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ABSTRACT 

 

Data types containing infinite data, such as the real numbers, functions, and bit 

streams, can be modeled by abstract many-sorted algebras over suitable signatures.  The 

computability theory for deterministic programs over such algebras has been studied 

extensively; as a complementary investigation, we study the formal semantics and 

computability theory for various non-deterministic languages. 

The ND programming language studied in this thesis combines the While 

programming language extended with random assignment, and the Guarded Command 

Language GC of Dijkstra. A semantic theory for ND is developed following algebraic 

operational semantics, using semantic computation trees labeled with states instead of the 

computation sequences used in the deterministic case. The semantics of an ND procedure 

is then the set of states at all leaves of its tree, together with the ‘↑’ (divergence symbol) if 

the tree has an infinite path. 

Since GC has (i) finite non-determinism (i.e. the semantic computation tree for a 

GC statement is finitely branching), and (ii) localization of computation (i.e., the output is 

always in the subalgebra generated by the input), the whole computation procedure can be 

 iii



represented using Gödel numbering. Hence (assuming a “term evaluation property” for the 

given algebra) we can prove a Universal Function Theorem for GC. This technique fails 

for the full ND language with its infinite non-determinism and failure of localization of 

computation. 
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CHAPTER ONE 

INTRODUCTION 

 

The semantics and computability issues of the deterministic While programming 

language has been studied in the article, Computable functions and semicomputable sets 

on many-sorted algebras, J. V. Tucker and J. I. Zucker [7]. Now we want to focus on 

these issues of the non-deterministic programming languages, involving so-called “don’t 

care cases”, as a complementary study to the deterministic case. 

In fact, non-deterministic programs have many practical advantages over 

deterministic ones. For example, let us take a look at the following deterministic 

program, which computes the absolute value of the input. 

proc 

 in x 

 out y 

begin 

 if x > 0 then y := x 

 elseif x = 0 then y := 0 

 else x < 0 then y := -x fi 

1 



 2

end 

Is this program too clumsy? 

We can use a better, non-deterministic, program to compute this function 

“absolute” as follows (actually, this is a Guarded Command language program): 

proc 

 in x 

 out y 

begin 

 if x ≥ 0 → y := x | x ≤ 0 → y := -x fi 

end 

In this program, the non-deterministic case is x = 0, and y can be either x or -x at 

this case. What is more, we leave the decision for the output y to the system at this case. 

We can easily see that this non-deterministic program is much more flexible, 

concise, convenient and powerful than the former one. And that is also a big reason why 

we study the semantics and computability of non-determinism. 

Note that even deterministic languages such as Pascal and C have non-

deterministic aspects; for example, the read command in Pascal functions like a random 

assignment, with regard to postconditions. 

In this chapter, we will introduce the non-deterministic languages, and outline our 

investigation of them. 
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1.1 While and WhileRA programming language 

Firstly, let us recall the simple imperative model, While(Σ) programming 

language [7] for a signature Σ, whose basic computations on algebra A are performed by 

concurrent assignments 

x1, …, xn := t1, …, tn

where x1, …, xn are program variables and t1, …, tn are Σ-terms or expressions of the 

corresponding types (1 ≤ i ≤ n). 

The control and sequencing of the basic computations are performed by the three 

constructs to form new statements from given statements S1, S2 and S, and boolean test b: 

(i) sequential composition: S1; S2, 

(ii) conditional: if b then S1 else S2 fi, 

(iii) iteration: while b do S od. 

Now we extend this language with the random assignment x := ?, which we call 

WhileRA, our first non-deterministic model, for variables x of every sort of Σ. 

 

1.2 Guarded Command Language 

Our second non-deterministic programming model is the so-called “Guarded 

Command Language” (GC) due to Edsger W. Dijkstra [3]. 

We give the notion of a “guarded command”, whose syntax is given by: 

b → S 
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where b is a boolean test and S is a statement. 

The constructs of GC are derived from these guarded commands as follows, (with 

k ≥ 0): 

(i) the guarded command conditional construct, 

fiif  kkbb |...| SS →→ 11  

(ii) the guarded command iteration construct 

oddo  kkbb |...| SS →→ 11  

together with concurrent assignment and sequential composition as before. (Note that we 

do not have random assignment in GC.) 

In particular, if k = 0, we define the two guarded command constructs as 

if fi ≡ halt 

do od ≡ skip 

 

1.3 ND programming language and Semantics of ND 

For the purpose of finding a uniform method to develop the semantics for both 

non-deterministic programming languages, we combine them into one so-called 

programming language ND (for Non-Determinism), which also combines their 

constructs as follows, 

(i) concurrent assignment, 

(ii) random assignment, 
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(iii) sequential composition, 

(iv) the guarded command conditional, 

(v) the guarded command iteration. 

To compute functions on A, we formulate a simple class of function procedures 

based on ND statements of the form 

P ≡ proc in a out b aux c begin S end 

where a, b, c are lists of input, output and auxiliary variables, respectively, and S is an 

ND statement. 

The following diagram shows their relationship: 

 

While 

WhileRA

GC 

ND 

 

 

 

 

The operational semantics of an ND statement is a function that, given an initial 

state, constructs a semantic computation tree labeled with states. Then, the input/output 

(i/o) semantics of an ND statement is the set of states at all leaves of the semantic 

computation tree, together with ‘↑’ (divergence) if there exists an infinite path in this tree. 

Thus, we interpret statements as many-valued state transformations, and function 

procedures as many-valued functions on any standard algebra A. Our approach follows 

the algebraic operational semantics (first developed systematically in [5] and used in [7, 
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section 3.4]). The main difference is that we use the semantic computation tree 

CompTree, defined via a function CompTreeStage(S, σ, n) representing the first n steps 

of CompTree, instead of the computation sequence Comp in [7]. 

As a result, we give a uniform semantics for ND statements and procedures, by 

defining the operational semantics and the semantic computation tree in Chapter 3. 

 

1.4 Universal Function Theorem for GC 

We are very interested in whether or not a given programming language L over a 

signature Σ satisfies a Universal Function Theorem (UFT). This means answering the 

following questions: 

Let A be a Σ-algebra. Does there exist a universal L(Σ) program Uprog that can 

simulate and perform the computations of all programs in L(Σ) on all inputs from 

A? Is there a universal L(Σ) procedure Uproc ∈ Proc(Σ) that can compute all the 

L computable functions on A? 

We have not been able to answer this question for the full non-deterministic 

language ND, but only for the sub-language GC. 

This question involves representing faithfully the syntax and semantics of GC 

computations using functions on A, and we need the techniques of Gödel numbering, 

state (and state set) representation, symbolic computations on terms, and localization of 

computation (explained below). 
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Because of the structure of the guarded command statements in GC, its semantic 

computation tree is only finitely branching. Then, we also have the following two 

important properties for the semantic computation tree of GC statements: 

(i) at each step, we only have finitely many leaves, which can all be coded by 

a single Gödel number, 

(ii) localization of computation: the output is always in the subalgebra 

generated from the input. 

Moreover, since the term evaluation function is While computable in most 

commonly used algebras such as semi-groups, groups, rings, boolean algebras and 

subalgebras [7, Examples 4.5], it is reasonable to assume the term evaluation property ( [7, 

Definition 4.4]). Then, we can show that 

for any given Σ-algebra A, there is a universal GC procedure over A. 

Unfortunately, the same technique does not work for the WhileRA programming 

language because of (i) the infinite branching of its computation trees, and (ii) the fact 

that the output is not necessarily in the subalgebra generated by the input. In fact, we do 

not even know whether the UFT hold for WhileRA. 
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1.5 Background: significance of the Universal Function Theorem 

The origin of the UFT lies in the work of Turing [9] who (in the context of his 

Turing machine formalism for classical computation theory on strings over a finite 

alphabet) proved the existence of a universal Turing machine. 

The UFT in [7] can be viewed as an extension of this result to abstract data types, 

with algorithms formalized as deterministic While programs. 

The UFT presented here can be viewed as a further extension of this result, to 

non-deterministic programming languages. 

 

1.6 Overview of the chapters 

Here is the structure of this thesis. 

We begin, in Chapter 1, by introducing the non-deterministic languages (While 

and WhileRA in section 1.1, GC in section 1.2, and ND in section 1.3) and outline our 

investigation of them in section 1.4. 

In Chapter 2, we define some basic algebraic concepts, such as signatures (in 

section 2.1) and algebras, and establish notations. The study in this thesis is based on 

standard and N-standard algebras, studied in sections 2.3 and 2.4. 

In Chapter 3, we will study the syntax and semantics of ND on standard algebras by 

means of imperative programming models. We start by defining the non-deterministic 

programming language ND = ND(Σ), which combines the programming language While 
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extended with ‘random assignment’ and ‘Guarded Command Language’, and may be 

interpreted on any many-sorted Σ-algebra. 

We will define in detail the abstract syntax (in section 3.1) and semantics of this 

language (in section 3.2 – 3.6). Our approach follows the algebraic operational semantics 

defined in [7, section 3.4]; however, we introduce a semantic computation tree for the 

semantics of ND statements, instead of the computation sequence used in the 

deterministic case [7]. Then, the semantics of an ND statement is, the set of states at all 

leaves of the semantic computation tree, together with ‘↑’ (divergence) if there exists an 

infinite path in this tree. 

Then, we give a definition for ND computable functions in two cases, one for 

multi-valued functions and the other for single-valued functions (see Definition 3.14). 

In Chapter 4, we prove the Universal Function Theorem for GC, assuming a 

“term evaluation property” for the given algebra. 

In section 4.1 – 4.9, we will represent the semantic functions defined in Chapter 3, 

using the techniques of Gödel numbering, state (and state set) representations, symbolic 

computations on terms. In section 4.10, we study the computability of all the semantic 

representing functions by assuming the term evaluation property. In section 4.11, we 

prove the Universal Function Theorem for GC on A. This makes use of (i) finite 

branching of the semantic computation tree for GC, allowing its representation by Gödel 

numbering, and (ii) localization of computation. However, this theorem fails for the full 
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ND language with its infinite non-determinism (from WhileRA), where neither (i) nor (ii) 

holds. 

Finally, in the Appendix, we give some details of the proofs of the important 

theorems and lemmas in Chapter 1 – 4. Most of them are proved by structural induction, 

and some of them involve interesting techniques. 

 



CHAPTER TWO 

SIGNATURES AND ALGEBRAS 

 

In this section, we will define some basic algebraic concepts, such as signatures and 

algebras, and establish notations. We will use many-sorted algebras equipped with 

booleans, which we call standard algebras. Sometimes we use algebras with the natural 

numbers as well, which we call N-standard algebras. This section is essentially taken from 

[7, section 2]. 

 

2.1 Signatures 

Definition 2.1 (Many-sorted signatures). 

A signature Σ (for a many-sorted algebra) is a pair consisting of (1) a finite set 

Sort(Σ) of sorts, and (2) a finite set Func(Σ) of (primitive or basic) function symbols, each 

symbol F having a type s1× ··· × sm → s, where m ≥ 0 is the arity of F, and s1, …, sm ∈ 

Sort(Σ) is the range sort; in such a case we write 

11 
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F : s1× ··· × sm → s. 

The case m = 0 corresponds to constant symbols; we then write F: → s or just F : s. 

Our signatures do not explicitly include relation symbols; relations will be 

interpreted as boolean-valued functions. 

Definition 2.2 (Product types over Σ). 

A product type over Σ, or Σ-product type, is a symbol of the form s1× ··· × sm (m ≥ 

0), where s1, …, sm are sorts of Σ, called its component sorts. We define ProdType(Σ) to be 

the set of Σ-product types. We write u, v, w, … for product types. 

For a Σ-product type u and Σ-sort s, let Func(Σ)u→s denote the set of all Σ-function 

symbols of type u → s. 

Definition 2.3 (Σ-algebras). 

A Σ-algebra A has, for each sort s of Σ, a non-empty set As, called the carrier of sort 

s, and for each Σ-function symbol F : s1× ··· × sm → s, a function  

sss m
AAAF A →×× ...:

1
. 

For a Σ-product type u = s1× ··· × sm, we write 

mssdf
u AAA ××= ...

1
. 
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Thus x ∈ Au if, and only if, x = (x1, …, xm), where xi ∈ for i = 1, …, m. So each 

Σ-function symbol F : u → s has an interpretation F

isA

A : Au → As. If u is empty, i.e., F is a 

constant symbol, then FA is an element of As. 

We will sometimes use the same notation for a function symbol F and its 

interpretation FA. The meaning will be clear from the context. 

Assumption 2.4 

The algebras A are total, i.e., FA is total for each Σ-function symbol F. 

We will sometimes write Σ(A) to denote the signature of an algebra A. 

We will use the following perspicuous notation for signatures Σ: 

 signature Σ
sorts  
 … 
 s,                                            (s ∈ Sort(Σ)) 
 … 
functions … 
 F : s1× ··· × sm → s,               (F ∈ Func(Σ)) 
 … 
end  

 

 

 

and for Σ-structures A: 
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 algebra A
Carriers  
 … 
 As,                                            (s ∈ Sort(Σ)) 
 … 
functions … 
 

sss m
AAAF A →×× ...:

1
,        (F ∈ Func(Σ)) 

 … 
end  

 

 

 

Examples 2.51

(a) The algebra of natural N0 = (N; 0, succ) has a signature containing the sort nat and 

the function symbols 0 : → nat and succ : nat → nat. We can display this signature 

thus: 

signature Σ(N0)
sorts nat 
functions 0 : → nat, 
 succ : nat → nat 
end  

 

 

and the algebra thus: 

 
algebra N0
carriers N 
functions 0 : → N, 
 succ : N → N 
end  

 

 

                                                 
1 Refer to [7, section 2.1] for more examples. 
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from which the signature can be inferred. Below, we will often display the algebra instead 

of the signature. 

(b) The ring of reals R0 = (R; 0, 1, +, −, ×) has a carrier R of sort real, and can be 

displayed as follows: 

 
algebra R0
carriers R 
functions 0, 1: → R, 
 +, × : R2 → R
 − : R → R
end  

 

 

 

2.2 Terms 

For details, we refer to [4, section 1 and 2]. Here we give the definition for default 

terms, which will be used in the following sections. 

Definition 2.6 (Default terms; default values).2

(a) For each sort s, we pick a closed term of sort s, and we call this the default term of 

sort s, written δs. Further, for each product type u = s1× ··· × sm of Σ, the default 

tuple of type u, written δu, is the tuple of default terms ( , … , ). 1sδ msδ

                                                 
2 The assumption that this is always possible is called the Instantiation Assumption in [7, Assumption 2.13]. 
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(b) Given a Σ-algebra A, for any sort s, the default value of sort s in A is the valuation 

∈ AS
Aδ s of the default term, δs; and for any product type u = s1× ··· × sm, the default 

(value) tuple of type u in A is the tuple of default values  = ( , … , ) ∈ Au
Aδ 1S

Aδ mS
Aδ

u. 

 

2.3 Adding booleans: Standard signatures and algebras 

A very important signature for our purposes is the signature of booleans: 

 signature Σ(B)
sorts bool 
functions true, false : → bool, 
 and, or : bool2 → bool, 
 not: bool → bool 
end  

 

 

The algebra B of booleans, with signature Σ(B), has the carrier B = {tt, ff} of sort 

bool, and, as constants and functions, the standard interpretations of the function and 

constant symbols of Σ(B). Thus, for example, trueB = tt and falseB = ff. 

We are interested in those signatures and algebras which contain Σ(B) and B. 

Definition 2.7 (Standard signatures and algebras). 

(a) A signature Σ is a standard signature if 

(i) Σ(B) ⊆ Σ, and  
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(ii) the function symbols of Σ include a conditional 

ifs : bool × s2 → s, 

for all sorts s of Σ other than bool, and an equality operator 

eqs : s2 → bool, 

for certain sorts s of Σ, called equality sorts. 

(b) Given a standard signature Σ, a Σ-algebra A is a standard algebra if 

(i) It is an expansion of B, and 

(ii) the conditionals and equality operators have their standard interpretation in A; 

i.e., for b ∈ B and x, y ∈ As, 

⎩
⎨
⎧

=
=

=
ff
tt

if
by
bx

yx,b,s if
if

)(  

and eqs is interpreted as the identity on each equality sort s. 

 

Remark 2.8 

Any many-sorted signature Σ can be standardised to a signature ΣB by adjoining the 

sort bool together with the standard boolean operations; and, correspondingly, any algebra 

A can be standardised to a standard algebra AB by adjoining the algebra B and the 

conditional and equality operators. 
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Examples 2.9 

(a) The simplest standard algebra is the algebra B of the booleans. 

(b) The standard algebra of naturals N is formed by standardizing the algebra N0 of 

Example 2.5 (a), with nat as an equality sort, and, further, adjoining the order 

relation lessnat on N: 

 
algebra N
import N0, B 
functions ifnat : B × N2 → N,
 eqnat, lessnat : N2 → B 
end  

 

 

(c) The standard algebra R of reals is formed similarly by standardizing the ring R0 of 

Example 2.5 (b), with real as an equality sort: 

 
algebra R
import R0, B 
functions ifreal : B × R2 → R,
 eqreal: R2 → B 
end  

 

 

(d) Refer to [7, section 2.4] for more examples of standard algebras. 
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Throughout this thesis, we will assume the following, unless otherwise stated. 

Assumption 2.10 (Standardness). 

The signature Σ and the Σ-algebra A are standard. 

We let StdAlg(Σ) denote the class of all standard Σ-algebras. 

 

2.4 Adding counters: N-standard signatures and algebras 

Definition 2.11 

(a) A standard signature Σ is called N-standard if it includes (as well as bool) the 

numerical sort nat, as well as function symbols for the standard operations of zero, 

successor and order on the naturals: 

0  :  → nat 

S :  nat → nat 

  lessnat :  nat2 → bool 

as well as the conditional ifnat and the equality operator eqnat on nat. 

(b) The corresponding Σ-algebra A is N-standard if the carrier Anat is the set of natural 

numbers N = {0, 1, 2, …}, and the standard operations (listed above) have their 

standard interpretations on N. 
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Definition 2.12 

(a) The N-standardization ΣN of a standard signature Σ is formed by adjoining the sort 

nat and the operations 0, S, eqnat, lessnat and ifnat. 

(b) The N-standardization AN of a standard Σ-algebra A is the ΣN-algebra formed by 

adjoining the carrier N together with the corresponding standard operations to A, 

thus 

 
algebra AN

import A 
carriers N 
functions 0 : → N 
 S : N → N 
 ifnat : B × N2 → N
 eqnat, lessnat : N2 → B 
end  

 

 

 

Examples 2.13 

(a) The simplest N-standard algebra is the algebra N of Example 2.9 (b). 

(b) We can N-standardize the real ring R of Example 2.9 (c) to form the algebra RN. 

 

Remark 2.14 

For any standard A, both A and N are Σ-reducts of the the N-standardization AN. 
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2.5 Other important algebras 

In this subsection, we briefly mention some other important algebras, 

(i) add the unspecified value u: algebras Au of signature Σu, 

(ii) add arrays: algebras A* of signature Σ*, 

(iii) add streams: algebras A  of signature Σ . 

Since we mainly focus on the standard algebras and N-standard algebras, we will 

not give any details for these three algebras here (see [7, section 2.6 – 2.8] for details). 

Remark 2.15 

The array algebra A* will be used in Chapter 4 for the Universal Function Theorem. 



CHAPTER THREE 

SYNTAX AND SEMANTICS OF ND 

ON STANDARD ALGEBRAS1

 

In this section, we will study the syntax and semantics of ND on standard algebras 

by means of imperative programming models. We start by defining the non-deterministic 

programming language ND = ND(Σ), which combines the programming language While 

extended with ‘random assignment’ (studied in [7]) and ‘Guarded Command Language’ 

(studied in [3] by Djikstra), and may be interpreted on any many-sorted Σ-algebra. 

We will define in detail the abstract syntax (in section 3.1) and semantics of this 

language (in section 3.2 – 3.6). Our approach follows the algebraic operational semantics 

developed in [5] and used in [7]; however, we introduce a semantic computation tree for 

the semantics of ND statements, instead of the computation sequence used in the 

deterministic case [7]. Then the semantics of an ND statement is the set of states at all 

leaves of the semantic computation tree, together with ‘↑’ (divergence) if there exists an 

infinite path in this tree. 

                                                 
1 Cf. [7, section 3]. 

22 
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3.1 Syntax of ND(Σ) 

We define four syntactic classes: variables, terms, statements and procedures. 

(a) Var = Var(Σ) is the class of Σ-variables, and Vars is the class of variables of sort s. 

For u = s1× ··· × sm, we write x : u to mean that x is a u-tuple of distinct variables, 

i.e., a tuple of variables of sorts s1, … , sm, respectively. 

Further, we write VarTup = VarTup(Σ) for the class of all tuples of Σ-variables, 

and VarTupu for the class of all u-tuples of Σ-variables. 

(b) Term = Term(Σ) is the class of Σ-terms t, …, and for each Σ-sort s, Terms is the 

class of terms of sort s. These are generated by the following rules, 

(i) A variable x of sort s is in Terms, 

(ii) If F ∈ Func(Σ)u→s and ti ∈ Termsi for i = 1, …, m, where u = s1× ··· × sm, 

then F(t1, …, tm) ∈ Terms. 

Note again that Σ-constants are constructed as 0-ary functions, and so enter the 

definition of Term(Σ) via clause (ii), with m = 0. 

We write type(t) = s or t : s to indicate that t ∈ Terms. 

Further, we write TermTup = TermTup(Σ) for the class of all tuples of Σ-terms, 

and, for u = s1× ··· × sm, TermTupu for the class of u-tuples of terms, i.e., 
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mssdfu TermTerm ××= ...
1

TermTup  

We write type(t) = u or t : u to indicate that t is a u-tuple of terms, i.e., a tuple of 

terms of sorts s1, … , sm. 

For the sort bool, we have the class of boolean terms or booleans Bool(Σ) =df 

Termbool, denoted either tbool … (as above) or b, … 

This class is given (according to the above definition of Terms) by: 

),,(|),(|),(|)(|||),(|)(|:: 21212121
bool bbbbbbbbtttb ss

s iforandnotfalsetrueeqx F= , 

where F is a Σ-function symbol of type u → bool and s is an equality sort. 

(c) AtSt = AtSt(Σ) is the class of atomic statements Sat, …, defined by: 

?xxskip === :::: ||at tS , 

where  is the concurrent assignment, where for some product type u, x : u and 

t : u, and  is the random assignment, for x : s. 

t=:x

?x =:

(d) Stmt = Stmt(Σ) is the class of statements S, ….generated by the following rules: 

0)(  ;:: 111121at || ≥= →→→→ kbbbb kkkk |...||...|    oddofiif   | SSSSSSSS . 
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(e) Proc = Proc(Σ) is the class of procedures P, Q, … in the form 

endbeginproc SDP ≡ , 

where D is the variable declaration and S is the body. Here D has the form 

c aux b out a in≡D , 

where a, b and c are lists of input variables, output variables and auxiliary (or 

local) variables, respectively. Further, we stipulate: 

(i) a, b and c each consist of distinct variables, and they are pairwise disjoint, 

(ii) every variable occurring in the body S must be declared in D (among a, b, or 

c), 

(iii) the input variables a must not occur on the lhs (left-hand side) of assignments 

in S, 

(iv) (Initialization conditions) S has the form Sinit;S′, where Sinit is a concurrent 

assignment which initializes all the output and auxiliary variables, i.e., 

assigns to each of them the default term (see Definition 2.6) of the same sort. 
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Each variable occurring in the declaration of a procedure binds all free occurrences 

of that variable in that body. 

If a : u and b : v, then P is said to have type u → v, written P : u → v. Its input type 

is u. We write Procu → v = Proc(Σ)u → v for the class of Σ-procedures of type u → v. 

Note 3.1 

(a) We get GC as a sub-language of ND by removing random assignment from ND. 

(b) We get WhileRA as a sub-language of ND by using (only) the following special forms 

for the guarded command constructs: 

  fiif  21 SS →→ ¬bb |

  oddo S→b 

Notation 3.2 

(a) We will often drop the sort superscript or subscript s. 

(b) We will use E, E′, E1, … to denote syntactic expressions of any of the three classes 

Term, Stmt and Proc. 

(c) For any such expression E, we define var(E) to be the set of variables occurring in E. 

(d) We use ‘≡’ to denote syntactic identity between two expressions. 
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Remark 3.3 (Structural induction). 

We will often prove assertions about, or define constructs on, expressions E of a 

particular syntactic class (such as Term, Stmt, or Proc) by structural induction (or 

recursion) on E, following the inductive definition of that class. 

Section 3.2 – 3.6 will focus on the semantics of ND (cf. [7, sections 3.2 – 3.6]). 

 

3.2 States 

For each standard Σ-algebra A, a state on A is a family 〈σs | s∈ Sort(Σ)〉 of functions 

 σs : Vars → As (3.1) 

Let State(A) be the set of states on A, with elements σ, … Note that State(A) is the 

product of the state spaces States(A) for all s∈ Sort(Σ), where each States(A) is the set of all 

functions as in (3.1). 

For x ∈ Vars, we often write σ(x) for σs(x). Also, for a tuple x ≡ (x1, … , xm), we 

write σ[x] for (σ(x1), … , σ(xm)). 

Now we define the variant of a state. Let σ be a state over A, x ≡ (x1, … , xn) : u and 

a = (a1, … , an) ∈ Au (for n ≥ 1). We define σ{x/a} to be the state over A formed from σ by 

replacing its value at xi by ai for i = 1, … , n. That is, for all variables y: 
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We can now give the semantics of each of the three syntactic classes: Term, Stmt 

and Proc, relative to any A ∈ StdAlg(Σ). For an expression E in each of these classes, we 

will define a semantic function ’E÷A. These three semantic functions are defined in sections 

3.3, 3.4 –3.5 and 3.6, respectively. 

 

3.3 Semantics of terms 

For t ∈ Terms, we define the function 

’t÷A : State(A) → As. 

where ’t÷Aσ is the value of t in A at state σ. 

The definition is by structural induction on t: 

’x÷Aσ = σ(x), 

’F(t1, …, tm)÷Aσ = FA(’t1÷Aσ, …, ’tm÷Aσ). 

For a tuple of terms t = (t1, …, tm), we use the notation 

’t÷Aσ =df  (’t1÷
Aσ, …, ’tm÷Aσ). 
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Definition 3.4 

For any M ⊆ Vars, and states σ1 and σ2, σ1 ≈ σ2 (rel M) means σ1↾M = σ2↾M, i.e., ∀x 

∈ M ( σ1(x) = σ2(x) ). 

 

Lemma 3.5 (Functionality lemma for terms). 

For any term t and states σ1 and σ2, if σ1 ≈ σ2 (rel var(t)), then ’t÷Aσ1 = ’t÷Aσ2. 

Proof. By structural induction on t (see Appendix 1 for details).  

 

3.4 Algebraic operational semantics 

We will interpret programs as many-valued state transformations, and function 

procedures as many-valued functions on A. Our approach follow the algebraic operational 

semantics, first developed in [5], and used in [7, section 3.4]. It is a general method for any 

programming language: we can define these three functions   (semantics of atomic 

statements), first and RestA to develop the semantics of this language. 

3.4.1 Semantics of atomic statements. 

Firstly, we define the meaning of an atomic statement Sat ∈ AtSt, to be a function 

Sat
Aσ : State(A) → P(State(A))+, 
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where P(X)+ means the set of all non-empty subsets of a set X (see [8, Notation 3.2.1]). 

This is defined by 

 skip Aσ = { σ }, 

 x := t Aσ = { σ{x / ’t÷Aσ} }, 

 x := ? Aσ = { σ′ | σ′ agrees with σ on all variables, except x}. 

 

3.4.2 The First and Rest operations. 

Secondly, we have two functions 

 First : Stmt → AtSt, 

 RestA : Stmt × State(A) → P(Stmt). 

where, for a statement S and state σ, First(S) is an atomic statement which gives the first 

step in the execution of S (in any state), and RestA(S, σ) is a set of statements, each of 

which gives the rest of some execution in state σ. 

The definitions of First(S) and RestA(S, σ) are by structural induction on S. 

(i)  
⎪
⎩

⎪
⎨

⎧
≡=

otherwise              
; if      )(

atomic is  if
)( 211

skip
SSSSFirst

SS
SFirst
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(ii) RestA(S, σ) is defined as follows, 

Case 1. If Sat is atomic, then RestA(Sat, σ) = { skip }, 

Case 2. If S ≡ S1; S2, where S1, S2 ∈ Stmt. Then 

  
⎩
⎨
⎧

∈′′
=

otherwise   )},(|;{

atomic is  if                                          }  { 
),(

1121

12

σ
σ

SRestSSS

SS
SRest

A
A

U

Case 3. If S ≡ . Then fiif  kkbb |...| SS →→ 11 

 { SU
k

i

σ
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=SRest A
i | ’bi÷

Aσ = tt }. 

Case 4. If S ≡ . Then oddo  kkbb |...| SS →→ 11 
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This completes the definitions of First and RestA. 

Note 3.6 

(a) RestA(S, σ) is finite (can be easily proved by structural induction on S). 

(b) If for all i = 1,…, k, ’bi÷
Aσ = ff, then 
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3.4.3 One-step computation function 

From the First function we can define the one-step computation function 

CompStepA : Stmt × State(A) → P(State(A))+, 

as CompStepA(S, σ) = First(S) Aσ. 

 

3.4.4 The semantic computation tree 

Now, we will define a very important concept in our approach: the semantic 

computation tree CompTreeA(S, σ) of an ND-statement S at a state σ is an ω-branching tree 

CompTreeA : Stmt × State(A) → P( (State(A))≤ω )+, 

branching according to all possible outcomes (i.e., “output states”) of the one-step 

computation function CompStepA. Each node of this tree is labeled by a state. 

Here (State(A))≤ω denotes the set of all finite and infinite sequences from State(A), 

interpreted as the paths through the semantic computation tree. 
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In the definition, we have ‘↑’ as the symbol for divergence, which indicates that the 

computation tree has an infinite path. 

Any actual computation of statement S at state σ corresponds to one of the paths 

through this tree. The possibilities for any such path are: 

(i) it is finite, ending in a leaf containing a state: the final state of the 

computation, 

(ii) it is infinite (global divergence or ↑). 

We define the semantic computation tree via a function 

CompTreeStageA : Stmt × State(A) × N → P( (State(A))<ω )+, 

where CompTreeStageA(S, σ, n) represents the first n steps of CompTreeA(S, σ). Here 

(State(A))<ω denotes the set of finite sequences from State(A), interpreted as finite initial 

segments of the paths through the semantic computation tree. 

This function is defined by a simple tail recursion on n: 

Base case: CompTreeStageA(S, σ, 0) = { σ }, i.e., just the root containing σ, 

Inductive step: CompTreeStageA(S, σ, n+1) is formed by attaching to the root {σ} 

the following: 
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(i) for S atomic: the leaf {σ′}, for each σ′ ∈ S Aσ 

(ii) for S not atomic: the subtree CompTreeStageA(S′, σ′, n), for each σ′ ∈ 

CompStepA(S, σ) and S′ ∈ RestA(S, σ) 

Then, CompTreeA(S, σ) is defined as the ‘limit’ over n of CompTreeStageA(S, σ, n), 

i.e., CompTreeA(S, σ) =  U
∞

=0

) , ,(
n

nσSageCompTreeSt A

Remark 3.7 (Tail recursion). 

Consider the recursive definition of CompTreeStageA. In the ‘recursive call’ (ii) of 

the inductive step, notice that (1) CompTreeStageA is on the ‘outside’, and (2) the 

parameter changes ( from S to S′, and σ to σ′, for each S′ ∈ RestA(S, σ) and σ′ ∈ 

CompStepA(S, σ) ). Such a definitional scheme is said to be tail recursive. 

 

3.5 Semantics of ND statements 

From the semantic computation tree, we define the i /o semantics of statements 

’S÷A : State(A) → P(State(A) U {↑}), 

as follows: ’S÷Aσ is the set of states at all leaves in CompTreeA(S, σ), together with ‘↑’ if 

CompTreeA(S, σ) has an infinite path. 
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The following shows that the i /o semantics, derived from our algebraic operational 

semantics, satisfies the usual desirable properties. 

Theorem 3.8 

(a) For Sat atomic, ’Sat÷
A = Sat

A, i.e., 

 skip Aσ = { σ }, 

 x := t Aσ = { σ{x / ’t÷Aσ }}, 

 x := ? Aσ = { σ′ | σ′ agrees with σ on all variables, except x}, 

(b) If S ≡ , then ’S÷21 ; SS Aσ = { ’SU 2÷
Aτ | τ ∈ ’S1÷

Aσ }, 

(c) If S ≡ , then, ’S÷fiif  kkbb |...| SS →→ 11 Aσ = { ’SU
k

i 1=
i÷

Aσ | ’bi÷
Aσ = tt }, 

(d) If S ≡ , then, oddo  kkbb |...| SS →→ 11 

’S÷Aσ  
⎪⎩

⎪
⎨

⎧
==

= =

otherwise                                                    } {

][ , somefor  if}][  |];[ { 
1

 

tttt

σ

σbiσbσ i

k

i
ii

AAASSU

In particular, for WhileRA, case (c) and (d) turn into simple forms (see Note 3.1 (b)): 

(c)' S ≡ . Then, fiif  2111 SS →→ ¬bb |
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We prove Theorem 3.8 via the following lemmas. 

Lemma 3.9 

Assume n > 0. 

(a) If Sat ∈ AtSt, then CompTreeStageA(Sat, σ, n) is formed by attaching to the root 

{σ}, the leaf {τ}, for each τ ∈ Sat
Aσ. 

(b) (Interesting case) If S ≡ S1;S2, then CompTreeStageA(S, σ, n) is formed by 

attaching subtree(s) CompTreeStageA(S2, τ, n-d′) to each leaf {τ} of 

CompTreeStageA(S1, σ, n), where d′ is the depth of {τ} in CompTreeStageA(S1, σ, 

n). 
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(c) If S ≡ , then CompTreeStagefiif  kkbb |...| SS →→ 11 A(S, σ, n) is formed by 

attaching to the root {σ}, the subtree(s) CompTreeStageA(Si, σ, n-1), for those i       

(1 ≤ i ≤ k) where ’bi÷
Aσ = tt. 

(d) If S ≡ , then CompTreeStageoddo  kkbb |...| SS →→ 11 A(S, σ, n) is formed by 

attaching to the root {σ}, 

(i) the subtree(s) CompTreeStageA(Si;S, σ, n-1), for those i, where ’bi÷
Aσ = tt, 

if for some i, ’bi÷
Aσ = tt, 

(ii) the leaf {σ} otherwise. 

Proof. By structural induction on S (see Appendix 2 for details).  

Now, we can prove Theorem 3.8 via the above Lemmas. As an example, we give 

the proof for case (b). Please see to Appendix 3, for the proof in the other cases. 

Proof for Theorem 3.8 (b). 

From Lemma 3.9 (b), take the ‘limit’ over n for all CompTreeStageA(S, σ, n), Then 

we have, CompTreeA(S,σ) is formed by attaching CompTreeA(S2, τ) to each leaf {τ} of 

CompTreeA(S1, σ). 

So, the leaves of CompTreeA(S, σ) are formed from the leaves of CompTreeA(S2, τ), 

for each leaf {τ} of CompTreeA(S1, σ). Also (trivially), if there is an infinite path in 
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CompTreeA(S1, σ) or any CompTreeA(S2, τ), for each leaf {τ} of CompTreeA(S1, σ), this 

path or its extension ( in CompTreeA(S2, τ) ) to the root {σ}, is just an infinite path in 

CompTreeA(S, σ). 

By the definition (of semantics of ND statements), ’S÷Aσ is the set of states at all 

leaves in CompTreeA(S, σ), together with ‘↑’ if CompTreeA(S, σ) has an infinite path. 

U { ’S2÷
Aτ | τ ∈ ’S1÷

Aσ } is the set of states at all leaves in CompTreeA(S2, τ), for 

each leaf {τ} of CompTreeA(S1, σ), together with ‘↑’ if there is an infinite path in either 

CompTreeA(S1, σ) or any CompTreeA(S2, τ), for each leaf {τ} of CompTreeA(S1, σ). 

From this, it follows that ’S÷Aσ = { ’SU 2÷
Aτ | τ ∈ ’S1÷

Aσ }.  

 

For the semantics of procedures, we need the following. Let M ⊆ Vars, and σ1, σ2 ∈ 

State(A). 

Definition 3.10 

Let C1, C2 ⊆ State(A) {↑}. We say U

C1 ≈ C2 (rel M), 

(C1 agrees with C2 on M) if only and if, 
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∀σ1 ∈ C1, ∃σ2 ∈ C2, σ1 ≈ σ2 (rel M), 

and 

∀σ2 ∈ C2, ∃σ1 ∈ C1, σ1 ≈ σ2 (rel M), 

and 

↑ ∈ C1 ⇔ ↑ ∈ C2. 

 

Lemma 3.11 

Suppose var(S) ⊆ M. If σ1 ≈ σ2 (rel M), then 

First(S) Aσ1 ≈ First(S) Aσ2 (rel M), 

and RestA(S, σ1) = RestA(S, σ2). 

Proof. By structural induction on S and Definition 3.10 (see Appendix 4 for details).  

 

Definition 3.12 (Set of Leaf States). 

LSA : Stmt × State(A) × N → P( (State(A) ) 

means the set of states at the leaves of CompTreeA(S, σ) in CompTreeStageA(S, σ, 

n). We define function LSA by tail recursion on n as follows, 
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Base case: LSA(S, σ, 0) = 0, i.e. no leaf state. 

Inductive step: 

(i) for S atomic: LSA(S, σ, n+1) = S Aσ, 

(ii) for S not atomic: 

LSA(S, σ, n+1) = {LSU A(S′, σ′, n) | σ′ ∈ CompStepA(S, σ), S′ ∈ RestA(S, σ)}. 

 

Lemma 3.13 

Suppose var(S) ⊆ M. If σ1 ≈ σ2 (rel M), then for all n ≥ 0 

LSA(S, σ1, n) ≈ LSA(S, σ2, n) (rel M). 

Proof. By simple induction on n and Lemma 3.11 (see Appendix 5 for details).  

 

Another important result expresses the i/o semantics of S in terms of leaf states: 

Lemma 3.14 

’S÷A = { ↑ | there is an infinite path in CompTreeUU
∞

=0

)(
n

nσ,,SLS A A(S, σ)}. 
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Lemma 3.15 (Functionality lemma for ND statements). 

Suppose var(S) ⊆ M. If σ1 ≈ σ2 (rel M), then 

’S÷Aσ1 ≈ ’S÷Aσ2 (rel M). 

Proof. The result clearly follows from Lemma 3.13 and 3.14.  

 

3.6 Semantics of ND procedures 

Now if 

P ≡ proc in a out b aux c begin S end, 

is an ND procedure of type u → v, then its meaning in A is a function 

’P÷A : Au → P(Av {↑}), U

defined as follows. For a ∈ Au, let σ be any state on A such that σ[a] = a. Then, 

’P÷A(a) = ∈′′ σσ |)({ bU ’S÷Aσ} { ↑ | ↑ ∈ ’S÷U Aσ }. 

For ’P÷A to be well defined, we need the fact that the procedure P is functional, i.e., 

’P÷A(a) is independent of the state σ. 
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Lemma 3.16 (Functionality lemma for ND procedures). 

Suppose 

P ≡ proc in a out b aux c begin S end, 

if σ1 ≈ σ2 (rel a), then  

’S÷Aσ1 ≈ ’S÷Aσ2 (rel b). 

Proof. Suppose σ1 ≈ σ2 (rel a). We can put S ≡ Sinit;S′, where consists of an initialization of 

b and c to closed terms (see section 3.1 (e), (iv)). Then, putting 

’S÷Aσ1 = { ’S′U ÷Aτ1 | τ1 ∈ ’Sinit÷
Aσ1 }, 

’S÷Aσ2 = { ’S′U ÷

                                                

Aτ2 | τ2 ∈ ’Sinit÷
Aσ2 }, 

it is easy to see that 

’Sinit÷
Aσ1 ≈ ’Sinit÷

Aσ2 (rel a, b, c).2

Then, the result follows from the Lemma 3.15 and Definition 3.10.  

 
2 See Appendix 4 for the proof for concurrent assignment in Lemma 3.11. 
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The functionality lemma for procedures amount to saying that there are no side 

effects from the output variables or auxiliary variables. 

We can now define ND computability of functions on A. We deal with two types of 

functions on A: 

(i) multi-valued functions, i.e., functions 

F : Au → P(Av U {↑}), 

(ii) single-valued functions, i.e., partial functions 

f : Au  A⎯→⎯•
v

Note that a single-valued function f can be represented as a special case of a multi-

valued function F, where for all a ∈ Au, 

⎩
⎨
⎧

=
↑↑

↓

.

,

)( if            }{
)( if})({

)(
af
afaf

aF  

 

Definition 3.14 (ND computable functions). 

Let P : u → v be an ND(Σ) procedure. 

(a) A multi-valued function f : Au → P(Av U {↑}) is computable on A by P if f = ’P÷A. 
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(b) A single-valued partial function f : Au  A⎯→⎯•
v is computable on A by P if 

⎩
⎨
⎧

=∈∀
↑↑

↓

.

,

)( if            }{
)( if})({

)(,
af
afaf

aa u AP    A  

 

Definition 3.15 (single-valued ND function and procedure). 

P : u → v is called single-valued on A, if for all a ∈ Au, PA(a) is a singleton set 

(which could be either {d} for d ∈ Av, or {↑}). 

Hence, a single-valued partial ND computable function is computed by a single-

valued ND procedure. 

 

Remark 3.16 

Similarly, we can define WhileRA computability and GC computability. In fact, we 

will focus on GC computability in the next chapter. 

Remark 3.17 ( Interpretability of GC in WhileRA and vice versa). 

Two interesting questions are: 

(a) Can GC be interpreted in WhileRA? 

(b) Can WhileRA be interpreted in GC? 
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The answer to (a) is yes. To show this, consider the simple case of a guarded 

command conditional construct of the form 

if b1 → S1 | b2 → S2 fi 

This can be interpreted with the help of a random assignment to an auxiliary 

boolean variable as the follows, 

x : bool 

if b1 ∧ ¬b2 then S1

else if ¬b1 ∧ b2 then S2

  else if b1 ∧ b2 then 

 x := ?; 

 if x then S1

 else S2 fi 

  else skip 

  fi 

  fi 

fi 

The answer to (b), however, is no. 

For example, consider the following WhileRA procedure 

P ≡ proc out n: nat begin n:=? end 
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At first glance, we might try to simulate this by the GC procedure 

P′ ≡  proc in n : nat 

 aux b: bool 

 begin 

 b := tt; 

 if b → n++ | b → b := ff fi 

 end 

However, the semantics of P′ includes non-termination, since its semantic 

computation tree has an infinite path. Therefore, P′ is not semantically equivalent to P. 

In fact we can see that no GC procedure could simulate P. For any such GC 

procedure would have to be total, i.e., its semantic computation tree could not have any 

infinite path. Therefore, since this semantic computation tree is finitely branching, its set of 

total possible output would have to be finite, by König’s Lemma.3

                                                 
3 This states that a finitely branching tree without any infinite path is finite. 



 

CHAPTER FOUR 

REPRESENTATIONS OF SEMANTIC FUNCTIONS 

AND UNIVERSALITY1

 

In this section, we will investigate whether there is a universal GC procedure that 

can compute all the GC computable functions on A. To do that, we need the techniques of 

Gödel numbering, state and set of state (and state set) representations, and symbolic 

computations on terms. Specifically, for Gödel numbering to be possible, we must work 

with N-standard algebras, which includes the sort nat. 

Since the term evaluation function is While computable in most commonly used 

algebras, it is reasonable to assume the term evaluation property [7, Definition 4.4 and 

Examples 4.5]. Then, by means of “local representation” of the semantics of computation, 

we will show that 

for any given Σ-type and Σ-algebra A, there is a universal GC procedure for that 

type over A. 

                                                 
1 Cf. [7, section 4]. 
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4.1 Gödel numbering of syntax 

We assume given a family of numerical codings, or Gödel numberings, of the 

classes of syntactic expressions of Σ and ΣN, i.e., a family gn of effective mappings from 

expressions E to natural numbers ┌E┐ = gn(E), which satisfy certain basic properties: 

• ┌E┐ increases strictly with compl(E), and in particular, the code of an 

expression is larger than those of its subexpressions. 

• Sets of codes of the various syntactic classes, and of their respective subclasses, 

such as {┌t┐| t ∈ Term}, {┌S┐| S ∈ Stmt}, etc. are primitive recursive; 

• We can go primitive recursively from codes of expressions to codes of their 

immediate subexpressions, and vice versa; thus, e.g., ┌S1
┐ and ┌S2

┐ are 

primitive recursive in ┌S1; S2
┐, and conversely, ┌S1; S2

┐ is primitive recursive 

in ┌S1
┐ and ┌S2

┐. 

• We will use the notation ┌Term┐=df {┌t┐| t ∈ Term}, etc., for sets of Gödel 

numbers of syntactic expressions. 

In short, we can primitive recursively simulate all operations involved in processing 

the syntax of the programming language. This means that the syntactic classes form a 

computable (in fact, primitive recursive) algebra.  

We will be interested in the representation of various semantic functions on 

syntactic classes such as Term(Σ), Stmt(Σ) and Proc(Σ) by functions on A or AN, and in the 
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computability of the latter. These semantic functions have states as arguments, so we must 

first define a representation of states. 

 

4.2 Representation of states 

Let x be a u-tuple of program variables. A state σ on A is represented (relative to x) 

by a tuple of elements a ∈ Au if σ[x] = a. 

The state representing function 

ARepx  : State(A) 4 {↑} → Au 4 {↑}, 

is defined by 

ARepx (σ) = σ[x]. 

Note that ↑ is represented by ↑. I.e. (↑) = ↑. ARepx

Similiarly, a set D of states or ‘↑’ on A is represented (relative to x) by a set E ∈ 

P(Au 4 {↑}) of tuples of elements, if E = {τ[x] | τ ∈ D}. The set of states representing 

function 

ARepSetx  : P(State(A) 4 {↑}) → P(Au 4 {↑}), 

is defined by 

ARepSetx (D) = {τ[x] | τ ∈ D} = { (τ) | τ ∈ D}. ARepx
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4.3 Representation of term evaluation 

Let x be a u-tuple of program variables. Let Termx = Termx(Σ) be the class of all Σ-

terms with variables among x only, and for all sort s of Σ, let Termx,s = Termx,s(Σ) be the 

class of such terms of sort s. Similarly, we write TermTupx for the class of all term tuples 

with variables among x only, TermTupx,v for the class of all v-tuples of such terms. 

The term evaluation function on A relative to x 

ATE s,x  : Termx,s × State(A) → As, 

defined by 

ATE s,x (t, σ) = ’t÷Aσ, 

is represented by the function 

Ate s,x  : ┌Termx,s
┐ × Au → As, 

defined by  

Ate s,x (┌t┐, a) = ’t÷Aσ, 

where σ is any state on A such that σ[x] = a (this is well defined, by the Functionality 

Lemma for terms). In other words, the following diagram commutes: 

 

A

Ate s,x

〈 gn, 〉 Repx

Termx,s × State(A) 

┌Termx,s
┐ × Au

 

 

 

 

TE s,x
A
As
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Strictly speaking, if gn is not surjective on N, then  is not uniquely specified by 

the above definition, or by the diagram. However, we may assume that for n not a Gödel 

number (of the required sort), (n,a) takes the default value of sort s, i.e. δ

Ate s,x

Ate s,x
s. Similar 

remarks apply to the other representing functions given below. 

Further, for a product type v, we will define an evaluating function for tuples of 

terms 

Ate υ,x  : ┌TermTupx,v
┐ × Au → Av, 

similarly, defined by  

Ate υ,x (┌t┐, a) = ’t÷Aσ. 

We will be interested in the computability of these term evaluation representing 

functions. 

 

4.4 Representation of the atomic statement 

Let AtStx be the class of atomic statements with variables among x only. The 

atomic statement evaluation function on A relative to x 

AAEx  : AtStx × State(A) → P(State(A))+, 

defined by  

AAEx (S, σ) = S Aσ, 

is represented by the function 
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Aaex  : ┌AtStx┐ × Au → P(Au)+, 

defined by 

Aaex (┌S┐, a) = {τ[x] | τ ∈ SU Aσ}, 

where σ is any state on A such that σ[x] = a (again, this is well defined, by Functionality 

Lemma for statements). In other words, the following diagram commutes: 
AAEx 

A

〈 gn, 〉 Repx

ARepSetx

AtStx × State(A) 

┌AtStx
┐ × Au

P(State(A))+

P(Au)+

 

 

 

 

 

4.5 The First and Rest operations 

Next, let Stmtx be the class of statement

ARestx  = df  RestA ↾ ( 

Then First and  are represented bARestx

first: ┌Stmt┐ 

Arest x : ┌Stmtx┐ × A

which are defined so as to make the following d

 

 

 

aex

s with variables amon

Stmtx × State(A) ), 

y the functions 

→ ┌AtSt┐, 

u → P(┌Stmtx┐), 

iagrams commute: 
A

g x only, and define 
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 First 

first 

g  gn

〈 gn, 〉 Repx

A

Stmt 

┌Stmt┐ ┌AtSt┐

AtSt 

Stmtx × State(A) 

┌Stmtx┐ × Au

 

 

 

 

 

 

 

 

 

 

 

4.6 Representation of one step comput

Let Stmtx be the class of statements w

computation evaluation function on A relative t

ACompStepx  : Stmtx × Sta

defined by 

ACompStepx (S, σ) =

is represented by the function 

 

gn

Restx

A
P(┌Stmtx┐) 

P(Stmtx) 
A

n

restx

ation function 

ith variables among x only. The one step 

o x 

te(A) → P(State(A))+, 

 First(S) Aσ, 
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Acompstepx  : ┌Stmtx┐ × Au → P(Au)+, 

defined by 

Acompstepx (┌S┐, a) = ( first(Aaex
┌S┐), a ), 

where σ is any state on A such that σ[x] = a. In other words, the following diagram 

commutes: 
A

 

〈 gn, 〉 Repx

Stmtx × State(A) 

┌Stmtx┐ × Au

 

 

 

 

 

Note that  is defined by  anAcompstepx
Aaex

 

4.7 Representation of set of Leaf S

Let Stmtx be the class of statemen

States evaluation function on A relative to 

ALSx  : Stmtx × Sta

defined by  

ALSx  = df  LSA ↾ (
CompStepx

A

Acompstepx

P(State(A))+

P(Au)

d first. 

tates function 

ts with variables among x

x 

te(A) × N → P(State(A)), 

 Stmtx × State(A) × N ), 

 

RepSetx

+

A

 only. The set of Leaf 
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is represented by the function 

Alsx  : ┌Stmtx┐ × Au × N → P(Au), 

defined by a simple tail recursion on n as the follows (cf. Definition 3.12), 

Base case: (
Alsx

┌S┐, a, 0) = 0. 

Inductive step: 

(i) for S atomic: (
Alsx

┌S┐, a, n+1) = (Aaex
┌S┐, a), 

(ii) for S not atomic:  (
Alsx

┌S┐, a, n+1) = U { (
Alsx

┌S′┐, a′, n) | a′ ∈ 

(Acompstepx
┌S┐, a), ┌S′┐ ∈ (Arest x

┌S┐, a) }. 

where σ is any state on A such that σ[x] = a. In other words, the following diagram 

commutes: 

 
ALSx 

P(Au

A〈 gn, , idRepx N 〉 

Alsx

Stmtx × State(A) × N 

┌Stmtx┐ × Au × N 

P(State(A)) 
 

 

 

 

 

 

 

 

) 

RepSet x
A
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4.8 Representation of statement evaluation 

Let Stmtx be the class of statements with variables among x only. The statement 

evaluation function on A relative to x 

ASEx  : Stmtx × State(A) → P(State(A) 4 {↑}), 

defined by 

ASEx (S, σ) = ’S÷Aσ, 

is represented by the function 

Asex  : ┌Stmtx┐ × Au → P(Au 4 {↑}), 

defined by 

Asex (┌S┐, a) = U {τ[x] | τ ∈ ’S÷Aσ}, 

where σ is any state on A such that σ[x] = a. In other words, the following diagram 

commutes: 
ASEx 

P(Au 4 {↑

A〈 gn, 〉 Repx

Asex

Stmtx × State(A) 

┌Stmtx┐ × Au

P(State(A) 4 {↑}) 

 

 

 

 

 

We will also be interested in the computability of . 
Asex

 

}) 

RepSet x
A
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4.9 Representation of procedure evaluation 

We will want later in section 4.11 a representation of the class Procu→v of all GC 

procedures of type u→v, in order to construct a universal procedure for that type. For now 

we consider a local version, for the subclass of Procu→v of procedures with auxiliary 

variables of a given fixed type, which works for ND in general. 

So let a, b, c be pariwise disjoint lists of variables, with types a : u, b : v and c : w. 

Let Proca,b,c be the class of ND procedures of type u→v, with declaration in a out b aux c. 

The procedure evaluation function on A relative to a, b, c 

APE cb,a,  : Proca,b,c × Au → P(Av 4 {↑}), 

defined by 

APE cb,a, (P, a) = PA(a), 

is represented by the function 

Ape cb,a,  : ┌Proca,b,c
┐ × Au → P(Av 4 {↑}), 

defined by 

Ape cb,a, (┌P┐, a) = PA(a). 

In other words, the following diagram commutes: 

 

A

〈 gn, id 〉 uA

Ape ba,

┌Proca,b,c
┐ × Au

Proca,b,c × Au

 

 

 

 

PE cb,a,

P(Aυ 4 {↑}) 

c,
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4.10 Computability of semantic representing functions 

To study the computability of the representing functions we stated early, we need 

the term evaluation property. 

Definition 4.1 (Term evaluation). 

The algebra A has the term evaluation property (TEP) if for all x and s, the term 

evaluation representing function  is While computable on AAte s,x
N. 

In fact, this definition is exactly the same as that in [7, Definition 4.4], referring to 

While rather than ND computation. The reason is that the term evaluation function  is 

only a single-valued function, (which is different from the other multi-valued representing 

functions), and it does not depend on non-determinism. Therefore, While computation is 

more appropriate here. 

Ate s,x

The term evaluation function is not always computable. However, it is While 

computable in most commonly used algebras such as: semi-groups, groups, rings, boolean 

algebras, and subalgebras [7, Examples 4.5]. So, it is reasonable to assume the term 

evaluation property, and study the computability of the other semantic representing 

functions (what we are very interested in) by assuming it. 

From now on therefore, we assume, 
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Assumption 4.2 (Term evaluation Property). 

The algebra A has the term evaluation property (TEP), i.e., for all x and s, the term 

evaluation representing function  is While computable on AAte s,x
N. 

Remark 4.3 

The TEP can be proved to hold for the array algebra A* (see [7, Proposition 4.6]). 

To study the computability of the semantic representing functions, we also need the 

following lemmas, 

Lemma 4.4 

(a) Given a WhileRA procedure P : nat × u → v, we can construct another WhileRA 

procedure Q : u → v so that for all x ∈ Au, 

QA(x) = PU
∞

=0n

A(n, x). 

(b) If P is a GC procedure, Q can also be constructed as a GC procedure. 

Proof. (a) Consider the ND procedure P: 

 proc in a : u 

 in n: nat 

 out b : v 
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begin 

 S; 

end 

Q can then be constructed as follows, 

proc in a : u 

 aux n: nat 

 out b : v 

begin 

 n := ?; 

 S; 

End 

 

(b) For GC, the construction of Q from P is more complicated. We need to use a subroutine 

(
A notover x

┌S┐, a, n) (see Appendix 6), which tells us whether the computation of ┌S┐ 

with input a, is over by step n (see Appendix 7 for details).  

 

Remark 4.5 

Lemma 4.4 (b) is needed in section 4.11 for proof of Theorem 4.12. 
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Lemma 4.6 

The function first : N → N is primitive recursive, and hence While computable on 

AN, for any standard Σ-algebra A.2

Now, we give the computability theorem for the semantic representing functions. 

Starting with Assumption 4.2 (the term evaluation property), we can prove the 

following, uniformly for all A ∈ StdAlg(Σ) and all x. 

Theorem 4.7 

(i) The atomic statement evaluation representing function , and the representing 

function , are ND computable on A

Aaex

Arest x
N. 

(ii) The set of leaf states representing function  is ND computable on A
Alsx

N. 

(iii) The statement evaluation representing function  is ND computable on A
Asex

N. 

(iv) For all a,b,c, the procedure evaluation representing function  is ND 

computable on A

Ape cb,a,

N. 

 

                                                 
2 As shown in e.g. [10], a PR (i.e., primitive recursive) function is While computable. 
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Proof. We construct ND procedures to compute the semantic representing functions as the 

follows (we only give the general ideas here, please refer to Appendix 8 for details). 

(i) By using  as a subroutine, we construct an ND procedure PAte s,x ae to compute . 

For , we use  to compute the boolean test in the ND procedure P

Aaex

Arest x
Ate bool,x rest. 

(ii) We construct an ND procedure Pls to compute  by using P
Alsx ae, first (to compute 

compstep) and Prest as subroutines. 

(iii) By Lemmas 3.14 and 4.4, we can give an ND procedure Pse to compute  from 

P

Asex

ls as a subroutine. 

(iv) Finally, we can give an ND procedure to compute  via PApe cb,a, se and  as two 

subroutines.  

Ate v,x

 

4.11 Universal procedure for GC3

It is important to note that the procedure representing function  of section 4.9 

is not universal for Proc(Σ)

Ape cb,a,

u→v, (where a : u and b : v). It is only ‘universal’ for ND 

procedures of type u→v with auxiliary variables of type type(c). In this subsection, we will 

                                                 
3 Cf. [7, section 4.8]. 
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construct a universal procedure (A
υu ,Univ ┌P┐, a) for all GC procedures P ∈ Procu→v and a 

∈ Au. This incorporates not only the auxiliary variables of P, but also representations of 

their values as (Gödel numbers of) terms in the input variables a (using localization of 

computation). These can then all be coded by a single number variable. 

By the nature of GC statements, the semantic computation tree for GC statements is 

only finitely branching. Thus we have the following properties for the semantic 

computation tree of GC statements: 

(i) at each step, we only have finitely many leaves, which can all be coded by a 

single Gödel number, 

(ii) localization of computation: the output is always in the subalgebra generated 

from the input. 

Remark 4.8 

Property (ii) is also true for WhileRA over minimal algebras. 
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We will, assuming the TEP for A, construct a universal procedure for Procu→v on 

A. For this, we need another representation of the “set of Leaf States” function LSA which 

differs in two ways from lsA in section 4.8: 

(i) it is defined relative to a tuple a of program variables (‘input variables’), which 

does not necessarily include all the variables in S, 

(ii) it has as output not a tuple of values in A, but a tuple of terms in the input 

variables, or rather, the Gödel number of such a tuple of terms. 

More precisely, given a product type u = s1× ··· × sm and a u-tuple of variables a : u, 

we define 

Alsua  : ┌VarTup┐ × ┌Stmtx┐ × Au × N → ┌TermTup┐ 

as follows: for any product type w extending u, i.e., w = s1× ··· × sp for some p ≥ m, and for 

any x : w extending a (i.e., x ≡ a, ), and for any S ∈ Stmt
pm ss xx ...,,

1+ x, a ∈ Au and n ∈ N, 

Alsua (┌x┐,┌S┐, a, n) = ┌tn┐ 

where tn ∈ TermTupx,w and ┌ Ate w,x (┌tn┐, (a, δA))┐ = ┌
Alsx (┌S┐, (a, δA), n)┐. 
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where δA is the default tuple of type sm+1× ··· × sp. This use of default values follows from 

the initialisation condition for output and auxiliary variables in procedures (see section 3.1 

(e), (iv)). (This is also what lies behind the functionality lemma 3.16 for procedures.) 

Now, consider the fact that the set of all the leaves of the semantic computation tree 

of S is just LSU
∞

=0n

A(S, σ, n) (see Lemma 3.14), then we can code this from , which is 

the Gödel number of the set of leaf states accumulated by a certain step. 

Alsua

Besides this, we also need the following definition (cf. [7, Definition 4.11 and 

Remark 4.12]). 

Definition 4.9 

For any term or term tuple t and variable tuple a, subex(t, a) is the result of 

substitute the default term δs for all variables xs in t except for the variables in a. 

Remark 4.10 

(a) For all t ∈TermTup, subex(t, a) ∈ TermTupa. 

(b) subex is primitive recursive in Gödel numbers. 

(c) Suppose t : w and var(t) ⊆ x ≡ a, z where a : u. Then for a ∈ Au, 

Ate w,a (┌subex(t, a)┐, a) = (Ate w,x
┌t┐, (a, δA)) 
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where δA is the default tuple of type type(z). This follows the ‘Substitution Lemma’ 

in logic [4]. 

 

Lemma 4.11 

The function  is ND computable on A
Alsua

N, for any standard Σ-algebra A (cf. [7, 

Lemma 4.13]). 

Proof. (Outline.) We essentially redo part (i) and (ii) of Theorem 4.7 using the definition of 

LSA, and localised versions of  and , Aaex
Arest x

aeuA : ┌VarTup┐ × ┌AtSt┐ → ┌TermTup┐ 

where for any x : w and S ∈ AtStx. We have 

aeuA(┌x┐,┌S┐) ∈ ┌TermTupx,w
┐, 

such that for any x ∈ Aw, 

┌ Ate w,x (aeuA(┌x┐,┌S┐), x)┐ = ┌ Aaex (┌S┐, x)┐; 

and (2) the function, 

Arestua  : ┌VarTup┐ × ┌Stmt┐ × Au → ┌Stmt┐

where for any x : w extending a : u, S ∈ Stmt and a ∈ Au, 
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Arestua (┌x┐,┌S┐, a) = ┌ Arest x (┌S┐, (a, δA))┐

We can then show that, 

(i) aeuA is primitive recursive, 

(ii)  is ND computable ( by using subroutines 〈  | s ∈ Sort(Σ)〉 ), Arestua
Ate s,a

(iii)  is ND computable on A by using aeu
Alsua

A and  as subroutines. Arestua

Note that, in (iii), the term evaluation function  is used to evaluate boolean tests 

in the course of defining . The one tricky point is this: how do we evaluate, using 

, a (Gödel number of) a term t ∈ Term

Ate s,a

Arestua

Ate s,a x,s, which contains variables in x other than a? 

The answer is that by Remark 4.10 (c) the evaluation of t is given by (Ate s,a
┌subex(t, a)┐, 

a).  

 

Theorem 4.12 (Universality characterization theorem for GC(Σ) computations).4

If A has TEP, then for all Σ-product types type u, v, there is a GC(ΣN) procedure 

υu ,Univ  : ┌Procu→v
┐ × u → v 

                                                 
4 Cf. [7, Theorem 4.14]. 
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which is universal for GC procedures Procu→v on A, in the sense that for all P ∈ Procu→v 

and a ∈ Au, 

A
υu ,Univ (┌P┐, a) = PA(a). 

Proof. We give an informal description of the algorithm represented by the procedure 

. With input (A
υu ,Univ ┌P┐, a), where P ∈ Procu→v and a ∈ Au, suppose 

P ≡ proc in a out b aux c begin S end 

where a : u, b : v and let x ≡ a, b, c. 

By the techniques of Lemma 4.4 (b), we can then define a GC procedure 

Q : nat × u → nat, 

where 

QA : ┌Procu→v
┐ × Au → P(N 4 {↑})+, 

with 

QA(┌P┐, a) = U { (
∞

=0n

Alsua
┌x┐,┌S┐, a, n)}. 

Here we use the subroutine  (cf. the definition for ), which is a 

“localized” version of  (see Appendix 6). 

A notoverua
Alsua

A notover x
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Write the elements of the output set of QA as 

┌t, t′, t′′┐ ∈ QA(┌P┐, a), 

where the term tuples t, t′ and t′′ represent the current values of a, b and c, respectively. 

The function QA is GC-computable by Lemma 4.4 (b) and 4.11, and the TEP Assumption. 

Finally, we get the desired output values in Av from t′ as 

Ate υ,a (┌subex(t′, a)┐, a) 

which is GC-computable by the TEP.  

 

Note 4.13 

The universal procedure at a Σ-type u → v is constructed uniformly over StdAlg(Σ) 

relative to a term evaluation subroutine (or “oracle”). 

 

Moreover, we have, 

Corollary 4.14 (Universality for A*) 

For all Σ-product types type u, v, there is a GC*(ΣN) procedure 
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*
,υuUniv  : ┌Procu→v

┐ × u → v 

which is universal for GC procedures  on A, in the sense that for all P ∈ , 

A ∈ StdAlg(Σ) and a ∈ A

*
υu→Proc *

υu→Proc

u, 

A,*
,υuUniv (┌P┐, a) = PA(a). 

Proof. By Remark 4.3, A* has TEP (cf. [7, Corollary 4.15]).  

 

Corollary 4.15 (Universal GCN procedure for GC*)5

If A has TEP, then for all Σ-product types type u, v, there is a GC(ΣN) procedure 

υu ,Univ  : ┌Procu→v
┐ × u → v 

which is universal for GC procedures  on A, in the sense that for all P ∈  

and a ∈ A

*
υu→Proc *

υu→Proc

u, 

A
υu ,Univ (┌P┐, a) = PA(a). 

Proof. The result follows from Theorem 4.12 by using a Σ*÷ Σ conservativity theorem (see 

[7, Theorem 3.63]).   

                                                 
5 Cf. [7, Theorem 4.17]. 
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CONCLUSION 

 

We investigated the semantics and computation theories of two non-deterministic 

programming languages over many-sorted signatures Σ, and Σ-algebras A, extending the 

While(Σ) language studied in [7]: (a) GC(Σ), the Guarded Command language of Dijkstra 

[3], and (b) WhileRA(Σ), which contains random assignments. These two languages were 

also combined into a single language ND. 

It was found that the algebraic operational semantics used in [7] for While could 

be generalized smoothly to the whole of ND, mainly by replacing computation sequences 

by semantic computation trees. 

However, when the possibility of generalizing the Universal Function Theorem 

(UFT) in [7] to ND was investigated, a sharp distinction was found between GC and 

WhileRA. The crucial issues here seem to be (i) finite nondeterminism, which says that the 

semantic computation tree is finitely branching, and (ii) localization of computation, 

which says that the output is always in the Σ-subalgebra of A generated from the input. It 

was found that the techniques of [7] could be adapted to proving a UFT for GC, which 

satisfies both these properties, but not for WhileRA, which satisfies neither. 

Thus the UFT was proved for GC, assuming a term evaluation property on A. 
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Future investigations in this area should include: 

• investigating the UFT for WhileRA, and 

• studying semicomputability properties of GC and WhileRA. 



 73

BIBLIOGRAPHY 

 

[1] Dirk van Dalen. Logic and Structure. Springer-Verlag, 1997. 

 

[2] Martin D. Davis and Elaine J. Weyuker. Computability, Complexity and 

Languages. Fundamentals of Theoretical Computer Science. Academic Press Inc., 

Orlando, Florida, 1983. 

 

[3] Edsger W. Dijkstra. A discipline of programming. Series in Automatic 

Computation. Prentice-Hall Inc., Englewood Cliffs, New Jersey, 1976. 

 

[4] V. Sperschneider and G. Antoniou. Logic: A Foundation for Computer Science. 

Addison-Wesley Publishing Company Inc, 1991. 

 

[5] J. V. Tucker and J. I. Zucker. Program Correctness over Abstract Data Types with 

Error-State Semantics, North Holland, Amsterdam, 1988. 

 

[6] J. V. Tucker and J. I. Zucker. Computation by ‘while’ programs on topological 

partial algebras, Theoretical Computer Science, 219, pages 379 – 420. 1999. 

 

 



 74

[7] J. V. Tucker and J. I. Zucker. Computable functions and semicomputable sets on 

many-sorted algebras. In S. Abramsky, D. Gabbay, and T. Maibaum, editors, 

Handbook of Logic in Computer Science, volume 5, pages 317 – 523. Oxford 

University Press, 2000. 

 

[8] J. V. Tucker and J. I. Zucker. Abstract versus Concrete Computation on Metric 

Partial Algebras. Technical report CAS–01–01–JZ, Department of Computing and 

Software, McMaster University, 2001. 

 

[9] A. M. Turing. On computable numbers, with an application to the Entscheidungs 

problem, Proceedings of the London Mathematical Society 42: pp. 230 – 265; 

correction [1937], ibid. 42, pp. 544 – 546. Reprinted [1965], The Undecidable, M. 

Davis, ed., Raven Press, 1936. 

 

[10] J. I. Zucker and L. Pretorius. Introduction to computability theorey, South African 

Computer Journal, 9. April 1993. 

 



APPENDIX 

 

In this appendix, we give the proof of the important theorems and lemmas stated 

in the previous chapters. 

Firstly, we give the proof of the functionality lemma for terms. This lemma 

together with the functionality lemma for statements and procedures, which are stated 

and proved in section 3, are crucial to ensure the semantics of the terms, statements and 

procedures are well defined from the states. Lemma 3.13 and 3.14 are important to prove 

the functionality lemma for statements. 

Lemma 3.9 is crucial to prove theorem 3.8, which shows the i/o semantics of ND 

statements, derived from our algebraic operational semantics. 

By proving Theorem 4.7, we get a weaker UFT for fixed input, output and 

auxiliary variables. 

A notover x , the representation function of NotOver, is used as a subroutine in the 

proof of Lemma 4.4 (b) and Theorem 4.12 ( UFT for GC ). 
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1. Lemma 3.5 (Functionality lemma for terms). 

For any term t and states σ1 and σ2, if σ1 ≈ σ2 (rel var(t)), then ’t÷Aσ1 = ’t÷Aσ2. 

Proof. By structural induction on t. 

Base case: t ≡ x 

By definition, it’s trivial to have ’x÷Aσ1 = ’x÷Aσ2. 

Inductive step: t ≡ F(t1, …, tm), where F ∈ Func(Σ)u→s for u = s1× ··· × sm and ti ∈ Termsi 

for i = 1, …, m. 

By the definition, ’t÷Aσ1 = ’F(t1, …, tm)÷Aσ1 

 = FA(’t1÷
Aσ1, …, ’tm÷

Aσ1) (1.1) 

  ’t÷Aσ2 = ’F(t1, …, tm)÷Aσ2 

 = FA(’t1÷
Aσ2, …, ’tm÷

Aσ2) (1.2) 

By σ1 ≈ σ2 (rel var(t)), we have σ1 ≈ σ2 (rel var(ti)), for i = 1, …, m. 

Then, by the base case, we have ’ti÷
Aσ1 = ’ti÷

Aσ2, for i = 1, …, m. 

So, (1.1) = (1.2); i.e., ’t÷Aσ1 = ’t÷Aσ2.  
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2. Lemma 3.9 

Assume n > 0. 

(a) If Sat ∈ AtSt, CompTreeStageA(Sat, σ, n) is formed by attaching to the root {σ}, the 

leaf {τ}, for each τ ∈ Sat
Aσ. 

Proof. (Trivially) For Sat ∈ AtSt, by defintion1, CompTreeStageA(Sat, σ, n) is formed by 

attaching to the root {σ}, the leaf {τ}, for each τ ∈ Sat
Aσ.  

(b) If S ≡ S1; S2,  CompTreeStageA(S, σ, n)  is  formed  by  attaching  subtree(’s) 

CompTreeStageA(S2, τ, n-d′) to each leaf {τ} of CompTreeStageA(S1, σ, n), where 

d′ is the depth of {τ} in CompTreeStageA(S1, σ, n). 

Proof. We split the proof into 2 cases on whether S1 is atomic or not. 

Case 1: If S1 is atomic, then by definition, CompTreeStageA(S, σ, n) is formed by attaching 

to the root {σ}, the subtree CompTreeStageA(S′, σ′, n-1), for each σ′ ∈ CompStepA(S, σ) 

and S′ ∈ RestA(S, σ) (2.1) 

Since S1 is atomic, in this case, 

CompStepA(S, σ) = First(S) Aσ = First(S1) Aσ = S1
Aσ, 

                                                 
1 Refer to the definition of CompTreeStageA in section 3.4.4. 
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RestA(S, σ) = { S2 }. 

Then, (2.1) turns to be, CompTreeStageA(S, σ, n) is formed by attaching to the root 

{σ}, the subtree CompTreeStageA(S2, τ, n-1), for each τ ∈ S1
Aσ. 

From the result of (a), CompTreeStageA(S1, σ, n) is a one-step tree with each leaf τ 

∈ S1
Aσ, with a depth of 1. 

So, (b) is proved for this case. 

Case 2: (Interesting case) S1 is not atomic. 

We use simple induction on n to prove (b). 

Base case: n = 1. 

By definition, CompTreeStageA(S, σ, 1) is formed by attaching to the root {σ}, the 

subtree CompTreeStageA(S′, σ′, 0), for each σ′ ∈ CompStepA(S, σ) and S′ ∈ RestA(S, σ). 

I.e., attach to the root {σ}, the node {σ′}, for each σ′ ∈ CompStepA(S, σ). 

Since S1 is not atomic, CompTreeStageA(S1, σ, 1) has no leaf. Then, (b) amounts to 

saying that CompTreeStageA(S, σ, 1) is formed by CompTreeStageA(S1, σ, 1). I.e., attach to 

the root {σ}, the node {σ′}, for each σ′ ∈ CompStepA(S1, σ). 
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Since S ≡ S1;S2, CompStepA(S, σ) = First(S) Aσ = First(S1) Aσ 

= CompStepA(S1, σ). 

So, (b) is proved for the base case. The following diagram might help understand 

the proof for this case. 

 (b) in this case By the definition of CompTreeStageA

 

σ 
 

… σ′ σ″  
CompTreeStageA(S1, σ, 1)

   For each σ′ ∈ CompStepA(S, σ) 

CompTreeStageA(S, σ, 1) 

 

Inductive step: Assume, CompTreeStageA(S, σ, n) is formed by attaching subtree(’s) 

CompTreeStageA(S2, τ, n-d′) to each leaf {τ} of CompTreeStageA(S1, σ, n), where d′ is the 

depth of {τ} in CompTreeStageA(S1, σ, n). (Induction Hypothesis) 

We want to prove: CompTreeStageA(S, σ, n+1) is formed by attaching subtree(’s) 

CompTreeStageA(S2, τ, n+1-d′) to each leaf {τ} of CompTreeStageA(S1, σ, n+1), where d′ 

is the depth of {τ} in CompTreeStageA(S1, σ, n+1). (2.2) 

By definition, CompTreeStageA(S, σ, n+1) is formed by attaching to the root {σ}, 

the subtree CompTreeStageA(S′, σ′, n), for each σ′ ∈ CompStepA(S, σ) and S′ ∈ RestA(S, σ) 
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And, CompStepA(S, σ) = First(S) Aσ = First(S1) Aσ, 

 = CompStepA(S1, σ). 

Since S1 is not atomic,  =),( σSRest A )},(|;{ 1121 σSRestSSS A∈′′U

Then, we can change the above result as, CompTreeStageA(S, σ, n+1) is formed by 

attaching to the root {σ}, the subtree CompTreeStageA( 21; SS ′ , σ′, n), for each σ′ ∈ 

CompStepA(S1, σ) and  ∈ Rest1S ′ A(S1, σ). (2.3) 

 
By the definition of CompTreeStageA

 σ 

… 

 CompTreeStageA(S, σ, n+1) 

 

 

CompTreeStageA( 21; SS ′ , σ′, n) 
For each σ′ ∈ CompStepA(S1, σ) and  ∈ Rest1S ′ A(S1, σ) 

By induction hypothesis, for each σ′ ∈ CompStepA(S1, σ) and  ∈ Rest1S ′ A(S1, σ), 

CompTreeStageA( , σ′, n) is formed by attaching CompTreeStage21; SS ′ A(S2, τ, n-d) to each 



 81

leaf {τ} of CompTreeStageA( 1S ′ , σ′, n), where d is the depth of {τ} in 

CompTreeStageA( , σ′, n). 1S ′

Then, (2.3) turns to be, CompTreeStageA(S, σ, n+1) is formed by attaching to the 

root {σ}, (in 2 steps) (2.4) 

(i) CompTreeStageA( , σ′, n), for each σ′ ∈ CompStep1S ′ A(S1, σ) and  ∈ Rest1S ′ A(S1, σ) 

…

(ii) attach CompTreeStageA(S2, τ, n-d) to each leaf {τ} of CompTreeStageA( 1S ′ , σ′, n), 

where d is the depth of {τ} in CompTreeStageA( 1S ′ , σ′, n) 

 

 

 

 

 

 

 

 

By induction hypothesis

σ 

CompTreeStageA(S, σ, n+1) 

For each σ′ ∈ CompStepA(S1, σ) and 1S ′  ∈ RestA(S1, σ)

CompTreeStageA( 1S ′ , σ′, n)

τ

For each leaf {τ} of CompTreeStageA( 1S ′ , σ′, n), where d is the depth of {τ} 

in CompTreeStageA( 1S ′ , σ′, n) 

CompTreeStageA(S2, τ, n-d) 
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Reversely use the definition of CompTreeStageA, then step (i) is just 

CompTreeStageA(S1, σ, n+1). Let the depth of leaf {τ} in CompTreeStageA(S1, σ, n+1) to 

be d′. We have d′ = d+1, where d is the depth of {τ} in CompTreeStageA( , σ′, n). 1S ′

Then, (2.4) is just saying that, CompTreeStageA(S, σ, n+1) is formed by attaching 

CompTreeStageA(S2, τ, n-(d′-1)) ( = CompTreeStageA(S2, τ, n+1-d′) ), to each leaf {τ} of 

CompTreeStageA(S1, σ, n+1), where d′ is the depth of {τ} in CompTreeStageA(S1, σ, n+1). 

 

 

 

 

 

 

 

 

The above result is just (2.2), what we want to prove.  

By the definition of CompTreeStageA, (reversely) 

CompTreeStageA(S, σ, n+1) 

CompTreeStageA(S1, σ, n+1)

For each leaf {τ} of CompTreeStageA(S1, σ, n+1), where d′ is the depth of {τ} 
in CompTreeStageA(S1, σ, n+1). It’s easy to see that d′ = d+1. 

CompTreeStageA(S2, τ, n-d) 

CompTreeStageA(S2, τ, n+1-d′) 
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(c) If S ≡ . CompTreeStagefiif  kkbb |...| SS →→ 11 A(S, σ, n) is formed by attaching 

to the root {σ}, the subtree(’s) CompTreeStageA(Si, σ, n-1), where ’bi÷
Aσ = tt, for 

all i = 1, …, k. 

Proof. By definition, CompTreeStageA(S, σ, n) is formed by attaching to the root {σ}, the 

subtree CompTreeStageA(S′, σ′, n-1), for each σ′ ∈ CompStepA(S, σ) and S′ ∈ RestA(S, σ). 

And, CompStepA(S, σ) = First(S) Aσ = skip Aσ = {σ} 

U
k

i

σ
1

),(
=

=SRest A { Si | ’bi÷
Aσ = tt } 

So, it’s trivial to see that, CompTreeStageA(S, σ, n) is formed by attaching to the 

root {σ}, the subtree(’s) CompTreeStageA(Si, σ, n-1), where ’bi÷
Aσ = tt, for all i = 1, …, k. 

  

(d) If S ≡ . CompTreeStageoddo  kkbb |...| SS →→ 11 A(S, σ, n) is formed by attaching 

to the root {σ}, 

(i) the subtree(’s) CompTreeStageA(Si;S, σ, n-1), where ’bi÷
Aσ = tt, if for 

some i = 1, …, k, 

(ii) the leaf {σ} otherwise. 
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Proof. By definition, CompTreeStageA(S, σ, n) is formed by attaching to the root {σ}, the 

subtree CompTreeStageA(S′, σ′, n-1), for each σ′ ∈ CompStepA(S, σ) and S′ ∈ RestA(S, σ). 

And, CompStepA(S, σ) = First(S) Aσ = skip Aσ = {σ} 

⎪⎩

⎪
⎨

⎧
==

= =

otherwise                                        } {

][ , somefor  if}][  |; { 
),( 1

 skip

tttt σbiσb
σ i

k

i
ii

AA
A SS

SRest U  

So, it is easy to see (d) is true.  

 

3. Proof of Theorem 3.8 from Lemma 3.9 

(a) For Sat atomic, ’Sat÷
A = Sat

A. 

Proof. From Lemma 3.9 (a), take the ‘limit’ over n for all CompTreeStageA, then we have, 

CompTreeA(Sat, σ) is formed by attaching to the root {σ}, the leaf {τ}, for each τ ∈ 

Sat
Aσ, Sat ∈ AtSt. 

By definition2, ’S÷Aσ is the set of states at all leaves in CompTreeA(S, σ). I.e., 

’Sat÷
Aσ = Sat

Aσ  

 

                                                 
2 Refer to the definition of ’S÷A in section 3.5. 
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(c) S ≡ . Then, ’S÷fiif  kkbb |...| SS →→ 11 Aσ = U { ’S
k

i 1=
i÷

Aσ | ’bi÷
Aσ = tt }. 

Proof. From Lemma 3.9 (c), take the ‘limit’ over n for all CompTreeStageA, then we have, 

CompTreeA(S,σ) is formed by attaching to the root {σ}, the subtree CompTreeA(Si,σ), 

where ’bi÷
Aσ = tt, for all i = 1, …, k. 

So, the leaves of CompTreeA(S,σ) are formed from all the leaves of 

CompTreeA(Si,σ), where ’bi÷
Aσ = tt, for all i = 1, …, k. 

Also (trivially), if there exists an infinite path in any possible CompTreeA(Si,σ), 

where ’bi÷
Aσ = tt, for all i = 1, …, k, there must be an infinite path in CompTreeA(S,σ), by 

extending the infinite path in CompTreeA(Si,σ) one step up to the root {σ}. 

By the definition (of semantics of ND statements), ’S÷Aσ is the set of states at all 

leaves in CompTreeA(S, σ), together with ‘↑’ if CompTreeA(S, σ) has an infinite path. 

U
k

i 1=

{ ’Si÷
Aσ | ’bi÷

Aσ = tt } is the set of states at all leaves in any possible 

CompTreeA(Si,σ), together with ‘↑’ if there is an infinite path in any CompTreeA(Si,σ), 

where ’bi÷
Aσ = tt, for all i = 1, …, k. 

So, ’S÷Aσ = { ’SU
k

i 1=
i÷

Aσ | ’bi÷
Aσ = tt }.  
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(d) S ≡ . Then, oddo  kkbb |...| SS →→ 11 

’S÷Aσ  
⎪⎩

⎪
⎨

⎧
==

= =

otherwise                                                    } {

][ , somefor if}][  |];[ { 
1

 

tttt

σ

σbiσbσ i

k

i
ii

AAASSU

Proof. From Lemma 3.9 (d), take the ‘limit’ over n for all CompTreeStageA, then we have, 

CompTreeA(S,σ) is formed by attaching to the root {σ}, 

(i) the subtree CompTreeA(Si;S,σ),  for those i for which ’bi÷
Aσ = tt, 

 , somefor if i ’bi÷
Aσ = tt 

(ii) the leaf {σ}  otherwise 

So, the leaves of CompTreeA(S,σ) are formed from, 

(i) the leaves of the subtree CompTreeA(Si;S,σ),  for those i for which ’bi÷
Aσ = tt, 

 ’b , somefor if i i÷
Aσ = tt 

(ii) the leaf {σ} otherwise 

Also (trivially), if there exists an infinite path in any possible CompTreeA(Si;S,σ), 

where ’bi÷
Aσ = tt, for all i = 1, …, k, there must be an infinite path in CompTreeA(S,σ), by 

extending the infinite path in CompTreeA(Si,σ) one step up to the root {σ}. 
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By the definition (of semantics of ND statements), ’S÷Aσ is the set of states at all 

leaves in CompTreeA(S, σ), together with ‘↑’ if CompTreeA(S, σ) has an infinite path. 

U
k

i 1=

{ ’Si;S÷Aσ | ’bi÷
Aσ = tt } is the set of states at all leaves in any possible 

CompTreeA(Si;S,σ), together with ‘↑’ if there is an infinite path in any CompTreeA(Si,σ), 

where ’bi÷
Aσ = tt, for all i = 1, …, k. 

So, ’S÷Aσ   
⎪⎩

⎪
⎨

⎧
==

= =

otherwise                                                    } {

][ , somefor if}][  |];[ { 
1

 

tttt

σ

σbiσbσ i

k

i
ii

AAASSU

 

4. Lemma 3.13 

Suppose var(S) ⊆ M. If σ1 ≈ σ2 (rel M), then 

First(S) Aσ1 ≈ First(S) Aσ2 (rel M), (4.1) 

and, RestA(S, σ1) = RestA(S, σ2). (4.2) 

Proof. Firstly, we prove (4.1) by structural induction on S. 

Base case: S is atomic. By definition of First, First(S) = S, and  

First(S) Aσ1 = S Aσ1 
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First(S) Aσ2= S Aσ2

(i) S ≡ skip. {σ1} ≈ {σ2} (rel M). 

(ii) S ≡ . St=:x Aσ1 = { σ1{x / ’t÷Aσ1} } 

S Aσ2 = { σ2{x / ’t÷Aσ2} } 

∀y ∈ M, { σ1{x / ’t÷Aσ1} }(y)  
⎩
⎨
⎧

≠
≡

=
xyy
xy

)(
][

1

1

σ
σt A

{ σ2{x / ’t÷Aσ2} }(y)  
⎩
⎨
⎧

≠
≡

=
xyy
xy

)(
][

2

2

σ
σt A

Because var(t) ⊆ var(S) ⊆ M, and σ1 ≈ σ2 (rel M), by functionality lemma for 

terms, ’t÷Aσ1 = ’t÷Aσ2, and ∀y ∈ M, σ1(y) = σ2(y). 

(iii) S ≡ . ?x =:

S Aσ1 = {  | 1σ ′ 1σ ′  agrees with σ1 on all variables, except x} 

S Aσ2 = {  | 2σ ′ 2σ ′  agrees with σ2 on all variables, except x} 

Since σ1 ≈ σ2 (rel M), then we have ∀ 1σ ′  ∈ S Aσ1, ∃  ∈ S2σ ′
Aσ2, 1σ ′(x) = 

(x). (4.3) 2σ ′

∀y ∈ M, let  ∈ S1σ ′
Aσ1, 2σ ′  ∈ S Aσ2, 
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1σ ′(y) =  and 
⎩
⎨
⎧

≠
≡′

xyy
xyx

)(
)(

1

1

σ
σ

2σ ′ (y) =  
⎩
⎨
⎧

≠
≡′

xyy
xyx

)(
)(

2

2

σ
σ

By (4.3), we have ∀ 1σ ′  ∈ S Aσ1, ∃ 2σ ′  ∈ S Aσ2, 1σ ′(y) = (y). 2σ ′

Similarly, ∀  ∈ S2σ ′
Aσ2, ∃ 1σ ′  ∈ S Aσ1, 1σ ′(y) = 2σ ′ (y). 

So, finally by definition 3.10, S Aσ1 ≈ S Aσ2 (rel M) is proved ( i.e., 

First(S) Aσ1 ≈ First(S) Aσ2 (rel M) ). I.e., base case is proved. 

Inductive step: if S is not atomic, since First(S) is atomic, by base case, we have 

First(S) Aσ1 ≈ First(S) Aσ2 (rel M) 

 

Secondly, we prove (4.2) by structural induction on S. 

Base case: S is atomic. RestA(S, σ1) = RestA(S, σ2) = {skip} 

Inductive step: if S is not atomic, we will prove (4.2) as the follows, 

(i) S ≡ , 21 ; SS

(a) If S1 is atomic, RestA(S, σ1) = RestA(S, σ2) = {S2} 

(b) If S1 is not atomic, 

RestA(S, σ1) =  }),(|;{ 11121 σSRestSSS A∈′′

RestA(S, σ2) =  }),(|;{ 21121 σSRestSSS A∈′′′′

By base case, RestA(S1, σ1) = RestA(S1, σ2). 

So, RestA(S, σ1) = RestA(S, σ2) 
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(ii) S ≡ . Then, fiif  kkbb |...| SS →→ 11 

U
k

i

σ
1

1 ),(
=

=SRest A { Si | ’bi÷
Aσ1 = tt } 

U
k

i

σ
1

2 ),(
=

=SRest A { Si | ’bi÷
Aσ2 = tt } 

Since var(bi) ⊆ var(S) ⊆ M, and σ1 ≈ σ2 (rel M), by Lemma 3.5 (the 

functionality lemma for terms), we have ’bi÷
Aσ1 = ’bi÷

Aσ2, for all i = 1,…, k. 

So, RestA(S, σ1) = RestA(S, σ2) for this case. 

(iii) S ≡ . Then, oddo  kkbb |...| SS →→ 11 

⎪⎩

⎪
⎨

⎧
==

= =

otherwise                                   } {

][ , somefor if}][  |; { 
),( 1

1
1

1

 skip

tttt σbiσb
σ i

k

i
ii

AA
A SS

SRest U  

⎪⎩

⎪
⎨

⎧
==

= =

otherwise                                   } {

][ , somefor  if}][  |; { 
),( 2

1
2

2

 skip

tttt σbiσb
σ i

k

i
ii

AA
A SS

SRest U  

Similarly to (ii), we can prove RestA(S, σ1) = RestA(S, σ2) by Lemma 3.5.  

 

5. Lemma 3.14 

Suppose var(S) ⊆ M. If σ1 ≈ σ2 (rel M), then for all n ≥ 0 

LSA(S, σ1, n) ≈ LSA(S, σ2, n) (rel M), (5.1) 



 91

where LSA stands for “leaf states”, and LSA(S, σ, n) means the set of states at all leaves of 

CompTreeA(S, σ) in CompTreeStageA(S, σ, n). 

Proof. By simple induction on n. 

Base case: n=0,  LSA(S, σ1, 0) = 0, 

LSA(S, σ2, 0) = 0. 

And trivially, 0 ≈ 0 (rel M). 

Inductive step: Suppose (5.1) is true for n. (induction hypothesis) 

Now, we want to prove LSA(S, σ1, n+1) ≈ LSA(S, σ2, n+1) (rel M) 

(i) If S is atomic, 

LSA(S, σ1, n+1) = First(S) Aσ1 = S Aσ1 

LSA(S, σ2, n+1) = First(S) Aσ2 = S Aσ2

Then, by lemma 3.8, LSA(S, σ1, n+1) ≈ LSA(S, σ2, n+1) (rel M) 

(ii) If S is not atomic, 

LSA(S, σ1, n+1) = , }),(),,(|),,({ 111111 σσσnσ SCompStepSRestSSLS AAA ∈′∈′′′U

LSA(S, σ2, n+1) = . }),(),,(|),,({ 222222 σσσnσ SCompStepSRestSSLS AAA ∈′∈′′′U

By lemma 3.8, RestA(S, σ1) = RestA(S, σ2), and 

First(S) Aσ1 ≈ First(S) Aσ2 (rel M). 

Also since  CompStepA(S, σ1) = First(S) Aσ1, and 

CompStepA(S, σ2) = First(S) Aσ2, 

we have CompStepA(S, σ1) ≈ CompStepA(S, σ2) (rel M). 
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By induction hypothesis, 

LSA( 1,σ ′′S , n) ≈ LSA( 2,σ ′′S , n) (rel M) 

where S′ ∈ RestA(S, σ1) ( = RestA(S, σ2) ) and 1σ ′  ≈  (rel M), for 2σ ′ 1σ ′  ∈ 

CompStepA(S, σ1),  ∈ CompStep2σ ′
A(S, σ2). 

Then, we have LSA(S, σ1, n+1) ≈ LSA(S, σ2, n+1) (rel M).  

 

6. Representation of NotOverA in GC 

Let Stmtx be the class of statements with variables among x only. The function 

NotOverA on A relative to x 

ANotOver x  : Stmtx × State(A) × N → boolean, 

which tests whether or not the semantic computation tree of S at σ is not over by step n, is 

represented by the function 

A notover x  : ┌Stmtx
┐ × Au × N → boolean, 

defined by a simple tail recursion on n as the follows, 

Base case: (
A notover x

┌S┐, a, 0) = tt. 

Inductive step: 

(i) for S atomic: (
A notover x

┌S┐, a, n+1) = ff, 
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(ii) for S not atomic: (
A notover x

┌S┐, a, n+1) =       { (
A notover x

┌S′┐, 

a′, n) | a′ ∈ (Acompstepx
┌S┐, a), ┌S′┐ ∈ (Arest x

┌S┐, a) }. 

where σ is any state on A such that σ[x] = a. In other words, the following diagram 

commutes: 

 

boolean 

〈 gn, , idRepx N 〉 

A

A NotOverx

Stmtx × State(A) × N 

┌Stmtx
┐ × Au × N 

 

 

 

 

 

Note 5.1 

(a) The disjunction in (ii) is finite becaus

finiteness of  (see Note 3.6 (a))Arest x
3. H

(b)  is very similar to  (see s

of  is a set of terms, but the output o

A notover x
Alsx

Alsx

(c) This function  is used as a su

Theorem 4.12. 

A notover x

                                                 
3 Note 3.6 (a) says that RestA is finite, from section 4.5, h
notov

e of 

ence

ection

f not

brout

ence r
A

erx

the finite nondeterminism of GC and 

 this function only works for GC. 

 4.7). The difference is that the output 

 is a boolean. 
A over x

ine in the proof of Lemma 4.4 (b) and 

xest is finite. A
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Remark 5.2 

Although our syntax for GC does not allow procedures as subroutines of others, we 

freely use these as pseudo-code in the interest of readability. In practice, we could use 

macro-expansions and new auxiliary variables to get the same effect. 

 

7. Lemma 4.4 (b): GC procedure for computing the Union function 

We construct the following GC procedure Q to compute the Union function 

PU
∞

=0n

A(n, x), by using notoverA as a subroutine and a boolean auxiliary variable, 

 proc in  a : u 

 out b : v 

 aux gn : nat 

 aux n : nat 

 aux continue : bool 

 begin 

 a := a; 

 continue := tt; 

 gn := ┌S┐; 

 do continue → n++; (gn, a, continue); 
A notover x
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  | continue → continue := ff; S; 

 od 

 end 

By definition 3.14, if P is ND computable on A, so is Q. Then together with the 

early proof for WhileRA (see Lemma 4.4 (a)), we finished the proof for Lemma 4.4.  

 

8. Theorem 4.7 

(i) The atomic statement evaluation representing function , and the representing 

function , are ND computable on A

Aaex

Arest x
N. 

Proof. We give an informal description of the algorithm represented by the procedure 

Pae, which computes . With input (Aaex
┌S┐, a), since Gödel numbers are primitive 

recursive (refer to [9]), we can judge what the atomic statement S is and thus, get the 

output b by using  as a subroutine as follows. Ate s,x

(a) a, if skip. 

(b) (Ate u,x
┌x┐, a, b), if x := t, where for some product type u, x : u and t : u. 

(c) (Ate s,x
┌x┐, a, b), if x := ?, for x : s. 

Next, we give an informal description of the algorithm represented by the 

procedure Prest, which computes . And we define a “sequential operator” for Gödel 

numbers: seq(

Arest x

┌S1
┐,┌S2

┐) = ┌S1; S2
┐. 
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Similarly with what we have done for , since Gödel numbers are primitive 

recursive, we can judge what S is. Then, we can give the output in the following cases, 

Aaex

(a) ┌skip┐, if S is atomic. 

(b) ┌S2
┐, if S ≡ S1; S2 and S1 is atomic, 

Prest(┌S1
┐, a, c); b := seq(c, ┌S2

┐); if S ≡ S1; S2, but S1 is not atomic. 

Note that: c is an auxiliary variable of type nat. 

(c) If S ≡ , then we need  to do the boolean test, and 

we also need auxiliary boolean variables y

fiif  kkbb |...| SS →→ 11 Ate boolx,

1, …, yk to construct the followings:  

 (Ate boolx,
┌b1

┐, a, y1); 

 …  … 

 (Ate boolx,
┌bk

┐, a, yk); 

 if y1 → b :=┌S1
┐ | … | yk → b :=┌Sk

┐ fi 

(d) If S ≡ , then similarly with (c), we do the follows, oddo  kkbb |...| SS →→ 11 

 (Ate boolx,
┌b1

┐, a, y1); 

 …  … 

 (Ate boolx,
┌bk

┐, a, yk); 

 if y1 → b := seq(┌S1
┐,┌S┐) 

 | …  … 
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 | yk → b := seq(┌Sk
┐,┌S┐) 

 | ¬(y1∧…∧yk) → b := ┌skip┐

 fi 

Note that: we use if fi to compute do od.  

 

(ii) The set of leaf states representing function  is ND computable on A
Alsx

N. 

Proof. With input (┌S┐, a, n0), we construct the following ND procedure Pls to compute 

 by using P
Alsx ae, first (to compute compstep) and Prest as subroutines. 

 proc in  a : u 

 out b : v 

 aux d : u 

 aux gn : nat 

 aux n : nat 

 aux m : nat 

 aux l : nat 

 begin 

 a := a; 

 gn := ┌S┐; 

 n := n0; 

 while n ≠ 0, 
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 do 

 if gn is not atomic, 

  Prest(gn, a, l); 

  first(gn, m); 

  Pae(m, a, d); 

  gn := l; 

  a := d; 

  n := n-1; 

 else 

  Pae(gn, a, b); 

 od 

 end  

 

(iii) The statement evaluation representing function  is ND computable on A
Asex

N. 

Proof. By Notation 3.11 and Lemma 4.4, we can give an ND procedure Pse to compute 

 from P
Asex ls as a subroutine. Note that, there is an infinite path in CompTreeA(S, σ) if 

and only if, Pse diverges.  
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(iv) For all a,b,c, the procedure evaluation representing function  is ND 

computable on A

Ape cb,a,

N. 

Proof. With input (┌S┐, a), we use the following ND procedure to compute  via 

P

Ape cb,a,

se and  as two subroutines. Ate v,x

 proc in  a : u 

 out b : v 

 aux d : u 

 aux gn : nat 

 begin 

 a := a; 

 gn := ┌S┐; 

 Pse(gn, a, d); 

 (Ate v,x
┌b┐, d, b); 

 end  


