

SEMANTICS AND UNIVERSALITY

OF NON-DETERMINISM

SEMANTICS OF NON-DETERMINISTIC PROGRAMS

AND

THE UNIVERSAL FUNCTION THEOREM

OVER ABSTRACT ALGEBRAS

BY

YUAN WANG, B.SC.

A Thesis

Submitted to the School of Graduate Studies

in Partial Fulfillment of the Requirements

for the Degree Master of Science

McMaster University

©Copyright by Yuan Wang, September 2001

MASTER OF SCIENCE (2001) McMaster University

(Department of Computing and Software) Hamilton, Ontario

TITLE: Semantics of non-deterministic programs and the Universal Function

Theorem over abstract algebras

AUTHOR: Yuan Wang, B.Sc. (Beijing Institute of Technology)

SUPERVISOR: Professor Jeffery I. Zucker

NUMBER OF PAGES: vii, 99

 ii

ABSTRACT

Data types containing infinite data, such as the real numbers, functions, and bit

streams, can be modeled by abstract many-sorted algebras over suitable signatures. The

computability theory for deterministic programs over such algebras has been studied

extensively; as a complementary investigation, we study the formal semantics and

computability theory for various non-deterministic languages.

The ND programming language studied in this thesis combines the While

programming language extended with random assignment, and the Guarded Command

Language GC of Dijkstra. A semantic theory for ND is developed following algebraic

operational semantics, using semantic computation trees labeled with states instead of the

computation sequences used in the deterministic case. The semantics of an ND procedure

is then the set of states at all leaves of its tree, together with the ‘↑’ (divergence symbol) if

the tree has an infinite path.

Since GC has (i) finite non-determinism (i.e. the semantic computation tree for a

GC statement is finitely branching), and (ii) localization of computation (i.e., the output is

always in the subalgebra generated by the input), the whole computation procedure can be

 iii

represented using Gödel numbering. Hence (assuming a “term evaluation property” for the

given algebra) we can prove a Universal Function Theorem for GC. This technique fails

for the full ND language with its infinite non-determinism and failure of localization of

computation.

 iv

ACKNOWLEDGEMENTS

I would like to thank Dr. Zucker, my supervisor, for his valuable guidance in the

preparation of this thesis, and for his substantial help and support all the way, in my study

and in my life.

Thanks to Dr. Emil Sekerinski for his useful comments, and to the other members

of my Examination Committee for all their assistance. Thanks to Laurie, Sara, Chris, Derek,

John and all the others for always being there whenever I needed help. Thanks to YuDong

Tang and ZhiFeng Sun for their wonderful friendship and pleasant cooperation, and to all

the other graduate students for their help during these two years.

Many thanks to my parents for all the love and support in so many ways. Special

thanks to Lei Xu for her help, understanding and encouragement.

 v

TABLE OF CONTENTS

DESCRIPTIVE NOTE..….…………………………………………………………. ii
ABSTRACT..….…………………………………………………………..……….… iii
ACKNOWLEDGEMTS..….………………………………………………………... v

CHAPTER ONE

INTRODUCTION..….……………………………………………………… 1
1.1 While and WhileRA programming language..….…………………………. 3
1.2 Guarded Command Language..….……………………………………… 3
1.3 ND programming language and Semantics of ND……………………….. 4
1.4 Universal Function Theorem for GC.….……………………………….. 6
1.5 Background: significance of the Universal Function Theorem…………. 8
1.6 Overview of the chapters.….……………………………………………... 8

CHAPTER TWO

SIGNATURES AND ALGEBRAS.….……………………………………... 11
2.1 Signatures….…………………………………………………………..…. 11
2.2 Terms….…………………………………………………………..……… 15
2.3 Adding booleans: Standard signatures and algebras….………………….. 16
2.4 Adding counters: N-standard signatures and algebras.…………………… 19
2.5 Other important algebras.…………………...……………………………. 21

CHAPTER THREE

SYNTAX AND SEMANTICS OF ND ON STANDARD ALGEBRAS…... 22
3.1 Syntax of ND(Σ).…………………...…………………...………………... 23
3.2 States….…………………………………………………………..………. 27
3.3 Semantics of terms….…………………………………………………….. 28

 vi

3.4 Algebraic operational semantics………………………………………….. 29
3.4.1 Semantics of atomic statements………………………………… 30
3.4.2 The First and Rest operations…………………………………... 30
3.4.3 One-step computation function…………………………………. 32
3.4.4 The semantic computation tree…………………………………. 32

3.5 Semantics of ND statements……………………………………………… 34
3.6 Semantics of ND procedures……………………………………………... 41

CHAPTER FOUR

REPRESENTATIONS AND COMPUTABILITY ON AN
OF SEMANTIC FUNCTIONS…………………………………………….. 47

4.1 Gödel numbering of syntax………………………………………………. 48
4.2 Representation of states…………………………………………………... 49
4.3 Representation of term evaluation……………………………………….. 50
4.4 Representation of the atomic statement………………………………….. 51
4.5 The First and Rest operations……………………………………………. 52
4.6 Representation of one step computation function………………………... 53
4.7 Representation of set of Leaf States function…………………………….. 54
4.8 Representation of statement evaluation……………………………..……. 56
4.9 Representation of procedure evaluation………………………….…....….. 57
4.10 Computability of semantic representing functions……………………… 58
4.11 Universal procedure for GC……………………………..………………. 62

CONCLUSION………………………………………………………………………. 71

BIBLIOGRAPHY…………………………………………………………………… 73

APPENDIX…………………………………………………………………………... 75

 vii

CHAPTER ONE

INTRODUCTION

The semantics and computability issues of the deterministic While programming

language has been studied in the article, Computable functions and semicomputable sets

on many-sorted algebras, J. V. Tucker and J. I. Zucker [7]. Now we want to focus on

these issues of the non-deterministic programming languages, involving so-called “don’t

care cases”, as a complementary study to the deterministic case.

In fact, non-deterministic programs have many practical advantages over

deterministic ones. For example, let us take a look at the following deterministic

program, which computes the absolute value of the input.

proc

 in x

 out y

begin

 if x > 0 then y := x

 elseif x = 0 then y := 0

 else x < 0 then y := -x fi

1

 2

end

Is this program too clumsy?

We can use a better, non-deterministic, program to compute this function

“absolute” as follows (actually, this is a Guarded Command language program):

proc

 in x

 out y

begin

 if x ≥ 0 → y := x | x ≤ 0 → y := -x fi

end

In this program, the non-deterministic case is x = 0, and y can be either x or -x at

this case. What is more, we leave the decision for the output y to the system at this case.

We can easily see that this non-deterministic program is much more flexible,

concise, convenient and powerful than the former one. And that is also a big reason why

we study the semantics and computability of non-determinism.

Note that even deterministic languages such as Pascal and C have non-

deterministic aspects; for example, the read command in Pascal functions like a random

assignment, with regard to postconditions.

In this chapter, we will introduce the non-deterministic languages, and outline our

investigation of them.

 3

1.1 While and WhileRA programming language

Firstly, let us recall the simple imperative model, While(Σ) programming

language [7] for a signature Σ, whose basic computations on algebra A are performed by

concurrent assignments

x1, …, xn := t1, …, tn

where x1, …, xn are program variables and t1, …, tn are Σ-terms or expressions of the

corresponding types (1 ≤ i ≤ n).

The control and sequencing of the basic computations are performed by the three

constructs to form new statements from given statements S1, S2 and S, and boolean test b:

(i) sequential composition: S1; S2,

(ii) conditional: if b then S1 else S2 fi,

(iii) iteration: while b do S od.

Now we extend this language with the random assignment x := ?, which we call

WhileRA, our first non-deterministic model, for variables x of every sort of Σ.

1.2 Guarded Command Language

Our second non-deterministic programming model is the so-called “Guarded

Command Language” (GC) due to Edsger W. Dijkstra [3].

We give the notion of a “guarded command”, whose syntax is given by:

b → S

 4

where b is a boolean test and S is a statement.

The constructs of GC are derived from these guarded commands as follows, (with

k ≥ 0):

(i) the guarded command conditional construct,

fiif kkbb |...| SS →→ 11

(ii) the guarded command iteration construct

oddo kkbb |...| SS →→ 11

together with concurrent assignment and sequential composition as before. (Note that we

do not have random assignment in GC.)

In particular, if k = 0, we define the two guarded command constructs as

if fi ≡ halt

do od ≡ skip

1.3 ND programming language and Semantics of ND

For the purpose of finding a uniform method to develop the semantics for both

non-deterministic programming languages, we combine them into one so-called

programming language ND (for Non-Determinism), which also combines their

constructs as follows,

(i) concurrent assignment,

(ii) random assignment,

 5

(iii) sequential composition,

(iv) the guarded command conditional,

(v) the guarded command iteration.

To compute functions on A, we formulate a simple class of function procedures

based on ND statements of the form

P ≡ proc in a out b aux c begin S end

where a, b, c are lists of input, output and auxiliary variables, respectively, and S is an

ND statement.

The following diagram shows their relationship:

While

WhileRA

GC

ND

The operational semantics of an ND statement is a function that, given an initial

state, constructs a semantic computation tree labeled with states. Then, the input/output

(i/o) semantics of an ND statement is the set of states at all leaves of the semantic

computation tree, together with ‘↑’ (divergence) if there exists an infinite path in this tree.

Thus, we interpret statements as many-valued state transformations, and function

procedures as many-valued functions on any standard algebra A. Our approach follows

the algebraic operational semantics (first developed systematically in [5] and used in [7,

 6

section 3.4]). The main difference is that we use the semantic computation tree

CompTree, defined via a function CompTreeStage(S, σ, n) representing the first n steps

of CompTree, instead of the computation sequence Comp in [7].

As a result, we give a uniform semantics for ND statements and procedures, by

defining the operational semantics and the semantic computation tree in Chapter 3.

1.4 Universal Function Theorem for GC

We are very interested in whether or not a given programming language L over a

signature Σ satisfies a Universal Function Theorem (UFT). This means answering the

following questions:

Let A be a Σ-algebra. Does there exist a universal L(Σ) program Uprog that can

simulate and perform the computations of all programs in L(Σ) on all inputs from

A? Is there a universal L(Σ) procedure Uproc ∈ Proc(Σ) that can compute all the

L computable functions on A?

We have not been able to answer this question for the full non-deterministic

language ND, but only for the sub-language GC.

This question involves representing faithfully the syntax and semantics of GC

computations using functions on A, and we need the techniques of Gödel numbering,

state (and state set) representation, symbolic computations on terms, and localization of

computation (explained below).

 7

Because of the structure of the guarded command statements in GC, its semantic

computation tree is only finitely branching. Then, we also have the following two

important properties for the semantic computation tree of GC statements:

(i) at each step, we only have finitely many leaves, which can all be coded by

a single Gödel number,

(ii) localization of computation: the output is always in the subalgebra

generated from the input.

Moreover, since the term evaluation function is While computable in most

commonly used algebras such as semi-groups, groups, rings, boolean algebras and

subalgebras [7, Examples 4.5], it is reasonable to assume the term evaluation property ([7,

Definition 4.4]). Then, we can show that

for any given Σ-algebra A, there is a universal GC procedure over A.

Unfortunately, the same technique does not work for the WhileRA programming

language because of (i) the infinite branching of its computation trees, and (ii) the fact

that the output is not necessarily in the subalgebra generated by the input. In fact, we do

not even know whether the UFT hold for WhileRA.

 8

1.5 Background: significance of the Universal Function Theorem

The origin of the UFT lies in the work of Turing [9] who (in the context of his

Turing machine formalism for classical computation theory on strings over a finite

alphabet) proved the existence of a universal Turing machine.

The UFT in [7] can be viewed as an extension of this result to abstract data types,

with algorithms formalized as deterministic While programs.

The UFT presented here can be viewed as a further extension of this result, to

non-deterministic programming languages.

1.6 Overview of the chapters

Here is the structure of this thesis.

We begin, in Chapter 1, by introducing the non-deterministic languages (While

and WhileRA in section 1.1, GC in section 1.2, and ND in section 1.3) and outline our

investigation of them in section 1.4.

In Chapter 2, we define some basic algebraic concepts, such as signatures (in

section 2.1) and algebras, and establish notations. The study in this thesis is based on

standard and N-standard algebras, studied in sections 2.3 and 2.4.

In Chapter 3, we will study the syntax and semantics of ND on standard algebras by

means of imperative programming models. We start by defining the non-deterministic

programming language ND = ND(Σ), which combines the programming language While

 9

extended with ‘random assignment’ and ‘Guarded Command Language’, and may be

interpreted on any many-sorted Σ-algebra.

We will define in detail the abstract syntax (in section 3.1) and semantics of this

language (in section 3.2 – 3.6). Our approach follows the algebraic operational semantics

defined in [7, section 3.4]; however, we introduce a semantic computation tree for the

semantics of ND statements, instead of the computation sequence used in the

deterministic case [7]. Then, the semantics of an ND statement is, the set of states at all

leaves of the semantic computation tree, together with ‘↑’ (divergence) if there exists an

infinite path in this tree.

Then, we give a definition for ND computable functions in two cases, one for

multi-valued functions and the other for single-valued functions (see Definition 3.14).

In Chapter 4, we prove the Universal Function Theorem for GC, assuming a

“term evaluation property” for the given algebra.

In section 4.1 – 4.9, we will represent the semantic functions defined in Chapter 3,

using the techniques of Gödel numbering, state (and state set) representations, symbolic

computations on terms. In section 4.10, we study the computability of all the semantic

representing functions by assuming the term evaluation property. In section 4.11, we

prove the Universal Function Theorem for GC on A. This makes use of (i) finite

branching of the semantic computation tree for GC, allowing its representation by Gödel

numbering, and (ii) localization of computation. However, this theorem fails for the full

 10

ND language with its infinite non-determinism (from WhileRA), where neither (i) nor (ii)

holds.

Finally, in the Appendix, we give some details of the proofs of the important

theorems and lemmas in Chapter 1 – 4. Most of them are proved by structural induction,

and some of them involve interesting techniques.

CHAPTER TWO

SIGNATURES AND ALGEBRAS

In this section, we will define some basic algebraic concepts, such as signatures and

algebras, and establish notations. We will use many-sorted algebras equipped with

booleans, which we call standard algebras. Sometimes we use algebras with the natural

numbers as well, which we call N-standard algebras. This section is essentially taken from

[7, section 2].

2.1 Signatures

Definition 2.1 (Many-sorted signatures).

A signature Σ (for a many-sorted algebra) is a pair consisting of (1) a finite set

Sort(Σ) of sorts, and (2) a finite set Func(Σ) of (primitive or basic) function symbols, each

symbol F having a type s1× ··· × sm → s, where m ≥ 0 is the arity of F, and s1, …, sm ∈

Sort(Σ) is the range sort; in such a case we write

11

 12

F : s1× ··· × sm → s.

The case m = 0 corresponds to constant symbols; we then write F: → s or just F : s.

Our signatures do not explicitly include relation symbols; relations will be

interpreted as boolean-valued functions.

Definition 2.2 (Product types over Σ).

A product type over Σ, or Σ-product type, is a symbol of the form s1× ··· × sm (m ≥

0), where s1, …, sm are sorts of Σ, called its component sorts. We define ProdType(Σ) to be

the set of Σ-product types. We write u, v, w, … for product types.

For a Σ-product type u and Σ-sort s, let Func(Σ)u→s denote the set of all Σ-function

symbols of type u → s.

Definition 2.3 (Σ-algebras).

A Σ-algebra A has, for each sort s of Σ, a non-empty set As, called the carrier of sort

s, and for each Σ-function symbol F : s1× ··· × sm → s, a function

sss m
AAAF A →×× ...:

1
.

For a Σ-product type u = s1× ··· × sm, we write

mssdf
u AAA ××= ...

1
.

 13

Thus x ∈ Au if, and only if, x = (x1, …, xm), where xi ∈ for i = 1, …, m. So each

Σ-function symbol F : u → s has an interpretation F

isA

A : Au → As. If u is empty, i.e., F is a

constant symbol, then FA is an element of As.

We will sometimes use the same notation for a function symbol F and its

interpretation FA. The meaning will be clear from the context.

Assumption 2.4

The algebras A are total, i.e., FA is total for each Σ-function symbol F.

We will sometimes write Σ(A) to denote the signature of an algebra A.

We will use the following perspicuous notation for signatures Σ:

 signature Σ
sorts
 …
 s, (s ∈ Sort(Σ))
 …
functions …
 F : s1× ··· × sm → s, (F ∈ Func(Σ))
 …
end

and for Σ-structures A:

 14

 algebra A
Carriers
 …
 As, (s ∈ Sort(Σ))
 …
functions …

sss m
AAAF A →×× ...:

1
, (F ∈ Func(Σ))

 …
end

Examples 2.51

(a) The algebra of natural N0 = (N; 0, succ) has a signature containing the sort nat and

the function symbols 0 : → nat and succ : nat → nat. We can display this signature

thus:

signature Σ(N0)
sorts nat
functions 0 : → nat,
 succ : nat → nat
end

and the algebra thus:

algebra N0
carriers N
functions 0 : → N,
 succ : N → N
end

1 Refer to [7, section 2.1] for more examples.

 15

from which the signature can be inferred. Below, we will often display the algebra instead

of the signature.

(b) The ring of reals R0 = (R; 0, 1, +, −, ×) has a carrier R of sort real, and can be

displayed as follows:

algebra R0
carriers R
functions 0, 1: → R,
 +, × : R2 → R
 − : R → R
end

2.2 Terms

For details, we refer to [4, section 1 and 2]. Here we give the definition for default

terms, which will be used in the following sections.

Definition 2.6 (Default terms; default values).2

(a) For each sort s, we pick a closed term of sort s, and we call this the default term of

sort s, written δs. Further, for each product type u = s1× ··· × sm of Σ, the default

tuple of type u, written δu, is the tuple of default terms (, … ,). 1sδ msδ

2 The assumption that this is always possible is called the Instantiation Assumption in [7, Assumption 2.13].

 16

(b) Given a Σ-algebra A, for any sort s, the default value of sort s in A is the valuation

∈ AS
Aδ s of the default term, δs; and for any product type u = s1× ··· × sm, the default

(value) tuple of type u in A is the tuple of default values = (, … ,) ∈ Au
Aδ 1S

Aδ mS
Aδ

u.

2.3 Adding booleans: Standard signatures and algebras

A very important signature for our purposes is the signature of booleans:

 signature Σ(B)
sorts bool
functions true, false : → bool,
 and, or : bool2 → bool,
 not: bool → bool
end

The algebra B of booleans, with signature Σ(B), has the carrier B = {tt, ff} of sort

bool, and, as constants and functions, the standard interpretations of the function and

constant symbols of Σ(B). Thus, for example, trueB = tt and falseB = ff.

We are interested in those signatures and algebras which contain Σ(B) and B.

Definition 2.7 (Standard signatures and algebras).

(a) A signature Σ is a standard signature if

(i) Σ(B) ⊆ Σ, and

 17

(ii) the function symbols of Σ include a conditional

ifs : bool × s2 → s,

for all sorts s of Σ other than bool, and an equality operator

eqs : s2 → bool,

for certain sorts s of Σ, called equality sorts.

(b) Given a standard signature Σ, a Σ-algebra A is a standard algebra if

(i) It is an expansion of B, and

(ii) the conditionals and equality operators have their standard interpretation in A;

i.e., for b ∈ B and x, y ∈ As,

⎩
⎨
⎧

=
=

=
ff
tt

if
by
bx

yx,b,s if
if

)(

and eqs is interpreted as the identity on each equality sort s.

Remark 2.8

Any many-sorted signature Σ can be standardised to a signature ΣB by adjoining the

sort bool together with the standard boolean operations; and, correspondingly, any algebra

A can be standardised to a standard algebra AB by adjoining the algebra B and the

conditional and equality operators.

 18

Examples 2.9

(a) The simplest standard algebra is the algebra B of the booleans.

(b) The standard algebra of naturals N is formed by standardizing the algebra N0 of

Example 2.5 (a), with nat as an equality sort, and, further, adjoining the order

relation lessnat on N:

algebra N
import N0, B
functions ifnat : B × N2 → N,
 eqnat, lessnat : N2 → B
end

(c) The standard algebra R of reals is formed similarly by standardizing the ring R0 of

Example 2.5 (b), with real as an equality sort:

algebra R
import R0, B
functions ifreal : B × R2 → R,
 eqreal: R2 → B
end

(d) Refer to [7, section 2.4] for more examples of standard algebras.

 19

Throughout this thesis, we will assume the following, unless otherwise stated.

Assumption 2.10 (Standardness).

The signature Σ and the Σ-algebra A are standard.

We let StdAlg(Σ) denote the class of all standard Σ-algebras.

2.4 Adding counters: N-standard signatures and algebras

Definition 2.11

(a) A standard signature Σ is called N-standard if it includes (as well as bool) the

numerical sort nat, as well as function symbols for the standard operations of zero,

successor and order on the naturals:

0 : → nat

S : nat → nat

 lessnat : nat2 → bool

as well as the conditional ifnat and the equality operator eqnat on nat.

(b) The corresponding Σ-algebra A is N-standard if the carrier Anat is the set of natural

numbers N = {0, 1, 2, …}, and the standard operations (listed above) have their

standard interpretations on N.

 20

Definition 2.12

(a) The N-standardization ΣN of a standard signature Σ is formed by adjoining the sort

nat and the operations 0, S, eqnat, lessnat and ifnat.

(b) The N-standardization AN of a standard Σ-algebra A is the ΣN-algebra formed by

adjoining the carrier N together with the corresponding standard operations to A,

thus

algebra AN

import A
carriers N
functions 0 : → N
 S : N → N
 ifnat : B × N2 → N
 eqnat, lessnat : N2 → B
end

Examples 2.13

(a) The simplest N-standard algebra is the algebra N of Example 2.9 (b).

(b) We can N-standardize the real ring R of Example 2.9 (c) to form the algebra RN.

Remark 2.14

For any standard A, both A and N are Σ-reducts of the the N-standardization AN.

 21

2.5 Other important algebras

In this subsection, we briefly mention some other important algebras,

(i) add the unspecified value u: algebras Au of signature Σu,

(ii) add arrays: algebras A* of signature Σ*,

(iii) add streams: algebras A of signature Σ .

Since we mainly focus on the standard algebras and N-standard algebras, we will

not give any details for these three algebras here (see [7, section 2.6 – 2.8] for details).

Remark 2.15

The array algebra A* will be used in Chapter 4 for the Universal Function Theorem.

CHAPTER THREE

SYNTAX AND SEMANTICS OF ND

ON STANDARD ALGEBRAS1

In this section, we will study the syntax and semantics of ND on standard algebras

by means of imperative programming models. We start by defining the non-deterministic

programming language ND = ND(Σ), which combines the programming language While

extended with ‘random assignment’ (studied in [7]) and ‘Guarded Command Language’

(studied in [3] by Djikstra), and may be interpreted on any many-sorted Σ-algebra.

We will define in detail the abstract syntax (in section 3.1) and semantics of this

language (in section 3.2 – 3.6). Our approach follows the algebraic operational semantics

developed in [5] and used in [7]; however, we introduce a semantic computation tree for

the semantics of ND statements, instead of the computation sequence used in the

deterministic case [7]. Then the semantics of an ND statement is the set of states at all

leaves of the semantic computation tree, together with ‘↑’ (divergence) if there exists an

infinite path in this tree.

1 Cf. [7, section 3].

22

 23

3.1 Syntax of ND(Σ)

We define four syntactic classes: variables, terms, statements and procedures.

(a) Var = Var(Σ) is the class of Σ-variables, and Vars is the class of variables of sort s.

For u = s1× ··· × sm, we write x : u to mean that x is a u-tuple of distinct variables,

i.e., a tuple of variables of sorts s1, … , sm, respectively.

Further, we write VarTup = VarTup(Σ) for the class of all tuples of Σ-variables,

and VarTupu for the class of all u-tuples of Σ-variables.

(b) Term = Term(Σ) is the class of Σ-terms t, …, and for each Σ-sort s, Terms is the

class of terms of sort s. These are generated by the following rules,

(i) A variable x of sort s is in Terms,

(ii) If F ∈ Func(Σ)u→s and ti ∈ Termsi for i = 1, …, m, where u = s1× ··· × sm,

then F(t1, …, tm) ∈ Terms.

Note again that Σ-constants are constructed as 0-ary functions, and so enter the

definition of Term(Σ) via clause (ii), with m = 0.

We write type(t) = s or t : s to indicate that t ∈ Terms.

Further, we write TermTup = TermTup(Σ) for the class of all tuples of Σ-terms,

and, for u = s1× ··· × sm, TermTupu for the class of u-tuples of terms, i.e.,

 24

mssdfu TermTerm ××= ...
1

TermTup

We write type(t) = u or t : u to indicate that t is a u-tuple of terms, i.e., a tuple of

terms of sorts s1, … , sm.

For the sort bool, we have the class of boolean terms or booleans Bool(Σ) =df

Termbool, denoted either tbool … (as above) or b, …

This class is given (according to the above definition of Terms) by:

),,(|),(|),(|)(|||),(|)(|:: 21212121
bool bbbbbbbbtttb ss

s iforandnotfalsetrueeqx F= ,

where F is a Σ-function symbol of type u → bool and s is an equality sort.

(c) AtSt = AtSt(Σ) is the class of atomic statements Sat, …, defined by:

?xxskip === :::: ||at tS ,

where is the concurrent assignment, where for some product type u, x : u and

t : u, and is the random assignment, for x : s.

t=:x

?x =:

(d) Stmt = Stmt(Σ) is the class of statements S, ….generated by the following rules:

0)(;:: 111121at || ≥= →→→→ kbbbb kkkk |...||...| oddofiif | SSSSSSSS .

 25

(e) Proc = Proc(Σ) is the class of procedures P, Q, … in the form

endbeginproc SDP ≡ ,

where D is the variable declaration and S is the body. Here D has the form

c aux b out a in≡D ,

where a, b and c are lists of input variables, output variables and auxiliary (or

local) variables, respectively. Further, we stipulate:

(i) a, b and c each consist of distinct variables, and they are pairwise disjoint,

(ii) every variable occurring in the body S must be declared in D (among a, b, or

c),

(iii) the input variables a must not occur on the lhs (left-hand side) of assignments

in S,

(iv) (Initialization conditions) S has the form Sinit;S′, where Sinit is a concurrent

assignment which initializes all the output and auxiliary variables, i.e.,

assigns to each of them the default term (see Definition 2.6) of the same sort.

 26

Each variable occurring in the declaration of a procedure binds all free occurrences

of that variable in that body.

If a : u and b : v, then P is said to have type u → v, written P : u → v. Its input type

is u. We write Procu → v = Proc(Σ)u → v for the class of Σ-procedures of type u → v.

Note 3.1

(a) We get GC as a sub-language of ND by removing random assignment from ND.

(b) We get WhileRA as a sub-language of ND by using (only) the following special forms

for the guarded command constructs:

 fiif 21 SS →→ ¬bb |

 oddo S→b

Notation 3.2

(a) We will often drop the sort superscript or subscript s.

(b) We will use E, E′, E1, … to denote syntactic expressions of any of the three classes

Term, Stmt and Proc.

(c) For any such expression E, we define var(E) to be the set of variables occurring in E.

(d) We use ‘≡’ to denote syntactic identity between two expressions.

 27

Remark 3.3 (Structural induction).

We will often prove assertions about, or define constructs on, expressions E of a

particular syntactic class (such as Term, Stmt, or Proc) by structural induction (or

recursion) on E, following the inductive definition of that class.

Section 3.2 – 3.6 will focus on the semantics of ND (cf. [7, sections 3.2 – 3.6]).

3.2 States

For each standard Σ-algebra A, a state on A is a family 〈σs | s∈ Sort(Σ)〉 of functions

 σs : Vars → As (3.1)

Let State(A) be the set of states on A, with elements σ, … Note that State(A) is the

product of the state spaces States(A) for all s∈ Sort(Σ), where each States(A) is the set of all

functions as in (3.1).

For x ∈ Vars, we often write σ(x) for σs(x). Also, for a tuple x ≡ (x1, … , xm), we

write σ[x] for (σ(x1), … , σ(xm)).

Now we define the variant of a state. Let σ be a state over A, x ≡ (x1, … , xn) : u and

a = (a1, … , an) ∈ Au (for n ≥ 1). We define σ{x/a} to be the state over A formed from σ by

replacing its value at xi by ai for i = 1, … , n. That is, for all variables y:

 28

⎩
⎨
⎧

≡
=≠

=
ii

i

a
niσ

aσ
xy
xyy

yx
if

1,...,forif)(
)}(/{

We can now give the semantics of each of the three syntactic classes: Term, Stmt

and Proc, relative to any A ∈ StdAlg(Σ). For an expression E in each of these classes, we

will define a semantic function ’E÷A. These three semantic functions are defined in sections

3.3, 3.4 –3.5 and 3.6, respectively.

3.3 Semantics of terms

For t ∈ Terms, we define the function

’t÷A : State(A) → As.

where ’t÷Aσ is the value of t in A at state σ.

The definition is by structural induction on t:

’x÷Aσ = σ(x),

’F(t1, …, tm)÷Aσ = FA(’t1÷Aσ, …, ’tm÷Aσ).

For a tuple of terms t = (t1, …, tm), we use the notation

’t÷Aσ =df (’t1÷
Aσ, …, ’tm÷Aσ).

 29

Definition 3.4

For any M ⊆ Vars, and states σ1 and σ2, σ1 ≈ σ2 (rel M) means σ1↾M = σ2↾M, i.e., ∀x

∈ M (σ1(x) = σ2(x)).

Lemma 3.5 (Functionality lemma for terms).

For any term t and states σ1 and σ2, if σ1 ≈ σ2 (rel var(t)), then ’t÷Aσ1 = ’t÷Aσ2.

Proof. By structural induction on t (see Appendix 1 for details).

3.4 Algebraic operational semantics

We will interpret programs as many-valued state transformations, and function

procedures as many-valued functions on A. Our approach follow the algebraic operational

semantics, first developed in [5], and used in [7, section 3.4]. It is a general method for any

programming language: we can define these three functions (semantics of atomic

statements), first and RestA to develop the semantics of this language.

3.4.1 Semantics of atomic statements.

Firstly, we define the meaning of an atomic statement Sat ∈ AtSt, to be a function

Sat
Aσ : State(A) → P(State(A))+,

 30

where P(X)+ means the set of all non-empty subsets of a set X (see [8, Notation 3.2.1]).

This is defined by

 skip Aσ = { σ },

 x := t Aσ = { σ{x / ’t÷Aσ} },

 x := ? Aσ = { σ′ | σ′ agrees with σ on all variables, except x}.

3.4.2 The First and Rest operations.

Secondly, we have two functions

 First : Stmt → AtSt,

 RestA : Stmt × State(A) → P(Stmt).

where, for a statement S and state σ, First(S) is an atomic statement which gives the first

step in the execution of S (in any state), and RestA(S, σ) is a set of statements, each of

which gives the rest of some execution in state σ.

The definitions of First(S) and RestA(S, σ) are by structural induction on S.

(i)
⎪
⎩

⎪
⎨

⎧
≡=

otherwise
; if)(

atomic is if
)(211

skip
SSSSFirst

SS
SFirst

 31

(ii) RestA(S, σ) is defined as follows,

Case 1. If Sat is atomic, then RestA(Sat, σ) = { skip },

Case 2. If S ≡ S1; S2, where S1, S2 ∈ Stmt. Then

⎩
⎨
⎧

∈′′
=

otherwise)},(|;{

atomic is if } {
),(

1121

12

σ
σ

SRestSSS

SS
SRest

A
A

U

Case 3. If S ≡ . Then fiif kkbb |...| SS →→ 11

 { SU
k

i

σ
1

),(
=

=SRest A
i | ’bi÷

Aσ = tt }.

Case 4. If S ≡ . Then oddo kkbb |...| SS →→ 11

⎪⎩

⎪
⎨

⎧
==

= =

otherwise } {

][, somefor if}][|; {
),(1

 skip

tttt σbiσb
σ i

k

i
ii

AA
A SS

SRest U

This completes the definitions of First and RestA.

Note 3.6

(a) RestA(S, σ) is finite (can be easily proved by structural induction on S).

(b) If for all i = 1,…, k, ’bi÷
Aσ = ff, then

 32

⎩
⎨
⎧

=
4. casein } {

), command toingcorrespond (3casein0
),(

 skip
halt

σSRest A

3.4.3 One-step computation function

From the First function we can define the one-step computation function

CompStepA : Stmt × State(A) → P(State(A))+,

as CompStepA(S, σ) = First(S) Aσ.

3.4.4 The semantic computation tree

Now, we will define a very important concept in our approach: the semantic

computation tree CompTreeA(S, σ) of an ND-statement S at a state σ is an ω-branching tree

CompTreeA : Stmt × State(A) → P((State(A))≤ω)+,

branching according to all possible outcomes (i.e., “output states”) of the one-step

computation function CompStepA. Each node of this tree is labeled by a state.

Here (State(A))≤ω denotes the set of all finite and infinite sequences from State(A),

interpreted as the paths through the semantic computation tree.

 33

In the definition, we have ‘↑’ as the symbol for divergence, which indicates that the

computation tree has an infinite path.

Any actual computation of statement S at state σ corresponds to one of the paths

through this tree. The possibilities for any such path are:

(i) it is finite, ending in a leaf containing a state: the final state of the

computation,

(ii) it is infinite (global divergence or ↑).

We define the semantic computation tree via a function

CompTreeStageA : Stmt × State(A) × N → P((State(A))<ω)+,

where CompTreeStageA(S, σ, n) represents the first n steps of CompTreeA(S, σ). Here

(State(A))<ω denotes the set of finite sequences from State(A), interpreted as finite initial

segments of the paths through the semantic computation tree.

This function is defined by a simple tail recursion on n:

Base case: CompTreeStageA(S, σ, 0) = { σ }, i.e., just the root containing σ,

Inductive step: CompTreeStageA(S, σ, n+1) is formed by attaching to the root {σ}

the following:

 34

(i) for S atomic: the leaf {σ′}, for each σ′ ∈ S Aσ

(ii) for S not atomic: the subtree CompTreeStageA(S′, σ′, n), for each σ′ ∈

CompStepA(S, σ) and S′ ∈ RestA(S, σ)

Then, CompTreeA(S, σ) is defined as the ‘limit’ over n of CompTreeStageA(S, σ, n),

i.e., CompTreeA(S, σ) = U
∞

=0

) , ,(
n

nσSageCompTreeSt A

Remark 3.7 (Tail recursion).

Consider the recursive definition of CompTreeStageA. In the ‘recursive call’ (ii) of

the inductive step, notice that (1) CompTreeStageA is on the ‘outside’, and (2) the

parameter changes (from S to S′, and σ to σ′, for each S′ ∈ RestA(S, σ) and σ′ ∈

CompStepA(S, σ)). Such a definitional scheme is said to be tail recursive.

3.5 Semantics of ND statements

From the semantic computation tree, we define the i /o semantics of statements

’S÷A : State(A) → P(State(A) U {↑}),

as follows: ’S÷Aσ is the set of states at all leaves in CompTreeA(S, σ), together with ‘↑’ if

CompTreeA(S, σ) has an infinite path.

 35

The following shows that the i /o semantics, derived from our algebraic operational

semantics, satisfies the usual desirable properties.

Theorem 3.8

(a) For Sat atomic, ’Sat÷
A = Sat

A, i.e.,

 skip Aσ = { σ },

 x := t Aσ = { σ{x / ’t÷Aσ }},

 x := ? Aσ = { σ′ | σ′ agrees with σ on all variables, except x},

(b) If S ≡ , then ’S÷21 ; SS Aσ = { ’SU 2÷
Aτ | τ ∈ ’S1÷

Aσ },

(c) If S ≡ , then, ’S÷fiif kkbb |...| SS →→ 11 Aσ = { ’SU
k

i 1=
i÷

Aσ | ’bi÷
Aσ = tt },

(d) If S ≡ , then, oddo kkbb |...| SS →→ 11

’S÷Aσ
⎪⎩

⎪
⎨

⎧
==

= =

otherwise } {

][, somefor if}][|];[{
1

tttt

σ

σbiσbσ i

k

i
ii

AAASSU

In particular, for WhileRA, case (c) and (d) turn into simple forms (see Note 3.1 (b)):

(c)' S ≡ . Then, fiif 2111 SS →→ ¬bb |

 36

’S÷Aσ
⎪⎩

⎪
⎨
⎧ =

=
otherwise][

][if][

2

11

σ
σbσ

A

AA

S

S tt

(d)' S ≡ . Then, oddo 0 S→b

’S÷Aσ
⎩
⎨
⎧ =

=
otherwise } {

][if];[0

tt

σ
σbσ AASS

We prove Theorem 3.8 via the following lemmas.

Lemma 3.9

Assume n > 0.

(a) If Sat ∈ AtSt, then CompTreeStageA(Sat, σ, n) is formed by attaching to the root

{σ}, the leaf {τ}, for each τ ∈ Sat
Aσ.

(b) (Interesting case) If S ≡ S1;S2, then CompTreeStageA(S, σ, n) is formed by

attaching subtree(s) CompTreeStageA(S2, τ, n-d′) to each leaf {τ} of

CompTreeStageA(S1, σ, n), where d′ is the depth of {τ} in CompTreeStageA(S1, σ,

n).

 37

(c) If S ≡ , then CompTreeStagefiif kkbb |...| SS →→ 11 A(S, σ, n) is formed by

attaching to the root {σ}, the subtree(s) CompTreeStageA(Si, σ, n-1), for those i

(1 ≤ i ≤ k) where ’bi÷
Aσ = tt.

(d) If S ≡ , then CompTreeStageoddo kkbb |...| SS →→ 11 A(S, σ, n) is formed by

attaching to the root {σ},

(i) the subtree(s) CompTreeStageA(Si;S, σ, n-1), for those i, where ’bi÷
Aσ = tt,

if for some i, ’bi÷
Aσ = tt,

(ii) the leaf {σ} otherwise.

Proof. By structural induction on S (see Appendix 2 for details).

Now, we can prove Theorem 3.8 via the above Lemmas. As an example, we give

the proof for case (b). Please see to Appendix 3, for the proof in the other cases.

Proof for Theorem 3.8 (b).

From Lemma 3.9 (b), take the ‘limit’ over n for all CompTreeStageA(S, σ, n), Then

we have, CompTreeA(S,σ) is formed by attaching CompTreeA(S2, τ) to each leaf {τ} of

CompTreeA(S1, σ).

So, the leaves of CompTreeA(S, σ) are formed from the leaves of CompTreeA(S2, τ),

for each leaf {τ} of CompTreeA(S1, σ). Also (trivially), if there is an infinite path in

 38

CompTreeA(S1, σ) or any CompTreeA(S2, τ), for each leaf {τ} of CompTreeA(S1, σ), this

path or its extension (in CompTreeA(S2, τ)) to the root {σ}, is just an infinite path in

CompTreeA(S, σ).

By the definition (of semantics of ND statements), ’S÷Aσ is the set of states at all

leaves in CompTreeA(S, σ), together with ‘↑’ if CompTreeA(S, σ) has an infinite path.

U { ’S2÷
Aτ | τ ∈ ’S1÷

Aσ } is the set of states at all leaves in CompTreeA(S2, τ), for

each leaf {τ} of CompTreeA(S1, σ), together with ‘↑’ if there is an infinite path in either

CompTreeA(S1, σ) or any CompTreeA(S2, τ), for each leaf {τ} of CompTreeA(S1, σ).

From this, it follows that ’S÷Aσ = { ’SU 2÷
Aτ | τ ∈ ’S1÷

Aσ }.

For the semantics of procedures, we need the following. Let M ⊆ Vars, and σ1, σ2 ∈

State(A).

Definition 3.10

Let C1, C2 ⊆ State(A) {↑}. We say U

C1 ≈ C2 (rel M),

(C1 agrees with C2 on M) if only and if,

 39

∀σ1 ∈ C1, ∃σ2 ∈ C2, σ1 ≈ σ2 (rel M),

and

∀σ2 ∈ C2, ∃σ1 ∈ C1, σ1 ≈ σ2 (rel M),

and

↑ ∈ C1 ⇔ ↑ ∈ C2.

Lemma 3.11

Suppose var(S) ⊆ M. If σ1 ≈ σ2 (rel M), then

First(S) Aσ1 ≈ First(S) Aσ2 (rel M),

and RestA(S, σ1) = RestA(S, σ2).

Proof. By structural induction on S and Definition 3.10 (see Appendix 4 for details).

Definition 3.12 (Set of Leaf States).

LSA : Stmt × State(A) × N → P((State(A))

means the set of states at the leaves of CompTreeA(S, σ) in CompTreeStageA(S, σ,

n). We define function LSA by tail recursion on n as follows,

 40

Base case: LSA(S, σ, 0) = 0, i.e. no leaf state.

Inductive step:

(i) for S atomic: LSA(S, σ, n+1) = S Aσ,

(ii) for S not atomic:

LSA(S, σ, n+1) = {LSU A(S′, σ′, n) | σ′ ∈ CompStepA(S, σ), S′ ∈ RestA(S, σ)}.

Lemma 3.13

Suppose var(S) ⊆ M. If σ1 ≈ σ2 (rel M), then for all n ≥ 0

LSA(S, σ1, n) ≈ LSA(S, σ2, n) (rel M).

Proof. By simple induction on n and Lemma 3.11 (see Appendix 5 for details).

Another important result expresses the i/o semantics of S in terms of leaf states:

Lemma 3.14

’S÷A = { ↑ | there is an infinite path in CompTreeUU
∞

=0

)(
n

nσ,,SLS A A(S, σ)}.

 41

Lemma 3.15 (Functionality lemma for ND statements).

Suppose var(S) ⊆ M. If σ1 ≈ σ2 (rel M), then

’S÷Aσ1 ≈ ’S÷Aσ2 (rel M).

Proof. The result clearly follows from Lemma 3.13 and 3.14.

3.6 Semantics of ND procedures

Now if

P ≡ proc in a out b aux c begin S end,

is an ND procedure of type u → v, then its meaning in A is a function

’P÷A : Au → P(Av {↑}), U

defined as follows. For a ∈ Au, let σ be any state on A such that σ[a] = a. Then,

’P÷A(a) = ∈′′ σσ |)({ bU ’S÷Aσ} { ↑ | ↑ ∈ ’S÷U Aσ }.

For ’P÷A to be well defined, we need the fact that the procedure P is functional, i.e.,

’P÷A(a) is independent of the state σ.

 42

Lemma 3.16 (Functionality lemma for ND procedures).

Suppose

P ≡ proc in a out b aux c begin S end,

if σ1 ≈ σ2 (rel a), then

’S÷Aσ1 ≈ ’S÷Aσ2 (rel b).

Proof. Suppose σ1 ≈ σ2 (rel a). We can put S ≡ Sinit;S′, where consists of an initialization of

b and c to closed terms (see section 3.1 (e), (iv)). Then, putting

’S÷Aσ1 = { ’S′U ÷Aτ1 | τ1 ∈ ’Sinit÷
Aσ1 },

’S÷Aσ2 = { ’S′U ÷

Aτ2 | τ2 ∈ ’Sinit÷
Aσ2 },

it is easy to see that

’Sinit÷
Aσ1 ≈ ’Sinit÷

Aσ2 (rel a, b, c).2

Then, the result follows from the Lemma 3.15 and Definition 3.10.

2 See Appendix 4 for the proof for concurrent assignment in Lemma 3.11.

 43

The functionality lemma for procedures amount to saying that there are no side

effects from the output variables or auxiliary variables.

We can now define ND computability of functions on A. We deal with two types of

functions on A:

(i) multi-valued functions, i.e., functions

F : Au → P(Av U {↑}),

(ii) single-valued functions, i.e., partial functions

f : Au A⎯→⎯•
v

Note that a single-valued function f can be represented as a special case of a multi-

valued function F, where for all a ∈ Au,

⎩
⎨
⎧

=
↑↑

↓

.

,

)(if }{
)(if})({

)(
af
afaf

aF

Definition 3.14 (ND computable functions).

Let P : u → v be an ND(Σ) procedure.

(a) A multi-valued function f : Au → P(Av U {↑}) is computable on A by P if f = ’P÷A.

 44

(b) A single-valued partial function f : Au A⎯→⎯•
v is computable on A by P if

⎩
⎨
⎧

=∈∀
↑↑

↓

.

,

)(if }{
)(if})({

)(,
af
afaf

aa u AP A

Definition 3.15 (single-valued ND function and procedure).

P : u → v is called single-valued on A, if for all a ∈ Au, PA(a) is a singleton set

(which could be either {d} for d ∈ Av, or {↑}).

Hence, a single-valued partial ND computable function is computed by a single-

valued ND procedure.

Remark 3.16

Similarly, we can define WhileRA computability and GC computability. In fact, we

will focus on GC computability in the next chapter.

Remark 3.17 (Interpretability of GC in WhileRA and vice versa).

Two interesting questions are:

(a) Can GC be interpreted in WhileRA?

(b) Can WhileRA be interpreted in GC?

 45

The answer to (a) is yes. To show this, consider the simple case of a guarded

command conditional construct of the form

if b1 → S1 | b2 → S2 fi

This can be interpreted with the help of a random assignment to an auxiliary

boolean variable as the follows,

x : bool

if b1 ∧ ¬b2 then S1

else if ¬b1 ∧ b2 then S2

 else if b1 ∧ b2 then

 x := ?;

 if x then S1

 else S2 fi

 else skip

 fi

 fi

fi

The answer to (b), however, is no.

For example, consider the following WhileRA procedure

P ≡ proc out n: nat begin n:=? end

 46

At first glance, we might try to simulate this by the GC procedure

P′ ≡ proc in n : nat

 aux b: bool

 begin

 b := tt;

 if b → n++ | b → b := ff fi

 end

However, the semantics of P′ includes non-termination, since its semantic

computation tree has an infinite path. Therefore, P′ is not semantically equivalent to P.

In fact we can see that no GC procedure could simulate P. For any such GC

procedure would have to be total, i.e., its semantic computation tree could not have any

infinite path. Therefore, since this semantic computation tree is finitely branching, its set of

total possible output would have to be finite, by König’s Lemma.3

3 This states that a finitely branching tree without any infinite path is finite.

CHAPTER FOUR

REPRESENTATIONS OF SEMANTIC FUNCTIONS

AND UNIVERSALITY1

In this section, we will investigate whether there is a universal GC procedure that

can compute all the GC computable functions on A. To do that, we need the techniques of

Gödel numbering, state and set of state (and state set) representations, and symbolic

computations on terms. Specifically, for Gödel numbering to be possible, we must work

with N-standard algebras, which includes the sort nat.

Since the term evaluation function is While computable in most commonly used

algebras, it is reasonable to assume the term evaluation property [7, Definition 4.4 and

Examples 4.5]. Then, by means of “local representation” of the semantics of computation,

we will show that

for any given Σ-type and Σ-algebra A, there is a universal GC procedure for that

type over A.

1 Cf. [7, section 4].

47

 48

4.1 Gödel numbering of syntax

We assume given a family of numerical codings, or Gödel numberings, of the

classes of syntactic expressions of Σ and ΣN, i.e., a family gn of effective mappings from

expressions E to natural numbers ┌E┐ = gn(E), which satisfy certain basic properties:

• ┌E┐ increases strictly with compl(E), and in particular, the code of an

expression is larger than those of its subexpressions.

• Sets of codes of the various syntactic classes, and of their respective subclasses,

such as {┌t┐| t ∈ Term}, {┌S┐| S ∈ Stmt}, etc. are primitive recursive;

• We can go primitive recursively from codes of expressions to codes of their

immediate subexpressions, and vice versa; thus, e.g., ┌S1
┐ and ┌S2

┐ are

primitive recursive in ┌S1; S2
┐, and conversely, ┌S1; S2

┐ is primitive recursive

in ┌S1
┐ and ┌S2

┐.

• We will use the notation ┌Term┐=df {┌t┐| t ∈ Term}, etc., for sets of Gödel

numbers of syntactic expressions.

In short, we can primitive recursively simulate all operations involved in processing

the syntax of the programming language. This means that the syntactic classes form a

computable (in fact, primitive recursive) algebra.

We will be interested in the representation of various semantic functions on

syntactic classes such as Term(Σ), Stmt(Σ) and Proc(Σ) by functions on A or AN, and in the

 49

computability of the latter. These semantic functions have states as arguments, so we must

first define a representation of states.

4.2 Representation of states

Let x be a u-tuple of program variables. A state σ on A is represented (relative to x)

by a tuple of elements a ∈ Au if σ[x] = a.

The state representing function

ARepx : State(A) 4 {↑} → Au 4 {↑},

is defined by

ARepx (σ) = σ[x].

Note that ↑ is represented by ↑. I.e. (↑) = ↑. ARepx

Similiarly, a set D of states or ‘↑’ on A is represented (relative to x) by a set E ∈

P(Au 4 {↑}) of tuples of elements, if E = {τ[x] | τ ∈ D}. The set of states representing

function

ARepSetx : P(State(A) 4 {↑}) → P(Au 4 {↑}),

is defined by

ARepSetx (D) = {τ[x] | τ ∈ D} = { (τ) | τ ∈ D}. ARepx

 50

4.3 Representation of term evaluation

Let x be a u-tuple of program variables. Let Termx = Termx(Σ) be the class of all Σ-

terms with variables among x only, and for all sort s of Σ, let Termx,s = Termx,s(Σ) be the

class of such terms of sort s. Similarly, we write TermTupx for the class of all term tuples

with variables among x only, TermTupx,v for the class of all v-tuples of such terms.

The term evaluation function on A relative to x

ATE s,x : Termx,s × State(A) → As,

defined by

ATE s,x (t, σ) = ’t÷Aσ,

is represented by the function

Ate s,x : ┌Termx,s
┐ × Au → As,

defined by

Ate s,x (┌t┐, a) = ’t÷Aσ,

where σ is any state on A such that σ[x] = a (this is well defined, by the Functionality

Lemma for terms). In other words, the following diagram commutes:

A

Ate s,x

〈 gn, 〉 Repx

Termx,s × State(A)

┌Termx,s
┐ × Au

TE s,x
A
As

 51

Strictly speaking, if gn is not surjective on N, then is not uniquely specified by

the above definition, or by the diagram. However, we may assume that for n not a Gödel

number (of the required sort), (n,a) takes the default value of sort s, i.e. δ

Ate s,x

Ate s,x
s. Similar

remarks apply to the other representing functions given below.

Further, for a product type v, we will define an evaluating function for tuples of

terms

Ate υ,x : ┌TermTupx,v
┐ × Au → Av,

similarly, defined by

Ate υ,x (┌t┐, a) = ’t÷Aσ.

We will be interested in the computability of these term evaluation representing

functions.

4.4 Representation of the atomic statement

Let AtStx be the class of atomic statements with variables among x only. The

atomic statement evaluation function on A relative to x

AAEx : AtStx × State(A) → P(State(A))+,

defined by

AAEx (S, σ) = S Aσ,

is represented by the function

 52

Aaex : ┌AtStx┐ × Au → P(Au)+,

defined by

Aaex (┌S┐, a) = {τ[x] | τ ∈ SU Aσ},

where σ is any state on A such that σ[x] = a (again, this is well defined, by Functionality

Lemma for statements). In other words, the following diagram commutes:
AAEx

A

〈 gn, 〉 Repx

ARepSetx

AtStx × State(A)

┌AtStx
┐ × Au

P(State(A))+

P(Au)+

4.5 The First and Rest operations

Next, let Stmtx be the class of statement

ARestx = df RestA ↾ (

Then First and are represented bARestx

first: ┌Stmt┐

Arest x : ┌Stmtx┐ × A

which are defined so as to make the following d

aex

s with variables amon

Stmtx × State(A)),

y the functions

→ ┌AtSt┐,

u → P(┌Stmtx┐),

iagrams commute:
A

g x only, and define

 53

 First

first

g gn

〈 gn, 〉 Repx

A

Stmt

┌Stmt┐ ┌AtSt┐

AtSt

Stmtx × State(A)

┌Stmtx┐ × Au

4.6 Representation of one step comput

Let Stmtx be the class of statements w

computation evaluation function on A relative t

ACompStepx : Stmtx × Sta

defined by

ACompStepx (S, σ) =

is represented by the function

gn

Restx

A
P(┌Stmtx┐)

P(Stmtx)
A

n

restx

ation function

ith variables among x only. The one step

o x

te(A) → P(State(A))+,

 First(S) Aσ,

 54

Acompstepx : ┌Stmtx┐ × Au → P(Au)+,

defined by

Acompstepx (┌S┐, a) = (first(Aaex
┌S┐), a),

where σ is any state on A such that σ[x] = a. In other words, the following diagram

commutes:
A

〈 gn, 〉 Repx

Stmtx × State(A)

┌Stmtx┐ × Au

Note that is defined by anAcompstepx
Aaex

4.7 Representation of set of Leaf S

Let Stmtx be the class of statemen

States evaluation function on A relative to

ALSx : Stmtx × Sta

defined by

ALSx = df LSA ↾ (
CompStepx

A

Acompstepx

P(State(A))+

P(Au)

d first.

tates function

ts with variables among x

x

te(A) × N → P(State(A)),

 Stmtx × State(A) × N),

RepSetx

+

A

 only. The set of Leaf

 55

is represented by the function

Alsx : ┌Stmtx┐ × Au × N → P(Au),

defined by a simple tail recursion on n as the follows (cf. Definition 3.12),

Base case: (
Alsx

┌S┐, a, 0) = 0.

Inductive step:

(i) for S atomic: (
Alsx

┌S┐, a, n+1) = (Aaex
┌S┐, a),

(ii) for S not atomic: (
Alsx

┌S┐, a, n+1) = U { (
Alsx

┌S′┐, a′, n) | a′ ∈

(Acompstepx
┌S┐, a), ┌S′┐ ∈ (Arest x

┌S┐, a) }.

where σ is any state on A such that σ[x] = a. In other words, the following diagram

commutes:

ALSx

P(Au

A〈 gn, , idRepx N 〉

Alsx

Stmtx × State(A) × N

┌Stmtx┐ × Au × N

P(State(A))

)

RepSet x
A

 56

4.8 Representation of statement evaluation

Let Stmtx be the class of statements with variables among x only. The statement

evaluation function on A relative to x

ASEx : Stmtx × State(A) → P(State(A) 4 {↑}),

defined by

ASEx (S, σ) = ’S÷Aσ,

is represented by the function

Asex : ┌Stmtx┐ × Au → P(Au 4 {↑}),

defined by

Asex (┌S┐, a) = U {τ[x] | τ ∈ ’S÷Aσ},

where σ is any state on A such that σ[x] = a. In other words, the following diagram

commutes:
ASEx

P(Au 4 {↑

A〈 gn, 〉 Repx

Asex

Stmtx × State(A)

┌Stmtx┐ × Au

P(State(A) 4 {↑})

We will also be interested in the computability of .
Asex

})

RepSet x
A

 57

4.9 Representation of procedure evaluation

We will want later in section 4.11 a representation of the class Procu→v of all GC

procedures of type u→v, in order to construct a universal procedure for that type. For now

we consider a local version, for the subclass of Procu→v of procedures with auxiliary

variables of a given fixed type, which works for ND in general.

So let a, b, c be pariwise disjoint lists of variables, with types a : u, b : v and c : w.

Let Proca,b,c be the class of ND procedures of type u→v, with declaration in a out b aux c.

The procedure evaluation function on A relative to a, b, c

APE cb,a, : Proca,b,c × Au → P(Av 4 {↑}),

defined by

APE cb,a, (P, a) = PA(a),

is represented by the function

Ape cb,a, : ┌Proca,b,c
┐ × Au → P(Av 4 {↑}),

defined by

Ape cb,a, (┌P┐, a) = PA(a).

In other words, the following diagram commutes:

A

〈 gn, id 〉 uA

Ape ba,

┌Proca,b,c
┐ × Au

Proca,b,c × Au

PE cb,a,

P(Aυ 4 {↑})

c,

 58

4.10 Computability of semantic representing functions

To study the computability of the representing functions we stated early, we need

the term evaluation property.

Definition 4.1 (Term evaluation).

The algebra A has the term evaluation property (TEP) if for all x and s, the term

evaluation representing function is While computable on AAte s,x
N.

In fact, this definition is exactly the same as that in [7, Definition 4.4], referring to

While rather than ND computation. The reason is that the term evaluation function is

only a single-valued function, (which is different from the other multi-valued representing

functions), and it does not depend on non-determinism. Therefore, While computation is

more appropriate here.

Ate s,x

The term evaluation function is not always computable. However, it is While

computable in most commonly used algebras such as: semi-groups, groups, rings, boolean

algebras, and subalgebras [7, Examples 4.5]. So, it is reasonable to assume the term

evaluation property, and study the computability of the other semantic representing

functions (what we are very interested in) by assuming it.

From now on therefore, we assume,

 59

Assumption 4.2 (Term evaluation Property).

The algebra A has the term evaluation property (TEP), i.e., for all x and s, the term

evaluation representing function is While computable on AAte s,x
N.

Remark 4.3

The TEP can be proved to hold for the array algebra A* (see [7, Proposition 4.6]).

To study the computability of the semantic representing functions, we also need the

following lemmas,

Lemma 4.4

(a) Given a WhileRA procedure P : nat × u → v, we can construct another WhileRA

procedure Q : u → v so that for all x ∈ Au,

QA(x) = PU
∞

=0n

A(n, x).

(b) If P is a GC procedure, Q can also be constructed as a GC procedure.

Proof. (a) Consider the ND procedure P:

 proc in a : u

 in n: nat

 out b : v

 60

begin

 S;

end

Q can then be constructed as follows,

proc in a : u

 aux n: nat

 out b : v

begin

 n := ?;

 S;

End

(b) For GC, the construction of Q from P is more complicated. We need to use a subroutine

(
A notover x

┌S┐, a, n) (see Appendix 6), which tells us whether the computation of ┌S┐

with input a, is over by step n (see Appendix 7 for details).

Remark 4.5

Lemma 4.4 (b) is needed in section 4.11 for proof of Theorem 4.12.

 61

Lemma 4.6

The function first : N → N is primitive recursive, and hence While computable on

AN, for any standard Σ-algebra A.2

Now, we give the computability theorem for the semantic representing functions.

Starting with Assumption 4.2 (the term evaluation property), we can prove the

following, uniformly for all A ∈ StdAlg(Σ) and all x.

Theorem 4.7

(i) The atomic statement evaluation representing function , and the representing

function , are ND computable on A

Aaex

Arest x
N.

(ii) The set of leaf states representing function is ND computable on A
Alsx

N.

(iii) The statement evaluation representing function is ND computable on A
Asex

N.

(iv) For all a,b,c, the procedure evaluation representing function is ND

computable on A

Ape cb,a,

N.

2 As shown in e.g. [10], a PR (i.e., primitive recursive) function is While computable.

 62

Proof. We construct ND procedures to compute the semantic representing functions as the

follows (we only give the general ideas here, please refer to Appendix 8 for details).

(i) By using as a subroutine, we construct an ND procedure PAte s,x ae to compute .

For , we use to compute the boolean test in the ND procedure P

Aaex

Arest x
Ate bool,x rest.

(ii) We construct an ND procedure Pls to compute by using P
Alsx ae, first (to compute

compstep) and Prest as subroutines.

(iii) By Lemmas 3.14 and 4.4, we can give an ND procedure Pse to compute from

P

Asex

ls as a subroutine.

(iv) Finally, we can give an ND procedure to compute via PApe cb,a, se and as two

subroutines.

Ate v,x

4.11 Universal procedure for GC3

It is important to note that the procedure representing function of section 4.9

is not universal for Proc(Σ)

Ape cb,a,

u→v, (where a : u and b : v). It is only ‘universal’ for ND

procedures of type u→v with auxiliary variables of type type(c). In this subsection, we will

3 Cf. [7, section 4.8].

 63

construct a universal procedure (A
υu ,Univ ┌P┐, a) for all GC procedures P ∈ Procu→v and a

∈ Au. This incorporates not only the auxiliary variables of P, but also representations of

their values as (Gödel numbers of) terms in the input variables a (using localization of

computation). These can then all be coded by a single number variable.

By the nature of GC statements, the semantic computation tree for GC statements is

only finitely branching. Thus we have the following properties for the semantic

computation tree of GC statements:

(i) at each step, we only have finitely many leaves, which can all be coded by a

single Gödel number,

(ii) localization of computation: the output is always in the subalgebra generated

from the input.

Remark 4.8

Property (ii) is also true for WhileRA over minimal algebras.

 64

We will, assuming the TEP for A, construct a universal procedure for Procu→v on

A. For this, we need another representation of the “set of Leaf States” function LSA which

differs in two ways from lsA in section 4.8:

(i) it is defined relative to a tuple a of program variables (‘input variables’), which

does not necessarily include all the variables in S,

(ii) it has as output not a tuple of values in A, but a tuple of terms in the input

variables, or rather, the Gödel number of such a tuple of terms.

More precisely, given a product type u = s1× ··· × sm and a u-tuple of variables a : u,

we define

Alsua : ┌VarTup┐ × ┌Stmtx┐ × Au × N → ┌TermTup┐

as follows: for any product type w extending u, i.e., w = s1× ··· × sp for some p ≥ m, and for

any x : w extending a (i.e., x ≡ a,), and for any S ∈ Stmt
pm ss xx ...,,

1+ x, a ∈ Au and n ∈ N,

Alsua (┌x┐,┌S┐, a, n) = ┌tn┐

where tn ∈ TermTupx,w and ┌ Ate w,x (┌tn┐, (a, δA))┐ = ┌
Alsx (┌S┐, (a, δA), n)┐.

 65

where δA is the default tuple of type sm+1× ··· × sp. This use of default values follows from

the initialisation condition for output and auxiliary variables in procedures (see section 3.1

(e), (iv)). (This is also what lies behind the functionality lemma 3.16 for procedures.)

Now, consider the fact that the set of all the leaves of the semantic computation tree

of S is just LSU
∞

=0n

A(S, σ, n) (see Lemma 3.14), then we can code this from , which is

the Gödel number of the set of leaf states accumulated by a certain step.

Alsua

Besides this, we also need the following definition (cf. [7, Definition 4.11 and

Remark 4.12]).

Definition 4.9

For any term or term tuple t and variable tuple a, subex(t, a) is the result of

substitute the default term δs for all variables xs in t except for the variables in a.

Remark 4.10

(a) For all t ∈TermTup, subex(t, a) ∈ TermTupa.

(b) subex is primitive recursive in Gödel numbers.

(c) Suppose t : w and var(t) ⊆ x ≡ a, z where a : u. Then for a ∈ Au,

Ate w,a (┌subex(t, a)┐, a) = (Ate w,x
┌t┐, (a, δA))

 66

where δA is the default tuple of type type(z). This follows the ‘Substitution Lemma’

in logic [4].

Lemma 4.11

The function is ND computable on A
Alsua

N, for any standard Σ-algebra A (cf. [7,

Lemma 4.13]).

Proof. (Outline.) We essentially redo part (i) and (ii) of Theorem 4.7 using the definition of

LSA, and localised versions of and , Aaex
Arest x

aeuA : ┌VarTup┐ × ┌AtSt┐ → ┌TermTup┐

where for any x : w and S ∈ AtStx. We have

aeuA(┌x┐,┌S┐) ∈ ┌TermTupx,w
┐,

such that for any x ∈ Aw,

┌ Ate w,x (aeuA(┌x┐,┌S┐), x)┐ = ┌ Aaex (┌S┐, x)┐;

and (2) the function,

Arestua : ┌VarTup┐ × ┌Stmt┐ × Au → ┌Stmt┐

where for any x : w extending a : u, S ∈ Stmt and a ∈ Au,

 67

Arestua (┌x┐,┌S┐, a) = ┌ Arest x (┌S┐, (a, δA))┐

We can then show that,

(i) aeuA is primitive recursive,

(ii) is ND computable (by using subroutines 〈 | s ∈ Sort(Σ)〉), Arestua
Ate s,a

(iii) is ND computable on A by using aeu
Alsua

A and as subroutines. Arestua

Note that, in (iii), the term evaluation function is used to evaluate boolean tests

in the course of defining . The one tricky point is this: how do we evaluate, using

, a (Gödel number of) a term t ∈ Term

Ate s,a

Arestua

Ate s,a x,s, which contains variables in x other than a?

The answer is that by Remark 4.10 (c) the evaluation of t is given by (Ate s,a
┌subex(t, a)┐,

a).

Theorem 4.12 (Universality characterization theorem for GC(Σ) computations).4

If A has TEP, then for all Σ-product types type u, v, there is a GC(ΣN) procedure

υu ,Univ : ┌Procu→v
┐ × u → v

4 Cf. [7, Theorem 4.14].

 68

which is universal for GC procedures Procu→v on A, in the sense that for all P ∈ Procu→v

and a ∈ Au,

A
υu ,Univ (┌P┐, a) = PA(a).

Proof. We give an informal description of the algorithm represented by the procedure

. With input (A
υu ,Univ ┌P┐, a), where P ∈ Procu→v and a ∈ Au, suppose

P ≡ proc in a out b aux c begin S end

where a : u, b : v and let x ≡ a, b, c.

By the techniques of Lemma 4.4 (b), we can then define a GC procedure

Q : nat × u → nat,

where

QA : ┌Procu→v
┐ × Au → P(N 4 {↑})+,

with

QA(┌P┐, a) = U { (
∞

=0n

Alsua
┌x┐,┌S┐, a, n)}.

Here we use the subroutine (cf. the definition for), which is a

“localized” version of (see Appendix 6).

A notoverua
Alsua

A notover x

 69

Write the elements of the output set of QA as

┌t, t′, t′′┐ ∈ QA(┌P┐, a),

where the term tuples t, t′ and t′′ represent the current values of a, b and c, respectively.

The function QA is GC-computable by Lemma 4.4 (b) and 4.11, and the TEP Assumption.

Finally, we get the desired output values in Av from t′ as

Ate υ,a (┌subex(t′, a)┐, a)

which is GC-computable by the TEP.

Note 4.13

The universal procedure at a Σ-type u → v is constructed uniformly over StdAlg(Σ)

relative to a term evaluation subroutine (or “oracle”).

Moreover, we have,

Corollary 4.14 (Universality for A*)

For all Σ-product types type u, v, there is a GC*(ΣN) procedure

 70

*
,υuUniv : ┌Procu→v

┐ × u → v

which is universal for GC procedures on A, in the sense that for all P ∈ ,

A ∈ StdAlg(Σ) and a ∈ A

*
υu→Proc *

υu→Proc

u,

A,*
,υuUniv (┌P┐, a) = PA(a).

Proof. By Remark 4.3, A* has TEP (cf. [7, Corollary 4.15]).

Corollary 4.15 (Universal GCN procedure for GC*)5

If A has TEP, then for all Σ-product types type u, v, there is a GC(ΣN) procedure

υu ,Univ : ┌Procu→v
┐ × u → v

which is universal for GC procedures on A, in the sense that for all P ∈

and a ∈ A

*
υu→Proc *

υu→Proc

u,

A
υu ,Univ (┌P┐, a) = PA(a).

Proof. The result follows from Theorem 4.12 by using a Σ*÷ Σ conservativity theorem (see

[7, Theorem 3.63]).

5 Cf. [7, Theorem 4.17].

 71

CONCLUSION

We investigated the semantics and computation theories of two non-deterministic

programming languages over many-sorted signatures Σ, and Σ-algebras A, extending the

While(Σ) language studied in [7]: (a) GC(Σ), the Guarded Command language of Dijkstra

[3], and (b) WhileRA(Σ), which contains random assignments. These two languages were

also combined into a single language ND.

It was found that the algebraic operational semantics used in [7] for While could

be generalized smoothly to the whole of ND, mainly by replacing computation sequences

by semantic computation trees.

However, when the possibility of generalizing the Universal Function Theorem

(UFT) in [7] to ND was investigated, a sharp distinction was found between GC and

WhileRA. The crucial issues here seem to be (i) finite nondeterminism, which says that the

semantic computation tree is finitely branching, and (ii) localization of computation,

which says that the output is always in the Σ-subalgebra of A generated from the input. It

was found that the techniques of [7] could be adapted to proving a UFT for GC, which

satisfies both these properties, but not for WhileRA, which satisfies neither.

Thus the UFT was proved for GC, assuming a term evaluation property on A.

 72

Future investigations in this area should include:

• investigating the UFT for WhileRA, and

• studying semicomputability properties of GC and WhileRA.

 73

BIBLIOGRAPHY

[1] Dirk van Dalen. Logic and Structure. Springer-Verlag, 1997.

[2] Martin D. Davis and Elaine J. Weyuker. Computability, Complexity and

Languages. Fundamentals of Theoretical Computer Science. Academic Press Inc.,

Orlando, Florida, 1983.

[3] Edsger W. Dijkstra. A discipline of programming. Series in Automatic

Computation. Prentice-Hall Inc., Englewood Cliffs, New Jersey, 1976.

[4] V. Sperschneider and G. Antoniou. Logic: A Foundation for Computer Science.

Addison-Wesley Publishing Company Inc, 1991.

[5] J. V. Tucker and J. I. Zucker. Program Correctness over Abstract Data Types with

Error-State Semantics, North Holland, Amsterdam, 1988.

[6] J. V. Tucker and J. I. Zucker. Computation by ‘while’ programs on topological

partial algebras, Theoretical Computer Science, 219, pages 379 – 420. 1999.

 74

[7] J. V. Tucker and J. I. Zucker. Computable functions and semicomputable sets on

many-sorted algebras. In S. Abramsky, D. Gabbay, and T. Maibaum, editors,

Handbook of Logic in Computer Science, volume 5, pages 317 – 523. Oxford

University Press, 2000.

[8] J. V. Tucker and J. I. Zucker. Abstract versus Concrete Computation on Metric

Partial Algebras. Technical report CAS–01–01–JZ, Department of Computing and

Software, McMaster University, 2001.

[9] A. M. Turing. On computable numbers, with an application to the Entscheidungs

problem, Proceedings of the London Mathematical Society 42: pp. 230 – 265;

correction [1937], ibid. 42, pp. 544 – 546. Reprinted [1965], The Undecidable, M.

Davis, ed., Raven Press, 1936.

[10] J. I. Zucker and L. Pretorius. Introduction to computability theorey, South African

Computer Journal, 9. April 1993.

APPENDIX

In this appendix, we give the proof of the important theorems and lemmas stated

in the previous chapters.

Firstly, we give the proof of the functionality lemma for terms. This lemma

together with the functionality lemma for statements and procedures, which are stated

and proved in section 3, are crucial to ensure the semantics of the terms, statements and

procedures are well defined from the states. Lemma 3.13 and 3.14 are important to prove

the functionality lemma for statements.

Lemma 3.9 is crucial to prove theorem 3.8, which shows the i/o semantics of ND

statements, derived from our algebraic operational semantics.

By proving Theorem 4.7, we get a weaker UFT for fixed input, output and

auxiliary variables.

A notover x , the representation function of NotOver, is used as a subroutine in the

proof of Lemma 4.4 (b) and Theorem 4.12 (UFT for GC).

75

 76

1. Lemma 3.5 (Functionality lemma for terms).

For any term t and states σ1 and σ2, if σ1 ≈ σ2 (rel var(t)), then ’t÷Aσ1 = ’t÷Aσ2.

Proof. By structural induction on t.

Base case: t ≡ x

By definition, it’s trivial to have ’x÷Aσ1 = ’x÷Aσ2.

Inductive step: t ≡ F(t1, …, tm), where F ∈ Func(Σ)u→s for u = s1× ··· × sm and ti ∈ Termsi

for i = 1, …, m.

By the definition, ’t÷Aσ1 = ’F(t1, …, tm)÷Aσ1

 = FA(’t1÷
Aσ1, …, ’tm÷

Aσ1) (1.1)

 ’t÷Aσ2 = ’F(t1, …, tm)÷Aσ2

 = FA(’t1÷
Aσ2, …, ’tm÷

Aσ2) (1.2)

By σ1 ≈ σ2 (rel var(t)), we have σ1 ≈ σ2 (rel var(ti)), for i = 1, …, m.

Then, by the base case, we have ’ti÷
Aσ1 = ’ti÷

Aσ2, for i = 1, …, m.

So, (1.1) = (1.2); i.e., ’t÷Aσ1 = ’t÷Aσ2.

 77

2. Lemma 3.9

Assume n > 0.

(a) If Sat ∈ AtSt, CompTreeStageA(Sat, σ, n) is formed by attaching to the root {σ}, the

leaf {τ}, for each τ ∈ Sat
Aσ.

Proof. (Trivially) For Sat ∈ AtSt, by defintion1, CompTreeStageA(Sat, σ, n) is formed by

attaching to the root {σ}, the leaf {τ}, for each τ ∈ Sat
Aσ.

(b) If S ≡ S1; S2, CompTreeStageA(S, σ, n) is formed by attaching subtree(’s)

CompTreeStageA(S2, τ, n-d′) to each leaf {τ} of CompTreeStageA(S1, σ, n), where

d′ is the depth of {τ} in CompTreeStageA(S1, σ, n).

Proof. We split the proof into 2 cases on whether S1 is atomic or not.

Case 1: If S1 is atomic, then by definition, CompTreeStageA(S, σ, n) is formed by attaching

to the root {σ}, the subtree CompTreeStageA(S′, σ′, n-1), for each σ′ ∈ CompStepA(S, σ)

and S′ ∈ RestA(S, σ) (2.1)

Since S1 is atomic, in this case,

CompStepA(S, σ) = First(S) Aσ = First(S1) Aσ = S1
Aσ,

1 Refer to the definition of CompTreeStageA in section 3.4.4.

 78

RestA(S, σ) = { S2 }.

Then, (2.1) turns to be, CompTreeStageA(S, σ, n) is formed by attaching to the root

{σ}, the subtree CompTreeStageA(S2, τ, n-1), for each τ ∈ S1
Aσ.

From the result of (a), CompTreeStageA(S1, σ, n) is a one-step tree with each leaf τ

∈ S1
Aσ, with a depth of 1.

So, (b) is proved for this case.

Case 2: (Interesting case) S1 is not atomic.

We use simple induction on n to prove (b).

Base case: n = 1.

By definition, CompTreeStageA(S, σ, 1) is formed by attaching to the root {σ}, the

subtree CompTreeStageA(S′, σ′, 0), for each σ′ ∈ CompStepA(S, σ) and S′ ∈ RestA(S, σ).

I.e., attach to the root {σ}, the node {σ′}, for each σ′ ∈ CompStepA(S, σ).

Since S1 is not atomic, CompTreeStageA(S1, σ, 1) has no leaf. Then, (b) amounts to

saying that CompTreeStageA(S, σ, 1) is formed by CompTreeStageA(S1, σ, 1). I.e., attach to

the root {σ}, the node {σ′}, for each σ′ ∈ CompStepA(S1, σ).

 79

Since S ≡ S1;S2, CompStepA(S, σ) = First(S) Aσ = First(S1) Aσ

= CompStepA(S1, σ).

So, (b) is proved for the base case. The following diagram might help understand

the proof for this case.

 (b) in this case By the definition of CompTreeStageA

σ

… σ′ σ″
CompTreeStageA(S1, σ, 1)

 For each σ′ ∈ CompStepA(S, σ)

CompTreeStageA(S, σ, 1)

Inductive step: Assume, CompTreeStageA(S, σ, n) is formed by attaching subtree(’s)

CompTreeStageA(S2, τ, n-d′) to each leaf {τ} of CompTreeStageA(S1, σ, n), where d′ is the

depth of {τ} in CompTreeStageA(S1, σ, n). (Induction Hypothesis)

We want to prove: CompTreeStageA(S, σ, n+1) is formed by attaching subtree(’s)

CompTreeStageA(S2, τ, n+1-d′) to each leaf {τ} of CompTreeStageA(S1, σ, n+1), where d′

is the depth of {τ} in CompTreeStageA(S1, σ, n+1). (2.2)

By definition, CompTreeStageA(S, σ, n+1) is formed by attaching to the root {σ},

the subtree CompTreeStageA(S′, σ′, n), for each σ′ ∈ CompStepA(S, σ) and S′ ∈ RestA(S, σ)

 80

And, CompStepA(S, σ) = First(S) Aσ = First(S1) Aσ,

 = CompStepA(S1, σ).

Since S1 is not atomic, =),(σSRest A)},(|;{ 1121 σSRestSSS A∈′′U

Then, we can change the above result as, CompTreeStageA(S, σ, n+1) is formed by

attaching to the root {σ}, the subtree CompTreeStageA(21; SS ′ , σ′, n), for each σ′ ∈

CompStepA(S1, σ) and ∈ Rest1S ′ A(S1, σ). (2.3)

By the definition of CompTreeStageA

 σ

…

 CompTreeStageA(S, σ, n+1)

CompTreeStageA(21; SS ′ , σ′, n)
For each σ′ ∈ CompStepA(S1, σ) and ∈ Rest1S ′ A(S1, σ)

By induction hypothesis, for each σ′ ∈ CompStepA(S1, σ) and ∈ Rest1S ′ A(S1, σ),

CompTreeStageA(, σ′, n) is formed by attaching CompTreeStage21; SS ′ A(S2, τ, n-d) to each

 81

leaf {τ} of CompTreeStageA(1S ′ , σ′, n), where d is the depth of {τ} in

CompTreeStageA(, σ′, n). 1S ′

Then, (2.3) turns to be, CompTreeStageA(S, σ, n+1) is formed by attaching to the

root {σ}, (in 2 steps) (2.4)

(i) CompTreeStageA(, σ′, n), for each σ′ ∈ CompStep1S ′ A(S1, σ) and ∈ Rest1S ′ A(S1, σ)

…

(ii) attach CompTreeStageA(S2, τ, n-d) to each leaf {τ} of CompTreeStageA(1S ′ , σ′, n),

where d is the depth of {τ} in CompTreeStageA(1S ′ , σ′, n)

By induction hypothesis

σ

CompTreeStageA(S, σ, n+1)

For each σ′ ∈ CompStepA(S1, σ) and 1S ′ ∈ RestA(S1, σ)

CompTreeStageA(1S ′ , σ′, n)

τ

For each leaf {τ} of CompTreeStageA(1S ′ , σ′, n), where d is the depth of {τ}

in CompTreeStageA(1S ′ , σ′, n)

CompTreeStageA(S2, τ, n-d)

 82

Reversely use the definition of CompTreeStageA, then step (i) is just

CompTreeStageA(S1, σ, n+1). Let the depth of leaf {τ} in CompTreeStageA(S1, σ, n+1) to

be d′. We have d′ = d+1, where d is the depth of {τ} in CompTreeStageA(, σ′, n). 1S ′

Then, (2.4) is just saying that, CompTreeStageA(S, σ, n+1) is formed by attaching

CompTreeStageA(S2, τ, n-(d′-1)) (= CompTreeStageA(S2, τ, n+1-d′)), to each leaf {τ} of

CompTreeStageA(S1, σ, n+1), where d′ is the depth of {τ} in CompTreeStageA(S1, σ, n+1).

The above result is just (2.2), what we want to prove.

By the definition of CompTreeStageA, (reversely)

CompTreeStageA(S, σ, n+1)

CompTreeStageA(S1, σ, n+1)

For each leaf {τ} of CompTreeStageA(S1, σ, n+1), where d′ is the depth of {τ}
in CompTreeStageA(S1, σ, n+1). It’s easy to see that d′ = d+1.

CompTreeStageA(S2, τ, n-d)

CompTreeStageA(S2, τ, n+1-d′)

 83

(c) If S ≡ . CompTreeStagefiif kkbb |...| SS →→ 11 A(S, σ, n) is formed by attaching

to the root {σ}, the subtree(’s) CompTreeStageA(Si, σ, n-1), where ’bi÷
Aσ = tt, for

all i = 1, …, k.

Proof. By definition, CompTreeStageA(S, σ, n) is formed by attaching to the root {σ}, the

subtree CompTreeStageA(S′, σ′, n-1), for each σ′ ∈ CompStepA(S, σ) and S′ ∈ RestA(S, σ).

And, CompStepA(S, σ) = First(S) Aσ = skip Aσ = {σ}

U
k

i

σ
1

),(
=

=SRest A { Si | ’bi÷
Aσ = tt }

So, it’s trivial to see that, CompTreeStageA(S, σ, n) is formed by attaching to the

root {σ}, the subtree(’s) CompTreeStageA(Si, σ, n-1), where ’bi÷
Aσ = tt, for all i = 1, …, k.

(d) If S ≡ . CompTreeStageoddo kkbb |...| SS →→ 11 A(S, σ, n) is formed by attaching

to the root {σ},

(i) the subtree(’s) CompTreeStageA(Si;S, σ, n-1), where ’bi÷
Aσ = tt, if for

some i = 1, …, k,

(ii) the leaf {σ} otherwise.

 84

Proof. By definition, CompTreeStageA(S, σ, n) is formed by attaching to the root {σ}, the

subtree CompTreeStageA(S′, σ′, n-1), for each σ′ ∈ CompStepA(S, σ) and S′ ∈ RestA(S, σ).

And, CompStepA(S, σ) = First(S) Aσ = skip Aσ = {σ}

⎪⎩

⎪
⎨

⎧
==

= =

otherwise } {

][, somefor if}][|; {
),(1

 skip

tttt σbiσb
σ i

k

i
ii

AA
A SS

SRest U

So, it is easy to see (d) is true.

3. Proof of Theorem 3.8 from Lemma 3.9

(a) For Sat atomic, ’Sat÷
A = Sat

A.

Proof. From Lemma 3.9 (a), take the ‘limit’ over n for all CompTreeStageA, then we have,

CompTreeA(Sat, σ) is formed by attaching to the root {σ}, the leaf {τ}, for each τ ∈

Sat
Aσ, Sat ∈ AtSt.

By definition2, ’S÷Aσ is the set of states at all leaves in CompTreeA(S, σ). I.e.,

’Sat÷
Aσ = Sat

Aσ

2 Refer to the definition of ’S÷A in section 3.5.

 85

(c) S ≡ . Then, ’S÷fiif kkbb |...| SS →→ 11 Aσ = U { ’S
k

i 1=
i÷

Aσ | ’bi÷
Aσ = tt }.

Proof. From Lemma 3.9 (c), take the ‘limit’ over n for all CompTreeStageA, then we have,

CompTreeA(S,σ) is formed by attaching to the root {σ}, the subtree CompTreeA(Si,σ),

where ’bi÷
Aσ = tt, for all i = 1, …, k.

So, the leaves of CompTreeA(S,σ) are formed from all the leaves of

CompTreeA(Si,σ), where ’bi÷
Aσ = tt, for all i = 1, …, k.

Also (trivially), if there exists an infinite path in any possible CompTreeA(Si,σ),

where ’bi÷
Aσ = tt, for all i = 1, …, k, there must be an infinite path in CompTreeA(S,σ), by

extending the infinite path in CompTreeA(Si,σ) one step up to the root {σ}.

By the definition (of semantics of ND statements), ’S÷Aσ is the set of states at all

leaves in CompTreeA(S, σ), together with ‘↑’ if CompTreeA(S, σ) has an infinite path.

U
k

i 1=

{ ’Si÷
Aσ | ’bi÷

Aσ = tt } is the set of states at all leaves in any possible

CompTreeA(Si,σ), together with ‘↑’ if there is an infinite path in any CompTreeA(Si,σ),

where ’bi÷
Aσ = tt, for all i = 1, …, k.

So, ’S÷Aσ = { ’SU
k

i 1=
i÷

Aσ | ’bi÷
Aσ = tt }.

 86

(d) S ≡ . Then, oddo kkbb |...| SS →→ 11

’S÷Aσ
⎪⎩

⎪
⎨

⎧
==

= =

otherwise } {

][, somefor if}][|];[{
1

tttt

σ

σbiσbσ i

k

i
ii

AAASSU

Proof. From Lemma 3.9 (d), take the ‘limit’ over n for all CompTreeStageA, then we have,

CompTreeA(S,σ) is formed by attaching to the root {σ},

(i) the subtree CompTreeA(Si;S,σ), for those i for which ’bi÷
Aσ = tt,

 , somefor if i ’bi÷
Aσ = tt

(ii) the leaf {σ} otherwise

So, the leaves of CompTreeA(S,σ) are formed from,

(i) the leaves of the subtree CompTreeA(Si;S,σ), for those i for which ’bi÷
Aσ = tt,

 ’b , somefor if i i÷
Aσ = tt

(ii) the leaf {σ} otherwise

Also (trivially), if there exists an infinite path in any possible CompTreeA(Si;S,σ),

where ’bi÷
Aσ = tt, for all i = 1, …, k, there must be an infinite path in CompTreeA(S,σ), by

extending the infinite path in CompTreeA(Si,σ) one step up to the root {σ}.

 87

By the definition (of semantics of ND statements), ’S÷Aσ is the set of states at all

leaves in CompTreeA(S, σ), together with ‘↑’ if CompTreeA(S, σ) has an infinite path.

U
k

i 1=

{ ’Si;S÷Aσ | ’bi÷
Aσ = tt } is the set of states at all leaves in any possible

CompTreeA(Si;S,σ), together with ‘↑’ if there is an infinite path in any CompTreeA(Si,σ),

where ’bi÷
Aσ = tt, for all i = 1, …, k.

So, ’S÷Aσ
⎪⎩

⎪
⎨

⎧
==

= =

otherwise } {

][, somefor if}][|];[{
1

tttt

σ

σbiσbσ i

k

i
ii

AAASSU

4. Lemma 3.13

Suppose var(S) ⊆ M. If σ1 ≈ σ2 (rel M), then

First(S) Aσ1 ≈ First(S) Aσ2 (rel M), (4.1)

and, RestA(S, σ1) = RestA(S, σ2). (4.2)

Proof. Firstly, we prove (4.1) by structural induction on S.

Base case: S is atomic. By definition of First, First(S) = S, and

First(S) Aσ1 = S Aσ1

 88

First(S) Aσ2= S Aσ2

(i) S ≡ skip. {σ1} ≈ {σ2} (rel M).

(ii) S ≡ . St=:x Aσ1 = { σ1{x / ’t÷Aσ1} }

S Aσ2 = { σ2{x / ’t÷Aσ2} }

∀y ∈ M, { σ1{x / ’t÷Aσ1} }(y)
⎩
⎨
⎧

≠
≡

=
xyy
xy

)(
][

1

1

σ
σt A

{ σ2{x / ’t÷Aσ2} }(y)
⎩
⎨
⎧

≠
≡

=
xyy
xy

)(
][

2

2

σ
σt A

Because var(t) ⊆ var(S) ⊆ M, and σ1 ≈ σ2 (rel M), by functionality lemma for

terms, ’t÷Aσ1 = ’t÷Aσ2, and ∀y ∈ M, σ1(y) = σ2(y).

(iii) S ≡ . ?x =:

S Aσ1 = { | 1σ ′ 1σ ′ agrees with σ1 on all variables, except x}

S Aσ2 = { | 2σ ′ 2σ ′ agrees with σ2 on all variables, except x}

Since σ1 ≈ σ2 (rel M), then we have ∀ 1σ ′ ∈ S Aσ1, ∃ ∈ S2σ ′
Aσ2, 1σ ′(x) =

(x). (4.3) 2σ ′

∀y ∈ M, let ∈ S1σ ′
Aσ1, 2σ ′ ∈ S Aσ2,

 89

1σ ′(y) = and
⎩
⎨
⎧

≠
≡′

xyy
xyx

)(
)(

1

1

σ
σ

2σ ′ (y) =
⎩
⎨
⎧

≠
≡′

xyy
xyx

)(
)(

2

2

σ
σ

By (4.3), we have ∀ 1σ ′ ∈ S Aσ1, ∃ 2σ ′ ∈ S Aσ2, 1σ ′(y) = (y). 2σ ′

Similarly, ∀ ∈ S2σ ′
Aσ2, ∃ 1σ ′ ∈ S Aσ1, 1σ ′(y) = 2σ ′ (y).

So, finally by definition 3.10, S Aσ1 ≈ S Aσ2 (rel M) is proved (i.e.,

First(S) Aσ1 ≈ First(S) Aσ2 (rel M)). I.e., base case is proved.

Inductive step: if S is not atomic, since First(S) is atomic, by base case, we have

First(S) Aσ1 ≈ First(S) Aσ2 (rel M)

Secondly, we prove (4.2) by structural induction on S.

Base case: S is atomic. RestA(S, σ1) = RestA(S, σ2) = {skip}

Inductive step: if S is not atomic, we will prove (4.2) as the follows,

(i) S ≡ , 21 ; SS

(a) If S1 is atomic, RestA(S, σ1) = RestA(S, σ2) = {S2}

(b) If S1 is not atomic,

RestA(S, σ1) = }),(|;{ 11121 σSRestSSS A∈′′

RestA(S, σ2) = }),(|;{ 21121 σSRestSSS A∈′′′′

By base case, RestA(S1, σ1) = RestA(S1, σ2).

So, RestA(S, σ1) = RestA(S, σ2)

 90

(ii) S ≡ . Then, fiif kkbb |...| SS →→ 11

U
k

i

σ
1

1),(
=

=SRest A { Si | ’bi÷
Aσ1 = tt }

U
k

i

σ
1

2),(
=

=SRest A { Si | ’bi÷
Aσ2 = tt }

Since var(bi) ⊆ var(S) ⊆ M, and σ1 ≈ σ2 (rel M), by Lemma 3.5 (the

functionality lemma for terms), we have ’bi÷
Aσ1 = ’bi÷

Aσ2, for all i = 1,…, k.

So, RestA(S, σ1) = RestA(S, σ2) for this case.

(iii) S ≡ . Then, oddo kkbb |...| SS →→ 11

⎪⎩

⎪
⎨

⎧
==

= =

otherwise } {

][, somefor if}][|; {
),(1

1
1

1

 skip

tttt σbiσb
σ i

k

i
ii

AA
A SS

SRest U

⎪⎩

⎪
⎨

⎧
==

= =

otherwise } {

][, somefor if}][|; {
),(2

1
2

2

 skip

tttt σbiσb
σ i

k

i
ii

AA
A SS

SRest U

Similarly to (ii), we can prove RestA(S, σ1) = RestA(S, σ2) by Lemma 3.5.

5. Lemma 3.14

Suppose var(S) ⊆ M. If σ1 ≈ σ2 (rel M), then for all n ≥ 0

LSA(S, σ1, n) ≈ LSA(S, σ2, n) (rel M), (5.1)

 91

where LSA stands for “leaf states”, and LSA(S, σ, n) means the set of states at all leaves of

CompTreeA(S, σ) in CompTreeStageA(S, σ, n).

Proof. By simple induction on n.

Base case: n=0, LSA(S, σ1, 0) = 0,

LSA(S, σ2, 0) = 0.

And trivially, 0 ≈ 0 (rel M).

Inductive step: Suppose (5.1) is true for n. (induction hypothesis)

Now, we want to prove LSA(S, σ1, n+1) ≈ LSA(S, σ2, n+1) (rel M)

(i) If S is atomic,

LSA(S, σ1, n+1) = First(S) Aσ1 = S Aσ1

LSA(S, σ2, n+1) = First(S) Aσ2 = S Aσ2

Then, by lemma 3.8, LSA(S, σ1, n+1) ≈ LSA(S, σ2, n+1) (rel M)

(ii) If S is not atomic,

LSA(S, σ1, n+1) = , }),(),,(|),,({ 111111 σσσnσ SCompStepSRestSSLS AAA ∈′∈′′′U

LSA(S, σ2, n+1) = . }),(),,(|),,({ 222222 σσσnσ SCompStepSRestSSLS AAA ∈′∈′′′U

By lemma 3.8, RestA(S, σ1) = RestA(S, σ2), and

First(S) Aσ1 ≈ First(S) Aσ2 (rel M).

Also since CompStepA(S, σ1) = First(S) Aσ1, and

CompStepA(S, σ2) = First(S) Aσ2,

we have CompStepA(S, σ1) ≈ CompStepA(S, σ2) (rel M).

 92

By induction hypothesis,

LSA(1,σ ′′S , n) ≈ LSA(2,σ ′′S , n) (rel M)

where S′ ∈ RestA(S, σ1) (= RestA(S, σ2)) and 1σ ′ ≈ (rel M), for 2σ ′ 1σ ′ ∈

CompStepA(S, σ1), ∈ CompStep2σ ′
A(S, σ2).

Then, we have LSA(S, σ1, n+1) ≈ LSA(S, σ2, n+1) (rel M).

6. Representation of NotOverA in GC

Let Stmtx be the class of statements with variables among x only. The function

NotOverA on A relative to x

ANotOver x : Stmtx × State(A) × N → boolean,

which tests whether or not the semantic computation tree of S at σ is not over by step n, is

represented by the function

A notover x : ┌Stmtx
┐ × Au × N → boolean,

defined by a simple tail recursion on n as the follows,

Base case: (
A notover x

┌S┐, a, 0) = tt.

Inductive step:

(i) for S atomic: (
A notover x

┌S┐, a, n+1) = ff,

 93

(ii) for S not atomic: (
A notover x

┌S┐, a, n+1) = { (
A notover x

┌S′┐,

a′, n) | a′ ∈ (Acompstepx
┌S┐, a), ┌S′┐ ∈ (Arest x

┌S┐, a) }.

where σ is any state on A such that σ[x] = a. In other words, the following diagram

commutes:

boolean

〈 gn, , idRepx N 〉

A

A NotOverx

Stmtx × State(A) × N

┌Stmtx
┐ × Au × N

Note 5.1

(a) The disjunction in (ii) is finite becaus

finiteness of (see Note 3.6 (a))Arest x
3. H

(b) is very similar to (see s

of is a set of terms, but the output o

A notover x
Alsx

Alsx

(c) This function is used as a su

Theorem 4.12.

A notover x

3 Note 3.6 (a) says that RestA is finite, from section 4.5, h
notov

e of

ence

ection

f not

brout

ence r
A

erx

the finite nondeterminism of GC and

 this function only works for GC.

 4.7). The difference is that the output

 is a boolean.
A over x

ine in the proof of Lemma 4.4 (b) and

xest is finite. A

 94

Remark 5.2

Although our syntax for GC does not allow procedures as subroutines of others, we

freely use these as pseudo-code in the interest of readability. In practice, we could use

macro-expansions and new auxiliary variables to get the same effect.

7. Lemma 4.4 (b): GC procedure for computing the Union function

We construct the following GC procedure Q to compute the Union function

PU
∞

=0n

A(n, x), by using notoverA as a subroutine and a boolean auxiliary variable,

 proc in a : u

 out b : v

 aux gn : nat

 aux n : nat

 aux continue : bool

 begin

 a := a;

 continue := tt;

 gn := ┌S┐;

 do continue → n++; (gn, a, continue);
A notover x

 95

 | continue → continue := ff; S;

 od

 end

By definition 3.14, if P is ND computable on A, so is Q. Then together with the

early proof for WhileRA (see Lemma 4.4 (a)), we finished the proof for Lemma 4.4.

8. Theorem 4.7

(i) The atomic statement evaluation representing function , and the representing

function , are ND computable on A

Aaex

Arest x
N.

Proof. We give an informal description of the algorithm represented by the procedure

Pae, which computes . With input (Aaex
┌S┐, a), since Gödel numbers are primitive

recursive (refer to [9]), we can judge what the atomic statement S is and thus, get the

output b by using as a subroutine as follows. Ate s,x

(a) a, if skip.

(b) (Ate u,x
┌x┐, a, b), if x := t, where for some product type u, x : u and t : u.

(c) (Ate s,x
┌x┐, a, b), if x := ?, for x : s.

Next, we give an informal description of the algorithm represented by the

procedure Prest, which computes . And we define a “sequential operator” for Gödel

numbers: seq(

Arest x

┌S1
┐,┌S2

┐) = ┌S1; S2
┐.

 96

Similarly with what we have done for , since Gödel numbers are primitive

recursive, we can judge what S is. Then, we can give the output in the following cases,

Aaex

(a) ┌skip┐, if S is atomic.

(b) ┌S2
┐, if S ≡ S1; S2 and S1 is atomic,

Prest(┌S1
┐, a, c); b := seq(c, ┌S2

┐); if S ≡ S1; S2, but S1 is not atomic.

Note that: c is an auxiliary variable of type nat.

(c) If S ≡ , then we need to do the boolean test, and

we also need auxiliary boolean variables y

fiif kkbb |...| SS →→ 11 Ate boolx,

1, …, yk to construct the followings:

 (Ate boolx,
┌b1

┐, a, y1);

 … …

 (Ate boolx,
┌bk

┐, a, yk);

 if y1 → b :=┌S1
┐ | … | yk → b :=┌Sk

┐ fi

(d) If S ≡ , then similarly with (c), we do the follows, oddo kkbb |...| SS →→ 11

 (Ate boolx,
┌b1

┐, a, y1);

 … …

 (Ate boolx,
┌bk

┐, a, yk);

 if y1 → b := seq(┌S1
┐,┌S┐)

 | … …

 97

 | yk → b := seq(┌Sk
┐,┌S┐)

 | ¬(y1∧…∧yk) → b := ┌skip┐

 fi

Note that: we use if fi to compute do od.

(ii) The set of leaf states representing function is ND computable on A
Alsx

N.

Proof. With input (┌S┐, a, n0), we construct the following ND procedure Pls to compute

 by using P
Alsx ae, first (to compute compstep) and Prest as subroutines.

 proc in a : u

 out b : v

 aux d : u

 aux gn : nat

 aux n : nat

 aux m : nat

 aux l : nat

 begin

 a := a;

 gn := ┌S┐;

 n := n0;

 while n ≠ 0,

 98

 do

 if gn is not atomic,

 Prest(gn, a, l);

 first(gn, m);

 Pae(m, a, d);

 gn := l;

 a := d;

 n := n-1;

 else

 Pae(gn, a, b);

 od

 end

(iii) The statement evaluation representing function is ND computable on A
Asex

N.

Proof. By Notation 3.11 and Lemma 4.4, we can give an ND procedure Pse to compute

 from P
Asex ls as a subroutine. Note that, there is an infinite path in CompTreeA(S, σ) if

and only if, Pse diverges.

 99

(iv) For all a,b,c, the procedure evaluation representing function is ND

computable on A

Ape cb,a,

N.

Proof. With input (┌S┐, a), we use the following ND procedure to compute via

P

Ape cb,a,

se and as two subroutines. Ate v,x

 proc in a : u

 out b : v

 aux d : u

 aux gn : nat

 begin

 a := a;

 gn := ┌S┐;

 Pse(gn, a, d);

 (Ate v,x
┌b┐, d, b);

 end

