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Abstract. We present a survey of our work over the last few decades on gen-
eralizations of computability theory to many-sorted algebras. The following
topics are discussed, among others: (1) abstract v concrete models of com-
putation for such algebras; (2) computability and continuity, and the use of
many-sorted topological partial algebras, containing the reals; (3) comparisons
between various equivalent and distinct models of computability; (4) general-
ized Church-Turing theses.

1. Introduction

Since 1936, most of the development of computability theory has focused on sets
and functions of strings and natural numbers – though computability theory imme-
diately found applications, first in logic and algebra and then pretty much every-
where. Indeed, recall that when Turing created his model of computation on strings
[Tur36], he applied it to solve a problem involving real numbers. The applications
were via codings or representations of other data.

Why would we want to generalize the classical computability theory from strings
and natural numbers to arbitrary abstract algebras? How should we do it?

Computability theory is a general theory about what and how we compute. At
its heart is the notion of an algorithm that processes data. Today, algorithms and
data abound in all parts of our professional, social and personal lives. Data are
composed of numbers, texts, video and audio. We know that, being digital, this
vast range of data is coded or represented by bitstrings (or strings over a finite
alphabet). However, the algorithms that make data useful are created specifically
for a high-level, independent model of the data close to the use and users of the
data. Therefore, computability theory cannot be content with bitstrings and nat-
ural numbers.

Now, the algorithms are designed to schedule sequences of basic operations and
tests on the data to accomplish a task. They are naturally high-level and their level
of abstraction is defined by the nature of the basic operations and tests. In fact, a
fundamental observation is this:

What an algorithm knows of the data it processes is precisely determined

by what operations and tests on the data it can employ.
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This is true of strings and natural numbers, of course. This observation leads to
the fundamental idea of an abstract data type in computer science. Mathematically,
an implementation of a data type is modelled by an algebraic structure with oper-
ations and relations, and an abstract data type is modelled by a class of algebraic
structures. The signature of an algebra is a syntactic interface to the operations
and tests. The abstract data type can be specified by giving a signature and a set
of axioms that the operators and relations must satisfy. The algebraic theory of
abstract data types is a theory about all data, now and in the future.

What about the models of computation? Thanks to computer science, there is
an abundance of computation models, practical and theoretical. Even within the
theory of computation, the diversity is daunting: so many motivations, intuitions
and technical developments.1 In this chapter we will give an introduction to one
abstract model of computation for an arbitrary abstract algebra. Our account will
be rather technical and very quick, but it will contain what we think are the key
ideas that can launch a whole mathematical theory and sustain its application. The
model is a simple form of imperative programming, being an idealised programming
language for manipulating data in a store using the constructs of assignments,
sequencing, conditionals and iteration. By concentrating on this model the reader
will be able to explore and benchmark other models, however complicated or obscure
their origins.

To make some sense of the jungle of models of computation, we discuss, in
Section 2, two basic types of model, abstract and concrete. The distinction is
invaluable when we meet other models, and applications to specific data types,
later in Section 8. The first part of this chapter introduces data types modelled by
algebras (Section 3) and the imperative programming model (Section 4), and covers
universality (Sections 5), and semicomputability (Section 6). Here we consider only
the case where algebras have total operations and tests. Next (Section 7) we look
closely at data types with continuous operations, such as the real numbers. At this
point the theory deepens. New questions arise and there are a number of changes
to the imperative model, not least the use of algebras that have partial operations
and tests and the need for nondeterministic constructs. Finally (Section 8) we take
a quick look other models and propose some generalizations of the Church-Turing
thesis to abstract many-sorted algebras.

2. On generalizing computability theory

By a computability theory we mean a theory of functions and sets that are definable
using a model of computation. By a model of computation we mean a theoretical
model of some general method of calculating the value of a function or of deciding,
or enumerating, the elements of a set. We allow the functions and sets to be
constructed from any kind of data. Thus, classical computability theory on the
set N of natural numbers is made up of many computability theories (based upon
Turing machines, recursive definitions, register machines, etc.).

We divide computability theories into two types:
In an abstract computability theory the computations are independent of all the

representations of the data. Computations are uniform over all representations and
are necessarily isomorphism invariant. Typical of abstract models of computation

1At one time it was possible for us to investigate most of the mathematical models, and compare
and classify them [TZ88, TZ00]!
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are models based on abstract ideas of program, equation, recursion scheme, or
logical formula.

In a concrete computability theory the computations are dependent on some data
representation. Computations are not uniform, and different representations can
yield different results. Computations are not automatically isomorphism invariant.
Typical of concrete models of computation are those based on concrete ideas of
coding, numbering, or data representations using numbers or functions.

Now in computer science, it is obvious that a computation is fundamentally
dependent on its data. By a data type we mean

(i) data,
together with

(ii) some primitive operations and tests on these data.
Often we also have in mind the ways these data are

(iii) axiomatically specified, and
(iv) represented or implemented.

To choose a computation model, we must think carefully about what forms of
data the user may need, how we might model the data in designing a system —
where some high level but formal understanding is important — and how we might
implement the data in some favoured programming language.

We propose the working principle:

Any computability theory should be focused equally on the data types and

the algorithms.

Now this idea may be difficult to appreciate if one works in one of the classical
computability theories of the natural numbers, for data representations rarely seem
to be an important topic there. Although the translation between Turing machines
and register machines involves data transformations, these can be done on an ad
hoc basis.

However, representations are always important. Indeed, representations are a
subject in themselves. This is true even in the simple cases of discrete data forming
countable sets and structures. From the beginning there has been a great interest in
comparisons between different kinds of numberings, for example in Mal′cev’s theory
of computability on sets and structures [Mal71]. The study of different notions of
reduction and equivalence of numberings, and the space of numberings, has had
a profound influence on the theory and has led to quite remarkable results, such
as Goncharov’s Theorem and its descendants2 [EGNR98, SHT99]. These notions
also include the idea of invariance under computable isomorphisms, prominent in
computable algebra, starting in [FS56]. In the general theory of computing with
enumerated structures, there was always the possibility of computing relative to a
reasonable numbering that was standard in some sense. For example, earlier work
on the word problem for groups, such as [MKS76], and on computable rings and
fields, such as [Rab60], was not concerned with the choice of numberings.

We see the importance of representations even more clearly when computing
with continuous data forming uncountable sets. For example, in computing with
real numbers, it has long been known that if one represents the reals by infi-
nite decimal expansions then one cannot even compute addition (consider, e.g.,

2 For example: for all n there exists a computable algebra with precisely n inequivalent
computable numberings.
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0.333 · · ·+ 0.666 . . . ). But if one chooses the Cauchy sequence representations then
a great deal is computable [BH02].

In general, what is the relationship between abstract and concrete computability
models with a common set of data D?

Let AbstCompA(D) be the set of functions on the data set D that are com-
putable in an abstract model of computation associated with a structure A con-
taining D.

Let ConcCompR(D) be the set of functions on D that are computable in a
concrete model of computation with representation R.

• Soundness: An abstract model of computation AbstCompA(D) is sound for
a concrete model of computation ConcCompR(D) if

AbstCompA(D) ⊆ ConcCompR(D).

• Adequacy: An abstract model of computation AbstCompA(D) is adequate
for a concrete model of computation ConcCompR(D) if

ConcCompR(D) ⊆ AbstCompA(D).

• Completeness: An abstract model of computation AbstCompA(D) is com-
plete for a concrete model of computation ConcCompRD if it is both sound
and adequate, i.e.,

AbstCompA(D) = ConcCompR(D).

As an example for the l.h.s. here, let us take the data set D = R, the set of reals,
the structure A = RN

p , the partial algebra Rp of reals defined below in Section

7, with the naturals adjoined, and AbstCompA(D) = While∗ (RN
p ), the set of

functions on R definable by the While programming language with arrays over
RN

p defined in Section 5. For the r.h.s., take a standard enumeration α : N ≈ Q
of the rationals, which generates a representation α of the computable reals (as
described in §7.1.1 below), and let ConcCompα(R) be the corresponding “α-
tracking” model. Then our abstract model is sound, but not adequate, for this
concrete model:

While
∗ (Rp) $ ConcCompα(R).

On the other hand, if we take for our abstract model over Rp the non-deterministic
WhileCC∗ (While + “countable choice” + arrays) language, and further replace
“computability” by “approximable computability” [TZ04, TZ05], then we obtain
completeness (see §7.3 below):

WhileCC∗ -approx(Rp) = ConcCompα(R). (1)

3. While computation on standard many-sorted total algebras

We will study a number of high level imperative programming languages based on
the ‘ while’ construct, applied to a many-sorted signature Σ. We give semantics
for these languages relative to a total Σ-algebra A, and define the notions of com-
putability, semicomputability and projective semicomputability for these languages
on A. Much of the material is taken from [TZ00].

We begin by reviewing basic concepts: many-sorted signatures and algebras.
Next we define the syntax and semantics of the While programming language.
Then we extend this language with special programming constructs to form two
new languages: While

N and While
∗ .
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3.1. Basic concepts: Signatures and partial algebras.

A many-sorted signature Σ is a pair 〈Sort(Σ),Func (Σ)〉 where

(a) Sort(Σ) is a finite set of basic types called sorts s, s′,. . . .
(b) Func (Σ) is a finite set of basic function symbols

F : s1 × · · · × sm → s (m ≥ 0)

The case m = 0 gives a constant symbol ; we then write F : → s.
A product type has the form s1 × · · · × sm (m ≥ 0), where s1, . . . , sm are sorts.

We write u, v, . . . for product types. A function type has the form u → s, where u
is a product type.

A Σ-algebra A has, for each Σ-sort s, a non-empty set As, the carrier of sort s,
and for each Σ-function symbol F : s1 × · · · × sm → s, a (basic) function

FA : Au → As

where u = s1 × · · · × sm, and Au = As1
× · · · × Asm

.
We write Σ(A) for the signature of an algebra A.
A Σ-algebra is called total if all the basic functions are total; it is called partial

in the absence of such an assumption. Sections 3 to 6 will be devoted to total
algebras. In Section 7 we will turn to a more general theory, with partial algebras.

Example 3.1.1 (Booleans). The signature Σ(B) of the booleans is

signature Σ(B)
sorts bool

functions true, false : → bool,
not : bool → bool

or, and : bool2 → bool

The algebra B of booleans contains the carrier B = {t, f} of sort bool, and the
standard interpretations of the constant and function symbols of Σ(B).

Note that for a structure A to be useful for computational purposes, it should
be susceptible to testing, which means it should contain the carrier B of booleans
and the standard boolean operations; in other words, it should contain the algebra
B as a retract. Such an algebra A is called standard. All the examples of algebras
discussed below will be standard.

Example 3.1.2 (Naturals). The signature Σ(N ) of the naturals is

signature Σ(N )
import Σ(B)
sorts nat

functions 0: → nat,
suc : nat → nat

eqN, lessN : nat2 → bool

The algebra N of naturals consists of the carrier N = {0, 1, 2, . . .} of sort nat, the
carrier B of sort bool, and the standard constants and functions 0N : → N, sucN :
N → N, and eqN, lessN : N2 → B (apart from the standard boolean operations).

We will use the infix notations ‘=’ and ‘<’ for ‘eqN’ and ‘lessN’. and also use ‘∨’
and ‘∧’ for the boolean operations ‘or’ and ‘and’.
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Example 3.1.3 (Total algebra of reals). The signature Σ(Rt) of the total algebra
of reals is:

signature Σ(Rt)
import Σ(B)
sorts real

functions 0, 1: → real,

+,× : real2 → real,
− : real → real,

eqR, lessR: real2 →bool

(We will study a partial algebra of reals in Section 7.) The algebra Rt of reals
has the carrier R of sort real, as well as the imported carrier B of sort bool with
the boolean operations, the real constants and operations (0, 1, +,×,−), and the
(total) boolean-valued functions eqR : R2 → B. and lessR : R2 → B. Again, we will
use the infix notations ‘=’ and ‘<’ for these.

Definition 3.1.4 (Minimal carriers; minimal algebra).
Let A be a Σ-algebra, and s a Σ-sort.

(a) A is minimal at s (or the carrier As is mimimal in A) if As is generated by the
closed Σ-terms of sort s.

(b) A is minimal if it is minimal at every Σ-sort.

To take two examples:

• Every N-standard algebra (see §3.3) is minimal at sorts bool and nat.

• The algebra Rt of reals (Example 3.1.3) is not minimal at sort real.

3.2. Syntax and semantics of of Σ-terms.

For a signature Σ, the set Tm(Σ) of Σ-terms is defined from Σ-variables x
s, . . .

of sort s (for all Σ-sorts s) by

ts ::= x
s|F (ts1

1 , . . . , tsm

m )

where F is a Σ-function symbol of type s1 × · · · × sm → s.
We write t : s to indicate that t is a Σ-term of sort s, and more generally, t : u

to indicate that t is a tuple of terms of product type u. We also write b, . . . for
boolean Σ-terms, i.e. Σ-terms of sort bool.

We turn to the semantics of terms.
A state over an algebra A is a family 〈σs | s ∈ Sort(Σ)〉 of functions σs : Vars →

As (where Vars is the set of variables of sort s). Let State(A) be the set of states
on A. We will write σ(x) for σs(x) where x : s. Also, for a tuple x ≡ (x1, . . . , xm),
we write σ[x] for (σ(x1), . . . , σ(xm)).

Let σ be a state over A, and for some Σ-product type u, let x ≡ (x1, . . . , xn) : u
and a = (a1, . . . , an) ∈ Au (for n ≥ 1). We define the variant σ{x/a} to be the
state over A formed from σ by replacing its value at xi by ai for i = 1, . . . , n.

For a term t : s, we will define the function

[[t]]
A

: State(A) → As

where [[t]]
A
σ is the value of t in A at state σ.

The definition of [[t]]Aσ is by structural induction on Σ-terms t:
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[[x]]Aσ = σ(x)

[[F (t1, . . . , tm)]]Aσ = FA([[t1]]
Aσ, . . . , [[tm]]Aσ)

(2)

3.3. Adding counters: N-standard signatures and algebras.

A signature Σ is N-standard if (i) it is standard (see §3.1), and (ii) it contains the
standard signature of naturals (Example 3.1.2), i.e., Σ(N ) ⊆ Σ.

Given an N-standard signature Σ, a Σ-algebra A is N-standard if it is an expan-
sion of N , i.e., it contains the carrier N with the standard arithmetic operations.

N-standardness is clearly very useful in computation, with the presence of coun-
ters, and the ability for enumerations and numerical coding.

Any standard signature Σ can be “N-standardised” to a signature ΣN by ad-
joining the sort nat and the operations 0, suc, eqN and lessN. Correspondingly, any
standard Σ-algebra A can be N-standardised to an algebra AN by adjoining the
carrier N together with the corresponding arithmetic and boolean functions on N.

3.4. Adding arrays: Algebras A∗ of signature Σ∗.

Given a standard signature Σ, and standard Σ-algebra A, we expand Σ and A in
two stages: (1) N-standardise these to form ΣN and AN , as in §3.3; and (2) define,
for each sort s of Σ, the carrier A∗

s to be the set of finite sequences or arrays a∗

over As, of “starred sort” s∗.
The resulting algebras A∗ have signature Σ∗, which extends ΣN by including,

for each sort s of Σ, the new starred sorts s∗, and certain new function symbols to
read and update arrays. Details are given in [TZ99, TZ00].

We conclude this section with a very useful syntactic conservativity theorem,
which says that that every Σ∗-term with sort in Σ is effectively semantically equiv-
alent to a Σ-term. This theorem will be used later for proving universality for
While∗ computations by a WhileN procedure (Theorem 3∗) and deriving a strong
form of Engeler’s Lemma (Theorem 8).

Theorem 1 (Σ∗/Σ conservativity for terms). For every Σ-sort s, every Σ∗-term t
of sort s without any variables of starred sort is effectively semantically equivalent3

to a Σ-term.

4. The While programming language

Note that we will use ‘≡’ to denote syntactic identity between two expressions.
We define Stmt(Σ) to be the class of While(Σ)-statements S, . . . generated by:

S ::= skip | x := t | S1 ; S2 | if b then S1 else S2 fi | while b do S0 od

where the variable x and term t have the same Σ-sort.
Proc(Σ) is the class of While(Σ)-procedures P, . . . , of the form:

P ≡ proc in a out b aux c begin S end (3)

where S is the body, and and a, b and c are tuples of (distinct) input, output and
auxiliary variables respectively.

If a : u and b : v, then P is said to have type u → v, written P : u → v.
We turn to the semantics of statements and procedures.

3 i.e. we can effectively find a Σ-term t′ such that [[t′]]Aσ = [[t]]A
∗

σ for all Σ-algebras A

and states σ over A∗ (or A).
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The meaning [[S]]A of a statement S is a partial state transformer 4 on an algebra
A:

[[S]]A : State(A) ⇀ State(A).

Its definition is standard [TZ99, TZ00] and lengthy, and so we omit it. Briefly, it is
based on defining the computation sequence of states from S starting in a state σ,
or rather the n-th component of this sequence, by a primary induction on n, and a
secondary induction on the size of S.

Next, given a procedure (3) of type u → v, its meaning is a partial function
PA : Au ⇀ Av defined as follows. For a ∈ Au, let σ be any state on A such that
σ[a] = a, and σ[b] and σ[c] are given preassigned default values. Then

PA(a) ≃

{

σ′[b] if [[S]]Aσ ↓ σ′ (say)

↑ if [[S]]Aσ ↑.

Here ‘≃’ means that the two sides either both converge to the same value, or both
diverge (“Kleene equality” [Kle52, §63]).

We are also using the notation [[S]]
A
σ ↓ to mean that evaluation of [[S]]

A
at σ

halts or converges; [[S]]
A
σ ↓ σ′ that it converges to σ′, and [[S]]

A
σ ↑ that it diverges.

It is worth noting that the semantics of While(Σ) procedures is invariant under
Σ-isomorphism.

Modifications in these semantic definitions ((2),(3)) required for partial algebras
will be indicated in Section 7 (Remark 7.3.1).

4.1. While, WhileN and While∗ computability.

A (partial) function f on A is While computable if f = PA for some While

procedure P .
Consider now the While programming language over ΣN and Σ∗.
A WhileN (Σ) procedure is a While(ΣN ) procedure in which the input and

output variables have sorts in Σ. However the auxiliary variables may have sort
nat.

Similarly, a While∗(Σ) procedure is a While(Σ∗) procedure in which the input
and output variables have sorts in Σ. However the auxiliary variables may have
starred sorts.

A function f on A is WhileN (or While∗ ) computable if f = PA for some

WhileN (or While∗ ) procedure P .

We write While(A), WhileN (A) and While∗(A) for the classes of functions

While, WhileN and While∗ computable on A.

Remarks 4.1.1.

(a) Clearly, if A is N-standard, then WhileN computability coincides with While

computability on A.

(b) Because of the effective enumeration of the set N∗, WhileN and While∗ com-
putability coincide with While computability on N , which is in turn equivalent
to classical partial recursiveness over N.

(c) While∗ computability will be the basis for a generalized Church-Turing The-

sis, as we will see later (§8.2). On the other hand, WhileN computability is
useful for representing the syntax of While programming within the formal-
ism, by means of coding (Section 5)).

4 ‘⇀’ denotes a partial function
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5. Representations of semantic functions; Universality

We examine whether the While programming language is a so-called universal
model of computation. This means answering questions of the following form. Let
A be a standard Σ-algebra.

Is there a universal While procedure Uproc ∈ Proc(Σ) that can compute

all the While computable functions on A?

To this end we need the techniques of numerical codings (Gödel numberings) and
symbolic computations on terms. More accurately, for this to be possible, we need
the sort nat, and so we will consider the possibility of representing the syntax of a
standard Σ-algebra A (not in A itself, but) in its N-standardisation AN , or (failing
that) in the array algebra A∗. We will see that

For any given Σ-algebra A, there is a universal While procedure over A
if, and only if, there is a While program for term evaluation over A.

Consequently, since term evaluation is always While∗ computable on A, we have

For any Σ-algebra A there is a universal While∗ program and universal

While∗ procedure over A.

Thus, for any algebra A our While∗ model of computation is universal.
Hence, if the Σ-algebra A has a While program to compute term evaluation,

then

While∗(A) = WhileN (A).

5.1. Numbering of syntax.

We assume given families of effective numerical codings of the syntactic classes E
with which we deal, i.e. 1-1 maps code : E →֒ N, with peq = code(e) denoting the
code of the expression e ∈ E. Further, we assume standard effective numberings of
sets such as N∗, Q2, etc. Hence we assume that we can primitive recursively simulate
all operations involved in processing the syntax of the programming language.

By “effective(ly)”, we will mean effective in the codes of the syntactic or math-
ematical objects referred to.

We will use the notation

pTmq = {ptq | t ∈ Tm},

etc., for sets of codes of syntactic expressions.

5.2. Representation of states.

We will be interested in the representation of various semantic functions on syntactic
classes such as Tm(Σ), Stmt(Σ) and Proc(Σ) by functions on A or A∗, and in
the computability of these representing functions. These semantic functions have
states as arguments, so we must first define a representation of states.

Let x be a u-tuple of program variables. A state σ on A is represented (relative
to x) by a tuple of elements a ∈ Au if σ[x] = a.

The state representing function

RepA
x

: State(A) → Au

is defined by

RepA
x
(σ) = σ[x].
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Tm x,s × State(A)

pTm x,sq × Au As

TEA
x,s

te A
x,s

〈code ,RepA
x
〉

Figure 1. Term evaluation representing function

5.3. Representation of term evaluation; Term evaluation property.

Let x be a u-tuple of variables. Let Tm x = Tm x(Σ) be the class of all Σ-terms
with variables among x only, and for all sorts s of Σ, let Tm x,s = Tm x,s(Σ) be
the class of such terms of sort s.

The term evaluation function on A relative to x

TEA
x,s : Tm x,s × State(A) → As,

defined by

TEA
x,s(t, σ) = [[t]]

A
σ,

is represented by the function

te A
x,s : pTm x,sq × Au → As

defined by

te A
x,s(ptq, a) = [[t]]Aσ,

where σ is any state on A such that σ[x] = a, in the sense that the diagram in
Figure 1 commutes.

We will be interested in the computability of this term evaluation representing
function.

Definition 5.3.1 (Term evaluation). The algebra A has the term evaluation prop-
erty (TEP) if for all x and s, the term evaluation representing function te A

x,s is

While computable on AN .

Many well-known varieties (i.e., equationally axiomatisable classes of algebras)
have (uniform versions of) the TEP. Examples are: semigroups, groups, and asso-
ciative rings with or without unity. This follows from the effective normalisability
of the terms of these varieties. In the case of rings, this means an effective trans-
formation of arbitrary terms to polynomials.

Thus, for example, the algebra Rt of reals has the TEP.

Theorem 2.

The term evaluation representing function on A∗ is While computable on A∗.

Corollary 5.3.2.

The term evaluation representing function on A is While∗ computable on AN .

Recall the definition (3.1.4) of minimal carriers.

Corollary 5.3.3.
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(a) If A is minimal at s, then there is a While∗ computable enumeration (or
listing) of the carrier As, i.e., a surjective total mapping

enumA
s : N ։ As,

which is While∗ computable on AN .

(b) If in addition A has the TEP, then enumA
s is also While computable on AN .

Theorem 3 (Universality characterization theorem for While computations).
The following are equivalent:

(i) A has the TEP;

(ii) For all Σ-product types u, v, there is a While(ΣN ) procedure

Univu → v : nat × u → v

which is universal for Procu → v on A, in the sense that for all P ∈ Procu → v

and a ∈ Au,

UnivA
u → v(pPq, a) ≃ PA(a).

Using the Σ∗/Σ conservativity theorem (Theorem 1), we can strengthen the

above theorem, so as to construct a universal While(ΣN ) procedure for While
∗

computation,

Theorem 3∗ (Universality characterization theorem for While∗ computations).
The following are equivalent.

(i) A has the TEP.

(ii) For all Σ-product types u, v, there is a While(ΣN ) procedure

Univu → v : nat × u → v

which is universal for Proc∗u → v on A, in the sense that for all P ∈ Proc∗

u → v

and a ∈ Au,

UnivA
u → v(pPq, a) ≃ PA(a).

We conclude that there are universal WhileN procedures for While∗ compu-
tation on Rt.

6. Concepts of semicomputability

We want to generalize the notion of recursive enumerability to many-sorted algebras.
There turn out to be many non-equivalent ways to do this.

The primary idea is that a set is While semicomputable if, and only if, it is
the domain or halting set of a While procedure; and similarly for WhileN and
While

∗ semicomputability.
This concept satisfies the standard closure properties (under finite union and

intersection) and also Post’s Theorem:

A set is computable if, and only if, it and its complement are semicomputable.

The second idea of importance is that of a projection of a computable or semicom-
putable set. set. In classical computability theory on N, the class of semicomputable
sets is closed under projections, but this is not true in the general case of algebras,
as we will see. Projective semicomputability is strictly more powerful (and less
algorithmic) than semicomputability.
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We will also characterize the semicomputable sets as the sets definable by some
effective countable disjunction of boolean valued terms. This result, first observed
by E. Engeler, has a number of interesting applications.

Definition 6.0.4.

(a) R is While computable on A if its characteristic function is.

(b) R is While semicomputable on A if it is the halting set on A of some While

procedure P , i.e., R = {a ∈ Au | PA(a) ↓}.

Examples 6.0.5.

We will have need for the notation Ro
t to indicate the algebra Rt without the ‘<’

operation.

(a) On the naturals N the While semicomputable sets are precisely the recursively
enumerable sets, and the While computable sets are precisely the recursive
sets.

(b) On Ro
t the set of naturals (as a subset of R) is While semicomputable, being

the halting set of the following procedure:

is nat ≡ proc in x : real

begin while not x = 0

do x := x− 1 od

end

(c) Similarly, the set of integers is While semicomputable on Ro
t .

(d) However, the sets of naturals and integers are While computable on Rt, as can
be easily seen.

(e) The set of rationals is While semicomputable on Ro
t . (Exercise. Hint: Prove

this first for RoN
t .)

6.1. Merging two procedures; Closure theorems.

The classical “merge” theorems generalize:

Theorem 4. The union and intersection of two While semicomputable relations
of the same type are again While semicomputable.

In the case of union, if we assume that (i) A is N-standard, and (ii) A has the
TEP. then the construction of the “merge” of the two characteristic procedures,
i.e., interleaving their steps to form the new procedure, simply follows the classical
proof for computation on N. Failing this, the construction of the merge procedure
(by structural induction on the pair of statements) is quite challenging. (The tricky
case is where both are ‘while’ statements.)

If R is a relation on A of type u, we write the complement of R as Rc = Au\R.

Theorem 5 (Post’s Theorem for While semicomputability).
For any relation R on A

R is While computable ⇐⇒ R and Rc are While semicomputable.

Note that the proofs of the above two theorems depend strongly on the totality
of A. (See Remark 7.3.2.)

Another useful closure result, applicable to N-standard structures, is:
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Theorem 6 (Closure of While semicomputability under N-projections). Suppose
A is N-standard. If R ⊆ Au×nat is While semicomputable on A, then so is its
N-projection {x ∈ Au | ∃n ∈ N R(x, n)}.

To outline the proof: From a procedure P which halts on R, we can effectively
construct another procedure which halts on the required projection. Briefly, for
input x, we search by “dovetailing” for a number n such that P halts on (x, n).

We can generalize this theorem to the case of an As-projection for any minimal
carrier As (recall Definition 3.1.4), provided A has the TEP.

Corollary 6.1.1 (Closure of While semicomputability under projections off min-
imal carriers). Suppose A is N-standard and has the TEP. Let As be a minimal
carrier of A. If R ⊆ Au×s is While semicomputable on A, then so is its projection
off As.

Note that Corollary 6.1.1 is a many-sorted version of (part of) Theorem 2.4 of
[Fri71], cited in [She85]. The minimality condition (a version of Friedman’s Condi-
tion III) means that search in As is computable (or, more strictly, semicomputable)
provided A has the TEP. Thus in minimal algebras, many of the results of classical
recursion theory carry over, e.g.,

• the domains of semicomputable sets are closed under projection (as above)
• a semicomputable relation has a computable selection function
• a function with semicomputable graph is computable [Fri71, Thm 2.4].

If, in addition, there is computable equality at the appropriate sorts, other results
of classical recursion theory carry over, e.g.,

• the range of a computable function is semicomputable [Fri71, Thm 2.6].

6.2. Projective While semicomputability and computability.

A set R ⊆ Au is projectively While semicomputable (or computable) on A iff R is
a projection of a While semicomputable (or computable) set on A, i.e., for some
product types u and v,

∀x ∈ Au
[

x ∈ R ⇐⇒ ∃y ∈ Av : (x, y) ∈ R′
]

.

where R′ is a semicomputable (or computable) subset of Au×v.
We note that although the emphasis in this subsection is on projective semi-

computability, the concept of projective computability will be used in our formula-
tion of a generalized Church-Turing thesis for specifiability (in Section 8).

In this connection we note further that

(1) The concepts of projective While∗ semicomputability and projective While∗

computability coincide, by the projective equivalence theorem (Theorem 10
below).

(2) Projective While(∗) semicomputability is, in general, a broader concept than

While(∗) semicomputability (§6.7).

We do, however, have closure of semicomputability in the case of N-projections,
i.e., existential quantification over N, as we saw in Theorem 6. Further, we have
from Corollary 6.1.1:

Theorem 7. Suppose A is N-standard and minimal and has the TEP. Then on A

projective While semicomputability = While semicomputability.



14 J.V. Tucker and J.I. Zucker

6.3. While∗ semicomputability.

A relation R on A is While∗ semicomputable if it is the halting set of some
While(Σ∗) procedure on A∗.

Again, we have Post’s Theorem for While∗ computability and semicomputabil-
ity, and again, we have closure of While∗ semicomputability under N-projections,
and projections off minimal carriers.

Note that we do not have to assume the TEP for the latter (cf. Corollary 6.1.1),
since the term evaluation representing function is always While∗ computable.

Example 6.3.1. The subalgebra relation5 :

subalgA(x, y) ⇐⇒ x is in the subalgebra of A generated by y

is While∗ semicomputable on A. This follows from While∗ computability of
term evaluation on AN (Corollary 5.3.2).

6.4. Projective While∗ semicomputability.

A relation R on A is said to be projectively While∗ computable (or semicomputable)
on A if R is a projection of a While(Σ∗) computable (or semicomputable) relation
on A∗.

Theorem 7 can be re-stated for While∗ semicomputability:

Theorem 7∗. Suppose A is a minimal. Then on A

projective While∗ semicomputability = While∗ semicomputability.

Note again that the TEP does not have to be assumed here (cf. Theorem 7).
Also we are using the fact that if A is minimal then so is A∗.

Example 6.4.1. In N , the various concepts we have listed: While, While
N and

While∗ semicomputability, as well as projective While, WhileN and While∗

semicomputability, all reduce to recursive enumerability over N.

In general, however, projective While∗ semicomputability is strictly broader
than projective WhileN semicomputability. In other words, projecting along starred
sorts is stronger than projecting along simple sorts or nat. (Intuitively, this cor-
responds to existentially quantifying over a finite, but unbounded, sequence of
elements.) An example to show this will be given below.

We do, however, have the following equivalence:

projective While∗ semicomputability = projective While∗ computability.

This is the projective equivalence theorem for While∗ (Theorem 10).

6.5. Computation trees; Engeler’s Lemma.

For any While statement S over Σ, we can define a (possibly infinite) computation
tree for S. The construction is by strutural induction on S. Details are given in
[TZ00].

Using this and the Σ/Σ∗ conservativity theorem (Theorem 1), we can prove the
following. Let R be a relation on A.

Theorem 8 (Engeler’s Lemma for While∗ semicomputability). R is While∗

semicomputable over A iff R can be expressed as an effective countable disjunction
of booleans over Σ.

5 We are suppressing sort superscripts here
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If, moreover, A has the TEP, then we can say more:

Theorem 9 (Semicomputability equivalence theorem).
Suppose A has the TEP. Then the following assertions are equivalent:

(i) R is WhileN semicomputable on A;
(ii) R is While∗ semicomputable on A.
(iii) R can be expressed as an effective countable disjunction of booleans over Σ.

The step (i)⇒(ii) is trivial, and (ii)⇒(iii) is just Engeler’s Lemma for While∗ .
The new step (iii)⇒(i) follows from an analysis of the coding of an effective infinite
disjunction.

Corollary 6.5.1. Suppose A has the TEP. Then the following are equivalent:

(i) R is While∗ computable on A;

(ii) R is WhileN computable on A.

This follows from the above theorem, and Post’s Theorem for While
N and While

∗ .

6.6. Projective equivalence theorem for While∗ .

The following theorem uses Engeler’s Lemma, and the While∗ computability of
term evaluation.

Theorem 10 (Projective equivalence theorem). The following are equivalent:

(i) R is projectively While∗ semicomputable on A;

(ii) R is projectively While
∗ computable on A.

We can strengthen the theorem with a third equivalent clause, if we add an
assumption about computability of equality in A.

First we must define certain syntactic classes of formulae over Σ.
Let Lang∗ = Lang(Σ∗) be the first order language with equality over Σ∗. We

are interested in special classes of formulae of Lang∗.
Formulae of Lang∗ are formed from the atomic formulae by means of the propo-

sitional connectives and universal and existential quantification over variables of
any Σ∗-sort.

Definition 6.6.1 (Classes of formulae of Lang(Σ∗)).

(a) An atomic formula is an equality between a pair of terms of the same Σ∗-sort.
(b) A bounded quantifier has the form ‘∀k < t’ or ‘∃k < t’, where t : nat.

(c) An elementary formula is one with only bounded quantifiers.
(d) A Σ∗

1 formula is formed by prefixing an elementary formula with existential
quantifiers only.

(e) An extended Σ∗

1 formula is formed by prefixing an elementary formula with
a string of existential quantifiers and bounded universal quantifiers (in any
order).

We can show that an extended Σ∗

1 formula is equivalent to a Σ∗

1 formula over Σ.
Hence we will use the term ‘Σ∗

1’ to denote (possibly) extended Σ∗

1 formulae.
We can now re-state the projective equivalence theorem in the presence of equal-

ity.

Theorem 10= (Projective equivalence theorem for Σ∗ with equality).
Suppose Σ has an equality operator at all sorts. Then the following are equivalent:
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(i) R is projectively While∗ semicomputable on A;

(ii) R is projectively While
∗ computable on A;

(iii) R is Σ∗

1 definable.

6.7. Semicomputability and projective semicomutability on Rt.

We apply some of the above ideas and results to the algebra Rt. Details can be
found in [TZ00, §§6.2, 6.3]6

We begin again with a restatement of the semicomputability equivalence theorem
(Theorem 9), for the particular case of Rt.

Theorem 11 (Semicomputability for Rt).
Suppose R ⊆ Rn (n = 1, 2, . . . ). Then the following are equivalent:

(i) R is While
N semicomputable on Rt,

(ii) R is While∗ semicomputable on Rt,
(iii) R can be expressed as an effective countable disjunction

x ∈ R ⇐⇒
∨

i

bi(x)

where each bi(x) is a finite conjunction of equations and inequalities of the
form

p(x) = 0 and q(x) > 0,

where p, q are polynomials in x ≡ (x1, . . . , xn) ∈ Rn, with coefficients in Z.

We also have:

Theorem 12. In Rt, the following three concepts coincide for subsets of Rn:

(i) WhileN semicomputability,
(ii) While∗ semicomputability,

(iii) projective WhileN semicomputability.

The proof of equivalence between (iii) and the other two concepts follows from
the fact that semialgebraic sets are closed under projection, which in turn follows
from Tarski’s quantifier-elimination theorem for real closed fields [KK71, Ch. 4].

Interestingly, in the algebra Ro
t (i.e. Rt without the order relation ‘<’), where

Tarski’s theorem fails, one can find an example of a relation (namely, ‘<’ itself!)
which is projectively While semicomputable, but not While (or While∗ ) semi-
computable.

On the other hand (returning to Rt) the three equivalent concepts of semicom-
putability given in Theorem 12 differ from a fourth:

(iv) projective While∗ semicomputability,

as we now show.

Example 6.7.1 (A set which is projectively While∗ semicomputable, but not

projectively WhileN semicomputable).

In order to prepare for this example, we must first enrich the structure Rt. Let
E = {e0, e1, e2, . . . } be a sequence of reals such that

for all i, ei is transcendental over Q(e0, . . . , ei−1).

6 The notation in [TZ00] is unfortunately not completely consistent with the present
notation: R and R< in [TZ00] correspond (resp.) to Ro

t and Rt here.
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We define RE
t to be the algebra Rt augmented by the set E as a separate sort E,

with the embedding j : E →֒ R in the signature, thus:

algebra RE
t

import Rt

carriers E
functions j : E →֒ R

We write E ⊂ R for the real algebraic closure of Q(E).

It is easy to see that E is projectively While∗ semicomputable in RE
t . (In fact,

E is the projection on R of a While semicomputable relation on R × E∗.) We

must show that, on the other hand, E is not projectively While
N semicomputable

in RE
t .

Briefly, we proceed by showing that if F ⊆ E is any projectively While
N

semicomputable set in RE
t , then, using Engeler’s Lemma and Tarski’s theorem, we

can show that F cannot equal E.
The proof further shows that E (although a projection on R of a While semi-

computable relation on R ×E∗) is not a projection of a While
N semicomputable

relation in RE
t . In fact, it can be shown (still using Engeler’s Lemma) that E is

not even a projection of a While∗ semicomputable relation on Rn ×Em (for any
n, m > 0). Thus to define E, we must project off the starred sort E∗, or (in other
words) existentially quantify over a finite, but unbounded sequence of elements of
E.

7. Computation on topological partial algebras

When one considers the relation between abstract and concrete models, a number
of intriguing problems appear. We will explain them by considering a series of
examples based on the data type of real numbers. Then we formulate our strategy
for solving these problems. The picture for topological algebras in general will be
clear from our examples with the reals.

7.1. Abstract versus concrete data types of reals; Continuity; Partiality.

7.1.1. Abstract and concrete data types of reals. To compute on R with an
abstract model of computation, we have only to select an algebra A in which R is a
carrier set. Abstract computability on R is then computability on A, and we may
apply the general theory of computable functions on many-sorted algebras outlined
in the previous sections.

By contrast, to compute on R with a concrete model of computation (say the
tracking model), we first take a standard enumeration of the rationals α : N ≈ Q,
which in turn yields a representation α : C ։ Rc that maps the set C ⊂ N of
codes of effective fast Cauchy sequences of rationals onto the computable reals
Rc ⊂ R. With this natural number representation, computable functions on R are
investigated by means of their (classically computable) α-tracking functions on N
[TZ04, TZ05].
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7.1.2. Continuity. Computations with real numbers involve infinite data. Com-
putations are finite processes that approximate in some way infinite processes. The
topology of R defines a process of approximation for infinite data; the functions
on the data that are continuous in the topology are exactly the functions that can
be approximated to any desired degree of precision. This suggests a continuity
principle:

computability =⇒ continuity. (4)

For abstract models, we assume the algebra A that contains R is a topological
algebra, i.e., one in which the basic operations are continuous in its topologies.
This implies, in turn, that all computable functions will be continuous. As it turns
out, the class of functions that can be exactly abstractly computed is, in general,
quite limited — “approximate” computations are also necessary [TZ99].

In the concrete models, on the other hand, continuity of computable functions is
a consequence of the the Kreisel-Lacombe-Tseitin Theorem [KLS59, Tse59, Tse62].

Thus, in both abstract and concrete approaches, an analysis of basic concepts
leads to the continuity principle.

7.1.3. Partiality. In computing with an abstract model on A we assume A has
some boolean-valued functions to test data. For example, in computing on R we
need the functions

eqR : R2 → B and lessR : R2 → B. (5)

This presents a problem, since total continuous boolean-valued functions on the
reals, being continuous functions from a connected space Rn to a discrete space
B, must be constant. Furthermore, in consequence, we can show that the ‘ while’
and ‘ while’-array computable functions on connected total topological algebras are
precisely the functions explicitly definable by terms over the algebra [TZ99]. This
demands the use of partiality for such functions.

To study the full range of real number computations, we must therefore redefine
these tests as partial boolean-valued functions. This has interesting effects on
the theory of computable functions in the areas of nondeterminism and many-
valuedness, as we will see.

We turn to some examples to illustrate these features.

7.2. Examples of nondeterminism and many-valuedness.

We look at two examples of computing functions on R.

Example 7.2.1 (Nonzero selection function). Define the function

piv : Rn ⇀ { 1, . . . , n }

by

piv(x1, . . . , xn) =

{

some i : xi 6= 0 if such an i exists

↑ otherwise.
(6)

Computation of this nondeterministic (“pivot”) function is a crucial step in the
Gaussian elimination algorithm for inverting matrices.

Note that (depending on the precise semantics for the phrase “some i” in (6))
piv is nondeterministic or (alternatively) many-valued on dom(piv ) = Rn\{0}.
Further:



GENERALIZING COMPUTABILITY THEORY TO ABSTRACT ALGEBRAS 19

(a) There is no single-valued function which satisfies the definition (2) and is con-
tinuous on Rn (as can be easily seen).

(b) However there is a computable (and hence continuous!) single-valued function

piv : CSn ⇀ { 1, . . . , n }

(where CS is the space of fast Cauchy sequences of rationals) with a simple
algorithm. Note however that piv is not extensional on CSn, in the sense
that it cannot be factored through Rn:

CSn

Rn { 1, . . . , n }

piv

?

κn

where κ is the map from Cauchy sequences to their limits.
In effect, we can regain continuity (for a single-valued function), by foregoing

extensionality.

(c) Alternatively, we can maintain continuity and extensionality by giving up
single-valuedness. For the many-valued function

pivm : Rn → ℘({1, . . . , n})

defined by

k ∈ pivm(x1, . . . , xn) ⇐⇒ xk 6= 0 for k = 1, . . . , n

is extensional and continuous , where a function f : A → P(B) is defined to
be continuous iff for all open Y ⊆ B, f−1[Y ] (=df { x ∈ A | f(x) ∩ Y 6= ∅ })
is open in A.

Note that the complete Gaussian algorithm for inverting matrices is continuous
and deterministic (hence single-valued) and extensional , even though it contains
piv as an essential component!

Example 7.2.2 (Finding the root of a function — adapted from [Wei00]). Consider
the function fa (Figure 2)7, with real parameter a, defined by

fa(x) =











x + a + 2 if x ≤ −1

a − x if −1 ≤ x ≤ 1

x + a − 2 if 1 ≤ x.

This function has either 1 or 3 roots, depending on the size of a. For a < −1, fa

has a single (large positive) root; for a > 1, fa has a single (large negative) root;
and for −1 < a < 1, fa has three roots, two of which become equal when a = ±1.

Let g be the (many-valued) function, such that g(a) gives all the non-repeated
roots of fa (Figure 3). Again we have the situation of the previous examples:

(a) We cannot choose a (single) root of fa continuously as a function of a.

(b) However, one can easily choose and compute a root of fa continuously as a
function of a Cauchy sequence representation of a, i.e., non-extensionally in a.

7 Figures 2 and 3 are taken by kind permission from [TZ04], c© 2004 ACM Inc.
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x

y

a

-1 0

y = f  (x)a

1

Figure 2

a

g(a)

1

-1

0

Figure 3

(c) Finally, g(a), as a many-valued function of a, is continuous. (Note that in order
to have continuity, we must exclude the repeated roots of fa, at a = ±1.)

Other examples of a similar nature abound, and can be handled similarly; for
example, the problem of finding, for a given real number x, an integer n > x.

7.3. Partial algebra of reals; Completeness for the abstract model.

At the level of concrete models of computation, there is no real problem with the
issues raised by these examples, since concrete models work only by computations
on representations of the reals (say by Cauchy sequences).

The real problem arises with the construction of abstract models of computation
on the reals which should model the phenomena illustrated by these examples, and
also correspond, in some sense, to the concrete models.

An immmediate problem in this regard is that the total boolean-valued functions
eqR and lessR are not continuous, and hence also (by the continuity principle, §7.1.2)
not (concretely) computable.
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We therefore define an N-standard partial algebra Rp on the reals, formed from
the total algebra Rt (Example 3.1.3) by replacing the total boolean-valued functions
eqR and lessR (§7.1.3, (5)) by the partial functions

eqR,p(x, y) ≃

{

↑ if x = yf otherwise,

lessR,p(x, y) ≃











t if x < yf if x > y

↑ if x = y.

These partial functions (unlike the total versions), are continuous, and hence Rp

(unlike Rt) is a topological partial algebra. Moreover, these partial functions are
concretely computable (by e.g. the tracking model, cf. §7.1.1).

Then we have the question:

Can such continuous many-valued functions be computed on the abstract

data type A containing R using new abstract models of computation?

If so, are the concrete and abstract models equivalent?

The solution presented in [TZ04] was to take A = RN
p , the N-standard extension

of Rp, and then extend the While∗ programming language over A [TZ00] with a
nondeterministic “countable choice” programming construct, so that in the rules of
program term formation,

choose z : b

is a new term of type nat, where z is a variable of type nat and b a term of
type bool. In addition (calling the resulting language WhileCC

∗ for While
∗

computability with countable choice), WhileCC∗ computability is replaced by
WhileCC∗ approximability [TZ04, TZ05]. We then obtain a completeness theo-
rem for abstract/concrete computation, i.e. the equivalence (1) shown at the end
of Section 2. Actually (1) was proved in [TZ04] for N-standard metric algebras
satisfying some general conditions.

The above considerations lead us to propose the topological partial algebra Rp

as a better basis for abstract models of computation on R than the (total) algebra
Rt — better in the sense of being more faithful to the intuition of computing on
the reals.8

Remark 7.3.1 (Semantics of partial algebras). We briefly indicate the semantics
for terms and statements over partial algebras, or rather indicate how the semantics
for total algebras given in §3.2 and Section 4 can be adapted to partial algebras.

First, the semantics of terms is as given by the equations (2) in §3.2 (with
the second ‘=’ replaced by ‘≃’), using strict evaluation for partial functions (i.e.,
divergence of any subterm entailing divergence of the term).9

Secondly, the semantics of statements is as given in Section 4; i.e., the value

[[S]]Aσ of a statement S at a state σ is the last state in a computation sequence
(i.e. a sequence of states) generated by S at σ, provided that the sequence is (well
defined and) finite. Otherwise (with an infinite computation sequence) the value

8 For another perspective on computing with total algebras on the reals, see [BCSS98].
9 As a general rule. For a case where boolean operators with non-strict semantics are

appropriate, see [XFZ15, §3].
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diverges. The case of partial algebras is similar, except that there are now two

cases where the value of [[S]]
A
σ diverges: (i) (as before, global divergence) where

the computation sequence is infinite, and (ii) (a new case, local divergence) where
the computation sequence is finite, but the last item diverges (instead of converging
to a state) because of a divergent term on the right of an assignment statement or
a divergent boolean test.

Remark 7.3.2 (Comparison of formal results for Rp and Rt). It would be in-
teresting to see to what extent the results concerning abstract computing on the
reals with Rt detailed in Sections 3 to 6 (for example, the merging and closure theo-
rems (§6.1) and comparisons of various notions of semicomputability and projective
semicomputability in Rt (§6.7) hold, or fail to hold, in Rp.

10

It should be noted, in this regard, that the merging procedure used in our proofs
of the closure theorems (Theorems 3, 4 and 5) depend heavily on the totality of the
algebra A.

8. Comparing models and generalizing the Church-Turing Thesis

To conclude, we will mention several other abstract approaches to computability on
abstract algebras, comment on their comparison, and discuss how to generalize the
Church-Turing thesis. These other methods have a variety of technical intuitions
and objectives, though they share the abstract setting of an algebraic structure. So
let us suppose their common purpose to be the characterization of those functions
that are computable in an abstract setting.

8.1. Abstract models of computation.

The computable functions on an abstract algebra can also be characterized by
approaches based upon

(i) machine models;
(ii) high-level programming constructs;
(iii) recursion schemes;
(iv) axiomatic methods;
(v) equational calculi;
(vi) fixed-point methods for inductive definitions;
(vii) set-theoretic methods;
(viii) logical languages.

We consider only a couple of these; a fuller survey can be found in [TZ00].

Recursion schemes. Kleene’s recursion schemes suggest that we create the class
µPR(A) of functions µPR computable on a standard algebra A, namely those
functions definable from the basic operations of A by the application of composition,
simultaneous primitive recursion and least number search. We can also extend this
to the class µPR∗(A) of functions on A definable by the µPR oprations on A∗

(analogous to the definition of the class While∗(A) from While(A∗) in §4.1).
Alternatively, we can define the class µCR(A) of functions on A in which simul-

taneous primitive recursion is replaced by simultaneous course-of-values recursive
schemes. (Simultaneous recursions are needed because the structures are many-
sorted.) Then we have:

10 This is currently being investigated by Mark Armstrong [Arm15].
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Theorem 13 (Recursive equivalence theorem). For any N -standard Σ-algebra A,

µCR(A) = µPR∗(A) = While
∗(A).

The question of unbounded memory – A∗ versus A – re-appears here in the differ-
ence between primitive and course-of-values recursion. This model of computation
was created [TZ88] with the needs of equational and logical definability in mind.

Axiomatic methods. In an axiomatic method one defines the concept of a com-
putation theory as a set Θ(A) of partial functions on an algebra A having some
of the essential properties of the set of partial recursive functions on N. To take an
example, Θ(A) can be required to contain the basic algebraic operators and tests
of A; be closed under operations such as composition; and, in particular, possess
an enumeration for which appropriate universality and s-m-n properties are true.
Thus in Section 5 we saw that While∗(A) is a computation theory in this sense.

The definition of a computation theory used here is due to Fenstad [Fen75, Fen80]
who takes up ideas from Moschovakis [Mos71]. Computation theory definitions
typically require a code set (such as N) to be part of the underlying structure A for
the indexing of functions.

The following fact is easily derived from [MSHT80] (where register machines are
used); see also Fenstad [Fen80, Ch. 0].

Theorem 14 (Minimal Computation Theory). The set While∗(A) of While∗

computable functions on an N -standard algebra A is the smallest set of partial
functions on A to satisfy the axioms of a computation theory; in consequence,
While

∗(A) is a subset of every computation theory Θ(A) on A.

8.2. Generalizing the Church-Turing Thesis.

The While∗ computable functions are a mathematically interesting and useful
generalization of the partial recursive functions on N to abstract many-sorted alge-
bras A and classes K of such algebras. Do they also give rise to an interesting and
useful generalization to A and K of the Church-Turing thesis, concerning effective
computability on N? They do; though this answer is difficult to explain fully and
briefly. In this section we will only sketch some reasons. The issues are discussed in
more detail in [TZ88, TZ00], as well as in the chapter by Feferman in this volume
[Fef15].

First, consider the following naive attempt at a generalization of the Church-
Turing thesis.

Thesis 1 (A naive generalized Church-Turing thesis). The functions “effectively
computable” on a many-sorted algebra A are precisely the functions While∗ com-
putable on A.

Consider now: what can be meant by “effective computability” on an abstract
algebra?

The idea of effective computability is inspired by a variety of distinct philo-
sophical and mathematical ideas about the nature of finite computation with finite
elements. There are many ways to analyse and formalize the notion of effective cal-
culability, by thinking about concepts such as algorithm; deterministic procedure;
mechanical procedure; computer program; programming language; formal system;
machine; device; and, of course, the functions definable by these entities.

The idea of effective computability is invaluable because of the close relation-
ships that exist between its constituent concepts. However, only a few of these



24 J.V. Tucker and J.I. Zucker

constituent concepts make sense in an abstract setting. Therefore the general con-
cept of “effective computability” does not belong in a generalization of the Church-
Turing thesis. We propose to use the term “effective computation” only to talk
about finite computation on finite data.

In seeking a generalization of the Church-Turing thesis, we are trying to make
explicit certain primary informal concepts that are formalized by the technical
definitions, and hence to clarify the nature and use of the computable functions.

We will start by trying to clarify the nature and use of abstract structures.
There are three points of view from which to consider the step from concrete to
abstract structures, and hence three points of view from which to consider While∗

computable functions.

(1) There is abstract algebra, which is a theory of calculation based upon the “be-
haviour” of elements in calculations without reference to their “nature”. This ab-
straction is achieved through the concept of isomorphism between concrete struc-
tures; an abstract algebra A can be viewed as “a concrete algebra considered unique
only up to isomorphism”.

(2) There is the viewpoint of formal logic, concerned with the scope and limits of
axiomatizations and formal reasonings. Here structures are used to discuss formal
systems and axiomatic theories in terms of consistency, soundness, completeness,
and so on.

(3) There is data type theory, an offshoot of programming language theory, which
is about data types that the user may care to define and that arise independently
of programming languages. Here structures are employed to discuss the semantics
of data types, and isomorphisms are employed to make the semantics independent
of implementations. In addition, axiomatic theories are employed to discuss their
specifications and implementation.

Data type theory is built upon and developed from the first two subjects: it is
our main point of view.

Computation in each of the three cases is thought of slightly differently. In alge-
bra, it is natural to think informally of algorithms built from the basic operations
that compute functions and sets in algebras, or over classes of algebras uniformly.
In formal logic, it is natural to think of formulae that define functions and sets,
and their manipulation by algorithms. In data type theory, we use programming
languages to define computations. We return to a consideration of each of these
approaches, which, because of its special concerns and technical emphasis, leads to
a distinctive theory of computability on abstract structures:

Going first to (1): suppose the While∗ computable functions are considered with
the needs of doing algebra in mind. Then the context of studying algorithms and
decision problems for algebraic structures (groups, rings, fields, etc.) leads to a
formalization of a generalized Church-Turing thesis tailored to the language and
use of algebraists:

Thesis 2 (Generalized Church-Turing thesis for algebraic computability). The
functions computable by finite deterministic algebraic algorithms on a many-sorted
algebra A are precisely the functions While∗ computable on A.

An account of computability on abstract structures from this algebraic point of
view is given in [Tuc80].
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We agree with Feferman [Fef15] who argues that this should be termed a Church-
Turing thesis for algorithms on abstract structures, rather than computations. He
prefers, in this context, to reserve the term “computation” for calculations on con-
crete structures composed of finite symbolic configurations.11

Now (jumping to viewpoint (3)) suppose that the While
∗ computable functions

are considered with the needs of computation in mind. This context of studying
data types, programming and specification constructs, etc., leads to a formulation
tailored to the language and use of computer scientists:

Thesis 3 (Generalized Church-Turing thesis for programming languages). Con-
sider a deterministic programming language over an abstract data type dt. The
functions that can be programmed in the language on an algebra A which represents
an implementation of dt, are the same as the functions While∗ programmable on
A.

This thesis has been discussed in [TZ88].
Finally, returning to approach (2): we note that “logical” and non-deterministic

languages are suitable for specifying problems. These can be considered as lan-
guages for specification rather than computation. Here projectively computable
relations (§6.2) and the use of selection functions for these, play a central role.

We define a specification language to be adequate for an abstract data type dt

if all computations on any algebra A implementing dt can be specified in A. We
then formulate a generalized Church-Turing thesis for specifiability on abstract data
types:

Thesis 4 (Generalized Church-Turing thesis for specifiability). Consider an ade-
quate specification language S over an abstract data type dt. The relations on a
many-sorted algebra A implementing dt that can be specified by S are precisely the
projectively While∗ computable relations on A.

8.3. Concluding remarks.

We have sketched the elements of our work over four decades on generalizing
computability theory to abstract structures. A thorough exposition is to be found
in our survey paper [TZ00]. In [TZ02] we have had the opportunity to recall the
diverse origins of, and influences on, our research programme.

Since [TZ00], our research has emphasized computation on many-sorted topo-
logical partial algebras (the focus of Section 7 here) and its diverse applications:

• computable analysis, especially on the reals [TZ99, TZ05, FZ15],
• classical analog systems [TZ07, TZ11, TZ14, JZ13],

• analog networks of discrete and continuous processors [TZ07, TTZ09],
• generalized stream processing in discrete and continuous time [TZ11, TZ14].

These applications bring us close to an investigation of the physical foundation
of computability. In this regard, considerations of continuity are central (cf. the
discussion in §7.1.2). This is related to the issue of stability of analog systems,
and more broadly, to Hadamard’s principle [Had52] which, as (re-)formulated by
Courant and Hilbert [CH53, Had64], states that for a scientific problem to be well
posed, the solution must exist, be unique and depend continuously on the data. To
this we might add: it must also be computable.

11 In Feferman’s memorable slogan: “No calculation without representation.”
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