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Abstract
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1 Introduction

Computability theory (also known as recursive func-
tion theory for historical reasons) originated in the
1930’s in the research of Church, Gédel, Turing, Kleene
and others, who formalised the notion of computable
(or “recursive”) function in different ways, for exam-
ple, by Turing machines, lambda-calculus, definabil-
ity by p-recursive schemes, and definability by sets of
equations. Corresponding to each of these formalisms
is a “Church-Turing Thesis” which identifies comput-
ability by that formalism with intuitive effective com-
putability. In the present exposition we follow a mod-
ern approach, using computability by a simple imper-
ative programming language as our basic notion. This
approach is directly inspired by, and follows closely,
that of [1]. However, we take the notion of com-

putability of partial functions (“partial recursiveness”)
as the basic notion. We have also benefitted from the
by now classic references [2] and [3].

In the short course (10 hours) on which these notes
are based, much important material had to be omit-
ted. Nevertheless it is hoped that these notes may be
useful for an introductory course (or half-course) in
computability theory, or for self-study. In the latter
case, the reader is encouraged to peruse the references
for further topics.

2 Mathematical Preliminaries

We review some basic concepts concerning sets, rela-
tions, functions and predicates.

e Sets and n-tuples
We write a € A to mean that a is an element
of the set A. While the order in which the ele-
ments of a set {a1,---,a,} are written, is irrele-

vant, the order in an n-tuple @ = (a1, --,a,) is
important. Indeed, (a1,---,an) = (b1,---,by) iff
a1 = by, ap = by, If Ay,---, A, are given

sets, Ay X --- x A, denotes the set of all n-tuples
(a1,---,ay) such that a; € Ay,---, a, € A,. We
write A" for A x --- x A.

—_——

n times

e Natural numbers
N ={0,1,2,---} is the set of natural numbers.
By “number” we will mean natural number.

e Relations
An n-ary relation on a set A is a subset of A™,
for n = 1,2,3,---. When n = 2, we speak of a
binary relation on A, and often use infiz notation.
Thus, for example, we write ‘z < y’ for ‘< (z,y)’,
where ‘<’ is the order relation on N. If B and
C are two m-ary relations on A, then their union,



intersection and complement are defined by:

BuC = {deA™deBoradeC},

BnC = {d€A"|de€ Bandde C},

B\C = {de€eA"|@de Bandad¢ C},
B = A"\B.

By “relation” we will generally mean relation on
N.
¢ Functions
Given two sets A and B, a (partial) function®
f : A5 B is a subset of A x B such that for all
a € A there is at most one b € B (denoted f(a))
such that (a,b) € f. We define

dom(f) ={a € A|Fbe B: (a,b) € f}
and ran(f)={b€ B|Fa€ A: (a,b) € f},

and write f(a) 1T (“diverges”) if a & dom(f),
f(a) 1 (“converges”) if a € dom(f), and f(a) | b
(“converges to b”) if a € dom/(f) and f(a) =b. If
A=A x---xA,, we write f(a1,---,a,) and say
f is a function of n arguments, or an n-ary func-
tion, or a function of arity n. (We call f unary if
n =1 and binary if n = 2.)

A function f : A5 B is total if dom(f) = A
(written f : A — B, without the dot). For our
purposes, partial functions are the more basic con-
cept, and totality of functions should not be as-
sumed unless explicitly stated. In fact we will be
concerned mainly with n-ary partial functions on
N, i.e. functions f : NN, for some n > 0. By
“function” we will generally mean partial function
on N, denoted by f,g,h, - --.

A function f : A5 B is called (a) injective or
1-1if Vz,y € dom(f) (f(z) = f(y) = = =y), (b)
surjective or onto if ran(f) = B, and (c¢) bijective
or a bijection between A and B if it is total, 1-1
and onto. Two sets A and B are called equinumer-
ous, written A ~ B, if there is a bijection between
them.

We will freely use “lambda-notation” informally,
where, for example, Az, y-(z2+y2+1) denotes the
function f : N2 = N such that for all z,y € N,
fla,y) =2 +y> + 1.

For unary functions f and g, f o g denotes their
composition Az - f(g(z)).

e Predicates

Let 2={0, 1} be (identified with) the set of truth
values, i.e. 0 = false and 1 = true. A predicate
on a set A is a total function P : A — 2. An
n-ary predicate on A is a predicate on A™. Given
B C A, the characteristic function or characteris-
tic predicate of B on A is xg : A — 2 such that

IThis is a set-theoretic or “extensional” concept of function
(“function-as-relation”). There is also a constructive or “in-
tensional” concept of function (“function-as-rule”), which we
prefer to call “algorithm”. Note that a single function may
have many distinct algorithms which compute it (or none at
all, if it is not computable).

Yae A

(a) = 1 ifaeB

XBU =10 otherwise.

Conversely, given a predicate P : A — 2, the char-
acteristic set of P on A is the set Sp = {a € A |
P(a) =1} C A. Hence

(0(A) ~ PRED(A)

where §0(A) is the power set (= the set of all sub-
sets) of A and PRED(A) is the set of predicates
on A.

We will usually take A = N, i.e., we will be
working mainly with n-ary relations on A and n-
ary predicates on N (for n > 1).

Basic set theory

The following elementary concepts and results
in set theory will clarify some of the later discus-
sions. (They can be proved in classical set theory,
with the Axiom of Choice. For some background
on set theory, a good reference is [4].)

We define A C B to mean A is a subset of B,
ie. Vz(x € A=z € B), and A C B to mean A is
a proper subset of B, i.e. A C B but A # B.

A set A is finite if it is equinumerous with the set
{1,---,n} for some n € N. (This includes the case
A = 0, the empty set, when n = 0.) Otherwise it
is infinite.

Theorem 2.1 A set is infinite iff it is equinumer-
ous with a proper subset of itself.

Theorem 2.2 (Countability) Let A be a set. The
following statements are equivalent:
(a) There is a total injection f : A — N,
(b) A =0, or there is a total surjection g : N —
A,
(c) A is finite, or there is a bijection g : N — A.
A is called countable or enumerable if any of the
above conditions holds.
NoTES:

1. In (b) above, g is called an enumeration with

repetitions, since g enumerates or lists A:

A= {ao,al,az,---}

where a; = ¢(¢). Similarly, in (c), g is an
enumeration without repetitions.

2. We will meet constructive analogues of the
above notions and theorem, in §10 (on recur-
sive enumerability).

3. By (c) above, if A is countable but not finite,
then A ~ N, and A is called countably infi-
nite. A set which is not countable is called
uncountable (or uncountably infinite).

4. A subset of a finite set is finite, and a sub-
set of a countable set is countable. Also, if
A ~ B and A is finite, countable or uncount-
able (respectively), then so is B. Thus all



sets can be classified by size as (i) finite, or
(ii) countably infinite, or (iil) uncountably in-
finite. Roughly speaking, countable infinity
is the “smallest size” of infinity.

Let TEN™ be the class of total unary functions
on N.
Theorem 2.3 The sets TFNY, ©O(N) and
PRED(N) are uncountably infinite.

Proof: The proofs use a diagonalisation method,
which we will encounter many times later in this
paper, so they are worth giving here.
(a) Let F' = {f1, f2,---} be any countable subset
of TEN™. We will exhibit a function

feTFNW\ F,
i.e. a witness that F C TFN™, Define
f(n) = fu(n) +1.

Then for all n, f(n) # fn(n), and so f # fn.
Hence f ¢ F.

(b) Let S = {X1, X5, -} be any countable subset
of g(N). We can similarly define a witness that
S C PN), namely X=4¢{n|n ¢ X,}, since for
alln,ne X &n¢ X,, and so X # X,,.

(¢c) PRED(N) is uncountable: EXERCISE. O

Truth tables: basic operations on truth val-
ues Let p and ¢ be boolean variables, i.e. ranging
over 2. The operations not, and, and or, denoted
by =, A, and V, are defined by the truth tables

A \%

» | —p pP|lg|PANg|PVg
1 0 | and 11 1 1
ol 1 110 0 1
01 0 1

Now we can form new predicates from old, for
if P and @) are predicates on A, then so are —P,
PAQ,and PV @, where for z € A:

~P(z) = 1— P(2),
1 if P(z) =1

and Q(z) =1
0 otherwise,

(PAQ)(z) = P(z)AQ(z) =

1 if P(z) =1
orQ(z) =1

0 otherwise.

(PVQ)(x)=P(z)VQ(z) = {

The corresponding characteristic sets are

S-p=A\Sp={z € A|-P(2)},

Spaq =8SpNSg ={z € A| P(z) AQ(z)},

Spvg =8SpUSg ={z € A| P(x)V Q(z)}.

We will use De Morgan’s laws:

—(pAg)=-pVq

~(pVag) =-pAq
We define p = ¢ to mean —p V q or —(p A —q).

e Quantifiers
We usually quantify over A, so that VzR(zx)
means (Vz € N)R(z) and dzR(r) means (Jz €
N)R(z). Quantifiers can also be relativised to
predicates P on N, thus:

(V) p(o) B(2) = Vz [P(z) = R(z)]
and

(37) p(o R(x) = 32 [P(x) A R(=)].
In particular, we have bounded quantifiers:

(Vo <n)P(x) = (V&)z<nP(z),

(V.’E < n)P(a:) = (Vl‘)$<nP(.’E),
(Fz <n)P(x) = () z<nP(z),

(Fz <n)P(z) = (I2)2<n P(2)-

De Morgan’s laws for quantifiers are

-VzR(z) = Jz—-R(x),
-3zR(z) = Vz—R(z),
_'(V'KE)P(W)R("E) = (Ela“)P(:c)_'R(m)a

=(37) p(o) R(z) = (VZ) p(o)R(2).

e Mathematical induction
Let P be a predicate on N'. We give three differ-
ent (but equivalent) formulations of this principle:

— Simple induction

If P(0) and Vn[P(n) = P(n +1)]
then VnP(n)

— Course-of-values (CV) induction

If Vn [(Vm < n P(m)) = P(n)]
then VYnP(n)

— Least number principle

If InP(n)
then 3 least nP(n),
that is, In [P(n) AVm < n -P(m)].

Exercise: Prove that PRED(N) is uncountable (see
Theorem 2.3).



3 Programs which Compute Functions

3.1 Programming language G
The basis for our study of computable functions is the
programming language G (for “goto”; it is called S in

[1])-

3.1.1 Syntaz and Informal Semantics
The syntax of G includes three classes of (program)
variables:

o input variables X1, Xo, X3, -,

e quziliary or local variables Zy,Zs, Z3, - - -,

e the output variable Y,
and also

o labels Al,Bl," 'El,AQ,BQ,' "EQ,'

We use V, W, V', .. for any variable, L, L1, - - - for

any label, and often omit the subscript 1, e.g. ‘X’
means X, and ‘A’ means A;.

Statements S, ... have one of the following four
forms:
V++ (increment)
V—— (decrement)
if V#0 goto L (conditional branch)
skip

An instruction has either of the two forms

S (unlabelled statement)
or [L] S (labelled statement)

A program P is a list of instructions, possibly the
empty list 0.

In order to elucidate the informal semantics of G-
programs, we make the following assumptions. (The
formal semantics are given later, in §3.1.3.):

e Auxiliary variables and the output variable Y are
always initialised to 0.

e If V has the value 0, then instruction ‘V ——’ leaves
its value at 0.

e Execution of a program halts if either it has ex-
ecuted its last instruction, or it has executed an
instruction ‘- -- goto L’ without containing a label
L.

e The label E will be used for an exit instruction,
i.e. it will never be used to label a statement, and
so ‘goto E’ will always mean “exit”.

Note that variables can only take values in N.
We indicate the value of a variable by its lower case
equivalent, e.g. x; denotes the walue of X;. More
generally, lower case letters xy, xa, - -+, k;m,n,r, ---,
u,v, -- - will denote numbers (elements of ).

Under the above informal semantics, it is clear
that each G-program computes a function on /. This
will be formalised later, in §4.1. This function is, in
general, partial, since for some input values the pro-
grams may diverge (not halt).

For convenience we introduce abbreviating pseudo-
instructions, called macros, and refer to the program

texts they abbreviate as their macro expansions. For

example, |goto L | and are the macros for

an unconditional branch and an assignment of 0, and
have as macro expansions the program segments

Z++
if Z#0goto L
and
[L] V-—
if V#0 goto L
respectively.

Note that when inserting macro expansions in a
program, we have to be concerned with issues such as:
e initialisation of auxiliary variables,

¢ choosing auxiliary variables and labels not used in
the main program, and

e replacing ‘E’ by the label for the statement imme-
diately following the macro, if such a statement
exists.

This is discussed more systematically in §4.2.

3.1.2 Ezxzamples of G-programs
e Identity function Az -z

1. First attempt:

[A] X——
Y++
if X #0goto A

However, this is incorrect since, for input 0,
the program produces output 1 instead of 0.

2. Second attempt:

[A] if X # 0 goto B
goto E

[B] X--
Y++
goto A

The problem here is that the value of the
input variable X is destroyed.

3. Third attempt:

[A] if X #0gotoB
goto C'
[B] X—-
Y++
Z++
goto A
[C] if Z#0gotoD
goto
[D] Z--
X++
goto C




From this program we can get the assignment macro
VWi

V<0
Above program with X andY
replaced by W and V

Sum function A\z1, x> - (z1 + Z2)

Y « X1
7 «— X2
[B] if Z#0goto A
goto F
[A] Z—-—
Y4+
goto B

This program may now form the basis of the macro

for addition.

Product function Azi,zs - (21 * x2)

Z(—X2

[B] if Z#0goto A
goto

[A] Z—-
Zo+—X1+Y
Y « 2 } ()
goto B

Note that the two statements in (*) may not be
replaced by the single statement ¥ + X; + Y,
since the addition macro (as given above) does
not work correctly for statements of the form V' «+
W+V. (We will see how to deal with this problem
later, in §4.2.)

ExErcisE: Write G-programs to compute:

1.
2.

3.

6.

The zero function Az - 0.
The everywhere diverging function Az- 1.

The function f(z) = { 1 if z even

0 if z odd.
The function f(z) = { *1r ii i (C;‘(;Zn

. The “monus” function

— T2 ifmlzz'g

—gip, =4 O
f(z1,22) = T1—22 = { 0 otherwise.

The predicate Az, zs - (11 < 2).

3.1.8 Formal Semantics for G
We introduce the following notions:
e var(S) is the set of variables in statement S.

var(P) is the set of variables in program P.
lab(P) is the set of labels in program P.

A state is a finite function from some set of vari-
ables to . We use the Greek lower case letters
to denote states, e.g. 0 = {(X,3), (Y,2),(Z,4)}.
o is a state of progam P iff dom(o) 2 var(P),
i.e. o assigns a value to each variable in P.

e The wvariant o{V/m} of a state o is the state 7
which corresponds to o except that 7(V) = m. In
other words, dom(r) = dom(o) U {V}, and for
all W e dom(r),

_Jo(W) fW#V
T(W)_{m szEV.

(Note: Here and elsewhere,'=" denotes syntactic
identity.)

e For a program P, |P| denotes the length of P, i.e.,
the number of instructions in P; and (P); denotes
the i-th instruction of P, for 1 <14 < |P]|.

e A snapshot or instantaneous description of P,
with |P| = £, is a pair s = (i,0) where 1 <4 <
£+ 1 and o is a state of P. Intuitively, o is the
state just before the execution of (P); if 1 <1 < £,
or after completing the execution of P ifi = £+1.
In the latter case, s is the terminal snapshot and
o the terminal state of P.

o If (i,0) is a non-terminal snapshot of P, ie. i <
|P|, then it has a successor (j,7) (w.r.t. P) , de-
fined as follows:

— Case 1: (P); =V ++ and 0(V) = m. Then
j=i+1land 7 =0{V/m+1}.
— Case 2: (P); =V —— and 6(V) = m. Then
j:i+1and7':{ o{V/m -1} it m >0
o ifm=20
— Case 3: (P); = skip. Then
j=i+1land 7 =o0.
— Case 4: (P); =if V # 0 goto L. Then
T = o, and for j we have the two subcases:
x 0(V)=0. Then j =i+ 1.
x o(V) # 0. Then j is the least number
such that (P); has label L, if P contains
L. Otherwise, j = £+ 1. (So if L occurs
more than once in P, then its first oc-
currence is used, and if L does not occur
at all then P halts.)

e A finite computation of P is a list s1,82,---, sk
of snapshots such that sy = (1,01) and for ¢ =
1,---,k — 1, s;41 is the successor (w.r.t. P) of
si, and s is terminal. An infinite computation
of P is an infinite list s1, s2, - - - of snapshots such
that s = (1,01) and for ¢ = 1,2,---, s;41 is the
successor (w.r.t. P) of s; .

In both cases, we have a computation of P with
initial snapshot (1,01) and initial state o1, or a
computation of P from oq.

4 G-Computable Functions

Computability theory is the study of computable func-
tions. In our approach, the notion of computability is
relative to the programming language G. For this to
be an interesting concept, we will have to show that it
is stable, i.e. not dependent on slight changes in the



definition of G. Furthermore, we will have to link this
with more traditional characterisations of computabil-
ity. These will both be done later in the paper.

4.1 G-computability
We formalise the fundamental notion: a G-program P
computes an n-ary function f.

e For any positive integer n and any n numbers
T1,T2,- -, Ty, consider a computation sy, S, - - - for
P with initial snapshot s; = (1,01), where
o1 : var(P) — N is defined by

Ul(Xz') =; fori = s ,n
01(X;)=0 fori>n

01(Z;) =0 forall Z; € var(P)
0'1(Y) =0.

— Case 1: This computation is finite, with ter-
minal snapshot s, = (£ + 1,0}) (where £ =
IP]), and o (Y) = y.

Then f(z1,T2, -, T,) = y-

— Case 2: This computation is infinite.
Then f(z1, -+, 2Zn) 1
e If P computes the n-ary function f, then we write

f= \Ilgf ) (and often drop the superscript ‘(n)’
when n = 1). Note that P is not required to
have ezactly n input variables, and a particular P
can compute different n-ary functions for different
values of n. For example, the program given for
the sum function in §3.1.2 yields the following:

‘Ilg)(xl,wz) =21 + 22
\I’,(pl)(.ib'l) =T
lIIg)(l'l,.Z'Q,IL'g) =1 + X2

For any P and n, the function 'I'gf ) is computable
by P.

An n-ary function f is G-computable if f = lIlgL)
for some G-program P.

f is total G-computable if f is G-computable and
total.

A G-computable n-ary predicate is a total G-com-
putable function P : N — 2.

From the G-programs in §3.1.2 and §3.1.3 it follows
that the functions Az - 0, Az -z, Az,y - (z + y), Az, y -
(z xy), and Az,y - (z—y) are G-computable.

e FN(™ denotes the class of n-ary (partial) func-
tions, and FN = U, FN(".

e TFN™ denotes the class of n-ary total functions,
and TFN = U, TFN™,

e G-COMP™ is the class of G-computable n-ary
(partial) functions, and
G-COMP = U,G-COMP™.

e G-TCOMP™ is the class of n-ary total G-comput-
able functions, and
G-TCOMP = U,,G-TCOMP™.

Clearly, the following inclusion relations hold:

G-COMP C FN
U U
G-TCOMP C TFN

The question as to whether the above “C” inclusions
are proper, i.e. whether all functions are computable,
still has to be answered.

Norte: For historical reasons, total G-computable func-
tions are also called recursive functions, and G-comput-
able functions are also called partial recursive func-
tions.

4.2 Macros for G-computable functions

Once we have a G-program P which computes an n-
ary function f, we can augment our language G with a

macro ‘W — f(V, Vo, -+, V) ‘ for f derived from P
as follows:

1. Assume
° ’UO/I"(P) g {Xl, - -,Xn,Zl, -
e lab(P) C{E, A1, -+, A},
o for instructions of the form ‘if V' # 0 goto A;’
in P, there is an instruction in P labelled A;,
and F is the only exit label.
Clearly, P can easily be modified to meet these
requirements. So let us put

-)ZkJY}J

PEP(Y7X17"'7XTL7Z17"'7Zk>E7A17"'7Al)

2. Now choose m sufficiently large so that all vari-
ables and labels in the main program have indices
less than m, and let

P = P(Zma Zm-i-l; T
Zm—i—n—i—k:; Em: Am—i—l: e

) Zm—l—n; Zm—i—n—i—l: Ty
aAm—i-l)

3. Then let macro ‘ W f(Vi, -, Vi) ‘ have the ex-
pansion

Zm 0
Zmy1 < W1

Zm+n <~ Vn
Zm+n+1 +0

Zm+n+k 0
Prm
[En] W+ Z,

Observe that
e we may have W = V; for some i € {1,2,---,n},
and
e if f(vy,---,vy,) 1, then the macro for f will not ter-
minate if it is entered in state o such that o(V;) =
v;, © = 1,2,---,n. (Therefore the whole program



will not terminate.)

A useful extension of the language G is a general-
isation of the conditional branch statement by means
of the macro ‘ if P(Vi,---,V,) goto L
computable predicate. The appropriate macro expan-
sion is

, where P is any

Z «— P(V1,---, V)
if Z # 0 goto L

ExampLE: If we want to use the statement
‘if V=0 goto L’, we have to verify that the predicate

1 ifz=0
P(g”)_{ 0 ifz#0

is computable. Indeed, the appropriate G-program is

if X # 0 goto E
Y++ i

4.3 Relative G-computability
We extend the language G to include oracle state-
ments, and relativise the concept of G-program with
respect to such statements.

Let § = g1, - -, g be functions of arity r1,---,rg.
An oracle statement for g; has the form

Ve U, U |

For the semantics of such a statement, we can think
of an oracle or “black box” for g;, which, when given
input values @ = uq,- - -, up, for Uy,---,U,, either pro-
duces the output value g; for V' (if g;(@) |) or “ticks
over” indefinitely (if g;(@) 1).

In this way, the notion of G-computable and the
function classes G-COMP and G-TCOMP can be rel-
ativised to obtain the notion G-computable in g, and
the function classes G-COMP(g) and G-TCOMP(g).
If a function is total G-computable in g, then it is also
said to be recursive in g. A relativised version of the
diagram in §4.1 is

G-COMP(5) C FN
U U
G-TCOMP(§) C TFN

Once again, the question as to the properness of the
“C” inclusions still needs to be answered.
Proposition 4.1 (a) G-COMP C G-COMP(g)

(b) G-COMP = G-COMP(D)

(c) If § C h, then G-COMP(§) C G-COMP(h).

Proof. Clear from the definition. O

Theorem 4.1 (Transitivity) (a) If f € G-COMP(g),
and g1, ,g9x € G-COMP, then f € G-COMP.

More generally: .

(b) If f € G-COMP(G), g1, - -, gr € G-COMP(h),
then f € G-COMP(h),

-

(c) If f € G-COMP(G, ), g1,---, 9 € G-COMP(h),
then f € G-COMP(h).

Proof:(a). Replace the oracle statement for g; by the
macro expansion for g; (i =1,---,k) in the (relative)
G-program for f.

(b), (¢). Similarly. O

4.4 Construction of G-computable functions
We are now going to take a different approach to com-
putability. Namely, we will take a set of computable
initial functions, together with general methods for
constructing new computable functions from old. Ini-
tial functions will be introduced in §5.1, while this
section, building on our theory of relative computabil-
ity, contains two methods for forming new computable
functions from old.

4.4.1 Composition

Given a k-ary function g and n-ary functions hq, - - -, hy
we define the composition of g and hq,---, hy as the
n-ary function

f(@&) ~ g(hi(Z), -, hye(T)) (1)

where & = 1, +,2Z,, and “~” means that the left
hand side of (1) is defined iff the right hand side of
(1) is, in which case they are equal. Indeed, f(Z) | y
(say) iff there exists z1,-- -, 2z, such that hi(Z) | z1 A
o ANh(E) Lz Ag(2) Ly

Proposition 4.2 In (1), if g and h are total, then so
is f.

Proof: EXERCISE. O

Theorem 4.2 In (1), f is G-computable in g, hy,- -, hy.

Hence if g, hy,- -+, hg are G-computable, then so is f.
Proof: Using oracles for g,hq, - - -, hy, we can construct
a (relative) G-program for f:

Z1 — hl(Xl,-'-,Xn)

Zp = hp(X1,- -+, Xp)
Y «—9(Z1,---, Zy)

The second part of the statement follows from Theo-
rem 4.1(a). O

4.4.2 Primitive Recursion
A unary function f, defined by

{ f(0)
flz+1)

with k fixed, and h a binary function, is said to be
defined by primitive recursion (without parameters).

k
h(z, f(2)) @

Lemma 4.1 For any k € N, the constant function
Az - k is G-computable.

Proof: For k = 0, either the empty program or the
program computes the function. For k& > 0, the



following program may be used:

Y++
: (k times) | O
Y++

These programs can form the basis of the macro .

Proposition 4.3 In (2), if h is total, then so is f.
Proof: By induction on x we can show that Vz(f(z) {).
O

Theorem 4.3 In (2), f is G-computable in h. Hence
if h is G-computable, then so is f.

Proof: Using an oracle for h, we can construct a (rel-
ative) G-program for f:

Y «k

[A] if X =0goto E
Y « h(Z)Y)
Z++
X ——
goto A

As before, the second part of the statement follows
from Theorem 4.1(a). O
The above is actually a special case of the more
general concept of definition by primitive recursion
with parameters. An (n + 1)-ary function f, defined
by
{ &0 = @
f@t+1) =~ h(Zt, f(Z 1)

with parameters ¥ = 1, -, 2z, (where g and h have

arities n and n + 1 respectively), is said to be defined
from g and h by primitive recursion (with parameters).

Proposition 4.4 In (3), if g and h are total, then so
is f.

Proof: By induction on t we can show that Vi(f(Z,t) ).
O

Theorem 4.4 In (3), f is G-computable in g, h. Hence
if g, h are G-computable, then so is f.

Proof: Using oracles for g and h, the following (rela-
tive) G-program computes f:

Y « g(X177Xn)
[A] if X,41 =0goto E
Y « h(Xy,--, X, Z,Y)
Z4++
Xpp1——
goto A

EXERCISE: Prove Proposition 4.2.

4.5 Effective calculability

A function is effective or effectively calculable or algo-
rithmic iff there is a algorithm to compute it. This is
an intuitive, not a mathematical notion, since it de-
pends on the intuitive notion of algorithm. The classes

of effective functions and total effective functions are
denoted by EFF and TEFF respectively.
Clearly,

G-COMP C EFF FN
U U U
G-TCOMP C TEFF C TFN

N

A function f is effective in g iff there is an algo-
rithm for f which uses an “oracle” or “black box” for
g. EFF(§) and TEFF(§) denote the classes of func-
tions effective in § and total functions effective in §
respectively. The relativised version of the above dia-
gram is

G-COMP(5) C EFF(f) C FN
U U U
G-TCOMP(§) C TEFF(j) C TFN

As before, the question as to the properness of the
above “C” inclusions needs to be answered.

5 Primitive Recursiveness

Having described (in §4.4) two ways of systematically
forming new functions from existing ones, we intro-
duce the class of initial functions, and the concepts
of primitive recursive (PR) closedness, and primitive
recursive functions.

5.1 PR-closed classes

The three initial functions are the zero function Z =
Az - 0, the successor function S = Az - (z + 1), and the
projection functions U} = Axy - -z, - x; for n > 0,
1 < i < n, of which the identity function U = Az -
is a special case.

A class C of functions is PR-closed iff (i) C con-
tains the initial functions, and (ii) C is closed under
composition and primitive recursion, i.e. any function
obtained from functions in C by composition or prim-
itive recursion is also in C.

Examples of PR-closed classes:

e FN (trivially).
e Proposition 5.1 TFN is PR-closed.

Proof: By definition, the initial functions are
total. From Propositions 4.2, 4.3, and 4.4 it fol-
lows that totality is preserved by composition and
primitive recursion. O

e Proposition 5.2 G-COMP is PR-closed.

Proof: The G-programs [skip , | 1 <~

compute the zero, successor, and pro-

jection functions respectively. By Theorems 4.2,

L, and




4.3, and 4.4 it follows that the class G-COMP is
closed under composition and primitive recursion.
O
¢ Proposition 5.3 G-TCOMP is PR-closed.
Proof: By Propositions 5.1 and 5.2 the classes
TFN and G-COMP are PR-closed. Hence their
intersection G-TCOMP is PR-closed. O

5.2 Primitive recursive functions
A function f is primitive recursive (PR) iff it is ob-
tained from the initial functions by a finite number of
applications of composition and primitive recursion.
In other words, f is primitive recursive iff there is
a finite sequence of functions fi, fo,- -, fn such that
fn=f,andfori =1,---,n, either f;is an initial func-
tion, or f; is obtained from some f;’s, for j < ¢, by
composition or primitive recursion. Such a sequence
is called a PR derivation of f, of length n.

More formally, a PR derivation of a function f is
a sequence of labelled function symbols of the form:

f1 «— I,
J2a < Lo
f = fn L,
where for each i = 1,---,n one of the following cases

applies:

e Case 1: f; is an initial function, and label L; is
(correspondingly) one of ‘Z’, ‘S’ or ‘U7’

e Case 2: f; is obtained from an f-ary function f;,
and m-ary functions fx,,---, fr, by composition,
for j,k1,---,k¢ < i, and the label L; is
tfja fk17 T sz (Compos : 87 m),'

o Case 3a: f; is obtained from f; and f, for j, k <1
by recursion with m parameters (m > 0), and the
label L; is ‘ f;, fr (rec:m)’.

e Case 3b: f; is obtained from fi, for k < i by
recursion without parameters, and initial value c,
and the label L; is ‘c, f (rec : 0)’.

(We are not distinguishing here between functions and
their symbols). The class of primitive recursive func-
tions, and the class of n-ary primitive recursive func-
tions are denoted by PR and PR respectively.
Lemma 5.1 PR is PR-closed.

Proof: Follows from the definition. O

Lemma 5.2 Let C be any PR-closed class of func-
tions. Then PR CC.

Proof: We can show that f € PR = f € C, by CV
induction on the length of a PR-derivation of f. We
distinguish three cases:

e Case 1: f is an initial function. Then f € C, since
C is PR-closed.

e Case 2: fisobtained from earlier functions g1, - - -, g

in the derivation by composition. Then g1,---, g
have shorter PR-derivations (i.e. the initial parts
of the PR-derivation of f ending with them), and

so by the induction hypothesis they are in C. Hence
again, since C is PR-closed, f € C.
e Case 3: f is obtained from earlier functions in the
derivation by primitive recursion. This is similar
to case 2. O
Theorem 5.1 PR is the smallest PR-closed class. In
other words: (i) PR is PR-closed; and (ii) PR is con-
tained in every PR-closed class.
Proof: By Lemmas 5.1 and 5.2. O
Corollary 5.1 PR C TFN.
Proof: By Proposition 5.1, TEN is PR-closed, and so
by Theorem 5.1, PR C TFN. O
Corollary 5.2 PR C G-COMP.
Proof: By Proposition 5.2, G-COMP is PR-closed ,
and so by Theorem 5.1, PR C G-COMP. O
Corollary 5.3 PR C G-TCOMP.
Proof: By Corollaries 5.1 and 5.2, or since, by Propo-
sition 5.3, G-TCOMP is PR-closed. O
So clearly,

G-COMP C EFF FN
U U U
PR C G-TCOMP C TEFF C TFN

N

Once again, the question as to the properness of the
“C” inclusions still needs to be answered.
Examples of PR functions:
e Sum function f = \z,y - (z +v)
This function has the well-known recursive defini-
tion:

{ f(z,0) =z
fla,y+1) = flz,y)+1
However, we must put it in the form required by
§4.4.2 (3):
{ f(z,0) g9(z)
flz,y+1) h(z,y, f(z,y))

where g,h € PR (with one parameter: z). So let
us take g(z) =z, and h(z,y,2) = z + 1. Putting

9(z) = Ui(x), and h(z,y,2) = S(U3(z,y,%)),
a PR-derivation for f is

f e Ul

f2 «~ S

f3 < U3

fa < fa, f3 (compos : 1,3)
f= fs< fi,fa(rec:1).

e Product function f = Az,y - (z xy)
Recursive definition:

{ f(z,0) = 0
f(z,y+1) flz,y) +=



Required form:

{ f(@,0) = g(=)
flz,y+1) h(z,y, f(z,y))

where g, h € PR (with one parameter: x). Putting
9(z) = Z(z), and

hz,y,2) = z+=
= sum(z,x)
= sum(Uj(z,y,2),U;(z,y,2)),

a PR-derivation for f is

sum = f5 4 ---
fe — 7
f7 «— Ug
fs «— U?
fo < f5, f7, fs (compos : 2,3)
[ = fio « fe, fo (rec:1).

e Factorial f = \z - !
Recursive definition:

{ £(0)

|
—

flx+1)

f(@)x(z+1)

Required form:

{ f0) =1
flz+1) = MWz, [f(z))

where h € PR, (with no parameters). Putting

h(z,y) = y*(x+1)
= prod(y, S(z))
= prod(U3(z,y),S(U3(z,y))),

we can obtain an appropriate PR-derivation, as
before.

Clearly, we require an easier way to show that
functions are PR! In §6 we address this problem, but
before we do that, we conclude this section by gen-
eralising the notion of primitive recursive function to
relative primitive recursive function.

5.3 Relative primitive recursiveness

Let § = g1, --,9n be any functions. A function f
is primitive recursive in g iff f is obtained from the
initial functions and/or gy, -+, g, by a finite number
of applications of composition and recursion. Equiva-
lently, f is PR in g iff there is a finite sequence of func-
tions f1,---, fn such that f, = f and, fori =1,---,n,
either f; is an nitial function, or f; is one of the g;’s,
or f; is obtained from some f;’s (j < @) by composi-
tion or primitive recursion. Such a sequence is called
a PR-derivation of f from g, and PR(§) denotes the
class of functions PR in g.

Proposition 5.4 (a) PR C PR(g)

(b) PR = PR(D)

(c) If § C h, then PR(§) C PR(R).

Proof: Clear from the definition. O

Theorem 5.2 (Transitivity) (a) If f € PR(§) and
gi,---,9r € PR, then f € PR.

More generally:

(b) If f € PR(§) and g1,---,gr € PR(h), then f €

PR(R),

(c) If f € PR(g‘j,H) and g1, ,9r € PR(E), then
f € PR(h).

Proof:(a). Prepend a PR-derivation of f from g to

PR-derivations of g1,-- -, gg-

(b), (¢). Similarly. O

Lemma 5.3 PR(§) is PR-closed and contains §.
Proof: Follows from the definition. O

Lemma 5.4 Let C be any PR-closed class of func-
tions which contains §. Then PR(g) C C.

Proof: We can show that f € PR(§) = f € C, by CV
induction on the length of the PR-derivation from §
of f. O

Theorem 5.3 PR(g) is the smallest PR-closed class
which contains §. In other words, (i) PR(§) is PR-
closed and contains §; and (i1) PR(g) is contained in
every PR-closed class which contains §.

Proof: By Lemmas 5.3 and 5.4. O

Corollary 5.4 PR(§) € G-COMP(g)

Proof: Since G-COMP(§) contains g and is PR-closed.
O

Note that PR(g) need not consist of total func-
tions only, since the g; might not be total! So if
TPR(g) is the class of total functions PR in g, then
the relativised version of the diagram in §5.2 is

PR(7) C §-COMP(j) C EFF(3 C FN
U U U U
TPR(§) C G-TCOMP(7) C TEFF(§) C TFN

As before, the question as to the properness of the
above “C” inclusions needs to be answered.

6 Some Techniques for Defining PR Func-

tions

6.1 Explicit definability
We introduce a convenient method for showing that
certain functions are PR.

We must first define a certain class of formal ex-
pressions. Given a sequence § = g1, -, gm of func-
tions of arity r1, - - -, 7, and a sequence ¥ = x1,-- -, Zn
of indeterminates, the class Expr(g,¥) of expressions
in §, ¥ is defined inductively by:

1. z; € E:va(g', f) (7’ = ]-a o 'an)a



2. 0 € Expr(g, ), where 0 a symbol for the number
0,

3. If E € Expr(g, ), then so is S(E), where S is a
symbol for the successor function S,

4. ¥ E,,---,E,, € Expr(g,¥), thensois g;(E1,- -, Ey,)

(¢ =1,---,m), where g; is a symbol for the func-
tion g;.
(More on inductive definitions may be found in [3],
§55.) Since each expression in g, ¥ represents an ex-
plicit definition of an n-ary function, we define an (n-
ary) function f to be explicitly definable from § iff
f(&) € Expr(g,i), where f is a symbol for f.
NOTES:
1. The constant function C} = AZ-k is explicitly de-
fined from § by the numeral k=g¢ S(--- §(0) - ).
——
k times
2. In general we will not distinguish between func-
tions and their symbols, or between numbers and
their numerals.

Theorem 6.1 If f is explicitly definable from §, then
f € PR(G). Hence if f is explicitly definable from PR
functions, then f € PR.

Proof. The first part of the statement is proved by
induction on the complexity of the expression defining
f from g. The second part from Theorem 5.2(a) O
Corollary 6.1 In particular, we can define new PR
functions from old by:

(a) permuting arguments, e.g. f(z,y) = g(y,x)

(b) using dummy arguments, e.g. f(z,y,2) = g(z,y)
(c) identifying arguments, e.g. f(z) = g(z,x)

(d) substituting numerals for args., e.g. f(z) = g(2,x)
(e) any combination of the above.

Proof: (a) f € PR(g) since

f(@,y) = gU3(z,y), Ui (z,y)).

(b)-(e) Similarly. O

Exawmpie: If f(z,y,2) = g(z, h(z, k(z)),2), then f is
explicitly definable from g,h, k. Putting

T = x1,T2,T3,

(@) = g(U1(@), h(U3(&), k(U3(Z)), C3(%))),

which suggests a PR-derivation of f from g,h,k.

So from now on, we will freely use explicit defi-
nitions, as well as infiz and postfiz notation, to show
that functions are PR.

More examples of PR functions:

e Exponential Az,y - xY
Defined by primitive recursion on the second
2 =1
¥t = ¥ xg.
z—1 ifx>0
0 ifx=0

argument: {

e Predecessor pd(z) = {

. _ pd(0) = 0
Defined by prim. rec.: { pdz+1) = =
R r—y if > Yy
¢ Monus z—y —{ 0 otherwise

Defined by prim. rec. on the second argument:

{ z—0 = 2

z—(y+1) = pd(z—y).

e Absolute difference Az,y- |z — y]
Defined by explicit definition from — and + which
are both PR:

|z —y| = (z=y) + (y—2).

e Zero predicate (characteristic function of 0)

{ 1 ifz=0
zero(z,y) =

0 otherwise
Defined by prim. rec.: { zero(0) = 1

zero(z+1) = 0
or by expl. def. from monus: zero(z) =1-z.
e Characteristic function of positive integers

{ 1 ifz>0
pos(z) =

0 otherwise
Defined by prim. rec.: { pos(0) = 0

pos(z+1) = 1.
e Equality predicate (char. fn. of equality)
1 ifz=y
eq(w.y) = { 0 otherwise
Defined by expl. def.: eq(z,y) = zero(|z — y|).
e Less-than-or-equal predicate

1 ifz<y
0 otherwise

leq(z,y) = {

Defined by expl. def.: leq(z,y) = zero(z—y).

Theorem 6.2 Let P and Q be n-ary predicates. If
we define the predicates Ry(Z) < —P(Z), R2(Z) &
P(2) A Q(Z), and R3(%) & P(Z) V Q(Z), then Ry €
PR(P) and R2, R3 € PR(P,Q). More informally:
the predicate —P is PR in P, and the predicates PAQ,
and PV Q are PR in P,Q). Hence if P,QQ € PR, then
so are -P, PANQ, PV Q.
Proof: Ry(¥) = zero(P(Z)), Rx(Z) = P(F) * Q(Z),
and R3(Z) = pos(P(Z) + Q(Z)). Alternatively, for R,
by De Morgan’s law, PV Q < —(=P A =Q).. O
Hence
e Less predicate Azr,y-z <y
is PR since z <y & —(y < z).

Proposition 6.1 (Definition by cases) Suppose f
is defined by

i %) if P(Z
@) =~ { Z((f)) O{heﬁw)ise.
Then f € PR(g,h,P). Hence if g,h, P € PR, then so
is f.
Proof. f(Z) ~ g(Z) x P(Z) + h(Z) x zero(P(Z)). O
Proposition 6.2 Let P be an n-ary predicate, and
fi,°, fn m-ary functions. Suppose that Q is defined

by Q(Z) < P(fi(Z), -, fn(Z)). Then
Q € PR(P;fl;;fn)) Hence ifpafla"'
then so is Q).

Proof: By composition. O

,Jn € PR,



Corollary 6.2 Suppose that Q is defined by Q(%) <
(f1(®) = f2(F)). Then Q € PR(f1,f2). Hence if
fi, f2 € PR, then so is Q.

Note that (in Propositions 6.1 and 6.2 and Corol-
lary 6.2) if the f’s are total, then @ is a predicate.
EXERCISES:

1. Does the converse of Theorem 6.1 hold (i.e. f €
PR(g) = f explicitly definable from §)? If so,
prove it. If not, state a modified result which is
true, and prove it.

2. (Generalised definition by cases) Let, for some
n > 2, g1, --+,9n be functions and Py,---, P,_1
predicates. For the function f, as defined be-
low, show that f € PR(g1, -+, 9n,P1, -, Pn_1).
Hence if §, P € PR, then sois f. (Hint: Induction
on n with basis n = 2).

g2(Z) if ~Pi(F) A P(T)
93(Z) if —Pi(E) AP (E) A Ps(Z)
f(@) = S :
gn—l(f) if —|P1 (.’f) A A n—2 (.’1?)/\
Po_1(7)
\ gn(f) lf —|P1 (.’f A A~ n—1 (.’1_,")

6.2 Finite sums and products
Theorem 6.3 Let f be an (n + 1)-ary function. If

9(y, %) =3, f(z,9),
and h(y,%) =[1,, f(z,%),

then g,h € PR(f). Hence if f € PR, then so are g, h.

Proof: Define g, h by primitive recursion on y:

{ 9(0,) = 0
gy+1,%) = gy, %)+ fly, %),
and
{ h(0,2) = 1 -
h(y+1,%) = h(y,?)* f(y, 7).

Corollary 6.3 If

then g',h' € PR(f).

Proof: ¢'(y, %) = g(y+1,%), and b'(y, &) = h(y+1, ).
O

Corollary 6.4 If

9"y, @) =27, f(2,9),
and h”(y,if) = gzl f(Z,J_l”),
then gll,hll € PR(f)

Exercise: Prove Corollary 6.4.

6.3 Bounded quantification
Theorem 6.4 Let P be an (n + 1)-ary predicate. If

Q(yaf) = (Elz < y)P(z,;E'),
and R(y,Z) = (Vz <y)P(z,1),

then Q, R € PR(P). Hence if P € PR, then so are Q
and R.

Proof.

R(yaf) = Hz<y P(Z,.’Z"),
and  Q(y,Z) = pos(}_,., P(z, 7)),

or alternatively, Q(y, %) & —(Vz < y)-P(z,%). O
Corollary 6.5 If

Q'(y, %) = (Fz < y)P(z, F),
and R'(y,T) = (Vz <y)P(z, ),
then Q',R' € PR(P). Hence if P € PR, then so are
Q' and R'.
Corollary 6.6 If

Q"(y, &) = (32 < f(y, %)) P (2, %),
and R"(y,T) = (Vz < f(y, )P (2, %),

then Q",R" € PR(f,P).
so are Q" and R".

Intuitively, bounded quantification is effective in P
since there are only finitely many cases to check, while
unbounded quantification, in general, is not.
Exercise: Prove Corollaries 6.5 and 6.6.

Hence if f,P € PR, then

6.4 Bounded minimalisation

Theorem 6.5 Let P be an (n+1)-ary predicate. De-
fine f(y,%) = (uz < y)P(2,%), meaning “the least
z < y such that P(z,Z) holds, if such z exists, 0 oth-
erwise”. Then f € PR(P). Hence if P € PR, then
sois f.

Proof: Put

90,8 = 3" [] zero(P(t, ®)) (4)

2<yt<z

. Clearly, g € PR(P). We distinguish two cases:
e Case 1: There exists ¢t < y such that P(t, %) is
true, i.e. P(t,%) = 1.
Let to be the least such t. Then, for any t < t,
P(t, %) = 0 so that zero(P(t,%)) = 1, and zero
(P(to, %)) = 0. So for all z,

. 1 ifz<t
H zero(P(t,T)) = { 0 if z> to
t<z -
Therefore,

> [ zero(P(t,2) =1+ -+ 1+0+0+--- =t

2<y t<z to times
(5)



e Case2: Forallt <y, P(t,)isfalse,i.e. P(t,Z) =
0. Clearly, zero(P(t,Z)) = 1. So for all z < y,

t<z
Therefore,
ZHzero(P(t,x)) =14+---4+1l=y. (6)
2<yt<z

From (4), (5) and (6) we obtain

“least z < y such that P(z, %)
if such z exists”
y  otherwise.

—

9(y, %)

Finally, we define

f.9 ={ 507

with Q(y,Z) = (3z < y)P(z,Z). Therefore, by def-
inition by cases, f € PR(g,Q,P); by Theorem 6.3,
g € PR(P); and by Theorem 6.4, € PR(P). So
f E€PR(P). O

if Q(y,7)

otherwise,

Corollary 6.7 If f(y,Z) = (uz
f € PR(P).

IN

y)P(z,%), then

Corollary 6.8 If f(y,Z) ~ (uz < g(y,%))P(z, %),
then f € PR(g, P).

6.5 A note on unbounded minimalisation

Let P be an (n + 1)-ary predicate, and f an n-ary
function defined by

(&) = pwyP(Z,y), (7

meaning “the least y such that P(%,y) holds, if such
1y exists, and 1 otherwise”. Clearly, f is not necessar-
ily total, so f does not, in general, belong to PR(P).
Intuitively, however, f € EFF(P) since the following
algorithm, which uses an oracle for P, computes f:

“Test P(Z,0), P(#,1), P(Z,2), -
until y is found such that P(Z,y).
Then halt, with output y.”

NOTES:

1. The n-ary function

« _ | myP(&,y) if P (7,y)
9(@) = { 0 otherwise

is total, but not (in general) effective in P.

2. In (7), f € G-COMP(P). Hence if P € G-COMP,
then so is f. The reader may try to prove this
now, or wait for Proposition 12.1.

6.6 More examples
We conclude with some further examples of PR func-
tions and predicates:

e integer division or quotient

= |z/y]
=pzlzxy <z A(z+1)*xy > z]
= (uz < o)(z+ D) vy > 1]

quot(z,y)

remainder rem(z,y) = z—quot(z,y) *y.
divisibility predicate

ylz < rem(z,y) = 0, or alternatively,

ylr e zz=y*2) e Az <z)(z =y x*=2).
primality predicate

prime(z) <z >1A-Jy[l <yAy|z

Sz>1A-(Fy <2)[l <yAylz]

e prime number sequence
Let p, denote the n-th prime, with pg = 0. Is
An - pp, € PR? The primitive recursive definition

{ po = 0 .
Pny1 = pylprime(y) Ay > py]

is problematic as it stands, since (i) p is unbounded,
and (ii) it assumes the existence of a prime > pj,,
or equivalently, the existence of infinitely many
primes. Euclid comes to the rescue.

Theorem 6.6 (Euclid) There are infinitely many
primes. More precisely,

VzIp[prime(p) Az <p < (z! +1)].

Proof Lety = z!4+1. For2 < k < z,rem(y, k) =
1. Hence for 2 < k < z, k Jy. But y has at least
one prime factor p. Soz < p<y. O

Since this theorem also gives a PR bound for
each new prime, it suggests the following defini-
tion by primitive recursion:

{ po=20
Prt1 = (uy < (pa! + 1)) [prime(y) Ay > pn)

which, by Corollary 6.8, is PR.
EXERCISES:

1. Show that the following functions and predicates
are PR:
(a) even(x) (
(b) min(z,y)
(¢) perfsq(z) (x is a perfect square)
(d) sqrt(z) (integral square root of x)
(e) ged(z,y).
2. Show that every finite subset of N is PR.
3. Is every co-finite subset of A/ PR? (A set is co-
finite if its complement is finite.)
4. Let f(z) = “the number of 1’s in the binary rep-
resentation of z”. Show that f € PR.
5. For any total function f of one argument, define
g(n,z) = f*(z) (the n-th iterated composition of

x is even)



f). Is g € PR(f)?

7 PR Codings of Finite Sequences of
Numbers

In the previous sections we elucidated the concepts of
primitive recursiveness and G-computability. In this
section we discuss coding devices based on primitive
recursive functions, and then use them to code G-
programs as numbers so that they can serve as inputs
to other programs — or to themselves!

Theorem 7.1 (Fundamental Theorem of Arith-
metic) Fvery number > 1 can be represented uniquely
(apart from order) as a product of primes.

Hence for z > 1, we can write

T =prpe’ Py 8)
for unique k > 0, e1,---, e, where p; = i-th prime

(p1=2),e; >0for 1 <i<k,and ex > 0.
Lemma 7.1 (a) Fora >2,n<a".

(b) n < p.

Proof: By induction on n. O

Hence in (8):

e <pif <z
E<p. <=z

(15isk)} 9)

7.1 PR coding of pairs of numbers
We define

pair(z,y) = (z,y) =2°(2y + 1)1,

which is clearly PR.
Proposition 7.1

Vzalz, y((z,y) = 2) (10)

Proof: We want z = (z,y) ie. z24+1 =272y +1).
By the fundamental theorem of arithmetic, z + 1 =
27392543 ... = 2%y for unique x and u, where u is odd
(possibly 1). Put u = 2y + 1. So y is also uniquely
determined (possibly 0). O

Note: Proposition 7.1 determines two inverse func-
tions satisfying (10), i.e. the functions left inverse
£(z) and right inverse r(z), which satisfy

L(z,y)) = =,
r((z,y)) = v,
and (£(2),r(2)) = =z

Lemma 7.2 z,y < pair(z,y).

Proof: In (10), z < 2 < 2°(2y+ 1) = z+ 1, and
y<2y+1<2*°2y+1)=2+1 Soz,y<z O

Proposition 7.2 £,r € PR.

Proof:

£(z) =(ux <z
and 7(z) = (uy <z

~— —
—_~
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—
O

Jz < Z)(zz (z,9))-

Theorem 7.2 (Simultaneous or mutual primi-
tive recursion) Let

fi(z,0) = gi(z)

f2(z,0) = g2(2)
fl($7t+1) = hl(xatafl(mat)7f2($7t))
f2($7t+1) = h2($,t,f1($,t),f2($,t)).

Then f1, fz € PR(gl,gz, hl, hz)

Hence if g1,92,h1,h2 € PR, then so are f1, fo.

Proof: We put f(z,t) = {fi(z,t), f2(z,t)) and show
that f € PR(g1, g2, h1, h2). Let

[(@,0) = (91(2), 92(2)) = g(z) (say)

and
f($7t+1) = <h1($,t,f1($,t),f2(.’l?,t,
h2(xat7 1($7t)7 2 xat)»
= <h1($7t7 ( (Z‘,t)),’f‘(f([ﬂ,t)),
ha(z,t, £(f (2, ), 7 (f(=,1))))
= h(z,t, f(z,t))) (say
where

h(.’L’,t,Z):df<h1($,t,£(2),T(Z)),hz(.’II,t,E(Z),T(Z)))-
So f € PR(g,h), g € PR(g1,92), h € PR(hy, h2) by
explicit definition. Therefore, f € PR(g1, 92, h1, h2).

Finally, fi(z,t) = £(f(z,t)) and fa(z,t) = r(f(2,1)).
So f1 € PR(f). Therefore, by transitivity,

fi € PR(g1, g2, b1, ho). Similarly,

f2 S PR(gla g2, h17 h2) O

7.2 PR coding of finite sequences of numbers

We define the code or Gddel number (gn) of a sequence
ai,--+,a, (n > 0) as the number

n
[al’...’an] = sza1
i=1

Proposition 7.3 For fized n,
ALy, -, &p - [T1, -, 2Zn] € PR.

Proof: Clear. O

Theorem 7.3 (Uniqueness of components)
[ala"'aan] = [bla"'vbn] = a; :bi (7’: 17"'7”)'

Proof: By the fundamental theorem of arithmetic. O
NOTES:

1. [a1,- - ,an,0] = [a1,- -, ay], so trailing 0’s make
no difference.
2. [0] = [0,0] = [0,0,0] = --- = 2°305° ... = 1, 50 1

codes any sequence of 0’s. We also assume that 1
codes the empty sequence [ ].



The following two functions are, in a sense, inverses
of the gn function. Let z = [a1,---,a,]. We define

T)i=1 0 otherwise

and for x # 0,

Lt(x) = length of the sequence represented by x

=k when z =[a1,---,ar] with a #0

and put Lt(0) = 0. Note that (z); is well-defined,
since for example, if z = [a1, a2] = [a1,a2,0,0], then
()4 = 0 under either interpretation.
Proposition 7.4

if 1<i<n

a;
(a) ([a1, - an])i = { 0 otherwise
() [(2)1,- -+, (@)n] = zif n > Li(z).
Proof: From the definitions. O
Theorem 7.4 \z,i- (z);, Lt € PR.
Proof: (a) (z); = (ny < =)=(p!*'|).
(b) Lt(z) = pkl(z)r # OA (V5 > k)((z); = 0)]. But
to apply the results of §6.3 and §6.4, we need bounds
for k and j. So from (9), Lt(x) =
(1k < 2)[(z)k # 0 A (Vj < 2)(k < j = (); = 0)]. O
NoTE 3: For later use we define

concat(x,y) = "'y = concatenation of z and y,

where x and y are viewed as gn’s of finite sequences.
Proposition 7.5 concat € PR.
Proof: Suppose that

z =p‘111 e 'p;ka k= Lt(.’L‘), a; = (x)’n ag 7é 0

y=p"---pf, L=Lty), bi=(y)i be#0.
So ) )
xny = pi‘l .. ijtzk . pkl-l—l . 'pk{i—f
— ®) ()
= ex[[;5 th(z)+z"
O
EXERCISES:
1. (CV recursion) For any function f, write
{ fo =1,
f(n) = [f0),--,f(n=1)] if n#0.

Now, given a function g, suppose f is defined by
f(n) = g(f(n)). (The point is that the value of f
at n depends explicitly on the values of f at i for
all i < n, not just on f(n — 1), as with definition
by primitive recursion.) Show that f € PR(g).
(Hence if g € PR, then so is f.)

2. (Fibonacci sequence) Let F(0) = 0, F(1) =1,
F(n+2) = F(n)+ F(n+1). Show that F' € PR.

7.3 Godel numbering of the § programming
language

Let S be a set. A Gidel numbering (GN) or effective

numbering of S is a 1-1 map # : S — N such that

for all z € S, we can effectively (or algorithmically)
find #(x) € N, and for all n € N, we can effectively
determine whether n € ran(#), and if so, effectively
find the x € S such that #(z) = n. Note that if S has
a GN, then S is countable (by Theorem 2.2).

It is often convenient to make # surjective, in
which case it has a bijective inverse # ! : N = S
that is an effective enumeration of S. Moreover, we
can move effectively from surjective GN’s of S to effec-
tive enumerations of S, and vice versa, defining either
one or the other, whichever is more convenient. In-
deed, we have already defined surjective GN’s, and
hence effective enumerations, of N2 (§7.1) and N'*,
the set of all finite sequences from A (§7.2).

We are now ready to code G-programs as numbers.

e Effective enumeration of all variables

Ya Xla Zla X23 Z?a X35 Z3;
1 2 3 4 5 6 7

For example, #(X5) = 4.
o Effective enumeration of all labels

Al; Bl; Cl; Dl; El; A27 B27
1 2 3 4 ) 6 7

For example, #(Bs) = 7.

e Godel numbering of all instructions
For convenience we replace ‘skip’ by ‘V « V’ for
any variable V. Then the Gédel numbering of in-
struction I is #(I) = {a, (b, c)) where

_J o if I is unlabelled
= { #(L) if I has label L
0 if T is VeV
o) ” V4+
2 ” V__
#ILH+2 7 if V' # 0 goto L'

— ¢=#(V) — 1 if the variable in I is V.

The associated effective enumeration of all in-
structions is obtained as follows: Given ¢ € N, we
let a = £(q), b = £(r(q)), ¢ = r(r(q)). Then, the
statement

— is unlabelled if @ = 0, and the statement has

the label with number a if a # 0.
VeV if b=0
V++ 7ob=1
V—— 7ob=2
ifV#0gotoL 7 b>2
where the label L is such that #(L) = b— 2.
— uses variable V with #(V) =c¢+ 1.
¢ Godel numbering of programs
Let P = (I1,---,I) be a program. We define

which is surjective and, therefore, gives an effective
enumeration of programs. But note that the un-
labelled statement ‘Y < Y’ has Gédel numbering
0, and hence we can form many programs P with



the same #(P) by simply adding any number of
unlabelled statements ‘Y < Y’. To prevent this,
we stipulate that a program may not end with an
unlabelled statement of the form ‘Y + Y’. Let us
denote by G-PROG the set of all such programs.
Then

#:G-PROG - NV

is injective and even bijective. So the inverse of #
is an effective enumeration of G-PROG.
Now let P,, be the n-th program under the above GN,
i.e. the program P with #(P) = n. Then

Po,P1, P, .

is an effective enumeration of G-PROG.
EXERCISES:

1. Let P be the program

if X #0goto A
Y++

which computes the zero function. What is #(P)?
2. What is Py? What is Pgg?
3. Show that every G-computable function has in-
finitely many gn’s, i.e. Va 3 infinitely many b :
Pa = Pb-

8 The Church-Turing Thesis

The Church-Turing Thesis (CT), formulated in terms
of G-computability, states that any function which is
computable by any algorithm whatsoever, is computable
by a G-program. This thesis was first formulated in the
1930’s, independently by Church, using the formalism
of the A-calculus, and Turing, using the formalism of
Turing machines.

Although CT cannot be mathematically proven
since it uses the non-mathematical notion of “algo-
rithm”, its acceptance is based on three arguments.
Firstly, there is the philosophical analysis of the no-
tion of “algorithm”, as done by Turing. Secondly,
many attempted formalisms of the notion of “algo-
rithm” have been found to be equivalent, for exam-
ple: Turing machine computability, A-computability,
G-computability, Pascal-computability, etc. Thirdly,
no counterexample to CT has been found in over 50
years.

Clearly, by CT, G-COMP = EFF. Similarly, we
can formulate a relativised version of CT (Rel-CT),
which says that G-COMP(g) = EFF(g).

The collection [5] contains many of the famous
pioneering papers on computability theory, including
those of Church and Turing in which their respective
versions of CT were first formulated and justified.
NoTE: Any theorem which requires CT in its proof will
be marked with the superscript ‘CT’, and any proof
which uses CT (even if not required) will also be so

marked.

9 The Halting Problem; The Universal
Function Theorem

9.1 Decidability
Let B and C be n-ary relations. We say that B is

o primitive recursive (PR) iff its characteristic func-
tion x B is;

o G-computable or recursive iff xp is G-computable;

e decidable or effective or algorithmic iff xp is.
Thus, B is decidable if there is an algorithm to test for
membership of B. Similarly we can define relativised
versions of the above notions for relations (i.e. prim-
itive recursive in §, recursive in g and decidable in g,
respectively).

Theorem 9.1 BUC, BNC € PR(B,C), and B €
PR(B). Hence if B,C € PR, then so are BUC, BNC
and B.

Proof: Since xpuc = xB V Xc> XBnc = XB A XC, and
X5 = —XB, the results follow from Theorem 6.2. O
Corollary 9.1 BUC, BN C and B are recursive in
B,C. Hence if B,C' are recursive, then so are BUC,
BnNC and B.

Proof: By Corollary 5.4. O
NOTES:

1. Intuitively BUC and BNC are decidable in B, C,
and B is decidable in B. Hence if B, C are decid-
able, then so are BUC, BN C and B.

2. Clearly, if B is recursive (in §), then B is certainly
decidable (in §). By Rel-CT, also the converse is
true, so that B is recursive (in §) iff B is decidable

(4)-

9.2 The halting problem
The Halting Problem is the relation

HP = {(P,z)|P halts on 2} C G-PROG x N.

We say that the Halting Problem is decidable or (ef-
fectively) solvable if the above relation is decidable; in
other words, if there is an algorithm which, when given
a G-program P and an input x, determines whether P
eventually halts on . The obvious question now is: Is
HP decidable? In this section we answer the question
using CT and the Godel numbering of G-PROG.

Let Halt(y,z) be the characteristic predicate of
HP, i.e.

1 if Py haltson z

Halt(y, ) ={ 0 otherwise.

Theorem 9.2 Halt is not G-computable.
Proof: Suppose it is. Then there exists a macro for it:

[Haiv ]



Consider the program P:

|[4] if Halt(X, X) goto 4]

_J 1 if Halt(z,x)
Up(2) = { 0 otherwise.

So for all z,
Up(z) | < - Halt(z,x). (11)
Letting p = #(P), (11) yields, for all z,
Halt(z,p) < —-Halt(z,x).
Finally, putting © = p, we obtain
Halt(p,p) <= —Halt(p,p),

a contradiction. O
Note the use of diagonalisation or self-application in
the proof above.

We now use CT to show the unsolvability or un-
decidability of HP.

Theorem®” 9.3 There is no algorithm which, when
given a G-program P and a number x, will determine
if P halts on input x.

Proof: Suppose there is such an algorithm. Then there
is an algorithm which, given any y and z, determines
if program P, halts on input z. Hence by CT there is
a G-program which does the same, a contradiction to
Theorem 9.2. O

EXERCISE:

(Another version of the unsolvability of HP)
Show that the diagonal set below is not decidable:

{z|Halt(z,z)} = {z|p.(z) |}

9.3 The universal G-program; UFT

Reiterating, we have a method (GN) for uniquely and
effectively associating G-programs with numbers. In
this way we can code G-programs so as to use them
essentially as inputs to other G-programs, or even to
themselves. In the previous subsection we used this
technique and CT to show that there is no algorithm
by which we can determine whether a program P halts
on an input z. In this section we use the G6édel num-
bering to prove another important but positive result.

Let cpg,”) denote the n-ary function computed by
program P,. Then

P RRT RPN

is an enumeration of g—COMP("), and y is the gn or
index of cpg(,”). We define the ((n + 1)-ary) universal
function ®™ for G-COMP(™ by:

<I>(n)(.’171,---,.’17n,y) = on(yn)(xla"'axn)'

Note: We often drop the superscript ‘(n)’ from @ and
¢ when n = 1.

The following is the wuniversal function theorem

(UFT) for G-COMP:

Theorem 9.4 ™ € G-COMP"™tV). In fact, there
is @ universal program U, for G-COMP™ which com-
putes &™) . That is, 11181""‘1) = o),

Proof 1 (using CT): Consider the following algorithm:

“With inputs z1, -+, Zn, Y :
construct the program Py;

apply it to inputs z1,---,z,.”

This provides an effective method for computing

(") (Z,y) for any &, y. Hence by CT, &™) is G-comput-
able.

Proof 2 (not using CT): We will actually construct
Uy, following [1], §4.3. First we make some general
remarks on the construction of the program.

It will be necessary to code not only programs,
but also states by numbers. For example, if dom(o) =
{Y,X1,X5,Z1},and o(Y) =0, 0(X1) =2,0(X2) =3,
0(Z1) =1 (say), then #(o) = [0,2,1,3] = p) -p3-p-pj.
(Also for convenience we will use macros freely and
ignore the rules for letters for variables and labels.)

For each n > 0, U,, simulates the computation of
the program numbered X,,;1 on the input variables
X1, --,Xn. Suppose

P = (Ila"'7lm)'
Then

Xn+1 = #(P) = [#(I1)7 o a#(Im)] - L

The variables Z, S, and K store the sequence of in-
structions, the gn of the current state, and number of
the instruction about to be executed, respectively. So

Z =[#(0), -, #(In)],

S is initialised to p) py 'p2tpy2p? ---, and K is ini-

tialised to 1. Note that the input variables X, X, -
have even places in the effective enumeration of pro-
gram variables (see §7.3), so the variables occupying
the odd places assume the value 0 at the beginning of
the program. Now, if at any stage

(Z2)k = #(Ik) = (a, (b, ),
and we put

U=r((2)k) = (b,c),

then, for the next instruction,

L(Z)k) = a, Iisitslabel,
LU) = b, itstype,
r(U) = ¢, the variable involved.



The universal program U, is then

7 Xn+1 +1
S« [Tz (p2e)™
K«+1
[C] fK=Lt(Z)+1VK =0goto F
U r((Z2)K)
P« prwys1
if £(U) = 0 goto N
if £(U)=1goto A
if =(P|S) goto N
if £(U) =2 goto M
K« min, g4, [€((2):) +2 = £U)]

goto C'
[M] S« [S/P]
goto N
[A] S« S-P
[N] K++
goto C
[F] Y« (S

9.4 The step-counter predicate

We consider the predicates

stp™) (&, y,1)
& Py, with inputs £, halts in ¢ or fewer steps
< 3 a computation of Py, with inputs &,

of length <t +1.

Theorem 9.5 stp(") € G-COMP.

Proof 1 (using CT): Use the algorithm

“Run P, with inputs & up to ¢ steps;
if it has halted,
then stp™ (Z,y,t) « 1
else stp(™ (&, y,t) + 0.7

Proof 2 (not using CT): Modify the universal program
to include a step counter @, as follows. (Note that only
two lines have been added (*), and one line changed

(**))-

Z+~ Xpp1+1
S+ [Tz (p20) ™
K+1
€] Q++ (+)
if Q> X412+ 1goto E (%)
if K=Lt(Z)+1V K =0goto F
U« r((2)k)
P < prwyn
if £(U) =0 goto N
if £(U) =1goto A
if =(P|S) goto N
if £(U) = 2 goto M
K < min, 4., [€(2):) +2 = £U)]

goto C
[M] S« [S/P]
goto N
[A] S« S-P
[N] K++
goto C'
[F] Y++ (+5)
O
NOTES:

1. The predicate
stpln) (%,y) & “P,, with inputs #, halts (at all)”

is not G-computable, since it is (essentially) HP.
2. Similarly, the predicate

(n),» ~__J t+1 if P, haltson & in t steps
stp, " (%,y) = { 0 otherwise
is not G-computable, since a G-program for stpg")
could easily provide a solution to HP.
3. We can prove a stronger result than Theorem 9.5:
Theorem 9.6 stp'™ € PR.

Proof: Let
K™ (Z,y,1)

be the instruction counter function, giving the number
of the instruction to be read by P,, with inputs &, at
time ¢t + 1, and

S™(3,y,1)

giving the state, at time ¢ + 1, when P, has inputs Z.
We define K™ and S™ by primitive recursion
on t. For the basis we let

K(n)(f,y’o) = 1,
and S(")(ir’,y,O [T, p5i-

~
|

For the induction step we put

k=KM™(Zy,t), s=8SM(&y,t),
L=Ltly+1), u=r(y+Lx),
b= £(u), c=r(u),

D = Pc+1-



Then K™ (Z,y,t+1)=
0 ifk=0ork>1L
E+1if (0<kE<LYADBL2VpSs)
(wi < L)[£(y + 1);) = b—2] otherwise,

and S (Z,y,t+1) =

S*p if(0<k<L)A(b=1)
quot(s,p) f (0<k<LYA(D=2)Ap|s
s otherwise.

By Theorem 7.2 K™ 8™ ¢ PR. Finally,
stp™ (Z,y,t) & —[0 < K™(%,y,t) < Lt(y + 1)].

O

We conclude this section by answering some of
the questions concerning the properness of the “C”
inclusions in the diagrams in §5. In particular, G-
COMP=EFF, by CT, and G-COMP C FN, since G-
COMP is countable (pg, 1,92, ), and FN is un-
countable by Cantor’s theorem (Theorem 2.3(a)).
NotE: By re-proving Cantor’s Theorem in the present
context, we can produce a non-computable total func-
tion f as follows. Define

o ={ O T,

Then f ¢ G-COMP, since (as we can easily see) for all
n f(n) # ¢n(n). (So f is a witness that G-COMP C
FN.) Intuitively, f is not computable because the
above definition by cases is not effective, owing to the
undecidability of HP. Note the use of diagonalisation
again here!

Now,
G-COMP = EFF Cc FN
U u u
PR C G-TCOMP = TEFF C TFN
and, using Rel-CT,
PR(§) € G-COMP(g§) = EFF(§) Cc FN

U u U U
TPR(F) C G-TCOMP(3) TEFF(§) c TFN

10 Recursive Enumerability

10.1 Recursively enumerable relations
Let B be an n-ary relation on /. We say that B is

o recursively enumerable (r.e.) or G-semicomputable
iff B is the domain of some G-computable function,

i.e. there exists a G-computable function g such
that B = dom(g) = {Z|g(Z) |}; and

e semi-decidable or semi-effective iff there is an algo-
rithm which gives positive information (only) on
membership of B, i.e. with input #, the algorithm
halts iff ¥ € B.

NOTES:

1. By CT, B is r.e.iff B is semi-decidable.

2. If B is decidable, then B is certainly semi-decidable,
since an algorithm which decides B can easily be
modified to one which gives positive information
only on B. (However, the converse is not true, as
we will see!) The analogous result for G-computable
B is:

Theorem 10.1 If B is recursive, then B is r.e.
Proof: Since x p is G-computable, there exists a macro
which computes it. The program

[[4]f xp (X1, X,) = 0 goto 4]

halts only on input £ € B. O

Theorem 10.2 B is recursive iff B and B are r.e.
Proof. (=:) Suppose B is recursive. By Theorem 9.1,
B is recursive, and the result follows from Theorem
10.1.

(<:) Suppose B and B are r.e. Say

B = dom(g), g computed by program P,
and B =dom(h), h computed by program P,.

Intuitively, on any input &, we dovetail executions of
Pp and P, until one of them halts. Note that, by The-
orem 9.5, there is a macro for stp(™. So the program

[4] if stp™(X,p,T) goto C
if stp™(X,q,T) goto E
T++
goto A

[C] Y++

computes xg. O
Theorem 10.3 If B,C are r.e., then so are BN C
and BUC.

Proof: Suppose

B = dom(g), g computed by program P,
and B = dom(h), h computed by program P,.

The program

Y+ g(X)
Y + h(X)
halts for inputs in dom(g) Ndom(h) = BN C.

On the other hand, dovetailing P, and P,, the pro-
gram

[4] if stp™(X,p,T) goto E
if stp™(X,q,T) goto E
T++
goto A




halts for inputs in dom(g) Udom(h) = BUC. O
Intuitively, if B and C' are semi-decidable, then so are
BnC,and BUC.

Let REC and RE denote the classes of recursive
sets and r.e. sets, respectively. Then, clearly,

PR C REC C RE C Q(N)

We devote the rest of the section to the questions
concerning the properness of the above “C” inclusions
(except for the leftmost one, which will be answered
later — §14, Exercise 3).

By Corollary 9.1, REC is closed under U, N and ~

and RE is closed under U and N. The obvious ques-
tion now is: Is RE closed under ~ 7 The answer to
this question also resolves the question concerning the
second “C” inclusion.

Let W,, = dom(y,). So for all z,
z € Wn < pn(2) |,
yielding an effective enumeration of RE:
Wo, Wi, Wa, - -
Now let K = {z|z € W,}. Then
reEK<=zeW, <= p,(x)]. (12)

Theorem 10.4 K is r.e., but not recursive.

Proof: K is the domain of the function Az - ®(z, z),
which, by Theorem 9.4, is G-computable. So K is r.e.
Suppose K is recursive. Then, by Theorem 10.2, K is
r.e. Therefore for some n,

K =W,. (13)

So for all z,

mEanmekgw&’Ww.

Putting x = n,
neW, <= nég¢WwW,,

a contradiction. O

Corollary 10.1 K is not r.e.
Proof:

Kre. = K,Kre. (Theorem 10.4)

= K recursive (Theorem 10.2).

This contradicts Theorem 10.2. O
NOTES:

1. Note again the use of diagonalisation (or self-refer-
ence) in the proof of Theorem 10.4.

2. The non-recursiveness of K is just another formu-
lation of the unsolvalility of HP (see §9.2, Exer-
cise).

3. REC C RE by Theorem 10.4, with witness K.

4. Similarly, RE C §(N), by Corollary 10.1, with
witness K.

5. Alternatively, we can argue that RE C 0(N) be-

cause RE is countable by the enumeration Wy, Wy, - - -

whereas §0(N) is uncountable by Cantor’s theorem
(Theorem 2.3(b)). Hence we have

PR C REC C RE C p(N)

ExERCcISE: By re-proving Cantor’s theorem in the present
context, produce a witness that RE C §(N). What
is the connection between this witness and the one in
Note 47

10.2 Characterisation of recursively enumer-
able sets using CT

Although the theorems in this section do not depend

on CT, we will give proofs using CT for simplicity

(following [2]).

Theorem 10.5 If f is total G-computable, then ran(f)
8 T.€.

Proof “T: Suppose that f is total computable. The
following algorithm halts only on inputs in ran(f):

“With input z:

compute (in turn) f(0), f(1), f(2 )
until you find an i with f(i) =

then halt.”

By CT there is a G-program corresponding to this
algorithm. O

Theorem 10.6 If f is G-computable, then ran(f) is
r.e.

Proof “T: By modifying the algorithm in the proof of
Theorem 10.5 as follows:

“With input z:
generate ran(f) by dovetailing (interleaving),
i.e. in stages:
at stage n:
do n steps in the computation of
f(O),f(]-),f(Z), ,f(TL - 1);
halt when you find an ¢ with f(i) =

Again, by CT there is a G-program corresponding to
this algorithm. O

Theorem 10.7 If f is total G-computable and strictly
increasing, then ran(f) is recursive.

Proof ©T: By modifying the algorithm in the proof of
Theorem 10.5 as follows:



“With input z:

compute (in turn) £(0), £(1), £(2), -
until you find an i such that f(i) > z;

if f(i) = z: output 1;

if f(¢) > z: output 0.”
O

The next two theorems can be considered a converse
to Theorem 10.5.

Theorem 10.8 If B is r.e. and B # 0, then there
ezists a total G-computable function f such that B =

ran(f).

Proof “T: Let g be G-computable with dom(g) = B.
The following algorithm computes a total function f
with dom(f) = B:

“With input z:
generate list of elements of B by dovetailing:

at stage n:
do n steps in the computation of
9(0),9(1),---,9(n = 1);

for all i < m such that g(i) | in < n steps,
add 7 to list;
[Note: List is infinite (even if B is finite),
since it has repetitions.)

output element number z in the list.”
O

Theorem 10.9 If B is r.e. and infinite, then there
erists a total 1-1 G-computable function f such that
B =ran(f).
Proof “T': Exercise. O

By combining the above results, we get:

Theorem 10.10 (a) Suppose B # (). Then B is r.e.
iff B is the range of a total G-computable function.
(b) B is r.e.iff B is the range of a G-computable func-
tion.

Proof: (a) From Theorems 10.5 and 10.8.

(b) From Theorems 10.6 and 10.8, and since 0 is r.e.,
being the domain and the range of Az- 1. O

Note: This theorem gives the justification for the ter-
minology “recursively enumerable”. (Compare Theo-
rem 2.2 and Notes 1 and 2 following it.)

EXERCISES:

1. Prove Theorem 10.9.
2. Prove: Suppose B # (). Then B is r.e.iff B is the
range of a 1-1 G-computable function.

11 Enumerability of Total Computable
Functions

In §9.3 we defined an (n + 1-ary) (G-computable) uni-
versal function for G-COMP(™ in terms of an enumer-
ation go(()n),cpgn), .- of G-COMP(™ . In this section we
show that this cannot be done for G-TCOMP(™) (even
when n = 1). It is for this reason that we consider
(partial) G-computable functions as more fundamen-
tal than total G-computable functions.

For any binary function F and n € N, let
F,=qtAz - F(n,x).

We now investigate whether the UFT holds for G-
TCOMP(), i.e. whether there is a universal function
F € G-TCOMP®, for which the sequence

FO;F1;F27"' (14)

enumerates all of G-TCOMP(®). (Note that there is a
UFT for G-COMP, by Theorem 9.4.)

Theorem 11.1 If F € G-TCOMP?, then

(a) for all n, F,, € G-TCOMP"Y), but

(b) we can find a function h € G-TCOMP™) which is
outside the enumeration (14), i.e. for all n, F,, # h.
Proof: (a) Clear.

(b) Define h(z) = F(z,z) + 1. O

Corollary 11.1 There exists no UFT for G-TCOMP.
NOTES:

1. Note the use of diagonalisation in the proof of The-
orem 11.1.

2. By CT this theorem says: Given any effective enu-
meration of some class of total computable func-
tions, we can “diagonalise out” to obtain a total
computable function outside the class!

3. Thus, although G-TCOMP is enumerable by clas-
sical reasoning (being a subset of the enumerable
set G-COMP), it is (by CT) not effectively enu-
merable! (See also Exercise 3 below.)

4. Why can the method of “diagonalising out” not be
used to contradict the UFT for G-COMP? Because
the definition h(z) ~ ¢, (z)+1 does notimply that
for all y, ¢, # h. For suppose h = ¢,. Then the
equation

¢n(n) = h(n) = pn(n) +1

just means that ¢, (n) 1.
EXERCISES:

1. Let G-COMP-PRED be the class of G-computable
predicates, i.e. the total functions P : N — 2. Is
there a UFT for G-COMP-PRED?

2. (a) Let PR-DERIV be the set of all PR-deriv-
ations. Show how (by Gdédel numbering or
otherwise) to give an effective enumeration of
PR-DERIV, and hence (as a sublist) an effec-
tive enumeration of the set PR-DERIV() of
PR-derivations of unary functions. This in-
duces an effective enumeration fo, f1, f2,- -
of PR,

(b) Let F' be the binary wuniversal function for
PR under the enumeration in (a), i.e. for
all m and n, F(m,n) = fn(n). Clearly F
is effective, and hence in G-TCOMP, by CT.
But is F' primitive recursive? More generally,
is there a UFT for PR at all?



3. Show that the set {y|¢p, is total} is not r.e. (Hint:
Otherwise there would be a UFT for G-TCOMP).

12 p-Primitive Recursive Functions

The main result of this section is the equivalence of the
class of p-primitive recursive functions and the class
of G-computable functions.

We inductively define the class yPR of y-primitive
recursive functions. This is the least class of functions
which

1. contains the initial functions S, Z and U7;

2. is closed under composition and primitive recur-
sion; and

3. is closed under the (unbounded) p-operator, i.e. if
g € uPR™Y) and

f(&) =~ nylg(Z,y) =~ 0], (15)

then f € uPR™;
where pPR(™ is the class of uPR functions of arity n.
(The p-operator was introduced in §6.5.)
NOTES:

1. Without clause (3), the definition yields the class
PR. The effect of clause (3) is to include partial
functions. For example, if g = AZ,y - 1, then f is
the totally undefined function.

2. Note the constructive or computational meaning
of p: Suppose, for example, that in (15), for some
given &,

9(Z,0) =1, g(£,1) =1, g(&,2) 1, g(&£,3) = 0.

Then f(£) 1, since in the computation of g(Z,y)
fory =0,1,2,---, we never reach y = 3.

3. Each pPR function has an associated pPR-deriv-
ation, which is similar to a PR-derivation, but
with the extra possibility of obtaining a function
from a previous function in the derivation by ap-
plying the p-operator.

Proposition 12.1 In (15), f € G-COMP(g). Hence
if g € G-COMP, then so is f. In other words, G-
COMP is closed under the p-operator.

Proof: The following G-program with an oracle (or
macro) for g, computes f:

[A] Z < g(X,Y)
if Z=0goto E
Y++
goto A

Next we give two celebrated results, essentially due to
Kleene (using a different formalism and terminology
— see[3], Part III).

Theorem 12.1 (Normal Form Theorem for G-
COMP) For all n, there exists a PR (n+2)-ary pred-
icate T("), and a PR function U, such that for all e

and T,
OM(#) ~ U (uyT™ (e, 7, y))- (16)

Proof: A computation number (gn of a computation)
has the form
€1,.62

y =pi'ps? - pgt

where for 1 <t </, e; is a snapshot at time ¢, i.e.
et = (ky, s¢)
where ky = K™ (e, #,t=1),
and s = S (e, 7, t=1),

as defined in §9.4.
We define T(")(e,iz’, y) as the predicate

“y is the computation number when P, has input #:” In

symbols, putting L. = Lt(e + 1) and L, = Lt(y) :

(V¢ < Ly)[()e41 = (K™ (e, 7,1), 8™ (e, 7, 1))]
A(VE < L)[(1 < K™ (e, #,1) < L,)
A(1 < K™ (e, # L) < L))

We define U(y) as the value of the output variable at
the final state in computation y. In symbols:

U®y) = (r(4) L))

It is clear that T, U € PR, and that (16) holds. O
Theorem 12.2 yPR = G-COMP.
Proof. We will show that

fis uPR < f is G-computable.

(=) This is obvious from CT. However, a proof with-
out CT exists, and serves as confirmation for CT. We
will effectively associate, with each pPR-derivation of
a function f, a G-program for f by CV induction
on the length of the derivation. (Compare proof of
Lemma 5.2.) If the last step in the derivation is an
initial function, or formed by composition or primi-
tive recursion, use Proposition 5.2. If the last step is
an application of the p-operator (the new case), use
Proposition 12.1.

(«:) By Theorem 12.1. O

NOTES:

4. As with PR-derivations (see §11, Exercise 2) we
can give an effective enumeration of the set uPR-
DERIV of pPR-derivations, and hence an effec-
tive enumeration of yPR. The proof of Theorem
12.2 actually gives effective maps between uPR-
DERIV and G-PROG (PR in their gn’s, in fact),
thus providing us with a second effective enumera-
tion of G-COMP (=uPR). (The first was induced
by the Godel numbering of G-PROG — see §7.3.)

5. Theorems 12.1 and 12.2 together show that any
uPR (or equivalently, G-computable) function has
a pPR-derivation in which the p-operator is used
only once!



6. There is also a relativised notion of p-primitive
recursiveness, and a relativised version of Theorem
12.2:

#PR(§) = G-COMP(g). (17)

Exercise: Define the class uPR(g), and outline a proof
for (17).

13 ‘loop’ Programs

13.1 Definition

Up to now our development of computability theory
was done in terms of the G programming language.
We have asserted (in §8) the equivalence of this notion
with many other notions of computability, and proved
(in §12) its equivalence to p-primitive recursiveness.
In this section, and the next, we turn to other simple
programming languages, and investigate whether the
corresponding notions of computability are equivalent
to G-computability or not.

First we consider the programming language L (for
“loop”), with the instructions

V<0

VW

V++
loop V

end
skip

and define an L-program as a finite sequence of in-
structions such that the ‘loop’ and ‘end’ instructions
occur in matching pairs.

Comparing £ with G, we find that

e 'V &« W and ‘V « 0’ are primitive instructions
in £, but not in G (not an important difference);

e ‘V ——’ is primitive in G but not in £ (also not
important);

e L has loops instead of labels and branches (this is
the important difference!).

To complete our description of the L-language, we give
the precise meaning of the loop segment

loop V
P} block
end

Suppose that, when we read the ‘loop’ instruction, the
value of V is v. Then the block P of instructions is
executed v times — even if the value of V is changed
in P. This means that £-programs always halt!
Note: The convention with respect to input, output
and auziliary variables is the same as before; i.e. all
variables other than the input variables are initialised
to 0.

ExampLEs: L-programs for addition and multiplica-
tion, respectively, are

e loop X3
loop X. ' loop X
2
Y
Yt and o ++
end
end

13.2 Relationship to other notions of comput-
ability

Let £L-COMP be the class of functions computable by

L-programs.

Proposition 13.1 £L-COMP C G-TCOMP.

Proof. Firstly, all £-computable functions are total.
Secondly, all £-computable functions are G-computable
by the following translation Q — Q' of L-programs
into G-programs (by CV induction on the lengths of

programs Q): and are translated to
themselves, and we have G-macros for and
[V <] Finally,

loop V
Q
end
can be translated into
Z+V
[A] if Z=0goto E
Ql
7
goto A

where Z is a new (auxiliary) variable. O
Note: We can easily define a GN, and hence an effec-
tive enumeration, of L-programs:

Qo, 91,92,
Let F, be the unary function computed by Q.. Then
Fo,F\,Fy,---
is an enumeration of L-COMPM)., Let
F(e,z) = F.(x). (18)

Then F is total G-computable, by CT. Hence by The-
orem 11.1,

£-COMP C G-TCOMP (19)

with witness Az - (F(z,z) + 1) (or F itself).
The rest of this section is devoted to showing that

L-COMP = PR.

Lemma 13.1 PR C L-COMP.



Proof: Suppose f € PR. We find an L-program or
macro for f by CV induction on the length of a PR-
derivation for f. We must consider the following cases:

e The initial functions, i.e. the zero, projection and
successor functions are computed by ,

Y « X, |and| LEX

Y++
e The G-program for composition in the proof of
Theorem 4.2 is also an L-program.

, respectively.

e To obtain an L-program for primitive recursion
with parameters we must modify the method for
Theorem 4.4. Assuming L-macros for g and h, f
is computed by

Y(_g(XlaaXn)

l00p X1
Y « h(Xla"'JXnaZJY)
Z++

end

The case of primitive recursion without parame-
ters is similar. O

In order to prove the converse of Lemma 13.1, we re-
quire certain definitions and intermediate results.

Let £, be the class of L-programs with loop-end
pairs nested to the depth of at most n, and £,-COMP
the class of functions computed by £,-programs.
ExampLe: The program for addition is in £y, and for
multiplication is in Lo (see previous example).

These definitions suggest a hierarchy of L-programs

LoCLL CLy C---, L=Up Ly,
and a hierarchy of L-computable functions

Lo-COMP C £;-COMP C £5,-COMP C -- -,
L-COMP = U, L,-COMP.

Let us assume for now that
e programs (or blocks) contain only auxiliary vari-
able Z1,Z5,---, and
e a block within a loop (‘loop V ---end’) does not

contain the loop variable V. There is no loss of
generality, since

loop V Wev
~ | loop W
P o
end P
end

where W is a new auxiliary variable (and ‘=’ de-
notes semantic equivalence of programs).

Now consider a block P with var(P) C Z = Zi,-- -, Zp.

We think of P as transforming the values of VA by

Z— (f1(2),+, fal2))
7 fi (20)

fZ,

or

for certain n-ary functions f = f1,---, fn- We alsosay
that P defines the transformation (20) on Z. Consider
now a loop segment

loop V

Q P

end

with V # Zy,---, Z,. Then var(Q) C {Z,V}, and Q
transforms the values of these variables by

Z < §Z,v)
VeV (21)
for certain (n + 1)-ary functions § = g1, - -, g, (since,
by assumption, the value of the loop variable V' does
not change with the execution of Q). What is the
relationship between f in (20) and § in (21)? Note
that g;(Z,v) is the final value of z; after v iterations
of block P, assuming that v is the initial value of V.

Lemma 13.2 (With the above notation:) § € PR(f).

Proof: We have

g,(Z,O) = %
gi(gat+1) = fi(gl(gat)a"'agn(zat))'

So g is defined from f by simultaneous primitive recur-
sion. The result follows from Theorem 7.2 (generalised
to n functions). O

Lemma 13.3 Suppose that P is an L-program with
var(P) C Z = Z1,---,Zn, and that P defines the

transformation Z « f(Z), with f = f1,---, fn. Then

-

f € PR.

Proof: Since P is an L-program, P € Ly, for some n.
We show that if P € £,, then f € PR, by induction
on n:

e Basis: n = 0. P has no loop-end pair, and con-
sists only of the instructions

Zi <~ 0,
Zi Zj,
Zi++.
So we must have
fz(Z:) = Zj+k,
or fz(Z) = k,
for ¢ = 1,---,n, some j and some k. Therefore

fePR.



e Induction step: Suppose the result holds for n =
k. Let P € Li41. Then P is of the form

Qo
loop V1
P

end

o)}

loop V5
Pa

end

Q>

Qrfl
loop V.
P,

end

Qr

where Q;,P; € Ly. By the induction hypothe-
sis, the transformations defined by these are all in
PR. By Lemma 13.2, the transformation defined
loop V;
by 7),'
end
the closure of PR under composition. O

is in PR, and the result follows from

We are now ready to prove the converse of Lemma
13.1:

Lemma 13.4 L-COMP C PR.

Proof: Suppose the k-ary function h is computable by
the L-program P, containing the variables Z1,- - -, Zy,
X1, , X, Y. Put

P=P(Z1, -, 2y, X1, -, Xi,Y).
Let
Q=P(Z1, -, Zs, Zesv1, > Zisks Zoskg1)
and suppose Q defines a transformation
7+ f(2)
with Z = Z1,--+, Zeypqr and f= fi,- -, feynpn. By

Lemma 13.3, fe PR. Also

h(xla"';xk) = ff+k+1(05'"505$15"'a$k50)
———’

£ times

Therefore h € PR. O
Finally,

Theorem 13.1 £L-COMP = PR

Proof. By Lemmas 13.1 and 13.4. O
Note: Again, there is a relativised notion of ‘loop’
computability, and a relativised version of Theorem
13.1:

L-COMP(gG) = PR(9) (22)

Corollary 13.1 PR C G-TCOMP.

Proof: By (19) and Theorem 13.1. O

13.3 Ackermann’s function

As we have seen, the function F' in (18) is G-computable,
but not PR. We conclude this section with a more in-
teresting and “natural” witness that PR C G-TCOMP.
To set the stage, consider the hierarchy of PR defini-
tions of well-known functions:

z+0 = z, z+4+Sy = S(z+y)
zx0 = 0, %Sy = z+ (zx*xy)
10 = 1, z1Sy = zx(z1y)
™0 = 1

, eS8y = zt(z1y)

NortE 1: The hypererponential

rtty=a2" }(ytimes)

increases very rapidly with y.!
We systematise the above sequence of construc-
tions by putting

f1:+a f2:*5 f3 :Ta f4 :TTa
and defining

fo(z,y) = Sy
zif n=0
far1(z,0) = 0if n=1
lifn>1
fn+l($7sy) = fn(mafn+l($ay))'

NOTES:

2. For all n, f, € PR (by induction on n).

3. It is also easy to see that f, € £,-COMP (again
by induction on n).

4. However, we can show that f,4+1 € L£,-COMP,
since it “increases too rapidly”! (See [1], Chapter
13, for a proof for a related hierarchy.)

Now let A(z,z,y) = f.(z,y). This is (a version of)

Ackermann’s function.

NOTES:

5. The function A is defined by double recursion (on
the first and third arguments):

AQ0,z,y) = Sy
zifn=0
A(Sz,z,0) = 0ifn=1
lifn>1
A(Sz,z,8y) = A(z,z,A(Sz,2,y)).

6. A is G-computable (for example, by CT).
7. However, A ¢ PR! For suppose

A € PR = L-COMP = U, L,,-COMP

1For example, 3 11 4 is much larger than 1020, Eddington’s
estimate of the number of electrons in the universe.



Then for some n, A € L,-COMP. So
for1 =,y - A(n+1,2,y) € L,-COMP,

a contradiction to Note 4.
EXERCISES:

1. Define the class £-COMP(§), and outline a proof
for (22).

2. (Tail recursion) Suppose f is defined from g and
h by the equations

{ f(2,0) = g(2)
flzn+1) = f(h(z,n),n).

Show that f € £L-COMP(g,h) and (hence) f €
PR(g,h). Note that in the “recursive call” (the
expression on the right hand side of the second
equation), f is on the “outside” — this is char-
acteristic of tail recursion. Also the parameter
changes (from z to h(z,n)), so that these equa-
tions (as they stand) do not form an instance of
definition by primitive recursion.

14 ‘while’ Programs

The third programming language that we consider, is
the W programming language which is similar to £,
except that instead of the loop—end instruction, it has
the instruction

while V' # 0 do

end.

We also need ‘V ——’ as a primitive instruction (for
technical reasons). It is clear that, in contrast to £-
programs, W-programs can diverge. It is therefore
necessary to clarify the relationship between the func-
tion classes W-COMP, £L-COMP and G-COMP.

Lemma 14.1 £L-COMP C W-COMP.

Proof: L-programs P can be translated into W-pro-
grams P’ by CV induction on the length of P, using

Z+V
loop V while Z # 0 do
Q |~ Q'
end Z——
end

where Z is a new variable. O
Lemma 14.2 W-COMP C G-COMP.

Proof: W-programs P can be translated into G-pro-
grams P', using

while V' # 0 do [A] ifV =0goto E
Q - Q O
end goto A

For the converse direction, we must show how to elim-
inate ‘goto’ instructions:

Lemma 14.3 G-COMP C W-COMP.

Proof: A direct translation of G-programs to W-pro-
grams (by CV induction on the lengths of G-programs)
is very hard. Instead, we show that any G-computable
function is YW-computable, using the normal form the-
orem for G-COMP (Theorem 12.1). Let f € G-COMP,

say f = ¢'™. Then
F(@) = (&) ~ U (uyT™ (e, 7,y)).

Let T\ = -7™ . Since T™ ¢ PR, so are 7™ and
U. Therefore T and U are £-computable, and by

Lemma 14.1, also W-computable. So a W-program
for fis

Z+0
vV« T e X, 2)
while V # 0 do

Z++

V « T (e, X, 2)
end
Y« U(2Z)

where Z and V are new variables. O
Corollary 14.1

W-COMP = G-COMP(= iPR).

Proor: From Lemmas 14.2 and 14.3. O
NOTES:

1. This provides further confirmation for CT!

2. Again, there is a relativised notion of ‘while’ com-
putability, and a relativised version of Corollary
14.1:

W-COMP(3) = G-COMP(J).

This brings us to our final display, in which all
the questions about proper inclusions, raised in the
previous pages, have been answered:

coMP € EFF c FN

U U U
PR = £-COMP ¢ TCOMP € TEFF ¢ TFN

where ‘COMP’ means any one of G-COMP, W-COMP
and pPR, and ‘TCOMP’ means any one of G-TCOMP,
W-TCOMP and TuPR (= the class of total uPR func-
tions).

EXERCISES:

1. Let WC be the programming language for ‘while’
and the conditional instruction, i.e. the language



W together with the construct

if V=0
then
Py
else
P
fi.

Prove or disprove: WC-COMP = W-COMP. Do
not use CT.

2. Show that Ackermann’s function is WC-comput-
able. (Write a program for Ackermann’s function
in WC.)

3. Show that for sets: PR C REC. (Hint: Give an
effective enumeration of PR sets.)

15 The S;, Theorem

In the previous sections we defined various notions
of computability, and investigated their interrelation-
ship. In the remaining three sections, we will study
some interesting properties of the indexing (or Gdédel
numbering) of G-computable functions.

NoOTES:

1. From now on, we will write “computable” for “G-

computable”, and “COMP?” for the class “G-COMP”.

2. Although our indexing of computable functions is
induced by our GN of the programming language
G (and so depends on a particular GN of a par-
ticular programming language), it can be shown
that the results below (S?, theorem, fixed point
and recursion theorems, and Rice’s theorem) hold
under very general assumptions on the indexing of
computable functions.

The main result of this section, the S]} theorem of
Kleene (also known as the parameter theorem), is very
useful for manipulating indices of functions, and is one
of the main tools in the proof of the recursion theorem
(§16).

Theorem 15.1 (S, Theorem) For all m,n > 0,
there is an (n + 1)-ary function S?, € PR such that
foralluy, - up, 1, -, T,y

wé’"*”’ (#,1) ~ ‘sz)(y @) ().

For some intuition on what this theorem says, let
m = n = 1. Then there exists a binary PR function
S = S} such that for all z,u,y,

(Pg(f) (.CL', U) = ¥PS(y,u) (.CL')

We may think of goém for fized y,u as a unary function
)\:1:-(,03(,2) (z,u). This function is G-computable, with gn

z (say). So for all z,

The theorem then says that z depends primitive re-
cursively on y and u, i.e.

z=S(y,u) for S € PR.

Proof: By induction on n:

e Basis: n = 1. We want a PR function S}, such
that for £ =z, -, T,

(@ u) = 0, (@),

Let P, be a progam for cp?(,mﬂ). For fixed y,u
we now want a program Q for computing AZ -
<p§m+1)(a':', u). We can think of Q as consisting of
two parts:

Q; : initialise X,,4+1 to u,
Q> : then execute Py.

Clearly, we can take

Xm+1++
0 = : u times |
Xm+1++

Now the gn of instruction ‘X, 11 ++ is
0,(1,2m + 1)) = 16m + 10.
So

(T, po) ™01

=147

#(9Q1)
= qi(u) (say)
and #(Q2) = v,
where ¢; € PR. Therefore

#(Q) = concat(q(u)+ 1,y +1)=1
= Sn(yw),
where S}, € PR (by Proposition 7.5).

e Induction step: Suppose the result holds for n =
k. Then

(mAk+1) /=
Py ( )(waula"'7uk+1)
~ m+k -
— SDS},,Jr,c(y,qu)(x’ul’ ,Uk)

~ Qor (%).
Sicn (S:n+k(yauk+1)aulv"'auk)

By defining
an—i_l(y: Ug, - 7uk+1)
=df an(S}n+k(y7 ’LLk+1),U1, Tt Juk)

the result follows. O

Note: In the universal function theorem (Theorem
9.4) and the S theorem we have two powerful tools
for forming new computable functions from old:



o The UFT states that ¢! (&) is a computable func-
tion of y and Z together, i.e. it provides a way of
moving arguments up from the index.

EXAMPLE: (sz)(y)
tion of u,z,y, 2.

e The S}, theorem makes it possible to move argu-
ments down to the index while preserving primi-
tive recursiveness.

ExampLE: Suppose f is a 5-ary computable func-
tion of z,y,z,u,v. Then the arguments y,u,v
(say) can be moved down to the index, i.e.

f(.??, y,Z,U,U) = Sog(y,u,v) (z.az)

for some g € PR.

e These two tools can be used “simultaneously”.
ExampLE: We can show that there is a function
g € PR such that for all u and v, Yy, 00y = Yg(u,v)-
Indeed, for some computable function f and some
PR function g,

f(u’ 1‘)’ m)?
Pg(u,v) (.Z'),

(by UFT)
(by S7.)-

Pu(pu(@))

~
~

16 The Recursion Theorem

The following theorem, due to Kleene, is a powerful
tool in computability theory. Its proof uses the S7,
theorem, and involves a dazzling use of diagonalisa-
tion.

Theorem 16.1 (Recursion Theorem) Let g be an
(m + 1)-ary computable function. Then there is some
e such that for all Z,

©e(Z) = g(Z,e).

Proof: For all v, ¥ there is some d such that

9(& Sk (v,0)) = @F (),
~ o 0@ (by SI)

Putting v = d and e = S}, (d, d), we obtain

9(Z,€e) = pe(x). O
A useful alternative version of the recursion theorem
is the following:

Corollary 16.1 (Fixed Point Theorem) Let f be
a total computable function. Then there is some e such
that

Pe = Pf(e)-
Proof: Let
9(2,7) = @) ().

Then g is computable by the universal function theo-
rem. Therefore by the recursion theorem there is some

(7,04, (2)(2)) is a computable func-

e such that for all z,

Pe(z) = g(e, 2) ~ ¢g(e)(2). O

EXAMPLES:

1. There is some e such that for all z, p.(z) = e,
i.e. there is a program which gives its own gn
as output! This is the basic idea behind “self-
reproducing programs” and viruses.

Proof: Let f = Az, %-z € COMP. By the recursion
theorem there is some e such that for all z,

pe(r) =~ fe,z) =e. O

2. More generally: Take any total computable unary
function g, for example g(x) = z*. Then there is
some e such that for all z,

e

pe(z) = g(e) = e°.

EXERCISE: Prove the result stated in Example 2 above.

17 Rice’s Theorem

One of many interesting applications of the recursion
theorem is in the proof of the following result, which
we will use to give many simple examples of non-
recursive sets.

We define the ‘~’ relation on N by

.fCNy :df@zzspy_

Proposition 17.1 The relation ‘~’ is an equivalence
relation on N'. Hence it partitions N into equivalence
classes.
Note that the fixed point theorem says that for every
total computable function f there is some e such that
fle) ~e.

A set A C N is called an index set iff A is closed
under ‘~’; i.e. Vz,y (x € ANz ~y =y € A). Now
given sets A C N and F C COMP, let

F(A) =qf
I(F) =g

{¢z|z € A} C COMP,
{z € Nlp, € F} C N.

So II(F) is the set of indices of functions in F'. The two
operations IF and I are almost inverse to each other,
in the following sense.

Proposition 17.2

(a) For any F C COMP, F(I(F)) =F.

(b) For any A C N, I(IF(4)) = {y|3z € A(z ~ y)},
i.e. the closure of A under ‘~’. Hence I(IF(A)) D A,
with equality iff A is an indez set.

Corollary 17.1 A subset of N is an index set iff it is
the set of indices of some set of computable functions.

EXAMPLES OF INDEX SETS:

1. NV,



2. 0,

3. [a], [a] =ar{b]b ~ a}, the ‘~’-equivalence class of
a, for any a € N,

4. Any union of index sets.

Theorem 17.1 (Rice) The only recursive index sets

are N and .

Proof (J. Case): Suppose that

A is an index set, (23)
) Cc ACN, and (24)
A is recursive. (25)

We will now get a contradiction from (23), (24) and
(25). By (24), choose

a€ Ab¢ A, (26)
and define
_J pp(x) ifz€eA
flz2) = { palz) if 2 ¢ A.

Then f is computable, since A is recursive by (25).
By the recursion theorem, there is some e such that

ifee A

pela) = flen) = { 0 LeC

Pa(T)

We consider the two possibilities:
e€Az>cpe=cpb=>e~b(£)b€A,

or e¢A=>cpe=<pa=>e~a(§)a¢A.

Both possibilities lead to a contradiction to (26). O
Corollary 17.2 The following sets are not recursive:

(a) [a], for any a € N,

(b) {zlp: total},

(¢) {z|p, constant},

(d) {z|¢: defined on at most finitely many args.},
(e)

{z|¢- increasing},

Note: By CT, Corollary 17.2(b) says that there is
no effective method to decide, given any G-program,
whether it defines a total function. (This is related to
the unsolvability of HP.) In fact, by §11, Exercise 3,
this problem is not even semi-decidable! This shows
that the notion of computable partial function (or par-
tial algorithm) is more fundamental than the notion
of computable total function (or total algorithm).
EXERCISES:
1. Prove Proposition 17.2 and Corollary 17.1.
2. (A uniform version of §7.3, Exercise 3): Show that
there is a binary function f € PR such that for all
y, An- f(y,n) is 1-1, and for all y and n, f(y,n) ~
Y.
3. Show that for every total computable f, there is a

primitive recursive g such that for all z, g(x) ~
f(z).

4. Is the relation ‘~’ recursive?

5. Let f(z) = “the least y such that y ~ 2”. (Note
that f is total.) Is f computable?
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