang(��) (like equality), not as a boolean-valued operationlessreal : real2 ! bool:This predi
ate (unlike su
h an operation) does not form part of the signature �. (See theanalogous Remark 
on
erning equality at the beginning of Se
tion 2.)Note also that (�) is a 
onditional inequality (a
tually a simple inequality, without anante
edent).Notation. We write �PR�-Approx(A) for the 
lass of �PR� 
omputably approximablefun
tions on A, and �PR�-Approx(A)u!s for those of type u! s.In preparation for the next theorem, we note that a \Universal Fun
tion Theorem"holds for �PR�-Approx(A), in the following sense. For any �-fun
tion type u! s, letHu;s =df UnivAnat�u!s : N � N � Au ! AsACM Transa
tions on Computational Logi
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30be the universal fun
tion for �PR�(A)nat�u!s given by the Universal Fun
tion Theorem(x4.4). Then for ea
h f 2 �PR�-Approx(A)u!s, there is a number k su
h that (writingHu;sk;n = Hu;s(k; n; � )) the sequen
e of fun
tions Hu;sk;0 ; Hu;sk;1 ; Hu;sk;2 ; : : : uniformly approxi-mates f . The number k 
an be 
hosen as the G�odel number of an approximating derivationfor f , i.e., a derivation 
 : nat� u! s of the fun
tion Hu;s(k; � ). Combining this withTheorem 3 of Se
tion 5, we obtain:Theorem 1 (Universal 
onditional BU spe
i�
ation of �PR� approximablefun
tions). For ea
h �-fun
tion type u! s we 
an e�e
tively �nd a signature ��u;swhi
h expands �� by fun
tion symbols, and a �nite 
onditional BU spe
i�
ation (��u;s;FVu;s(z)) 
onsisting of 
onditional BU equations and inequalities, whi
h is universal forspe
i�
ations of �PR�(�)-
omputably approximable fun
tions of that type, in the fol-lowing sense: it 
ontains a distinguished number variable z su
h that for ea
h �PR�(�)derivation 
 : nat� u! s and ea
h metri
 �-algebra A and total fun
tion f : Au ! As,if 
 is an approximating derivation for f on A, then (��u;s; FVu;s(�k)), where k = p
q,spe
i�es f on A, with hidden sorts and fun
tions.Proof: De�ne FVu;s(z) =df FUu;s(z) +Einvexp + E�(z)where FUu;s(z) is the 
onditional BU equational spe
i�
ation 
onstru
ted as in Theo-rem 3 in Se
tion 5 for the universal fun
tion H for �PR� 
omputable fun
tions of typenat � u ! s, Einvexp is the set of spe
ifying equations for the 
omputable real-valuedfun
tion invexp(n) = 2�n, i.e., its re
ursive de�nition:invexp(0) = 1; invexp(Sn) = divnat(invexp(n); 2);and E�(z) is the inequality (�) above | or rather, its formal versiond(H(z; n; x); f(x)) < invexp(n): (��)(Note that every �PR� fun
tion G : N�Au ! As is obtainable fromH by substituting theG�odel number of its derivation for the �rst argument z of H.) Let ��u;s be the signatureformed by expanding �� by symbols for H and invexp, as well as the auxiliary fun
tionsused in their 
omputations. Then for any �PR� derivation 
 : nat� u! s, metri
 �-algebra A and fun
tion f : N � Au ! As, if 
 is an approximating derivation for f then(��u;s; FVu;s(�k)) (where k = p
q) is a 
onditional BU spe
i�
ation of f on A, with hiddensorts and fun
tions, 
onsisting of 
onditional BU equations and inequalities �Now, by adapting the BU Redu
tion Theorem (x3.3) to spe
i�
ations with inequalities,we derive as a 
orollary to Theorem 1:
ACM Transa
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31Theorem 2 (Universal 
onditional spe
i�
ation of �PR� approximable fun
-tions). For ea
h �-fun
tion type u! s we 
an e�e
tively �nd a signature ��0u;s whi
hexpands ��u;s (of Theorem 1) by fun
tion symbols, and a �nite 
onditional spe
i�
ation(��0u;s; EVu;s(z)), 
onsisting of 
onditional equations and inequalities, whi
h is universalfor spe
i�
ations of approximably �PR�(�)-
omputable fun
tions of that type, in the fol-lowing sense: it 
ontains a distinguished number variable z su
h that for ea
h �PR�(�)derivation 
 : nat� u! s and ea
h metri
 �-algebra A and total fun
tion f : Au ! As,if 
 is an approximating derivation for f on A, then (��0u;s; EVu;s(�k)), where k = p
q,spe
i�es f on A, with hidden sorts and fun
tions.Remark 3 (Repla
ing the order predi
ate by a boolean-valued operation). Theorder relation in the above spe
i�
ation is used in one pla
e only: in the (
onditional)relation (�) (or (��)). In fa
t (Remark 2 above notwithstanding) (�) 
ould be interpretedas a 
onditional equation (so that f is 
onditionally equationally de�nable with hiddensorts and fun
tions) by interpreting `t1 < t2' as `lessreal(t1; t2) = true', where the boolean-valued operator lessreal : real2 ! boolis in
luded in the signature of the metri
 algebra over R . The problem here is that (asdis
ussed in [TZ99℄) whereas all fun
tions in the signature of metri
 algebras (and hen
eall fun
tions 
omputable over these) are 
ontinuous, the (total) fun
tion lessreal is dis-
ontinuous. The only way to restore 
ontinuity is to 
onsider a partial 
ontinuous lessrealoperator, whi
h leads to a study of topologi
al partial algebras. This 
an be done, and thewhole of the present theory 
ould be re-
ast in su
h a 
ontext, but that would take us toofar a�eld from the present study.Let us apply Theorem 2 to the 
lassi
al notion of Gzegor
zyk-La
ombe (GL) 
omputabil-ity on the unit interval I = [0; 1℄. This in
ludes all the well-know fun
tions of real analysis(sin, exp, log, et
.) restri
ted to I.Notation. We write GLTm(I) for the 
lass of GL-
omputable total fun
tions f : Im ! R .Many 
on
rete models of 
omputation on I are equivalent to this 
lass [PER89, Wei00℄.It has been shown that (re
all the de�nition of Id in Example (b)):GLTm(I) = �PR�-Approx(Id)intvlm!real:(For details, see [TZ99, x9℄, [TZ00, x5.9℄.) Hen
e, again, a kind of \Universal Fun
tionTheorem" holds for GLTm(I), in the following sense. For m = 1; 2; : : : , letHm =df UnivIdnat�intvlm!real : N � N � Im ! Rbe the universal fun
tion for �PR�(Id)nat�intvlm!real given by the Universal Fun
tionTheorem (x4.4). Then for ea
h f 2 GLTm(I), there is a number k, e�e
tively obtainablefrom the GL-
ode for f , su
h that (writing Hmk;n = Hm(k; n; � )) the sequen
e of fun
tionsHmk;0; Hmk;1; Hmk;2; : : : uniformly approximates f on I.ACM Transa
tions on Computational Logi
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32 So by Theorem 2 applied to Id:Theorem 3 (Universal spe
i�
ation of GL 
omputable fun
tions). For ea
hm > 0 there is a signature ��m whi
h is an expansion of �(Id)� by �nitely many fun
-tion symbols, and a �nite 
onditional spe
i�
ation (��m; EWm (z)) 
onsisting of 
onditionalequations and inequalities, whi
h is universal for spe
i�
ations of GLTm(I), in the follow-ing sense: it 
ontains a distinguished natural number variable z su
h that ea
h fun
tionf 2 GLTm(I) is spe
i�ed (with hidden sorts and fun
tions) by a suitable substitution in-stan
e (��m; EWm (�k)), where k 
an be found e�e
tively from a GL-
ode for f .Remark 4 (Des
ription of the signature ��m of Theorem 3). The signature ��mis an expansion of �(Id) (for a des
ription of whi
h see the remark at the end of x6.1) bythe following sorts and fun
tions:(i) the sorts and fun
tions of the array stru
ture over Id (x1.6);(ii) the �PR� \universal fun
tion" Fm for GLTm(I) (as des
ribed in the above dis
ussion)together with the auxiliary fun
tions in its derivation;(iii) the fun
tion 2�n, used for assertions about 
omputable approximations, as explainedin the proof of Theorem 1;(iv) the 
hara
teristi
 fun
tion for BU quanti�
ation, as des
ribed in the proof of the BUelimination theorem (x3.3).Note that there is only one fun
tion of type (iv) in��m, namely that obtained by eliminatingthe 
onditional BU equation F� (x5.2) spe
ifying the (single!) �-operator o

urren
e inthe �PR� derivation for Hm in (ii) (see Remark 1 in x4.4). (There are no 
onditional BUequality axioms for arrays (x3.2) to eliminate here, sin
e real and intvl are not equalitysorts.)6.3 Illustration: Spe
i�
ation of dynami
al systemWe illustrate the 
onne
tion between algebrai
 spe
i�
ation methods and models of phys-i
al systems.A deterministi
 dynami
al system with �nite dimensional state spa
e S � Rn and timeT � R is represented in a model by a fun
tion� : T � S ! Swhere for t 2 T , s 2 S, �(t; s) is the state of the system at time t with initial state s. Forexample, the state of a parti
le in motion is represented by position and velo
ity. Thus,for a system of n parti
les in 3-dimensional spa
e, the state spa
e has 6n dimensions.In pra
ti
e, the model is spe
i�ed by ordinary di�erential equations (ODEs) whose
omplete solution is �. Spe
i�
ally, in the modern qualitative theory of ODEs [Arn73℄, �is di�erentiable, and the fun
tion �t : S ! S de�ned by�t(s) = �(t; s) for t 2 T; s 2 S;ACM Transa
tions on Computational Logi
, Vol. TBD, No. TBD, TBD TBD.



33is a 1-parameter group of di�eomorphisms of S; the a
tion of this group on S is 
alled the
ow on the phase spa
e S. This 
ow 
an be spe
i�ed by a ve
tor �eld on S.In modelling a physi
al system, one aim is to 
ompute values of the fun
tion � onsome time interval and subspa
e of the spa
e of initial 
onditions. Many methods exist toderive algorithms for � from the equations that de�ne it. Indeed, various �elds of appliedmathemati
s exist in order to design su
h equations, and the �eld of numeri
al analysisexists to design su
h solution methods.Conversely, we suppose that � 
an be simulated on a digital 
omputer, i.e., � is a
lassi
ally 
omputable (e.g., GL-
omputable) fun
tion. Assume also that the state spa
eS is the unit n-
ube In, and the time dimension T is the unit interval I. Thus� : I � In ! I:We 
an now apply Theorem 3 to show that the dynami
al system has a �nite algebrai
spe
i�
ation.Theorem 4 (Universal spe
i�
ation of 
omputable dynami
al systems). For ea
hn > 0 there is a signature ~��n whi
h extends �(Id)� by fun
tion symbols, and a �nite
onditional spe
i�
ation ( ~��n; ~EWn (z)) 
onsisting of 
onditional equations and inequalities,whi
h is universal for all 
lassi
ally 
omputable dynami
al systems on the unit n-
ube Inover the unit time interval I.Note that ~��n is essentially the signature ��m of Theorem 3, with n = m+ 1.We have shown above how powerful algebrai
 spe
i�
ations are, even for topologi
al datatypes. More resear
h needs to be done to determine the extent of its power, espe
ially onmetri
 algebras. Here topologi
al notions su
h as 
ontinuity 
an play a part, as we seefrom the following example.6.4 Example: Spe
i�
ation of fun
tion assuming 
ontinuityConsider the two equations for a (total) fun
tion f on the real line:f(x+ y) = f(x)� f(y); f(1) = 
 (�)for some 
onstant 
 > 0. If we assume that f is 
ontinuous, even at one point, then it iseasy to see that these equations are satis�ed uniquely by the fun
tionf(x) = 
x:However, in the absen
e of any su
h 
ontinuity assumption, it 
an be shown that (for any
 > 0) there are 22�0 non-
onstru
tive solutions to (�). Here \non-
onstru
tive" meansboth that these solutions are non-
omputable, and that their existen
e is proved by non-
onstru
tive means, using Zorn's Lemma to show the existen
e of a Hamel basis on R ,i.e., a maximal linear independent subset of R over Q .Note that any solution f of (�) is a homomorphism from the additive group of reals tothe multipli
ative group of positive reals.ACM Transa
tions on Computational Logi
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34 This example suggests the followingQuestion. On metri
 algebras, does 
onditional equational spe
i�ability, together with atopologi
al 
ondition su
h as 
ontinuity, imply 
omputability?Spe
i�
ally, is there a 
ontinuous fun
tion on I whi
h is de�nable by equations but notapproximably 
omputable?Note, in this 
onne
tion, that there are other \equational spe
i�
ations" for the expo-nential fun
tion ex:(1) the di�erential equation f 0(x) = f(x) with initial 
ondition f(0) = 1;(2) from the polynomial approximations given by the partial sums of the Ma
laurin ex-pansion P1i=0 xi=i!, a spe
i�
ation 
onsisting of 
onditional equations and inequal-ities 
an be derived by the methods of this se
tion for approximating 
omputations;(3) similarly, from the polynomial approximations, (1+x=n)n, a spe
i�
ation 
onsistingof 
onditional equations and inequalities 
an be derived.Note that in the �rst of these spe
i�
ations, di�erentiability of f is (of 
ourse) impli
itlyassumed, and uniqueness of the solution follows by the Lips
hitz 
ondition; however noassumptions of 
ontinuity are needed in (2) or (3).The above question points to an open �eld of resear
h. The investigation of 
omputablesolutions of re
ursive equations in [GH00℄ would be relevant here.7 Initial algebra spe
i�
ations with 
onditional equations and
onditional BU equationsIn this se
tion we will 
onsider theories T , whi
h we assume to be formalised in logi
alformalisms F of the kind des
ribed in Se
tion 2; for example, F = CondBUEq(�).7.1 Pre-initial and initial modelsIn this subse
tion (only), we make no assumptions 
on
erning the (N-)standardness ofsignatures or algebras. Let � be a signature and let K be a �-adt.A formalism F is said to be valid for K if the axioms and inferen
e rules of F hold forall algebras in K . Note, for example, that CondBUEq(�) is valid for NStdAlg (�), butnot, in general, for Alg (�).A �-algebra A is pre-initial for K if there is a unique �-homomorphism from A toevery algebra in K ; pre-initial in that it might not itself belong to K . (The notion of�-homomorphism between �-algebras is de�ned as usual [MT92℄.)Note that the 
losed term algebra T(�) is pre-initial for K .An initial algebra of K is a pre-initial algebra whi
h belongs to K . As is easily seen,any two initial algebras of K must be �-isomorphi
. We denote any initial algebra of Kby Init(�; K ). ACM Transa
tions on Computational Logi
, Vol. TBD, No. TBD, TBD TBD.



35We will be interested in the 
ase thatK = Alg(�; T );the 
lass of models of a �rst-order �-theory T , where T may have 
ertain synta
ti
 re-stri
tions. We will assume:� in this subse
tion that T is a 
onditional equational theory;� in x7.2 likewise, but restri
t attention to N-standard models of T ;� in x7.3 that T is a 
onditional BU equational theory (again with N-standard models);� and in x7.4 that it is a 
onditional SU equational theory (ditto).(Re
all the formal systems de�ned in Se
tion 2.) Finally in x7.5 we will show how 
ondi-tional BU equational initial algebra spe
i�
ations 
an be \redu
ed" to 
onditional equa-tional initial algebra spe
i�
ations.Let T be a �-theory. We write Init(�; T ) for the initial algebra Init��;Alg(�; T )�(if it exists), and 
all it the initial model of T .Consider the 
losed term algebra T(�; T;F) formed from T(�) by identifying 
losedterms provably equal from T , in some formalism F , i.e.,T(�; T;F) =df T(�)=�T;Fwhere t1�T;F t2 ()df t1 = t2 is provable from T in F :Lemma. If F is valid for Alg(�; T ), then T(�; T;F) is pre-initial for Alg(�; T ).We will investigate whether T(�; T;F) is, further, initial for Alg(�; T ), i.e., whetherT(�; T;F) = Init(�; T ):Initiality Lemma. Suppose F is valid for Alg(�; T ). If T(�; T;F) 2 Alg(�; T ), thenit is (�-isomorphi
 to) Init(�; T ).De�nitions. Let A be a �-algebra.(1) A has an initial algebra spe
i�
ation (�; T ) if A �= Init(�; T ).(2) A has an initial algebra spe
i�
ation with hidden sorts and/or fun
tions (�0; T 0) if�0 is an expansion of � by sorts and/or fun
tions, T 0 is a �0-theory andA �= Init��; Alg(�0; T 0) j� �:
ACM Transa
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36Theorem 1 [Mal73℄. Let E be a 
onditional equational theory over �. Let I =dfT(�;E;CondEq(�)). Then I is an initial model of E. Furthermore, if t1; t2 are two
losed �-terms of the same sort, then the following are equivalent:(i) t1 and t2 have the same value in I,(ii) t1 and t2 have the same value in all models of E,(iii) t1 = t2 is provable from E in CondEq(�),(iv) t1 = t2 is provable from E in FOL(�).Proof: The main thing here is to show that I j= E, from whi
h (ii))(i) will follow. Sin
eI is a (
losed) term model, it is suÆ
ient to show that I satis�es all 
losed substitutioninstan
es of the axioms of E. So 
onsider any 
losed instan
e P1 ^ : : : ^ Pn ! P of anaxiom of E, where Pi and P are 
losed equations. Note that the 
orresponding sequentP1; : : : ; Pn 7�! P (�)is derivable from E in CondEq(�), by the substitution rule. Suppose I j= Pi fori = 1; : : : ; n. Then, by the de�nition of I, Pi is provable from E in CondEq(�). But thenP is also provable, by repeated (atomi
) 
uts of the sequent (�) with the sequents 7�! Pi,and so I j= P .Hen
e I j= E. It follows, by the Initiality Lemma, that I is an initial model of E.Hen
e also (ii))(i). The further impli
ations (i))(iii))(iv))(ii) are all trivial. �Remark (Completeness and 
onservativity). Mal'
ev's Theorem [Mal73℄, in theform given above, 
an be viewed as expressing both (a) 
ompleteness of CondEq(�),given by the impli
ation (ii) =) (iii), and (b) 
onservativity of �rst order logi
 withequality over CondEq(�), given by the impli
ation (iv) =) (iii). (Cf. 
onservativitylemma (1) and the remark in x2.6.)Ne
essary and suÆ
ient 
onditions for the existen
e of initial models of theories aregiven in [MM84℄.7.2 Initial N-standard modelsAssume, from now on, that � is N-standard, and that K 
onsists of N-standard�-algebras;for example, K = NStdAlg(�; T ), for some �-theory T . Then T(�; T;F), althoughit is pre-initial for K , might fail to be initial for K for two reasons: it might not satisfy T ,and it might not even be N-standard! (We return to the se
ond point below.)An initial N-standard model of T is an initial algebra of NStdAlg(�; T ). Any twoinitial N-standard models of T are �-isomorphi
. We denote any su
h model byInitNStdAlg(�; T ) =df Init(�; NStdAlg(�; T )):N-Standard Initiality Lemma. Suppose F is valid for NStdAlg(�; T ).If T(�; T;F) 2 NStdAlg(�; T ) then it is (�-isomorphi
 to) InitNStdAlg(�; T ).ACM Transa
tions on Computational Logi
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37De�nitions. Let A be an N-standard �-algebra.(1) A has an initial N-standard algebra spe
i�
ation (�; T ) if A �= InitNStdAlg(�; T ).(2) A has an initial N-standard algebra spe
i�
ation with hidden sorts and/or fun
tions(�0; T 0) if �0 is an expansion of � by sorts and/or fun
tions, T 0 is a �0-theory andA �= Init��; NStdAlg(�0; T 0) j� �:Note that InitNStdAlg(�; T ) (if it exists) might not be an initial model of T , i.e., Tmight have another, non-N-standard, initial model, as the following example demonstrates.Example (Initial N-standard model of a theory whi
h is not an initial modelof that theory). Let � 
ontain (in addition to the standard operations on nat and bool)a 
onstant u� : bool, and let T 
ontain the single axiom `u� 6= true'. Then the term algebraT(�) trivially satis�es T , and is hen
e (by the Initiality Lemma of x7.1) an initial modelof T . It is not N-standard, sin
e it has a 3-element 
arrier of sort bool, with distin
tdenotations of true, false and u�. There is, however, also an initial N-standard model of Twith an N-standard (2-element) 
arrier of sort bool, formed by identifying u� and false.Now T(�; T;F) may fail to be N-standard for two reasons: that T proves \too little"or \too mu
h", roughly speaking. The �rst reason is 
onne
ted with non-N-standardinterpretations of the sorts nat and bool. Thus, there may be a fun
tion symbol f in �with range sort nat, without 
orresponding axioms in T 
apable of \redu
ing" f(t), forsome 
losed term t, to a numeral. Similarly (as in the above example), not all 
losedboolean terms (i.e., terms of sort bool) may be (provably in T ) equal to true or false. (Inthe terminology of [GH78℄ the spe
i�
ation (�; T ) is not \suÆ
iently 
omplete".) These
ond reason is that T may be in
onsistent, in the sense that it proves `true = false' (or,equivalently in a suitable weak ba
kground theory, `0 = 1'). This motivates the followingde�nitions. Note that we must (to begin with) speak of provability relative to some formalsystem F , whi
h will typi
ally be one of the system CondEq(�) or CondBUEq(�) ofSe
tion 2.De�nition 3. T is 
onsistent in F if the equation `true = false' is not provable in F fromT .De�nition 4. T determines nat in F if every 
losed term of sort nat is, provably in Ffrom T , equal to a numeral; and T determines bool in F if every 
losed term of sort boolis, provably in F from T , equal to true or false.
ACM Transa
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38De�nition 5 (N-standardness axioms).(a) NStdAx(�) is the following set of 
onditional equations:and(true; true) = true; and(true; false) = and(false; true) = and(false; false) = false;or(false; false) = false; or(true; true) = or(true; false) = or(false; true) = true;not(true) = false; not(false) = true;ifs(true; xs1; xs2) = xs1; ifs(false; xs1; xs2) = xs2;eqnat(0; 0) = true; eqnat(Sz; 0) = eqnat(0; Sz) = false;eqnat(Sz1; Sz2) = eqnat(z1; z2);lessnat(0; Sz) = true; lessnat(z; 0) = false;lessnat(Sz1; Sz2) = lessnat(z1; z2);eqs(xs; xs) = true;eqs(xs1; xs2) = true ! ts1 = ts2:where, in the axioms for ifs, s ranges over all �-sorts other than bool; and in the axiomsfor eqs, s ranges over all �-equality sorts other than nat,(b) NStdAx0(�) is the set of all 
losed �-substitution instan
es of NStdAx(�).Note that NStdAx(�) + Ind(�) holds in any N-standard �-algebra.We use the terminology: T proves NStdAx0(�) in F to mean: NStdAx0(�) is derivablefrom T in F .We now state some lemmas whi
h give suÆ
ient 
onditions for a term model T(�; T;F)to be N-standard.Lemma 1 (N-standardness lemma). Suppose that in F(i) T is 
onsistent,(ii) T determines nat and bool, and(iii) T proves NStdAx0(�).Then T(�; T;F) is N-standard.Lemma 2. If � is stri
tly N-standard then NStdAx0(�) determines nat and bool inCondEq(�).Proof: By stru
tural indu
tion on all 
losed �-terms of sort nat and bool (simultaneous-ly). �The following is an immediate 
onsequen
e of Lemmas 1 and 2.
ACM Transa
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39Lemma 3 (Stri
t N-standardness lemma). Suppose � is stri
tly N-standard, F isat least as strong as CondEq(�), and in F(i) T is 
onsistent, and(ii) T proves NStdAx0(�) (or NStdAx(�)).Then T(�; T;F) is N-standard.7.3 Conditional equational theoriesWe now give the analogue of Mal'
ev's Theorem (x7.1) for N-standard models of 
ondi-tional equational theories.Theorem 2. Let E be a 
onditional equational theory over �. Suppose that inCondEq(�), E is 
onsistent, determines nat and bool, and proves NStdAx0(�). ThenI =df T(�; E; CondEq(�)) is an initial N-standard model of E. Furthermore, if t1; t2are two 
losed �-terms of the same sort, then the following are equivalent:(i) t1 and t2 have the same value in I,(ii) t1 and t2 have the same value in all N-standard models of E,(iii) t1 = t2 is provable from E in CondEq(�),(iv) t1 = t2 is provable from E in FOL(�) + Ind(�).Proof: By the N-standardness Lemma (x7.2), I is an N-standard algebra. As in Theorem1, the main thing is to show that I j= E. This is done exa
tly as in the proof of Theorem1. It follows, by the N-standard Initiality Lemma (x7.2), that I is an initial N-standardmodel of E. The rest of the proof is similar to that for Theorem 1. Note for the impli
ation(iv))(ii), we use the fa
t that the rule Ind(�) is valid for N-standard �-algebras. �Remarks. (1) By Lemma 2 in x7.2, the assumption in the theorem that E determinesnat and bool 
an be repla
ed by the assumption that � is stri
tly N-standard.(2) (Completeness and 
onservativity.) Here again, the impli
ation (ii))(iii) 
an be
onstrued as a 
ompleteness theorem, and (iv))(iii) as a 
onservativity theorem. (Seethe Remark in x2.6 and the Remark following Theorem 1.)(3) (The N-standardness axioms.) We have \in
orporated" the N-standardness axiomsNStdAx0(�) in the theory E, so to speak, by assuming that E proves them. Anotherfeasible approa
h would be to in
orporate these axioms in the logi
s CondEq, CondBUEqand FOL, by adding them as axioms (as we did with the boundedness axioms BddAx inCondBUEq). This would entail some minor re-wording of the theorems.We turn our attention to theories with synta
ti
 stru
ture more 
ompli
ated than 
on-ditional equations.
ACM Transa
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407.4 Conditional BU equational theoriesWe give the analogue of Mal'
ev's Theorem for N-standard models of BU 
onditionalequational theories.Theorem 3. Let F be a 
onditional BU equational theory over �. Suppose that inCondBUEq(�), F is 
onsistent, determines nat and bool and proves NStdAx0(�). ThenI =df T(�; F; CondBUEq(�)) is an initial N-standard model of F . Furthermore, if t1; t2are two 
losed �-terms of the same sort, then the following are equivalent:(i) t1 and t2 have the same value in I,(ii) t1 and t2 have the same value in all N-standard models of F ,(iii) t1 = t2 is provable from F in CondBUEq(�),(iv) t1 = t2 is provable from F in FOL(�) + Ind(�).Proof: By the N-standardness Lemma, I is N-standard. As in Theorems 1 and 2, themain thing is to show that I j= F . Again, sin
e I is a term model, it is suÆ
ient to showthat I satis�es the set of 
losed substitution instan
es of F . First note that, by de�nition,I satis�es pre
isely all 
losed equations provable from F in CondBUEq, i.e., for any 
losedequation P : I j= P () F ` P (�)where ``' here means provability in CondBUEq. Further, by use of the boundedness axiomsBddAx of CondBUEq (x2.3), the same holds for any 
losed BU equation Q:I j= Q () F ` Q: (��)For suppose Q � 8z < tP (z), where P (z) is an equation. Sin
e I is N-standard,I j= t = �n (���)for some (unique) n. ThenI j= 8z < tP (z) () for all k < n, I j= P (�k)() for all k < n, F ` P (�k) by (�)() F ` 8z < tP (z) by BddAx and (���):Now 
onsider any 
losed instan
e f � Q1 ^ : : : ^ Qm ! Q of an axiom of F (whereQi and Q are 
losed SU equations). Suppose I j= Qi for i = 1; : : : ;m. Then by (��)Qi is provable from F in CondBUEq. But then so is Q, by repeated 
uts of the sequentQ1; : : : ; Qm 7�! Q 
orresponding to f with the sequents 7�! Qi, and so I j= Q. �Remarks. (1) As before, the assumption in the theorem that F determines nat and bool
an be repla
ed by the assumption that � is stri
tly N-standard.(2) (Completeness and 
onservativity.) Again, the impli
ation (ii))(iii) 
an be 
on-strued as a 
ompleteness theorem, and (ii))(iii) as a 
onservativity theorem.ACM Transa
tions on Computational Logi
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417.5 Conditional SU equational theoriesNow we turn to the in�nitary 
onditional SU equational logi
 (x2.4). Although it will notbe used further in the paper, it is interesting in its own right.Remember that the in�nitary !-rule 8!R obviates the need for an indu
tion rule.Theorem 4. Let G be a 
onditional SU equational theory over �. Suppose that inCondSUEq!(�), G is 
onsistent, determines nat and bool and proves NStdAx0(�). ThenI =df T(�; G; CondSUEq!(�)) is an initial N-standard model of G. Furthermore, ift1; t2 are two 
losed �-terms of the same sort, then the following are equivalent:(i) t1 and t2 have the same value in I,(ii) t1 and t2 have the same value in all N-standard models of G,(iii) t1 = t2 is provable from G in CondSUEq!(�),(iv) t1 = t2 is provable from G in FOL!(�).Proof: By the N-standardness Lemma, I is N-standard. Again, the main thing is to showthat I satis�es 
losed substitution instan
es of axioms of G. By de�nition, for any 
losedequation P : I j= P () G ` P (�)where ``' here means provability in CondSUEq!. Further, by use of the 8!R rule, thesame holds for any 
losed SU equation R:I j= R () G ` R:For suppose R � 8zP (z), where P (z) is an equation. ThenI j= 8zP (z) () for all n, I j= P (�n)() for all n, G ` P (�n) by (�)() G ` 8zP (z) by 8!RThe rest of the proof follows the pattern of Theorems 1, 2 and 3. �Remarks. (1) As before, the assumption in the theorem that G determines nat and bool
an be repla
ed by the assumption that � is stri
tly N-standard.(2) (Completeness and 
onservativity.) On
e again, the impli
ation (ii))(iii) 
an beviewed as a 
ompleteness theorem, and (iv))(iii) as a 
onservativity theorem.7.6 Open term algebrasSo far (Theorems 1, 2, 3 and 4) we have 
on
entrated on 
losed term algebras. We 
ouldalso formulate our results in a more general setting, namely, with term algebras 
onstru
tedfrom open terms, i.e., terms 
ontaining free variables (from a given set X).ACM Transa
tions on Computational Logi
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42 The problem here is that with open terms (an analogy of) the N-Standardness Lemma(x7.2) will fail in general. However, under a 
ertain synta
ti
 
ondition (the \N-term
ondition" below), a version of this Lemma 
an still be formulated.First we need some de�nitions and notation. Given a signature �, and a set X �Var(�), let T(�;X) be the set of �-terms in X, i.e., �-terms 
ontaining variables fromX only. In parti
ular, for X = ;, we have the set of 
losed �-terms T(�) = T(�; ;).Given a �rst-order �-theory T and formalism F whi
h is valid for Alg(�; T ), letT(�;X; T;F) be the �-term algebra formed from T(�;X) by identifying terms provablyequal from T in F . (The 
losed term algebra T(�; T;F) 
onsidered above 
orrespondsto the spe
ial 
ase X = ;).The algebra I =df T(�;X; T;F) is free for T over X. This means that for every modelA of T , and every assignment � : X ! A of elements of A to variables in X (of the samesort), there is a unique �-homomorphism h : I ! A su
h that h � X�. (This redu
es toinitiality in Alg(�; T ) when X = ;.)Note that I need not itself be a model of T . However, this will be the 
ase, providedT satis�es 
ertain synta
ti
 
onditions (e.g., if T is a 
onditional equational theory; 
f.Theorem 1 above).Again, assuming that � is N-standard, we are interested in the question whether I isN-standard. A useful 
riterion in this 
onne
tion is the following synta
ti
 
ondition on �and X:N-term Condition for (�;X). No �-term of sort nat or bool 
ontains any variablesfrom X.Remarks. (1) The N-term 
ondition for (�;X) is trivially satis�ed when X = ;.(2) When � is stri
tly N-standard, it is equivalent to the 
ondition:there are no variables in X of sort nat or bool.This follows from Remark 3 in x1.5.Now the theory given above, and spe
i�
ally Theorems 1 to 4, 
an be generalised to the
ase of open term models T(�;X; T;F) , where (�;X) satis�es the N-term 
ondition.First, the N-standardness lemma be
omes:N-Standardness LemmaX . Suppose that (�;X) satis�es the N-term 
ondition.Suppose further that in F(i) T is 
onsistent,(ii) T determines nat and bool, and(iii) T proves NStdAx0(�).Then T(�;X; T;F) is N-standard.Next, the stri
t N-standardness lemma be
omes (using Remark 2 above):ACM Transa
tions on Computational Logi
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43Stri
t N-Standardness LemmaX . Suppose � is stri
tly N-standard, and there are novariables in X of sort nat or bool. Suppose also F is at least as strong as CondEq(�),and in F(i) T is 
onsistent, and(ii) T proves NStdAx(�).Then T(�;X; T;F) is N-standard.Consider next, for example, Theorem 2. This 
an be reformulated as follows.Theorem 2X . Suppose (�;X) satis�es the N-term 
ondition. Let E be a 
onditionalequational theory over �. Suppose that in CondEq(�), E is 
onsistent, determines natand bool, and proves NStdAx(�). Then I =df T(�;X; E; CondEq(�)) is an N-standardmodel of E, whi
h is free for E over X. Furthermore, if t1; t2 are two terms in T(�;X)of the same sort, then the following are equivalent:(i) t1 and t2 have the same value in I,(ii) t1 and t2 have the same value in all N-standard models of E,(iii) t1 = t2 is provable from E in CondEq(�),(iv) t1 = t2 is provable from E in FOL(�) + Ind(�).The stri
t N-standardness LemmaX , and Theorem 2X , will be used in Se
tion 9.7.7 Redu
ing 
onditional BU to 
onditional equational spe
i�
ationsWe re-
onsider the work of x3.3 from the viewpoint of initial algebra spe
i�
ations.Theorem 5 (BU elimination for initial algebra spe
i�
ations). Let F be a
onditional BU equational theory over �. Then there is an expansion �0 of � and a
onditional equational theory E0 over �0 whi
h is equivalent to F (relative to N-standardmodels) in the sense that:(i) if A is an N-standard �-model of F , then it has a �0-expansion whi
h is a N-standardmodel of E0;(ii) if A �= InitNStdAlg(�;F ) then it has a unique (up to �0/�-isomorphism) �0-expansion A0 su
h that A0 �= InitNStdAlg(�0; E0);(iii) if A0 is an N-standard �0-model of E0, then its �-redu
t A is an N-standard modelof F ; and if A0 �= InitNStdAlg(�0; E0) then A �= InitNStdAlg(�;F ).If F 
ontains q o

urren
es of BU quanti�ers, then �0 expands � by one new sort andq new fun
tion symbols. Moreover, if F is �nite, with e axioms (say), then so is E0, withe+ 4q axioms.Proof: The idea, again, is to in
orporate in the signature, for ea
h BU quanti�er o

urringin F , a 
hara
teristi
 fun
tion for that quanti�er. The problem with adjoining a boolean-valued fun
tion symbol f : nat� u! bool satisfying (��) in the BU elimination theoremACM Transa
tions on Computational Logi
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44in x3.3, is in the 
ase that A is an initial N-standard model of F . In order that its �0-expansion A0 be N-standard, the value of f(n; x) must be either true or false for every valueof the arguments n; x. Furthermore, in order that A0 also be initial, the �-homomorphismh from A to every N-standard model B of F must be extendible to a �0-homomorphismh0 from A0 to the �0-expansion B0 of B. However, the rhs of (��) in x3.3 will hold \moreoften" in B than in A (sin
e B is a homomorphi
 image of A), with a 
orresponding 
hangein the value of f(n; x) from false to true! Hen
e h 
annot, in general, be extended as desired.(Making f a 0,1-valued fun
tion will 
ause exa
tly the same problem.)We therefore adjoin a spe
ial sort D for the range of su
h fun
tions f, with a 
onstantd whi
h takes the pla
e of `true' in (��) in x3.3. (The point is that when the 
ondition onthe rhs of (��) fails, f(n; x) is not \for
ed" to equal anything else at all.) Now for ea
h BUquanti�er as in (�) of x3.3, adjoin to the signature the fun
tion symbolf : nat� u ! D;and adjoin the axioms formed from (���) and (����) in x3.3 by repla
ing `true' by `d'throughout. In this way we repla
e F by a 
onditional equational theory E0 in �0, withthe stated properties. �Remark. If A is an N-standard model of F , then its N-standard �0-expansion A0 mod-elling E0, given by part (i) of the theorem, is not (in general) uniquely determined. How-ever, the added 
ondition of initiality (on A and A0) determines A0 uniquely.8 Initiality-preserving operators on N-standard algebrasIn this se
tion we 
ombine the theory of Se
tion 5 (\
omputability =) algebrai
 spe
i-�ability") with the initial algebra theory of Se
tion 7.8.1 Initiality preserving operators and the HEPAssume now (as in x3.1) that �0 and �00 are N-standard signatures with � � �0 ��00, and � : NStdAlg (�) ! NStdAlg(�0) is an expanding operator over �. Re
allDe�nitions 5 and 7 in x3.1.De�nition 1. � is initiality preserving (w.r.t. � and �0) i� for all K � NStdAlg (�)and A 2 NStdAlg (�), A is initial in K i� A� is initial in K� .Lemma 1. Suppose � is initiality preserving, and (�0; T 0) spe
i�es � uniformly over �.Then for any �-theory T and N-standard �-algebra A,A �= InitNStdAlg(�; T ) () A� �= InitNStdAlg(�0; T + T 0):
ACM Transa
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45Lemma 2. Suppose �(A) = 	(A) j�0 for all A 2 NStdAlg (�), where	 : NStdAlg (�)! NStdAlg(�00)is an expanding operator whi
h is initiality preserving w.r.t. � and �00. Then � is initialitypreserving, and for any �00-theory T 00 and N-standard �-algebra A, if (�00; T 00) spe
i�es	 uniformly over �, then (�00; T 00) spe
i�es � uniformly over � with hidden sorts and/orfun
tions; and for any �-theory T and N-standard �-algebra A,A �= InitNStdAlg(�; T ) () A	 �= InitNStdAlg(�00; T + T 00)() A� �= InitNStdAlg(�00; T + T 00) j�0() A� �= Init��0; NStdAlg(�00; T + T 00) j�0 �:Proof: From Lemma 1. �De�nition 2. � has the homomorphism extension property (HEP) (w.r.t. � and �0)i� every homomorphism h : A ! B between N-standard �-algebras 
an be extendeduniquely to a homomorphism h� : A� ! B� between their images under �.Lemma 3. If � has the HEP, then � is initiality preserving.We will apply the above theory to three 
ases: array spe
i�
ations in x8.2, and spe
i�-
ations for PR and �PR� 
omputable fun
tions in x8.3 and x8.4 respe
tively.8.2 Initial algebra spe
i�
ation of array algebrasRe
all the array spe
i�
ation (��; ArrAx(�)) de�ned in x3.2.Lemma 1. The array 
onstru
tion A 7! A� (x1.6) has the HEP, and (hen
e) is initialitypreserving.Lemma 2. For any N-standard �-algebra A and �-theory T :A �= InitNStdAlg(�; T ) () A� �= InitNStdAlg(��; T + ArrAx(�)):Proof: By x8.1, Lemma 1, and x3.2, Theorem 1. �Of parti
ular interest is the 
ase that T is a 
onditional BU equational theory:Theorem 1. If a �-algebra A has an initial N-standard algebra spe
i�
ation by a set of
onditional BU equations, then so does A�. Moreover, if the spe
i�
ation for A is �nite,with e axioms (say), then so is that for A�, with at most e + 8s axioms, where s is thenumber of sorts in �.Next, from the BU elimination theorem for initial algebras (Theorem 5 in Se
tion 7) we
an redu
e su
h a spe
i�
ation for A� further to one with 
onditional equations only.ACM Transa
tions on Computational Logi
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46Theorem 2. If a �-algebra A has an initial N-standard algebra spe
i�
ation by a setof 
onditional equations, then so does A� (with hidden sorts and fun
tions). Moreover, ifthe spe
i�
ation for A is �nite, with e axioms (say), then so is that for A�, with at moste+ 12s axioms, where s is the number of sorts in �.Proof: First apply Theorem 1 (or Lemma 2) above. Then repla
e the equality axiomfor s� in ArrAx(�), whi
h is a 
onditional BU ��-equation (x3.2), by a 
onditional ��-equation, for ea
h �-equality sort s other than nat, by BU elimination (Theorem 5 in x7.7,applied to ��). �8.3 Initial algebra spe
i�
ations for PR 
omputable fun
tionsNow we apply the above theory to the results in x5.1.Lemma 1. For ea
h PR(�) derivation �, the operator (��) (x5.1) has the HEP, and is(therefore) initiality preserving. Hen
e the operator (�) is initiality preserving.Proof: By stru
tural indu
tion on �. �Hen
e, by Theorem 1 in Se
tion 5 and Lemma 2 in x8.1:Lemma 2. For ea
h PR(�) derivation �, and for ea
h N-standard �-algebra A and�-theory T :A �= InitNStdAlg(�; T ) () (A; gA� ; fA� ) �= InitNStdAlg(��; T + E�)() (A; fA� ) �= InitNStdAlg(��; T + E�) j�f() (A; fA� ) �= Init��f; NStdAlg(��; T +E�) j�f �:Here �f = � [ ff�g. (Remember, �� = � [ fg�; f�g, where g� is the list of auxiliaryfun
tions of �.) Of parti
ular interest is the 
ase that T is a 
onditional equational theory:Theorem 3. Let f be a PR fun
tion on a �-algebra A. If A has an initial N-standardalgebra spe
i�
ation by a set of 
onditional equations, then so does (A; f) (with hiddenfun
tions).8.4 Initial algebra spe
i�
ations for �PR� 
omputable fun
tionsWe turn to �PR� 
omputability (x5.2). The problem here (as noted in x5.2) is thateven if the 
omputed fun
tion is total, the auxiliary fun
tions need not be. However, byapplying the totality lemma (x5.2), we are able restri
t our attention to total derivations.Lemma 1. For ea
h �PR�(�) derivation � and ea
h N-standard �-algebra A on whi
hfA� is total, the operator (���) (x5.2) has the HEP, and is (therefore) initiality preserving.Hen
e the operator (�) (x5.1) is initiality preserving.Proof: By stru
tural indu
tion on �. �Hen
e, by Theorem 2 in Se
tion 5 and Lemma 2 in x8.1, we have:ACM Transa
tions on Computational Logi
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47Lemma 2. For ea
h �PR�(�) derivation �, ea
h N-standard �-algebra A on whi
h fA� istotal, and ea
h �-theory T :A �= InitNStdAlg(�; T ) ()(A; fA� ) �= Init��f; NStdAlg(���; T + ArrAx(�) + F�̂) j�f �:where �̂ is the total derivation for f� given by the totality lemma, and F�̂ is the 
onditionalBU spe
i�
ation for �̂.Here, as before, �f = � [ ff�g. Of parti
ular interest are the two 
ases that T is a
onditional BU equational theory, and a 
onditional equational theory. First, assuming theformer:Theorem 4. Let f be a total �PR� fun
tion on a �-algebra A. If A has an initial N-standard algebra spe
i�
ation (�;F ), where F is a set of 
onditional BU equations, thenlikewise (A; f) has su
h a spe
i�
ation (�f; F f ) with hidden sorts and fun
tions, where F fis also a set of 
onditional BU equations. Moreover, F f 
an be obtained by adjoining to Fan instantiation FU (�k) of some universal 
onditional BU equational spe
i�
ation FU (z),whi
h depends only on � and the type of f .The universal spe
i�
ation FU (z) in this theorem is obtained as in Theorem 3 in Se
tion5. Finally, by assuming T in Lemma 2 is a 
onditional equational theory, and applyingTheorem 4 above and then BU elimination for initial algebras (Theorem 5 in Se
tion 7):Theorem 5. Let f be a total �PR� fun
tion on a �-algebra A. If A has an initialN-standard algebra spe
i�
ation (�;E), where E is a set of 
onditional equations, thenlikewise (A; f) has su
h a spe
i�
ation (�f; Ef) with hidden sorts and fun
tions, whereEf is also a set of 
onditional equations. Moreover, Ef 
an be obtained by adjoining toE an instantiation EU (�k) of some universal 
onditional equational spe
i�
ation EU (z),whi
h depends only on � and the type of f .9 Computability of algebrai
ally spe
i�able fun
tionsIn this se
tion we prove (partial) 
onverses to the results of Se
tion 5. First we need ade�nition.De�nition (Strong spe
i�ability). Let K be a �-
lass, let �0 � � [ ffg and let Tbe a �0-theory. We say that T strongly spe
i�es a family f fA j A 2 K g (possibly withhidden sorts and/or fun
tions) i�(i) T spe
i�es f fA j A 2 K g, and further(ii) for every A;B 2 K with B � A, fB = fA � B.(Here fA � B denotes the restri
tion of fA to B.)The signi�
an
e of this 
on
ept is seen by rephrasing it in either of the following twoways. ACM Transa
tions on Computational Logi
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48Lemma 1. Let K be a �-
lass, let �0 � � [ ffg and let T be a �0-theory. T stronglyspe
i�es a family f fA j A 2 K g (possibly with hidden sorts and/or fun
tions) i�(i) T spe
i�es f fA j A 2 K g, and further(ii0) for every A;B 2 K with B � A, B is 
losed under fA.Lemma 2. Let K be a �-
lass whi
h is 
losed under �nitely generated subalgebras, let�0 � � [ ffg and let T be a �0-theory. T strongly spe
i�es a family f fA j A 2 K g(possibly with hidden sorts and/or fun
tions) i�(i) T spe
i�es f fA j A 2 K g, and further(ii00) for every A 2 K and every �nitely generated B � A, B is 
losed under fA.We 
onsider algebras and fun
tions spe
i�ed by 
onditional equational theories. Wehave to assume now that these theories have e�e
tive axiomatisations: that the axiomsare �nite, for example, or at least re
ursively enumerable.We will also make use of Theorem 2X in x7.6. Re
all the remarks pre
eding the theoremthere, that the N-term 
ondition for (�;X) follows from either (i) X = ;; or (ii) stri
tN-standardness of �, together with X 
ontaining no variables of sort nat or bool.We will prove two theorems, making ea
h of these assumptions in turn.9.1 Computability of spe
i�able fun
tion on minimal algebrasWe �rst 
onsider a partial 
onverse, using Remark 1 on the N-term 
ondition (x7.6),that is, restri
ting our attention to minimal models (i.e., models in whi
h every element isnamed by a 
losed term). We use the notation MinNStdAlg(�; T ) for the set of minimalN-standard �-models of a theory T .Theorem 1. Suppose � is N-standard. Let E be an r.e. 
onditional equational �-theorywhi
h in CondEq(�) is 
onsistent, determines nat and bool and proves NStdAx0(�).Suppose �0 � � [ ffg, and let E0 be an r.e. 
onditional equational �0-theory whi
hstrongly spe
i�es f fA j A 2MinNStdAlg(�;E)g (possibly with hidden sorts and/orfun
tions). Assume also that E + E0 determines nat and bool, and is 
onservative overE, in CondEq(�), and also that all sorts of dom(f) other than bool are equality sorts.Then fA is uniformly �PR� 
omputable over A 2MinNStdAlg(�;E).Proof: We will des
ribe a pseudo-While�(�) algorithm for 
omputing fA uniformly overminimal N-standard �-models A of E. Suppose f : u! s, where u = s1 � � � � � sn. Ingeneral, some of the si are nat or bool, and the others not. Suppose (w.l.o.g.) that forsome m < n, sorts sm+1; : : : ; sn are all either nat or bool, and sorts s1; : : : ; sm are not.Write u = v � w where v = s1 � � � � � sm and w = sm+1 � � � � � sn. By assumption,sorts s1; : : : ; sm are equality sorts.For any A 2MinNStdAlg(�;E), we will show how to 
omputefA : Au ! As:Choose a tuple k = (k1; : : : ; kn�m) 2 Aw (of naturals and truth values), and 
onsider thefun
tion fAk =df f( � ; k) : Av ! As:ACM Transa
tions on Computational Logi
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49We will show how to 
ompute fAk uniformly in the (numeri
al and boolean) parameters k.Let I = T(�; E; CondEq(�)) and J = T(�0; E + E0; CondEq(�0)) (re
all the de�-nitions in x7.1). By the N-Standardness Lemma (and the 
onservativity assumption forE+E0 over E), both I and J are N-standard. (Below we denote elements of these algebrasby `[t℄', i.e., suitable equivalen
e 
lasses of terms t, or tuples thereof. We also write �k forthe tuple of numerals and/or truth 
onstants 
orresponding to k.)Note that the identity mapping on T(�) indu
es a �-homomorphism�I : I ! J j�:By 
onservativity of E + E0 over E, �I is inje
tive. Hen
e I � J j�.Further, the fun
tion fJ spe
i�ed by E0 on J j� is 
learly the same as that de�ned\naturally" on J by fJ([t℄) = [f(t)℄. By the strong spe
i�
ation assumption,f I = fJ � I:Hen
e for any 
losed �-term t0,fJk ([t0℄) = f Ik ([t0℄) = [t℄for some 
losed �-term t. By de�nition of J , this means that the equationf(t0; �k) = t (�)is provable from E + E0 in CondEq(�0).Now take any A 2MinNStdAlg(�;E), and any a 2 Av. Sin
e A is minimal, there isa tuple of 
losed �-terms t0 : v su
h that tA0 = a. By Theorem 2 of Se
tion 6 applied to�0, there is a �0-homomorphism h : J ! (A; fA; : : : )with h([t0℄) = a. Hen
e, sin
e (�) holds in J , it also holds in (the �0-expansion of) A,with `f' interpreted as fA.This suggests the following algorithm for fAk with A minimal. With inputs a 2 Av:�rst generate all (G�odel numbers of) tuples of 
losed �-terms of type v, until you �nd atuple t0 with tA0 = a. (This is where we use 
omputability of equality on type v.) Thengenerate all G�odel numbers of theorems of E+E0 until you �nd one of the form pf(t0) = tq,for some 
losed �-term t. Then the output is tA.The sear
h is e�e
tive in the term evaluation fun
tion for 
losed �-terms in A, by re
ur-sive enumerability of E and E0. Further, sin
e term evaluation is PR� 
omputable ([TZ00,x4℄), this algorithm 
an be formalised as a �PR�(�) derivation for fA, as desired. �Remark. The assumption that the sorts of dom(f) are equality sorts 
an 
learly beweakened to the assumption that equality is (uniformly over MinNStdAlg(�;E)) 
om-putable on these sorts.ACM Transa
tions on Computational Logi
, Vol. TBD, No. TBD, TBD TBD.



509.2 Computability of spe
i�able fun
tion in stri
tly N-standard algebrasWe 
onsider a se
ond partial 
onverse, using Remark 2 on the N-term 
ondition, i.e., nofree variables of sort nat or bool, plus stri
t N-standardness.Theorem 2. Suppose � is stri
tly N-standard. Let E be an r.e. 
onditional equational�-theory whi
h in CondEq(�) is 
onsistent and proves NStdAx(�). Suppose �0 � �[ffgis also stri
tly N-standard and proves NStdAx(�0). Let E0 be an r.e. 
onditional equational�0-theory whi
h strongly spe
i�es f fA j A 2 NStdAlg(�;E)g (possibly with hiddensorts and/or fun
tions). Assume also that E +E0 is 
onservative over E in CondEq(�0).Then fA is uniformly �PR� 
omputable over A 2 NStdAlg(�;E).Proof: We will des
ribe a pseudo-While�(�) algorithm for 
omputing fA uniformly overA 2 NStdAlg(�;E). Suppose f : u! s, where u = s1 � � � � � sn. In general, some ofthe si are nat or bool, and the others not. Suppose (w.l.o.g.) that for some m < n, sortssm+1; : : : ; sn are all either nat or bool, and sorts s1; : : : ; sm are not. Write u = v � wwhere v = s1 � � � � � sm and w = sm+1 � � � � � sn.For any A 2 NStdAlg(�;E), we will show how to 
omputefA : Au ! As:Choose a tuple k = (k1; : : : ; kn�m) 2 Aw (of naturals and truth values), and 
onsider thefun
tion fAk =df f( � ; k) : Av ! As:We will show how to 
ompute fAk uniformly in the (numeri
al and boolean) parameters k.Choose a tuple of variables x : v (i.e., of the same produ
t type as a). Let I =T(�; x; E; CondEq(�)) and J = T(�0; x; E +E0; CondEq(�0)) (re
all the de�nitions inx7.6). By the stri
t N-standardness LemmaX (x7.6), both I and J are N-standard.Note that the identity mapping on T(�; x) indu
es a �-homomorphism�I : I ! J j�:By 
onservativity of E + E0 over E, �I is inje
tive. Hen
e I � J j�.Further, the fun
tion fJ spe
i�ed by E0 on J j� is 
learly the same as that de�nednaturally on J by fJ([t℄) = [f(t)℄. By the strong spe
i�
ation assumption,f I = fJ � I:Hen
e fJk (x) = f Ik (x) = [t℄for some t 2 T(�; x). By de�nition of J , this means that the equationf(x; �k) = t (�)is provable from E + E0 in CondEq(�0).ACM Transa
tions on Computational Logi
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51Now take any A 2 NStdAlg(�;E), and any a 2 Av. By Theorem 2X applied to �0,there is a �0-homomorphism h : J ! (A; fA; : : : )where h(x) = a. Hen
e, sin
e (�) holds in J , it also holds in (the �0-expansion of) A, with`f' interpreted as fA and a assigned to x.This suggests the following algorithm for fAk . With inputs a 2 Av: generate all G�odelnumbers of theorems of E+E0 until you �nd one of the form pf(x) = tq, for some �-termt (in x). This sear
h is e�e
tive, by re
ursive enumerability of E and E0. Then the outputis the evaluation of the term t in A with a assigned to x.Sin
e term evaluation is PR� 
omputable [TZ00, x4℄, this algorithm 
an be formalisedas a �PR�(�) derivation for fA, as desired. �Remarks.(1) The above algorithm gives, for ea
h tuple of numeri
al and boolean arguments k, a�xed term t 2 T(�; x) as the value of fAk (a) for all A 2 NStdAlg(�;E) and alla 2 Av.(2) Theorems similar to Theorems 1 and 2 
an be formulated for 
onditional BU equa-tional theories and spe
i�
ations, using a variation of Theorem 3 (instead of Theorem2) in Se
tion 7.9.3 Signi�
an
e of strong spe
i�ability; Equivalen
e of spe
i�ability and
omputabilityWe want to 
ombine some of the above results into an equivalen
e result between 
om-putability and spe
i�ability.Note that by the Lo
ality Theorem for While 
omputations [TZ00, x2.8℄, if f is �PR�
omputable on an algebra A, then any subalgebra of A is 
losed under f . This suggeststhe following formulations for equivalen
e theorems, whi
h are simple 
onsequen
es of theabove theorems and the lemmas on strong spe
i�ability at the beginning of this se
tion.We give one formulation (Theorem 3) for minimal algebras (
f. Theorem 1), and another(Theorem 4) for stri
tly N-standard algebras (
f. Theorem 2).Theorem 3. Suppose � is N-standard. Let E be an r.e. 
onditional equational �-theory,whi
h in CondEq(�) is 
onsistent, determines nat and bool and proves NStdAx0(�). Letf = hfA j A 2MinNStdAlg(�;E)i be a family of fun
tions on MinNStdAlg(�;E).Assume that all sorts of dom(f) other than bool are equality sorts. Then the followingare equivalent:(i) f is �PR� 
omputable uniformly on MinNStdAlg(�;E);(ii) f is strongly spe
i�able uniformly on MinNStdAlg(�;E), with hidden sorts andfun
tions, by a �nite set of 
onditional equations whi
h (together with E) is 
onser-vative over E in CondEq(�).ACM Transa
tions on Computational Logi
, Vol. TBD, No. TBD, TBD TBD.



52Theorem 4. Suppose � is stri
tly N-standard. Let E be an r.e. 
onditional equa-tional �-theory, whi
h in CondEq(�) is 
onsistent and proves NStdAx0(�). Let f =hfA j A 2 NStdAlg(�;E)i be a family of fun
tions on NStdAlg(�;E). Then the fol-lowing are equivalent:(i) f is �PR� 
omputable uniformly on NStdAlg(�;E);(ii) f is strongly spe
i�able uniformly on NStdAlg(�;E), with hidden sorts and fun
-tions, by a �nite set of 
onditional equations whi
h (together with E) is 
onservativeover E in CondEq(�), and su
h that the signature of these equations is also stri
tlyN-standard.Remark (Herbrand-G�odel 
omputability on N ). The above theorem generalises the
lassi
al equivalen
e result on N [Kle52℄.10 Con
luding remarks and future dire
tions10.1 Computation on Topologi
al Data TypesWe have extended the theory of algebrai
 spe
i�
ations from the world of 
ountable 
om-putable algebras to that of all algebras, and espe
ially metri
 algebras, by means of abstra
t
omputability theory. Topologi
al data types and algebrai
 spe
i�
ations play a funda-mental role in many areas of 
omputing, in
luding semanti
s and s
ienti�
 
omputation.Our main theorems 
on
ern the transformation of abstra
t algorithms to algebrai
 spe
-i�
ations and provide some basi
 te
hniques for the theory of spe
ifying and verifyingabstra
t 
omputations. An obvious question is:Under what 
ir
umstan
es 
an the 
onditional equations be repla
ed by equa-tions in our theory?However, the 
onverse results on the derivation of algorithms from algebrai
 spe
i�-
ations need strengthening to provide 
ompleteness or equivalen
e theorems. Improvingresults in the reverse dire
tion is an important problem, as stated in the Introdu
tion.There is mu
h more to this topi
 than the results in Se
tion 9. A key te
hni
al problemin this area is:To develop general te
hniques for solving equations, 
onditional equations andother algebrai
 formulae in topologi
al algebras.In semanti
s, for example, spe
ial 
ases of the problem are 
ommon. Semanti
 modellingmakes heavy use of �xed-point equations. One thinks of the introdu
tion of metri
 methodsinto semanti
s by M. Nivat (see [Niv79, AN80a, AN80b℄), or their use in 
on
urren
ytheory by De Bakker and others [dBZ82, dBR92, dBdV99℄. Studies of the methods ofequation solving in ultrametri
 algebras, in
luding equivalen
e between metri
, algebrai
and domain-theoreti
 te
hniques, are in Stoltenberg-Hansen and Tu
ker [SHT88, SHT91,SHT93℄; see also [SHLG94℄.In s
ienti�
 
omputation, numeri
al methods are 
on
erned with obtaining 
omputablesolutions from di�erential and integral equations. Mathemati
al models of systems in theworld are spe
i�ed by sets of equations, from whi
h algorithms are sought to 
ompute theirACM Transa
tions on Computational Logi
, Vol. TBD, No. TBD, TBD TBD.



53solutions and hen
e to simulate the system. Our main theorems and examples in Se
tion 5show the opposite: if a system 
an be approximately simulated on a 
omputer then thereexist algebrai
 spe
i�
ations that 
apture the system's behaviour. Su
h results seem tobe new and, in our view, draw lo
i that help delimit the 
omputability theory of physi
alsystems. We 
onje
ture that it is possibleTo show that 
ertain parts of the theory of numeri
al approximation of di�erential andintegral equations are spe
ial instan
es of a general theory of algebrai
 spe
i�
ations.This is an ex
iting and diÆ
ult problem with many obvious appli
ations.Given the wealth of algorithms and theory in numeri
al methods, it seems to us thatrelatively little is known about the 
omputational and logi
al s
ope and limits of equa-tions, the 
lassi
al mathemati
al methods of s
ien
e. Progress in the area has awaited the
reation of stable 
omputation theories for topologi
al data types. Over the past de
ade,
omputability theory for topologi
al spa
es and algebras has developed dramati
ally. Sev-eral general approa
hes have produ
ed deep results and have been shown to be equivalent.Some approa
hes are� metri
 spa
es [Mos64℄,� axiomati
 
omputation stru
tures [PER89℄,� type two e�e
tivity [Wei00℄,� algebrai
 domain representability [SHT88, SHT95, Bla97℄,� 
ontinuous domain representability [Eda97℄,� abstra
t 
omputability [TZ99, TZ00, BSS89℄The equivalen
e of the �rst �ve approa
hes is proved in [SHT99℄. The equivalen
e ofall these with the last one is proved in [Bra97, Bra99, TZ99, TZ01a℄.However, this 
omputability theory needs to be 
omplemented by a logi
al theory whi
hin
ludes equation solving in topologi
al algebras.10.2 Theory of 
omputable data typesThe theory of algebrai
 spe
i�
ations of 
omputable (semi
omputable, and 
osemi
om-putable) data types 
ontains many te
hniques for proving spe
ial properties of algebrai
spe
i�
ations, and showing the equivalen
e or non-equivalen
e of spe
i�
ation methods.Can some of these results be generalised? We believe the answer is yes, but not withoutmu
h further work. Many results depend on spe
ial te
hniques of 
lassi
al 
omputabilitytheory on the natural numbers. The theory for 
omputable algebras uses representationsby re
ursive algebras of numbers. It is possible to make a representation theory for topo-logi
al algebras based on Baire spa
e N N using the type two e�e
tivity methods of KlausWeihrau
h [Wei00℄. The use of the Diophantine Theorem for r.e. sets is more diÆ
ult:the theory of r.e. sets in abstra
t 
omputability di�ers from the 
lassi
al 
ase, and noDiophantine Theorem is known (even for minimal algebras).Sin
e abstra
t 
omputability theory is uniform over 
lasses of algebras, our results onspe
i�
ations are uniform, yielding parameterised spe
i�
ations. As we have seen, this pro-ACM Transa
tions on Computational Logi
, Vol. TBD, No. TBD, TBD TBD.
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ess is surprisingly deli
ate be
ause it leads to questions about standardness. In abstra
t
omputations it is natural to augment an algebra by basi
 data types su
h as booleans,naturals and �nite arrays. These have an e�e
t on the axiomatisations. There are otherimportant additional types, of both theoreti
al and pra
ti
al interest, that may be usedto augment a given data type and are in need of a standard algebrai
 spe
i�
ation theory,in
luding:(i) in�nite streams (ne
essary for developing the theory of intera
tive systems);(ii) real numbers (ne
essary for developing the theory of metri
 algebras and normedlinear spa
es).An attempt to extend the spe
i�
ation methods of this paper to both these data types,using in�nitary equational spe
i�
ations, is made in [TZ01b℄Finally, we note there are several other basi
 properties of spe
i�
ations in need ofinvestigation, espe
ially term rewriting properties.Referen
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