1. Introduction

2. Mathematical Preliminaries

3. Programs which Compute Functions

4. G-Computable Functions

5. Primitive Recursiveness

6. Some Techniques for Defining PR Functions

7. PR Codings of Finite Sequences of Numbers

8. The Church-Turing Thesis

9. The Halting Problem; The Universal Function Theorem

10. Recursive Enumerability

11. Enumerability of Total Computable Functions

12. mu-Primitive Recursive Functions

13. `loop' Programs

14. `while' Programs

15. The S-n-m Theorem

16. The Recursion Theorem

17. Rice's Theorem