
Characterizations of

Semicomputable Sets of Real

Numbers

By

Bo Xie, Honored B.Sc, B.Eng

A Thesis

Submitted to the School of Graduate Studies

in partial fulfilment of the requirements for the degree of

Master of Science

Department of Computing and Software

McMaster University

c© Copyright by Bo Xie, August 2004

ii

MASTER OF SCIENCE (2004) McMaster University

(Computing and Software) Hamilton, Ontario

TITLE: Characterizations of Semicomputable Sets of Real Numbers

AUTHOR: Bo Xie, Honored B.Sc, B.Eng(McMaster University, Canada)

SUPERVISOR: Professor Jeffery I. Zucker

Abstract

We give some characterizations of semicomputability of sets of reals by programs

in certain While programming languages over a topological partial algebra of reals

R. We show that such sets are semicomputable if and only if they are any of the

following:

(i) unions of effective sequences of disjoint algebraic open intervals;

(ii) unions of effective sequences of rational open intervals;

(iii) unions of effective sequences of algebraic open intervals.

For the equivalence (i), the While language must be augmented by a strong

(Kleene) OR operator, and for equivalences (ii) and (iii) it must be further augmented

by a strong existential quantifier over the naturals (While∃N).

We also show that the class of While∃N semicomputable relations on reals is closed

under projection. The proof makes essential use of the continuity of the operations

of the algebra.

i

Acknowledgements

First, I am grateful to my supervisor Dr. J.I. Zucker, whose help, stimulating sug-

gestions and encouragement helped me throughout the whole period of research and

writing of this thesis. I owe him a great deal of gratitude for guiding my research.

I would also like to thank the other members of committee, Dr. Jacques Carette

and Dr. Thomas Maibaum, who reviewed my work and providing me with valuable

comments on this thesis.

My thanks also go to Jian Xu, Likang Zhu, Jie Liang and all the fellow students

at the Computing and Software Department for their friendship, support and help.

My parents are always ready to help whichever way I need, I cannot thank them

enough.

Last but not least, I would like to express my gratitude to my wife Yuan Wang,

for her love, support and patience during my years of study and research.

ii

Contents

Abstract i

Acknowledgements ii

1 Introduction 1

1.1 Background . 1

1.2 Objectives . 4

1.3 Overview of the thesis . 6

2 Basic Concepts 8

2.1 Signatures . 8

2.2 Standard signatures and algebras . 14

2.3 N-standard signatures and algebras 14

2.4 Topological partial algebras . 16

3 While computation on standard partial algebras 20

3.1 Syntax of While(Σ) . 20

3.2 States . 22

3.3 Semantics of terms . 23

3.4 Algebraic operational semantics . 24

iii

CONTENTS iv

3.5 Operational semantics of statements 28

3.6 While computability . 30

3.7 Nonrecursive procedure calls . 32

3.8 Relative While computability . 33

3.9 Expanding While to WhileOR and While∃N 34

3.10 While∗ computation on R . 39

4 Computation trees; Engeler’s Lemma 41

4.1 While0 language . 42

4.2 Definability property . 44

4.3 Gödel numbering of syntax . 46

4.4 Computation tree for WhileOR(Σ) 46

4.5 Engeler’s Lemma for While . 50

4.6 Computation tree for While∃N . 56

5 Structure theorems for semicomputable sets over R 64

5.1 Definition and Gödel numbering of syntax: 64

5.2 Basic algebraic results: . 71

5.3 Canonical form for Σ(R) booleans 73

5.4 Characterizations of semicomputable real sets 85

5.5 Unions of effective sequences of intervals are semicomputable 87

5.6 Structure theorems for semicomputable sets over R 91

5.7 Projectively While∃N semicomputable sets 92

6 Conclusion and future work 95

6.1 Conclusions . 95

CONTENTS v

6.2 Future work and conjectures . 96

Chapter 1

Introduction

1.1 Background

Our research in this thesis is based on computations by high level programming lan-

guages featuring the While construct over many-sorted topological partial algebras.

An algebra A is a finite family of sets

As1 , ..., Asn

called carriers of sort s1, s2, ..., sn, and a finite set of operations (total or partial

functions) defined over these sets1.

An algebra is said to be standard if it contains the sort of booleans and standard

boolean operators. It is N-standard if in addition, it contains the sort of naturals and

the standard arithmetic operations.

Classical computability theory on naturals has been studied since the 1930’s.

1We consider constants to be 0-ary functions.

1

1. Introduction 2

There are many extensions of this theory to abstract structures.

One of these extensions has been the investigation of total (non-topological) alge-

bras of reals [BCSS98]. A detailed discussion of such extensions is given in [TZ00]. We

have adapted many of the definitions and proofs from [TZ00] to fit partial topological

algebras.

There are two kinds of computational models for algebras: abstract and concrete.

Abstract models are independent of the representations of the data type of the al-

gebras while concrete models are dependent on such representations. The While

language is an example of an abstract model. Examples of concrete models over R

are the classical computable analysis of Pour-El and Richards [PER89], and TTE

(Type-2 Theory of Effectivity) of Weihrauch [Wei00]; both these models represent

reals as effective Cauchy sequences of rationals, and their equivalence follows from

the results in [SHT99].

Some work in bridging the gap between abstract and concrete models is made in

[TZ04a, TZ04b].We will discuss this issue again in §6.2.

In the studies of computability theories, we assume the continuity principle [TZ99,

TZ04a]:

Computability =⇒ Continuity

(This principle is ignored in [BCSS98].)

The While programming language is an imperative language with the basic op-

erations of concurrent assignments, sequential composition, conditional and ‘while’

loops. The syntax and semantics of the While language are strictly defined, using

“algebraic operational semantics”.

1. Introduction 3

We will focus on an N-standard topological partial algebra R, which is formed by

the “N-standardization” of the ring of reals, by adding the two boolean valued partial

operations:

eqp, lessp : R2 ⇀ B

It follows from the continuity principle that these operations have to be partial.

(This is because the real numbers are connected and the booleans are discrete, so the

only total continuous functions from real to boolean are constants.)

Abstract models of computations such as the While language, with partial basic

operations on R, suffer from a limitation, namely the inability to implement interleav-

ing or dovetailing. The problem is that when interleaving two processes, one process

may converge and the other diverge locally (because of the partial basic operations).

The resulting process will then diverge, whereas we would want it to converge. Thus

we cannot even prove that the union of two semicomputable sets is semicomputable!

(Concrete models do not have this limitation.)

To correct this deficiency, we establish two enhancements of the While language

and construct two new languages: WhileOR and While∃N.

In the WhileOR language, we introduce a strong (Kleene) disjunction operation

OR, which converges to true if either component converges to true, even if the other

one diverges. By means of this, interleaving of finitely many processes can be simu-

lated at the abstract level.

The While∃N language includes a strong ‘Exist’ construct over the naturals:

xB := Exist z : P (t, z)

1. Introduction 4

where z : nat and P is a boolean-valued procedure. By means of this, interleaving of

infinitely many processes can be simulated at the abstract level.

We will study the structure of semicomputable sets in R, where a set is said to

be (for example) While semicomputable if it is the domain of a While computable

function, or the halting set of a While procedure.

1.2 Objectives

In this thesis, we will prove certain structure theorems for semicomputable sets in R.

For sets of reals:

(1) WhileOR semicomputable over R ⇐⇒

countable union of effective sequence of disjoint algebraic intervals.2,3

(2) While∃N semicomputable over R ⇐⇒

countable union of an effective sequence of algebraic intervals.

(3) While∃N semicomputable over R ⇐⇒

countable union of an effective sequence of rational intervals.4

We have no structure theorem for While semicomputability, only a partial result:

(4) For sets of reals:

(a) While semicomputable =⇒ countable union of effective sequence of

rational intervals;

2By “interval” we will always mean open interval of reals.
3An algebraic interval is an interval between two algebraic numbers (roots of polynomials).
4A rational interval is an interval between two rational numbers.

1. Introduction 5

(b) countable union of an effective sequence of disjoint rational intervals =⇒
While semicomputable

Notice that in (1) and (4), we need disjointedness because the While and WhileOR

languages cannot implement interleaving on infinitely many of processes over partial

algebras. For that we need the ‘Exist’ construct, as in (2) and (3).

The main steps in proving these results are:

(a) Engeler’s Lemma, which states (roughly) that a semicomputable set can be

expressed as the disjunction of an effective sequence of booleans. It is proved

by constructing a computation tree for the procedure being considered.

(b) The Canonical Form Lemma for booleans over R, which states that a boolean

term over R can be expressed as a finite disjunction of finite conjunctions of

polynomial inequalities.5

(c) The Characterization Lemma for booleans over R, which states that a boolean

term with only one real variable defines a union of finitely many algebraic in-

tervals.

Note that Engeler’s Lemma applies to all standard partial algebras, whereas the

Canonical Form Lemma and Characterization Lemma apply only in special cases,

such as While computability on R.

The sequence of booleans given by Engeler’s Lemma for While (OR)6 has a seman-

tic disjointedness property, which is used in the “=⇒” direction of the proof of (1).

5A polynomial inequality is a boolean term p(x) > 0, where p(x) is a polynomial with integer
coefficients.

6While(OR) means that the case fits both the While and WhileOR languages.

1. Introduction 6

This property does not hold for While∃N, because of the special nature of the asso-

ciated “computation hypertree”, which is not strictly a tree, but a directed acyclic

graph (DAG).

1.3 Overview of the thesis

Chapter 2 gives the fundamental definitions of signature, algebra, standard and N-

standard algebra and topological partial algebra, and a description of the topological

partial algebra R, which is used throughout the thesis.

In Chapter 3, we give the syntax and semantics of the While , WhileOR and

While∃N languages. Our semantic definition follows the algebraic operational se-

mantics of [TZ00].

Chapter 3 also defines the notions of computability, relative computability, semi-

computability and projective semicomputability over the While language and its

variants.

In Chapter 4 we prove Engeler’s Lemma for the While , WhileOR and While∃N

languages over N-standard partial algebras.

To prove this Lemma, two kinds of computation trees are constructed, one for the

While (OR) languages and the other, the “hypertree” for the While∃N language.

This chapter was found to be the most mathematically challenging of the thesis.

Chapter 5 gives the main results of the thesis, namely the Structure Theorems,

listed in §1.2.

Finally, this chapter also gives a proof of the theorem that While∃N semicom-

putability on R is closed under projection, i.e., a projection of a While∃N semicom-

putable set in R is again While∃N semicomputable. This result is interesting because

1. Introduction 7

it does not hold in general over many-sorted algebras; projective semicomputability

is generally more powerful (and less algorithmic) than semicomputability [TZ00]. We

do not know if the result also holds for While and WhileOR.

Chapter 2

Basic Concepts

In this chapter, we introduce the basic concepts used in this thesis, including sig-

nature, partial algebras, standard algebras, N-standard algebras, array algebras and

topological algebras. We give examples of such algebras, specifically, the topological

partial algebra R of real numbers, which will be central to our investigations.

Most of the material in this chapter is taken from [TZ99, TZ00], adapted to partial

algebras.

2.1 Signatures

Definition 2.1 (Many-sorted signatures). A many-sorted signature Σ is a pair

〈Sort(Σ),Func (Σ)〉 where

(a) Sort(Σ) is a finite set of sorts.

(b) Func (Σ) is a finite set of (primitive or basic) function symbols

F : s1 × · · · × sm → s (m ≥ 0)

8

2. Basic Concepts 9

Each symbol F has a type s1 × · · · × sm → s, where m ≥ 0 is the arity of F, and

s1, . . . , sm ∈ Sort(Σ) are the domain sorts and s ∈ Sort(Σ) is the range sort

of F. The case m = 0 corresponds to constant symbols; we then write F : → s.

Definition 2.2 (Product types over Σ). A product type over Σ, or Σ-product

type, is a symbol of the form s1 × · · · × sm (m ≥ 0), where s1, . . . , sm are sorts of

Σ, called its component sorts. We write u, v, w . . . for Σ-product types.

For a Σ-product type u and Σ-sort s, let Func (Σ)u → s denote the set of all

Σ-function symbols of type u → s.

Definition 2.3 (Function types). Let A be a Σ-algebra. A function type over Σ,

or Σ-function type, is a symbol of the form u → s, with domain type u and range

type s, where u is a Σ-product type. We define FuncType (Σ) to be the set of

Σ-function types, denoted τ , τ ′,

Definition 2.4 (Σ-algebras). A Σ-algebra A has, for each sort s of Σ, a non-

empty set As, called the carrier of sort s, and for each Σ-function symbol F :

s1 × · · · × sm → s, a (not necessarily total) function FA : As1 × · · · × Asm ⇀ As
1.

For a Σ-product type u = s1 × · · · × sm, we define

Au =df As1 × · · · × Asm .

Thus x ∈ Au iff x = (x1, . . . , xm), where xi ∈ Asi
for i = 1, . . . , m. So each

Σ-function symbol F : u → s has an interpretation FA : Au ⇀ As. If u is empty,

i.e., F is a constant symbol, then FA is an element of As.

1We use ‘⇀’ to denote partial functions.

2. Basic Concepts 10

The algebra A is total if FA is total for each Σ-function symbol F. Without such

a totality assumption, A is called partial. In this thesis we deal mainly with partial

algebras.

We will write Σ(A) for the signature of an algebra A.

Example 2.5 (Booleans). The signature of booleans is of fundamental importance.

It is defined as

signature Σ(B)

sorts bool

functions true, false : → bool,

and, or : bool2 → bool,

not : bool → bool

The algebra B of booleans contains the carrier B = {tt, ff} of sort bool, and, as

constants and functions, the standard interpretations of the function and constant

symbols of Σ(B).

Note that for convenience, we use ‘∧’, ‘∨’ (in infix) and ‘¬’ in place of ‘and’ ‘or’

and ‘not’ respectively.

2. Basic Concepts 11

Example 2.6 (Naturals). The signature of naturals is defined as

signature Σ(N0)

sorts nat

functions 0 : → nat,

suc : nat → nat

The corresponding algebra of naturals N0 consists of the carrier N={0,1,2,...} for

sort nat and functions 0N : → N, sucN:N→ N.

Definition 2.7 (Reducts and expansions). Let Σ and Σ ′ be signatures.

(a) We write Σ ⊆ Σ ′ to mean Sort(Σ) ⊆ Sort(Σ ′) and Func (Σ) ⊆ Func(Σ ′).

(b) Suppose Σ ⊆ Σ ′. Let A and A′ be algebras with signatures Σ and Σ ′ respectively.

• The Σ-reduct A′|Σ of A′ is the algebra of signature Σ, consisting of the

carriers of A′ named by the sorts of Σ and equipped with the functions of

A′ named by the function symbols of Σ.

• A′ is a Σ ′-expansion of A if and only if A is the Σ-reduct of A.

Definition 2.8 (Σ-variables). For each Σ-sort s, there are (program) variables

as, bs, ..., xs, ys, ... of sort s. Let Var s(Σ) be the class of variables of sort s, and

Var(Σ) be the class of all Σ-variables, x,y,....

Definition 2.9 (Σ-terms). Let Term(Σ) be the class of Σ-terms t, . . ., and Terms(Σ)

the class of Σ-terms of sort s, defined by

ts ::= xs|F(ts1
1 , . . . , tsm

m)|if b then ts1 else ts2 fi

2. Basic Concepts 12

where F ∈ Func (Σ)u → s, u = s1 × · · · × sm, b is a boolean term, i.e., a term of sort

bool. (We are assuming here that bool ⊆ Sort(Σ)). We write t : s to indicate that

t ∈ Terms. Further,

We write TermTup(Σ) for the class of all tuples of distinct Σ-terms, and for

u = s1 × ...× sm, TermTupu for the class of u-tuple of terms, i.e.,

TermTupu =df Terms1 × ...×Termsm

we write t : u to indicate that t is a u-tuple of terms, i.e., a tuple of terms of sorts

s1, . . . , sm.

We will often write Var for Var(Σ), Term for Term(Σ), etc.

Definition 2.10 (Closed terms over Σ). We define the class T (Σ) of closed terms

over Σ, and for each Σ-sort s, the class T (Σ)s of closed terms of sort s. These are

generated inductively by the rule:

ts ::= F(ts1
1 , . . . , tsm

m)|if b then ts1 else ts2 fi

where F ∈ Func (Σ)u → s u = s1 × · · · × sm, tsi
i are closed terms for 1 ≤ i ≤ m and b

is a boolean closed term,

Note that the implicit base case of this inductive definition is the case that m = 0,

which yields: for all constants c : → s, c() ∈ T (Σ)s. In this case we write c instead

of c(). Hence if Σ contains no constants, T (Σ) is empty.

2. Basic Concepts 13

Definition 2.11 (Value of closed terms). For a Σ-algebra A and t ∈ T (Σ)s, we

define the value tA ∈ As of t in A by structural induction on t:

F(t1, . . . , tm)A ' FA((t1)A, . . . , (tm)A)

(if b then t1 else t2 fi)A '





(t1)A if bA = tt,

(t2)A if bA = ff,

↑ otherwise;

where “↑” means the evaluation diverges or is undefined, (and correspondingly, “↓”
means the evaluation converges) and “'” means that either both sides diverge or

converge to same value.

In particular, for m=0, i.e., for a constant c : → s, cA = cA.

Definition 2.12 (Default terms; Default values).

(a) For each sort s, we pick a closed term of sort s, selected by the instantiation

assumption. We call this the default term of sort s, written δs. Further, for

each product type u = s1 × · · · × sm of Σ, the default (term) tuple of type u,

written δu, is the tuple of default terms (δs1 , . . . , δsm).

(b) Given a Σ-algebra A, for any sort s, the default value of sort s in A is the

value δs
A ∈ As of the default term δs;(which assigned by the instantiation

assumption), and for any product type u = s1 × · · · × sm, the default (value)

tuple of type u in A is the tuple of default values δu
A = (δs1

A , . . . , δsm
A) ∈ Au.

2. Basic Concepts 14

Assumption 2.13 (Instantiation). In this thesis, we will assume: For each Σ-sort

s, there is a closed term t : s such that for each Σ-algebra with which we deal, tA ↓.

2.2 Standard signatures and algebras

Recall the algebra B of booleans defined in Example 2.5.

Definition 2.14 (Standard signatures). A signature Σ is standard if Σ(B) ⊆ Σ.

Definition 2.15 (Standard algebras). Given a standard signature Σ, a Σ-algebra

A is a standard algebra if it is an expansion of B.

Any many-sorted signature Σ can be standardized to a signature ΣB, by adjoining

the sort bool together with the standard boolean operations; and, correspondingly,

any algebra A can be standardized to an algebra AB by adjoining the algebra B.

Assumption 2.16 (Standardness). In this thesis, we will assume:

All signatures Σ and Σ-algebras A are standard.

2.3 N-standard signatures and algebras

We standardize and extend N0 to include equality (eqN) and order (lessN) on the

naturals.

2. Basic Concepts 15

Example 2.17 (Naturals with order). The signature of the standard algebra N

of the naturals is defined as

signature Σ(N)

import N0, B

functions eqN, lessN : nat2 → bool

Definition 2.18 (N-standard signature). A standard signature Σ is called N-

standard if

Σ(N) ⊆ Σ

Definition 2.19 (N-standard algebra). The corresponding Σ-algebra A is N-

standard if it is an expansion of N.

Any many-sorted standard signature Σ can be N-standardized to a signature ΣN,

by adjoining the sort nat together with the standard arithmatic operations; and,

correspondingly, any standard algebra A can be N-standardized to an algebra AN by

adjoining the algebra N.

2. Basic Concepts 16

2.4 Topological partial algebras

Definition 2.20 (Continuity). Given two topological spaces X and Y , a partial

function f : X ⇀ Y is continuous if for every open V ⊆ Y ,

f−1[V] =df {x ∈ X|x ∈ dom(f) and f(x) ∈ V }

is open in X.

Remarks 2.21.

(a) dom(f) = f−1[Y] is open in X because Y is open.

(b) We will see thatR (defined in Example 2.24), like all topological algebras, satisfies

the Continuity Principle [TZ99, Chapter 6].

Computability =⇒ Continuity.

In other words, we assume that all computable functions are continuous.2

Definition 2.22 (Topological partial algebra). A topological partial algebra is

a partial Σ-algebra with topologies on the carriers such that each of the basic Σ-

functions is continuous.

Definition 2.23 (N-standard topological partial algebra). An N-standard topo-

logical partial algebra is a topological partial algebra which is also an N-standard

algebra, such that the carriers B and N have the discrete topologies and the carrier

R has the usual (Euclidean) topology.

2We note that all the well known concrete models over R [PER89, Wei00] satisfies this principle.

2. Basic Concepts 17

Examples 2.24 (Real algebras). The ring of reals R0 has a carrier R of sort real:

algebra R0

carriers R

functions 0, 1 : → R,

+,× : R2 → R,

− : R2 → R

Next we standardize and N-standardize R0 to form the N-standard real algebra

RB,N
0

algebra RB,N
o

import Ro,N

carriers R

Note that B ⊂ N.

Then we further expand RB,N
0 to a partial algebra:

algebra R
import RB,N

o

functions lessp:R2 ⇀B

eqp:R2 ⇀B

2. Basic Concepts 18

where lessp : R2 ⇀ B, and eqp : R2 ⇀ B are partial functions defined by:3

lessp(x, y) =





tt if x < y

ff if x > y

↑ if x = y

eqp(x, y) =




↑ if x = y

ff if x 6= y

We will sometimes use the infix ‘<’ and ‘=’ for ‘lessp’ and ‘eqp’ respectively.

The motivation for the above definition of lessp and eqp was to make these functions

continuous, in accordance with the Continuity Principle, as discussed in §1.1.

3These definitions are motivated by the properties of theses operations in the concrete models
[PER89, Wei00].

2. Basic Concepts 19

The algebraR becomes a topological partial algebra by giving R its usual topology,

and B and N the discrete topology. This topological partial algebra will be central to

our investigation in this thesis. Because of its importance, we write it out in full:

algebra R
carriers R,B,N

functions 0, 1 : → R,

+,× : R2 → R,

− : R2 → R

lessp: R2 ⇀B

eqp: R2 ⇀B

true, false: → bool

and, or: bool2 →bool

not: bool→bool

0N: →N
sucN: N→N
lessN: N2 →B
eqN: N2 →B

Remark 2.25. The algebra R satisfies the Instantiation Assumption 2.12. We take

the default values to be δreal = 0, δnat =0N, and δbool = false.

Chapter 3

While computation on standard

partial algebras

In this chapter we study a number of high level programming languages based on the

‘while’ construct, applied to a standard signature Σ. We also give semantics for these

languages relative to a partial Σ-algebra A, and define the notions of computability,

semicomputability and projective semicomputability for these languages on A. Most

of the definitions are adapted from [TZ00], for partial algebras.

The chapter begins by defining the syntax and semantics of the imperative While

programming language. Then (in Section 3.9) we extend this language with special

programming constructs to form two new languages: WhileOR and While∃N.

3.1 Syntax of While(Σ)

We define the syntax of the While programming language over the signature Σ.

20

3. While computation on standard partial algebras 21

Definition 3.1 (Atomic statements). AtSt(Σ) is the class of atomic statements

Sat, ..., defined by:

Sat ::= skip | x := t

where x := t is a concurrent assignment, i.e., for some product type u, x is a tuple of

distinct variables of type u and t : u.

Definition 3.2 (Statements). Stmt(Σ) is the class of statements S, ..., generated

by:

S ::= Sat | S1 ; S2 | if b then S1 else S2 fi | while b do S0 od

Definition 3.3 (Procedures). Proc(Σ) is the class of procedures P,Q, ..., which

have the form:

P ≡ proc D begin S end

where D is the variable declaration and the statement S is the body. Here D has the

form

D ≡ in a : u out b : v aux c : w

where a, b and c are tuples of input variables, output variables and auxiliary variables

respectively.

3. While computation on standard partial algebras 22

We stipulate:

(i) a, b and c each consist of distinct variables, and they are pairwise disjoint,

(ii) every variable occurring in the body S must be declared in D (among a, b or

c). 1

If a : u and b : v, then P is said to have type u → v, written P : u → v. Its input

type is u and output type is v. We write Proc(Σ)u→v for the class of Σ-procedure of

type u → v.

Notations 3.4.

(i) We write Stmt for Stmt(Σ), etc.

(ii) We will often drop the sort superscript or subscript s.

(iii) For any expression E, we define Var(E) to be the set of variables in E.

(iv) We use ‘≡’ to denote syntactic identity between two expressions.

3.2 States

Definition 3.5 (State). For each standard Σ-algebra A, a state on A is a family

〈σs | s ∈ Sort(Σ)〉 of functions

σs : Var s → As.

Let State(A) be the set of states on A, with elements σ,

1This will not hold for the auxiliary variable in the ‘Exist’ construct to be described below. (See
Remarks 3.22(b).)

3. While computation on standard partial algebras 23

Notation 3.6. For x ∈ Var s, we write σ(x) for σs(x). Also, for a tuple x ≡
(x1, . . . , xm), we write σ[x] for (σ(x1), . . . , σ(xm)).

Definition 3.7 (Variant of a state). Let σ be a state over A, x ≡ (x1, . . . , xn) : u

and a = (a1, . . . , an) ∈ Au (for n ≥ 1). We define σ{x/a} to be the state over A

formed from σ by replacing its value at xi by ai for i = 1, . . . , n. That is, for all

variables y:

σ{x/a}(y) =





σ(y) if y 6≡ xi for i = 1, . . . , n

ai if y ≡ xi.

3.3 Semantics of terms

For t ∈ Terms, we define the function

[[t]]A : State(A) ⇀ As

where [[t]]Aσ is the value of t in A at state σ.

The definition is by structural induction on t:

[[x]]Aσ = σ(x)

[[F(t1, . . . , tm)]]Aσ '




FA([[t1]]
Aσ, . . . , [[tm]]Aσ) if [[ti]]

Aσ↓ for 1 ≤ i ≤ m

↑ otherwise

[[if b then t1 else t2 fi]]Aσ '





[[t1]]
Aσ if [[b]]Aσ ↓ tt

[[t2]]
Aσ if [[b]]Aσ ↓ ff

↑ otherwise.

3. While computation on standard partial algebras 24

For a tuple of terms t = (t1, . . . , tm), we use the notation

[[t]]Aσ =df ([[t]]Aσ, . . . , [[tm]]Aσ).

Remarks 3.8.

(a) For a closed term t, [[t1]]
Aσ = tA as defined in Definition 2.11, as can easily be

proved by structural induction on t.

(b) Evaluation of Σ-functions is strict, i.e., in the evaluation of a term F(t1, ..., tm)

at state σ, if any of the subterm ti diverges at σ, the result diverges.

Definition 3.9. For any M ⊆ Var , and states σ1 and σ2, σ1 ≈ σ2 (rel M) means

for all x ∈ M , σ1(x) = σ2(x).

Lemma 3.10 (Functionality lemma for terms). For any term t and states σ1

and σ2, if σ1 ≈ σ2 (rel Var(t)), then [[t]]Aσ1 ' [[t]]Aσ2.

Proof . By structural induction on t.

3.4 Algebraic operational semantics

Algebraic operational semantics is a general method for defining the meaning of a

statement S, in a wide class of imperative programming languages, as a partial state

transformation.

[[S]]A : State(A) ⇀ State(A).

3. While computation on standard partial algebras 25

We define this via a (partial) computation step function

CompA : Stmt × State(A)× N ⇀ State(A) ∪ {∗}

The idea is that CompA(S, σ, n) is the nth step, or the state at the nth time

cycle, in the computation of S on A, starting in state σ.

The symbol ‘*’ is a new object which indicates that the computation is over. Thus

if for any n, CompA(S, σ, n) = ∗, then for all m ≥ n CompA(S, σ,m) = ∗.
Similarly, if for some n, CompA(S, σ, n)↑ , then for all m ≥ n, CompA(S, σ,m) ↑

.

Assume first, that for the language under consideration there is a class AtSt ⊂
Stmt of atomic statements for which we have a (partial) meaning function

〈|S|〉A : State(A) ⇀ State(A)

for S ∈ AtSt ; and secondly, that we have two functions

First : Stmt → AtSt

Rest A : Stmt × State(A) ⇀ Stmt ,

where, for a statement S and state σ, First(S) is an atomic statement which gives

the first step in the execution of S (in any state), and Rest A(S, σ) is a statement

which gives the rest of the execution in state σ.

3. While computation on standard partial algebras 26

Then, we define the “one-step computation of S at σ” function

CompA
1 : Stmt × State(A) ⇀ State(A)

by

CompA
1 (S, σ) ' 〈|First(S)|〉Aσ.

Finally, define the computation step function CompA by a simple recursion on n:

CompA(S, σ, 0) = σ

CompA(S, σ, n + 1) '





∗ if n > 0 and S is atomic

CompA(Rest A(S, σ),CompA
1 (S, σ), n)

otherwise.

Note that for n = 1, this yields

CompA(S, σ, 1) ' CompA
1 (S, σ).

If we put σn = CompA(S, σ, n), then the sequence of states

σ = σ0, σ1, σ2, . . . , σn, . . .

is called the computation sequence generated by S at σ. There are three possibilities

for the sequence:

(a) it terminates in a final state σl, where CompA(S, σ, l + 1) = ∗;

(b) it is infinite (global divergence);

3. While computation on standard partial algebras 27

(c) it is undefined from some point on (local divergence).

In case (a) the computation has an output, given by the final state; in case (b)

the computation is non-terminating, with infinitely many computation steps, and

has no output; and in case (c) the computation is also non-terminating, and has no

output, because the state at one of the computation steps is undefined, as a result of

a divergent computation of a term.

Now we are ready to derive the i/o (input/output) semantics. First we define the

length of a computation of a statement S, starting in state σ, as the function

CompLengthA : Stmt × State(A) ⇀ N

by

CompLengthA(S, σ) =





least n s.t. CompA(S, σ, n + 1) = ∗
if such an n exists

↑ otherwise.

Note that CompLengthA(S, σ)↓ in case (a) above only. Then, we define

[[S]]A(σ) ' CompA(S, σ,CompLengthA(S, σ)).

Lemma 3.11 (Functionality lemma for computation steps). Suppose that

Var(S)⊆M . If σ1 ≈ σ2 (rel M), then for all n ≥ 0,

CompA(S, σ1, n) ≈ CompA(S, σ2, n) (rel M)

Proof . By induction on n, using Functionality Lemma (3.10) for terms.

3. While computation on standard partial algebras 28

Lemma 3.12 (Functionality lemma for statements). Suppose that Var(S)⊆M .

If σ1 ≈ σ2 (rel M), then either

(i) [[S]]Aσ1 ↓ σ′1 and [[S]]Aσ2 ↓ σ′2 (say), where σ1 ≈ σ2 (rel M), or

(ii) [[S]]Aσ1 ↑ and [[S]]Aσ2 ↑.

Proof . By the Functionality Lemma (3.11) for computation steps.

3.5 Operational semantics of statements

We now apply the above theory to the language While(Σ).

There are two atomic statements: skip and concurrent assignment. We define

〈|S|〉A for these:

〈|skip|〉Aσ = σ

〈|x := t|〉Aσ ' σ{x/[[t]]Aσ}

Next we define First and Rest A by structural induction on S ∈ Stmt .

Case 1. S is atomic.

First(S) = S

Rest A(S, σ) = skip.

Case 2. S ≡ S1; S2.

First(S) = First(S1)

Rest A(S, σ) '




S2 if S1 is atomic

Rest A(S1, σ); S2 otherwise.

3. While computation on standard partial algebras 29

Case 3. S ≡ if b then S1 else S2 fi.

First(S) = skip

Rest A(S, σ) '





S1 if [[b]]Aσ = tt

S2 if [[b]]Aσ = ff

↑ if [[b]]Aσ ↑.

Case 4. S ≡ while b do S0 od

First(S) = skip

Rest A(S, σ) '





S0; S if [[b]]Aσ ↓ tt

skip if [[b]]Aσ ↓ ff

↑ if [[b]]Aσ ↑.

The following lemma shows that the i/o semantics, derived from our algebraic

operational semantics, satisfies certain desirable properties.

Lemma 3.13.

(i) For S atomic, [[S]]A ' 〈|S|〉A, i.e.,

[[skip]]Aσ = σ

[[x := t]]Aσ ' σ{x/[[t]]Aσ}

(ii)

[[S1; S2]]
Aσ ' [[S2]]

A([[S1]]
Aσ).

3. While computation on standard partial algebras 30

(iii)

[[S ≡ if b then S1 else S2 fi]]Aσ '





[[S1]]
Aσ if [[b]]Aσ ↓ tt

[[S2]]
Aσ if [[b]]Aσ ↓ ff

↑ if [[b]]Aσ ↑.

(iv)

[[S ≡ while b do S0 od]]Aσ '





[[S; while b do S od]]Aσ if [[b]]Aσ ↓ tt

σ if [[b]]Aσ ↓ ff

↑ if [[b]]Aσ ↑.

Proof . As in [TZ99, §4.2], adapted to partial algebras.

3.6 While computability

Finally, to conclude the semantics of While programs, if

P ≡ proc in a out b aux c begin S end

is a procedure of type u → v, then its meaning is a function

PA : Au → Av

3. While computation on standard partial algebras 31

defined as follows. For a ∈ Au, let σ be any state on A such that σ[a] = a and σ[b]

and σ[c] have default values by instantiation assumption 2.13. Then

PA(a) '




σ′[b] if [[S]]Aσ ↓ σ′(say)

↑ if [[S]]Aσ ↑.

Note that PA is well defined, by the following Functionality Lemma.

Lemma 3.14 (Functionality lemma for procedures). Suppose

P ≡ proc in a out b aux c begin S end.

If σ1 ≈ σ2 (rel a), and σ1[b] = σ2[b] = δv and σ1[c] = σ2[c] = δw then either

(i) [[S]]Aσ1 ↓ σ′1 and [[S]]Aσ2 ↓ σ′2 (say), where σ1 ≈ σ2 (rel a), or

(ii) [[S]]Aσ1 ↑ and [[S]]Aσ2 ↑.

Proof . The result follows from the Functionality Lemma 3.12, for statements.

Definition 3.15 (While computable function).

(a) A function f on A is said to be computable on A by a While procedure P if

f = PA. It is While computable on A if it is computable on A by some While

procedure.

(b) While(A) is the class of functions While computable on A.

Definition 3.16 (Halting set). The halting set of a procedure P : u → v on A is

the set:

HaltA (P) =df {a ∈ Au|PA(a) ↓}

3. While computation on standard partial algebras 32

Definition 3.17 (While semicomputable set). A set R ⊆ Au is While semi-

computable on A if it is the halting set on A of some While procedure.

Definition 3.18 (Projectively While semicomputable set). A set R ⊆ Au is

projectively While semicomputable on A iff R is the projection of a While semicom-

putable set on A, i.e., there exists a While semicomputable set R′ ⊆ Au×v

∀x ∈ Au(x ∈ R ⇐⇒ ∃y ∈ Av : (x, y) ∈ R′)

Remark 3.19. Generally, projective semicomputability is a more powerful (and less

algorithmic) concept than semicomputability. (But see Theorem 5.55!)

3.7 Nonrecursive procedure calls

In the language While(Σ), we use procedures as a convenient device for defining

functions. We can also use them to define a new kind of atomic statement, the

procedure call

x := P (t),

where P : u → v(say), t is a tuple of terms of type u (the actual parameters) and x

is a tuple of distinct variables of type v.

The semantics of While is then extended by adding the following clause to the

semantics of atomic statements:

〈|x := P (t)|〉Aσ '




σ{x/a}, if PA([[t]]Aσ) ↓ a (say)

↑ if PA([[t]]Aσ) ↑

3. While computation on standard partial algebras 33

However, it is easy to eliminate all such procedure calls from a Whileprogram

statement. That is, the While language with non-recursive procedure calls is se-

mantically equivalent to the While language without such procedure calls [TZ00,

§3.9].

3.8 Relative While computability

Let g be a partial function

g : Au ⇀ Av.

We define the programming language While(g) which extends the language While

by including a special function symbol g of type u → v. This is only used in the con-

text of an “oracle call”

x := g(t)

where t : u and x : v. The semantics of this is given by

〈|x := g(t)|〉Aσ '




σ{x/a}, if gA([[t]]Aσ) ↓ a (say)

↑ if gA([[t]]Aσ) ↑

Similarly, for a tuple of functions g1, ..., gn, we can define the programming lan-

guage While(g1, ..., gn) with oracles g1, ..., gn, or (by abuse of notation) the program-

ming language While(g1, ..., gn).

In this way we can define the notion of While(g1, ..., gn) computability, or While

3. While computation on standard partial algebras 34

computability relative to g1, ..., gn, or in g1, ..., gn, of a function on A.

Similarly we can define the notion of relative While semicomputability of a rela-

tion on A.

Lemma 3.20 (Transitivity of relative computability). If f is While computable

in g1, ..., gm, h1, ..., hn, and g1, ..., gm are While computable in h1, ..., hn, then f is

While computable in h1, ..., hn.

Proof . Suppose that gi is computable by a While(h1, ..., hn) procedure Pi for i =

1, ..., m. Now, given a While(g1, ..., gm, h1, ..., hn) procedure P for f , replace each

oracle call x:=gi(t) in the body of P by the procedure call x:=Pi(t). This results in

a While(h1, ..., hn) procedure which also computes f .

3.9 Expanding While to WhileOR and While∃N

First we extend the While language to form WhileOR language with the two boolean

operations

OR : bool2 ⇀ bool

AND : bool2 ⇀ bool

which we call “strong or” and “strong and” respectively [Kle71, §64], and use:

O and M

as infix notations for OR and AND.

3. While computation on standard partial algebras 35

We define the semantics of these two operations:

For OR (O):

tt ff ↑
tt tt tt tt

ff tt ff ↑
↑ tt ↑ ↑

For AND (M):

tt ff ↑
tt tt ff ↑
ff ff ff ff

↑ ↑ ff ↑

Remarks 3.21. Note that these two operations are not strict, unlike the boolean

operations and and or (which are part of the standard signatures, see Remarks 3.8(b).)

The OR operation allows us to simulate interleaving or dovetailing at an abstract

level, since it allows us to decide a disjunction of two boolean terms b1Ob1 to be true

if either of these converges to tt (even if the other one diverges).

The AND operation can be defined as dual to OR:

b1 M b2 ⇐⇒ ¬(¬b1O¬b2)

Note that these are different from the “conditional or” and “conditional and”, two

other non-strict boolean operations, which are common in programming languages,

but not useful for our present purpose.

3. While computation on standard partial algebras 36

We also adjoin a new boolean term

Exist z : P (t, z)

to the While language to form a new language While∃N, where the procedure P

has the type u × nat → bool and z is a “new” variable of sort nat. This will occur

only in the context:

xB := Exist z : P (t, z)

We define its semantics as:

[[Exist z : P (t, z)]]Aσ '




tt if ∃n : PA([[t]]Aσ, n) ↓ tt

↑ otherwise.

This corresponds to the following operational semantics: interleave (or “dovetail”)

the computations for:

PA(t, 0), PA(t, 1), PA(t, 2)...

and return tt if and only if any of these procedures terminates and returns tt, otherwise

keep on going.

3. While computation on standard partial algebras 37

This operation allows us to simulate infinite interleaving or dovetailing at the

abstract level. Note that this is different from “evaluating from the left”, which can

be simulated by a simple loop:

find := false;

z:=0;

repeat

find := P (t, z)

z:=z+1;

until find := true.

which will diverge e.g. in case:

PA(t, 1) ↓ ff, P (t, 2) ↑, P (t, 3) ↓ tt.

whereas Exist z : P (t, z) will converge to tt.

The significance of these new program constructs will be explained further in

Chapter 5.

Remarks 3.22.

(a) The ‘Exist’ construct is “weakly” or “globally” deterministic, i.e., deterministic

at abstract level, although the actual choice of z in a concrete implementation

is nondeterministic. This is in contrast to the “choice” operator in [TZ04a],

which is nondeterministic.

3. While computation on standard partial algebras 38

(b) In a procedure containing a statement xB := Exist z : P (t, z), we do not include

the variable z in the declaration, because z is bound by ‘Exist’ and hence invisible

outside Exist z : P (t, z).

(c) The ‘Exist’ construct can be implemented from the ‘choose’ construct [TZ04a],

by

xB := Exist z : P (t, z) ⇐⇒ n := choose z : P (t, z) ; xB := P (t, n)

Lemma 3.23.

(1) A While computable function is WhileOR computable.

(2) A WhileOR computable function is While∃N computable.

Proof. (1): Obvious.

(2): A term b1Ob1 can be simulated as Exist z : P (b1, b2, z), where P is defined

as:

proc

in b1, b2 : bool;

z : nat;

out xB : bool;

begin

if z=1 ∧ b1 then xB:= true;

else if z=2 ∧ b2 then xB:= true;

else xB:= b1 ∨ b2 ;

end.

3. While computation on standard partial algebras 39

Similarly the term b1 M b1 can be simulated as Exist z : P (b1, b2, z), where P is

defined as:

proc

in b1, b2 : bool;

z : nat;

out xB : bool;

begin

if z=1 ∧ ¬ b1 then xB:= false;

else if z=2 ∧ ¬ b2 then xB:= false;

else xB:= b1 ∧ b2 ;

end.

Definition 3.24 (Algebraic term and program term). An algebraic term is (in-

ductively) a term of the form x or F (t1, t2, ..., tm) where x ∈ Var(Σ), F ∈ Func (Σ)

and t1, . . . , tm are algebraic terms. All other terms are called program terms.

Thus program terms may also contain if...fi, OR, AND and Exist.

Note that all algebraic terms are evaluated strictly, which means that if any of

the subterms diverge the whole term diverges. However, for program terms, this is

not always true, since if...fi, OR, AND and Exist are not evaluated strictly.

3.10 While∗ computation on R
Given a standard signature Σ, and standard Σ-algebra A, we expand Σ and A in

two stages: (1) N-standardise these to form ΣN and AN, as in §2.3; and (2) define,

3. While computation on standard partial algebras 40

for each sort s of Σ, the carrier A∗
s to be the set of finite sequence or arrays a∗ over

As, of “starred sort” s∗.

The resulting algebras A∗ have signature Σ∗, which extends ΣN by including, for

each sort s of Σ, the new starred sorts s∗, and certain new function symbols to read

and update arrays. Details are given in [TZ99, TZ00].

While∗(A) computation can then be defined as While computation on A∗ where

the input and output variables are simple, but the auxiliary variables can be arrays.

However, in the case we are interested in, i.e., A = R, it was shown in [TZ00,

§4.9] (actually for total algebras, but applicable also to R) that computation on R
with arrays does not increase computing power, i.e.:

While∗(R) = While(R).

Similarly it can be shown that:

WhileOR*(R) = WhileOR(R).

While∃N∗(R) = While∃N(R).

So in our future investigation, we will not consider While∗(or WhileOR* or

While∃N∗) semicomputability explicitly.

Chapter 4

Computation trees; Engeler’s

Lemma

Engeler’s Lemma [Eng68] is an important theoretical tool for the research of this the-

sis. It states (roughly) that a semicomputable set can be expressed as the disjunction

of an effective infinite sequence of booleans.

A proof of Engeler’s Lemma for the While language on total algebras was given

in [TZ00, §5]. In this chapter we prove Engeler’s Lemma for the While , WhileOR

and While∃N languages on a partial algebra A.

Our proof of Engeler’s Lemma is based on computation trees (in the case of

While (OR)) and computation hypertrees (in the case of While∃N).

For convenience, we first simplify the While programming language, and then,

in the simplified language, we construct computation trees for the WhileOR and

While∃N languages.

41

4. Computation trees; Engeler’s Lemma 42

4.1 While0 language

To simplify the formal development, we restrict the structure of While statements

to a special form, and we show that all statements can be effectively transformed to

this special form.

Definition 4.1 (Special form for While statements). A While statement S is

said to be in special form if (inductively) it has one of the following forms:

• S ≡ skip

• S ≡ x:= F (x1, ..., xn)

• S ≡ if xB then S1 else S2 fi

• S ≡ while xB do S0 od

• S ≡ S1; S2

where x and xi are variables, xB is a boolean variable, and S0, S1 and S2 are also in

special form.

Note the restriction on the assignments (xB:=F (x1, ..., xn)) and boolean tests (xB).

Let While0(Σ) be the While(Σ) language restricted to special form.

Lemma 4.2. All While statements can be effectively transformed into While0 state-

ments.

Proof . We define an effective transformation

S → So

of While statements to While0 statements inductively, by the cases:

4. Computation trees; Engeler’s Lemma 43

• For concurrent assignments S ≡ x := t, where x ≡ x1, ..., xn and t ≡ t1, ..., tn,

define

So ≡ z1 := x1; ...; zn := xn; (x1 := t̂1)
o; ...; (xn := t̂n)o

where z1, ..., zn are new auxiliary variables and t̂i ≡ ti〈(x1, ..., xn)/(z1, ..., zn)〉,
i.e., t̂i is formed by the simultaneous substitution of (z1, ..., zn) for (x1, ..., xn)

in ti for i = 1, .., n.

• For S ≡ x := F (t1, t2, ..., tm), define

So ≡ (z1 := t1)
o; (z2 := t2;)

o ...; (zm := tm)o; x := F (z1, ..., zm).

• For S ≡ if b then S1 else S2 fi, where b is a boolean expression, define

So ≡ xB := b; if xB then So
1 else So

2 fi

where xB is a new boolean variable.

• For S ≡ while b do S0 od, where b is a boolean expression, define

So ≡ (xB := b)o; while xB do So
0 ; (xB := b)o od

where xB is a new boolean variable.

The transformation is clearly

• effective, and

• semantics preserving.

4. Computation trees; Engeler’s Lemma 44

Definition 4.3 (While∃N
0). We define While∃N

0 to be the language formed by adding

to While0 the statement

xB := Exist z : P (t, z).

Remarks 4.4.

(a) From now on, we will only consider While0 programs composed of statements in

special form. To simplify the notation, we will write While instead of While0

and While∃N instead of While∃N
0 .

(b) Notice that in While0 statements, the only way for a program to diverge locally

is by the divergence of the right-hand side of an assignment statement.

4.2 Definability property

A definability predicate is needed in the construction of the computation tree and in

the proof of Engeler’s Lemma.

Definition 4.5 (Definability predicate).

(a) A definability predicate at sort s in a Σ-algebra A is a Σ-boolean expression

defs, containing a distinguished free variable x : s, such that (writing defs(t)

for defs〈x/t〉) for all t ∈ Terms(Σ) and all σ ∈ State(A):

4. Computation trees; Engeler’s Lemma 45

[[defs(t)]]
Aσ =





tt if [[t]]σ ↓
↑ otherwise

(b) The Σ-algebra A has the definability property if it has a definability predicate

at all Σ-sorts.

Lemma 4.6. R has the definability property

Proof . In Σ(R), we can define defs(t) as follows:

At sort nat,

defnat(t) ≡ eqp(t, t)

At sort real,

defreal(t) ≡ lessp(t, t + 1)

For the boolean term Exist z : P (t, z),

defbool(Exist z : P (t, z)) ≡ Exist z : P (t, z)

For any other term t of sort bool,

defbool(t) ≡ or(t, not t)

4. Computation trees; Engeler’s Lemma 46

4.3 Gödel numbering of syntax

We assume given a family of numerical codings of the classes of syntactic expression

pEq of Σ or Σ∗, i.e., a family gn of effective mappings from expressions E to natural

numbers pEq = gn(E) satisfying:

• pEq increases strictly with the complexity of (E) and in particular, the code of an

expression is larger than those of its subexpressions.

• sets of codes of the various syntactic classes, and their respective subclasses, such as

{ ptq|t ∈ Term}, { ptq|t ∈ Terms } and { pSq|S ∈ Stmt}, etc., are primitive

recursive;

• we can go primitive recursively from codes of expressions to codes of their immediate

subexpressions and vice versa; thus, for example, pS1q and pS2q are primitive

recursive in pS1; S2q and conversely pS1; S2q is primitive recursive in pS1q and

pS2q.

In short, we can primitive recursively simulate all operations involved in processing

the syntax of the programming language.

4.4 Computation tree for WhileOR(Σ)

We define a computation tree T [S, x] for a While statement S on R, where

Var(S) ⊆ x : u = u1 × u2 × ... × un. The computation tree T [S, x] is like an

“unfolded flow chart” for S.

This is a simplified version of the computation tree defined in [TZ00, §5.10],

adapted for the While0 language (which we call While now) and for partial al-

gebras.

4. Computation trees; Engeler’s Lemma 47

The root of the tree T [S, x] is labelled ‘s’ (for ‘start’), and the leaves are labelled

‘e’ (for ‘end’). The internal nodes are labelled with assignments and boolean tests.

Furthermore, each edge of T [S, x] is labelled with a syntactic state, i.e., a tuple of

terms t ≡ t1, ..., tn with ti ∈ Termx,s. Intuitively, t gives the current state, assuming

execution of S starts in the initial state represented by x.

In the course of the following definition we will make use of the restricted tree

T −[S1, x] which is just T [S, x] without the ‘s’ node.

We will also use the notation T [S, t] for the tree formed from T [S, x] by replacing

all edges labelled t′ by t′〈x/t〉.
The definition is by structural induction on S.

(i) S ≡ skip. Then T [S, x] is:

ns

?

x

ne

(ii) S ≡ xj := F (xj1 , ..., xjm). Then T [S, x] is:

ns

?
x

xj := F (xj1 , ..., xjm)

?

t ≡ (x1, ..., xj−1, F (xj1 , ..., xjm), xj+1, ...xn)

ne

4. Computation trees; Engeler’s Lemma 48

(iii) S ≡ S1; S2. Then T [S, x] is formed from T [S1, x] by replacing each ‘e’ leaf

?

t

ne

by

the tree

?

t

T −[S2, x]

(iv) S ≡ if xB then S1 else S2 fi. Then T [S, x] is:

ns

¡
¡
@

@¡
¡
@

@

xB

Q
Q

Q
Q

Qs

´
´

´
´

+́

?

x x
Y N

x

T −[S1, x] T −[S2, x]

4. Computation trees; Engeler’s Lemma 49

(v) S ≡ while xB do S1 od. For the sake of this case, we temporarily adjoin another

kind of leaf to our tree formalism, labelled ‘i’ (for incomplete computation). Then

T [S, x] is defined as the “limit” of the sequence of trees Tn, where T0 is defined as in

Figure 1 and Tn+1 is formed from Tn by replacing each i-leaf as in Figure 2 by the

tree in Figure 3, where T −
i [S1, t] is formed from T −[S1, t] by replacing all e-leaves in

the latter by i-leaves.

ns

?

s

ni

Figure 1

?

t

ni

Figure 2

4. Computation trees; Engeler’s Lemma 50

¡
¡
@

@¡
¡
@

@

xB

@
@

@@R

¡
¡

¡¡ª

?

t t
Y N

t

T −
i [S1, t]

ne

Figure 3

Remark 4.7. The construction of T [S, x] is effective in S and x. More precisely:

T [S, x] can be coded as an r.e. (recursively enumerable) set of numbers, with index

primitive recursive in pSq and pxq.

4.5 Engeler’s Lemma for While

We will show that the halting set of a While , WhileOR and While∃N procedure can

be expressed as the countable disjunction of an effective infinite sequence of booleans.

We must therefore first consider carefully the different possible semantics of infinite

disjunctions in 3-valued logics1:

1Semantics of finite disjunctions and conjunctions were given by the definitions of the strict and
strong boolean operators (and, or, AND, OR) in Chapter 3 (§3.9)

4. Computation trees; Engeler’s Lemma 51

Discussion 4.8 (Four semantics of infinite disjunctions). Let (bk) be a sequence

of booleans. There are (at least) 4 different “reasonable” semantic definitions

of the infinite disjunction of the bk for 3 valued logics:

∞∨

k=0

bk

(1) Sequential evaluation (i.e., “evaluation from the left”) with two possible outputs

(tt and ↑):

[[
∞∨

k=0

bk]]
Aσ =





tt if ∃k, [[bk]]
Aσ ↓ tt and ∀i < k, [[bi]]

Aσ ↓ ff

↑ otherwise

This definition is While computable, since we can evaluate bk (k = 0, 1, ...) one

by one until:

• for some k, bk converges to tt, and all earlier bj converges to ff, or

• for some k, evaluation of bk diverges and all earlier bj converges to ff (local

divergence), or

• all the bk converge to ff (global divergence).

In the two latter cases evaluation of the infinite disjunction diverges.

(2) Interleaving, or “strong Kleene evaluation” with two possible outputs:

[[
∞∨

k=0

bk]]
Aσ =





tt if ∃k, [[bk]]
Aσ ↓ tt

↑ otherwise

4. Computation trees; Engeler’s Lemma 52

This definition is not (in general) While computable, but it is While∃N com-

putable, by the semantic definition of Exist z : P (t, z) (§3.9). This is the def-

inition we will use in this thesis, e.g. in the formulation of Engeler’s Lemma

4.13.

(3) Sequential evaluation, with three possible outputs (tt, ff and ↑):

[[
∞∨

k=0

bk]]
Aσ =





tt if ∃k, [[bk]]
Aσ ↓ tt and ∀i < k, [[bi]]

Aσ ↓ ff

ff if ∀k, [[bk]]
Aσ ↓ ff

↑ otherwise

This can be viewed as a generalization of Kleene’s weak 3-valued disjunction

[Kle71, §64].

(4) “Strong Kleene evaluation” with three possible outputs:

[[
∞∨

k=0

bk]]
Aσ =





tt if ∃k, [[bk]]
Aσ ↓ tt

ff if ∀k, [[bk]]
Aσ ↓ ff

↑ otherwise

This can be viewed as generalization of Kleene’s strong 3-valued disjunction

[Kle71, §64].

Intuitively, definitions (1) and (2) are “concretely computable” 2 but definitions

(3) and (4) are not.

2Refer to the §1.1 of this thesis.

4. Computation trees; Engeler’s Lemma 53

Definition 4.9 (Strong equivalence of booleans). Two Σ-boolean b1 and b2 are

strongly equivalent over A iff ∀σ ∈ State(A),

[[b1]]
Aσ ↓ tt ⇐⇒ [[b2]]

Aσ ↓ tt

[[b1]]
Aσ ↓ ff ⇐⇒ [[b2]]

Aσ ↓ ff

[[b1]]
Aσ ↑ ⇐⇒ [[b2]]

Aσ ↑

Definition 4.10 (Weak equivalence of booleans). Two Σ-boolean b1 and b2 are

weakly equivalent over A iff ∀σ ∈ State(A),

[[b1]]
Aσ ↓ tt ⇐⇒ [[b2]]

Aσ ↓ tt

Note that weak equivalence of booleans is closed under ‘∧’ and ‘∨’, but not under

‘¬’.

Definition 4.11. For any boolean term b with Var(b) ⊆ x : u, and a ∈ Au, we write

b[a] for [[b]]Aσ ↓ tt for some σ ∈ State(A) where σ[x] = a.

Note that this is well-defined, by the Functionality Lemma (3.10) for terms.

Definition 4.12 (Relation defined by boolean). A Σ-boolean term b with Var(b) ⊆
x : u, is said to define a relation R ⊆ Au (w.r.t x) iff ∀a ∈ Au

a ∈ R ⇐⇒ b[a].

Lemma 4.13 (Engeler’s Lemma for While). If a relation R ⊆ Au is While

semicomputable over a standard partial Σ-algebra A, then R can be defined by the

disjunction of an effective sequence of Σ-booleans over A.

4. Computation trees; Engeler’s Lemma 54

Note 4.14. Here “effective” means that the sequence of Gödel numbers of the

booleans is recursive.

Proof . Suppose R is the halting set in A of the While procedure:

P ≡ proc in a out b aux c begin S end. (4.1)

For each leaf λ of the computation tree T [S, x] there is a boolean bS,λ with vari-

ables among x ≡ (a, b, c) which expresses the conjunction of results of the tests and

definability predicates along the path from the root to λ.

An assignment node x := ts in the path contributes to bS,λ the conjunct of defin-

ability

... ∧ def s(t) ∧ ... ,

which guarantees that the term bS,λ converges only if the evaluation of the term t

converges at this point. If the path goes to the left through a test node xB, we add

the conjunct

... ∧ xB ∧ ...

to bS,λ, and if the path goes to the right through xB, we add the conjunct

... ∧ ¬xB ∧

(Since the boolean test only has the form of a boolean variable xB, we do not need to

add the def bool predicate here.)

4. Computation trees; Engeler’s Lemma 55

We can effectively enumerate the leaves of the computation tree (using Remarks

4.7) to obtain a sequence of leaves λ0, λ1, ..., by increasing the depth, and, at a given

depth, going from left to right. (If we have not reached an nth leaf after searching

through all the nodes of depth less than or equal to n we can return the default value

false, to ensure an infinite output sequence.)

Define HaltS as the countable disjunction of bS,λ:

HaltS ≡df

∞∨

k=0

bS,k

where bS,k ≡df bS,λk
, which expresses the condition under which the computation of

S will eventually halt.

Note we are using the “interleaving 2-output” semantics defined in the case (2)

of Discussion 4.8 for HaltS. Hence for the procedure P of equation 4.1, we can see

that :

PA(a) ↓ ⇐⇒ HaltS[a].

Therefore ∀a ∈ Au

a ∈ R ⇐⇒ PA(a) ↓ ⇐⇒ HaltS[a] ⇐⇒
∞∨

k=0

bS,k[a]

(Note that here “⇐⇒” stands for weak semantic equivalence.)

Hence if a relation R is semicomputable over a standard partial Σ-algebra A, then

it can be expressed as the disjunction of an effective countable sequence of booleans

over A.

4. Computation trees; Engeler’s Lemma 56

Note that the same proof holds for the WhileOR language (with the booleans bS,k

containing ‘OR’ and ‘AND’). Hence we also have:

Corollary 4.15 (Engeler’s Lemma for WhileOR). If a relation R is WhileOR

semicomputable over a standard partial Σ-algebra A, then R can be defined by the

disjunction an effective countable sequence of Σ-booleans over A.

4.6 Computation tree for While∃N

In order to prove Engeler’s Lemma for the While∃N language, we define (inductively)

the computation tree for While∃N statements, following the cases in the definition

of the computation tree in §4.4. We add the case:

(vi) S ≡ xj := Exist z : P (t, z); S2, where P is defined as:

P ≡ proc in a out b aux c begin S ′ end.

Note that if S ≡ xj := Exist z : P (t, z), (with S2 missing), we let S2 ≡ skip.

4. Computation trees; Engeler’s Lemma 57

The tree for S is formed from the tree:

ns

?
x

xj := Exist z : P (t, z)

? ?

......(x,0) (x,1)

T −[S ′, (x, 0)] T −[S ′, (x, 1)]

?

(x,2)

T −[S ′, (x, 2)]

Figure 4

by replacing each ‘e’ leaf of the trees T −[S ′, (x, i)] (i = 0, 1, 2, ...) by the tree

?

t

T −[S2, x]

and then collapsing these multiple occurrences of the subtree T −[S2, x] to form the

tree shown in Figure 5.

4. Computation trees; Engeler’s Lemma 58

ns

?
x

xj := Exist z : P (t, z)

? ?

......(x,0) (x,1)

ne ne ne ne
T −[S ′, (x, 0)] T −[S ′, (x, 1)]

T −[S2, x
′]

?

c1,1

?

c1,2......
?

c2,1

?

c2,2......

?

x′ = (x1, ..., xj−1, true, xj+1, ...xn)

Figure 5

We call the subtrees T −[S ′, (x, i)] (i = 0, 1, 2, ...) appearing in Figure 4 proc-

subtrees of the whole computation tree.

Define a channel in the tree of Figure 5 to be a path through one of the “former

leaves” of a proc-subtree T −[S ′, (x, ī)], namely ci,j in Figure 5, where “i” refers to

the ith proc-subtree, and “j” refers to the jth “former leaf” of the proc-subtree. Note

that in this tree, there are (countably) infinitely many channels from the root to the

4. Computation trees; Engeler’s Lemma 59

subtree T −[S2, x
′]. We can effectively enumerate these channels by renaming channel

ci,j as ck where k = p(i, j)q 3.

Let T [S, x] be a computation tree defined as above. Strictly speaking, T [S, x] is

not a tree, but a DAG (directed acyclic graph). However, if we consider the node

xB:= Exist z : P (t, z) as an atomic node and ignore the internal details of the node, we

get a computation tree just like those constructed in Section 4.4. We call the expanded

tree a hypertree and the expanded node for xB:= Exist z : P (t, z) a hypernode. We can

reduce the hypertree to a reduced tree, and a hypernode to a reduced node, when we

ignore the details of the Exist z : P (t, z) node.

Notice that there are no leaves in the proc-subtrees because we have replaced all

the leaves with the subtree T −[S2, x]. So we can effectively enumerate the leaves of

the hypertree T [S, x] as we did in the proof of Engeler’s Lemma 4.13.

We define a hyperpath to be the route in a hypertree from the root of T [S, x] to a

leaf. At a hypernode of the hypertree, the hyperpath goes through a specific channel.

Similarly, we define a reduced path as a path in the reduced tree, ignoring the details

of the hypernodes.

We exhibit a hyperpath as in Figure 6. The picture shows part of the hypertree.

(Note that the e1, e2, ... are used to denote edges of the hypertree, not syntactic

states.) To simplify the drawing, we ignore the details of the proc-subtree, leaving

only the enumerated channels of each hypernode.

From the root ‘s’ to the leaf ‘e’ of the hypertree, there is one reduced path corre-

sponding to infinitely many hyperpaths, e.g. hyperpath(1, 4) consists of the edge e1,

the channel c1 of the first hypernode, the edges e2, e3, e4, e5, e6, the channel c4 of the

second hypernode, and the edges e7, e8.

3Gödel numbers of pairs will be defined in §5.1.

4. Computation trees; Engeler’s Lemma 60

ns

¡
¡
@

@¡
¡
@

@

?

¡
¡

¡¡ª

@
@

@@R

Choice

?

?
c1 c2 c3......? ?

Assign

?

?
c1 c2 c3......? ?

¡
¡
@

@¡
¡
@

@

?

¡
¡

¡¡ª

@
@

@@R

Choice

Assign

¡
¡
@

@¡
¡
@

@

?

¡
¡

¡¡ª

@
@

@@R

Choice

ne

e1

e2

e3

e4

e5

e6

e7

e8

Figure 6

4. Computation trees; Engeler’s Lemma 61

We can then enumerate all the hyperpaths of each leaf as follows:

Let hyperpath(i1, ..., im) be the hyperpath through the ithk channel at the kth

hypernodes on the route (where k = 1, 2, ...,m, and there are m hypernodes on

the hyperpath). Then we rename the hyperpath(i1, ..., im) as hyperpath(i) where

i = p(i1, ..., im) q.4

Finally, using the enumeration of the leaves of the hypertree as above and the

enumeration of the hyperpaths of each leaf, we can enumerate all hyperpaths of a

computation tree in a straightforward way.

Remarks 4.16.

(a) Notice that in an ‘Exist’ term of Exist z : P (t, z) in the tree, there are (in general)

other Exist z : P ′(t′, z) terms in the procedure P . Then (recursively) we expand

all such proc-subtrees in P so as to form a hypertree without any ‘Exist’ nodes.

(b) On each hyperpath, there are only two kinds of node:

• assignment nodes xj := F (t1, ..., tm) without the ‘Exist’ construct, or

• branching nodes at a boolean variable xB.

(c) To each leaf corresponds (infinitely) many hyperpaths because of the multiple

channels through the hypernodes which lead to that leaf.

(d) Note that hyperpaths which end in leaves are finite. Since any countably branch-

ing tree has only countably many finite paths, it is clear that the set of all hy-

perpaths ending in leaves and hence all booleans, for these paths, is countable.

4Gödel numbers of tuples will be defined in §5.1.

4. Computation trees; Engeler’s Lemma 62

The important thing is to show that they can be effectively listed. This can be

done by an extension of the method used for listing leaves in the computation

tree for While (OR). (See proof of Lemma 4.13.)

We proceed in stages. At stage n, create partial hypertree down to depth n

(only), and at ‘Exist’ node only the first n branches. This has only finitely

many paths ending in leaves. The whole procedure is effective.

Lemma 4.17 (Engeler’s Lemma for While∃N). If a relation R is While∃N semi-

computable over a standard partial Σ-algebra A, then R can be defined by the dis-

junction of an effectively countable sequence of Σ-booleans over A.

Proof . Suppose R is the halting set in A of the While∃N procedure:

P ≡ proc in a out b aux c begin S end. (4.2)

Consider the enumeration of the hyperpaths:

ρ0, ρ1, ρ2, ...

described above. For each hyperpath ρ (not leaf, see Remark 4.16(c)) of the com-

putation tree T [S, x] there is a boolean bS,λ with variables among x ≡ (a, b, c) which

expresses the conjunction of results of the tests and definability predicates from the

root to a leaf of the T [S, x] along ρ.

An assignment node x := t in the hyperpath, where t is not of the form of

Exist z : P (t′, z), contributes to bS,ρ the conjunction

... ∧ def s(t) ∧ ...

4. Computation trees; Engeler’s Lemma 63

which guarantees that the bS,ρ converges only if the evaluation of the term t converges

at this point.

Suppose the hyperpath goes through a test node xB, where the most recent as-

signment to xB was not of the form

xB := Exist z : P (t, z). (4.3)

Then if the hyperpath goes to the left branch we add the conjunctions ... ∧ xB ∧ ...

to bS,ρ, and if the hyperpath goes to the right through xB, we add the conjunctions

... ∧ ¬xB ∧

If the hyperpath goes through a test node xB, and the most recent assignment to

xB was of the form like equation (4.3), then the hyperpath goes only to the left and

bS,ρ is unchanged, (since in this case, xB cannot be false, and adding a conjunct true

is redundant).

Define bS,k ≡df bS,ρk
.

Then the halting set of a procedure

P ≡ proc in a aux c begin S end

is defined by

∞∨

k=0

bS,k

exactly as in the proof of Engeler’s Lemma 4.13 for the While language.

Chapter 5

Structure theorems for

semicomputable sets over R

In this chapter, we present our structure theorems characterizing the While , WhileOR

and While∃N semicomputable sets over R. We will discuss the limitations of the

While language in this regard and show how theWhileOR and the While∃N lan-

guages correct these deficiencies.

In this Chapter we write Σ = Σ(R) and ΣOR for Σ augmented by OR, AND.

Let N, Z, Q, R be the set of natural numbers, integers, rational numbers, and real

numbers respectively.

5.1 Definition and Gödel numbering of syntax:

Definition 5.1 (Gödel numberings of some mathematical objects).

64

5. Structure theorems for semicomputable sets over R 65

(a) Integers. For integers n we define:

pnq =





2 ∗ n if n ≥ 0

−2 ∗ n− 1 otherwise

(b) Pairs. Define:

pair : N2 → N

by

pair(x, y) = 〈x, y〉 = 2x(2y + 1)− 1

Note that in this case the pair function is one-one and onto.

(c) Tuples. Define:

tuple : N∗ → N

by

tuple() = 0

tuple(x1, ..., xn) = 〈n, 〈x1, ..., xn〉〉 = 〈n, 〈x1, 〈x2, 〈...〈xn−1, xn〉...〉〉〉〉

(d) Rational numbers: We can express each rational number r uniquely as m
n+1

,

where m ∈ Z, n ∈ N and gcd(m,n + 1) = 1. This induces, via the Gödel

numberings of integers and of pairs, an effective enumeration or listing of Q.

We then define prq = n, where r is the nth element in the list.

5. Structure theorems for semicomputable sets over R 66

Notes:

(1) The above Gödel numberings of N∗, Z and Q are surjective and therefore give

us effective enumerations of pairs, tuples, integers and rationals.

(2) From now on, by “effective(ly)”, we mean effective in the Gödel numberings of

the mathematical objects referred to.

Definition 5.2. (Inverse functions) The left inverse lt : N → N and right inverse

rt : N→ N are defined as:

lt(〈x, y〉) = x,

rt(〈x, y〉) = y.

Lemma 5.3. The functions pair, lt and rt are primitive recursive.

Proof . See [ZP93, §7.1]

Definition 5.4 (Computable sequence of rationals). A sequence (r0, r1, r2, ...)

of rationals is computable if there is a total recursive function f : N → N such that

f(n) = prnq.

In such a case, a Gödel number of the sequence can be defined as a Gödel number

or index of the function f .

Definition 5.5 (Computable real number). A real number x is computable if

there exists a computable sequence (rn) of rational numbers which converges to x

and a computable modulus of convergence, i.e., a total recursive strictly increasing

function M : N→ N such that:

∀n, |rn − x| < 2−M(n).

5. Structure theorems for semicomputable sets over R 67

A Gödel number of the computable real number is then defined as:

〈e, m〉

where e is an index of the sequence (rn), and m is an index of the modulus of

convergence M .

Lemma 5.6. For each computable real number x, we can effectively construct se-

quences of rational numbers (rn) and (sn) such that (sn) is increasing and (rn) is

decreasing and:

∀n : 0 < (x− rn) < 2−n and

∀n : 0 < (sn − x) < 2−n.

Proof . The index of the computable real number x gives us an effective sequence

(r′n) such that:1

∀n, |r′n − x| < 2−n

Define a sequence (r′′n) by:

r′′n = r′n − 2−(n−1).

Since |r′n − x| < 2−n, we have

x− 2−n < r′n < x + 2n,

1Since the modular function M is increasing, and M(0) ≥ 0, we have M(n) ≥ n by induction on
n.

5. Structure theorems for semicomputable sets over R 68

and therefore:

x− 2−n − 2−n+1 < r′′n < x + 2−n − 2−n+1

x− 2−n−2 − 2−n−1 < r′′n+2 < x + 2−n−2 − 2−n−1.

Furthermore:

r′′n < x− 2−n < x− 2−n−2 − 2−n−1 < r′′n+2 < x. (5.1)

Then we construct an increasing rational sequence (rn) by

rn = r′′2n.

by (5.1) (rn) is increasing, and we can easily verify that

0 < (x− rn) < 2−n.

Symmetrically, we can effectively construct a decreasing rational sequence (sn) such

that:

0 < (sn − x) < 2−n.

Definition 5.7 (Integer polynomials). We write Z[x1, ..., xm] for the set of poly-

nomials in m indeterminates x1, ..., xm with coefficients in Z.

Note that a polynomial p(x1, ..., xm) ∈ Z[x1, ..., xm] defines a polynomial function

p : Rm → R in an obvious way. We give a Gödel numbering of Z[x1, ..., xm] in two

5. Structure theorems for semicomputable sets over R 69

steps:

(a) Code ai ∗ xe1
1 ∗ xe2

2 ∗ xe3
3 ...xem

m as:

gi = 〈paiq, e1, ..., em〉

(b) Then define

p
n∑

i=0

(ai

m∏
j=0

x
ei
j

j)q = 〈g1, ..., gn〉

Definition 5.8 (Degree of a polynomial). For a unary integer polynomial

p(x) =
n∑

i=0

(aix
ei)

define the degree of p:

deg(p) =df max{ei | 0 ≤ i ≤ n and ai 6= 0}

Definition 5.9 (Polynomial inequality). A polynomial inequality is an expression

of the form p(x) > 0, where p is an integer polynomial.

Definition 5.10 (Algebraic numbers).

(a) An algebraic number is a root of an integer polynomial in one indeterminate.

(b) Gödel numbering : For an algebraic number a, define

paq = 〈ppq, k〉

5. Structure theorems for semicomputable sets over R 70

where a is the kth smallest real root of the integer polynomial p.2

(c) Note that we can make this Gödel numbering surjective by letting 〈ppq, k〉 be

the biggest root of p if the polynomial p has fewer than k distinct roots.

Lemma 5.11. Let A, Rc be the set of algebraic real number and computable real

numbers respectively. Then:

Q ⊆ A ⊆ Rc ⊆ R

Note that the above embeddings are effective in the respective Gödel numberings.

In other words, there is a computable function f : N→ N such that if k is the Gödel

number of a rational, the f(k) is the Gödel number of the same number viewed as an

algebraic number, etc.

Definition 5.12 (Algebraic, rational and computable real intervals).

(a) On R, the intervals:

(a, b), (−∞, a), (b,∞)

are called algebraic, rational and computable real intervals if a < b and a and b

are algebraic, rational and computable reals respectively.

2We ignore multiplicity of roots. Also for uniqueness, we can assume that p is the minimal
polynomial for a.

5. Structure theorems for semicomputable sets over R 71

(b) Gödel numberings. We define:

p(a, b)q = 〈〈paq, pbq〉, 0〉
p(b,∞)q = 〈pbq, 1〉

p(−∞, a)q = 〈paq, 2〉

Lemma 5.13. Let (α, β) be an algebraic interval. We can effectively find a sequence

of expanding rational intervals (ri, si) such that

(α, β) =
∞⋃
i=0

(ri, si)

Proof . By Lemmas 5.6 and 5.11.

5.2 Basic algebraic results:

The following results can be found with proofs in standard texts in algebra [Lan90,

Wae64], real analysis [Roy66, Rud76], and constructive analysis [PER89, Wei00].

Theorem 5.14. An integer polynomial of degree n has no more than n real roots.

Theorem 5.15 (Intermediate value theorem). Let f be a function which is con-

tinuous on the closed interval [a, b]. Suppose f(a) and f(b) have different signs. Then

there exists c ∈ (a, b) such that f(c) = 0.

Corollary 5.16. Let p be a unary polynomial and α1 and α2 two consecutive (distinct)

roots of p. Then either

∀x ∈ (α1, α2), p(x) > 0

or ∀x ∈ (α1, α2), p(x) < 0.

5. Structure theorems for semicomputable sets over R 72

Corollary 5.17. A unary polynomial of degree n with m(≤ n) distinct real roots

α1 < ... < αm

defines m + 1 algebraic intervals:

(−∞, α), (α1, α2), ...(αm−1, αm), (αm, ∞),

in each of which p is either only positive or only negative.

Lemma 5.18. For two distinct computable reals c1 and c2, we can effectively decide

whether c1 < c2 or c2 < c1.

Lemma 5.19. Given any unary polynomial p of degree n, we can find, effectively in

ppq:

(1) The number of distinct roots m(≤ n) of p, and, writing these roots as

α1 < α2 < ... < αm :

(2) (a) a rational less than α1,

(b) a rational between αk and αk+1, for 1 ≤ k < m, and

(c) a rational bigger than αm.

Proof . From Sturm’s theorem [Wae64].

5. Structure theorems for semicomputable sets over R 73

5.3 Canonical form for Σ(R) booleans

Note: Unless otherwise stated, the following definitions and lemmas refer to the ΣOR-

language with the Σ-language as a special case.

Definition 5.20. A positive boolean combination of a set of booleans is a (finite)

boolean expression build up from the atoms by ‘∧’, ‘∨’, ‘M’, ‘O’, i.e., without ‘¬’.

Lemma 5.21 (Strong canonical form for booleans over R). A Σ-boolean over

R with variables among x ≡ x1, ..., xn of sort real only, not containing AND, OR, or

Exist, is effectively strongly semantically equivalent over R to positive boolean combi-

nation of equations and inequalities of the form:

p(x) = 0 and q(x) > 0

where p and q are integer polynomials in x.

Proof . First, we can show that:

(a) A term t : real overR with variables among x is effectively semantically equivalent

to a “conditional polynomial” in x over Z in the form:

if b1 → p1 | ... | bk → pk fi

where bi are booleans and pi are integer polynomials for 0 < i ≤ k.

5. Structure theorems for semicomputable sets over R 74

(b) A term t : bool over R with variables among x is effectively strongly equivalent

over R to a boolean combination of equations and inequalities:

p(x) = 0 and q(x) > 0

where p and q are integer polynomials.

Assertions (a) and (b) are proved simultaneously, by structural induction on t.

Next, we convert the boolean combination constructed in (b) to a positive boolean

combination of polynomial equalities and inequalities by eliminating all negations, by

means of the following strong equivalences:

¬(b1 O b2) ⇐⇒ ¬b1 M ¬ b2

¬(b1 M b2) ⇐⇒ ¬b1 O¬ b2

¬(b1 ∨ b2) ⇐⇒ ¬b1 ∧ ¬b2

¬(b1 ∧ b2) ⇐⇒ ¬b1 ∨ ¬b2

¬¬b ⇐⇒ b

¬(p(x) > 0) ⇐⇒ (p(x) < 0) ⇐⇒ (−p(x) > 0)

¬(p(x) = 0) ⇐⇒ (p(x) > 0) ∨ (−p(x) > 0)

5. Structure theorems for semicomputable sets over R 75

Corollary 5.22 (Weak canonical form for booleans over R). A Σ-boolean with

variables among x ≡ x1, ..., xn of sort real only, not containing AND, OR, or Exist,

is effectively weakly semantically equivalent over R to a positive boolean combination

of inequalities of the form:

p(x) > 0

where p is an integer polynomial in x.

Proof . By the semantics of eqp, any conjunction containing a term p(x) = 0 will

either diverge, or converge to ff, and can therefore be deleted from the disjunction

given by Lemma 5.21.

Lemma 5.23 (Characterization Lemma for boolean terms over R). A ΣOR-

boolean with one variable x ∈ R uniquely defines a union of finitely many disjoint

algebraic intervals.

Proof . First convert the boolean to its weak canonical form given by Lemma 5.22.

We then proceed by structural induction in b.

Base case: b ≡ p(x) > 0, where p(x) integer polynomial and x : real. Use

Corollary 5.17.

Induction step: This follows from the fact that the class of finite unions of algebraic

intervals is closed under (binary) union and (binary) intersection.

The proof is straightforward except for a subtle point due to the different semantics

of ‘∨’ and ‘O’. To clarify this, we consider the special case that two booleans each

5. Structure theorems for semicomputable sets over R 76

define a single algebraic interval, say b1 defines (α1, β1), and b2 defines (α2, β2), where:

α1 < α2 < β1 < β2.

Then:

(1) b1 ∧ b2 defines the algebraic interval:

(α2, β1);

(2) b1 M b2 also defines the algebraic interval:

(α2, β1);

(3) b1 ∨ b2 defines the disjoint union of the three algebraic intervals:

(α1, α2) ∪ (α2, β1) ∪ (β1, β2);

(4) b1Ob2 defines the single algebraic interval:

(α1, β2).

This lemma will be used in the proofs of Lemmas 5.43 and 5.45.

5. Structure theorems for semicomputable sets over R 77

Remark 5.24. In the example given in the above proof, the fact that b1 ∧ b2 and

b1 M b2 defines the same interval, whereas b1 ∨ b2 and b1Ob2 do not, is related to the

fact that the former pair are weakly semantically equivalent whereas the latter pair

are not. (See definitions of ‘AND’ and ‘OR’ in §3.9). In this case when x = α2 or

x = β1,

(b1 ∨ b2[x]) ↑ but (b1Ob2)[x] ↓ tt

Note that the following two lemmas (5.26 and 5.28) apply to all standard partial

algebras A.

Definition 5.25 (Semantic disjointedness). A sequence b0, b1, b2, ... of boolean

terms is semantically disjoint over A if for any state σ on A and any n,

[[bn]]Aσ ↓ tt =⇒ (∀i 6= n, [[bi]]
Aσ ↓ ff or [[bi]]

Aσ ↑)

Lemma 5.26 (Disjointedness Lemma). The sequence of computable boolean terms

generated from a WhileOR computation tree as in Lemma 4.13 is semantically dis-

joint.

Proof . Let i, j be distinct natural numbers and bS,i ≡ bS,i1 ∧ ... ∧ bS,im and bS,j ≡
bS,j1 ∧ ...∧ bS,jn . From the definition of bS,k in Lemma 4.13, bS,k defines the path from

the root to the kth leaf of the computation tree of S. Therefore for the path from

the root to the ith leaf and the path from the root to the jth leaf, there must be a

branching node xB where the two paths depart from each other. i.e. ∃l < min(m,n)

such that

bS,i1 ≡ bS,j1 , ...bS,i(l−1)
≡ bS,j(l−1)

,

5. Structure theorems for semicomputable sets over R 78

but

bS,il = ¬(bS,jl
).

So if for some σ, [[bS,i]]
Aσ ↓ tt, then [[bS,il]]

Aσ ↓ tt for all l and so for any j 6= i

bS,j ≡ ... ∧ ¬ bS,il ∧ ... cannot converge to tt.

This Lemma will be used in in the proof of Lemmas 5.36 and 5.37, and hence in

the proof of Structure Theorems 5.52 and 5.49

Remark 5.27. Note that the Disjointedness Lemma does not hold for the boolean

sequence generated from the While∃N computation trees, since (unlike the case with

ordinary computation trees) many hyperpaths in hypertree may end in the same leaf.

(See the definition of “hypertree” in Chapter 4, and Remark 4.16(c).)

Lemma 5.28. If an effective sequence of booleans (bk) is semantically disjoint over

R, then, for all x ∈ Rm,

∞∨

k=0

bk[x]

can be evaluated from the left.3

Proof . Since the bk’s are semantically disjoint, and in R, divergence can only appear

at the boundary points of the algebraic intervals, if for some σ there exists a k such

that [[bk]]
Aσ ↓ tt, then for all i 6= k, [[bi]]

Aσ ↓ ff. Further if for some σ there exists k

such that [[bk]]
Aσ ↑, then there cannot exist bi, such that [[bi]]

Aσ ↓ tt.

3See the definition of “evaluation from the left” in case (1) of Discussion 4.8.

5. Structure theorems for semicomputable sets over R 79

This lemma is crucial in the proof of Lemmas 5.43 and 5.45, where “evaluation

from the left” is implemented as evaluation by a ‘while’ loop. (See Discussion 5.48.)

Next we prepare several lemmas for the structural theorems in the next section.

Lemma 5.29. There are While(R) computable embeddings:

(a) of N into R

ιN : N→ R

(b) of Z into R

ιZ : N→ R

where for any a ∈ Z

ιZ(paq) = a

Proof . (a): By a simple while loop.

(b): Clear.

Lemma 5.30. There is a While(R) computable function:

eval : N× R→ R

such that for any integer polynomial p ∈ Z[x], and a ∈ R:

eval(ppq, a) = p(a)

5. Structure theorems for semicomputable sets over R 80

Proof . The function eval is defined by induction on deg(p).

Note that this is a special case of the term evaluation property (TEP) over R
[TZ00, §4.7]. In fact, this is the main step in proving the TEP for R.

Lemma 5.31. There is a While(R) computable function:

lessQ : N× R ⇀ B

such that for r ∈ Q and x ∈ R:

lessQ(prq, x) ⇐⇒ r < x

where “⇐⇒” is strong semantic equivalence.

Proof . Let r = m
n+1

, then by the assumptions on Gödel numbering in §4.3, we can

primitively recursively retrieve pmq and pnq from prq. Then

r < x ⇐⇒ ιZ(pmq) < (ιN(n) + 1)× x

where “⇐⇒” is strong semantic equivalence.

5. Structure theorems for semicomputable sets over R 81

Lemma 5.32. There is a WhileOR(R) computable function:

lessA : N× R ⇀ B

such that for α ∈ A4 and x ∈ R:

lessA(pαq, x) ⇐⇒ α < x

where “⇐⇒” is strong semantic equivalence.

Proof . By Lemma 5.3, we can effectively retrieve from pαq the Gödel numbers ppq

and pkq, where α is the kth root of p. Then by Lemma 5.30, we have a While

computable function eval such that

eval(ppq, a) = p(a)

Also by Lemma 5.19, we can effectively find two rationals r1 and r2, such that

r1 < α < r2, and α is the only root of p between these two rationals.

There are four cases, which can be effectively distinguished by Sturm’s Theorem:

4A is the set of algebraic numbers, as in Lemma 5.11.

5. Structure theorems for semicomputable sets over R 82

Case 1 :

-x

y = p(x)

r1 r2α α′

We can see that α < x if and only if:

[(r1 < x) ∧ (p(x) > 0)]O[r2 < x]

Note the use of the strong disjunction here! (See Remark 5.33 below.)

Case 2 :

-x

y = p(x)

r1 r2α α′

This reduces to Case 1 by replacing p(x) by −p(x).

5. Structure theorems for semicomputable sets over R 83

Case 3 :

-x

y = p(x)

r1 r2α α′

In this case α is a repeated root of p. Then by choosing r1 and r2 sufficiently close

to α (so that p′(r2) > 0, p′(r1) < 0 and there is no root of p′(x) between r1 and α, or

between α and r2) we have α < x iff:

[(r1 < x) ∧ (p′(x) > 0)]O[r2 < x]

where p′ is the derivative of p.

Case 4 :

-x

y = p(x)

r1 r2α α′

This reduced to Case 3 by replacing p(x) by −p(x).

5. Structure theorems for semicomputable sets over R 84

Note that all the above operations on polynomials are effective; for example, p−pq

and pp′q are primitive recursive in ppq.

Remark 5.33 (Need for strong disjunction). In Case 1, if x = r2, then the

disjunct (r2 < x) will diverge, and so we need ‘O’ to make the whole expression

converge. Similarly for the other cases. (See also Remark 5.24.)

Lemma 5.34. There is a While computable function

InQ : N× real ⇀ bool

such that:

InQ(p(r1, r2)q, x) '





tt if x ∈ (r1, r2)

ff if x < r1 or r2 < x

↑ otherwise

where r1 and r2 are rational numbers.

Proof . By assumptions of Gödel numberings in §4.3, we can primitive recursively

retrieve pr1q and pr2q from p(r1, r2)q and therefore define:

InQ(p(r1, r2)q, x) 'df lessQ(pr1q, x) ∧ (¬ lessQ(pr2q, x))

which is While computable by Lemma 5.31.

5. Structure theorems for semicomputable sets over R 85

Lemma 5.35. There is a WhileOR computable function

InA : N× real ⇀ bool

such that:

InA(p(α, β)q, x) '





tt if x ∈ (α, β)

ff if x < α or β < x

↑ otherwise

where α and β are algebraic numbers.

Proof . Like the proof of Lemma 5.34, except that instead of lessQ, we use lessA,

which is WhileOR computable by Lemma 5.32.

5.4 Characterizations of semicomputable real sets

In this section, we prove the “=⇒” direction of the structure theorems.

Lemma 5.36. If a set R ⊆ R is While semicomputable over R, then R can be

expressed as the countable union of an effective sequence of disjoint algebraic intervals.

Proof . If R ⊆ R is While semicomputable, then by Engeler’s lemma (4.13) for the

While language,

a ∈ R ⇐⇒
∞∨

k=0

bk[a]

5. Structure theorems for semicomputable sets over R 86

for an effective sequence (bk) of booleans. By the Characterization Lemma (5.23)

each bk defines a finite union of effective disjoint algebraic intervals.

By the Disjointedness Lemma (5.26), the sequence (bk) is semantically disjoint over

R, and hence the unions of algebraic intervals defined by different bk’s are disjoint.

Lemma 5.37. If a set R ⊆ R is WhileOR semicomputable over R, then R can be

expressed as the countable union of an effective sequence of disjoint algebraic intervals.

Proof . Like the proof of Lemma 5.36, except that we use Corollary 4.15 (Engeler’s

Lemma for WhileOR) in place of Lemma 4.13 (Engeler’s Lemma for While), and

notice that the Characterization Lemma (5.23) also applies to ΣOR-booleans.

Lemma 5.38. If a set R ⊆ R is WhileOR semicomputable over R, then R can be

expressed as the countable union of an effective sequence of rational intervals.

Proof. From Lemmas 5.37 and 5.13.

Remarks 5.39.

(a) We lose disjointedness here for rational intervals (compared to Lemma 5.37),

because the the sequence of rational intervals generated by Lemma 5.13 are not

disjoint.

(b) We could also have proved this lemma as an immediate consequences of Lemma

5.41 below, in which case we lose the disjointedness of the rationals because of

the failure of semantic disjointedness of the boolean sequence for the hypertrees

for While∃N computation. (See Remark 5.27.)

5. Structure theorems for semicomputable sets over R 87

Lemma 5.40. If a set R ⊆ R is While∃N semicomputable over R, then R can be

expressed as the countable union of an effective sequence of algebraic intervals.

Proof . By Engeler’s Lemma for While∃N (4.17), a While∃N semicomputable set

over R can be expressed as a countable disjunction of ΣOR-booleans, to which the

Characterization Lemma 5.23 still applies.

Lemma 5.41. If a set R ⊆ R is While∃N semicomputable over R, then R can be

expressed as the countable union of an effective sequence of rational intervals.

Proof . By Lemmas 5.40 and 5.13.

Remark 5.42. Note again the lack of disjointedness of the algebraic and rational

sequences obtained by Lemma 5.40 and 5.41 for the While∃N computation hypertree.

5.5 Unions of effective sequences of intervals are

semicomputable

In this section, we will prove the reverse direction of the structure theorems.

Lemma 5.43. The countable union of an effective sequence of disjoint rational in-

tervals is While semicomputable over R.

Proof . An effective sequence of rational intervals gives us a total recursive function

f : N → N such that f(n) is the Gödel number of the nth rational interval. So the

countable union of an effective sequence of disjoint rational intervals is equivalent to

the halting set of the procedure

5. Structure theorems for semicomputable sets over R 88

proc

in r : real;

aux i : nat;

begin

i := 0;

while not(InQ(Pf (i), r))

do i := i + 1 od

end

where Pf is the While(N) (and hence While(R)) procedure which computes f .

By Lemma 5.34, InQ is While computable, and so the above procedure is While

computable.

Remark 5.44. This result is related to Lemma 5.28, which states that a disjunction

of an effective sequence of semantically disjoint booleans can be evaluated “from the

left”, i.e., by a ‘while’ loop.

Lemma 5.45. The countable union of an effective sequence of disjoint algebraic in-

tervals is WhileOR semicomputable over R.

Proof . Exactly the same as previous Lemma, but instead of InQ(f(i), r), we must

use InA(Pf (i), r) which is WhileOR computable, by Lemma 5.35.

5. Structure theorems for semicomputable sets over R 89

Lemma 5.46. The countable union of an effective sequence of algebraic intervals is

While∃N semicomputable over R.

Proof . An effective sequence of algebraic intervals gives us a total While com-

putable function f : N → N such that f(n) returns the Gödel number of the nth

algebraic interval.

Further by Lemma 5.35, there is a WhileOR computable function InA such that

∀x ∈ R:

InA(p(α, β)q, x) ⇐⇒ x ∈ (α, β)

By Lemma 3.23, InA is While∃N computable.

So the countable union of an effective sequence of algebraic intervals is equivalent

to the halting set of the following While∃N procedure:

proc

in a : real;

out b : bool;

begin

b:= Exist z : P (a, z)

end

5. Structure theorems for semicomputable sets over R 90

where P is the procedure defined as:

proc

in a : real;

z : nat;

out b : bool;

begin

b:= InA(Pf (z),a);

end

where Pf : nat ⇀ nat is the While(N) (and hence While(R)) procedure which

computes f.

Lemma 5.47. The countable union of an effective sequence of rational intervals is

While∃N semicomputable over R.

Proof . From Lemma 5.46 (since by Lemma 5.11, a rational interval is an algebraic

interval).

Discussion 5.48. When a sequence of rational or algebraic intervals is disjoint, we

can represent their union as the halting set of a While (OR) procedure (as in Lemmas

5.36 and 5.37), since it can be evaluated from the left, i.e., by a ‘while’ loop.

However when the intervals are not disjoint, their union must be evaluated by a

While∃N procedure, using the ‘Exist’ construct (as in Lemma 5.46).

5. Structure theorems for semicomputable sets over R 91

5.6 Structure theorems for semicomputable sets

over R
We conclude with our three structure theorems for WhileOR and While∃N semicom-

putable sets over R.

Theorem 5.49. A subset of R is WhileOR semicomputable over R if and only if it

can be expressed as a countable union of an effective sequence of disjoint algebraic

intervals.

Proof . By Lemmas 5.45 and 5.37.

Theorem 5.50. A subset of R is While∃N semicomputable over R if and only if it

can be expressed as a countable union of an effective sequence of algebraic intervals.

Proof . By Lemmas 5.46 and 5.40.

Theorem 5.51. A subset of R is While∃N semicomputable over R if and only if it

can be expressed as a countable union of an effective sequence of rational intervals.

Proof . By Lemmas 5.47 and 5.41.

We do not have a structure theorem for While semicomputable sets. We do

however, have a partial result:

5. Structure theorems for semicomputable sets over R 92

Theorem 5.52. For subsets of R,

(a) While semicomputable over R =⇒

union of effective sequence of rational intervals.

(b) union of effective sequence of disjoint rational intervals =⇒

While semicomputable over R.

Proof . (a) By Lemma 5.38.

(b) By Lemma 5.43.

Remark 5.53. See Remarks 5.39 and 5.44, for the reasons that disjointedness is lost

in part (a), but needed in part (b).

5.7 Projectively While∃N semicomputable sets

We now prove that for the While∃N language, projectively semicomputability is

equivalent to semicomputability, i.e., semicomputability is closed under projection

over R.

Lemma 5.54. For a continuous partial function b : Rn ⇀ B, if there exists an n-tuple

of reals x = (x1, ..., xn) such that b(x) ↓ tt, then there exists an n-tuple of rationals

r = (r1, ..., rn) such that b(r) ↓ tt.

Proof . For a continuous function b : Rn ⇀ B, suppose that there exists a real tuple

x = (x1, ..., xm) ∈ Rn such that b(x) ↓ tt. Then there exists δ > 0 such that for all

5. Structure theorems for semicomputable sets over R 93

real tuples y = (y1, ..., yn) in the set:

N(x, δ) =df {(y1, ..., yn)|
√

(x1 − y1)2 + ... + (xn − yn)2 < δ}

b(y) ↓ tt. Because of the density of Q in R, there exists a rational tuple r =

(r1, ..., rn) ∈ N(x, δ).

Theorem 5.55. A set R ⊆ Rn is While∃N projectively semicomputable over R if

and only if R is While∃N semicomputable over R.

Proof . “⇐”: Trivial

“⇒”: Suppose R is projectively semicomputable. Then there exists another rela-

tion R′ ⊂ Rm+n, such that for all x ∈ R :

x ∈ R ⇐⇒ ∃y ∈ Rm(x, y) ∈ R′

⇐⇒ ∃y ∈ Rm∨
k

bk[x, y]

for some effective sequence of Σ-booleans (bk)

by Engeler’s Lemma 4.13 for While , applied to R′,

⇐⇒ ∨
k

∃y ∈ Rmbk[x, y]

⇐⇒ ∨
k

∃r ∈ Qmbk[x, r], by Lemma 5.54

It is not hard to see that we can construct an effective double sequence (bk,l) of

booleans, such that for all k, l, if l = pkq then

bk,l[x] ⇐⇒ bk[x, r]

5. Structure theorems for semicomputable sets over R 94

and:

x ∈ R ⇐⇒
∨

k

∨

l

bk,l[x]. (5.2)

Finally, by a method similar to the proof of Lemma 5.46, we can show that the right

hand side of (5.2) is the halting set of a While∃N procedure.

Essentially, the proof involves replacing existential quantification over R by ex-

istential quantification over Q (using continuity and density of Q in R), and then

replacing the latter by countable disjunctions.

Remarks 5.56.

(a) We do not know if this result holds for While or WhileOR.

(b) In total (non-topological) algebras Rt over the reals, the continuity argument in

the above proof would not work, and in fact, the theorem fails! A counterex-

ample is given in [TZ00, §6.2].

Chapter 6

Conclusion and future work

6.1 Conclusions

In this thesis we investigated computability, or rather semicomputability, for the

While language and certain extensions (WhileOR and While∃N) over a topological

partial algebra R on the reals. We proved Structure Theorems for semicomputable

sets in R:

(1) A subset of R is WhileOR semicomputable over R ⇐⇒

it can be expressed as a countable union of an effective sequence of pairwise

disjoint algebraic intervals.

(2) A subset of R is While∃N semicomputable over R ⇐⇒

it can be expressed as a countable union of an effective sequence of algebraic

intervals.

95

6. Conclusion and future work 96

(3) A subset of R is While∃N semicomputable over R ⇐⇒

it can be expressed as a countable union of an effective sequence of rational

intervals.

We have no structure theorem for the While language, only the partial result.

(4) For subsets of R,

(a) While semicomputable over R

=⇒ union of effective sequence of rational intervals.

(b) union of effective sequence of pairwise disjoint rational intervals

=⇒ While semicomputable over R.

And finally, we showed:

(5) While∃N semicomputability over R is closed under projection.

6.2 Future work and conjectures

We list some future work in this area, and conjectures:

(1) Investigating the structure of semicomputable subsets of Rn for n > 1.

Although the Canonical Form Lemma (5.21) still holds, the Characterization

Lemma (5.23) does not, and so this is a harder problem. Note (again) that

Engeler’s Lemma holds for all standard partial algebras.

In searching for a suitable characterization lemma for the multi-dimensional

case, Strum’s Theorem, is no longer helpful. A more useful approach may be

6. Conclusion and future work 97

the method of cylindrical algebraic decomposition, applied to semialgebraic

sets. 1

(2) To expand R by including division by naturals:

divN(x, n) ≡df
x

n + 1

where x ∈ R and n ∈ N. This is clearly a total function.

This seems fairly straightforward. With this expansion, we can directly embed

Q in R. This makes the proofs of several theorems, such as Theorem 5.55,

easier. The Canonical Form and Characterization Lemmas still hold, as do the

Structure Theorems.

Thus it seems clear that the five structure theorems listed in §6.1 still hold for

the algebra R+divN.

(3) To expand R to an algebra Rdiv, which includes the partial division operation:

div(x, y) ≡df
x

y

where x, y ∈ R.

This expansion is a major step compared to (2). The Canonical Form Lemma

now becomes: a boolean over Rdiv can be expressed as a finite disjunction of

finite conjunctions of rational function inequalities r(x) > 0 where:

r(x) =
p(x)

q(x)
(6.1)

1We are grateful to Dr. Carette for this insight.

6. Conclusion and future work 98

with p(x), q(x) ∈ Z[x].

-

α2α1 α3

x

r(x) = p(x)
q(x)

β1 β2

Figure 7

The important thing to notice is that the zeros and poles of rational functions

are algebraic numbers, since for equation 6.1, the zeros and poles of r(x) are

respectively the roots of p(x) and q(x).

Thus the graph of y = r(x) has a form like in Figure 7.

6. Conclusion and future work 99

with zeros at α1, α2, α3 and poles at β1, β2.

From this it can be seen that the Characterization Lemma still holds for Rdiv.

In fact:

p(x)

q(x)
> 0 ⇐⇒ (p(x)× q(x)) > 0

where “⇐⇒” is weak semantic equivalence.

We conjecture that the three Structure Theorems in §6.1 still hold for Rdiv.

(4) To bridge the gap between an abstract model (e.g. While∃N) and a concrete

model of computation over R (e.g. Weihrauch’s TTE [Wei00])

We have proved (Structure Theorem (3) in §6.1) that for a relation R on R:

R is While∃N semicomputable in R ⇐⇒ R =
⋃

k

Ik (6.2)

where Ik is an effective sequence of rational intervals. On the other hand, Weihrauch

has shown [Wei00] that for his concrete model:

R is TTE-semicomputable ⇐⇒ R =
⋂
j

⋃

k

Ij,k (6.3)

where (Ij,k) is an effective double sequence of rational intervals.

We can try to bridge the gap between (6.2) and (6.3) by generalizing the notion of

semicomputability in R to that of approximable While∃N semicomputability, where a

set R ⊆ Rn is said to be approximably While∃N semicomputable if for some While∃N

6. Conclusion and future work 100

procedure P : nat× real ⇀ bool, we have, writing PR
n (x) =df PR(n, x):

R =
⋂
n

HaltR(PR
n).

We then conjecture that for a set R ⊆ Rn:

R is approximably While∃N semicomputable ⇐⇒ R is TTE semicomputable.

The motivation for this conjecture, and the reason for the terminology “approximably

semicomputable”, is by analogy with the “completeness theorem” in [TZ04a], where

for partial topological algebras A (including R) satisfying certain general conditions,

it was proved that

WhileCC approximable computability ⇐⇒ concrete computability on A.

Here WhileCC is the While language extended by a nondeterministic “countable

choice” operator, and a function f : Au ⇀ Av is said to be approximably WhileCC

computable if for some WhileCC procedure

P : nat× u → v

the sequence of (many-valued) functions

PA
n : Au ⇀ Av

converges or approximates to f (in a suitable sense).

6. Conclusion and future work 101

In other words, for abstract computability to correspond to concrete computabil-

ity, it must be augmented by

(a) a non-deterministic choice operator ‘choose’ on N,

(b) approximability of computations.

Similarly, in the present case, we conjecture that for abstract semicomputability

to correspond to concrete semicomputability, it must be augmented by

(a) the ‘Exist’ operator on N,

(b) approximability, which here means countable intersection.

Note that our ‘Exist’ operator can be viewed as a (weakly deterministic) special

case of the ‘choose’ operator. In fact it can be clearly defined by ‘choose’:

xB := Exist z : P (t, z) ⇐⇒ n := choose z : P (t, z) ; xB := P (t, n).

(See Remarks 3.22 (b, c))

Bibliography

[BCSS98] Lenore Blum, Felipe Cucker, Michael Shub, and Steve Smale. Complexity

and Real Computation. Springer-Verlag, 1998.

[Eng68] E. Engeler. Formal Languages: Automata and Structures. Markham

Publishing Co, 1968.

[Kle71] Stephen Cole Kleene. Introduction to metamathematics. Wolters-

Noordhoff, 1971.

[Lan90] Serge Lang. Undergraduate Algebra. Elementary Mathematics. Springer-

Verlag, 1990.

[PER89] B. Pour-El and Jonathan I. Richards. Computability in Analysis and

Physics. Springer-Verlag, 1989.

[Roy66] H. L. Royden. Real Analysis. The Macmillan Company, sixth edition, 1966.

[Rud76] Water Rudin. Principle of Mathematical Analysis. McGraw-Hill Inc., New

York, third edition, 1976.

[SHT99] V. Stoltenberg-Hansen and J.V. Tucker. Concrete models of computation

for topological algebras. Theoretical Computer Science, 219:347–378, 1999.

102

BIBLIOGRAPHY 103

[TZ99] J.V. Tucker and J.I. Zucker. Computation by ‘while’ programs on topolog-

ical partial algebras. Theoretical Computer Science, 219, pages 379–420,

1999.

[TZ00] J.V. Tucker and J.I. Zucker. Computable functions and semicomputable

sets on many-sorted algebras, volume 5 of Handbook of Logic in Computer

Science, section 1.2, pages 317–523. Oxford University Press, 2000.

[TZ04a] J.V. Tucker and J.I. Zucker. Abstract versus concrete computation on

metric partial algebras. ACM Transactions on Computational Logic, 2004.

To appear.

[TZ04b] J.V. Tucker and J.I. Zucker. Computable total functions on metric algebras,

universal algebraic specifications and dynamical systems. Journal of Logical

and Algebraic Programming, 2004. To appear.

[Wae64] B.L. Van Der Waerden. Modern Algebra, volume 1. Frederick Ungar Pub-

lishing Co., New York, second edition, 1964.

[Wei00] Klaus Weihrauch. Computable Analysis, An Introduction. Springer-Verlag,

2000.

[ZP93] J.I. Zucker and L. Pretorius. Introduction to computability theory. South

African Computer Journal, 9:3–30, 1993.

