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20 IntrodutionAbstrat omputability theory is the theory of omputable funtions and relations overmany-sorted algebras. It is a generalisation of lassial reursion theory on the naturalnumbers, based on notions of �nite deterministi omputation on an arbitrary many-sorted algebra. An important feature of the theory is its analysis of omputations that areuniform over lasses of algebras, and a natural appliation of the theory is to analyse thesope and limits of models of omputation and spei�ation over abstrat data types andtheir implementations. Sine the 1960s, many abstrat models of omputation have beende�ned and lassi�ed, starting with the models of E. Engeler, Y. Moshovakis, H. Fried-man and J.C. Shepherdson, and generalised Churh-Turing Theses for omputation andspei�ation have been formulated and defended [TZ88, TZ92℄. Here we will use the modelof omputation �PR� (a generalised form of Kleene shemes), whih involves simultane-ous primitive reursion and least number searh over a many-sorted algebra augmentedby the booleans, natural numbers and �nite sequenes of every sort. In [TZ88℄ the model�PR� is shown to be equivalent to `while'-array programs over these algebras, the primarymathematial model of imperative programming.Working with �nite omputation on any algebra enables us to develop a number of spe-ial omputability theories for algebras, suh as rings and �elds of real numbers [Tu80,Eng93, BSS89, BCSS96, BCSS97℄ and topologial and metri algebras [TZ99℄. For a om-prehensive introdution to abstrat omputability, inluding a survey of its origins in the1950s and prinipal literature, see our survey [TZ00℄.In this paper we prove theorems that show that funtions that are abstratly omputableover many-sorted algebras, or have abstratly omputable approximations on topologialalgebras, an be spei�ed by purely algebrai methods, but that the onverse does not holdin the absene of ertain topologial onditions.Algebrai spei�ation methods haraterise funtions as the solutions of systems ofalgebrai formulae; normally, the solutions are unique. By algebrai formulae, we meanequations t(x) = t0(x)or onditional equationst1(x) = t01(x) ^ : : : ^ tk(x) = t0k(x) �! t(x) = t0(x); (�)or, more generally, onditional formulaeR1 ^ : : : ^Rk �! R (��)where the formulae Ri and R are generalisations of equations, making use of the distin-guished sorts nat of naturals and real of reals (as we will see below). To de�ne a uniquesolution for a system of equations, in logi one often thinks of de�nability up to isomor-phism, and in omputing one often thinks in terms of initial algebra semantis (or possibly�nal algebra semantis). However, notie that there are many more equational methods,e.g., for speifying onurrent proesses using metri spae methods to solve equations[dBR92, dBdV99℄, or for omputing solutions of di�erential or integral equations.ACM Transations on Computational Logi, Vol. TBD, No. TBD, TBD TBD.



3In omputation over a many-sorted algebra A we use the booleans, natural numbersand �nite sequenes over A. With regard to algebrai spei�ations over suh strutures,generalising onditional equations leads to the onept of onditional bounded universal(BU) equations, in whih the formulae Ri and R of (��) may have the formt1 = t2 or 8z < t [ t1 = t2 ℄where the variable z and term t are of sort nat.Conditional BU equations are new and provide us with more appropriate axiomatisa-tions for some properties using the natural number sort; we show they are equivalent withonditional equations. The main theorems are �rst proved for onditional BU equationsand the redution method applied to obtain onditional equational spei�ations.In the �rst part of the paper, we begin with the \simple" situation where there is asystem E of onditional equations over a signature �, and a �-algebra A suh that Ehas one and only one solution f on A. We all this method of haraterising funtionsonditional equation de�nability on A. We address the obvious general question:Does abstrat omputability imply onditional equation de�nability?The answer is yes, and we show that there exist universal spei�ations that speify allomputable funtions, as follows (Setion 5, Theorem 4).Theorem A (Algebra). Given a signature � and funtion type � over �, there exists a�nite set of onditional equations E(z) (with a distinguished natural number variable z)over a �nite expansion �0 of �, suh that for any abstrat program � over �, if A is any�-algebra and f a total funtion on A of type � omputed by �, then f is de�ned uniquelyon A by E(�k), where �k is a numeral instantiating z whih is e�etively alulable from�. The system E(z) is uniformly omputable from � and � .Applying our abstrat omputability theory to metri algebras, we an obtain an im-portant, stritly broader, lass of funtions: namely, those uniformly approximable by ab-stratly omputable funtions. In metri algebras, approximation is elegantly formulatedin terms of the distane funtion, whih uses the sort real. This gives rise to a broaderlass of onditional formulae than (�), alled onditional equations and inequalities, namelyformulae (��) in whih the formulae Ri and R may have the formt1 = t2 or t1 < t2where, in the ase of inequality (t1 < t2), t1 and t2 are of sort real.From Theorem A we then prove (Setion 6, Theorem 2):Theorem B (Metri algebra). Given a signature � and funtion type � over �, thereexists a �nite set of onditional equations and inequalities E(z) (with a distinguishednatural number variable z) over a �nite expansion �0 of �, suh that for any abstratprogram � over �, if A is any metri �-algebra and f a total funtion on A of type � ,approximable by � in the following sense: for all a 2 A and all nd(f(a); [[�℄℄(n; a)) < 2�n;ACM Transations on Computational Logi, Vol. TBD, No. TBD, TBD TBD.



4then f is de�ned uniquely on A by E(�k), where �k is a numeral instantiating z whih ise�etively alulable from �. The system E(z) is uniformly omputable from � and � .Thus, there is a bound B(�; �) on the number of onditional equations and inequalitiesneeded to de�ne all omputable or omputably approximable funtions, that depends onlyon the signature � and the funtion type � .Using Theorem B, we show that all the lassially omputable funtions of real analysisare unique solutions of �nite sets of onditional equations and inequalities. These lassiallyomputable funtions have several haraterisations, starting with those of Grzegorzyk[Grz55, Grz57℄ and Laombe [La55℄, and hene are often alled GL-omputable. The fa-miliar funtions of analysis, suh as sinx, ex, logx, et., are all GL-omputable. Now thereexists a ertain simple total metri algebra Id over the real unit interval I = [0; 1℄, suhthat the total funtions on I whih are uniformly approximable by abstratly omputablefuntions on Id are preisely the GL-omputable funtions on I [TZ99, TZ00℄. We provethe following (Setion 6, Theorem 3).Theorem C (Metri algebra over a real interval). For eah positive integer mthere is a signature ��m whih is an expansion of the signature of Id by �nitely manyfuntion symbols, and a �nite system of onditional equations and inequalities Em(z)(with a distinguished natural number variable z) over ��m, suh that any total funtionf : [0; 1℄m ! R that is GL-omputable, is the unique solution of E(�k) for some substitutionof a numeral �k for z. The spei�ation (��m; Em(z)) is uniformly omputable from m.Thus there is a bound B(m) on the number of onditional equations and inequalitiesneeded to de�ne all m-ary GL-omputable funtions on [0; 1℄.The signature ��m onsists of the sorts of booleans B and naturals N , with their standardoperations; the sort of reals R , with its ring operations, together with division of reals bynaturals; the sort of the unit interval I, with its embedding into R ; the sort of �nitearrays on R with their standard operations; the standard metris on all these sorts; a\universal funtion" whih approximably abstratly omputes all m-ary GL-omputabletotal funtions on I, together with the auxiliary funtions used in its omputation; thefuntion 2�n used for expressing approximations; and a funtion for omputing boundedquanti�ation over N .This theorem has some interesting onsequenes, one of whih we illustrate (Setion 6,Theorem 4):Corollary. For eah n > 0, there is a �nite universal algebrai spei�ation, onsistingof onditional equations and inequalities, for all omputable �nite dimensional dynamialsystems on the unit n-ube and over the unit time interval.Next we onsider the onverse problem:Problem. Find (reasonable) onditions under whih algebrai de�nability implies ab-strat omputability.From Theorem C it follows that the onverse to Theorem A is false, at least for spei�-ations onsisting of onditional equations and inequalities; for example, for the sine andACM Transations on Computational Logi, Vol. TBD, No. TBD, TBD TBD.



5osine funtions on the unit interval.It is an open problem whether the onverse of the approximation result (Theorems Band C) holds. It seems that some extra topologial ondition suh as ontinuity is requiredfor a onverse result. This suggests an interesting researh area; see the example anddisussion in Setion 6.3.In the seond part of the paper, we show how the onditional equational theories,and onditional BU equational theories, an be used with standard algebrai spei�ationmethods assoiated with proof systems, term rewriting and initial algebra semantis.Now, when using the booleans, natural numbers and �nite sequenes, the algebraispei�ations and their initial algebra semantis must de�ne the orresponding standardmodels of the booleans, natural numbers and �nite arrays. We develop extensions of theBirkho�-Mal'ev Completeness Theorems that underlie the algebrai spei�ation meth-ods, designed to ensure that these sorts have standard models. Then we prove (Setion 8,Theorems 4 and 5):Theorem D (Initial algebra). Given a signature � and funtion type � over �, thereexists a �nite set of onditional equations E(z) (with a distinguished natural numbervariable z) over a �nite expansion �0 of �, suh that for any abstrat program � over �, if� omputes a total funtion f on A of type � , and A has an initial algebra spei�ation bya set E of either onditional equations or onditional BU equations (with hidden sorts andfuntions), then (A; f) has an initial algebra spei�ation by a set E [E(�k), where E(z)onsists of onditional equations and �k is a numeral instantiating z whih is e�etivelyalulable from �. The system E(z) is uniformly omputable from � and � . Furthermore,if the spei�ation E of A has e axioms, then the spei�ation of (A; f) is �nite, with e+e0axioms, where e0 is a onstant omputed uniformly from � and � .This paper is part of our series on abstrat omputability theory on many-sorted algebrasand its appliations, starting in [TZ88℄ and most reently surveyed in [TZ00℄. Knowledgeof omputation and our studies of omputation versus spei�ations [TZ92, TZ91℄ andveri�ation [TZ93℄ will be helpful, but only our work on topologial data types [TZ99℄ isneessary.The subjet of this paper is also a generalisation of the theory of algebrai spei�a-tions for omputable, semiomputable and o-semiomputable algebras developed by oneof us (JVT) with J.A. Bergstra: see [BT80b, BT80a, BT82, BT83, BT87, BT95℄ and thesurveys [MG85, SHT95℄. However, at least initially, the generalised omputability raisesnew questions onerning topologial data types, uniformity and parameterisation, andstandard models. Knowledge of the theory for omputable algebras is not required for thispaper.In Setion 1 we de�ne how to augment strutures with the standard sorts of the booleansand naturals, and �nite sequenes or arrays over all sorts, together with the orrespondingoperations. For the rest of the paper we onsider, without loss of generality, only N-standard signatures and strutures with the booleans and naturals.In Setion 2 we introdue a number of proof systems, all based in the alulus of se-ACM Transations on Computational Logi, Vol. TBD, No. TBD, TBD TBD.



6quents over a many-sorted signature �. These are systems for (i) �rst order logi over �with equality, (ii) onditional equational logi, (iii) onditional bounded universal (BU)equational logi, and (iv) onditional standard universal (SU) equational logi. The sys-tems (ii) and (iii) are subsystems of the lassial prediate alulus (i), and are used inthe following setions, while (iv) is an in�nitary system introdued for interest.In Setion 3 we de�ne the basi tehnial notion of a theory uniquely speifying afuntion on an arbitrary algebra with hidden sorts and funtions. This leads to a simplenotion of spei�able parameterisation whih we illustrate by showing how a onditionalequational (or onditional BU equational) spei�ation of a standard struture A an beextended to a similar spei�ation of the array struture A�. We also show how to \redue"a onditional BU equational spei�ation over � to a onditional equational spei�ationover an expansion of �.In Setion 4 we reall the basi notions of omputability of funtions, inluding univer-sality of the �PR� funtions.In Setion 5 we prove Theorem A above, onerning the onditional equational de�n-ability of omputable funtions.In Setion 6 we prove Theorems B and C, onerning the de�nability, by onditionalequations and inequalities, of omputably approximable funtions on metri algebras.In Setion 7 we desribe the onstrution of initial standard models for onditional equa-tional and onditional BU equational theories, and work out the ompleteness theoremsfor the orresponding proof systems in Setion 2. The redution of a onditional BU equa-tional spei�ation over � to a onditional equational spei�ation over an expansion of� is proved for initial models.In Setion 8 we investigate the relationship between omputability and algebrai spei�a-bility of funtions on initial N-standard algebras, and prove Theorem D. Finally, in Setion9, we onsider the onverse problem of �nding suÆient onditions for algebrai spei�a-bility to imply omputability on lasses of standard strutures. Two equivalene theoremsare proved.We wish to thank an anonymous referee for some very helpful omments.1 Many-sorted signatures and algebrasIn this setion we briey review onepts de�ned and disussed in [TZ00, x1℄, where moredetailed information an be found. Bakground information on universal algebra an befound in [MT92, EM85, We92℄.1.1 Basi de�nitionsA signature � (for a many-sorted algebra) is a pair onsisting of (i) a �nite set Sort(�)of sorts, and (ii) a �nite set Fun (�) of (primitive) funtion symbols, eah symbol Fhaving a type s1 � � � � � sm ! s, where s1; : : : ; sm; s 2 Sort(�); in that ase we writeF : s1 � � � � � sm ! s, with dom(F ) =df s1 � � � � � sm. (The ase m = 0 orrespondsto onstant symbols.) ACM Transations on Computational Logi, Vol. TBD, No. TBD, TBD TBD.



7A �-produt type has the form u = s1 � � � � � sm (m � 0), where s1; : : : ; sm are�-sorts. We use the notation u; v; w; : : : for �-produt types.A �-algebra A has, for eah sort s of �, a non-empty arrier set As of sort s, and foreah �-funtion symbol F : u! s, a funtion FA : Au ! As (where, for the �-produttype u = s1 � � � � � sm, we write Au =df As1 � � � � � Asm).Given an algebra A, we sometimes write �(A) for its signature.The algebra A is total if FA is total for eah �-funtion symbol F . Without suh atotality assumption, A is alled partial.In this paper we deal with total algebras, exept in x8.4.We will also onsider lasses K of �-algebras. A �-adt (abstrat data type) is de�nedto be any suh lass, losed under �-isomorphism. In partiular, Alg (�) denotes the lassof all �-algebras.Examples. (a) The algebra of booleans has the arrier B = ftt; ffg of sort bool. It anbe displayed as follows:algebra Barriers Bfuntions tt; ff : ! B ;andB; orB : B 2 ! BnotB : B ! Bend with signature signature �(B)sorts boolfuntions true; false : ! bool;and; or : bool2 ! boolnot : bool! boolendFor notational simpliity, we will usually not distinguish between funtion names in thesignature (true, et.) and their intended interpretations (trueB = tt, et.)(b) The algebra N 0 of naturals has a arrier N of sort nat, together with the zero onstantand suessor funtion: algebra N 0arriers Nfuntions 0 : ! N ;S : N ! Nend() The ring R0 of reals has a arrier R of sort real:algebra R0arriers Rfuntions 0; 1 : ! R ;+;� : R2 ! R ;� : R ! RendWe make the following assumption about the signatures �.ACM Transations on Computational Logi, Vol. TBD, No. TBD, TBD TBD.



8Instantiation Assumption. For every sort s of �, there is a losed term of that sort,alled the default term Æs of that sort.This guarantees the presene of default values ÆsA in a �-algebra A at all sorts s, anddefault tuples ÆuA at all produt types u.1.2 Some de�nitionsDe�nition 1 (Subalgebra). Given �-algebras A and B, we say that B is a �-subalgebraof A (written B � A) i� (i) for all �-sorts s, Bs � As, and (ii) for every �-funtionsymbol F , FB = FA � B.De�nition 2 (Expansions and reduts). Let � and �0 be signatures with � � �0.(a) If A0 is a �0-algebra, then the �-redut of A0, A0 j�, is the algebra of signature �,onsisting of the arriers of A0 named by the sorts of � and equipped with the funtionsof A0 named by the funtion symbols of �.(b) If A is a �-algebra and A0 is a �0-algebra, then A0 is a �0-expansion of A i� A is the�-redut of A0.() If K 0 is a �0-adt, then K 0 j� is the lass of �-reduts of algebras in K 0 .1.3 Adding booleans: Standard signatures and algebrasReall the algebra B of booleans (Example (a) in x1.1).A signature � is alled standard if (i) �(B) � �; (ii) the �-funtion symbols inludea onditional ifs : bool� s2 ! sfor all sorts s of � other than bool; and (iii) the �-funtion symbols inlude an equalityoperation eqs : s2 ! boolfor all s 2 EqSort(�), where EqSort(�) � Sort(�) is the set of �-equality sorts.Given a standard signature �, a �-algebra A is standard if (i) it is an expansion of B;(ii) the onditionals have their standard interpretation in A, i.e., for b 2 B and x; y 2 As,ifs(b; x; y) = � x if b = tty if b = ff;and (iii) the equality operator eqs is interpreted as identity on eah �-equality sort s.Note that any many-sorted signature � an be standardised to a signature �B by ad-joining the sort bool together with the standard boolean operations; and, orrespondingly,any algebra A an be standardised to an algebra AB by adjoining the algebra B and theACM Transations on Computational Logi, Vol. TBD, No. TBD, TBD TBD.



9onditional ifs at all �-sorts s, and the equality operator eqs at the spei�ed equalitysorts: algebra ABimport A; Bifs : B � A2s ! As (s 2 Sort(�));eqs : A2s ! B (s 2 EqSort(�))endThus the standardisation of a �-algebra A depends on the spei�ation of EqSort(�).These will be the sorts for whih an equality test is onsidered to be \omputable" in somesense.Examples. (a) The simplest standard algebra is the algebra B of the booleans.(b) The standard algebra of naturals N is formed by standardising the algebra N 0 (Ex-ample (b) in x1.1) with nat as an equality sort, and, further, adjoining the order relationlessnat as a boolean-valued operation on N :algebra Nimport N 0; Bfuntions ifnat : B � N 2 ! N ;eqnat; lessnat : N 2 ! Bend() The standard algebra R of reals is formed similarly by standardising the ring R0(Example () in x1.1), with real not an equality sort. In fat, neither the equality northe order relation on R is inluded as an operation on real. (The signi�ane of this isdisussed later; f. Remark 3 in x5.3.)StdAlg (�) denotes the lass of all standard �-algebras.1.4 Adding ounters: N-standard signatures and algebrasA standard signature � is alled N-standard if it inludes (as well as bool) the numerialsort nat, and also funtion symbols for the standard operations of zero and suessor , aswell as the onditional and equality and order on the naturals:0 : ! natS : nat! natifnat : bool� nat! nateqnat : nat2 ! boollessnat : nat2 ! bool:The orresponding �-algebra A is N-standard if the arrier Anat is the set of naturalnumbers N= f0,1,2, : : : g, and the standard operations (listed above) have their standardinterpretations on N . ACM Transations on Computational Logi, Vol. TBD, No. TBD, TBD TBD.



10 Note that any standard signature � an be N-standardised to a signature �N by ad-joining the sort nat and the operations 0, S, eqnat, lessnat and ifnat. Correspondingly, anystandard �-algebra A an be N-standardised to an algebra AN by adjoining the arrier Ntogether with the orresponding standard funtions:algebra ANimport A; NendExamples. (a) The simplest N-standard algebra is N (Example (b) in x1.3).(b) The N-standard algebra RN of reals is formed by N-standardising the standard realalgebra R (Example () in x1.3).NStdAlg (�) denotes the lass of all N-standard �-algebras.N-standardness Assumption. We will assume throughout this paper that the signa-tures and algebras are N-standard, exept where stated otherwise.We also onsider a notion striter than N-standardness.1.5 Stritly N-standard signatures and algebrasAn N-standard signature � is stritly N-standard if the only operations of � with rangesort nat or bool are the standard numerial operations 0; S; ifnat eqnat; lessnat (x1.4) andthe boolean operations true; false; and; or; not (x1.1). An algebra is stritly N-standard ifits signature is.Remarks.(1) Any N-standardised signature and algebra are automatially stritly N-standard.(2) A stritly N-standard signature has no equality sorts other than nat.(3) Any subterm of a term of sort nat or bool of a stritly standard signature is itselfof sort nat or bool. (Proved by strutural indution on the term.)The notion of strit N-standardness will be used in Setion 9.1.6 Adding arrays: Algebras A� of signature ��The signi�ane of arrays for omputation is that they provide �nite but unbounded mem-ory.Given a standard signature �, and standard �-algebra A, we expand � and A in twostages:(1Æ) N-standardise these to form �N and AN , as in x1.3.(2Æ) De�ne, for eah sort s of �, the arrier A�s to be the set of �nite sequenes or arraysa� over As, of \starred sort" s�.ACM Transations on Computational Logi, Vol. TBD, No. TBD, TBD TBD.



11The reason for introduing starred sorts is the lak of e�etive oding of �nite sequeneswithin abstrat algebras in general. (Note that, for simpliity, our de�nition exludes astarred sort nat�, whih would be redundant.)The resulting algebras A� have signature ��, whih expands �N by inluding, for eahsort s of �, the new starred sort s�, and also the following new funtion symbols:(i) the operator Lgths : s� ! nat, where Lgth(a�) is the length of the array a�;(ii) the appliation operator Aps : s� � nat! s, whereApAs (a�; k) � a�[k℄ if k < Lgth(a�)Æs otherwisewhere Æs is the default value at sort s guaranteed by the Instantiation Assumption (x1.1)1;(iii) the null array Nulls : s� of zero length;(iv) the operator Updates : s� � nat � s ! s�, where UpdateAs (a�; n; x) is the arrayb� 2 A�s of length Lgth(b�) = Lgth(a�), suh that for all k < Lgth(a�)b�[k℄ = � a�[k℄ if k 6= nx if k = n(v) the operator Newlengths : s� � nat! s�, where NewlengthAs (a�;m) is the array b�of length m suh that for all k < m,b�[k℄ = � a�[k℄ if k < Lgth(a�)Æs if Lgth(a�) � k < m(vi) the onditional on A�s for eah sort s; and(vii) the equality operator on A�s for eah equality sort s.Note that A� is an N-standard ��-expansion of A.The justi�ation for (vii) is that if a sort s has \omputable" equality, then learly sohas the sort s�, sine it amounts to testing equality of �nitely many pairs of objets of sorts, up to a omputable length.2 Proof systems and theories for �-algebrasTo reason about omputations, we hoose a �rst-order language based on � as a spei�-ation language.Note, in this onnetion, that the operations in � are used for omputation. In par-tiular, boolean-valued operations are used for tests in omputations. By ontrast, forspei�ation and reasoning about these algebras, we may add prediates to the language,1We assume that a�[k℄ is unde�ned for k � Lgth(a�).ACM Transations on Computational Logi, Vol. TBD, No. TBD, TBD TBD.



12whih are not, in general, omputable or testable. For example, our spei�ation languagewill inlude the equality prediate at all sorts (as we will see), whereas only the equalitysorts s have the \omputable" equality operator eqs (x1.3). In writing spei�ations onthe reals we may also add the `<' prediate (again, not omputable, at least if de�ned to-tally), as we will do later (x5.3) for the spei�ation of approximable omputability. Notethat these prediates added to the language do not form part of the signature. Intuitively,think of the equality operation as a \omputable" boolean test, but the equality prediateas a \provable" assertion of equality between two terms.So let Lang(�) be the �rst order language over the signature �, with the equalityprediate at all sorts. The syntax of Lang(�) is generated as follows. For eah �-sort sthere are ountably many variables of sort s, denoted a; b; : : : ; x; y; : : : . Next, for eah�-sort s, there are terms of sort s, generated from variables and the funtion symbols of� aording to the standard typing rules. We write ts or t : s if t is a term of sort s,and, for a produt type u = s1 � � � � � sm, we write t : u if t is a u-tuple of terms, i.e., anm-tuple of terms of type s1 � � � � � sm.The atomi formulae of Lang(�), then, are equations (ts1 = ts2) between terms ofsort s, for all �-sorts s (whether equality sorts or not), and the propositional onstantstrue and false. Formulae of Lang(�) are built up from these by the logial onnetives^; _; !; :, and the quanti�ers 8s and 9s for all sorts s of �.We will onsider (in the following four subsetions) four formal systems in Lang(�),onveniently formulated as sequent aluli . The �rst is our basi system FOL(�), full �rstorder logi with equality over �. The next two are subsystems of this, whih will be usedin Setion 7. The �nal system is a subsystem of FOL(�), extended by an in�nitary proofrule.Bakground information on sequent alulus proof systems an be found in [Tak87℄.Note that we do not assume (N-)standardness of � in subsetions 2.1 and 2.2 (only)below.2.1 FOL(�): Full �rst order logi with equality over �This an be formulated in a system LKe(�), whih is an adaptation to the many-sortedsignature � of the systems LK and LKe of [Gen69, Tak87℄. The atomi formulae areequations at all �-sorts.A sequent of LKe(�) is a onstrut of the form � 7�! �, where � and � are eah �nitesequenes of formulae of Lang(�).Derivations (of sequents) are then onstruted from ertain spei�ed initial sequents(\axioms") by means of spei�ed inferene rules.The system LKe an be augmented in two ways:(a) Adding axioms of a theory, or rather all substitution instanes of these, as initialsequents;(b) Adding indution for a lass C of formulae (in ase � is N-standard), in the form ofACM Transations on Computational Logi, Vol. TBD, No. TBD, TBD TBD.



13the inferene rule C-Ind(�) : � 7�! �; F (0) F (a);� 7�! �; F (Sa)�;� 7�! �;�; F (t)where the indution variable a has sort nat, and the indution formula F (a) belongs tothe lass C. We write Ind(�) for full �-indution, i.e., where C is the set of all �rst-order�-formulae.We will also be interested in the \intuitionisti" version C-Indi of C-Ind, in whih thesequenes � and � above are empty.Analogous augmentations an be made for the other systems onsidered below.In the next three subsetions we will onsider three further systems, the �rst two of whihare subsystems of FOL(�) and the third of whih is a subsystem of FOL(�) augmentedby an in�nitary !-rule. These subsystems are, in fat, also subsystems of LJe(�), whihis an adaptation to � of the \intuitionisti" system LJe (lo. it.), in whih the sequentshave only one formula on the rhs. (When we are working with these subsystems, thesheme C-Ind will onsist of intuitionisti sequents, so that the sequenes � and � aboveare empty.)2.2 CondEq(�): onditional equational logi over �A onditional equation is a formula of the formP1 ^ : : : ^ Pn ! P (�)where n � 0 and Pi and P are equations. A onditional equational theory is a set of suhformulae (or their universal losures). An equational sequent is a sequent of the formP1; : : : ; Pn 7�! Pwhere n � 0 and Pi and P are equations. This sequent orresponds to the onditionalequation (�).The initial sequents are all substitution instanes of the �-equality axioms (expressingthat equality is a ongruene relation with respet to �), and the inferenes are struturalinferenes, atomi uts and substitution of terms for free variables in sequents.2.3 CondBUEq(�): Conditional BU equational logi over �A BU (bounded universal) quanti�er is a quanti�er of the form `8z < t', where z : nat andt : nat. (The most elegant approah is to think of this as a primitive onstrut, with itsown introdution rule: see below.) A (�-)BU equation is formed by pre�xing an equationby a string of 0 or more bounded universal quanti�ers. A onditional BU equation is aformula of the form Q1 ^ : : : ^Qn ! Q (��)ACM Transations on Computational Logi, Vol. TBD, No. TBD, TBD TBD.



14where n � 0 and Qi and Q are BU equations. A onditional BU equational theory is a setof suh formulae (or their universal losures). A BU equational sequent is a sequent of theform Q1; : : : ; Qn 7�! Qwhere n � 0 and Qi and Q are BU equations. This sequent orresponds to the onditionalBU equation (��).The system CondBUEq(�) onsists of BU equational sequents. The initial sequents arethe �-equality axioms, as before, plus the boundedness axiomsBddAx(�): P (0); : : : ; P (n� 1) 7�! 8z < �kP (z)for all �-equations P and all n 2 N , where �n is the numeral for n, i.e., the term S : : :S0(n times `S'). The only inferenes are strutural inferenes, ut , substitution, and the rulesfor the BU quanti�ers:8bL : � 7�! s < t Q(s);� 7�! Q8z < tQ(z);�;� 7�! Q 8bR : a < t;� 7�! Q(a)� 7�! 8z < tQ(z)where s and t are terms of sort nat, `s < t' stands for `lessnat(s; t) = true', and thevariable a : nat is the `eigenvariable' of the inferene 8bR, whih does not our in theonlusion of that inferene.Remark (Boundedness axioms). The boundedness axioms BddAx(�) hold (of ourse)in N-standard models. We remark here that they are derivable in FOL(�) from the N-standardness axioms NStdAx0(�) (a set of onditional equations de�ned in x7.2), plus thesingle formula z1 < Sz2 �! z1 < z2 _ z1 = z2whih is, however, not a onditional BU equation. This formula is derivable, in turn, inFOL(�) +QF-Ind(�) (indution for quanti�er-free formulae), from NStdAx0(�). It is notlear whether the boundedness axioms are derivable in onditional BU equational logialone from NStdAx0(�), whih is why we are adding them as axioms.2.4 CondSUEq!(�): Conditional SU equational logi over �The �nal two systems that interest us, in this and the next subsetion, are not subsystemsof LKe, but in�nitary systems. They will be used for another illustration of a Malev-typetheorem for N-standard algebras (see Setion 6, Theorem 4). However they will not be usedin the investigation of the relationship between omputability and algebrai spei�abilityin Setion 8.A (�-)SU (standard universal) equation is formed by pre�xing an equation by a stringof 0 or more universal quanti�ers of sort nat. A onditional SU equation is a formula ofthe form R1 ^ : : : ^Rn ! R (���)ACM Transations on Computational Logi, Vol. TBD, No. TBD, TBD TBD.



15where n � 0 and Ri and R are SU equations. A onditional SU equational theory is a setof suh formulae (or their universal losures). An SU equational sequent is a sequent ofthe form R1; : : : ; Rn 7�! Rwhere n � 0 and Ri and R are SU equations. This sequent orresponds to the onditionalSU equation (���).The system CondSUEq!(�) ontains SU equational sequents. It ontains the equalityaxioms and the following inferenes: the strutural inferenes, ut, and the following rulesfor the universal number quanti�er (where t : nat):8L : R(t);� 7�! R8zR(z);� 7�! R 8!R : : : : � 7�! R(�n) : : : (all n 2 N )� 7�! 8zR(z) (�)Note that the rule 8!R is atually an in�nitary !-rule.2.5 FOL!(�): full �rst-order logi with equality and an !-rule over �This modi�es the system FOL(�) (x2.1) by replaing the usual universal number quanti�errule 8R by the in�nitary rule 8!R (x2.4), with also the orresponding rule 9!L dually.We omit details, exept to point out that FOL+ Ind(�) an easily be interpreted in it.We write Eq(�), BUEq(�) and SUEq(�) for the lasses of equations, BU equationsand SU equations (respetively) over �.2.6 Conservativity lemmasOne reason for the importane of (�nite or in�nite) onditional equational logi lies inthe following lemmas. First we need a de�nition whih will be given again in ontext inSetion 7. Let F be a formal system (typially CondEq(�) or CondEq!(�)), and let Tbe a theory over � (typially a onditional equational or !-onditional equational theory).We say that T determines nat in F if every losed term of sort nat is, provably in F fromT , equal to a numeral.(1) (FOL over CondEq.) Let E be a �-onditional equational theory, and let � 7�! Pbe a �-equational sequent. Then � 7�! P is provable from E in FOL(�) if, and only if,it is provable from E in CondEq(�).(2) (FOL + Ind over CondEq.) Let E be a �-onditional equational theory whih de-termines nat in CondEq(�), and let � 7�! P be a losed �-equational sequent. Then� 7�! P is provable from E in FOL(�) + Ind(�) if, and only if, it is provable from E inCondEq(�).(3) (FOL+ Ind over CondBUEq.) Let F be a �-onditional BU equational theory whihdetermines nat in CondBUEq(�), and let � 7�! Q be a losed �-BU equational sequent.Then � 7�! Q is provable from F in FOL(�) + Ind(�) if, and only if, it is provable fromF in CondBUEq(�).(4) (FOL! over CondSUEq!.) Let G be a �-onditional SU equational theory over �whih determines nat in CondSUEq!(�), and let � 7�! R be a losed �-onditional SUACM Transations on Computational Logi, Vol. TBD, No. TBD, TBD TBD.



16equational sequent. Then � 7�! R is provable from G in FOL!(�) if, and only if, it isprovable from G in CondSUEq!(�).All four lemmas an be proved by ut elimination. We omit proofs, exept to note brieythat the two onditions, that E determines nat and that � 7�! P is losed, are used in(2) and (3) to eliminate indution inferenes, and in (4) to eliminate uts of formulaeuniversally or existentially quanti�ed over nat.Remarks. (1) These onservativity lemmas (at least for simple equations) also followfrom the Birkho�-Mal'ev-type ompleteness theorems 1{4 in Setion 7.(2) In�nitary systems ome into their own when reasoning about in�nite objets suh asin�nite streams of data. Some appliations in this diretion, using a related in�nitarysystem (CondEq!), are given in [TZ01b℄.3 Spei�ability of funtions by theories3.1 Spei�ability over algebras and over lasses of algebrasReall from Setion 2 that Lang(�) is the �rst order language over �, with equality asthe only prediate at all sorts.A �-theory is just a set T of formulae in Lang(�). The axioms of T are the formulae inT . We will be partiularly interested in theories T satisfying ertain syntati onditions;for example, T might be a set of onditional equations. This is onsidered more arefullyin Setion 7.We are also interested (when � is N-standard) in lasses K of the N-standard modelsof suh �-theories: K = NStdAlg(�; T ) � NStdAlg (�). In this ase we say also that(�; T ) is an (N-standard) spei�ation for the adt K .Assume, for the rest of this setion, that �, �0 and �00 are N-standard signatures with� � �0 � �00. Also, A is an N-standard �-algebra and A0 is an N-standard �0-algebra.Also, T is a �-theory, T 0 is a �0-theory and T 00 is a �00-theory.Note that any expansion of a standard algebra is also standard, and any expansion ofan N-standard algebra is also N-standard.De�nition 1. Let A01 and A02 be two �0-algebras with A01 j� = A02 j�. Then A01 and A02are �0/�-isomorphi, written A01 �=�0=� A02, if there is a �0-isomorphism from A01 to A02whose restrition to � is the identity on A01 j�.De�nition 2. Suppose A0 is a �0-expansion of A. We say that (�0; T 0) spei�es A0 overA i� A0 is the unique (up to �0/�-isomorphism) �0-expansion of A satisfying T 0; in otherwords:(i) A0 j= T 0; and(ii) for all �0-expansions B0 of A, if B0 j= T 0 then B0 �=�0=� A0.ACM Transations on Computational Logi, Vol. TBD, No. TBD, TBD TBD.



17We will oasionally write: \T 0 spei�es A0 over A" instead of \(�0; T 0) spei�es A0over A".An important speial ase of De�nition 2 is the following.De�nition 2f . Suppose �0 = � [ f f g. We say that (�0; T 0) spei�es f over A i�f is the unique (up to �0/�-isomorphism) funtion on A (of the type of f ) suh that(A; f) j= T 0.De�nition 3. Suppose A0 is a �0-expansion of A. We say that (�00; T 00) spei�es A0over A with hidden sorts and/or funtions i� A0 is the unique (up to �0/�-isomorphism)�0-expansion of A suh that some �00-expansion of A0 satis�es T 00; in other words:(i) A0 is a �0-redut of a �00-model of T 00; and(ii) for all �0-expansions B0 of A, if B0 is a �0-redut of a standard �00-model of T 00,then B0 �=�0=� A0.Again, an important speial ase:De�nition 3f . Suppose �0 = � [ f f g. We say that (�00; T 00) spei�es f over A withhidden sorts and/or funtions i� f is the unique funtion on A (of the type of f ) suh thatsome �00-expansion of (A; f) satis�es T 00.De�nition 4. An operator � : NStdAlg (�) ! NStdAlg(�0) is expanding (over �)i� for all N-standard �-algebras A, �(A) is a �0-expansion of A, i.e., �(A) j� = A.Example. The array onstrution A 7! A� is an expanding operator.Assume further, for the rest of this setion, that � : NStdAlg (�) ! NStdAlg(�0)is an expanding operator over �, and that K � NStdAlg (�).Notation. (1) We will write A� for �(A).(2) We write K� for (the losure w.r.t. �0-isomorphism of) the lass fA� j A 2 K g �NStdAlg(�0).De�nition 5.(a) (�0; T 0) spei�es � uniformly over K i� for all A 2 K , (�0; T 0) spei�es A� over A.(b) (�0; T 0) spei�es � uniformly over � i� (�0; T 0) spei�es � uniformly overNStdAlg (�).Proposition 1. Suppose (�0; T 0) spei�es � uniformly over K .(i) For A 2 K , A j= T () A� j= T + T 0.(ii) If K = NStdAlg(�; T ), then K � = NStdAlg(�0; T + T 0).ACM Transations on Computational Logi, Vol. TBD, No. TBD, TBD TBD.



18De�nition 6.(a) (�00; T 00) spei�es � uniformly over K with hidden sorts and/or funtions i� for allA 2 K , (�00; T 00) spei�es A� over A with hidden sorts and/or funtions.(b) (�00; T 00) spei�es � uniformly over � with hidden sorts and/or funtions i� (�00; T 00)spei�es � uniformly over NStdAlg (�) with hidden sorts and/or funtions.Proposition 2. Suppose (�00; T 00) spei�es � uniformly over � with hidden sorts and/orfuntions.(i) A j= T () A� is a �0-retrat of a �00-model of T + T 00.(ii) If K = NStdAlg(�; T ), then K � = �NStdAlg(�00; T + T 00)� j�0 .Interesting speial ases of the above notions, in whih the theories T , T 0 and T 00 aresubjet to ertain syntati onditions, are onsidered below (x3.3) and in Setion 7. Firstwe give an important example of a spei�ation of an expanding operator.We write onditional equational spei�ation and onditional BU equational spei�ationfor spei�ations in whih the formulae are all onditional equations and onditional BUequations, respetively.3.2 Conditional BU equational spei�ation of the array onstrutionLet ArrAx(�) be the following set of axioms in A (dropping sort subsripts):Lgth(Null) = 0;lessnat(z; Lgth(a)) = false ! Ap(a; z) = Æ;Lgth(Update(a; z; x)) = Lgth(a);eqnat(z; z0) = false ! Ap(Update(a; z0; x); z) = Ap(a; z);lessnat(z; Lgth(a)) = true ! Ap(Update(a; z; x); z) = x;Lgth(Newlength(a; z)) = z;lessnat(z; z1) = true ! Ap(Newlength(a; z1); z) = Ap(a; z);Lgth(a1) = Lgth(a2) ^ 8z < Lgth(a1)�Ap(a1; z) = Ap(a2; z)� ! a1 = a2:The last axiom relates equality on s� to equality on s, for all equality sorts s exept nat(sine there is no starred sort nat�, as explained in x1.6).Note that all the axioms of ArrAx(�) are onditional equations, exept for the last one,whih is a onditional BU equation!Theorem 1. The spei�ation (��; ArrAx(�)) spei�es the array onstrution A 7! A�uniformly over �.Proof (outline): Given an N-standard �-algebra A, and a �-sort s, the axioms for`Null', `Newlength' and `Update' guarantee that at least all the \standard" arrays over Asare present (or an be \onstruted"). On the other hand, the axiom for array equalityACM Transations on Computational Logi, Vol. TBD, No. TBD, TBD TBD.



19guarantees that there are no \non-standard" arrays, i.e., no elements of A�s other thanthese. �This array spei�ation will be onsidered again, from the viewpoints of spei�ation of�PR� omputations (x5.2), and initial algebra spei�ations (x8.2).3.3 Reduing onditional BU to onditional equational spei�ationsTheorem 2 (BU elimination). Let � � �0, let A0 be a �0-expansion of A, and letF be a onditional BU equational �0-theory whih spei�es A0 over A. Then there is anexpansion �00 of �0 by funtion symbols, and a onditional equational �00-theory E whihspei�es A0 over A, with hidden funtions. If F ontains q ourrenes of BU quanti�ers,then �00 expands �0 by q new funtion symbols. Moreover, if F is �nite, with e axioms(say), then so is E, with e+ 4q axioms.Proof: The idea is to inorporate in the signature, for eah BU quanti�er ourring inF , a harateristi funtion for that quanti�er, or (expressed di�erently) a funtion whihomputes that quanti�er. Consider (for notational simpliity) the ase of an equation witha single BU quanti�er 8z < s(x) �t1(z; x) = t2(z; x)�: (�)with x : u. (In the general ase, we \eliminate" the quanti�ers suessively, from the insideout.) We adjoin, for eah suh BU quanti�er (�) ourring in F , a boolean-valued funtionsymbol f : nat� u ! boolintended to satisfy in Af(n; x) = true () 8z < n�t1(z; x) = t2(z; x)�:for all n 2 N , x 2 Au. This interpretation is imposed on f by adjoining to F the followingaxioms giving the indutive de�nition for f:f(0; x) = truef(z; x) = true ^ t1(z; x) = t2(z; x) ! f(Sz; x) = truef(Sz; x) = true ! f(z; x) = truef(Sz; x) = true ! t1(z; x) = t2(z; x) (���)and replaing (�) in F by f(s(x); x) = true: (����)In this way we replae F by a onditional equational �00-theory E, with the stated prop-erties. �Note that if F ontains in�nitely many ourenes of BU quanti�ers, then �00 ontains,orrespondingly, in�nitely many new funtion symbols, whih is (stritly speaking) notallowed by our de�nition of signature, although it is harmless enough here.ACM Transations on Computational Logi, Vol. TBD, No. TBD, TBD TBD.



20 We will return to this topi in the ontext of initial algebra spei�ations in x7.7.4 Computable funtionsIn this setion we onsider various notions of omputability over abstrat algebras. (Anequivalent approah, using an imperative model of programming featuring the `while' on-strut, was developed in [TZ88, TZ00℄ where the equivalene of these two approahes areexplained.) In x4.1 two omputability lasses are introdued. In x4.2 two more lasses areformed by adjoining the � operator to these.4.1 PR(�) and PR�(�) omputable funtionsGiven an N-standard signature �, we de�ne PR shemes over � whih generalise theshemes for primitive reursive funtions over N in [Kle52℄. They de�ne (total) funtions feither outright (as in the base ases (i)|(ii) below) or from other funtions (g; : : : ; h; : : : )(as in the indutive ases (iii)|(v)) as follows:(a) Basi shemes: Initial funtions(i) Primitive �-funtions: f(x) = F (x)f(x) = of type u! s, for all the primitive funtion symbols F : u! s and onstant symbols of �, where x : u.(ii) Projetion: f(x) = xiof type u! si, where x = (x1; : : : ; xm) is of type u = s1 � � � � � sm.(b) Indutive shemes:(iii) Composition: f(x) = h(g1(x); : : : ; gm(x))of type u! s, where gi : u! si (i = 1; : : : ;m) and h : s1 � � � � � sm ! s.(iv) De�nition by ases: f(b; x; y) = � x if b = tty if b = ffof type bool� s2 ! s.(v) Simultaneous primitive reursion on N : This de�nes, on eah A 2 NStdAlg (�), for�xed m > 0 (the degree of simultaneity), n � 0 (the number of parameters), andprodut types u and v = s1 � � � � � sm, an m-tuple of funtions f = (f1; : : : ; fm)with fi : nat� u! si, suh that for all x 2 Au and i = 1; : : : ;m,fi(0; x) = gi(x)fi(z + 1; x) = hi(z; x; f1(z; x); : : : ; fm(z; x))ACM Transations on Computational Logi, Vol. TBD, No. TBD, TBD TBD.



21where gi : u! si and hi : nat� u� v ! s1 (i = 1; : : : ;m).Note that the last sheme uses the N-standardness of the algebras, i.e. the arrier N .For details of the syntax and semantis of PR shemes, see [TZ88, x4.1.5℄, from whihit an be seen that a sheme for a funtion ontains (hereditarily) the shemes for all theauxiliary funtions used to de�ne it.In the ontext of algebrai spei�ation theory, it often turns out to be more onvenientto work with PR derivations instead of PR shemes. A PR derivation is, roughly, a \linearversion" of a PR sheme, in whih all the auxiliary funtions are displayed in a list. Morepreisely:De�nition (PR derivation). A PR(�) derivation � is a list of pairs� = ((f0; �0); (f1; �1); : : : (fn; �n)) (�)of funtions (atually funtion symbols) fi and PR shemes �i (i = 1; : : : ; n) where foreah i, either fi is an initial funtion, or fi is de�ned by �i from funtions fj , for ertainj < i. The derivation � is said to be a PR derivation of fn, with auxiliary funtionsf0; : : : ; fn�1. The type of � is the type of fn.Notation. A PR(�)u!s sheme (or derivation) is a PR(�) sheme (or derivation) oftype u! s.Remarks. (1) The formalism of PR(�) derivations is equivalent to that of PR(�)shemes: from a PR sheme we an derive an equivalent PR derivation by \linearising"the subshemes, and onversely, given the derivation (�), the sheme �n is equivalent toit. Below, we will usually work with derivations.(2) A PR(�)u!s derivation � : u! s de�nes, or rather omputes, a funtion fA� : Au !As, or, more generally, a family of funtions f fA� j A 2 NStdAlg (�) g uniformly overNStdAlg (�).(3) We assume a standard G�odel numbering of PR(�) derivations, writing p�q for theG�odel number of derivation �.It turns out that a broader lass of funtions provides a better generalisation of thenotion of primitive reursiveness, namely PR� omputability. A funtion on A is PR�(�)omputable if it is de�ned by a PR derivation over ��, interpreted on A� (i.e., usingstarred sorts for the auxiliary funtions used in its de�nition).4.2 �PR(�) and �PR�(�) omputable funtionsThe �PR shemes over � are formed by adding to the PR shemes of x4.1 the indutivesheme:(vi) Least number or � operator: f(x) ' �z[g(x; z) = tt℄ACM Transations on Computational Logi, Vol. TBD, No. TBD, TBD TBD.



22 of type u ! nat, where g : u � nat ! bool is �PR. Here f(x) # z if, and only if,g(x; y) # ff for eah y < z and g(x; z) # tt.Note that this sheme also uses the N-standardness of the algebra. Also, �PR omputablefuntions are, in general, partial. We use the notation f(x) # y to mean that f(x) isde�ned and equal to y. The notation `'' means that the two sides are either both de�nedand equal, or both unde�ned. The shemes for omposition and simultaneous primitivereursion are orrespondingly re-interpreted to allow for partial funtions.These shemes generalise the shemes given in [Kle52℄ for partial reursive funtionsover N .As before, we an de�ne the onepts of �PR(�) derivations and �PR(�) omputability .Again, a broader lass turns out to be more useful, namely �PR� omputability. Thisis just PR� omputability with �.Notation. PR(A) is the lass of funtions PR omputable on A, and PR(A)u!s is thesublass of PR(A) of funtions of type u! s. Similarly for PR�(A), �PR(A), et.There are many other models of omputability, due to Moshovakis, Friedman, Shep-herdson and others, whih turn out to be equivalent to �PR� omputability: see [TZ00, x7℄.All these equivalenes have led to the postulation of a generalised Churh-Turing Thesisfor deterministi omputation of funtions, whih an be roughly formulated as follows:Computability of funtions on many-sorted algebras by deterministi algorithmsan be formalised by �PR� omputability.4.3 Equivalent imperative programming models of omputationIn [TZ00℄ we investigate omputation on many-sorted �-algebras, using imperative pro-gramming models: While(�), based on the `while' loop onstrut over �, For(�),based similarly on the ` for' loop, and While�(�) and For�(�), whih use arrays, i.e.,auxiliary variables of starred sort over �.Writing While(A) for the lass of funtions While-omputable on A, et., we anlist the equivalenes between the \shemati" and \imperative" omputational models asfollows.Theorem.(i) PR(A) = For(A)(ii) PR�(A) = For�(A)(iii) �PR(A) = While(A)(iv) �PR�(A) = While�(A),in all ases, uniformly for A 2 NStdAlg (�).These results are all stated in [TZ00℄, and an be proved by the methods of [TZ88℄.ACM Transations on Computational Logi, Vol. TBD, No. TBD, TBD TBD.



234.4 Universal Funtion Theorem for �PR�The following is a uniform version of a theorem proved in [TZ00, x4.9℄ (using the equivalentformalism of While� programs):Theorem. For any�-funtion type u! s, there is a �PR�(�) derivation � : nat� u! swhih is universal for �PR�(�) derivations of type u! s.In other words, we an enumerate all the �PR� derivations of type u! s:�0; �1; �2; : : :so that, putting 'Ai =df fA�i : Au ! Asand UnivAu!s = fA� : N �Au ! Aswe have UnivAu!s(i; a) = 'Ai (a)for all A 2 NStdAlg (�) and i = 0; 1; 2; : : : .Remarks (Canonial forms of �PR� derivations). (1) From the onstrutionof the universal �PR�(�)u!s derivation � [TZ00, x4℄, it an be seen that � uses the�-operator exatly one.(2) For any �PR�(�)u!s derivation �, the universal derivation � : nat� u! s providesan equivalent anonial or normal form derivation �̂, suh that fÂ� = fA� for all N-standard�-algebras A. This anonial derivation is formed in a simple way from �, essentially bysubstituting the G�odel number p�q of � for the distinguished nat variable of �, so thatfor all N-standard A, fÂ� = 'Ap�q = fA� :This is, in fat, a generalisation to NStdAlg (�) of Kleene's Normal Form Theorem for(essentially) �PR(N ) [Kle52℄.(3) From the onstrutions in (1) and (2) it follows that �̂ also uses the �-operator exatlyone, and in suh a way that for any N-standard A,fÂ� is total if, and only if, this appliation of the �-operator is total on A.5 Algebrai spei�ations for omputable funtionsWe will onsider funtions f omputable on a �-algebra, by PR and �PR� derivations,and show that they are algebraially spei�able by onditional equational, and onditionalBU equational, theories.We will also onsider, in the ontext of metri algebras (i.e., algebras with metrissuh that the funtions in the signature are ontinuous) a broader lass of funtions thanACM Transations on Computational Logi, Vol. TBD, No. TBD, TBD TBD.



24�PR� omputable, namely those funtions uniformly approximable by �PR� omputablefuntions, and show that suh funtions are spei�able by onditional equations and in-equalities, whih are onditional formulae built up from inequalities (t1 < t2) on the realsas well as equations (t1 = t2) between terms of the same sort.5.1 Algebrai spei�ations for PR omputable funtionsLet � be an N-standard signature. For eah PR(�) derivation �, there is a �nite setE� of \speifying equations" for the funtion f , as well as the auxiliary funtions g =(g1; : : : ; gk�), de�ned by �.The set E� onsists of equations in an expanded signature �� = � [ fg�; f�g, whereg� � g�;1; : : : ; g�;k� . It is de�ned by ourse of values indution on the length of thederivation �, with ases (i)|(v) (x4.1) aording to the last sheme in �. In fat, E� isformed by adjoining, in eah ase, speifying equation(s) like those shown for that asein x4.1. These are simple (i.e., not onditional) equations; for example, in the ase (iv)de�nition by ases, there are two equations:f(true; x; y) = xf(false; x; y) = yand in the ase (v) simultaneous primitive reursion, there are 2m equations (where m isthe degree of simultaneity):fi(0; x) = gi(x)fi(z+ 1; x) = hi(z; x; f1(z; x); : : : ; fm(z; x))for i = 1; : : : ;m.Thus we have an e�etive map � 7! (��; E�) from PR(�) derivations to (simple)equational spei�ations.Now for eah PR derivation � and N-standard �-algebra A, let fA� be the funtion onA omputed by �, and let gA� be the orresponding auxiliary funtions on A. Considerthe operators A 7�! (A; fA� ) (�)and A 7�! (A; gA� ; fA� ): (��)Reall the de�nition of uniform spei�ation of an operator over a lass of �-algebras(x3.1, De�nitons 5 and 6).Theorem 1 (Equational spei�ation of PR funtions). For eah PR(�) derivation�, the equational spei�ation (��; E�) spei�es the operator (��) uniformly over A 2NStdAlg (�). Hene it spei�es the operator (�) uniformly over all N-standard �-algebrasA, with hidden funtions.Proof: By ourse of values indution on the length of �. �ACM Transations on Computational Logi, Vol. TBD, No. TBD, TBD TBD.



25In other words, the equations E� speify not only fA� , but also the auxiliary funtionsgA� , uniformly over all N-standard �-algebras A.Similarly with PR� omputability: for a PR�(�) derivation �, let E� be the set ofspeifying equations for the funtion f� and the auxiliary funtions g� de�ned by �, inthe signature ��� = �� [ fg�; f�g.Corollary. For eah PR�(�) derivation �, the equational spei�ation (���; E�) spei�esthe operator (�) uniformly over �, with hidden sorts and funtions.5.2 Algebrai spei�ations for �PR� omputable funtionsWe now onsider �PR�(�) derivations �. For eah suh derivation there is again a �niteset F� of \speifying equations" for the funtion f de�ned by � and its auxiliary funtionsg. This set is onstruted like E� (x5.1), by strutural indution on �. Now, however, F�onsists of onditional BU equations in a signature ��� = �� [ fg�; f�g, beause of thenew ase, i.e., sheme (vi) for the �-operator (x4.2), whih results in the addition to F� ofthe onditional BU equation(F�) 8z < y (g0(x; z) = false) ^ (g0(x; y) = true) �! f(x) = y:Again we have an e�etive map � 7! (���; F�) from �PR�(�) derivations to ondi-tional BU equational spei�ations.Now there are ompliations in the theory, sine �PR� omputable funtions are, ingeneral, partial. We intend to study spei�ation theory for partial algebras systematiallyin a future paper. Here we limit ourselves to the ase where the �PR� omputable funtionis, in fat, total.As before, for a �PR� derivation � and an N-standard �-algebra A, let fA� be thefuntion on A de�ned by �, and let gA� be orresponding auxiliary funtions on A�. Afurther problem is that, even if fA� is total, the funtions gA� might not be. We will nowshow that we an, without loss of generality, restrit attention to the ase that the gA�are also total. We aomplish this by the use of the uniform derivations provided by theUniversal Funtion Theorem for �PR� (x4.4), as we now explain.De�nition. A �PR� derivation � is total on A i� the auxiliary funtions gA� , as well asfA� , are all total on A�.Totality Lemma. Given any �PR�(�) derivation � : u! s, we an e�etively �nd a�PR�(�) derivation �̂ : u! s suh that for any N-standard �-algebra A,(i) fÂ� = fA� ;(ii) if fA� is total, then �̂ is total on A.Proof: This follows from the Universal Funtion Theorem and the three remarks followingit (x4.4). � ACM Transations on Computational Logi, Vol. TBD, No. TBD, TBD TBD.



26 Now onsider the operators (�) (x5.1 above) andA 7�! (A�; gÂ� ; fÂ� ) (���)where �̂ is onstruted from � as in the totality lemma. Let ��� = ��[f g�̂; f�̂ g. Reall thede�nition of the array spei�ation ArrAx(�) in x3.2, and the de�nition of the onditionalBU spei�ation F�̂ of fÂ� (= fA� ).Theorem 2 (Conditional BU equational spei�ation of �PR� funtions).For eah �PR�(�) derivation �, letF �� =df ArrAx(�) + F�̂where �̂ is onstruted from � as in the totality lemma. Then the onditional BU equationalspei�ation (���; F ��) spei�es the operator (���) in the following sense: for any A onwhih fA� is total, (A�; gÂ� ; fÂ� ) j= F ��:Hene (���; F ��) spei�es the operator (�) uniformly over all N-standard �-algebras A onwhih fA� is total, with hidden sorts and funtions.Proof: As with Theorem 1, by ourse of values indution on the length of �. �Note that the spei�ation given in Theorem 2 is uniform over all N-standard �-algebrasA on whih � is total. In fat, there is a stronger form of uniformity for �PR� omputabil-ity, following from the Universal Funtion Theorem for �PR�. (Atually, this is alreadyimpliit in the onstrution of the derivation �̂ in the totality lemma, whih is really anormal form lemma for �PR� derivations.)Theorem 3 (Universal onditional BU equational spei�ation). For eah �-funtion type u! s we an e�etively �nd a signature ��u;s whih expands �� by fun-tion symbols, and a �nite onditional BU equational spei�ation (��u;s; FUu;s(z)) whihis universal for spei�ations of total �PR�(�)-omputable funtions of that type, inthe following sense: it ontains a distinguished number variable z suh that for eah�PR�(�) derivation � : u! s, and eah N-standard �-algebra A, if fA� is total on A,then (��u;s; FUu;s(�k)), where k = p�q, spei�es fA� on A, with hidden sorts and funtions.(Here FUu;s(�k) is the result of substituting the numeral �k for z in FUu;s(z).)Next, by the BU Redution Theorem (Theorem 2 in Setion 3), we derive as a orollaryto Theorem 3:Theorem 4 (Universal onditional equational spei�ation). For eah �-funtiontype u! s we an e�etively �nd a signature ��0u;s whih expands ��u;s (of Theo-rem 3) by funtion symbols, and a �nite onditional spei�ation (��0u;s; EUu;s(z)) whihis universal for spei�ations of total �PR�(�)-omputable funtions of that type, inthe following sense: it ontains a distinguished number variable z suh that for eahACM Transations on Computational Logi, Vol. TBD, No. TBD, TBD TBD.



27�PR�(�) derivation � : u! s, and eah N-standard �-algebra A, if fA� is total on A,then (��0u;s; EUu;s(�k)), where k = p�q, spei�es fA� on A, with hidden sorts and funtions.From the above uniformity theorems it follows trivially that for a given �-funtion typeu! s there is a uniform bound to the lengths of onditional BU ��-spei�ations, oronditional equational ��-spei�ations respetively, for total �PR�-omputable funtionson N-standard �-algebras.6 Algebrai spei�ations for omputably approximable funtionsWe have shown that omputability =) algebrai spei�abilitywhere (for example) if \omputability" means �PR� (or, equivalently, While�) ompu-tability, then \algebrai spei�ability" means spei�ability by onditional BU equations.It is natural to ask in what sense a onverse holds. We will see (below) that a full onverseto the above annot be expeted, sine algebrai spei�ability is more powerful, in somesense, than �PR�-omputability. (In Setion 7 we will investigate partial onverses.) Weshow here in fat that, on metri algebras,omputable approximability =) algebrai spei�ability.\Computable approximability", to be de�ned shortly, is a strong extension of the notionof omputability; while \algebrai spei�ability" will be (re-)de�ned so as to permit theorder relation (as well as equality) between pairs of terms of sort real.6.1 Metri algebrasWe refer to [TZ99℄ and [TZ00, x6℄ for de�nitions of (total) metri algebra and relatedonepts. We review some de�nitions and results from these referenes. (Note that inthese referenes the subjet is disussed in the broader ontext of partial algebras.)A metri �-algebra (A; d), based on a �-algebra A, is an algebra of the formalgebra (A; d)import Aarriers Rfuntions ds : A2s ! R (s 2 Sort(�))endwhere d is a family hds j s 2 Sort(�)i of metris ds on the arriers As, where (in the asethat A is standard or N-standard) dbool and dnat are the disrete metris on B and Nrespetively, and suh that the primitive funtions on A are all ontinuous under thesemetris.We will often write `d' for the metri ds, and `A' for the metri algebra (A; d).ACM Transations on Computational Logi, Vol. TBD, No. TBD, TBD TBD.



28Examples. (a) The metri algebra Rd on the reals (\d" for \distane") is de�ned byalgebra Rdimport RNfuntions divnat : R � N ! R ;dreal : R2 ! R ;dnat : N 2 ! R ;dbool : B 2 ! Rendwhere RN is the N-standard algebra of reals (x1.4, Example (b)), divnat is division of realsby naturals (where division by zero is de�ned as zero), the metri on R is the standardone, and the metris on N and B are disrete.Note that Rd does not ontain the (total) boolean-valued funtions eqreal or lessreal,sine they are not ontinuous with respet to this metri.(b) The interval metri algebra Id: Here the unit interval I = [0; 1℄ is inluded as aseparate arrier of sort `intvl', again with the usual metri. This is useful for studying realontinuous funtions with ompat domain. (We ould also hoose I = [�1; 1℄, et.) Thealgebra Id is de�ned by algebra Idimport Rdarriers Ifuntions �I : I ! R ;dintvl : I2 ! Rendwhere �I is the embedding of I into R . Beause of the importane of the metri algebra Idas in our omputation theory, let us review its onstrution. It ontains R with its standardring operations, N and B with their standard operations, funtions for de�nition by aseson R , N and B , division of reals by naturals, the unit line interval I and its embedding inR , and the standard metris on all four arriers.6.2 De�nitions and theoremsNow let A be an N-standard metri �-algebra with metri d.De�nition 1 (�PR� omputably approximable funtions). A total funtion f :Au ! As on A is �PR� omputably approximable, uniformly on A, if there is a total�PR� omputable funtion G : N �Au ! Asand a total omputable funtion g : N ! N on A suh that, putting Gn =df G(n; � ), thesequene Gn approximates f uniformly on Au with modulus of approximation g, i.e., forall n, k and all x 2 Au, k � g(n) =) d(Gk(x); f(x)) < 2�n:ACM Transations on Computational Logi, Vol. TBD, No. TBD, TBD TBD.



29De�nition 2 (Fast �PR� omputably approximable funtions). A total funtionf : Au ! As on A is fast �PR� omputably approximable, uniformly on A, if there is a total�PR� omputable funtion G : N �Au ! As on A suh that, putting Gn =df G(n; � ),the sequene Gn approximates f uniformly fast on Au, i.e., for all n and all x 2 Au,d(Gn(x); f(x)) < 2�n: (�)Remark 1. It is easy to see that De�nitions 1 and 2 are equivalent; for given a (om-putable) approximating sequene Gn with modulus of approximation g, we an e�etivelyreplae it by the fast (omputable) approximating sequene G0n =df Gn Æg. We will there-fore usually taitly assume w.l.o.g. that our approximating sequenes are fast, and workwith the (simpler) De�nition 2.De�nition 3 (Fast �PR� approximating derivations). Let A be a metri �-algebra.A derivation  : nat� u! s is an approximating derivation for a total funtion f : Au !As if (i) the funtion G : N � Au ! As omputed by  on A is total on A; and (ii) Gand f satisfy (�) above.Note that at most one funtion is �PR� approximable by a given derivation on anymetri algebra.De�nition 4 (Conditional equation or inequality).(a) A onditional equation or inequality is de�ned like a onditional equation, exept thatthe atomi statements may be either equations (t1 = t2) between terms of the same sort,or order (t1 < t2) between terms of sort real.(b) A onditional BU equation or inequality is de�ned like a onditional equation, ex-ept that the atomi statements may be either equations (t1 = t2) or BU equations(8z < t [ t1 = t2 ℄) between terms of the same sort, or inequalities (t1 < t2) betweenterms of sort real.Remark 2. Here we are treating the order relation on the reals as a new atomi prediateof Lang(��) (like equality), not as a boolean-valued operationlessreal : real2 ! bool:This prediate (unlike suh an operation) does not form part of the signature �. (See theanalogous Remark onerning equality at the beginning of Setion 2.)Note also that (�) is a onditional inequality (atually a simple inequality, without ananteedent).Notation. We write �PR�-Approx(A) for the lass of �PR� omputably approximablefuntions on A, and �PR�-Approx(A)u!s for those of type u! s.In preparation for the next theorem, we note that a \Universal Funtion Theorem"holds for �PR�-Approx(A), in the following sense. For any �-funtion type u! s, letHu;s =df UnivAnat�u!s : N � N � Au ! AsACM Transations on Computational Logi, Vol. TBD, No. TBD, TBD TBD.



30be the universal funtion for �PR�(A)nat�u!s given by the Universal Funtion Theorem(x4.4). Then for eah f 2 �PR�-Approx(A)u!s, there is a number k suh that (writingHu;sk;n = Hu;s(k; n; � )) the sequene of funtions Hu;sk;0 ; Hu;sk;1 ; Hu;sk;2 ; : : : uniformly approxi-mates f . The number k an be hosen as the G�odel number of an approximating derivationfor f , i.e., a derivation  : nat� u! s of the funtion Hu;s(k; � ). Combining this withTheorem 3 of Setion 5, we obtain:Theorem 1 (Universal onditional BU spei�ation of �PR� approximablefuntions). For eah �-funtion type u! s we an e�etively �nd a signature ��u;swhih expands �� by funtion symbols, and a �nite onditional BU spei�ation (��u;s;FVu;s(z)) onsisting of onditional BU equations and inequalities, whih is universal forspei�ations of �PR�(�)-omputably approximable funtions of that type, in the fol-lowing sense: it ontains a distinguished number variable z suh that for eah �PR�(�)derivation  : nat� u! s and eah metri �-algebra A and total funtion f : Au ! As,if  is an approximating derivation for f on A, then (��u;s; FVu;s(�k)), where k = pq,spei�es f on A, with hidden sorts and funtions.Proof: De�ne FVu;s(z) =df FUu;s(z) +Einvexp + E�(z)where FUu;s(z) is the onditional BU equational spei�ation onstruted as in Theo-rem 3 in Setion 5 for the universal funtion H for �PR� omputable funtions of typenat � u ! s, Einvexp is the set of speifying equations for the omputable real-valuedfuntion invexp(n) = 2�n, i.e., its reursive de�nition:invexp(0) = 1; invexp(Sn) = divnat(invexp(n); 2);and E�(z) is the inequality (�) above | or rather, its formal versiond(H(z; n; x); f(x)) < invexp(n): (��)(Note that every �PR� funtion G : N�Au ! As is obtainable fromH by substituting theG�odel number of its derivation for the �rst argument z of H.) Let ��u;s be the signatureformed by expanding �� by symbols for H and invexp, as well as the auxiliary funtionsused in their omputations. Then for any �PR� derivation  : nat� u! s, metri �-algebra A and funtion f : N � Au ! As, if  is an approximating derivation for f then(��u;s; FVu;s(�k)) (where k = pq) is a onditional BU spei�ation of f on A, with hiddensorts and funtions, onsisting of onditional BU equations and inequalities �Now, by adapting the BU Redution Theorem (x3.3) to spei�ations with inequalities,we derive as a orollary to Theorem 1:
ACM Transations on Computational Logi, Vol. TBD, No. TBD, TBD TBD.



31Theorem 2 (Universal onditional spei�ation of �PR� approximable fun-tions). For eah �-funtion type u! s we an e�etively �nd a signature ��0u;s whihexpands ��u;s (of Theorem 1) by funtion symbols, and a �nite onditional spei�ation(��0u;s; EVu;s(z)), onsisting of onditional equations and inequalities, whih is universalfor spei�ations of approximably �PR�(�)-omputable funtions of that type, in the fol-lowing sense: it ontains a distinguished number variable z suh that for eah �PR�(�)derivation  : nat� u! s and eah metri �-algebra A and total funtion f : Au ! As,if  is an approximating derivation for f on A, then (��0u;s; EVu;s(�k)), where k = pq,spei�es f on A, with hidden sorts and funtions.Remark 3 (Replaing the order prediate by a boolean-valued operation). Theorder relation in the above spei�ation is used in one plae only: in the (onditional)relation (�) (or (��)). In fat (Remark 2 above notwithstanding) (�) ould be interpretedas a onditional equation (so that f is onditionally equationally de�nable with hiddensorts and funtions) by interpreting `t1 < t2' as `lessreal(t1; t2) = true', where the boolean-valued operator lessreal : real2 ! boolis inluded in the signature of the metri algebra over R . The problem here is that (asdisussed in [TZ99℄) whereas all funtions in the signature of metri algebras (and heneall funtions omputable over these) are ontinuous, the (total) funtion lessreal is dis-ontinuous. The only way to restore ontinuity is to onsider a partial ontinuous lessrealoperator, whih leads to a study of topologial partial algebras. This an be done, and thewhole of the present theory ould be re-ast in suh a ontext, but that would take us toofar a�eld from the present study.Let us apply Theorem 2 to the lassial notion of Gzegorzyk-Laombe (GL) omputabil-ity on the unit interval I = [0; 1℄. This inludes all the well-know funtions of real analysis(sin, exp, log, et.) restrited to I.Notation. We write GLTm(I) for the lass of GL-omputable total funtions f : Im ! R .Many onrete models of omputation on I are equivalent to this lass [PER89, Wei00℄.It has been shown that (reall the de�nition of Id in Example (b)):GLTm(I) = �PR�-Approx(Id)intvlm!real:(For details, see [TZ99, x9℄, [TZ00, x5.9℄.) Hene, again, a kind of \Universal FuntionTheorem" holds for GLTm(I), in the following sense. For m = 1; 2; : : : , letHm =df UnivIdnat�intvlm!real : N � N � Im ! Rbe the universal funtion for �PR�(Id)nat�intvlm!real given by the Universal FuntionTheorem (x4.4). Then for eah f 2 GLTm(I), there is a number k, e�etively obtainablefrom the GL-ode for f , suh that (writing Hmk;n = Hm(k; n; � )) the sequene of funtionsHmk;0; Hmk;1; Hmk;2; : : : uniformly approximates f on I.ACM Transations on Computational Logi, Vol. TBD, No. TBD, TBD TBD.



32 So by Theorem 2 applied to Id:Theorem 3 (Universal spei�ation of GL omputable funtions). For eahm > 0 there is a signature ��m whih is an expansion of �(Id)� by �nitely many fun-tion symbols, and a �nite onditional spei�ation (��m; EWm (z)) onsisting of onditionalequations and inequalities, whih is universal for spei�ations of GLTm(I), in the follow-ing sense: it ontains a distinguished natural number variable z suh that eah funtionf 2 GLTm(I) is spei�ed (with hidden sorts and funtions) by a suitable substitution in-stane (��m; EWm (�k)), where k an be found e�etively from a GL-ode for f .Remark 4 (Desription of the signature ��m of Theorem 3). The signature ��mis an expansion of �(Id) (for a desription of whih see the remark at the end of x6.1) bythe following sorts and funtions:(i) the sorts and funtions of the array struture over Id (x1.6);(ii) the �PR� \universal funtion" Fm for GLTm(I) (as desribed in the above disussion)together with the auxiliary funtions in its derivation;(iii) the funtion 2�n, used for assertions about omputable approximations, as explainedin the proof of Theorem 1;(iv) the harateristi funtion for BU quanti�ation, as desribed in the proof of the BUelimination theorem (x3.3).Note that there is only one funtion of type (iv) in��m, namely that obtained by eliminatingthe onditional BU equation F� (x5.2) speifying the (single!) �-operator ourrene inthe �PR� derivation for Hm in (ii) (see Remark 1 in x4.4). (There are no onditional BUequality axioms for arrays (x3.2) to eliminate here, sine real and intvl are not equalitysorts.)6.3 Illustration: Spei�ation of dynamial systemWe illustrate the onnetion between algebrai spei�ation methods and models of phys-ial systems.A deterministi dynamial system with �nite dimensional state spae S � Rn and timeT � R is represented in a model by a funtion� : T � S ! Swhere for t 2 T , s 2 S, �(t; s) is the state of the system at time t with initial state s. Forexample, the state of a partile in motion is represented by position and veloity. Thus,for a system of n partiles in 3-dimensional spae, the state spae has 6n dimensions.In pratie, the model is spei�ed by ordinary di�erential equations (ODEs) whoseomplete solution is �. Spei�ally, in the modern qualitative theory of ODEs [Arn73℄, �is di�erentiable, and the funtion �t : S ! S de�ned by�t(s) = �(t; s) for t 2 T; s 2 S;ACM Transations on Computational Logi, Vol. TBD, No. TBD, TBD TBD.



33is a 1-parameter group of di�eomorphisms of S; the ation of this group on S is alled theow on the phase spae S. This ow an be spei�ed by a vetor �eld on S.In modelling a physial system, one aim is to ompute values of the funtion � onsome time interval and subspae of the spae of initial onditions. Many methods exist toderive algorithms for � from the equations that de�ne it. Indeed, various �elds of appliedmathematis exist in order to design suh equations, and the �eld of numerial analysisexists to design suh solution methods.Conversely, we suppose that � an be simulated on a digital omputer, i.e., � is alassially omputable (e.g., GL-omputable) funtion. Assume also that the state spaeS is the unit n-ube In, and the time dimension T is the unit interval I. Thus� : I � In ! I:We an now apply Theorem 3 to show that the dynamial system has a �nite algebraispei�ation.Theorem 4 (Universal spei�ation of omputable dynamial systems). For eahn > 0 there is a signature ~��n whih extends �(Id)� by funtion symbols, and a �niteonditional spei�ation ( ~��n; ~EWn (z)) onsisting of onditional equations and inequalities,whih is universal for all lassially omputable dynamial systems on the unit n-ube Inover the unit time interval I.Note that ~��n is essentially the signature ��m of Theorem 3, with n = m+ 1.We have shown above how powerful algebrai spei�ations are, even for topologial datatypes. More researh needs to be done to determine the extent of its power, espeially onmetri algebras. Here topologial notions suh as ontinuity an play a part, as we seefrom the following example.6.4 Example: Spei�ation of funtion assuming ontinuityConsider the two equations for a (total) funtion f on the real line:f(x+ y) = f(x)� f(y); f(1) =  (�)for some onstant  > 0. If we assume that f is ontinuous, even at one point, then it iseasy to see that these equations are satis�ed uniquely by the funtionf(x) = x:However, in the absene of any suh ontinuity assumption, it an be shown that (for any > 0) there are 22�0 non-onstrutive solutions to (�). Here \non-onstrutive" meansboth that these solutions are non-omputable, and that their existene is proved by non-onstrutive means, using Zorn's Lemma to show the existene of a Hamel basis on R ,i.e., a maximal linear independent subset of R over Q .Note that any solution f of (�) is a homomorphism from the additive group of reals tothe multipliative group of positive reals.ACM Transations on Computational Logi, Vol. TBD, No. TBD, TBD TBD.



34 This example suggests the followingQuestion. On metri algebras, does onditional equational spei�ability, together with atopologial ondition suh as ontinuity, imply omputability?Spei�ally, is there a ontinuous funtion on I whih is de�nable by equations but notapproximably omputable?Note, in this onnetion, that there are other \equational spei�ations" for the expo-nential funtion ex:(1) the di�erential equation f 0(x) = f(x) with initial ondition f(0) = 1;(2) from the polynomial approximations given by the partial sums of the Malaurin ex-pansion P1i=0 xi=i!, a spei�ation onsisting of onditional equations and inequal-ities an be derived by the methods of this setion for approximating omputations;(3) similarly, from the polynomial approximations, (1+x=n)n, a spei�ation onsistingof onditional equations and inequalities an be derived.Note that in the �rst of these spei�ations, di�erentiability of f is (of ourse) impliitlyassumed, and uniqueness of the solution follows by the Lipshitz ondition; however noassumptions of ontinuity are needed in (2) or (3).The above question points to an open �eld of researh. The investigation of omputablesolutions of reursive equations in [GH00℄ would be relevant here.7 Initial algebra spei�ations with onditional equations andonditional BU equationsIn this setion we will onsider theories T , whih we assume to be formalised in logialformalisms F of the kind desribed in Setion 2; for example, F = CondBUEq(�).7.1 Pre-initial and initial modelsIn this subsetion (only), we make no assumptions onerning the (N-)standardness ofsignatures or algebras. Let � be a signature and let K be a �-adt.A formalism F is said to be valid for K if the axioms and inferene rules of F hold forall algebras in K . Note, for example, that CondBUEq(�) is valid for NStdAlg (�), butnot, in general, for Alg (�).A �-algebra A is pre-initial for K if there is a unique �-homomorphism from A toevery algebra in K ; pre-initial in that it might not itself belong to K . (The notion of�-homomorphism between �-algebras is de�ned as usual [MT92℄.)Note that the losed term algebra T(�) is pre-initial for K .An initial algebra of K is a pre-initial algebra whih belongs to K . As is easily seen,any two initial algebras of K must be �-isomorphi. We denote any initial algebra of Kby Init(�; K ). ACM Transations on Computational Logi, Vol. TBD, No. TBD, TBD TBD.



35We will be interested in the ase thatK = Alg(�; T );the lass of models of a �rst-order �-theory T , where T may have ertain syntati re-stritions. We will assume:� in this subsetion that T is a onditional equational theory;� in x7.2 likewise, but restrit attention to N-standard models of T ;� in x7.3 that T is a onditional BU equational theory (again with N-standard models);� and in x7.4 that it is a onditional SU equational theory (ditto).(Reall the formal systems de�ned in Setion 2.) Finally in x7.5 we will show how ondi-tional BU equational initial algebra spei�ations an be \redued" to onditional equa-tional initial algebra spei�ations.Let T be a �-theory. We write Init(�; T ) for the initial algebra Init��;Alg(�; T )�(if it exists), and all it the initial model of T .Consider the losed term algebra T(�; T;F) formed from T(�) by identifying losedterms provably equal from T , in some formalism F , i.e.,T(�; T;F) =df T(�)=�T;Fwhere t1�T;F t2 ()df t1 = t2 is provable from T in F :Lemma. If F is valid for Alg(�; T ), then T(�; T;F) is pre-initial for Alg(�; T ).We will investigate whether T(�; T;F) is, further, initial for Alg(�; T ), i.e., whetherT(�; T;F) = Init(�; T ):Initiality Lemma. Suppose F is valid for Alg(�; T ). If T(�; T;F) 2 Alg(�; T ), thenit is (�-isomorphi to) Init(�; T ).De�nitions. Let A be a �-algebra.(1) A has an initial algebra spei�ation (�; T ) if A �= Init(�; T ).(2) A has an initial algebra spei�ation with hidden sorts and/or funtions (�0; T 0) if�0 is an expansion of � by sorts and/or funtions, T 0 is a �0-theory andA �= Init��; Alg(�0; T 0) j� �:
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36Theorem 1 [Mal73℄. Let E be a onditional equational theory over �. Let I =dfT(�;E;CondEq(�)). Then I is an initial model of E. Furthermore, if t1; t2 are twolosed �-terms of the same sort, then the following are equivalent:(i) t1 and t2 have the same value in I,(ii) t1 and t2 have the same value in all models of E,(iii) t1 = t2 is provable from E in CondEq(�),(iv) t1 = t2 is provable from E in FOL(�).Proof: The main thing here is to show that I j= E, from whih (ii))(i) will follow. SineI is a (losed) term model, it is suÆient to show that I satis�es all losed substitutioninstanes of the axioms of E. So onsider any losed instane P1 ^ : : : ^ Pn ! P of anaxiom of E, where Pi and P are losed equations. Note that the orresponding sequentP1; : : : ; Pn 7�! P (�)is derivable from E in CondEq(�), by the substitution rule. Suppose I j= Pi fori = 1; : : : ; n. Then, by the de�nition of I, Pi is provable from E in CondEq(�). But thenP is also provable, by repeated (atomi) uts of the sequent (�) with the sequents 7�! Pi,and so I j= P .Hene I j= E. It follows, by the Initiality Lemma, that I is an initial model of E.Hene also (ii))(i). The further impliations (i))(iii))(iv))(ii) are all trivial. �Remark (Completeness and onservativity). Mal'ev's Theorem [Mal73℄, in theform given above, an be viewed as expressing both (a) ompleteness of CondEq(�),given by the impliation (ii) =) (iii), and (b) onservativity of �rst order logi withequality over CondEq(�), given by the impliation (iv) =) (iii). (Cf. onservativitylemma (1) and the remark in x2.6.)Neessary and suÆient onditions for the existene of initial models of theories aregiven in [MM84℄.7.2 Initial N-standard modelsAssume, from now on, that � is N-standard, and that K onsists of N-standard�-algebras;for example, K = NStdAlg(�; T ), for some �-theory T . Then T(�; T;F), althoughit is pre-initial for K , might fail to be initial for K for two reasons: it might not satisfy T ,and it might not even be N-standard! (We return to the seond point below.)An initial N-standard model of T is an initial algebra of NStdAlg(�; T ). Any twoinitial N-standard models of T are �-isomorphi. We denote any suh model byInitNStdAlg(�; T ) =df Init(�; NStdAlg(�; T )):N-Standard Initiality Lemma. Suppose F is valid for NStdAlg(�; T ).If T(�; T;F) 2 NStdAlg(�; T ) then it is (�-isomorphi to) InitNStdAlg(�; T ).ACM Transations on Computational Logi, Vol. TBD, No. TBD, TBD TBD.



37De�nitions. Let A be an N-standard �-algebra.(1) A has an initial N-standard algebra spei�ation (�; T ) if A �= InitNStdAlg(�; T ).(2) A has an initial N-standard algebra spei�ation with hidden sorts and/or funtions(�0; T 0) if �0 is an expansion of � by sorts and/or funtions, T 0 is a �0-theory andA �= Init��; NStdAlg(�0; T 0) j� �:Note that InitNStdAlg(�; T ) (if it exists) might not be an initial model of T , i.e., Tmight have another, non-N-standard, initial model, as the following example demonstrates.Example (Initial N-standard model of a theory whih is not an initial modelof that theory). Let � ontain (in addition to the standard operations on nat and bool)a onstant u� : bool, and let T ontain the single axiom `u� 6= true'. Then the term algebraT(�) trivially satis�es T , and is hene (by the Initiality Lemma of x7.1) an initial modelof T . It is not N-standard, sine it has a 3-element arrier of sort bool, with distintdenotations of true, false and u�. There is, however, also an initial N-standard model of Twith an N-standard (2-element) arrier of sort bool, formed by identifying u� and false.Now T(�; T;F) may fail to be N-standard for two reasons: that T proves \too little"or \too muh", roughly speaking. The �rst reason is onneted with non-N-standardinterpretations of the sorts nat and bool. Thus, there may be a funtion symbol f in �with range sort nat, without orresponding axioms in T apable of \reduing" f(t), forsome losed term t, to a numeral. Similarly (as in the above example), not all losedboolean terms (i.e., terms of sort bool) may be (provably in T ) equal to true or false. (Inthe terminology of [GH78℄ the spei�ation (�; T ) is not \suÆiently omplete".) Theseond reason is that T may be inonsistent, in the sense that it proves `true = false' (or,equivalently in a suitable weak bakground theory, `0 = 1'). This motivates the followingde�nitions. Note that we must (to begin with) speak of provability relative to some formalsystem F , whih will typially be one of the system CondEq(�) or CondBUEq(�) ofSetion 2.De�nition 3. T is onsistent in F if the equation `true = false' is not provable in F fromT .De�nition 4. T determines nat in F if every losed term of sort nat is, provably in Ffrom T , equal to a numeral; and T determines bool in F if every losed term of sort boolis, provably in F from T , equal to true or false.
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38De�nition 5 (N-standardness axioms).(a) NStdAx(�) is the following set of onditional equations:and(true; true) = true; and(true; false) = and(false; true) = and(false; false) = false;or(false; false) = false; or(true; true) = or(true; false) = or(false; true) = true;not(true) = false; not(false) = true;ifs(true; xs1; xs2) = xs1; ifs(false; xs1; xs2) = xs2;eqnat(0; 0) = true; eqnat(Sz; 0) = eqnat(0; Sz) = false;eqnat(Sz1; Sz2) = eqnat(z1; z2);lessnat(0; Sz) = true; lessnat(z; 0) = false;lessnat(Sz1; Sz2) = lessnat(z1; z2);eqs(xs; xs) = true;eqs(xs1; xs2) = true ! ts1 = ts2:where, in the axioms for ifs, s ranges over all �-sorts other than bool; and in the axiomsfor eqs, s ranges over all �-equality sorts other than nat,(b) NStdAx0(�) is the set of all losed �-substitution instanes of NStdAx(�).Note that NStdAx(�) + Ind(�) holds in any N-standard �-algebra.We use the terminology: T proves NStdAx0(�) in F to mean: NStdAx0(�) is derivablefrom T in F .We now state some lemmas whih give suÆient onditions for a term model T(�; T;F)to be N-standard.Lemma 1 (N-standardness lemma). Suppose that in F(i) T is onsistent,(ii) T determines nat and bool, and(iii) T proves NStdAx0(�).Then T(�; T;F) is N-standard.Lemma 2. If � is stritly N-standard then NStdAx0(�) determines nat and bool inCondEq(�).Proof: By strutural indution on all losed �-terms of sort nat and bool (simultaneous-ly). �The following is an immediate onsequene of Lemmas 1 and 2.
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39Lemma 3 (Strit N-standardness lemma). Suppose � is stritly N-standard, F isat least as strong as CondEq(�), and in F(i) T is onsistent, and(ii) T proves NStdAx0(�) (or NStdAx(�)).Then T(�; T;F) is N-standard.7.3 Conditional equational theoriesWe now give the analogue of Mal'ev's Theorem (x7.1) for N-standard models of ondi-tional equational theories.Theorem 2. Let E be a onditional equational theory over �. Suppose that inCondEq(�), E is onsistent, determines nat and bool, and proves NStdAx0(�). ThenI =df T(�; E; CondEq(�)) is an initial N-standard model of E. Furthermore, if t1; t2are two losed �-terms of the same sort, then the following are equivalent:(i) t1 and t2 have the same value in I,(ii) t1 and t2 have the same value in all N-standard models of E,(iii) t1 = t2 is provable from E in CondEq(�),(iv) t1 = t2 is provable from E in FOL(�) + Ind(�).Proof: By the N-standardness Lemma (x7.2), I is an N-standard algebra. As in Theorem1, the main thing is to show that I j= E. This is done exatly as in the proof of Theorem1. It follows, by the N-standard Initiality Lemma (x7.2), that I is an initial N-standardmodel of E. The rest of the proof is similar to that for Theorem 1. Note for the impliation(iv))(ii), we use the fat that the rule Ind(�) is valid for N-standard �-algebras. �Remarks. (1) By Lemma 2 in x7.2, the assumption in the theorem that E determinesnat and bool an be replaed by the assumption that � is stritly N-standard.(2) (Completeness and onservativity.) Here again, the impliation (ii))(iii) an beonstrued as a ompleteness theorem, and (iv))(iii) as a onservativity theorem. (Seethe Remark in x2.6 and the Remark following Theorem 1.)(3) (The N-standardness axioms.) We have \inorporated" the N-standardness axiomsNStdAx0(�) in the theory E, so to speak, by assuming that E proves them. Anotherfeasible approah would be to inorporate these axioms in the logis CondEq, CondBUEqand FOL, by adding them as axioms (as we did with the boundedness axioms BddAx inCondBUEq). This would entail some minor re-wording of the theorems.We turn our attention to theories with syntati struture more ompliated than on-ditional equations.
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407.4 Conditional BU equational theoriesWe give the analogue of Mal'ev's Theorem for N-standard models of BU onditionalequational theories.Theorem 3. Let F be a onditional BU equational theory over �. Suppose that inCondBUEq(�), F is onsistent, determines nat and bool and proves NStdAx0(�). ThenI =df T(�; F; CondBUEq(�)) is an initial N-standard model of F . Furthermore, if t1; t2are two losed �-terms of the same sort, then the following are equivalent:(i) t1 and t2 have the same value in I,(ii) t1 and t2 have the same value in all N-standard models of F ,(iii) t1 = t2 is provable from F in CondBUEq(�),(iv) t1 = t2 is provable from F in FOL(�) + Ind(�).Proof: By the N-standardness Lemma, I is N-standard. As in Theorems 1 and 2, themain thing is to show that I j= F . Again, sine I is a term model, it is suÆient to showthat I satis�es the set of losed substitution instanes of F . First note that, by de�nition,I satis�es preisely all losed equations provable from F in CondBUEq, i.e., for any losedequation P : I j= P () F ` P (�)where ``' here means provability in CondBUEq. Further, by use of the boundedness axiomsBddAx of CondBUEq (x2.3), the same holds for any losed BU equation Q:I j= Q () F ` Q: (��)For suppose Q � 8z < tP (z), where P (z) is an equation. Sine I is N-standard,I j= t = �n (���)for some (unique) n. ThenI j= 8z < tP (z) () for all k < n, I j= P (�k)() for all k < n, F ` P (�k) by (�)() F ` 8z < tP (z) by BddAx and (���):Now onsider any losed instane f � Q1 ^ : : : ^ Qm ! Q of an axiom of F (whereQi and Q are losed SU equations). Suppose I j= Qi for i = 1; : : : ;m. Then by (��)Qi is provable from F in CondBUEq. But then so is Q, by repeated uts of the sequentQ1; : : : ; Qm 7�! Q orresponding to f with the sequents 7�! Qi, and so I j= Q. �Remarks. (1) As before, the assumption in the theorem that F determines nat and boolan be replaed by the assumption that � is stritly N-standard.(2) (Completeness and onservativity.) Again, the impliation (ii))(iii) an be on-strued as a ompleteness theorem, and (ii))(iii) as a onservativity theorem.ACM Transations on Computational Logi, Vol. TBD, No. TBD, TBD TBD.



417.5 Conditional SU equational theoriesNow we turn to the in�nitary onditional SU equational logi (x2.4). Although it will notbe used further in the paper, it is interesting in its own right.Remember that the in�nitary !-rule 8!R obviates the need for an indution rule.Theorem 4. Let G be a onditional SU equational theory over �. Suppose that inCondSUEq!(�), G is onsistent, determines nat and bool and proves NStdAx0(�). ThenI =df T(�; G; CondSUEq!(�)) is an initial N-standard model of G. Furthermore, ift1; t2 are two losed �-terms of the same sort, then the following are equivalent:(i) t1 and t2 have the same value in I,(ii) t1 and t2 have the same value in all N-standard models of G,(iii) t1 = t2 is provable from G in CondSUEq!(�),(iv) t1 = t2 is provable from G in FOL!(�).Proof: By the N-standardness Lemma, I is N-standard. Again, the main thing is to showthat I satis�es losed substitution instanes of axioms of G. By de�nition, for any losedequation P : I j= P () G ` P (�)where ``' here means provability in CondSUEq!. Further, by use of the 8!R rule, thesame holds for any losed SU equation R:I j= R () G ` R:For suppose R � 8zP (z), where P (z) is an equation. ThenI j= 8zP (z) () for all n, I j= P (�n)() for all n, G ` P (�n) by (�)() G ` 8zP (z) by 8!RThe rest of the proof follows the pattern of Theorems 1, 2 and 3. �Remarks. (1) As before, the assumption in the theorem that G determines nat and boolan be replaed by the assumption that � is stritly N-standard.(2) (Completeness and onservativity.) One again, the impliation (ii))(iii) an beviewed as a ompleteness theorem, and (iv))(iii) as a onservativity theorem.7.6 Open term algebrasSo far (Theorems 1, 2, 3 and 4) we have onentrated on losed term algebras. We ouldalso formulate our results in a more general setting, namely, with term algebras onstrutedfrom open terms, i.e., terms ontaining free variables (from a given set X).ACM Transations on Computational Logi, Vol. TBD, No. TBD, TBD TBD.



42 The problem here is that with open terms (an analogy of) the N-Standardness Lemma(x7.2) will fail in general. However, under a ertain syntati ondition (the \N-termondition" below), a version of this Lemma an still be formulated.First we need some de�nitions and notation. Given a signature �, and a set X �Var(�), let T(�;X) be the set of �-terms in X, i.e., �-terms ontaining variables fromX only. In partiular, for X = ;, we have the set of losed �-terms T(�) = T(�; ;).Given a �rst-order �-theory T and formalism F whih is valid for Alg(�; T ), letT(�;X; T;F) be the �-term algebra formed from T(�;X) by identifying terms provablyequal from T in F . (The losed term algebra T(�; T;F) onsidered above orrespondsto the speial ase X = ;).The algebra I =df T(�;X; T;F) is free for T over X. This means that for every modelA of T , and every assignment � : X ! A of elements of A to variables in X (of the samesort), there is a unique �-homomorphism h : I ! A suh that h � X�. (This redues toinitiality in Alg(�; T ) when X = ;.)Note that I need not itself be a model of T . However, this will be the ase, providedT satis�es ertain syntati onditions (e.g., if T is a onditional equational theory; f.Theorem 1 above).Again, assuming that � is N-standard, we are interested in the question whether I isN-standard. A useful riterion in this onnetion is the following syntati ondition on �and X:N-term Condition for (�;X). No �-term of sort nat or bool ontains any variablesfrom X.Remarks. (1) The N-term ondition for (�;X) is trivially satis�ed when X = ;.(2) When � is stritly N-standard, it is equivalent to the ondition:there are no variables in X of sort nat or bool.This follows from Remark 3 in x1.5.Now the theory given above, and spei�ally Theorems 1 to 4, an be generalised to thease of open term models T(�;X; T;F) , where (�;X) satis�es the N-term ondition.First, the N-standardness lemma beomes:N-Standardness LemmaX . Suppose that (�;X) satis�es the N-term ondition.Suppose further that in F(i) T is onsistent,(ii) T determines nat and bool, and(iii) T proves NStdAx0(�).Then T(�;X; T;F) is N-standard.Next, the strit N-standardness lemma beomes (using Remark 2 above):ACM Transations on Computational Logi, Vol. TBD, No. TBD, TBD TBD.



43Strit N-Standardness LemmaX . Suppose � is stritly N-standard, and there are novariables in X of sort nat or bool. Suppose also F is at least as strong as CondEq(�),and in F(i) T is onsistent, and(ii) T proves NStdAx(�).Then T(�;X; T;F) is N-standard.Consider next, for example, Theorem 2. This an be reformulated as follows.Theorem 2X . Suppose (�;X) satis�es the N-term ondition. Let E be a onditionalequational theory over �. Suppose that in CondEq(�), E is onsistent, determines natand bool, and proves NStdAx(�). Then I =df T(�;X; E; CondEq(�)) is an N-standardmodel of E, whih is free for E over X. Furthermore, if t1; t2 are two terms in T(�;X)of the same sort, then the following are equivalent:(i) t1 and t2 have the same value in I,(ii) t1 and t2 have the same value in all N-standard models of E,(iii) t1 = t2 is provable from E in CondEq(�),(iv) t1 = t2 is provable from E in FOL(�) + Ind(�).The strit N-standardness LemmaX , and Theorem 2X , will be used in Setion 9.7.7 Reduing onditional BU to onditional equational spei�ationsWe re-onsider the work of x3.3 from the viewpoint of initial algebra spei�ations.Theorem 5 (BU elimination for initial algebra spei�ations). Let F be aonditional BU equational theory over �. Then there is an expansion �0 of � and aonditional equational theory E0 over �0 whih is equivalent to F (relative to N-standardmodels) in the sense that:(i) if A is an N-standard �-model of F , then it has a �0-expansion whih is a N-standardmodel of E0;(ii) if A �= InitNStdAlg(�;F ) then it has a unique (up to �0/�-isomorphism) �0-expansion A0 suh that A0 �= InitNStdAlg(�0; E0);(iii) if A0 is an N-standard �0-model of E0, then its �-redut A is an N-standard modelof F ; and if A0 �= InitNStdAlg(�0; E0) then A �= InitNStdAlg(�;F ).If F ontains q ourrenes of BU quanti�ers, then �0 expands � by one new sort andq new funtion symbols. Moreover, if F is �nite, with e axioms (say), then so is E0, withe+ 4q axioms.Proof: The idea, again, is to inorporate in the signature, for eah BU quanti�er ourringin F , a harateristi funtion for that quanti�er. The problem with adjoining a boolean-valued funtion symbol f : nat� u! bool satisfying (��) in the BU elimination theoremACM Transations on Computational Logi, Vol. TBD, No. TBD, TBD TBD.



44in x3.3, is in the ase that A is an initial N-standard model of F . In order that its �0-expansion A0 be N-standard, the value of f(n; x) must be either true or false for every valueof the arguments n; x. Furthermore, in order that A0 also be initial, the �-homomorphismh from A to every N-standard model B of F must be extendible to a �0-homomorphismh0 from A0 to the �0-expansion B0 of B. However, the rhs of (��) in x3.3 will hold \moreoften" in B than in A (sine B is a homomorphi image of A), with a orresponding hangein the value of f(n; x) from false to true! Hene h annot, in general, be extended as desired.(Making f a 0,1-valued funtion will ause exatly the same problem.)We therefore adjoin a speial sort D for the range of suh funtions f, with a onstantd whih takes the plae of `true' in (��) in x3.3. (The point is that when the ondition onthe rhs of (��) fails, f(n; x) is not \fored" to equal anything else at all.) Now for eah BUquanti�er as in (�) of x3.3, adjoin to the signature the funtion symbolf : nat� u ! D;and adjoin the axioms formed from (���) and (����) in x3.3 by replaing `true' by `d'throughout. In this way we replae F by a onditional equational theory E0 in �0, withthe stated properties. �Remark. If A is an N-standard model of F , then its N-standard �0-expansion A0 mod-elling E0, given by part (i) of the theorem, is not (in general) uniquely determined. How-ever, the added ondition of initiality (on A and A0) determines A0 uniquely.8 Initiality-preserving operators on N-standard algebrasIn this setion we ombine the theory of Setion 5 (\omputability =) algebrai spei-�ability") with the initial algebra theory of Setion 7.8.1 Initiality preserving operators and the HEPAssume now (as in x3.1) that �0 and �00 are N-standard signatures with � � �0 ��00, and � : NStdAlg (�) ! NStdAlg(�0) is an expanding operator over �. ReallDe�nitions 5 and 7 in x3.1.De�nition 1. � is initiality preserving (w.r.t. � and �0) i� for all K � NStdAlg (�)and A 2 NStdAlg (�), A is initial in K i� A� is initial in K� .Lemma 1. Suppose � is initiality preserving, and (�0; T 0) spei�es � uniformly over �.Then for any �-theory T and N-standard �-algebra A,A �= InitNStdAlg(�; T ) () A� �= InitNStdAlg(�0; T + T 0):
ACM Transations on Computational Logi, Vol. TBD, No. TBD, TBD TBD.



45Lemma 2. Suppose �(A) = 	(A) j�0 for all A 2 NStdAlg (�), where	 : NStdAlg (�)! NStdAlg(�00)is an expanding operator whih is initiality preserving w.r.t. � and �00. Then � is initialitypreserving, and for any �00-theory T 00 and N-standard �-algebra A, if (�00; T 00) spei�es	 uniformly over �, then (�00; T 00) spei�es � uniformly over � with hidden sorts and/orfuntions; and for any �-theory T and N-standard �-algebra A,A �= InitNStdAlg(�; T ) () A	 �= InitNStdAlg(�00; T + T 00)() A� �= InitNStdAlg(�00; T + T 00) j�0() A� �= Init��0; NStdAlg(�00; T + T 00) j�0 �:Proof: From Lemma 1. �De�nition 2. � has the homomorphism extension property (HEP) (w.r.t. � and �0)i� every homomorphism h : A ! B between N-standard �-algebras an be extendeduniquely to a homomorphism h� : A� ! B� between their images under �.Lemma 3. If � has the HEP, then � is initiality preserving.We will apply the above theory to three ases: array spei�ations in x8.2, and spei�-ations for PR and �PR� omputable funtions in x8.3 and x8.4 respetively.8.2 Initial algebra spei�ation of array algebrasReall the array spei�ation (��; ArrAx(�)) de�ned in x3.2.Lemma 1. The array onstrution A 7! A� (x1.6) has the HEP, and (hene) is initialitypreserving.Lemma 2. For any N-standard �-algebra A and �-theory T :A �= InitNStdAlg(�; T ) () A� �= InitNStdAlg(��; T + ArrAx(�)):Proof: By x8.1, Lemma 1, and x3.2, Theorem 1. �Of partiular interest is the ase that T is a onditional BU equational theory:Theorem 1. If a �-algebra A has an initial N-standard algebra spei�ation by a set ofonditional BU equations, then so does A�. Moreover, if the spei�ation for A is �nite,with e axioms (say), then so is that for A�, with at most e + 8s axioms, where s is thenumber of sorts in �.Next, from the BU elimination theorem for initial algebras (Theorem 5 in Setion 7) wean redue suh a spei�ation for A� further to one with onditional equations only.ACM Transations on Computational Logi, Vol. TBD, No. TBD, TBD TBD.



46Theorem 2. If a �-algebra A has an initial N-standard algebra spei�ation by a setof onditional equations, then so does A� (with hidden sorts and funtions). Moreover, ifthe spei�ation for A is �nite, with e axioms (say), then so is that for A�, with at moste+ 12s axioms, where s is the number of sorts in �.Proof: First apply Theorem 1 (or Lemma 2) above. Then replae the equality axiomfor s� in ArrAx(�), whih is a onditional BU ��-equation (x3.2), by a onditional ��-equation, for eah �-equality sort s other than nat, by BU elimination (Theorem 5 in x7.7,applied to ��). �8.3 Initial algebra spei�ations for PR omputable funtionsNow we apply the above theory to the results in x5.1.Lemma 1. For eah PR(�) derivation �, the operator (��) (x5.1) has the HEP, and is(therefore) initiality preserving. Hene the operator (�) is initiality preserving.Proof: By strutural indution on �. �Hene, by Theorem 1 in Setion 5 and Lemma 2 in x8.1:Lemma 2. For eah PR(�) derivation �, and for eah N-standard �-algebra A and�-theory T :A �= InitNStdAlg(�; T ) () (A; gA� ; fA� ) �= InitNStdAlg(��; T + E�)() (A; fA� ) �= InitNStdAlg(��; T + E�) j�f() (A; fA� ) �= Init��f; NStdAlg(��; T +E�) j�f �:Here �f = � [ ff�g. (Remember, �� = � [ fg�; f�g, where g� is the list of auxiliaryfuntions of �.) Of partiular interest is the ase that T is a onditional equational theory:Theorem 3. Let f be a PR funtion on a �-algebra A. If A has an initial N-standardalgebra spei�ation by a set of onditional equations, then so does (A; f) (with hiddenfuntions).8.4 Initial algebra spei�ations for �PR� omputable funtionsWe turn to �PR� omputability (x5.2). The problem here (as noted in x5.2) is thateven if the omputed funtion is total, the auxiliary funtions need not be. However, byapplying the totality lemma (x5.2), we are able restrit our attention to total derivations.Lemma 1. For eah �PR�(�) derivation � and eah N-standard �-algebra A on whihfA� is total, the operator (���) (x5.2) has the HEP, and is (therefore) initiality preserving.Hene the operator (�) (x5.1) is initiality preserving.Proof: By strutural indution on �. �Hene, by Theorem 2 in Setion 5 and Lemma 2 in x8.1, we have:ACM Transations on Computational Logi, Vol. TBD, No. TBD, TBD TBD.



47Lemma 2. For eah �PR�(�) derivation �, eah N-standard �-algebra A on whih fA� istotal, and eah �-theory T :A �= InitNStdAlg(�; T ) ()(A; fA� ) �= Init��f; NStdAlg(���; T + ArrAx(�) + F�̂) j�f �:where �̂ is the total derivation for f� given by the totality lemma, and F�̂ is the onditionalBU spei�ation for �̂.Here, as before, �f = � [ ff�g. Of partiular interest are the two ases that T is aonditional BU equational theory, and a onditional equational theory. First, assuming theformer:Theorem 4. Let f be a total �PR� funtion on a �-algebra A. If A has an initial N-standard algebra spei�ation (�;F ), where F is a set of onditional BU equations, thenlikewise (A; f) has suh a spei�ation (�f; F f ) with hidden sorts and funtions, where F fis also a set of onditional BU equations. Moreover, F f an be obtained by adjoining to Fan instantiation FU (�k) of some universal onditional BU equational spei�ation FU (z),whih depends only on � and the type of f .The universal spei�ation FU (z) in this theorem is obtained as in Theorem 3 in Setion5. Finally, by assuming T in Lemma 2 is a onditional equational theory, and applyingTheorem 4 above and then BU elimination for initial algebras (Theorem 5 in Setion 7):Theorem 5. Let f be a total �PR� funtion on a �-algebra A. If A has an initialN-standard algebra spei�ation (�;E), where E is a set of onditional equations, thenlikewise (A; f) has suh a spei�ation (�f; Ef) with hidden sorts and funtions, whereEf is also a set of onditional equations. Moreover, Ef an be obtained by adjoining toE an instantiation EU (�k) of some universal onditional equational spei�ation EU (z),whih depends only on � and the type of f .9 Computability of algebraially spei�able funtionsIn this setion we prove (partial) onverses to the results of Setion 5. First we need ade�nition.De�nition (Strong spei�ability). Let K be a �-lass, let �0 � � [ ffg and let Tbe a �0-theory. We say that T strongly spei�es a family f fA j A 2 K g (possibly withhidden sorts and/or funtions) i�(i) T spei�es f fA j A 2 K g, and further(ii) for every A;B 2 K with B � A, fB = fA � B.(Here fA � B denotes the restrition of fA to B.)The signi�ane of this onept is seen by rephrasing it in either of the following twoways. ACM Transations on Computational Logi, Vol. TBD, No. TBD, TBD TBD.



48Lemma 1. Let K be a �-lass, let �0 � � [ ffg and let T be a �0-theory. T stronglyspei�es a family f fA j A 2 K g (possibly with hidden sorts and/or funtions) i�(i) T spei�es f fA j A 2 K g, and further(ii0) for every A;B 2 K with B � A, B is losed under fA.Lemma 2. Let K be a �-lass whih is losed under �nitely generated subalgebras, let�0 � � [ ffg and let T be a �0-theory. T strongly spei�es a family f fA j A 2 K g(possibly with hidden sorts and/or funtions) i�(i) T spei�es f fA j A 2 K g, and further(ii00) for every A 2 K and every �nitely generated B � A, B is losed under fA.We onsider algebras and funtions spei�ed by onditional equational theories. Wehave to assume now that these theories have e�etive axiomatisations: that the axiomsare �nite, for example, or at least reursively enumerable.We will also make use of Theorem 2X in x7.6. Reall the remarks preeding the theoremthere, that the N-term ondition for (�;X) follows from either (i) X = ;; or (ii) stritN-standardness of �, together with X ontaining no variables of sort nat or bool.We will prove two theorems, making eah of these assumptions in turn.9.1 Computability of spei�able funtion on minimal algebrasWe �rst onsider a partial onverse, using Remark 1 on the N-term ondition (x7.6),that is, restriting our attention to minimal models (i.e., models in whih every element isnamed by a losed term). We use the notation MinNStdAlg(�; T ) for the set of minimalN-standard �-models of a theory T .Theorem 1. Suppose � is N-standard. Let E be an r.e. onditional equational �-theorywhih in CondEq(�) is onsistent, determines nat and bool and proves NStdAx0(�).Suppose �0 � � [ ffg, and let E0 be an r.e. onditional equational �0-theory whihstrongly spei�es f fA j A 2MinNStdAlg(�;E)g (possibly with hidden sorts and/orfuntions). Assume also that E + E0 determines nat and bool, and is onservative overE, in CondEq(�), and also that all sorts of dom(f) other than bool are equality sorts.Then fA is uniformly �PR� omputable over A 2MinNStdAlg(�;E).Proof: We will desribe a pseudo-While�(�) algorithm for omputing fA uniformly overminimal N-standard �-models A of E. Suppose f : u! s, where u = s1 � � � � � sn. Ingeneral, some of the si are nat or bool, and the others not. Suppose (w.l.o.g.) that forsome m < n, sorts sm+1; : : : ; sn are all either nat or bool, and sorts s1; : : : ; sm are not.Write u = v � w where v = s1 � � � � � sm and w = sm+1 � � � � � sn. By assumption,sorts s1; : : : ; sm are equality sorts.For any A 2MinNStdAlg(�;E), we will show how to omputefA : Au ! As:Choose a tuple k = (k1; : : : ; kn�m) 2 Aw (of naturals and truth values), and onsider thefuntion fAk =df f( � ; k) : Av ! As:ACM Transations on Computational Logi, Vol. TBD, No. TBD, TBD TBD.



49We will show how to ompute fAk uniformly in the (numerial and boolean) parameters k.Let I = T(�; E; CondEq(�)) and J = T(�0; E + E0; CondEq(�0)) (reall the de�-nitions in x7.1). By the N-Standardness Lemma (and the onservativity assumption forE+E0 over E), both I and J are N-standard. (Below we denote elements of these algebrasby `[t℄', i.e., suitable equivalene lasses of terms t, or tuples thereof. We also write �k forthe tuple of numerals and/or truth onstants orresponding to k.)Note that the identity mapping on T(�) indues a �-homomorphism�I : I ! J j�:By onservativity of E + E0 over E, �I is injetive. Hene I � J j�.Further, the funtion fJ spei�ed by E0 on J j� is learly the same as that de�ned\naturally" on J by fJ([t℄) = [f(t)℄. By the strong spei�ation assumption,f I = fJ � I:Hene for any losed �-term t0,fJk ([t0℄) = f Ik ([t0℄) = [t℄for some losed �-term t. By de�nition of J , this means that the equationf(t0; �k) = t (�)is provable from E + E0 in CondEq(�0).Now take any A 2MinNStdAlg(�;E), and any a 2 Av. Sine A is minimal, there isa tuple of losed �-terms t0 : v suh that tA0 = a. By Theorem 2 of Setion 6 applied to�0, there is a �0-homomorphism h : J ! (A; fA; : : : )with h([t0℄) = a. Hene, sine (�) holds in J , it also holds in (the �0-expansion of) A,with `f' interpreted as fA.This suggests the following algorithm for fAk with A minimal. With inputs a 2 Av:�rst generate all (G�odel numbers of) tuples of losed �-terms of type v, until you �nd atuple t0 with tA0 = a. (This is where we use omputability of equality on type v.) Thengenerate all G�odel numbers of theorems of E+E0 until you �nd one of the form pf(t0) = tq,for some losed �-term t. Then the output is tA.The searh is e�etive in the term evaluation funtion for losed �-terms in A, by reur-sive enumerability of E and E0. Further, sine term evaluation is PR� omputable ([TZ00,x4℄), this algorithm an be formalised as a �PR�(�) derivation for fA, as desired. �Remark. The assumption that the sorts of dom(f) are equality sorts an learly beweakened to the assumption that equality is (uniformly over MinNStdAlg(�;E)) om-putable on these sorts.ACM Transations on Computational Logi, Vol. TBD, No. TBD, TBD TBD.



509.2 Computability of spei�able funtion in stritly N-standard algebrasWe onsider a seond partial onverse, using Remark 2 on the N-term ondition, i.e., nofree variables of sort nat or bool, plus strit N-standardness.Theorem 2. Suppose � is stritly N-standard. Let E be an r.e. onditional equational�-theory whih in CondEq(�) is onsistent and proves NStdAx(�). Suppose �0 � �[ffgis also stritly N-standard and proves NStdAx(�0). Let E0 be an r.e. onditional equational�0-theory whih strongly spei�es f fA j A 2 NStdAlg(�;E)g (possibly with hiddensorts and/or funtions). Assume also that E +E0 is onservative over E in CondEq(�0).Then fA is uniformly �PR� omputable over A 2 NStdAlg(�;E).Proof: We will desribe a pseudo-While�(�) algorithm for omputing fA uniformly overA 2 NStdAlg(�;E). Suppose f : u! s, where u = s1 � � � � � sn. In general, some ofthe si are nat or bool, and the others not. Suppose (w.l.o.g.) that for some m < n, sortssm+1; : : : ; sn are all either nat or bool, and sorts s1; : : : ; sm are not. Write u = v � wwhere v = s1 � � � � � sm and w = sm+1 � � � � � sn.For any A 2 NStdAlg(�;E), we will show how to omputefA : Au ! As:Choose a tuple k = (k1; : : : ; kn�m) 2 Aw (of naturals and truth values), and onsider thefuntion fAk =df f( � ; k) : Av ! As:We will show how to ompute fAk uniformly in the (numerial and boolean) parameters k.Choose a tuple of variables x : v (i.e., of the same produt type as a). Let I =T(�; x; E; CondEq(�)) and J = T(�0; x; E +E0; CondEq(�0)) (reall the de�nitions inx7.6). By the strit N-standardness LemmaX (x7.6), both I and J are N-standard.Note that the identity mapping on T(�; x) indues a �-homomorphism�I : I ! J j�:By onservativity of E + E0 over E, �I is injetive. Hene I � J j�.Further, the funtion fJ spei�ed by E0 on J j� is learly the same as that de�nednaturally on J by fJ([t℄) = [f(t)℄. By the strong spei�ation assumption,f I = fJ � I:Hene fJk (x) = f Ik (x) = [t℄for some t 2 T(�; x). By de�nition of J , this means that the equationf(x; �k) = t (�)is provable from E + E0 in CondEq(�0).ACM Transations on Computational Logi, Vol. TBD, No. TBD, TBD TBD.



51Now take any A 2 NStdAlg(�;E), and any a 2 Av. By Theorem 2X applied to �0,there is a �0-homomorphism h : J ! (A; fA; : : : )where h(x) = a. Hene, sine (�) holds in J , it also holds in (the �0-expansion of) A, with`f' interpreted as fA and a assigned to x.This suggests the following algorithm for fAk . With inputs a 2 Av: generate all G�odelnumbers of theorems of E+E0 until you �nd one of the form pf(x) = tq, for some �-termt (in x). This searh is e�etive, by reursive enumerability of E and E0. Then the outputis the evaluation of the term t in A with a assigned to x.Sine term evaluation is PR� omputable [TZ00, x4℄, this algorithm an be formalisedas a �PR�(�) derivation for fA, as desired. �Remarks.(1) The above algorithm gives, for eah tuple of numerial and boolean arguments k, a�xed term t 2 T(�; x) as the value of fAk (a) for all A 2 NStdAlg(�;E) and alla 2 Av.(2) Theorems similar to Theorems 1 and 2 an be formulated for onditional BU equa-tional theories and spei�ations, using a variation of Theorem 3 (instead of Theorem2) in Setion 7.9.3 Signi�ane of strong spei�ability; Equivalene of spei�ability andomputabilityWe want to ombine some of the above results into an equivalene result between om-putability and spei�ability.Note that by the Loality Theorem for While omputations [TZ00, x2.8℄, if f is �PR�omputable on an algebra A, then any subalgebra of A is losed under f . This suggeststhe following formulations for equivalene theorems, whih are simple onsequenes of theabove theorems and the lemmas on strong spei�ability at the beginning of this setion.We give one formulation (Theorem 3) for minimal algebras (f. Theorem 1), and another(Theorem 4) for stritly N-standard algebras (f. Theorem 2).Theorem 3. Suppose � is N-standard. Let E be an r.e. onditional equational �-theory,whih in CondEq(�) is onsistent, determines nat and bool and proves NStdAx0(�). Letf = hfA j A 2MinNStdAlg(�;E)i be a family of funtions on MinNStdAlg(�;E).Assume that all sorts of dom(f) other than bool are equality sorts. Then the followingare equivalent:(i) f is �PR� omputable uniformly on MinNStdAlg(�;E);(ii) f is strongly spei�able uniformly on MinNStdAlg(�;E), with hidden sorts andfuntions, by a �nite set of onditional equations whih (together with E) is onser-vative over E in CondEq(�).ACM Transations on Computational Logi, Vol. TBD, No. TBD, TBD TBD.



52Theorem 4. Suppose � is stritly N-standard. Let E be an r.e. onditional equa-tional �-theory, whih in CondEq(�) is onsistent and proves NStdAx0(�). Let f =hfA j A 2 NStdAlg(�;E)i be a family of funtions on NStdAlg(�;E). Then the fol-lowing are equivalent:(i) f is �PR� omputable uniformly on NStdAlg(�;E);(ii) f is strongly spei�able uniformly on NStdAlg(�;E), with hidden sorts and fun-tions, by a �nite set of onditional equations whih (together with E) is onservativeover E in CondEq(�), and suh that the signature of these equations is also stritlyN-standard.Remark (Herbrand-G�odel omputability on N ). The above theorem generalises thelassial equivalene result on N [Kle52℄.10 Conluding remarks and future diretions10.1 Computation on Topologial Data TypesWe have extended the theory of algebrai spei�ations from the world of ountable om-putable algebras to that of all algebras, and espeially metri algebras, by means of abstratomputability theory. Topologial data types and algebrai spei�ations play a funda-mental role in many areas of omputing, inluding semantis and sienti� omputation.Our main theorems onern the transformation of abstrat algorithms to algebrai spe-i�ations and provide some basi tehniques for the theory of speifying and verifyingabstrat omputations. An obvious question is:Under what irumstanes an the onditional equations be replaed by equa-tions in our theory?However, the onverse results on the derivation of algorithms from algebrai spei�-ations need strengthening to provide ompleteness or equivalene theorems. Improvingresults in the reverse diretion is an important problem, as stated in the Introdution.There is muh more to this topi than the results in Setion 9. A key tehnial problemin this area is:To develop general tehniques for solving equations, onditional equations andother algebrai formulae in topologial algebras.In semantis, for example, speial ases of the problem are ommon. Semanti modellingmakes heavy use of �xed-point equations. One thinks of the introdution of metri methodsinto semantis by M. Nivat (see [Niv79, AN80a, AN80b℄), or their use in onurrenytheory by De Bakker and others [dBZ82, dBR92, dBdV99℄. Studies of the methods ofequation solving in ultrametri algebras, inluding equivalene between metri, algebraiand domain-theoreti tehniques, are in Stoltenberg-Hansen and Tuker [SHT88, SHT91,SHT93℄; see also [SHLG94℄.In sienti� omputation, numerial methods are onerned with obtaining omputablesolutions from di�erential and integral equations. Mathematial models of systems in theworld are spei�ed by sets of equations, from whih algorithms are sought to ompute theirACM Transations on Computational Logi, Vol. TBD, No. TBD, TBD TBD.



53solutions and hene to simulate the system. Our main theorems and examples in Setion 5show the opposite: if a system an be approximately simulated on a omputer then thereexist algebrai spei�ations that apture the system's behaviour. Suh results seem tobe new and, in our view, draw loi that help delimit the omputability theory of physialsystems. We onjeture that it is possibleTo show that ertain parts of the theory of numerial approximation of di�erential andintegral equations are speial instanes of a general theory of algebrai spei�ations.This is an exiting and diÆult problem with many obvious appliations.Given the wealth of algorithms and theory in numerial methods, it seems to us thatrelatively little is known about the omputational and logial sope and limits of equa-tions, the lassial mathematial methods of siene. Progress in the area has awaited thereation of stable omputation theories for topologial data types. Over the past deade,omputability theory for topologial spaes and algebras has developed dramatially. Sev-eral general approahes have produed deep results and have been shown to be equivalent.Some approahes are� metri spaes [Mos64℄,� axiomati omputation strutures [PER89℄,� type two e�etivity [Wei00℄,� algebrai domain representability [SHT88, SHT95, Bla97℄,� ontinuous domain representability [Eda97℄,� abstrat omputability [TZ99, TZ00, BSS89℄The equivalene of the �rst �ve approahes is proved in [SHT99℄. The equivalene ofall these with the last one is proved in [Bra97, Bra99, TZ99, TZ01a℄.However, this omputability theory needs to be omplemented by a logial theory whihinludes equation solving in topologial algebras.10.2 Theory of omputable data typesThe theory of algebrai spei�ations of omputable (semiomputable, and osemiom-putable) data types ontains many tehniques for proving speial properties of algebraispei�ations, and showing the equivalene or non-equivalene of spei�ation methods.Can some of these results be generalised? We believe the answer is yes, but not withoutmuh further work. Many results depend on speial tehniques of lassial omputabilitytheory on the natural numbers. The theory for omputable algebras uses representationsby reursive algebras of numbers. It is possible to make a representation theory for topo-logial algebras based on Baire spae N N using the type two e�etivity methods of KlausWeihrauh [Wei00℄. The use of the Diophantine Theorem for r.e. sets is more diÆult:the theory of r.e. sets in abstrat omputability di�ers from the lassial ase, and noDiophantine Theorem is known (even for minimal algebras).Sine abstrat omputability theory is uniform over lasses of algebras, our results onspei�ations are uniform, yielding parameterised spei�ations. As we have seen, this pro-ACM Transations on Computational Logi, Vol. TBD, No. TBD, TBD TBD.
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