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0 Introduction

Abstract computability theory is the theory of computable functions and relations over
many-sorted algebras. It is a generalisation of classical recursion theory on the natural
numbers, based on notions of finite deterministic computation on an arbitrary many-
sorted algebra. An important feature of the theory is its analysis of computations that are
uniform over classes of algebras, and a natural application of the theory is to analyse the
scope and limits of models of computation and specification over abstract data types and
their implementations. Since the 1960s, many abstract models of computation have been
defined and classified, starting with the models of E. Engeler, Y. Moschovakis, H. Fried-
man and J.C. Shepherdson, and generalised Church-Turing Theses for computation and
specification have been formulated and defended [TZ88, TZ92]. Here we will use the model
of computation pPR* (a generalised form of Kleene schemes), which involves simultane-
ous primitive recursion and least number search over a many-sorted algebra augmented
by the booleans, natural numbers and finite sequences of every sort. In [TZ88] the model
pPR* is shown to be equivalent to ‘ while’-array programs over these algebras, the primary
mathematical model of imperative programming.

Working with finite computation on any algebra enables us to develop a number of spe-
cial computability theories for algebras, such as rings and fields of real numbers [Tuc80,
Eng93, BSS89, BCSS96, BCSS97] and topological and metric algebras [TZ99]. For a com-
prehensive introduction to abstract computability, including a survey of its origins in the
1950s and principal literature, see our survey [TZ00].

In this paper we prove theorems that show that functions that are abstractly computable
over many-sorted algebras, or have abstractly computable approzimations on topological
algebras, can be specified by purely algebraic methods, but that the converse does not hold
in the absence of certain topological conditions.

Algebraic specification methods characterise functions as the solutions of systems of
algebraic formulae; normally, the solutions are unique. By algebraic formulae, we mean
equations

or conditional equations
t1(x) =t (x) Ao A t(x) =t(x) — t(x) =t (), (%)
or, more generally, conditional formulae
RiA...ARy — R ()

where the formulae R; and R are generalisations of equations, making use of the distin-
guished sorts nat of naturals and real of reals (as we will see below). To define a unique
solution for a system of equations, in logic one often thinks of definability up to isomor-
phism, and in computing one often thinks in terms of initial algebra semantics (or possibly
final algebra semantics). However, notice that there are many more equational methods,
e.g., for specifying concurrent processes using metric space methods to solve equations
[dBR92, dBAV99], or for computing solutions of differential or integral equations.

3
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In computation over a many-sorted algebra A we use the booleans, natural numbers
and finite sequences over A. With regard to algebraic specifications over such structures,
generalising conditional equations leads to the concept of conditional bounded universal
(BU) equations, in which the formulae R; and R of (x*) may have the form

t1:t2 or Vz<t[t1:t2]

where the variable z and term ¢ are of sort nat.

Conditional BU equations are new and provide us with more appropriate axiomatisa-
tions for some properties using the natural number sort; we show they are equivalent with
conditional equations. The main theorems are first proved for conditional BU equations
and the reduction method applied to obtain conditional equational specifications.

In the first part of the paper, we begin with the “simple” situation where there is a
system FE of conditional equations over a signature X, and a Y-algebra A such that E
has one and only one solution f on A. We call this method of characterising functions
conditional equation definability on A. We address the obvious general question:

Does abstract computability imply conditional equation definability?

The answer is yes, and we show that there exist universal specifications that specify all
computable functions, as follows (Section 5, Theorem 4).

Theorem A (Algebra). Given a signature X and function type T over X, there exists a
finite set of conditional equations F(z) (with a distinguished natural number variable z)
over a finite expansion X' of X, such that for any abstract program a over X, if A is any
Y -algebra and f a total function on A of type T computed by «, then f is defined uniquely
on A by E(k), where k is a numeral instantiating z which is effectively calculable from
«. The system FE(z) is uniformly computable from X and 7.

Applying our abstract computability theory to metric algebras, we can obtain an im-
portant, strictly broader, class of functions: namely, those uniformly approximable by ab-
stractly computable functions. In metric algebras, approximation is elegantly formulated
in terms of the distance function, which uses the sort real. This gives rise to a broader
class of conditional formulae than (x), called conditional equations and inequalities, namely
formulae (#x) in which the formulae R; and R may have the form

t1 =19 or 11 < to
where, in the case of inequality (t; < t2), t; and ty are of sort real.

From Theorem A we then prove (Section 6, Theorem 2):

Theorem B (Metric algebra). Given a signature X' and function type T over X, there
exists a finite set of conditional equations and inequalities FE(z) (with a distinguished
natural number variable z) over a finite expansion X' of X, such that for any abstract
program « over X, if A is any metric Y-algebra and f a total function on A of type T,
approximable by « in the following sense: for all a € A and all n

d(f(a), [o](n,a)) <277,

ACM Transactions on Computational Logic, Vol. TBD, No. TBD, TBD TBD.



4

then f is defined uniquely on A by E(k), where k is a numeral instantiating z which is
effectively calculable from «. The system FE(z) is uniformly computable from X and 7.

Thus, there is a bound B(X, 7) on the number of conditional equations and inequalities
needed to define all computable or computably approximable functions, that depends only
on the signature 3. and the function type 7.

Using Theorem B, we show that all the classically computable functions of real analysis
are unique solutions of finite sets of conditional equations and inequalities. These classically
computable functions have several characterisations, starting with those of Grzegorczyk
[Grzb5, Grz57] and Lacombe [Lach5], and hence are often called GL-computable. The fa-
miliar functions of analysis, such as sinz, €”, log x, etc., are all GL-computable. Now there
exists a certain simple total metric algebra Z¢ over the real unit interval I = [0, 1], such
that the total functions on I which are uniformly approximable by abstractly computable
functions on Z% are precisely the GL-computable functions on I [TZ99, TZ00]. We prove

the following (Section 6, Theorem 3).

Theorem C (Metric algebra over a real interval). For each positive integer m
there is a signature X which is an expansion of the signature of % by finitely many
function symbols, and a finite system of conditional equations and inequalities FE,,(z)
(with a distinguished natural number variable z) over X} | such that any total function

f:10,1]™ — R that is GL-computable, is the unique solution of E(k) for some substitution
of a numeral k for z. The specification (X , E,,(z)) is uniformly computable from m.

Thus there is a bound B(m) on the number of conditional equations and inequalities
needed to define all m-ary GL-computable functions on [0, 1].

The signature X} consists of the sorts of booleans B and naturals N, with their standard
operations; the sort of reals R, with its ring operations, together with division of reals by
naturals; the sort of the unit interval I, with its embedding into R; the sort of finite
arrays on R with their standard operations; the standard metrics on all these sorts; a
“universal function” which approximably abstractly computes all m-ary GL-computable
total functions on I, together with the auxiliary functions used in its computation; the
function 27" used for expressing approximations; and a function for computing bounded
quantification over N.

This theorem has some interesting consequences, one of which we illustrate (Section 6,
Theorem 4):

Corollary. For each n > 0, there is a finite universal algebraic specification, consisting
of conditional equations and inequalities, for all computable finite dimensional dynamical
systems on the unit n-cube and over the unit time interval.

Next we consider the converse problem:

Problem. Find (reasonable) conditions under which algebraic definability implies ab-
stract computability.

From Theorem C it follows that the converse to Theorem A is false, at least for specifi-
cations consisting of conditional equations and inequalities; for example, for the sine and
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cosine functions on the unit interval.

It is an open problem whether the converse of the approximation result (Theorems B
and C) holds. It seems that some extra topological condition such as continuity is required
for a converse result. This suggests an interesting research area; see the example and
discussion in Section 6.3.

In the second part of the paper, we show how the conditional equational theories,
and conditional BU equational theories, can be used with standard algebraic specification
methods associated with proof systems, term rewriting and initial algebra semantics.

Now, when using the booleans, natural numbers and finite sequences, the algebraic
specifications and their initial algebra semantics must define the corresponding standard
models of the booleans, natural numbers and finite arrays. We develop extensions of the
Birkhoftf-Mal’cev Completeness Theorems that underlie the algebraic specification meth-
ods, designed to ensure that these sorts have standard models. Then we prove (Section 8,
Theorems 4 and 5):

Theorem D (Initial algebra). Given a signature X' and function type T over X, there
exists a finite set of conditional equations FE(z) (with a distinguished natural number
variable z) over a finite expansion X' of X, such that for any abstract program « over X, if
«a computes a total function f on A of type 7, and A has an initial algebra specification by
a set E of either conditional equations or conditional BU equations (with hidden sorts and
functions), then (A, f) has an initial algebra specification by a set E'U E(k), where E(z)
consists of conditional equations and k is a numeral instantiating z which is effectively
calculable from a. The system E(z) is uniformly computable from X and 7. Furthermore,
if the specification E of A has e axioms, then the specification of (A, f) is finite, with e + ¢’

axioms, where ¢’ is a constant computed uniformly from 3 and 7.

This paper is part of our series on abstract computability theory on many-sorted algebras
and its applications, starting in [TZ88] and most recently surveyed in [TZ00]. Knowledge
of computation and our studies of computation versus specifications [TZ92, TZ91] and
verification [TZ93] will be helpful, but only our work on topological data types [TZ99] is
necessary.

The subject of this paper is also a generalisation of the theory of algebraic specifica-
tions for computable, semicomputable and co-semicomputable algebras developed by one
of us (JVT) with J.A. Bergstra: see [BT80b, BT80a, BT82, BT83, BT87, BT95] and the
surveys [MG85, SHT95]. However, at least initially, the generalised computability raises
new questions concerning topological data types, uniformity and parameterisation, and
standard models. Knowledge of the theory for computable algebras is not required for this
paper.

In Section 1 we define how to augment structures with the standard sorts of the booleans
and naturals, and finite sequences or arrays over all sorts, together with the corresponding
operations. For the rest of the paper we consider, without loss of generality, only N-
standard signatures and structures with the booleans and naturals.

In Section 2 we introduce a number of proof systems, all based in the calculus of se-
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quents over a many-sorted signature 3. These are systems for (i) first order logic over X
with equality, (i7) conditional equational logic, (éi7) conditional bounded universal (BU)
equational logic, and (iv) conditional standard universal (SU) equational logic. The sys-
tems (i7) and (i2) are subsystems of the classical predicate calculus (i), and are used in
the following sections, while (4v) is an infinitary system introduced for interest.

In Section 3 we define the basic technical notion of a theory uniquely specifying a
function on an arbitrary algebra with hidden sorts and functions. This leads to a simple
notion of specifiable parameterisation which we illustrate by showing how a conditional
equational (or conditional BU equational) specification of a standard structure A can be
extended to a similar specification of the array structure A*. We also show how to “reduce”
a conditional BU equational specification over X' to a conditional equational specification
over an expansion of 3.

In Section 4 we recall the basic notions of computability of functions, including univer-
sality of the yuPR* functions.

In Section 5 we prove Theorem A above, concerning the conditional equational defin-
ability of computable functions.

In Section 6 we prove Theorems B and C, concerning the definability, by conditional
equations and inequalities, of computably approximable functions on metric algebras.

In Section 7 we describe the construction of initial standard models for conditional equa-
tional and conditional BU equational theories, and work out the completeness theorems
for the corresponding proof systems in Section 2. The reduction of a conditional BU equa-
tional specification over X to a conditional equational specification over an expansion of
X is proved for initial models.

In Section 8 we investigate the relationship between computability and algebraic specifia-
bility of functions on initial N-standard algebras, and prove Theorem D. Finally, in Section
9, we consider the converse problem of finding sufficient conditions for algebraic specifia-
bility to imply computability on classes of standard structures. Two equivalence theorems
are proved.

We wish to thank an anonymous referee for some very helpful comments.

1 Many-sorted signatures and algebras

In this section we briefly review concepts defined and discussed in [TZ00, §1], where more
detailed information can be found. Background information on universal algebra can be
found in [MT92, EM85, Wec92].

1.1 Basic definitions

A signature X (for a many-sorted algebra) is a pair consisting of (i) a finite set Sort(X)
of sorts, and (i7) a finite set Func (X) of (primitive) function symbols, each symbol F
having a type s1 X -++ X Sy, — S, where s1,...,8,,5 € Sort(X); in that case we write
F: s1x:- %58y, — s, with dom(F) =4 s1 X --- X 8p,. (The case m = 0 corresponds
to constant symbols.)
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A XY-product type has the form uw = s34 X --- X s, (m > 0), where sq,...,8,, are
Y-sorts. We use the notation u,v,w,... for X-product types.

A Y -algebra A has, for each sort s of X, a non-empty carrier set A, of sort s, and for
each Y-function symbol F :u — s, a function F4: A® — A, (where, for the X-product
type u = s1 X -+ X 8, we write A" =g Ag x - X A ).

Given an algebra A, we sometimes write X(A) for its signature.

The algebra A is total if F4 is total for each X-function symbol F. Without such a
totality assumption, A is called partial.

In this paper we deal with total algebras, except in §8.4.

We will also consider classes K of X-algebras. A X-adt (abstract data type) is defined
to be any such class, closed under X-isomorphism. In particular, Alg(3’) denotes the class
of all X-algebras.

Examples. (a) The algebra of booleans has the carrier B = {i, f} of sort bool. It can
be displayed as follows:

algebra B signature X(B)

carriers B sorts bool

functions tt,ff: — B, . . functions true, false : — bool,
andB,or% : B* — B with signature and, or : bool? — bool
not’ : B — B not : bool — bool

end end

For notational simplicity, we will usually not distinguish between function names in the
signature (true, etc.) and their intended interpretations (true® = t, etc.)

(b) The algebra N of naturals has a carrier N of sort nat, together with the zero constant
and successor function:

algebra Ny

carriers N

functions 0: — N,
S:N—>N

end

(¢) The ring R of reals has a carrier R of sort real:

algebra Ro

carriers R

functions 0,1: — R,
+,x:R? 5 R,
—R—>R

end

We make the following assumption about the signatures .
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Instantiation Assumption. For every sort s of 3, there is a closed term of that sort,
called the default term 6° of that sort.

This guarantees the presence of default values 6% in a Y-algebra A at all sorts s, and
default tuples % at all product types w.

1.2 Some definitions

Definition 1 (Subalgebra). Given Y-algebras A and B, we say that B is a X-subalgebra
of A (written B < A) iff (i) for all X-sorts s, Bs C A,, and (i) for every X-function
symbol F', FB = F4 | B.

Definition 2 (Expansions and reducts). Let X and X’ be signatures with X’ C X',

(a) If A" is a X'-algebra, then the X-reduct of A’, A’|x, is the algebra of signature X,
consisting of the carriers of A’ named by the sorts of X and equipped with the functions
of A’ named by the function symbols of X.

(b) If Ais a X-algebra and A’ is a Y.'-algebra, then A’ is a X'-expansion of A iff A is the
Y-reduct of A’.

(c) If K' is a X'-adt, then K|y is the class of X-reducts of algebras in K’.

1.3 Adding booleans: Standard signatures and algebras

Recall the algebra B of booleans (Example (a) in §1.1).

A signature X' is called standard if (i) X(B) C X; (i) the Y-function symbols include
a conditional

if : bool x 2 — s

for all sorts s of X other than bool; and (ii7) the X-function symbols include an equality
operation

eqs : s> — bool
for all s € EqSort(Y), where EqSort(X) C Sort(X) is the set of X-equality sorts.

Given a standard signature X, a X-algebra A is standard if (i) it is an expansion of B;
(74) the conditionals have their standard interpretation in A, i.e., for b € B and z,y € A,

x if b=+t

if.(b.z.y) —
s (b, 2, y) {1/ it b=F;

and (4i7) the equality operator eqy is interpreted as identity on each X-equality sort s.

Note that any many-sorted signature X' can be standardised to a signature x5 by ad-
joining the sort bool together with the standard boolean operations; and, correspondingly,
any algebra A can be standardised to an algebra A% by adjoining the algebra B and the
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conditional ify at all Y-sorts s, and the equality operator eqs at the specified equality
sorts:

algebra AP
import A, B
ifs :Bx A2 — A, (s € Sort(Y)),
eqs : A2 > B (s € EqSort(X))
end

Thus the standardisation of a X-algebra A depends on the specification of EqSort(Y).
These will be the sorts for which an equality test is considered to be “computable” in some
sense.

Examples. (a) The simplest standard algebra is the algebra B of the booleans.

(b) The standard algebra of naturals A is formed by standardising the algebra Ny (Ex-
ample (b) in §1.1) with nat as an equality sort, and, further, adjoining the order relation
lessnat as a boolean-valued operation on N:

algebra W

import No, B

functions ifpat : B x N? — N,
€qnat, 1€SSnat : N2 5 B

end

(¢) The standard algebra R of reals is formed similarly by standardising the ring Rq
(Example (¢) in §1.1), with real not an equality sort. In fact, neither the equality nor
the order relation on R is included as an operation on real. (The significance of this is
discussed later; c¢f. Remark 3 in §5.3.)

Std Alg (Y) denotes the class of all standard X-algebras.

1.4 Adding counters: N-standard signatures and algebras

A standard signature X is called N-standard if it includes (as well as bool) the numerical
sort nat, and also function symbols for the standard operations of zero and successor, as
well as the conditional and equality and order on the naturals:

0: — nat
S: nat — nat

ifnat : bool x nat — nat
€qnat : Nat?> — bool
lesspat : nat? — bool.
The corresponding X-algebra A is N-standard if the carrier Anat is the set of natural
numbers N= {0,1,2, ... }, and the standard operations (listed above) have their standard

interpretations on N.
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Note that any standard signature X can be N-standardised to a signature X~ by ad-
joining the sort nat and the operations 0, S, eqnat, lessnat and ifnat. Correspondingly, any
standard X-algebra A can be N-standardised to an algebra AN by adjoining the carrier N
together with the corresponding standard functions:

algebra AN
import A, N
end

Examples. (a) The simplest N-standard algebra is N/ (Example (b) in §1.3).
(b) The N-standard algebra R™ of reals is formed by N-standardising the standard real
algebra R (Example (¢) in §1.3).

NStdAlg (X)) denotes the class of all N-standard X-algebras.

N-standardness Assumption. We will assume throughout this paper that the signa-
tures and algebras are N-standard, except where stated otherwise.

We also consider a notion stricter than N-standardness.

1.5 Strictly N-standard signatures and algebras

An N-standard signature X is strictly N-standard if the only operations of X with range
sort nat or bool are the standard numerical operations 0, S, ifnat €qnat, lessnat (§1.4) and
the boolean operations true, false, and, or, not (§1.1). An algebra is strictly N-standard if
its signature is.

Remarks.
(1) Any N-standardised signature and algebra are automatically strictly N-standard.

(2) A strictly N-standard signature has no equality sorts other than nat.

(3) Any subterm of a term of sort nat or bool of a strictly standard signature is itself
of sort nat or bool. (Proved by structural induction on the term.)

The notion of strict N-standardness will be used in Section 9.

1.6 Adding arrays: Algebras A* of signature X*

The significance of arrays for computation is that they provide finite but unbounded mem-
ory.

Given a standard signature X, and standard Y-algebra A, we expand Y and A in two
stages:
(1°) N-standardise these to form 3~ and AV, as in §1.3.

(2°) Define, for each sort s of X, the carrier A% to be the set of finite sequences or arrays

*

a* over Ag, of “starred sort” s*.
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The reason for introducing starred sorts is the lack of effective coding of finite sequences
within abstract algebras in general. (Note that, for simplicity, our definition excludes a
starred sort nat*, which would be redundant.)

The resulting algebras A* have signature X*, which expands >N by including, for each
sort s of X', the new starred sort s*, and also the following new function symbols:

(1) the operator Lgthg: s* — nat, where Lgth(a*) is the length of the array a*;

(74) the application operator Apg: s* X nat — s, where

a*[k] if k < Lgth(a*)

0’ otherwise

Ap'(a*, k) {

where §° is the default value at sort s guaranteed by the Instantiation Assumption (§1.1)%;

*

(747) the null array Nulls : s* of zero length;

(iv) the operator Update, : s* x nat x s — s*, where Update?(a*,n,z) is the array

b* € A% of length Lgth(b*) = Lgth(a*), such that for all k¥ < Lgth(a*)

bk — {a*[k] if k#n

T if k=n

(v) the operator Newlength, : s* x nat — s*, where Newlength?(a*,m) is the array b*
of length m such that for all £ < m,

bl = {a*[k] if k< Lgth(a)
6% if Lgth(a®) <k<m

(vi) the conditional on A% for each sort s; and

(vii) the equality operator on A* for each equality sort s.
Note that A* is an N-standard X*-expansion of A.

The justification for (vii) is that if a sort s has “computable” equality, then clearly so
has the sort s*, since it amounts to testing equality of finitely many pairs of objects of sort
s, up to a computable length.

2 Proof systems and theories for »-algebras

To reason about computations, we choose a first-order language based on 3 as a specifi-
cation language.

Note, in this connection, that the operations in 3 are used for computation. In par-
ticular, boolean-valued operations are used for tests in computations. By contrast, for
specification and reasoning about these algebras, we may add predicates to the language,

1We assume that a*[k] is undefined for k& > Lgth(a*).
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which are not, in general, computable or testable. For example, our specification language
will include the equality predicate at all sorts (as we will see), whereas only the equality
sorts s have the “computable” equality operator eqs (§1.3). In writing specifications on
the reals we may also add the ‘<’ predicate (again, not computable, at least if defined to-
tally), as we will do later (§5.3) for the specification of approximable computability. Note
that these predicates added to the language do not form part of the signature. Intuitively,
think of the equality operation as a “computable” boolean test, but the equality predicate
as a “provable” assertion of equality between two terms.

So let Lang(X)) be the first order language over the signature Y, with the equality
predicate at all sorts. The syntax of Lang(Y) is generated as follows. For each X-sort s
there are countably many wvariables of sort s, denoted a, b, ..., x,y, ... . Next, for each
Y-sort s, there are terms of sort s, generated from variables and the function symbols of
2} according to the standard typing rules. We write ¢° or t : s if ¢ is a term of sort s,
and, for a product type u = s1 X - -+ X s,,,, we write ¢ : u if ¢ is a u-tuple of terms, i.e., an
m-tuple of terms of type s X -+ X s,.

The atomic formulae of Lang(X'), then, are equations (t; = t¢3) between terms of
sort s, for all X-sorts s (whether equality sorts or not), and the propositional constants
true and false. Formulae of Lang(X') are built up from these by the logical connectives
A, V, —, =, and the quantifiers V, and d, for all sorts s of 3.

We will consider (in the following four subsections) four formal systems in Lang(X),
conveniently formulated as sequent calculi. The first is our basic system FOL(X), full first
order logic with equality over Y. The next two are subsystems of this, which will be used
in Section 7. The final system is a subsystem of FOL(XY'), extended by an infinitary proof
rule.

Background information on sequent calculus proof systems can be found in [Tak87].

Note that we do not assume (N-)standardness of X' in subsections 2.1 and 2.2 (only)
below.

2.1 FOL(XY): Full first order logic with equality over ¥

This can be formulated in a system LKe(XY'), which is an adaptation to the many-sorted
signature X of the systems LK and LKe of [Gen69, Tak87]. The atomic formulae are
equations at all X-sorts.

A sequent of LKe(X) is a construct of the form I' ~—— A, where I' and A are each finite
sequences of formulae of Lang(Y).

Derivations (of sequents) are then constructed from certain specified initial sequents
(“axioms”) by means of specified inference rules.

The system LKe can be augmented in two ways:

(a) Adding azioms of a theory, or rather all substitution instances of these, as initial
sequents;

(b) Adding induction for a class C of formulae (in case X is N-standard), in the form of

ACM Transactions on Computational Logic, Vol. TBD, No. TBD, TBD TBD.



13

the inference rule

['—s A, F(0)  F(a),IT—s A, F(Sa)

-Ind(X) :
C-Ind () [, I A, A, F (1)

where the induction variable a has sort nat, and the induction formula F'(a) belongs to
the class C. We write Ind(X) for full Y-induction, i.e., where C is the set of all first-order
XY -formulae.

We will also be interested in the “intuitionistic” version C-Ind; of C-Ind, in which the
sequences A and A above are empty.

Analogous augmentations can be made for the other systems considered below.

In the next three subsections we will consider three further systems, the first two of which
are subsystems of FOL(X) and the third of which is a subsystem of FOL(X) augmented
by an infinitary w-rule. These subsystems are, in fact, also subsystems of Lle(X'), which
is an adaptation to X of the “intuitionistic” system LJe (loc. cit.), in which the sequents
have only one formula on the rhs. (When we are working with these subsystems, the
scheme C-Ind will consist of intuitionistic sequents, so that the sequences A and A above
are empty.)

2.2 CondEq(Y): conditional equational logic over X

A conditional equation is a formula of the form
PiA...AP, > P (%)

where n > 0 and P; and P are equations. A conditional equational theory is a set of such
formulae (or their universal closures). An equational sequent is a sequent of the form

P,....P, — P

where n > 0 and P; and P are equations. This sequent corresponds to the conditional
equation (x).

The initial sequents are all substitution instances of the Y-equality axioms (expressing
that equality is a congruence relation with respect to X'), and the inferences are structural
inferences, atomic cuts and substitution of terms for free variables in sequents.

2.3 CondBUEq(X): Conditional BU equational logic over X

A BU (bounded universal) quantifier is a quantifier of the form ‘vz < ¢’, where z : nat and
t : nat. (The most elegant approach is to think of this as a primitive construct, with its
own introduction rule: see below.) A (X-)BU equation is formed by prefixing an equation
by a string of 0 or more bounded universal quantifiers. A conditional BU equation is a
formula of the form

Q1N NQy —Q (xx)

ACM Transactions on Computational Logic, Vol. TBD, No. TBD, TBD TBD.



14

where n > 0 and Q; and (Q are BU equations. A conditional BU equational theory is a set
of such formulae (or their universal closures). A BU equational sequent is a sequent of the
form

Ql: ey Qn L Q
where n > 0 and @); and () are BU equations. This sequent corresponds to the conditional
BU equation (xx).

The system CondBUEq(X) consists of BU equational sequents. The initial sequents are
the Y-equality axioms, as before, plus the boundedness axioms

BddAx(X): P0),...,P(n—1) > Vz < kP(z)

for all X-equations P and all n € N, where n is the numeral for n, i.e., the term S...S0
(n times ‘S’). The only inferences are structural inferences, cut, substitution, and the rules
for the BU quantifiers:

N—s<t Q(s),A—Q ViR a<tIl+— Qa)
b

Vol : Vz < tQ(z), A — Q T Vz <tQ(z)

where s and t are terms of sort nat, ‘s < t’ stands for ‘lessnhat(s,t) = true’, and the
variable a : nat is the ‘eigenvariable’ of the inference VyR, which does not occur in the
conclusion of that inference.

Remark (Boundedness axioms). The boundedness axioms BddAx(X') hold (of course)
in N-standard models. We remark here that they are derivable in FOL(Y) from the N-
standardness axioms NStdAxg(X) (a set of conditional equations defined in §7.2), plus the
single formula

21 <Szyg — 21 <2y V 21 = 29

which is, however, not a conditional BU equation. This formula is derivable, in turn, in
FOL(X) + QF-Ind(X) (induction for quantifier-free formulae), from NStdAxq(X). It is not
clear whether the boundedness axioms are derivable in conditional BU equational logic
alone from NStdAxq(X'), which is why we are adding them as axioms.

2.4 CondSUEq,(X): Conditional SU equational logic over X

The final two systems that interest us, in this and the next subsection, are not subsystems
of LKe, but infinitary systems. They will be used for another illustration of a Malcev-type
theorem for N-standard algebras (see Section 6, Theorem 4). However they will not be used
in the investigation of the relationship between computability and algebraic specifiability
in Section 8.

A (X-)SU (standard universal) equation is formed by prefixing an equation by a string
of 0 or more universal quantifiers of sort nat. A conditional SU equation is a formula of
the form

RiNn...NR,, — R (%)
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where n > 0 and R; and R are SU equations. A conditional SU equational theory is a set
of such formulae (or their universal closures). An SU equational sequent is a sequent of
the form

Ry,....R, — R
where n > 0 and R; and R are SU equations. This sequent corresponds to the conditional
SU equation ().

The system CondSUEq, (X) contains SU equational sequents. It contains the equality
axioms and the following inferences: the structural inferences, cut, and the following rules
for the universal number quantifier (where £ : nat):

R(t),T —s R
VzR(z),I' — R

... '— R(n) ... (allneN)

vl [+ VzR(z)

VoR:

(%)
Note that the rule V, R is actually an nfinitary w-rule.

2.5 FOL,(X): full first-order logic with equality and an w-rule over ¥

This modifies the system FOL(X') (§2.1) by replacing the usual universal number quantifier

rule YR by the infinitary rule V,R (§2.4), with also the corresponding rule 3,L dually.

We omit details, except to point out that FOL + Ind(X) can easily be interpreted in it.
We write Eq(XY), BUEq(X) and SUEq(X) for the classes of equations, BU equations

and SU equations (respectively) over 3.

2.6 Conservativity lemmas

One reason for the importance of (finite or infinite) conditional equational logic lies in
the following lemmas. First we need a definition which will be given again in context in
Section 7. Let F be a formal system (typically CondEq(X) or CondEq, (X)), and let T
be a theory over X' (typically a conditional equational or w-conditional equational theory).
We say that T determines nat in F if every closed term of sort nat is, provably in F from
T, equal to a numeral.

(1) (FOL over CondEq.) Let E be a X-conditional equational theory, and let I' — P
be a Y-equational sequent. Then I' —— P is provable from E in FOL(XY) if, and only if,
it is provable from F in CondEq(Y).

(2) (FOL + Ind over CondEq.) Let E be a X-conditional equational theory which de-
termines nat in CondEq(X), and let T'—— P be a closed Y-equational sequent. Then
I' — P is provable from F in FOL(X) + Ind(X) if, and only if, it is provable from F in
CondEq(X).

(3) (FOL 4 Ind over CondBUEq.) Let F' be a X-conditional BU equational theory which
determines nat in CondBUEq(XY), and let I' w— @ be a closed X-BU equational sequent.
Then I' —— @ is provable from F' in FOL(X) + Ind(X) if, and only if, it is provable from
F in CondBUEq(X).

(4) (FOL, over CondSUEq,.) Let G be a X-conditional SU equational theory over X
which determines nat in CondSUEq,(X), and let T'— R be a closed X-conditional SU
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equational sequent. Then T' — R is provable from G in FOL,(Y) if, and only if, it is
provable from G in CondSUEq, (X).

All four lemmas can be proved by cut elimination. We omit proofs, except to note briefly
that the two conditions, that E determines nat and that I' —— P is closed, are used in
(2) and (3) to eliminate induction inferences, and in (4) to eliminate cuts of formulae
universally or existentially quantified over nat.

Remarks. (1) These conservativity lemmas (at least for simple equations) also follow
from the Birkhoftf-Mal’cev-type completeness theorems 1 4 in Section 7.

(2) Infinitary systems come into their own when reasoning about infinite objects such as
infinite streams of data. Some applications in this direction, using a related infinitary
system (CondEqy,), are given in [TZ01b].

3 Specifiability of functions by theories
3.1 Specifiability over algebras and over classes of algebras

Recall from Section 2 that Lang(X') is the first order language over X, with equality as
the only predicate at all sorts.

A Y-theory is just a set T of formulae in Lang(XY'). The arioms of T are the formulae in
T. We will be particularly interested in theories T satisfying certain syntactic conditions;
for example, T might be a set of conditional equations. This is considered more carefully
in Section 7.

We are also interested (when X is N-standard) in classes K of the N-standard models
of such X-theories: K = NStdAlg(X,T) C NStdAlg (X). In this case we say also that
(X,T) is an (N-standard) specification for the adt K.

Assume, for the rest of this section, that X, X' and X" are N-standard signatures with
Y c X cXx". Also, Ais an N-standard X-algebra and A’ is an N-standard X'-algebra.
Also, T is a X-theory, T is a X'-theory and T" is a X" -theory.

Note that any expansion of a standard algebra is also standard, and any expansion of
an N-standard algebra is also N-standard.

Definition 1. Let A} and A} be two X'-algebras with A} | » = A} | 5. Then A} and Aj
are X' /3 -isomorphic, written A} =g, 5 A, if there is a 3'-isomorphism from A to A
whose restriction to X' is the identity on A | 5.

Definition 2. Suppose A’ is a X'-expansion of A. We say that (X', T") specifies A" over
A iff A’ is the unique (up to X’ /X-isomorphism) X'-expansion of A satisfying T'; in other
words:

(i) A" =T'; and
(i7) for all X'-expansions B’ of A, if B’ =T’ then B’ Sy Al
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We will occasionally write: “T” specifies A’ over A” instead of “(X',T") specifies A’
over A”.

An important special case of Definition 2 is the following.
Definition 2f. Suppose X' = X U {f}. We say that (X', T') specifies f over A iff

f is the unique (up to X'/X-isomorphism) function on A (of the type of f) such that
(A, f) =T

Definition 3. Suppose A’ is a X’'-expansion of A. We say that (X", T") specifies A’
over A with hidden sorts and/or functions iff A’ is the unique (up to X’/X-isomorphism)
Y'-expansion of A such that some X" -expansion of A’ satisfies T"'; in other words:

(i) A"is a X'-reduct of a X"'-model of T”; and
i1) for a -expansions B’ of A, i is a X'-reduct of a standar -model o ,
1) fi nx i B’ of A, if B i Y'-red f dard X" del of T
then B, gZI’/ZI A,.
Again, an important special case:
Definition 3f. Suppose X' = X U {f}. We say that (X", T") specifies f over A with

hidden sorts and/or functions iff f is the unique function on A (of the type of f) such that
some X'-expansion of (A, f) satisfies T".

Definition 4. An operator ® : NStdAlg (X)) — NStdAlg(Y') is expanding (over X))
iff for all N-standard X-algebras A, ®(A) is a X'-expansion of A, i.e., ®(A)| x = A.

Example. The array construction A — A* is an expanding operator.

Assume further, for the rest of this section, that ® : NStdAlg (X)) — NStdAlg(X')
is an expanding operator over X, and that K C NStdAlg (X).

Notation. (1) We will write A% for ®(A).

(2) We write K® for (the closure w.r.t. X’-isomorphism of) the class {A® | A € K} C
NStdAlg(S').

Definition 5.
(@) (X', T") specifies ® uniformly over K iff for all A € K, (X', T") specifies A® over A.

(b) (X', T) specifies ® uniformly over X iff (X', T") specifies ® uniformly over
NStdAlg (%).

Proposition 1. Suppose (X', T") specifies ® uniformly over K.
(i) For AcK, A=T < A*=T+T.
(i) If K = NStdAlg(5,T), then K® = NStdAlg(%', T +T').
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Definition 6.

(a) (X", T") specifies ® uniformly over K with hidden sorts and/or functions iff for all
A €K, (X", T") specifies A® over A with hidden sorts and/or functions.

(b) (X", T") specifies ® uniformly over X with hidden sorts and/or functions iff (X", T")
specifies ® uniformly over NStdAlg (X') with hidden sorts and/or functions.

Proposition 2. Suppose (X", T") specifies ® uniformly over X with hidden sorts and/or
functions.

(i) ARET <= A% isa X' -retract of a X''-model of T +T".
(ii) If K= NStdAlg(X,T), then K® = (NStdAlg(X", T +T"))| 5.

Interesting special cases of the above notions, in which the theories T', T” and T" are
subject to certain syntactic conditions, are considered below (§3.3) and in Section 7. First
we give an important example of a specification of an expanding operator.

We write conditional equational specification and conditional BU equational specification
for specifications in which the formulae are all conditional equations and conditional BU
equations, respectively.

3.2 Conditional BU equational specification of the array construction

Let ArrAx(X') be the following set of axioms in A (dropping sort subscripts):

Lgth(Null) = 0,
lessnat(z, Lgth(a)) = false — Ap(a,z) = 4,
Lgth(Update(a, z, x)) = Lgth(a),
ednat(z,2z¢) = false — Ap(Update(a, zp, x),z) = Ap(a, z),
lessnat(z, Lgth(a)) = true — Ap(Update(a, z, x),z) = x,
Lgth(Newlength(a, z)) = z,
lessnat(z,z1) = true  —  Ap(Newlength(a, z1),z) = Ap(a, z),
Lgth(a;) = Lgth(as) A Vz < Lgth(a;) [Ap(al,z) = Ap(ag,z)] —  a; = as.

The last axiom relates equality on s* to equality on s, for all equality sorts s except nat
(since there is no starred sort nat*, as explained in §1.6).

Note that all the axioms of ArrAx(X') are conditional equations, except for the last one,
which is a conditional BU equation!

Theorem 1. The specification (X*, ArrAx(X')) specifies the array construction A — A*
uniformly over X.

Proof (outline): Given an N-standard XY-algebra A, and a X-sort s, the axioms for
‘Null’; ‘Newlength’ and ‘Update’ guarantee that at least all the “standard” arrays over A,
are present (or can be “constructed”). On the other hand, the axiom for array equality
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guarantees that there are no “non-standard” arrays, i.e., no elements of A% other than
these. [

This array specification will be considered again, from the viewpoints of specification of
pPR* computations (§5.2), and initial algebra specifications (§8.2).

3.3 Reducing conditional BU to conditional equational specifications

Theorem 2 (BU elimination). Let X C X', let A’ be a X'-expansion of A, and let
F be a conditional BU equational X'-theory which specifies A’ over A. Then there is an
expansion X" of X’ by function symbols, and a conditional equational X" -theory E which
specifies A" over A, with hidden functions. If F' contains q occurrences of BU quantifiers,
then X" expands X' by q new function symbols. Moreover, if F' is finite, with e axioms
(say), then so is E, with e + 4q axioms.

Proof: The idea is to incorporate in the signature, for each BU quantifier occurring in
F, a characteristic function for that quantifier, or (expressed differently) a function which
computes that quantifier. Consider (for notational simplicity) the case of an equation with
a single BU quantifier

Vz < s(x) [ti(z,x) = ta(z, x)]. (%)

with x : u. (In the general case, we “eliminate” the quantifiers successively, from the inside
out.) We adjoin, for each such BU quantifier (%) occurring in F', a boolean-valued function
symbol

f: nat xu — bool

intended to satisfy in A
f(n,z) =true <= Vz <nlti(z,2) = t2(z,)].

for all n € N, x € A". This interpretation is imposed on f by adjoining to F' the following
axioms giving the inductive definition for f:

f(0,x) = true
f(z,x) = true Ati1(z,x) =1t2(z,x) — f(Sz,x) = true
(%)
f(Sz,x) = true — f(z,x) = true
f(Sz,x) = true — t1(z,x) = ta(z, x)
and replacing () in F' by
f(s(x),x) = true. (skkk )

In this way we replace F' by a conditional equational X"-theory E, with the stated prop-
erties. [

Note that if F' contains infinitely many occurences of BU quantifiers, then X" contains,
correspondingly, infinitely many new function symbols, which is (strictly speaking) not
allowed by our definition of signature, although it is harmless enough here.
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We will return to this topic in the context of initial algebra specifications in §7.7.

4 Computable functions

In this section we consider various notions of computability over abstract algebras. (An
equivalent approach, using an imperative model of programming featuring the ‘ while’ con-
struct, was developed in [TZ88, TZ00] where the equivalence of these two approaches are
explained.) In §4.1 two computability classes are introduced. In §4.2 two more classes are
formed by adjoining the p operator to these.

4.1 PR(Y) and PR*(X) computable functions

Given an N-standard signature Y, we define PR schemes over Y which generalise the
schemes for primitive recursive functions over N in [Kle52]. They define (total) functions f
either outright (as in the base cases (i) (i¢) below) or from other functions (g,..., h,...)
(as in the inductive cases (ii7) (v)) as follows:

(a) Basic schemes: Initial functions

(1) Primitive X -functions:

flz) = F(z)

flz) = ¢
of type u — s, for all the primitive function symbols F': © — s and constant symbols
c of X, where z : u.

(13) Projection:

of type u — s;, where x = (x1,...,%y,) is of type u =81 X -+ X S
(b) Inductive schemes:
(131) Composition:
f(z) = h(g1(x),...,gm(x))
of type u — s, where ¢g;: u —s; (i=1,...,m) and h: s1 X -+ X $§, = .

(iv) Definition by cases:
o) {x if b=t
POBI = Vy it b=*

of type bool x 52 — s.

(v) Simultaneous primitive recursion on N: This defines, on each A € NStdAlg (X)), for
fixed m > 0 (the degree of simultaneity), n > 0 (the number of parameters), and
product types u and v = §1 X <+« X Sy, an m-tuple of functions f = (f1,..., fm)
with f; : nat x u — s;, such that for all x € A* andi=1,...,m,

f,L-(O,.’E) = gl(x)
filz+ 1,2) = hi(z,z, f1(z,2),..., fm(2,2))
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where ¢;: u—s; and h;:nat X uxv— sy (i=1,...,m).
Note that the last scheme uses the N-standardness of the algebras, i.e. the carrier N.

For details of the syntax and semantics of PR schemes, see [TZ88, §4.1.5], from which
it can be seen that a scheme for a function contains (hereditarily) the schemes for all the
auxiliary functions used to define it.

In the context of algebraic specification theory, it often turns out to be more convenient
to work with PR derivations instead of PR schemes. A PR derivation is, roughly, a “linear
version” of a PR scheme, in which all the auxiliary functions are displayed in a list. More
precisely:

Definition (PR derivation). A PR(Y) derivation « is a list of pairs

a = ((fo.00), (fr,01), - (fn,0n)) (%)

of functions (actually function symbols) f; and PR schemes o; (i = 1,...,n) where for
each ¢, either f; is an initial function, or f; is defined by «a; from functions f;, for certain
j < 1. The derivation « is said to be a PR derivation of f,, with auxiliary functions
fos---, fn_1. The type of « is the type of f,,.

Notation. A PR(XY),_s scheme (or derivation) is a PR(X) scheme (or derivation) of
type u — s.

Remarks. (1) The formalism of PR(XY) derivations is equivalent to that of PR(X)
schemes: from a PR scheme we can derive an equivalent PR derivation by “linearising”
the subschemes, and conversely, given the derivation (x), the scheme o, is equivalent to
it. Below, we will usually work with derivations.

(2) A PR(Y),_,, derivation a: u — s defines, or rather computes, a function f4: A% —

A,, or, more generally, a family of functions {f2 | A € NStdAlg (¥)} uniformly over
NStdAlg (X).

(3) We assume a standard Godel numbering of PR(X') derivations, writing "o for the
Godel number of derivation a.

It turns out that a broader class of functions provides a better generalisation of the
notion of primitive recursiveness, namely PR* computability. A function on A is PR*(Y)
computable if it is defined by a PR derivation over X*, interpreted on A* (i.e., using
starred sorts for the auxiliary functions used in its definition).

4.2 pPR(X) and puPR*(Y) computable functions

The pPR schemes over X are formed by adding to the PR schemes of §4.1 the inductive
scheme:

(vi) Least number or p operator:
f(z) ~ pzlg(e, 2) = t]
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of type u — nat, where g : u x nat — bool is uPR. Here f(x) | z if, and only if,
g(z,y) | f for each y < z and g(x, 2) | t.

Note that this scheme also uses the N-standardness of the algebra. Also, uPR computable
functions are, in general, partial. We use the notation f(x) | y to mean that f(z) is

‘

defined and equal to y. The notation ‘~’" means that the two sides are either both defined
and equal, or both undefined. The schemes for composition and simultaneous primitive
recursion are correspondingly re-interpreted to allow for partial functions.

These schemes generalise the schemes given in [Kle52] for partial recursive functions
over N.

As before, we can define the concepts of uPR(X') derivations and uPR(X) computability.
Again, a broader class turns out to be more useful, namely uPR* computability. This

is just PR* computability with pu.

Notation. PR(A) is the class of functions PR computable on A, and PR(A),_s is the
subclass of PR(A) of functions of type u — s. Similarly for PR*(A), uPR(A), etc.

There are many other models of computability, due to Moschovakis, Friedman, Shep-
herdson and others, which turn out to be equivalent to uPR* computability: see [TZ00, §7].
All these equivalences have led to the postulation of a generalised Church-Turing Thesis
for deterministic computation of functions, which can be roughly formulated as follows:

Computability of functions on many-sorted algebras by deterministic algorithms
can be formalised by pPR* computability.

4.3 Equivalent imperative programming models of computation

In [TZ00] we investigate computation on many-sorted X-algebras, using imperative pro-

gramming models: While(X'), based on the ‘while’ loop construct over X, For(X),
based similarly on the ‘for’ loop, and While*(X) and For*(Y), which use arrays, i.e.,
auxiliary variables of starred sort over .

Writing While(A) for the class of functions While-computable on A, etc., we can
list the equivalences between the “schematic” and “imperative” computational models as
follows.

Theorem.
(i) PR(A) = For(A)
(ii) PR*(A) = For*(A)
(iti) uPR(A) = While(A)
(iv) pPR*(A) = While*(A),
in all cases, uniformly for A € NStdAlg (X).

These results are all stated in [TZ00], and can be proved by the methods of [TZ88].
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4.4 Universal Function Theorem for yPR*

The following is a uniform version of a theorem proved in [TZ00, §4.9] (using the equivalent
formalism of While* programs):

Theorem. For any YX-function type u — s, there isa pPR*(X) derivation v : nat X u —
which is universal for pPR*(Y) derivations of type u — s.

In other words, we can enumerate all the uPR* derivations of type u — s:
G, 1, G2, ...

so that, putting
A
(,0;4 =df fai:Au — AS

and
Univ? ,, = f1:Nx A" > A,
we have
Univ;‘es(i? a) = 9024 (a)

for all A € NStdAlg (¥) and i =0,1,2,....

Remarks (Canonical forms of uPR* derivations). (1) From the construction
of the universal pPR*(X),_s derivation v [TZ00, §4], it can be seen that v uses the
p-operator exactly once.

(2) For any puPR*(X),_s derivation a, the universal derivation v: nat x u — s provides
an equivalent canonical or normal form derivation ¢, such that fg = fﬁ for all N-standard
Y-algebras A. This canonical derivation is formed in a simple way from v, essentially by

substituting the Godel number "o of a for the distinguished nat variable of v, so that
for all N-standard A,

This is, in fact, a generalisation to NStdAlg (X) of Kleene’s Normal Form Theorem for
(essentially) puPR(N) [Kle52].

(3) From the constructions in (1) and (2) it follows that & also uses the p-operator exactly
once, and in such a way that for any N-standard A,
4 is total if, and only if, this application of the u-operator is total on A.

«

5 Algebraic specifications for computable functions

We will consider functions f computable on a Y-algebra, by PR and pPR* derivations,
and show that they are algebraically specifiable by conditional equational, and conditional
BU equational, theories.

We will also consider, in the context of metric algebras (i.e., algebras with metrics
such that the functions in the signature are continuous) a broader class of functions than

ACM Transactions on Computational Logic, Vol. TBD, No. TBD, TBD TBD.



24

puPR* computable, namely those functions uniformly approzimable by pPR* computable
functions, and show that such functions are specifiable by conditional equations and in-
equalities, which are conditional formulae built up from inequalities (#; < t2) on the reals
as well as equations (t; = t3) between terms of the same sort.

5.1 Algebraic specifications for PR computable functions

Let X be an N-standard signature. For each PR(XY) derivation «a, there is a finite set
E, of “specifying equations” for the function f, as well as the auxiliary functions ¢g =
(91,---, 9k, ), defined by a.

The set F, consists of equations in an expanded signature X, = XY U {g,,f,}, where
8« = 8a1r--s8ak, It is defined by course of values induction on the length of the
derivation «, with cases (i) (v) (§4.1) according to the last scheme in a. In fact, E, is
formed by adjoining, in each case, specifying equation(s) like those shown for that case
in §4.1. These are simple (i.e., not conditional) equations; for example, in the case (iv)
definition by cases, there are two equations:

f(true, x,y) = x
f(false,x,y) = y

and in the case (v) simultaneous primitive recursion, there are 2m equations (where m is
the degree of simultaneity):

f:(0, %) = g(x)
fi(z+ 1, x) = hi(z, %, fi(z,%),...,fn(z,x))

for i=1,...,m.

Thus we have an effective map « — (X,, Ey) from PR(Y) derivations to (simple)
equational specifications.

Now for each PR derivation a and N-standard X-algebra A, let 2 be the function on
A computed by a, and let g4 be the corresponding auxiliary functions on A. Consider
the operators

A—s (A, £ (%)
and

A (A gl ). ()

Recall the definition of uniform specification of an operator over a class of Y-algebras
(83.1, Definitons 5 and 6).

Theorem 1 (Equational specification of PR functions). For each PR(X) derivation
«, the equational specification (X, E,) specifies the operator (xx) uniformly over A €
NStdAlg (X). Hence it specifies the operator (x) uniformly over all N-standard X -algebras
A, with hidden functions.

Proof: By course of values induction on the length of av. [
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In other words, the equations FE, specify not only ff, but also the auxiliary functions

g4, uniformly over all N-standard X-algebras A.

Similarly with PR* computability: for a PR*(X) derivation «, let E, be the set of
specifying equations for the function f, and the auxiliary functions g, defined by «a, in
the signature X7, = X* U {g,,fa}-

Corollary. For each PR*(X) derivation o, the equational specification (X7, E,) specifies
the operator (x) uniformly over X', with hidden sorts and functions.

5.2 Algebraic specifications for uPR* computable functions

We now consider pPR*(X) derivations «. For each such derivation there is again a finite
set F, of “specifying equations” for the function f defined by a and its auxiliary functions
g. This set is constructed like E, (§5.1), by structural induction on «. Now, however, F,
consists of conditional BU equations in a signature X7, = X* U {g,,fo}, because of the
new case, i.e., scheme (vi) for the p-operator (§4.2), which results in the addition to F, of
the conditional BU equation

(F,) Vz < y(gy(x, z) = false) A (go(x,y) = true) — f(x) =1y.

Again we have an effective map a — (X7, F,) from pPR*(Y) derivations to condi-
tional BU equational specifications.

Now there are complications in the theory, since pPR* computable functions are, in
general, partial. We intend to study specification theory for partial algebras systematically
in a future paper. Here we limit ourselves to the case where the uPR* computable function
is, in fact, total.

As before, for a uPR* derivation o« and an N-standard X-algebra A, let fﬁ be the
function on A defined by «, and let g7 be corresponding auxiliary functions on A*. A
further problem is that, even if fﬁ is total, the functions g4 might not be. We will now
show that we can, without loss of generality, restrict attention to the case that the g
are also total. We accomplish this by the use of the uniform derivations provided by the
Universal Function Theorem for pyPR* (§4.4), as we now explain.

Definition. A pyPR* derivation « is total on A iff the auxiliary functions gg, as well as
fﬁ, are all total on A*.

Totality Lemma. Given any pPR*(Y) derivation a: u — s, we can effectively find a
pPR*(X) derivation &: u — s such that for any N-standard X-algebra A,

(i) f4 = fas
(i) if 2 is total, then @& is total on A.
Proof: This follows from the Universal Function Theorem and the three remarks following

it (§4.4). O
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Now consider the operators (x) (§5.1 above) and

A (A%, g4, f5) (+%)
where & is constructed from « as in the totality lemma. Let X7, = X*U{ g4, fs }. Recall the
definition of the array specification ArrAx(X) in §3.2, and the definition of the conditional
BU specification Fj of f4 (= f2).

Theorem 2 (Conditional BU equational specification of uPR* functions).
For each pPR*(X) derivation «, let

F, =a ArrAx(X) + Fy4
where & is constructed from « as in the totality lemma. Then the conditional BU equational
specification (X7, F*) specifies the operator (xxx) in the following sense: for any A on
which 2 is total,
* A (A *
(A ) B4 fd) ‘: Fa'

Hence (X7,, FY) specifies the operator (x) uniformly over all N-standard X-algebras A on
which f2 is total, with hidden sorts and functions.

Proof: As with Theorem 1, by course of values induction on the length of a. [

Note that the specification given in Theorem 2 is uniform over all N-standard Y-algebras
A on which « is total. In fact, there is a stronger form of uniformity for uPR* computabil-
ity, following from the Universal Function Theorem for yPR*. (Actually, this is already
implicit in the construction of the derivation & in the totality lemma, which is really a
normal form lemma for uPR* derivations.)

Theorem 3 (Universal conditional BU equational specification). For each Y-
function type u — s we can effectively find a signature 3. . which expands X* by func-

u,S
tion symbols, and a finite conditional BU equational specification (X, ., F{ (z)) which
is universal for specifications of total pPR*(X)-computable functions of that type, in
the following sense: it contains a distinguished number variable z such that for each
uPR*(%) derivation « : u — s, and each N-standard X-algebra A, if 2 is total on A,

then (X7, ., FU,(k)), where k = "o, specifies 4 on A, with hidden sorts and functions.

u,s?
(Here FY (k) is the result of substituting the numeral k for z in FJ (z).)

Next, by the BU Reduction Theorem (Theorem 2 in Section 3), we derive as a corollary
to Theorem 3:

Theorem 4 (Universal conditional equational specification). For each X-function
type u— s we can effectively find a signature X'  which expands X . (of Theo-
rem 3) by function symbols, and a finite conditional specification (X ., EJ (z)) which
is universal for specifications of total pPR*(X)-computable functions of that type, in
the following sense: it contains a distinguished number variable z such that for each
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pPR*(X) derivation « : u — s, and each N-standard X-algebra A, if f4 is total on A,

then (E;’ys, Egs(l})), where k = ", specifies fg on A, with hidden sorts and functions.

From the above uniformity theorems it follows trivially that for a given Y-function type
u — s there is a uniform bound to the lengths of conditional BU X*-specifications, or
conditional equational X*-specifications respectively, for total pyPR*-computable functions
on N-standard X-algebras.

6 Algebraic specifications for computably approximable functions

We have shown that
computability — algebraic specifiability

where (for example) if “computability” means pyPR* (or, equivalently, While*) compu-
tability, then “algebraic specifiability” means specifiability by conditional BU equations.

It is natural to ask in what sense a converse holds. We will see (below) that a full converse
to the above cannot be expected, since algebraic specifiability is more powerful, in some
sense, than yPR*-computability. (In Section 7 we will investigate partial converses.) We
show here in fact that, on metric algebras,

computable approximability —> algebraic specifiability.

“Computable approximability”, to be defined shortly, is a strong extension of the notion
of computability; while “algebraic specifiability” will be (re-)defined so as to permit the
order relation (as well as equality) between pairs of terms of sort real.

6.1 Metric algebras

We refer to [TZ99] and [TZ00, §6] for definitions of (total) metric algebra and related
concepts. We review some definitions and results from these references. (Note that in
these references the subject is discussed in the broader context of partial algebras.)

A metric X-algebra (A,d), based on a X-algebra A, is an algebra of the form

algebra  (A,d)

import A

carriers R

functions dy: A2 =R (s € Sort(X))
end

where d is a family (ds | s € Sort(X)) of metrics ds on the carriers A, where (in the case
that A is standard or N-standard) dpoo and dnat are the discrete metrics on B and N
respectively, and such that the primitive functions on A are all continuous under these
metrics.

We will often write ‘d’ for the metric dy, and ‘A’ for the metric algebra (A, d).
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Examples. (a) The metric algebra R® on the reals (“d” for “distance”) is defined by

algebra R
import RN
functions divpat : R x N = R,

dreal : R? = R,
dnat : N> 5 R,
dbool : Bz — R

end

where R” is the N-standard algebra of reals (§1.4, Example (b)), divnat is division of reals
by naturals (where division by zero is defined as zero), the metric on R is the standard
one, and the metrics on N and B are discrete.

Note that R% does not contain the (total) boolean-valued functions eqyey Or less,ey),
since they are not continuous with respect to this metric.

(b) The interval metric algebra Z¢: Here the unit interval I = [0,1] is included as a
separate carrier of sort ‘intvl’, again with the usual metric. This is useful for studying real
continuous functions with compact domain. (We could also choose I =[—1,1], etc.) The
algebra % is defined by

algebra 74

import R

carriers 1

functions 17 : I — R,

dintul : I’ - R
end

where ¢ is the embedding of I into R. Because of the importance of the metric algebra Z¢
as in our computation theory, let us review its construction. It contains R with its standard
ring operations, N and B with their standard operations, functions for definition by cases
on R, N and B, division of reals by naturals, the unit line interval I and its embedding in
R, and the standard metrics on all four carriers.

6.2 Definitions and theorems

Now let A be an N-standard metric X -algebra with metric d.

Definition 1 (uPR* computably approximable functions). A total function f :
A" — Ay on A is uPR* computably approximable, uniformly on A, if there is a total
pPR* computable function

G:Nx A" — A,

and a total computable function g : N — N on A such that, putting G, =4 G(n, -), the

sequence G, approrimates f uniformly on A" with modulus of approximation g, i.e., for
all n, k and all z € A%,

k>gn) = d(G(z), f(z)) < 27"
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Definition 2 (Fast pPR* computably approximable functions). A total function
f: A" — Ag on Ais fast pPR* computably approximable, uniformly on A, if there is a total
pPR* computable function G : N x A" — A, on A such that, putting G, =4 G(n, -)
the sequence G,, approrimates f uniformly fast on A", i.e., for all n and all z € A",

d(Gn(x), f(x)) < 27" (+)

b

Remark 1. It is easy to see that Definitions 1 and 2 are equivalent; for given a (com-
putable) approximating sequence GG,, with modulus of approximation g, we can effectively
replace it by the fast (computable) approximating sequence G;, =4 G, 0g. We will there-
fore usually tacitly assume w.l.o.g. that our approximating sequences are fast, and work
with the (simpler) Definition 2.

Definition 3 (Fast uPR* approximating derivations). Let A be a metric X-algebra.
A derivation v: nat X u — s is an approximating derivation for a total function f: A" —
Ay if (i) the function G : N x A* — A, computed by v on A is total on A; and (i7) G
and f satisfy () above.

Note that at most one function is pPR* approximable by a given derivation on any
metric algebra.

Definition 4 (Conditional equation or inequality).

(a) A conditional equation or inequality is defined like a conditional equation, except that
the atomic statements may be either equations (¢; = t2) between terms of the same sort,
or order (1 < t3) between terms of sort real.

(b) A conditional BU equation or inequality is defined like a conditional equation, ex-
cept that the atomic statements may be either equations (t; = t3) or BU equations
(Vz < t[t; = ty]) between terms of the same sort, or inequalities (f; < t3) between
terms of sort real.

Remark 2. Here we are treating the order relation on the reals as a new atomic predicate
of Lang(X*) (like equality), not as a boolean-valued operation

) 2
less,eq| : real” — bool.

This predicate (unlike such an operation) does not form part of the signature X. (See the
analogous Remark concerning equality at the beginning of Section 2.)

Note also that () is a conditional inequality (actually a simple inequality, without an
antecedent).

Notation. We write yPR*-Approx(A) for the class of uPR* computably approximable
functions on A, and puPR*-Approxz(A),_s for those of type u — s.

In preparation for the next theorem, we note that a “Universal Function Theorem”
holds for pPR*-Approx(A), in the following sense. For any Y-function type u — s, let

H"* =4 Univ; : Nx Nx A" — A,

natxu—s *
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be the universal function for pPR*(A)natxu—s given by the Universal Function Theorem
(§4.4). Then for each f € uPR*-Approx(A),—s, there is a number &k such that (writing
H;:”:; = H"*(k,n, -)) the sequence of functions HZ:S, H,Z”ls, HZ:;, ... uniformly approxi-
mates f. The number k can be chosen as the Godel number of an approximating derivation
for f, i.e., a derivation 7: nat x u — s of the function H"™*(k, -). Combining this with
Theorem 3 of Section 5, we obtain:

Theorem 1 (Universal conditional BU specification of uPR* approximable
functions). For each Y-function type u — s we can effectively find a signature X7
which expands X* by function symbols, and a finite conditional BU specification (X,

U8
Fxs(z)) consisting of conditional BU equations and inequalities, which is universal for
specifications of pPR*(X)-computably approximable functions of that type, in the fol-
lowing sense: it contains a distinguished number variable z such that for each pPR*(X)
derivation 7: nat x u — s and each metric X-algebra A and total function f: A* — As,
if  is an approximating derivation for f on A, then (X7, , FX’S(];:)), where k = "7,
specifies f on A, with hidden sorts and functions.

Proof: Define
FX,S (z) =ar ng (z) + Einvexp + Ex (z)

where ng(z) is the conditional BU equational specification constructed as in Theo-
rem 3 in Section 5 for the universal function H for pPR* computable functions of type
nat X u — s, Ejnyexp is the set of specifying equations for the computable real-valued
function invexp(n) = 27", i.e., its recursive definition:

invexp(0) = 1, invexp(Sn) = divnat(invexp(n), 2),

and F,(z) is the inequality (x) above  or rather, its formal version
d(H(z, n, x), f(x)) < invexp(n). (xx)

(Note that every uPR* function G: Nx A* — Ay is obtainable from H by substituting the
Godel number of its derivation for the first argument z of H.) Let X7 . be the signature
formed by expanding X* by symbols for H and invexp, as well as the auxiliary functions
used in their computations. Then for any pPR* derivation v: nat x v — s, metric Y-
algebra A and function f: N x A* — A, if v is an approximating derivation for f then
(X5 ¢ F o (k)) (where k ="~7) is a conditional BU specification of f on A, with hidden
sorts and functions, consisting of conditional BU equations and inequalities [

Now, by adapting the BU Reduction Theorem (§3.3) to specifications with inequalities,
we derive as a corollary to Theorem 1:
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Theorem 2 (Universal conditional specification of uyPR* approximable func-
tions). For each X-function type u — s we can effectively find a signature 21*/,5 which
expands Y, o (of Theorem 1) by function symbols, and a finite conditional specification
(21*/,57 EKS(Z)), consisting of conditional equations and inequalities, which is universal
for specifications of approximably pPR*(X)-computable functions of that type, in the fol-
lowing sense: it contains a distinguished number variable z such that for each uPR*(X)
derivation «: nat x u — s and each metric X-algebra A and total function f: A" — As,
if v is an approximating derivation for f on A, then (E;’ys, EXS(I})), where k = "7,

specifies f on A, with hidden sorts and functions.

Remark 3 (Replacing the order predicate by a boolean-valued operation). The
order relation in the above specification is used in one place only: in the (conditional)
relation (%) (or (xx)). In fact (Remark 2 above notwithstanding) () could be interpreted
as a conditional equation (so that f is conditionally equationally definable with hidden
sorts and functions) by interpreting ‘t; < t’ as ‘less,ea((t1,t2) = true’, where the boolean-
valued operator

less,ea : real®> — bool

is included in the signature of the metric algebra over R. The problem here is that (as
discussed in [TZ99]) whereas all functions in the signature of metric algebras (and hence
all functions computable over these) are continuous, the (total) function less gy is dis-
continuous. The only way to restore continuity is to consider a partial continuous less,qy
operator, which leads to a study of topological partial algebras. This can be done, and the
whole of the present theory could be re-cast in such a context, but that would take us too
far afield from the present study.

Let us apply Theorem 2 to the classical notion of Gzegorczyk-Lacombe (GL) computabil-
ity on the unit interval I = [0, 1]. This includes all the well-know functions of real analysis
(sin, exp, log, etc.) restricted to I.

Notation. We write GL;,(I) for the class of GL-computable total functions f: I"™ — R.

Many concrete models of computation on I are equivalent to this class [PER89, Wei00].
It has been shown that (recall the definition of Z¢ in Example (b)):

GLZ@(I) = UPR*‘AppTom(Id)intvlm—>real-

(For details, see [TZ99, §9], [TZ00, §5.9].) Hence, again, a kind of “Universal Function

b

Theorem” holds for GL},(I), in the following sense. For m =1,2,..., let

d
natxintvl™ —real *

H™ —4 Uni NxNxI™ - R

be the universal function for puPR*(Z%)patxintvi™—real given by the Universal Function
Theorem (§4.4). Then for each f € GL} (I), there is a number k, effectively obtainable
from the GL-code for f, such that (writing H}" = H™(k,n, -)) the sequence of functions
Hi%, Hy'y Hil, - uniformly approximates f on [.
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So by Theorem 2 applied to Z¢:

Theorem 3 (Universal specification of GL computable functions). For each
m > 0 there is a signature X% which is an expansion of X(T%)* by finitely many func-
tion symbols, and a finite conditional specification (X7,, EW (z)) consisting of conditional
equations and inequalities, which is universal for specifications of GL}, (I), in the follow-
ing sense: it contains a distinguished natural number variable z such that each function
f € GL} (I) is specified (with hidden sorts and functions) by a suitable substitution in-
stance (X% . EW(k)), where k can be found effectively from a GL-code for f.

Remark 4 (Description of the signature X, of Theorem 3). The signature X,
is an expansion of X(Z¢) (for a description of which see the remark at the end of §6.1) by
the following sorts and functions:

(4) the sorts and functions of the array structure over Z¢ (§1.6);

(73) the pPR* “universal function” F™ for GL}, () (as described in the above discussion)
together with the auxiliary functions in its derivation;

(797) the function 27", used for assertions about computable approximations, as explained
in the proof of Theorem 1;

(iv) the characteristic function for BU quantification, as described in the proof of the BU
elimination theorem (§3.3).

Note that there is only one function of type (iv) in X7 . namely that obtained by eliminating
the conditional BU equation F), (§5.2) specifying the (single!) p-operator occurrence in
the uPR* derivation for H™ in (i) (see Remark 1 in §4.4). (There are no conditional BU
equality axioms for arrays (§3.2) to eliminate here, since real and intvl are not equality
sorts.)

6.3 Illustration: Specification of dynamical system
We illustrate the connection between algebraic specification methods and models of phys-
ical systems.

A deterministic dynamical system with finite dimensional state space S C R" and time
T C R is represented in a model by a function

p: TxS — S

where for t € T, s € S, ¢(t,s) is the state of the system at time ¢ with initial state s. For
example, the state of a particle in motion is represented by position and velocity. Thus,
for a system of n particles in 3-dimensional space, the state space has 6n dimensions.

In practice, the model is specified by ordinary differential equations (ODEs) whose
complete solution is ¢. Specifically, in the modern qualitative theory of ODEs [Arn73], ¢
is differentiable, and the function ¢; : S — S defined by

bi(s) = ¢(t,s) for teT,seS,
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is a 1-parameter group of diffeomorphisms of S; the action of this group on S is called the
flow on the phase space S. This flow can be specified by a vector field on S.

In modelling a physical system, one aim is to compute values of the function ¢ on
some time interval and subspace of the space of initial conditions. Many methods exist to
derive algorithms for ¢ from the equations that define it. Indeed, various fields of applied
mathematics exist in order to design such equations, and the field of numerical analysis
exists to design such solution methods.

Conversely, we suppose that ¢ can be simulated on a digital computer, i.e., ¢ is a
classically computable (e.g., GL-computable) function. Assume also that the state space
S is the unit n-cube I™, and the time dimension T is the unit interval I. Thus

G Ix I — 1.

We can now apply Theorem 3 to show that the dynamical system has a finite algebraic
specification.

Theorem 4 (Universal spec1ﬁcat10n of computable dynamical systems). For each
n > 0 there is a signature E which extends X (Z%)* by function symbols, and a finite

conditional specification (X, E,‘:V (z)) consisting of conditional equations and inequalities,
which is universal for all classically computable dynamical systems on the unit n-cube I™
over the unit time interval I.

Note that E:; is essentially the signature X of Theorem 3, with n = m + 1.

We have shown above how powerful algebraic specifications are, even for topological data
types. More research needs to be done to determine the extent of its power, especially on
metric algebras. Here topological notions such as continuity can play a part, as we see
from the following example.

6.4 Example: Specification of function assuming continuity

Consider the two equations for a (total) function f on the real line:

fle+y) = flx) < f(y), f1) = ¢ (+)

for some constant ¢ > 0. If we assume that f is continuous, even at one point, then it is
easy to see that these equations are satisfied uniquely by the function

fla) = e

However, in the absence of any such continuity assumption, it can be shown that (for any
¢ > 0) there are 22" non-constructive solutions to (). Here “non-constructive” means
both that these solutions are non-computable, and that their existence is proved by non-
constructive means, using Zorn’s Lemma to show the existence of a Hamel basis on R,
i.e., a maximal linear independent subset of R over Q.

Note that any solution f of (%) is a homomorphism from the additive group of reals to
the multiplicative group of positive reals.
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This example suggests the following

Question. On metric algebras, does conditional equational specifiability, together with a
topological condition such as continuity, imply computability?

Specifically, is there a continuous function on I which is definable by equations but not
approximably computable?

Note, in this connection, that there are other “equational specifications” for the expo-
nential function e”:

(1) the differential equation f’(z) = f(z) with initial condition f(0) = 1;

2) from the polynomial approximations given by the partial sums of the Maclaurin ex-
y g y

pansion ) ._,x"/i!, a specification consisting of conditional equations and inequal-

ities can be derived by the methods of this section for approximating computations;

(3) similarly, from the polynomial approximations, (1+z/n)", a specification consisting
of conditional equations and inequalities can be derived.

Note that in the first of these specifications, differentiability of f is (of course) implicitly
assumed, and uniqueness of the solution follows by the Lipschitz condition; however no
assumptions of continuity are needed in (2) or (3).

The above question points to an open field of research. The investigation of computable
solutions of recursive equations in [GH00] would be relevant here.

7 Initial algebra specifications with conditional equations and
conditional BU equations

In this section we will consider theories T, which we assume to be formalised in logical
formalisms F of the kind described in Section 2; for example, F = CondBUEq(X)).

7.1 Pre-initial and initial models

3

signatures or algebras. Let X be a signature and let K be a }'-adt.

In this subsection (only), we make no assumptions concerning the (N-)standardness of

A formalism F is said to be wvalid for K if the axioms and inference rules of F hold for
all algebras in K. Note, for example, that CondBUEq (X)) is valid for NStdAlg (X), but
not, in general, for Alg(X).

A Y-algebra A is pre-initial for K if there is a unique YX-homomorphism from A to
every algebra in K; pre-initial in that it might not itself belong to K. (The notion of
Y-homomorphism between X-algebras is defined as usual [MT92].)

Note that the closed term algebra T(X') is pre-initial for K.

An initial algebra of K is a pre-initial algebra which belongs to K. As is easily seen,

any two initial algebras of K must be Y-isomorphic. We denote any initial algebra of K
by Init(¥, K).
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We will be interested in the case that
K = Alg(X.T),

the class of models of a first-order Y-theory T, where T" may have certain syntactic re-
strictions. We will assume:

e in this subsection that T is a conditional equational theory;

in §7.2 likewise, but restrict attention to N-standard models of T

in §7.3 that T is a conditional BU equational theory (again with N-standard models);
and in §7.4 that it is a conditional SU equational theory (ditto).

(Recall the formal systems defined in Section 2.) Finally in §7.5 we will show how condi-
tional BU equational initial algebra specifications can be “reduced” to conditional equa-
tional initial algebra specifications.

Let T be a X-theory. We write Init(X,T)for the initial algebra Imit(X, Alg(X,T))
(if it exists), and call it the initial model of T

Consider the closed term algebra T(X,T,F) formed from T(X) by identifying closed
terms provably equal from 7', in some formalism F, i.e.,

T(E,Tlf) :df T(E)/%T,.'F

where
i~y Fty  <=q t1 =ty is provable from 7" in F.

Lemma. If F is valid for Alg(X,T), then T(X,T,F) is pre-initial for Alg(X,T).
We will investigate whether T(X, T, F) is, further, initial for Alg(X,T), i.e., whether

b

T(X,T,F) = Init(3,T).
Initiality Lemma. Suppose F is valid for Alg(X,T). If T(X,T,F) € Alg(X>,T), then
it is (X-isomorphic to) Init(X,T).

Definitions. Let A be a Y-algebra.
(1) A has an initial algebra specification (X, T) if A = Init(X,T).

(2) A has an initial algebra specification with hidden sorts and/or functions (X', T') if
»' is an expansion of X by sorts and/or functions, 7" is a 3.’-theory and

A = Init(E, Alg(X',T") | ).
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Theorem 1 [Mal73]. Let E be a conditional equational theory over Y. Let I =g
T(X, E,CondEq(X)). Then I is an initial model of E. Furthermore, if ti,ty are two
closed XY -terms of the same sort, then the following are equivalent:

(i) t1 and ty have the same value in I,

(ii) t1 and t have the same value in all models of F,
(iii) t; = to is provable from E in CondEq(X),
(iv) t1 = te is provable from E in FOL(X).

Proof: The main thing here is to show that I = F, from which (ii)=(i) will follow. Since
I is a (closed) term model, it is sufficient to show that I satisfies all closed substitution
instances of the axioms of E. So consider any closed instance Py A...A P, — P of an
axiom of E, where P; and P are closed equations. Note that the corresponding sequent

P,....P,+— P (%)

is derivable from E in CondEq(X), by the substitution rule. Suppose I | P; for
i=1,...,n. Then, by the definition of I, P; is provable from F in CondEq(X’). But then
P is also provable, by repeated (atomic) cuts of the sequent (x) with the sequents —— P;,
and so I = P.

Hence I = E. Tt follows, by the Initiality Lemma, that I is an initial model of E.
Hence also (i7)=(¢). The further implications (i)=>(ii7)=(iv)=-(i7) are all trivial. O
Remark (Completeness and conservativity). Mal'cev’s Theorem [Mal73], in the
form given above, can be viewed as expressing both (a) completeness of CondEq(X),
given by the implication (ii) == (4i7), and (b) conservativity of first order logic with
equality over CondEq(X), given by the implication (iv) == (iéi). (Cf. conservativity
lemma (1) and the remark in §2.6.)

Necessary and sufficient conditions for the existence of initial models of theories are
given in [MM84].

7.2 Initial N-standard models

Assume, from now on, that 3/ is N-standard, and that K consists of N-standard X-algebras;
for example, K = NStdAlg(X,T), for some X-theory T. Then T(X,T,F), although
it is pre-initial for K, might fail to be initial for K for two reasons: it might not satisfy 7',
and it might not even be N-standard! (We return to the second point below.)

An initial N-standard model of T is an initial algebra of NStdAlg(X,T). Any two
initial N-standard models of T" are Y-isomorphic. We denote any such model by

InitNStdAlg(2,T) =4 Init(X, NStdAlg(X,T)).

N-Standard Initiality Lemma. Suppose F is valid for NStdAlg (X, T).
If T(X,T,F) € NStdAlg(X,T) then it is (¥-isomorphic to) InitNStdAlg(X,T).
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Definitions. Let A be an N-standard X-algebra.
(1) A has an initial N-standard algebra specification (X, T) if A = InitNStdAlg(X.,T).

as an initial N-standard algebra specification with hidden sorts and/or functions
2) Ah mitial N-standard algeb ficati ith hidd t d t
(X', T") if X" is an expansion of X by sorts and/or functions, 7" is a Y.’-theory and

A = Init(X, NStdAlg(X',1T') | 5).

Note that InitNStdAlg(X,T) (if it exists) might not be an initial model of T', i.e., T
might have another, non-N-standard, initial model, as the following example demonstrates.

Example (Initial N-standard model of a theory which is not an initial model
of that theory). Let X' contain (in addition to the standard operations on nat and bool)
a constant u : bool, and let T' contain the single axiom ‘u # true’. Then the term algebra
T(X) trivially satisfies T', and is hence (by the Initiality Lemma of §7.1) an initial model
of T. It is not N-standard, since it has a 3-element carrier of sort bool, with distinct
denotations of true, false and w. There is, however, also an initial N-standard model of T
with an N-standard (2-element) carrier of sort bool, formed by identifying u and false.

Now T(X,T,F) may fail to be N-standard for two reasons: that T proves “too little”
or “too much”, roughly speaking. The first reason is connected with non-N-standard
interpretations of the sorts nat and bool. Thus, there may be a function symbol f in Y
with range sort nat, without corresponding axioms in T' capable of “reducing” f(t), for
some closed term ¢, to a numeral. Similarly (as in the above example), not all closed
boolean terms (i.e., terms of sort bool) may be (provably in T') equal to true or false. (In
the terminology of [GH78] the specification (X, T) is not “sufficiently complete”.) The
second reason is that T may be inconsistent, in the sense that it proves ‘true = false’ (or,
equivalently in a suitable weak background theory, ‘0 = 1’). This motivates the following
definitions. Note that we must (to begin with) speak of provability relative to some formal
system F, which will typically be one of the system CondEq(X) or CondBUEq(X) of
Section 2.

Definition 3. T is consistent in F if the equation ‘true = false’ is not provable in F from
T.

Definition 4. T determines nat in F if every closed term of sort nat is, provably in F
from T', equal to a numeral; and T' determines bool in F if every closed term of sort bool
is, provably in F from T, equal to true or false.
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Definition 5 (N-standardness axioms).

(a) NStdAx(X) is the following set of conditional equations:

and(true, true) = true, and(true, false) = and(false, true) = and(false, false) = false,
or(false, false) = false, or(true, true) = or(true, false) = or(false, true) = true,
not(true) = false, not(false) = true,
ifs(true, x7,%x3) = x7, ifs(false, x7,%3) = x3,

ednat(0,0) = true, ednat(5z,0) = eqnat (0, Sz) = false,
ednat (521, 522) = eqnat(z1, 22),
lessnat (0, Sz) = true, lessnat(z, 0) = false,
lessnat(Sz1, Sza) = lessnat(z1, z2),

eqs(x®, x%) = true,

eqs(x7,x5) = true — t] =t5.

where, in the axioms for ifs, s ranges over all Y-sorts other than bool; and in the axioms
for eqs, s ranges over all X-equality sorts other than nat,

(b) NStdAxq(X) is the set of all closed X -substitution instances of NStdAx(X).

Note that NStdAx(X) + Ind(2) holds in any N-standard X-algebra.

We use the terminology: T' proves NStdAxo (X)) in F to mean: NStdAxo(X) is derivable
from T in F.

We now state some lemmas which give sufficient conditions for a term model T(X, T, F)
to be N-standard.

Lemma 1 (N-standardness lemma). Suppose that in F
(i) T is consistent,
(i1) T determines nat and bool, and
(iti) T proves NStdAxq(X).
Then T(X,T,F) is N-standard.
Lemma 2. If X is strictly N-standard then NStdAxo(X) determines nat and bool in
CondEq(Y).

Proof: By structural induction on all closed X-terms of sort nat and bool (simultaneous-
ly). O

The following is an immediate consequence of Lemmas 1 and 2.
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Lemma 3 (Strict N-standardness lemma). Suppose X is strictly N-standard, F is
at least as strong as CondEq(XY), and in F

(i) T is consistent, and
(i) T proves NStdAxo(X) (or NStdAx(X)).

Then T(X,T,F) is N-standard.

7.3 Conditional equational theories

We now give the analogue of Mal’cev’s Theorem (§7.1) for N-standard models of condi-
tional equational theories.

Theorem 2. Let E be a conditional equational theory over Y. Suppose that in
CondEq(X), E is consistent, determines nat and bool, and proves NStdAxq(X). Then
I =4 T(X, E, CondEq(Y)) is an initial N-standard model of E. Furthermore, if ty,t;
are two closed Y'-terms of the same sort, then the following are equivalent:

(i) t1 and ty have the same value in I,

(ii) t; and to have the same value in all N-standard models of F,
(iii) t1 = to is provable from FE in CondEq(X),
(iv) t1 = te is provable from E in FOL(X) + Ind(X).

Proof: By the N-standardness Lemma (§7.2), I is an N-standard algebra. As in Theorem
1, the main thing is to show that I = E. This is done exactly as in the proof of Theorem
1. It follows, by the N-standard Initiality Lemma (§7.2), that I is an initial N-standard
model of K. The rest of the proof is similar to that for Theorem 1. Note for the implication
(tv)=-(ii), we use the fact that the rule Ind(X) is valid for N-standard X-algebras. [

Remarks. (1) By Lemma 2 in §7.2, the assumption in the theorem that F determines
nat and bool can be replaced by the assumption that X' is strictly N-standard.

(2) (Completeness and conservativity.) Here again, the implication (ii)=-(iii) can be
construed as a completeness theorem, and (iv)=-(éi7) as a conservativity theorem. (See
the Remark in §2.6 and the Remark following Theorem 1.)

(3) (The N-standardness axioms.) We have “incorporated” the N-standardness axioms
NStdAxo(X) in the theory E, so to speak, by assuming that F proves them. Another
feasible approach would be to incorporate these axioms in the logics CondEq, CondBUEq
and FOL, by adding them as axioms (as we did with the boundedness axioms BddAx in
CondBUEq). This would entail some minor re-wording of the theorems.

We turn our attention to theories with syntactic structure more complicated than con-
ditional equations.
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7.4 Conditional BU equational theories

We give the analogue of Mal’cev’s Theorem for N-standard models of BU conditional
equational theories.

Theorem 3. Let F' be a conditional BU equational theory over Y. Suppose that in
CondBUEq(X), F' is consistent, determines nat and bool and proves NStdAx(X). Then
I =4 T(X, F, CondBUEq(Y)) is an initial N-standard model of F'. Furthermore, ift,t,
are two closed Y'-terms of the same sort, then the following are equivalent:

(i) t1 and ty have the same value in I,

(ii) t1 and to have the same value in all N-standard models of F,
(iii) t; = to is provable from F in CondBUEq(Y),

(iv) t1 = to is provable from F in FOL(X) + Ind(X).
Proof: By the N-standardness Lemma, [ is N-standard. As in Theorems 1 and 2, the
main thing is to show that I = F. Again, since I is a term model, it is sufficient to show
that I satisfies the set of closed substitution instances of F'. First note that, by definition,
I satisfies precisely all closed equations provable from F' in CondBUEq, i.e., for any closed

equation P:
IEP < FFP ()

where ‘+’ here means provability in CondBUEq. Further, by use of the boundedness axioms
BddAx of CondBUEq (§2.3), the same holds for any closed BU equation Q:

TEQ «— FFQ. ()
For suppose ) = Vz < tP(z), where P(z) is an equation. Since [ is N-standard,
ITEt =n (%)
for some (unique) n. Then
I EVz <tP(z) <= forallk <n, I = P(k)

< forallk <n, F+ P(k) by (%)
<— FFVz<tP(z) by BddAx and (s:xx).

Now consider any closed instance f = Q1 A...ANQ, — @ of an axiom of F' (where
Q; and @ are closed SU equations). Suppose I = @; for i = 1,...,m. Then by (xx)
(Q; is provable from F' in CondBUEq. But then so is (), by repeated cuts of the sequent
Q1,...,Qm +—— Q corresponding to f with the sequents +— @;, and so [ = Q. O

Remarks. (1) As before, the assumption in the theorem that F' determines nat and bool
can be replaced by the assumption that 3/ is strictly N-standard.

(2) (Completeness and conservativity.) Again, the implication (ii)=-(#i7) can be con-
strued as a completeness theorem, and (ii)=-(iii) as a conservativity theorem.
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7.5 Conditional SU equational theories
Now we turn to the infinitary conditional SU equational logic (§2.4). Although it will not
be used further in the paper, it is interesting in its own right.

Remember that the infinitary w-rule V,R obviates the need for an induction rule.

Theorem 4. Let G be a conditional SU equational theory over Y. Suppose that in
CondSUEq,, (X)), G is consistent, determines nat and bool and proves NStdAxq(X'). Then
I =4 T(X, G, CondSUEq,, (X)) is an initial N-standard model of G. Furthermore, if
t1,ts are two closed X-terms of the same sort, then the following are equivalent:

(i) t1 and ty have the same value in I,
(ii) t; and to have the same value in all N-standard models of G,
(iii) t1 = to is provable from G in CondSUEq, (X)),
(iv) t1 = to is provable from G in FOL(X).
Proof: By the N-standardness Lemma, I is N-standard. Again, the main thing is to show
that I satisfies closed substitution instances of axioms of GG. By definition, for any closed

equation P:
IEP << GFP ()

where ‘" here means provability in CondSUEq,,. Further, by use of the V, R rule, the
same holds for any closed SU equation R:

IR < GFR.
For suppose R =VYzP(z), where P(z) is an equation. Then

I =EVzP(z) <= foralln, I = P(n)
<= for all n, G+ P(n) by (%)
< G +VzP(z) by V.R

The rest of the proof follows the pattern of Theorems 1, 2 and 3. [

Remarks. (1) As before, the assumption in the theorem that G determines nat and bool
can be replaced by the assumption that 3/ is strictly N-standard.

(2) (Completeness and conservativity.) Once again, the implication (ii)=-(¢ii) can be
viewed as a completeness theorem, and (iv)=-(iii) as a conservativity theorem.

7.6 Open term algebras

So far (Theorems 1, 2, 3 and 4) we have concentrated on closed term algebras. We could
also formulate our results in a more general setting, namely, with term algebras constructed
from open terms, i.e., terms containing free variables (from a given set X).
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The problem here is that with open terms (an analogy of) the N-Standardness Lemma
(§7.2) will fail in general. However, under a certain syntactic condition (the “N-term
condition” below), a version of this Lemma can still be formulated.

First we need some definitions and notation. Given a signature Y, and a set X C
Var(Y), let T(X, X) be the set of X-terms in X, i.e., XY-terms containing variables from
X only. In particular, for X = (), we have the set of closed X-terms T(X) = T(X,0).

Given a first-order X-theory 7' and formalism F which is valid for Alg(X,T), let
T(X, X, T,F) be the X-term algebra formed from T(X, X) by identifying terms provably
equal from T in F. (The closed term algebra T(X,T,F) considered above corresponds
to the special case X = 0).

The algebra I =4 T(X, X, T, F) is free for T over X. This means that for every model
A of T, and every assignment p: X — A of elements of A to variables in X (of the same
sort), there is a unique X' -homomorphism h: 1 — A such that h [ Xp. (This reduces to
initiality in Alg(X,T) when X = (.)

Note that I need not itself be a model of T'. However, this will be the case, provided
T satisfies certain syntactic conditions (e.g., if T is a conditional equational theory; cf.
Theorem 1 above).

Again, assuming that Y is N-standard, we are interested in the question whether I is
N-standard. A useful criterion in this connection is the following syntactic condition on X
and X:

N-term Condition for (X, X). No Y-term of sort nat or bool contains any variables
from X.
Remarks. (1) The N-term condition for (X, X) is trivially satisfied when X = ().
(2) When X is strictly N-standard, it is equivalent to the condition:
there are no variables in X of sort nat or bool.

This follows from Remark 3 in §1.5.

Now the theory given above, and specifically Theorems 1 to 4, can be generalised to the
case of open term models T(X, X,T,F) , where (¥, X) satisfies the N-term condition.
First, the N-standardness lemma becomes:

N-Standardness Lemma®X. Suppose that (X, X) satisfies the N-term condition.
Suppose further that in F

(i) T is consistent,
(ii) T determines nat and bool, and

(iii) T proves NStdAxg(X).
Then T(X,X,T,F) is N-standard.

Next, the strict N-standardness lemma becomes (using Remark 2 above):
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Strict N-Standardness LemmaX. Suppose X is strictly N-standard, and there are no
variables in X of sort nat or bool. Suppose also F is at least as strong as CondEq(X),
and in F

(i) T is consistent, and

(ii) T proves NStdAx(X).
Then T(X,X,T,F) is N-standard.

Consider next, for example, Theorem 2. This can be reformulated as follows.

Theorem 2%X. Suppose (X, X) satisfies the N-term condition. Let E be a conditional
equational theory over Y. Suppose that in CondEq(X'), FE is consistent, determines nat
and bool, and proves NStdAx(X). Then I =4 T(X, X, E, CondEq(XY)) is an N-standard
model of E, which is free for E over X. Furthermore, if tq,ts are two terms in T(X, X)
of the same sort, then the following are equivalent:

(i) t1 and ty have the same value in I,

(ii) t1 and to have the same value in all N-standard models of F,
(iii) t1 = to is provable from FE in CondEq(X),
(iv) t1 = to is provable from E in FOL(X) + Ind(X).

X

The strict N-standardness Lemma®, and Theorem 2%, will be used in Section 9.

7.7 Reducing conditional BU to conditional equational specifications

We re-consider the work of §3.3 from the viewpoint of initial algebra specifications.

Theorem 5 (BU elimination for initial algebra specifications). Let F' be a
conditional BU equational theory over Y. Then there is an expansion X' of X and a
conditional equational theory E' over X' which is equivalent to F (relative to N-standard
models) in the sense that:

(i) if A is an N-standard Y-model of F, then it has a X'-expansion which is a N-standard
model of E';

(ii) if A = InitNStdAlg(X,F) then it has a unique (up to X'/X-isomorphism) X'-
expansion A’ such that A’ = InitNStdAlg(Y' E');

(iii) if A" is an N-standard X.'-model of E', then its Y -reduct A is an N-standard model
of F; and if A’ = InitNStdAlg(X', E') then A= InitNStdAlg(X,F).

If F contains q occurrences of BU quantifiers, then X' expands X by one new sort and
q new function symbols. Moreover, if F' is finite, with e axioms (say), then so is E', with
e + 4qg axioms.

Proof: The idea, again, is to incorporate in the signature, for each BU quantifier occurring
in F', a characteristic function for that quantifier. The problem with adjoining a boolean-
valued function symbol f: nat x u — bool satisfying («x) in the BU elimination theorem
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in §3.3, is in the case that A is an initial N-standard model of F. In order that its X'-
expansion A’ be N-standard, the value of f(n, z) must be either true or false for every value
of the arguments n, x. Furthermore, in order that A’ also be initial, the X-homomorphism
h from A to every N-standard model B of F' must be extendible to a X’-homomorphism
h' from A’ to the X'-expansion B’ of B. However, the rhs of (xx) in §3.3 will hold “more
often” in B than in A (since B is a homomorphic image of A), with a corresponding change
in the value of f(n, z) from false to true! Hence h cannot, in general, be extended as desired.
(Making f a 0,1-valued function will cause exactly the same problem.)

We therefore adjoin a special sort D for the range of such functions f, with a constant
d which takes the place of ‘true’ in (xx) in §3.3. (The point is that when the condition on
the rhs of (xx) fails, f(n, z) is not “forced” to equal anything else at all.) Now for each BU
quantifier as in (x) of §3.3, adjoin to the signature the function symbol

f:natxu — D,

and adjoin the axioms formed from (xxx) and (k**x) in §3.3 by replacing ‘true’ by ‘d’
throughout. In this way we replace F' by a conditional equational theory E’ in X', with
the stated properties. [

Remark. If A is an N-standard model of F, then its N-standard X’-expansion A’ mod-
elling E’, given by part (i) of the theorem, is not (in general) uniquely determined. How-
ever, the added condition of initiality (on A and A’) determines A’ uniquely.

8 Initiality-preserving operators on N-standard algebras

In this section we combine the theory of Section 5 (“computability = algebraic speci-
fiability”) with the initial algebra theory of Section 7.

8.1 Initiality preserving operators and the HEP

Assume now (as in §3.1) that X’ and X" are N-standard signatures with ¥ C X' C
X" and ® : NStdAlg (Y) — NStdAlg(XY') is an expanding operator over Y. Recall
Definitions 5 and 7 in §3.1.

Definition 1. ® is initiality preserving (w.r.t. 3 and X') iff for all K C NStdAlg (X))
and A € NStdAlg (X)), A is initial in K iff A® is initial in K?.

Lemma 1. Suppose ® is initiality preserving, and (X', T') specifies ® uniformly over .
Then for any Y-theory T and N-standard X -algebra A,

A= InitNStdAlg(X,T) <= A® = InitNStdAlg(X', T +T').
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Lemma 2. Suppose ®(A) = V(A)| s for all A€ NStdAlg (XY), where
U : NStdAlg (¥) — NStdAlg(%")

is an expanding operator which is initiality preserving w.r.t. ) and X" . Then ® is initiality
preserving, and for any X" -theory T" and N-standard X-algebra A, if (X", T") specifies
U uniformly over X, then (X", T") specifies ® uniformly over X with hidden sorts and/or
functions; and for any Y-theory T and N-standard X -algebra A,

A = InitNStdAlg(X,T) <= A" = InitNStdAlg(X", T +T")
= A® = InitNStdAlg(%X", T +T") | &
<« A% = Init(Y', NStdAlg(X", T+ T")| 5 ).

Proof: From Lemma 1. [

Definition 2. & has the homomorphism extension property (HEP) (w.r.t. X and X')
iff every homomorphism h : A — B between N-standard X-algebras can be extended
uniquely to a homomorphism h® : A® — B® between their images under .

Lemma 3. If & has the HEP, then ® is initiality preserving.

We will apply the above theory to three cases: array specifications in §8.2, and specifi-
cations for PR and pyPR* computable functions in §8.3 and §8.4 respectively.

8.2 Initial algebra specification of array algebras

Recall the array specification (X*, ArrAx(X)) defined in §3.2.

Lemma 1. The array construction A — A* (§1.6) has the HEP, and (hence) is initiality
preserving.

Lemma 2. For any N-standard X-algebra A and X-theory T':

A= InitNStdAlg(X,T) < A* = InitNStdAlg(X*, T + ArrAx(X)).

Proof: By §8.1, Lemma 1, and §3.2, Theorem 1. [

Of particular interest is the case that T is a conditional BU equational theory:

Theorem 1. If a X-algebra A has an initial N-standard algebra specification by a set of
conditional BU equations, then so does A*. Moreover, if the specification for A is finite,
with e axioms (say), then so is that for A*, with at most e + 8s axioms, where s is the
number of sorts in 3.

Next, from the BU elimination theorem for initial algebras (Theorem 5 in Section 7) we
can reduce such a specification for A* further to one with conditional equations only.
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Theorem 2. If a Y-algebra A has an initial N-standard algebra specification by a set
of conditional equations, then so does A* (with hidden sorts and functions). Moreover, if
the specification for A is finite, with e axioms (say), then so is that for A*, with at most
e + 12s axioms, where s is the number of sorts in ..

Proof: First apply Theorem 1 (or Lemma 2) above. Then replace the equality axiom
for s* in ArrAx(X), which is a conditional BU X*-equation (§3.2), by a conditional X*-
equation, for each Y-equality sort s other than nat, by BU elimination (Theorem 5 in §7.7,
applied to X*). O

8.3 Initial algebra specifications for PR computable functions

Now we apply the above theory to the results in §5.1.

Lemma 1. For each PR(X) derivation «, the operator (xx) (§5.1) has the HEP, and is
(therefore) initiality preserving. Hence the operator (x) is initiality preserving.

Proof: By structural induction on o. [

Hence, by Theorem 1 in Section 5 and Lemma 2 in §8.1:

Lemma 2. For each PR(Y) derivation «, and for each N-standard X-algebra A and
X -theory T':

A= InitNStdAlg(X,T) < (A g2 ) =~ InitNStdAlg(X,, T + E,)
> (A, f)) = InitNStdAlg(Ys, T + Eo) |
= (A, f)) = Init(Xy, NStdAlg(X,, T+ E.)| 5, ).

Here Y¢ = Y U {f,}. (Remember, ¥, = Y U {g,,fo}, where g, is the list of auxiliary
functions of a.) Of particular interest is the case that T is a conditional equational theory:

Theorem 3. Let f be a PR function on a X-algebra A. If A has an initial N-standard
algebra specification by a set of conditional equations, then so does (A, f) (with hidden
functions).

8.4 Initial algebra specifications for yPR* computable functions

We turn to pPR* computability (§5.2). The problem here (as noted in §5.2) is that
even if the computed function is total, the auxiliary functions need not be. However, by
applying the totality lemma (§5.2), we are able restrict our attention to total derivations.

Lemma 1. For each pPR*(X) derivation o and each N-standard X-algebra A on which
f4 is total, the operator (xxx) (§5.2) has the HEP, and is (therefore) initiality preserving.
Hence the operator (x) (§5.1) is initiality preserving.

Proof: By structural induction on . [

Hence, by Theorem 2 in Section 5 and Lemma 2 in §8.1, we have:
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Lemma 2. For each pPR*(X) derivation o, each N-standard X-algebra A on which f% is
total, and each X-theory T':

A= InitNStdAlg(X,T) <—
(A, £) = Init(Xy, NStdAlg(X), T + ArAx(X) + Fa) | 5 ).

where & is the total derivation for f, given by the totality lemma, and Fy is the conditional
BU specification for a.

Here, as before, Xy = X U {f,}. Of particular interest are the two cases that T is a
conditional BU equational theory, and a conditional equational theory. First, assuming the
former:

Theorem 4. Let f be a total uPR* function on a X-algebra A. If A has an initial N-
standard algebra specification (X, F), where F' is a set of conditional BU equations, then
likewise (A, f) has such a specification (X¢, F¥) with hidden sorts and functions, where F
is also a set of conditional BU equations. Moreover, F'f can be obtained by adjoining to F
an instantiation FUY (k) of some universal conditional BU equational specification FY(z),
which depends only on X and the type of f.

The universal specification FY(z) in this theorem is obtained as in Theorem 3 in Section
5.

Finally, by assuming 7" in Lemma 2 is a conditional equational theory, and applying
Theorem 4 above and then BU elimination for initial algebras (Theorem 5 in Section 7):

Theorem 5. Let f be a total uPR* function on a X-algebra A. If A has an initial
N-standard algebra specification (X, E), where E is a set of conditional equations, then
likewise (A, f) has such a specification (X, E') with hidden sorts and functions, where
Ef is also a set of conditional equations. Moreover, Ef can be obtained by adjoining to
E an instantiation EY (k) of some universal conditional equational specification EY(z),
which depends only on ' and the type of f.

9 Computability of algebraically specifiable functions

In this section we prove (partial) converses to the results of Section 5. First we need a
definition.

Definition (Strong specifiability). Let K be a X-class, let X' D X U {f} and let T
be a X'-theory. We say that T strongly specifies a family { f4| A€ K} (possibly with
hidden sorts and/or functions) iff

(i) T specifies { f4| A € K}, and further

(ii) for every A, B € K with B < A, f8 = f4 | B.

(Here f4 | B denotes the restriction of f4 to B.)

The significance of this concept is seen by rephrasing it in either of the following two
ways.
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Lemma 1. Let K be a Y-class, let X' D X U {f} and let T be a X'-theory. T strongly
specifies a family { f4| A€ K} (possibly with hidden sorts and/or functions) iff

(i) T specifies { f4 | A € K}, and further

(ii') for every A, B € K with B < A, B is closed under f*.

Lemma 2. Let K be a Y-class which is closed under finitely generated subalgebras, let
X' D XY U{f} and let T be a X'-theory. T strongly specifies a family {f4| A e K}
(possibly with hidden sorts and/or functions) iff

(i) T specifies { f4 | A € K}, and further
(ii") for every A € K and every finitely generated B < A, B is closed under f#.

We consider algebras and functions specified by conditional equational theories. We
have to assume now that these theories have effective axiomatisations: that the axioms
are finite, for example, or at least recursively enumerable.

We will also make use of Theorem 2% in §7.6. Recall the remarks preceding the theorem
there, that the N-term condition for (3, X) follows from either (i) X = (); or (ii) strict
N-standardness of Y, together with X containing no variables of sort nat or bool.

We will prove two theorems, making each of these assumptions in turn.

9.1 Computability of specifiable function on minimal algebras

We first consider a partial converse, using Remark 1 on the N-term condition (§7.6),
that is, restricting our attention to minimal models (i.e., models in which every element is
named by a closed term). We use the notation MinNStdAlg(X,T) for the set of minimal
N-standard Y-models of a theory 7.

Theorem 1. Suppose X' is N-standard. Let E be an r.e. conditional equational X -theory
which in CondEq(Y) is consistent, determines nat and bool and proves NStdAxq(X).
Suppose X' D X U {f}, and let E’ be an r.e. conditional equational Y'-theory which
strongly specifies { f4 | A € MinNStdAlg(X, E)} (possibly with hidden sorts and/or
functions). Assume also that FE + E' determines nat and bool, and is conservative over
E, in CondEq(X), and also that all sorts of dom(f) other than bool are equality sorts.
Then f4 is uniformly pPR* computable over A € MinNStdAlg(X., F).

Proof: We will describe a pseudo- While* () algorithm for computing f# uniformly over
minimal N-standard Y-models A of F. Suppose f:u — s, where u = s1 X --- X s,. In
general, some of the s; are nat or bool, and the others not. Suppose (w.l.o.g.) that for

some m < n, sorts Spy41,...,S, are all either nat or bool, and sorts si,..., s, are not.
Write 4 = v X w where v = 51 X -+ X s, and w = spy41 X -+ X 8,. By assumption,
sorts s1,...,8, are equality sorts.
For any A € MinNStdAlg(X, E), we will show how to compute
A A > A,

Choose a tuple k = (k1,...,kp—m) € A" (of naturals and truth values), and consider the
function

fit=a f(, k) AY — A,
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We will show how to compute f;* uniformly in the (numerical and boolean) parameters k.

Let I = T(X, E, CondEq(X)) and J = T(X', E + E’, CondEq(X’)) (recall the defi-
nitions in §7.1). By the N-Standardness Lemma (and the conservativity assumption for
E+E' over E), both I and J are N-standard. (Below we denote elements of these algebras
by ‘[t]’, i.e., suitable equivalence classes of terms ¢, or tuples thereof. We also write k for
the tuple of numerals and/or truth constants corresponding to k.)

Note that the identity mapping on T(X) induces a X-homomorphism
v I — Tl s

By conservativity of E+ E’ over E, 1y is injective. Hence I < J| 5.

Further, the function f” specified by E’ on J |y is clearly the same as that defined
“naturally” on J by f7([t]) = [f(t)]. By the strong specification assumption,

fr=r"r
Hence for any closed X-term t,
fil ([to]) = fi(ft]) = [t]

for some closed Y-term t. By definition of .J, this means that the equation

f(to, k) = ¢ (%)

is provable from E + E’ in CondEq(X").

Now take any A € MinNStdAlg(X, E), and any a € A”. Since A is minimal, there is
a tuple of closed Y-terms %o : v such that t§' = a. By Theorem 2 of Section 6 applied to
X', there is a X’-homomorphism

hed — (A f4..)

with h([to]) = a. Hence, since () holds in J, it also holds in (the X'-expansion of) A
with ‘f interpreted as f4.

b

This suggests the following algorithm for f,f with A minimal. With inputs a € A":
first generate all (Gédel numbers of) tuples of closed Y-terms of type v, until you find a
tuple to with ¢! = a. (This is where we use computability of equality on type v.) Then
generate all Godel numbers of theorems of £+ E’ until you find one of the form "f(tg) = ¢7,
for some closed X-term ¢. Then the output is t4.

The search is effective in the term evaluation function for closed Y-terms in A, by recur-
sive enumerability of E and E’. Further, since term evaluation is PR* computable ([TZ00,
§4]), this algorithm can be formalised as a pPR*(X) derivation for f4, as desired. O

Remark. The assumption that the sorts of dom(f) are equality sorts can clearly be
weakened to the assumption that equality is (uniformly over MinNStdAlg(X, E)) com-

putable on these sorts.
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9.2 Computability of specifiable function in strictly N-standard algebras

We consider a second partial converse, using Remark 2 on the N-term condition, 7.e., no
free variables of sort nat or bool, plus strict N-standardness.

Theorem 2. Suppose X' is strictly N-standard. Let F be an r.e. conditional equational
Y -theory which in CondEq(X) is consistent and proves NStdAx(X). Suppose X' D X U{f}
is also strictly N-standard and proves NStdAx(X'). Let E’ be an r.e. conditional equational
X'-theory which strongly specifies { f4| A€ NStdAlg(X,E)} (possibly with hidden
sorts and/or functions). Assume also that E + FE’ is conservative over F in CondEq(X’).
Then f# is uniformly pPR* computable over A € NStdAlg(X, E).

Proof: We will describe a pseudo- While* () algorithm for computing f4 uniformly over
A € NStdAlg(X, FE). Suppose f:u— s, where u = $1 X -+ X s,. In general, some of
the s; are nat or bool, and the others not. Suppose (w.l.o.g.) that for some m < n, sorts
Sm+1s---,5n are all either nat or bool, and sorts si,...,sy, are not. Write u = v X w
where v =51 X -+ X 5, and W = Syq1 X -+ X §p.

For any A € NStdAlg(X, F), we will show how to compute
A4 A — A,

Choose a tuple k = (k1,...,k,_m) € A" (of naturals and truth values), and consider the
function

f]?:dff(',k): AV — As.
We will show how to compute fi* uniformly in the (numerical and boolean) parameters k.

Choose a tuple of variables x : v (i.e., of the same product type as a). Let I =
T(X, x, E, CondEq(X)) and J = T(X', x, E+ E’, CondEq(X’)) (recall the definitions in
§7.6). By the strict N-standardness Lemma® (§7.6), both I and J are N-standard.

Note that the identity mapping on T(X, x) induces a X-homomorphism
v I — Tl 5.

By conservativity of E+ E’ over E, 1y is injective. Hence I < J| 5.

Further, the function f” specified by E’ on J |y is clearly the same as that defined
naturally on J by f7([t]) = [f(t)]. By the strong specification assumption,

fh=rlr

Hence
fil®) = fix) = [1]
for some ¢t € T(X,x). By definition of J, this means that the equation

f(x, k) =t ()
is provable from F + E' in CondEq(X").
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Now take any A € NStdAlg(X, E), and any a € AY. By Theorem 2% applied to X',
there is a X’-homomorphism

hed — (A f4..)

where h(x) = a. Hence, since () holds in .J, it also holds in (the X’'-expansion of) A, with
‘¢ interpreted as f4 and a assigned to x.

This suggests the following algorithm for f,f. With inputs a € A”: generate all Godel
numbers of theorems of £ + E’ until you find one of the form "f(x) = ¢, for some X-term
t (in x). This search is effective, by recursive enumerability of E and E’. Then the output
is the evaluation of the term t in A with a assigned to x.

Since term evaluation is PR* computable [TZ00, §4], this algorithm can be formalised
as a pPR*(X) derivation for f4, as desired. [

Remarks.

(1) The above algorithm gives, for each tuple of numerical and boolean arguments &, a
fized term t € T(X,x) as the value of f{(a) for all A € NStdAlg(X,FE) and all
a € AY.

(2) Theorems similar to Theorems 1 and 2 can be formulated for conditional BU equa-
tional theories and specifications, using a variation of Theorem 3 (instead of Theorem
2) in Section 7.

9.3 Significance of strong specifiability; Equivalence of specifiability and
computability

We want to combine some of the above results into an equivalence result between com-
putability and specifiability.

Note that by the Locality Theorem for While computations [TZ00, §2.8], if f is uPR*
computable on an algebra A, then any subalgebra of A is closed under f. This suggests

the following formulations for equivalence theorems, which are simple consequences of the
above theorems and the lemmas on strong specifiability at the beginning of this section.

We give one formulation (Theorem 3) for minimal algebras (¢f. Theorem 1), and another
(Theorem 4) for strictly N-standard algebras (c¢f. Theorem 2).

Theorem 3. Suppose X' is N-standard. Let F be an r.e. conditional equational Y -theory,
which in CondEq(Y) is consistent, determines nat and bool and proves NStdAxq(X). Let
f= (f4| Ac MinNStdAlg(X,E)) be a family of functions on MinNStdAlg(X, E).
Assume that all sorts of dom(f) other than bool are equality sorts. Then the following
are equivalent:

(i) f is uPR* computable uniformly on MinNStdAlg(X, E);

(i1) f is strongly specifiable uniformly on MinNStdAlg (X, E), with hidden sorts and
functions, by a finite set of conditional equations which (together with F) is conser-
vative over E in CondEq(X).
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Theorem 4. Suppose Y is strictly N-standard. Let E be an r.e. conditional equa-
tional X-theory, which in CondEq(X) is consistent and proves NStdAxo(X). Let f =

(f4| A € NStdAlg(X,E)) be a family of functions on NStdAlg(X,E). Then the fol-
lowing are equivalent:

(i) f is uPR* computable uniformly on NStdAlg(X, E);

(ii) f is strongly specifiable uniformly on NStdAlg(X, F), with hidden sorts and func-
tions, by a finite set of conditional equations which (together with E') is conservative

over E in CondEq(Y'), and such that the signature of these equations is also strictly
N-standard.

Remark (Herbrand-Gdédel computability on N). The above theorem generalises the
classical equivalence result on N [Kle52].

10 Concluding remarks and future directions
10.1 Computation on Topological Data Types

We have extended the theory of algebraic specifications from the world of countable com-
putable algebras to that of all algebras, and especially metric algebras, by means of abstract
computability theory. Topological data types and algebraic specifications play a funda-
mental role in many areas of computing, including semantics and scientific computation.

Our main theorems concern the transformation of abstract algorithms to algebraic spec-
ifications and provide some basic techniques for the theory of specifying and verifying
abstract computations. An obvious question is:

Under what circumstances can the conditional equations be replaced by equa-
tions in our theory?

However, the converse results on the derivation of algorithms from algebraic specifi-
cations need strengthening to provide completeness or equivalence theorems. Improving
results in the reverse direction is an important problem, as stated in the Introduction.
There is much more to this topic than the results in Section 9. A key technical problem
in this area is:

To develop general techniques for solving equations, conditional equations and
other algebraic formulae in topological algebras.

In semantics, for example, special cases of the problem are common. Semantic modelling
makes heavy use of fixed-point equations. One thinks of the introduction of metric methods
into semantics by M. Nivat (see [Niv79, AN80a, AN80b]), or their use in concurrency
theory by De Bakker and others [dBZ82, dBR92, dBdV99]. Studies of the methods of
equation solving in ultrametric algebras, including equivalence between metric, algebraic
and domain-theoretic techniques, are in Stoltenberg-Hansen and Tucker [SHT88, SHTI1,
SHT93]; see also [SHLG94].

In scientific computation, numerical methods are concerned with obtaining computable
solutions from differential and integral equations. Mathematical models of systems in the
world are specified by sets of equations, from which algorithms are sought to compute their
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solutions and hence to simulate the system. Our main theorems and examples in Section 5
show the opposite: if a system can be approximately simulated on a computer then there
exist algebraic specifications that capture the system’s behaviour. Such results seem to
be new and, in our view, draw loci that help delimit the computability theory of physical
systems. We conjecture that it is possible

To show that certain parts of the theory of numerical approximation of differential and
integral equations are special instances of a general theory of algebraic specifications.

This is an exciting and difficult problem with many obvious applications.

Given the wealth of algorithms and theory in numerical methods, it seems to us that
relatively little is known about the computational and logical scope and limits of equa-
tions, the classical mathematical methods of science. Progress in the area has awaited the
creation of stable computation theories for topological data types. Over the past decade,
computability theory for topological spaces and algebras has developed dramatically. Sev-
eral general approaches have produced deep results and have been shown to be equivalent.
Some approaches are

metric spaces [Mos64]

e axiomatic computation structures [PER89],

e type two effectivity [Wei00]

3

e algebraic domain representability [SHT88, SHT95, Bla97]

e continuous domain representability [Eda97],
e abstract computability [TZ99, TZ00, BSS89]

The equivalence of the first five approaches is proved in [SHT99]. The equivalence of
all these with the last one is proved in [Bra97, Bra99, TZ99, TZ01a).

However, this computability theory needs to be complemented by a logical theory which
includes equation solving in topological algebras.

10.2 Theory of computable data types

The theory of algebraic specifications of computable (semicomputable, and cosemicom-
putable) data types contains many techniques for proving special properties of algebraic
specifications, and showing the equivalence or non-equivalence of specification methods.
Can some of these results be generalised? We believe the answer is yes, but not without
much further work. Many results depend on special techniques of classical computability
theory on the natural numbers. The theory for computable algebras uses representations
by recursive algebras of numbers. It is possible to make a representation theory for topo-
logical algebras based on Baire space NN using the type two effectivity methods of Klaus
Weihrauch [Wei00]. The use of the Diophantine Theorem for r.e. sets is more difficult:
the theory of r.e. sets in abstract computability differs from the classical case, and no
Diophantine Theorem is known (even for minimal algebras).

Since abstract computability theory is uniform over classes of algebras, our results on
specifications are uniform, yielding parameterised specifications. As we have seen, this pro-
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cess is surprisingly delicate because it leads to questions about standardness. In abstract
computations it is natural to augment an algebra by basic data types such as booleans,
naturals and finite arrays. These have an effect on the axiomatisations. There are other
important additional types, of both theoretical and practical interest, that may be used
to augment a given data type and are in need of a standard algebraic specification theory,
including;:

(7) infinite streams (necessary for developing the theory of interactive systems);

(74) real numbers (necessary for developing the theory of metric algebras and normed
linear spaces).

An attempt to extend the specification methods of this paper to both these data types,
using infinitary equational specifications, is made in [TZ01b)]

Finally, we note there are several other basic properties of specifications in need of
investigation, especially term rewriting properties.
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