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We give some characterizations of semicomputability of sets of reals by programs in certain
While programming languages over a topological partial algebra of reals. We show that
such sets are semicomputable if and only if they are one of the following:

(i) unions of effective sequences of disjoint algebraic open intervals;
(ii) unions of effective sequences of rational open intervals;

(iii) unions of effective sequences of algebraic open intervals.

For the equivalence (i), the While language must be augmented by a strong OR operator,
and for equivalences (ii) and (iii) it must be further augmented by a strong existential
quantifier over the naturals (While∃N).
We also show that the class of While∃N semicomputable relations on reals is closed under
projection. The proof makes essential use of the continuity of the operations of the algebra.
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1. Introduction

1.1. Background

Our research in this paper is based on computations by high level programming languages featuring the ‘while’ construct
over many-sorted topological partial algebras.

An algebra A is a finite family of sets

As1 , . . . , Asn

called carriers of sorts s1, . . . , sn , and a finite set of (total or partial) functions defined over these sets.2

An algebra is said to be standard if it contains the sort of booleans and the standard boolean operators. It is N-standard
if in addition, it contains the sort of naturals and the standard arithmetic operations.

Classical computability theory on naturals has been studied since the 1930’s. There are many extensions of this theory
to abstract structures. One of these extensions has been the investigation of total (non-topological) algebras of reals [1].
A detailed discussion of such extensions is given in [14]. We have adapted many of the definitions and proofs from [14] to
fit topological partial algebras.

There are two kinds of computational models for algebras: abstract and concrete. Abstract models are independent of the
representations of the data types of the algebras, while concrete models are dependent on such representations. Typically
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abstract models are based on high level programming language, such as the While language. This is an imperative program-
ming language with the basic operations of assignment, sequential composition, conditional and the ‘while’ loop.

Examples of concrete models over R are the classical computable analysis of Pour-El and Richards [7], and TTE (Type-2
Theory of Effectivity) of Weihrauch [20]; both these models represent reals as effective Cauchy sequences of rationals, and
their equivalence follows from the results in [11].

Some work in bridging the gap between abstract and concrete models is made in [15,16]. We will discuss this issue
again in Section 6.2.

In studying computability theory on abstract algebras, we take, as a guiding principle, the Continuity Principle [13,15]:

computability �⇒ continuity.

(This principle is ignored in [1].)
We will focus on the N-standard topological partial algebra R, which is formed from the “N-standardization” of the ring

of reals, by adding the two boolean-valued partial operations:

eqR, lessR : R2 ⇀ B.

It follows from the Continuity Principle that these operations have to be partial. (This is because the set of reals is connected
and the booleans are discrete, so the only total continuous functions from the reals to the booleans are constants.)

Abstract models of computability such as the While language, with partial basic operations on R, suffer from a limitation,
namely the inability to implement interleaving or dovetailing. The problem is that when interleaving two processes, one
process may converge and the other diverge locally (because of the partiality of the basic operations). The resulting process
will then diverge, whereas we would want it to converge.

To correct this deficiency, we establish two enhancements of the While language and construct two new languages:
WhileOR and While∃N .

In the WhileOR language, we introduce a strong disjunction operation ‘�’, where b1 �b2 converges to true if either
component converges to true, even if the other one diverges. By means of this, interleaving of finitely many processes can
be simulated at the abstract level.

The While∃N language includes a strong ‘Exist’ construct over the naturals:

xB := ∃z P (t,z)

where z is a nat variable and P is a boolean-valued procedure. By means of this, interleaving of infinitely many processes
can be simulated at the abstract level.

We will study the structure of semicomputable sets of reals in R, where a set is said to be (for example) While semi-
computable if it is the halting set of a While procedure.

1.2. Results

We will prove certain structure theorems for semicomputable sets of reals in R:

(1) WhileOR semicomputable ⇐⇒ union of an effective countable seq. of disjoint algebraic intervals.3,4

(2) While∃N semicomputable ⇐⇒ union of an effective countable sequence of algebraic intervals.
(3) While∃N semicomputable ⇐⇒ union of an effective countable sequence of rational intervals.5

We have no structure theorem for While semicomputability over R, only a partial result:

(4) (a) While semicomputable �⇒ countable union of eff. sequence of rational intervals;
(b) While semicomputable ⇐� countable union of eff. sequence of disjoint rational intervals.

In (1) and (4), we need disjointedness because the While and WhileOR languages cannot implement interleaving of infinitely
many processes over partial algebras. For that we need the ‘Exist’ construct, as in (2) and (3).

The main tools in proving these results are:

(a) Engeler’s Lemma for standard topological partial algebras, which states (roughly) that a semicomputable set can be
expressed as the disjunction of an effective infinite sequence of booleans. It is proved by constructing a computation
tree for the procedure being considered.

3 By “interval” we will always mean open interval of reals.
4 An algebraic interval is an interval between two algebraic numbers.
5 A rational interval is an interval between two rational numbers.
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(b) The Canonical Form Lemma for booleans over R, which states that a boolean term over R can be expressed as a
boolean combination of polynomial equations and inequalities.

(c) The Partition Lemma for booleans over R, which states that a boolean term with only one real variable partitions the
real line into finitely many disjoint “positive intervals”, “negative intervals”, and “points of divergence”. The proof is by
structural induction on the boolean, using the Canonical Form Lemma.

Note that Engeler’s Lemma applies to all standard topological partial algebras, whereas the Canonical Form and Partition
Lemmas apply only in special cases, such as the algebra R.

The sequence of booleans given by Engeler’s Lemma for While(OR) has a semantic disjointedness property, which is used
in the ‘�⇒’ direction of the proof of (1). This property does not hold for While∃N , because of the special nature of the
associated “computation hypertree”, which is not strictly a tree, but a directed acyclic graph.

1.3. Overview of the paper

Section 2 reviews some preliminaries on numerical codings, computable reals and basic algebraic results.
Section 3 defines the fundamental concepts of signature, algebra, standard and N-standard algebra, and topological partial

algebra, and describes the topological partial algebra R, which is used throughout the paper.
It also gives the syntax and semantics of the While, WhileOR and While∃N languages, and reviews the notions of com-

putability, relative computability, semicomputability and projective semicomputability with respect to the While language
and its variants.

In Section 4 we prove Engeler’s Lemma for the While, WhileOR and While∃N languages over N-standard partial alge-
bras. To prove this lemma, two kinds of computation trees are constructed, one for While and WhileOR , and the other,
a “hypertree”, for While∃N .

Section 5 focuses on the algebra R of reals. It gives a “modified semantics” for atomic booleans in the language of R. It
then presents the Canonical Form and Partition Lemmas, followed by the four structure theorems listed above. This section
concludes with a proof of the theorem that While∃N semicomputability on R is closed under projection, i.e., a projection of
a While∃N semicomputable set of reals is again While∃N semicomputable. This result is interesting because it does not hold
over the total (non-topological) algebra over the reals studied in [14]. We do not know if it holds for While or WhileOR

over R.
Section 6 contains some ideas for future work. The most interesting (and challenging) of these would be a generalization

of the Partition Lemma, and (hence) the structure theorems, to more than one dimension.

2. Preliminaries

2.1. Numerical codings

We assume given families of effective numberings, i.e. surjective codings of the syntactic classes with which we deal,
with �E� denoting the code of the expression E .

These numberings are standard, so we will assume that we can primitive recursively simulate all operations involved in
processing the syntax of the programming language.

Further, we can define, in a standard way, numberings or codings of the sets N2, N∗ , Z and Q. We write 〈x, y〉 for the
code of a pair (x, y) ∈N2, [x1, . . . , xn] for the code of a tuple (x1, . . . , xn) ∈N∗ (n � 0), and more generally, �x� for the code
of an element x of Z, Q, etc.

By “effective(ly)”, we mean effective in the codes of the syntactic or mathematical objects referred to.

2.2. Computable reals

Definition 2.2.1 (Computable sequence of rationals). A sequence (r0, r1, r2, . . .) of rationals is computable if the function
n 
→ �rn� is recursive. A code of the sequence can be defined as an index of this recursive function.

Definition 2.2.2 (Computable real number). A real number x is computable if there exist

(1) a computable sequence (rn) of rationals converging to x, and
(2) a computable modulus of convergence, i.e., a total recursive strictly increasing function M : N → N such that ∀n,

|rn − x| < 2−M(n) .

A code of a computable real x is then defined as a pair 〈e,m〉 where e is an index of a convergent sequence (rn) for x, and
m is an index for its modulus of convergence.
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Lemma 2.2.3. For each (code for a) computable real number x, we can effectively construct computable sequences of rationals (rn) and
(sn) such that (rn) is increasing and (sn) is decreasing and for all n:

0 < (x − rn) < 2−n and

0 < (sn − x) < 2−n.

Proof. The construction of the sequences (rn) and (sn) as required from a computable sequence for x is straightforward. �
By “polynomial” we will mean a polynomial with integer coefficients. A unary polynomial is a polynomial in one variable.
An algebraic number is a root of a unary polynomial. The code of an algebraic number α can be defined as �α�= 〈�p�,k〉,

where α is the k-th smallest real root of the polynomial p, and p is a minimal polynomial for α.

Lemma 2.2.4. Let A and Rc be the sets of algebraic and computable real numbers respectively. Then the embeddings

Q ↪→A ↪→Rc

are effective in the respective codings.

In other words, there is a computable function f : N → N such that if k is the code of a rational, then f (k) is the code
of the same number viewed as an algebraic number. Similarly for A ↪→Rc .

On R, the open intervals

(a,b), (−∞,a), (b,∞)

are called rational, algebraic or computable real intervals according as a and b are rational, algebraic or computable reals
respectively.

We can give a coding for such intervals in an obvious way.

Lemma 2.2.5. Let (c,d) be a computable interval. We can effectively find a sequence of expanding rational intervals (ri, si) such that

(c,d) =
∞⋃

i=0

(ri, si).

Proof. By Lemma 2.2.3. �
2.3. Basic algebraic results

The following results can be found, with proofs, in standard texts on algebra [19,5] and real analysis [8,9].

Proposition 2.3.1. A non-zero unary polynomial of degree n has at most n real roots.

Corollary 2.3.2. If a polynomial p(x1, . . . ,xm) has the value 0 at all points in Rm, then it must be the zero polynomial.

Proof. By induction on m, using Proposition 2.3.1. �
Proposition 2.3.3 (Intermediate value theorem). Let f be a real-valued function that is continuous on the closed interval [a,b].
Suppose f (a) and f (b) have different signs. Then there exists c ∈ (a,b) such that f (c) = 0.

Corollary 2.3.4. A unary polynomial p of degree n > 0 with m(� n) distinct real roots α1, . . . ,αm defines m + 1 algebraic intervals:

(−∞,α1), (α1,α2), . . . , (αm−1,αm), (αm,∞)

in each of which p is either only positive or only negative.

Lemma 2.3.5. Given any unary polynomial p of degree n, we can find, effectively in �p�:

(1) the number of distinct real roots m(� n) of p, and, writing these as

α1 < α2 < · · · < αm,
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(2) – a rational less than α1 ,
– a rational between αk and αk+1 , for 1 � k < m, and
– a rational bigger than αm.

Proof. From Sturm’s theorem [19]. �
3. While computation on standard partial algebras

We study a number of high level imperative programming languages based on the ‘while’ construct, applied to a many-
sorted signature Σ . We give semantics for these languages relative to a partial Σ-algebra A, and define the notions of
computability, semicomputability and projective semicomputability for these languages on A. Much of the material is taken
from [14], adapted to partial algebras.

We begin by reviewing basic concepts: many-sorted signatures, algebras, and, in particular, topological partial algebras.
Next we define the syntax and semantics of the While programming language. Then we extend this language with special
programming constructs to form two new languages: WhileOR and While∃N .

3.1. Basic concepts: Signatures and algebras

A many-sorted signature Σ is a pair 〈Sort(Σ),Func (Σ)〉 where

(a) Sort(Σ) is a finite set of (Σ-)sorts, s, s′, . . . .
(b) Func (Σ) is a finite set of basic (Σ-)function symbols

F : s1 × · · · × sm → s (m � 0).

The case m = 0 gives a constant symbol; we then write F :→ s.

A (Σ-)product type has the form s1 × · · · × sm (m � 0), where s1, . . . , sm are sorts. We write u, v, . . . for product types.
A (Σ )-function type has the form u → s, where u is a product type.
A Σ-algebra A has, for each Σ-sort s, a non-empty set As , the carrier of sort s, and for each Σ-function symbol F :

s1 × · · · × sm → s, a (not necessarily total) function6

F A : Au ⇀ As

where u = s1 × · · · × sm , and Au = As1 × · · · × Asm .
We write Σ(A) for the signature of an algebra A.

Example 3.1.1 (Booleans). The signature Σ(B) of booleans is

signature Σ(B)

sorts bool
functions true, false : → bool,

not : bool → bool
or, and : bool2 → bool,
cor, cand : bool2 → bool,

The algebra B of booleans contains the carrier B = {tt, ff} of sort bool, and the standard interpretations of the constant and
function symbols of Σ(B).

Note that B contains two sets of boolean operators: (1) the strict operators ‘or’ and ‘and’; and (2) the “conditional”
operators ‘cor’ and ‘cand’ (denoted by ‘||’ and ‘&&’ in C-like languages), “evaluated from the left”, and non-strict in the 2nd
argument. These become important in the context of partial algebras such as R (Example 3.1.5).

We will also use the infix notations ‘∨’, ‘∧’ for the strict boolean operators or, and; and ‘
c∨’, ‘

c∧’ for the “conditional”
operators cor, cand.

6 We use ‘⇀’ to denote partial functions.
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Example 3.1.2 (Naturals). The signature of naturals is defined as

signature Σ(N )

import Σ(B)

sorts nat
functions 0 : → nat,

suc : nat → nat
eqN, lessN : nat2 → bool

The corresponding algebra of naturals N consists of the carrier N = {0,1,2, . . .} of sort nat, the carrier B = {tt, ff} of sort
bool, and the standard constants and functions 0N :→ N, sucN : N → N, and eqN, lessN : N2 → B (apart from the standard
boolean operations).

We will use the infix notation ‘=’ and ‘<’ for ‘eqN ’ and ‘lessN ’.

We come to the central concept of a topological partial algebra. First we note that for any two topological spaces X
and Y , a partial function f : X ⇀ Y is said to be continuous if for every open V ⊆ Y ,

f −1[V ] =df
{

x ∈ X
∣∣ x ∈ dom( f ) and f (x) ∈ V

}
is open in X . (This reduces to the usual notion of continuity when f is total.)

Definition 3.1.3 (Topological partial algebra). A topological partial algebra is a partial Σ-algebra with topologies on the carriers
such that each of the basic Σ-functions is continuous, and the carriers B and N (if present) have the discrete topology.

Remark 3.1.4 (Continuity of computable functions; the continuity principle). The significance of the continuity of the basic func-
tions of a topological algebra A is that it implies continuity of all While computable functions on A. This is the “Continuity
Theorem” for topological algebras [13, §6], [14, §7.5].

This is in accordance with the Continuity Principle which can be expressed as

computability �⇒ continuity.

This principle is discussed in [12, Section 1] and [15, §3.1].7

Example 3.1.5 (Algebra of reals). The signature of the algebra R of reals is given by

signature Σ(R)

import Σ(N )

sorts real
functions 0,1 : → real,

+,× : real2 → real,
− : real → real,
eqR, lessR: real2 → bool

The corresponding algebra R has the carrier R of sort real, as well as the imported carriers N and B, of sort nat and bool,
the real constants and operations (also written 0,1,+,×,−), and the boolean-valued partial functions eqR : R2 ⇀ B and
lessp :R2 ⇀ B, defined by:

eqR(x, y) =
{ ↑ if x = y

ff if x �= y

lessR(x, y) =
⎧⎨⎩ tt if x < y

ff if x > y
↑ if x = y.

Again we use the infix notation ‘=’ and ‘<’ for ‘eqR ’ and ‘lessR ’.

7 Cf. also the relationship between scientific observation and continuity, formulated as Hadamard’s Principle ([4,2], discussed also in [17]).
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Remarks 3.1.6 (Standard and N-standard algebras).

(a) The algebras N and R are standard, in the sense that they contain the carrier B with the standard boolean operations.
Standardness of R is necessary for the theoretical development in this paper. In fact we will assume that all algebras
with which we deal are standard.

(b) R is also N-standard, in the sense that it contains the carrier N with the standard arithmetic operations. N-standardness
of R is not really necessary for our main result, since the integers, and hence the naturals, can be implemented in the
reals [14, Proposition 6.17]. However, it is a very useful assumption (see e.g. Section 3.9 below).

Discussion 3.1.7 (Motivation for definition of partial functions). We want to motivate the definitions of partial functions in
general, and more specifically, the functions eqR and lessR in R. We present our motivation in two ways: the first based on
continuity considerations, and the second based on a “thought experiment” concerning (concrete) computation of the basic
functions under discussion.

(a) The total versions of eqR and lessR are not continuous, as can easily be checked. (By contrast, the total functions eqN ,
lessN on N are continuous, because of the discrete topology on N .) Continuity of basic functions such as eqR and lessR ,
making R a topological algebra, is consistent with the Continuity Principle (see Remark 3.1.4).

(b) Consider now a “thought experiment” involving the computation of an atomic formula x= y, where x and y are real
variables. Suppose, at a particular state σ , we want to determine whether x = y is true. Suppose also (we are now
combining “abstract” and “concrete” modes of description8) that the values of x and y at σ are “given by” Cauchy
sequences of rationals (r0, r1, r2, . . .) and (s0, s1, s2, . . .), which (for convenience) we assume to be “fast”, i.e.,

∀n,∀m � n |rn − rm| < 2−n,

and similarly for (sn). Suppose also that for n = 0,1,2, . . . the inputs rn and sn are observed (from some device) at n
time units. Now x< y is true at σ iff for some n, rn + 2 · 2−n < sn , and this can be determined within a finite amount
of time. Correspondingly, x= y is true iff for all n, |rn − sn| � 2 · 2−n , but this cannot be determined within any finite
amount of time, and so the evaluation of x= y diverges. These considerations explain the form of the partial definitions
of equality and order on the reals.

3.2. Syntax of Term(Σ)

Definition 3.2.1 (Σ-variables). For each Σ-sort s, Vars(Σ) is the set of Σ-variables xs,ys, . . . of sort s.

Definition 3.2.2 (Σ-terms). Term(Σ) is the set of Σ-terms t, . . . , and Terms(Σ) is the set of Σ-terms ts, . . . of sort s,
defined (in modified BNF) by

ts ::= xs
∣∣F

(
ts1

1 , . . . , tsm
m

)
where F is a Σ-function symbol of type s1 × · · · × sm → s.

We often drop the sort superscript s, and write t : s to indicate that t ∈ Terms(Σ). More generally, we write t : u to
indicate that t is a tuple of terms of product type u. We write Terms for Terms(Σ), etc. We also write b, . . . for boolean
Σ-terms, i.e. Σ-terms of sort bool.

3.3. Syntax of While(Σ)

We will use ‘≡’ to denote syntactic identity between two expressions.

Definition 3.3.1 (Statements). Stmt(Σ) is the class of statements S, . . . generated by:

S ::= skip | x := t | S1 ; S2 | if b then S1 else S2 fi | while b do S0 od

where the variable x and term t have the same Σ-sort.

Definition 3.3.2 (Procedures). Proc(Σ) is the class of procedures P , . . . of the form:

P ≡ proc D begin S end

8 Recall the discussion in Section 1.1.
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where the statement S is the body and D is a variable declaration of the form

D ≡ in a : u out b : v aux c : w

where a, b and c are tuples of input, output and auxiliary variables respectively. We stipulate:

(i) a, b, c each consist of distinct variables, and are pairwise disjoint,
(ii) every variable occurring in S must be declared in D ,9

(iii) all auxiliary and output variables are initialized with default values.

If a : u and b : v , then P is said to have type u → v , written P : u → v .

We turn to the semantics of terms, statements and procedures. Let A be a standard partial Σ-algebra.

3.4. States

Definition 3.4.1 (State).

(a) A state over A is a family 〈σs | s ∈ Sort(Σ)〉 of functions
σs : Vars → As .

(b) State(A) is the set of states on A, with elements σ , . . . .

We write σ(x) for σs(x) where x : s. For a tuple x≡ (x1, . . . ,xm), we write σ [x] for (σ (x1), . . . , σ (xm)).

Definition 3.4.2 (Variant of a state). Let σ be a state over A, and for some Σ-product type u, let x ≡ (x1, . . . ,xn) : u and
a = (a1, . . . ,an) ∈ Au (for n � 1). We define σ {x/a} to be the state over A formed from σ by replacing its value at xi by ai
for i = 1, . . . ,n.

3.5. Semantics of terms

For t ∈ Terms , we will define the function

[[t]]A : State(A) ⇀ As

where [[t]]Aσ is the value of t in A at state σ .

Notation 3.5.1.

(a) [[t]]Aσ↓ means that evaluation of [[t]]Aσ halts, or converges; and
[[t]]Aσ↓a means that it converges to a value a.

(b) [[t]]Aσ↑ means that evaluation of [[t]]Aσ diverges.

Notation 3.5.2 (Kleene equality). We write e.g.

[[t1]]Aσ � [[t1]]Aσ

to mean that the two sides of the equality either both converge to the same value, or both diverge [6, §63]

Definition 3.5.3 (Semantics of terms). The definition of [[t]]Aσ is by structural induction on Σ-terms t:

[[x]]Aσ = σ(x)�
F (t1, . . . , tm)

� A
σ �

{
F A([[t1]]Aσ , . . . , [[tm]]Aσ) if [[ti]]Aσ↓ for 1 � i � m

↑ otherwise.

Note that if c :→ s, i.e., c is a constant symbol of sort s, then [[c]]Aσ = c A ∈ As .

Definition 3.5.4 (Semantic equivalence of terms). Two Σ-terms t1 and t2 of the same sort s are (semantically) equivalent over A,
written t1 ≈ t2, iff

∀σ ∈ State(A)
([[t1]]Aσ � [[t1]]Aσ

)
.

9 This will not hold for the auxiliary variable in the ‘Exist’ construct (Section 3.9).
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Definition 3.5.5 (Weak semantic equivalence of booleans). Two Σ-booleans b1 and b2 are weakly (semantically) equivalent
over A, written b1 ∼ b2, iff

∀σ ∈ State(A)
([[b1]]Aσ ↓ tt ⇐⇒ [[b2]]Aσ ↓ tt

)
.

3.6. Semantics of statements

The meaning [[S]]A of a While(Σ) statement S is a partial state transformer on an algebra A:

[[S]]A : State(A) ⇀ State(A).

Its definition is standard [13,14] and lengthy, and so we omit it.
Briefly, it is based on defining the computation sequence of S starting in a state σ , or rather the n-th component of this

sequence, by a primary induction on n, and a secondary induction on the size of S .
The following results show that the i/o semantics for statements S satisfies certain desirable properties, which will be

used later.

Lemma 3.6.1.

(i) For S atomic: S ≡ skip or S ≡ x := t,

[[skip]]Aσ = σ

[[x := t]]Aσ � σ
{
x/[[t]]Aσ

}
.

(ii) If S ≡ S1; S2 ,

[[S]]Aσ � [[S2]]A([[S1]]Aσ
)
.

(iii) If S ≡ if b then S1 else S2 fi,

[[S]]Aσ �
⎧⎨⎩

[[S1]]Aσ if [[b]]Aσ ↓ tt

[[S2]]Aσ if [[b]]Aσ ↓ ff

↑ if [[b]]Aσ ↑.

(iv) If S ≡ while b do S0 do,

[[S]]Aσ �
⎧⎨⎩

[[S0; S]]Aσ if [[b]]Aσ ↓ tt

σ if [[b]]Aσ ↓ ff

↑ if [[b]]Aσ ↑.

Proof. As outlined in [14, Theorem 3.6] adapted to partial algebras. �
3.7. Semantics of procedures

If

P ≡ proc in a out b aux c begin S end

is a procedure of type u → v , then its meaning is a partial function

P A : Au ⇀ Av

defined as follows. For a ∈ Au , let σ be any state on A such that σ [a] = a, and σ [b] and σ [c] are given suitable default
values. Then

P A(a) �
{

σ ′[b] if [[S]]Aσ ↓ σ ′ (say)

↑ if [[S]]Aσ ↑.

Note that P A is well defined, by the functionality lemma for statement semantics [14, Lemma 3.10].
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3.8. While computability

Definition 3.8.1 (While computable function).

(a) A function f on A of type u → v is said to be computable on A by a While procedure P : u → v if f = P A .
(b) While(A) is the class of functions While computable on A.

Definition 3.8.2 (Halting set). The halting set of a procedure P : u → v on A is the set

Halt A(P ) =df
{

a ∈ Au
∣∣ P A(a) ↓}

.

Definition 3.8.3 (While semicomputable set). A set R ⊆ Au is While semicomputable on A if it is the halting set on A of some
While procedure.

Definition 3.8.4 (Projectively While semicomputable set). A set R ⊆ Au is projectively While semicomputable on A iff R is the
projection of a While semicomputable set on A, i.e., for some product types u and v , there is a While semicomputable set
R ′ ⊆ Au×v such that

∀x ∈ Au [
x ∈ R ⇐⇒ ∃y ∈ Av : (x, y) ∈ R ′].

Generally, projective semicomputability is a more powerful (and less algorithmic) concept than semicomputability. (But
see Theorem 5 in Section 5.)

3.9. Expanding While to WhileOR and While∃N

Let Σ be a standard signature. Recall (from Example 3.1.1) that it contains both the strict boolean operators ∨, ∧, and

the “conditional” operators
c∨,

c∧.
Now we consider the addition to Σ of a third pair of boolean operators: the strong “Kleene operators”

OR,AND : bool2 → bool

[6, p. 334], which are non-strict in both arguments. We will use the infix notation ‘�’ and ‘�’ for these.
The ‘OR’ operator allows us to simulate interleaving at an abstract level, since it lets us decide a disjunction b1 �b1 of

two boolean terms to be true if either of these converges to tt (even if the other one diverges).
Let ΣOR be the expansion of Σ formed by adding ‘OR’. We then define:

TermOR(Σ) = Term
(
ΣOR)

BoolOR(Σ) = Bool
(
ΣOR)

WhileOR(Σ) = While
(
ΣOR)

.

We can also extend the While language by adding a new boolean term

∃z P (t,z)

where the procedure P has type u × nat → bool, and z is a “new” variable of sort nat. This will occur only in the context:

xB := ∃z P (t,z).

We define its semantics as:

�∃z P (t,z)
� A

σ �
{

tt if P A([[t]]Aσ ,n) ↓ tt for some n
↑ otherwise.

(3.1)

This corresponds to the following operational semantics: interleave the computations for

P A(t,0), P A(t,1), P A(t,2), . . .

and return tt if and only if any of these procedures terminates and returns tt; otherwise keep on going.
This operation allows us to simulate infinite interleaving at the abstract level.
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Note that this is different from “evaluating from the left”, which can be implemented by a simple loop:

find := false;
z := 0;
while find= false

do
find := P (t,z)

z := z+ 1;
od

which will diverge in case, e.g.,

P A(t,0) ↓ ff, P A(t,1) ↑, P A(t,2) ↓ tt

whereas ∃z P (t,z) will converge to tt.
The usefulness of these new program constructs will become apparent in Section 4.
Using the ‘Exist’ construct, we can “weakly simulate” OR, i.e., define a procedure P such that

Exist z : P (b1,b2,z) ∼ b1 �b2

(recall Definition 3.5.5). In fact, we can define P (b1,b2,z) as

proc
in b1,b2 : bool

z : nat
out b : bool
begin
b := if z= 1 then b1 else

if z= 2 then b2 else
false

fi
fi

end.

Note that Exist z : P (b1,b2, z) is only weakly semantically equivalent to b1 �b2; in fact no construct of the form Exist z :
P (b1,b2, z) can be strongly equivalent to b1 �b2, since when b1 and b2 both have the value ff, then b1 �b2 has the value ff,
but Exist z : P (b1,b2, z) can only have values tt and ↑, by (3.1).

We can nevertheless think of ‘OR’ as a “finite” version of ‘Exist’, and so we adjoin the ‘OR’ construct together with ‘Exist’
to form the language While∃N(Σ).

We write Σ(OR) for the signature Σ or ΣOR , and similarly While(OR) for the language While or WhileOR .

Remark 3.9.1 (Continuity of WhileOR and While∃N computable functions). As stated above (Remark 3.1.4) all While computable
functions on a topological partial algebra are continuous. The same applies to WhileOR and While∃N computable functions.
We omit proofs. Again, this is important because of the Continuity Principle.

Remark 3.9.2. The ‘Exist’ construct can be implemented from the ‘choose’ construct (or “countable choice” operator) [15] by

xB := ∃z P (t,z) ⇐⇒ n := choose z : P (t,z); xB := P (t,n).

However, unlike the ‘choose’ construct which is nondeterministic, the ‘Exist’ construct is “weakly” or “globally” deter-
ministic, i.e., deterministic at the abstract level, although there is nondeterminism in the actual choice of z in a concrete
implementation.

Clearly, While computability implies WhileOR computability, which in turn implies While∃N computability.

3.10. While0 language

To simplify the formal development in the next section, we restrict the structure of While statements to a special form,
and show that all statements can be effectively transformed to this form.

Definition 3.10.1 (Special form for While statements). A While(Σ) statement S is said to be in special form if (inductively) it
has one of the following forms:
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• S ≡ skip
• S ≡ xs := ts

• S ≡ if xB then S1 else S2 fi
• S ≡ while xB do S0 od
• S ≡ S1; S2

where S0, S1 and S2 are also in special form.

In other words, S is in special form iff all boolean tests occurring in S are variables.
Let While0(Σ) be the While(Σ) language restricted to special form; and similarly for WhileOR

0 (Σ) and While∃N
0 (Σ).

Lemma 3.10.2.

(a) All While statements can be effectively transformed into While0 statements, preserving the semantics.
(b) Similarly for WhileOR and While∃N .

The proofs are quite routine.

Remarks 3.10.3.

(a) In the While∃N
0 language, there are two kinds of assignment: the ‘Exist’ assignment, of the form

xB := ∃z P (t,z)

and all other assignments

x := t

which we call simple assignments.
(b) In While0, WhileOR

0 or While∃N
0 statements, the only way for a program to diverge locally is by the divergence of the

right-hand side of an assignment statement.
(c) From now on, we will only work with While0, WhileOR

0 and While∃N
0 programs. To simplify the notation, we will still

refer to these as While (etc.) programs.

3.11. Definability property

This is needed in the construction of the computation tree and in the proof of Engeler’s Lemma in the next section.

Definition 3.11.1 (Definability predicate).

(a) A definability predicate at sort s for a Σ-algebra A is a Σ-boolean expression def s , containing a distinguished free
variable x : s, such that for all Σ-terms t and all states σ on A (writing def s(t) for def s〈x/t〉):

�
def s(t)

� A
σ �

{
tt if [[t]]Aσ ↓
↑ otherwise.

(b) A Σ-algebra has the definability property if it has a definability predicate at all Σ-sorts.

For all the algebras A with which we deal, we assume:

Assumption 3.11.2 (Definability). A has the definability property.

In particular, we show:

Lemma 3.11.3. R has the definability property.

Proof. In Σ(R), we can define def s(t) as follows:
At sort nat, put def nat(t) ≡ true.
At sort real, put def real(t) ≡ lessR(t, t + 1).
For the boolean term ∃z P (t,z), put

def bool

(∃z P (t,z)
) ≡ ∃z P (t,z).

For any other term t of sort bool, put def bool(t) ≡ (t ∨ ¬ t). �
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4. Computation trees; Engeler’s Lemma

Engeler’s Lemma [3] is an important theoretical tool for the research described in this paper. It states (roughly) that a
semicomputable set can be expressed as the disjunction of an effective infinite sequence of booleans.

A proof of Engeler’s Lemma for the While language on total algebras was given in [14, §5]. Here we prove Engeler’s
Lemma for the While, WhileOR and While∃N languages on partial algebras. Our proof is based on computation trees (in the
case of While(OR)) and “hypertrees” (in the case of While∃N).

We also prove a Semantic Disjointedness Lemma 4.4.2 which will play a central role in our Structure Theorems.

4.1. Computation tree for While(OR)(Σ)

We define a computation tree T [S,x] for a While(OR) statement S on R, where Var(S) ⊆ x ≡ (x1, . . . ,xn) : u. The
computation tree T [S,x] is like an “unfolded flow chart” for S .

This is a version of the computation tree defined in [14, §5.10], adapted for the While(OR) languages and for partial
algebras.

The root of T [S,x] is labeled ‘s’ (for ‘start’), and the leaves are labeled ‘e’ (for ‘end’). The internal nodes are labeled with
assignments and boolean tests. Each edge is labeled with a syntactic state, i.e., a tuple of terms t ≡ (t1, . . . , tn) : u. The idea
is that if S is executed at an initial state σ , then the state at this point of the computation will be σ {x/[[t]]Aσ }.

In the course of the following definition we will make use of the restricted tree T −[S,x], which is just T [S,x] without
the ‘s’ node.

We will also use the notation T [S, t] for the tree formed from T [S,x] by replacing all edges labeled t′ (say) by t′〈x/t〉.
The definition of T [S,x] is by structural induction on S .

(1) S ≡ skip. Then T [S,x] is just

�s

�

x

�e

(2) S ≡ x j := t . Then T [S,x] is the tree

�s

�
x

x j := t

�

(x1, ...,x j−1, t,x j+1, ...,xn)

�e

(3) S ≡ S1; S2. Then T [S,x] is formed from T [S1,x] by replacing each leaf in a state t by the tree

�

t

T −[S2, t]

(4) S ≡ if xB then S1 else S2 fi. Then T [S,x] is shown in Fig. 1.
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Fig. 1. Construction of T [S,x] (case 4).

Fig. 2. Construction of T [S,x] (case 5).

(5) S ≡ while xB do S0 od. Then T [S,x] is defined as the “limit” of the sequence of trees Tn[S,x], where T0[S,x] is
T [skip,x], as in (1) above, and Tn+1[S,x] is as shown in Fig. 2, where T̃n is the tree formed from T −[S0,x] by
replacing each leaf in a state t by T −

n [S, t].

Note that the construction of T [S,x] is effective in S and x. More precisely: T [S,x] can be coded as an r.e. set of
numbers, with r.e. index primitive recursive in �S� and �x�.

4.2. Semantics of infinite disjunctions

We will show that the halting set of a While, WhileOR or While∃N procedure can be expressed as the countable disjunc-
tion of an effective infinite sequence of booleans. We must therefore first consider carefully some possible semantics for
infinite disjunctions in 3-valued logic.

Let bk be a sequence of ΣOR-booleans. There are (at least) two different reasonable semantics for the infinite disjunction

∞∨
k=0

bk

for 3-valued logics (“reasonable” in the sense of having computational significance), for which we use distinct notations:

(1) Infinite conditional disjunction (“evaluation from the left”), denoted
c∨∞

k=0 bk , with two possible outputs, tt and ↑:

� ∞
c∨

k=0

bk

� A

σ �
{

tt if ∃k: [[bk]]Aσ ↓ tt ∧ ∀i < k [[bi]]Aσ ↓ ff

↑ otherwise.

This definition is While computable (in the sequence �bk�) with the following procedure:
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Evaluate bk (k = 0,1, . . .) one by one. There are 3 possibilities:
• for some k, evaluation of bk converges to tt, and all earlier b j converge to ff, or
• for some k, evaluation of bk diverges, and all earlier b j converge to ff (“local divergence”), or
• all the bk converge to ff (“global divergence”).
In the first case, evaluation of the disjunction converges to tt.
In the latter two cases, it diverges.

(2) Infinite strong disjunction (“strong Kleene evaluation”), denoted
�∞

k=0 bk , again with two possible outputs, tt and ↑:

� ∞�
k=0

bk

� A

σ �
{

tt if ∃k [[bk]]Aσ ↓ tt

↑ otherwise.

This definition is not (in general) While(OR) computable (in �bk�), but it is While∃N computable, by the semantics of
∃z P (t,z) (Section 3.9).

Definition (2) is the one mainly used in this paper, e.g. in the formulation of Engeler’s Lemma (Lemma 4.3.1 below). Intu-

itively, definitions (1) and (2) generalize (respectively) the finite disjunctions ‘
c∨’ and ‘�’.

Notation 4.2.1. For any boolean term b with Var(b) ⊆ x : u, and a ∈ Au , we write b[a] to mean: [[b]]Aσ ↓ tt for any σ ∈
State(A) such that σ [x] = a.

Definition 4.2.2 (Relation defined by boolean). A Σ(OR)-boolean term b with Var(b) ⊆ x : u is said to define a relation R ⊆ Au

(w.r.t. x) iff for all a ∈ Au

a ∈ R ⇐⇒ b[a].

4.3. Engeler’s Lemma for While(OR)

Lemma 4.3.1 (Engeler’s Lemma for While(OR)). If a relation R ⊆ Au is While(OR) semicomputable over a standard partial Σ-algebra
A, then R can be expressed as the (strong) disjunction of an effective sequence of Σ(OR)-booleans over A.

Proof. Suppose R is the halting set in A of the While(OR) procedure:

P ≡ proc in a out b aux c begin S end. (4.1)

For each leaf λ of the computation tree T [S,x] there is a boolean bS,λ with variables among x≡ (a,b,c) which expresses
the conjunction (‘cand’) of the test results and definability predicates along the path from the root to λ, as follows.

There are two cases to consider, according to the kind of node encountered along the path: assignment nodes and test
nodes.

(1) An assignment node xs := ts in the path contributes to bS,λ the conjunct expressing definability of the term t:

. . .
c∧ def s(t)

c∧ . . .

which guarantees that the boolean term bS,λ converges only if evaluation of t converges at that point.
(2) A test node labeled xB contributes as conjunct

either . . .
c∧ xB c∧ . . .

or . . .
c∧ ¬xB c∧ . . .

according to whether the path goes to the left or right here. Note that since the boolean test only has the form of a
boolean variable xB , we do not need to add the def bool predicate here.

Next, we can effectively enumerate the leaves of the computation tree to obtain a sequence (λk) by (for example) increasing
the depth, and, at a given depth, going from left to right. (To ensure that the corresponding sequence of booleans (bS,λk ) is
infinite, we can “pad” it with the default value false.) Then for all a ∈ Au (putting bS,k ≡ bS,λk ):

a ∈ R ⇐⇒ P A(a) ↓ ⇐⇒
∞�

k=0

bS,k[a].

Note we are using “infinite strong disjunction” (version (2) in Section 4.2).
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Hence R can be expressed as the infinite strong disjunction of an effective countable sequence of Σ(OR)-booleans
over A. �
4.4. Semantic disjointedness

Definition 4.4.1 (Semantic disjointedness). A sequence (b0,b1,b2, . . .) of boolean terms is semantically disjoint over A if for
any state σ on A and any n,

[[bn]]Aσ ↓ tt �⇒ ∀i �= n, [[bi]]Aσ ↓ ff.

Lemma 4.4.2 (Semantic Disjointedness Lemma). The sequence of boolean terms generated from a While(OR) computation tree S as in
the proof of Engeler’s Lemma 4.3.1 is semantically disjoint.

Proof. Let i, j be distinct natural numbers and

bS,i ≡ bS,i1

c∧ · · · c∧ bS,im (4.2a)

bS, j ≡ bS, j1

c∧ · · · c∧ bS, jn . (4.2b)

Note that for any k, the definition of bS,k determines a path from the root to the k-th leaf of the computation tree of S .
Therefore, considering the paths from the root to the i-th leaf and from the root to the j-th leaf, there must be a branching
node with label b (say), where the two paths split, i.e. there exists some l < min(m,n) such that

bS,i1 ≡ bS, j1 , bS,i2 ≡ bS, j2 , . . . , bS,i(l−1)
≡ bS, j(l−1)

(4.3)

and

either (bS,il ≡ b and bS, jl ≡ ¬b)

or (bS,il ≡ ¬b and bS, jl ≡ b).
(4.4)

So for any σ , suppose

[[bS,i]]Aσ = tt.

Then from (4.2a),

[[bS,il ]]Aσ = tt

and from (4.4),

[[bS, jl ]]Aσ = ff. (4.5)

Also, since by (4.3)

[[bS, jk ]]Aσ = [[bS,ik ]]Aσ = tt for all k < l (4.6)

then by (4.2b), (4.4) and (4.6) and the semantics of
c∧,

[[bS, j]]Aσ = tt
c∧ · · · c∧ tt

c∧ ff
c∧ · · · = ff. �

Lemma 4.4.3 (Semantic disjointedness evaluation). If an effective sequence of booleans (bk) is semantically disjoint over A, then10

∞�
k=0

bk ≈
∞
c∨

k=0

bk (4.7)

i.e., for any σ , [[�
kbk]]Aσ can be “evaluated from the left”.

Proof. For any σ , we consider two cases:

(1) There exists k such that [[bk]]Aσ ↓ tt. Then by Definition 4.4.1 of semantic disjointness, [[bi]]Aσ ↓ ff for all i �= k, and in
particular for all i < k. Hence both sides of (4.7) converge to tt at σ .

(2) Otherwise: as is easily seen, both sides diverge at σ . �
10 Recall the notation ‘≈’ for semantic equivalence (Definition 3.5.4).
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Fig. 3. Construction of hypertree (step 1).

Fig. 4. Construction of hypertree (step 2).

4.5. Computation tree for While∃N

In order to prove Engeler’s Lemma for the While∃N language, we define (inductively) the computation trees for While∃N

statements, following the cases in the definition of the While(OR) computation tree in Section 4.1. We add a new case to
the cases considered there:

(6) S ≡ x j := ∃z P (t,z); S1, where

P ≡ proc in a out b aux c begin S0 end.

If S ≡ x j := ∃z P (t,z) (with S1 missing), we just let S1 ≡ skip.

The tree for S is then formed from the tree in Fig. 3 by replacing each ‘e’ leaf of the trees T −[S0, (x, ı̄)] (i = 0,1,2, . . .)
by the tree in Fig. 4, where

t̂ =df (x1, . . . ,x j−1, true,x j+1, . . . ,xn),

and then collapsing these multiple occurrences of the subtree T −[S1 ,̂ t] to form the tree shown in Fig. 5.
We call the subtrees T −[S0, (x, ı̄)] (i = 0,1,2, . . .) appearing in Fig. 5 proc-subtrees of the whole computation tree.
Define a channel in the tree of Fig. 5 to be a path through one of the “former leaves” of the proc-subtree T −[S0, (x, ī)],

labeled ci, j , where ‘i’ refers to the i-th proc-subtree, and ‘ j’ refers to the jth “former leaf” of the proc-subtree. Note that in
this tree, there are (countably) infinitely many channels from the root to the subtree T −[S1 ,̂ t]. We can effectively enumerate
these channels by renaming channel ci, j as ck where k = �(i, j)�.

Let T [S,x] be the computation tree defined as above. Strictly speaking, T [S,x] is not a tree, but a dag (directed acyclic
graph). Call the node for x j := ∃z P (t,z) shown in Fig. 5, together with the subgraph below it (excluding the subtree
T −[S1 ,̂ t]), the hypernode for x j := ∃z P (t,z); and call the whole tree, constructed in this way, a hypertree. We can reduce
such hypernodes to “atomic nodes” by ignoring their internal details, and so reduce the hypertree to a reduced tree (that is
an actual tree, not a dag), just like the While(OR) computation tree constructed in Section 4.1.

Notice that there are no leaves in the proc-subtrees because we have replaced all the leaves by the subtree T −[S1 ,̂ t].
So the leaves of the hypertree can be identified with the leaves of the corresponding reduced tree, and hence they can be
effectively enumerated as in the proof of Engeler’s Lemma.

We define a hyperpath to be a route in the hypertree from the root of T [S,x] to a leaf. At a hypernode of the hypertree,
the hyperpath goes through a specific channel (ci j in Fig. 5). Similarly, a reduced path is a path in the reduced tree, ignoring
the details of the hypernodes.

We exhibit a hyperpath in Fig. 6. This shows part of the hypertree. (Note that e1, e2, . . . here denote edges of the hyper-
tree, not syntactic states.) To simplify the drawing, we ignore the details of the proc-subtrees, leaving only the enumerated
channels of each hypernode.
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Fig. 5. Construction of hypertree (step 3).

Fig. 6. Hyperpath.
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From the root s to any given leaf e of the hypertree, there is one reduced path corresponding to infinitely many hyper-
paths; for example, hpath(1,2) consists of the edge e1, the channel c1 of the 1st hypernode, the edges e2, e3, e4, e5, e6, the
channel c2 of the 2nd hypernode, and the edges e7, e8.

Notice that in an ‘Exist’ term ∃z P (t,z) in the tree, there may be other terms ∃z P ′(t′,z′) inside the procedure P . Then
(recursively) we expand all such proc-subtrees in P so as to form a hypertree without any ‘Exist’ nodes.

Notice also that on each hyperpath, there are three kinds of node:

• simple11 assignment nodes x j := t ,
• ‘Exist’ assignment nodes,
• branching nodes at boolean variables xB .

Associated with each leaf are (infinitely many) hyperpaths, because of the multiple channels through the hypernodes which
lead to that leaf.

We can then enumerate all the hyperpaths of each leaf as follows. Let hpath(i1, . . . , im) be the hyperpath through the
ik-th channel at the k-th hypernode on the route (where k = 1, . . . ,m, assuming there are m hypernodes on that hyperpath).
Then we rename hpath(i1, . . . , im) as hpath(i) where i = �(i1, . . . , im)�.

Finally, combining the enumeration of the leaves of the hypertree as above, and the enumeration of the hyperpaths of
each leaf, we can effectively enumerate all hyperpaths of the computation tree.

Hence we have (compare Lemma 4.3.1):

Lemma 4.5.1 (Engeler’s Lemma for While∃N). If a relation R is While∃N semicomputable over a standard partial Σ-algebra A, then R
can be expressed as the (strong) disjunction of an effective sequence of ΣOR-booleans over A.

Proof. Suppose R is the halting set in A of the While∃N procedure

P ≡ proc in a out b aux c begin S end.

Consider the enumeration of the hyperpaths

ρ0, ρ1, ρ2, . . .

of the hypertree for S as described above. For each hyperpath ρ (not leaf) of the computation tree T [S,x] there is a
boolean bS,ρ with variables among x≡ (a,b,c) which expresses the conjunction of results of the tests and the definability
predicates from the root to the leaf of T [S,x] along ρ . This boolean is constructed as follows.

A simple assignment node x := t in 	 contributes to bS,ρ the conjunct

· · · c∧ def s(t)
c∧ · · ·

which guarantees that bS,ρ converges only if the evaluation of the term t converges at this point.
Suppose the hyperpath goes through a test node xB . Consider the most recent assignment to xB above this node. There

are two cases:

(1) The most recent assignment to xB was a simple assignment xB := t . Then we add either · · · c∧ xB c∧ · · · or · · · c∧ ¬xB c∧ · · ·
as a conjunct to bS,ρ , according to whether the hyperpath goes to the left or right at this node.

(2) The most recent assignment to xB was an ‘Exist’ assignment xB := ∃z P (t,z). Then the hyperpath must go to the left
(since in this case xB must be true), and bS,ρ is unchanged (since adding the conjunct true is redundant).

Define bS,k ≡ bS,ρk . Then R is expressed by the infinite disjunction�
k

bS,k (4.8)

just as in the proof of Engeler’s Lemma 4.3.1 for While(OR) . �
Remark 4.5.2. The sequence of booleans (bS,k) constructed in the above proof (4.8) does not, in general, satisfy semantic
disjointedness (cf. Lemma 4.4.2), because of the nature of the While∃N computation hypertree.

11 Recall Remark 3.10.3(a).
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5. Structure theorems for semicomputable sets over R

In this section we present our structure theorems characterizing the While, WhileOR and While∃N semicomputable sets
over R. We will discuss the limitations of the While language in this regard, and show how the WhileOR and While∃N

languages correct these deficiencies.
From now on, we will consider only the algebra A =R, and write Σ for Σ(R), and similarly for ΣOR and Σ∃N .

5.1. Computational equivalence; Semantics of atomic booleans

The proof of the Canonical Form Lemma 5.2.2 below (and hence the Partition Lemma 5.2.4) requires a careful analysis of
the semantics of atomic booleans of the forms (1) t1 = t2 and (2) t1 < t2.

Assume for simplicity that t1 and t2 contain only the variable x : real.
These atomic booleans can be simplified, respectively, to the forms (1) p(x) = 0 and (2) p(x) > 0, for some integer

polynomial p(x). Now according to the semantics of ‘=’ and ‘<’ (Example 3.1.5), together with the semantic rules for terms
(Definition 3.5.3), the semantic evaluation of these two atoms at a state σ , where σ(x) = a, is given by

�
p(x) = 0

�
σ �

{↑ if p(a) = 0
ff if p(a) �= 0

(5.1a)

�
p(x) > 0

�
σ �

{
tt if p(a) > 0
ff if p(a) < 0
↑ if p(a) = 0.

(5.1b)

Hence at a root a of p(x), the booleans p(x) = 0 and p(x) > 0 both diverge.
Now suppose p(x) has degree 0, i.e. p(x) ≡ c for some (integer) constant c. Consider the two cases:

(1) c �= 0. Then p has no roots, and (as we would want) at all states p(x) = 0 evaluates to ff, and p(x) > 0 evaluates to tt if
c is positive, and ff if c is negative.

(2) c = 0. Now every real point is a root of p, but by (5.1) the atoms p(x) = 0 and p(x) > 0, which simplify (resp.) to 0 = 0
and 0 > 0, diverge at all states! But this is quite counter-intuitive.

Similarly, we would (presumably) want atoms t1 = t2 to evaluate to tt, and not diverge, if (e.g.) t1 ≡ t2 ≡ 3, or t1 ≡ 2 ∗ x+ 2
and t2 ≡ 1 +x+x+ 1, or more generally, where the equality t1 = t2 follows from the ring axioms over R, and hence is true
a priori.

Hence we must modify the semantics given by (5.1).
First, some remarks on representations of polynomials.

Remark 5.1.1 (Standard form for polynomials). Any polynomial can be written in a standard form by (1) assuming a standard
listing x1,x2, . . . of the real variables, and (2) ordering the monomials xe1

1 . . .xen
m (e.g.) first by decreasing weight (= e1 +

· · · + en), and secondly, lexicographically in (e1, . . . , en), according to the order ‘>’ on N. We can then define a coding of
polynomials in standard form.

Note that our polynomial expressions in standard form have integer coefficients, although the signature Σ does not have
a data type int. The point is that our “polynomial notation” does not involve integers essentially. For example, the polynomial
expression ‘2x2 − x+ 3’ stands for the Σ-term x ∗ x+ x ∗ x+ (−x) + 1 + 1 + 1 (suitably parenthesized).

Now let E be the equational calculus [10, §11.1] in the language (0,1,+,−,∗), with the axioms for commutative rings
with unit [5].

By “real term” we mean term of type real.

Definition 5.1.2 (Computational equivalence). Two real terms t1, t2 are computationally equivalent (written t1 ∼= t2) iff
E � t1 = t2.

Lemma 5.1.3. Any real term t can be re-written uniquely as a polynomial in standard form; more precisely, there is a unique polynomial
P[t] in standard form such that t ∼= P[t].

Lemma 5.1.4. For any two real terms t1 , t2 , the following three assertions are equivalent:

(1) t1 ∼= t2 ,
(2) P[t1] ≡ P[t2],
(3) P[t1 − t2] ≡ 0 (the zero polynomial).
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Note that by the equivalence (1) ⇔ (2) above, computational equivalence between real terms is decidable.
The following lemma expresses the soundness and completeness of computational equivalence w.r.t. semantic equiva-

lence.12

Lemma 5.1.5. For any two real terms t1 , t2

t1 ∼= t2 ⇐⇒ t1 ≈ t2

Proof. (⇒) is clear. (⇐) follows from the fact that if a polynomial over R has value 0 everywhere, then it must be the zero
polynomial, by Corollary 2.3.2. �
Definition 5.1.6 (Modified semantics of boolean atoms). For real terms t1, t2, we define:

[[t1 = t2]]σ �
{

tt if t1 ∼= t2
↑ if [[t1]]σ = [[t2]]σ but t1 � t2
ff if [[t1]]σ �= [[t2]]σ

(5.2a)

[[t1 < t2]]σ �
⎧⎨⎩

tt if [[t1]]σ < [[t2]]σ
ff if [[t1]]σ > [[t2]]σ or t1 ∼= t2
↑ if [[t1]]σ = [[t2]]σ but t1 � t2.

(5.2b)

These definitions will be used in the proof of the Canonical Form Lemma 5.2.2.

Discussion 5.1.7 (Justification for modified semantics). Again, as in Discussion 3.1.7, we consider this issue in two ways: the
first based on continuity considerations, and the second, again, based on a thought experiment involving concrete compu-
tations:

(a) Recall Discussion 3.1.7(a) on the motivation for defining equality and order on the reals as partial functions eqR and
lessR . Continuity of WhileOR computable functions is a central concern here. We may then well ask: do the above mod-
ified semantics (5.2) not “spoil” this continuity result? The answer is no: with the above definitions, it still holds that
While (or WhileOR , or While∃N) computable functions are continuous. The proof depends on the fact that the condition
for the atomic formula t1 = t2 to have an output of tt instead of ↑ (i.e. that t1 ∼= t2) is independent of the state. Hence
the proof of the Continuity Theorem for While computable functions on topological algebras (see Remark 3.1.4). can be
easily adapted to the present case, with the semantics based on Definition 5.1.6. We omit details.

(b) Another (“concrete”) approach to justifying this definition lies in continuing with our thought experiment in Discus-
sion 3.1.7(b). So consider again an atomic formula of the form t1 = t2, and see what is involved in trying to decide
whether it is true or not. First, take the case considered in Discussion 3.1.7(b) where t1 ≡ x, and t2 ≡ y. Suppose, again,
that these are presented to us, at a given state σ , as fast Cauchy sequences (rn) and (sn) of rationals respectively. Then,
as shown there (Discussion 3.1.7(b)), we can only gain “negative” information in finite time. In other words, if x= y is
true at σ , then we cannot determine this in finite time, and so the computation diverges. Suppose, however, that (for
example) t1 ≡ 1 +x and t2 ≡ x+ 1. Then it is clear a priori that these terms are equal, regardless of the state, and with-
out any need to consult the Cauchy sequence for x at that state. After all, it is the same variable, and hence the same
Cauchy sequence, on both sides of the equation! Hence in this case we let the atom t1 = t2 evaluate to tt at all states.

5.2. Canonical form for ΣOR booleans

Unless otherwise stated, the definitions and lemmas in this subsection refer to the ΣOR-language, with the Σ-language
as a special case. We generally write b,b′, . . . for ΣOR-booleans.

Definition 5.2.1 (Boolean combination). A boolean combination of a set of atomic booleans is a boolean expression built up

from the atoms t1 < t2 and t1 = t2 (with t1, t2 : real) by ∨, ∧,
c∨,

c∧, �, � and ¬.

Lemma 5.2.2 (Canonical form for booleans over R). A ΣOR-boolean with variables among x ≡ (x1, . . . , xn) of sort real only, is
effectively semantically equivalent to a boolean combination of equations and inequalities of the form

p(x) = 0 and q(x) > 0

where p and q are polynomials in x.

12 Recall Definition 3.5.4 of semantic equivalence.
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Proof. By structural induction on the boolean b.
Base cases:

• b ≡ (t1 = t2) or (t1 < t2) for terms t1, t2 : real.
By Lemma 5.1.4 these are semantically equivalent to (respectively) P[t1 − t2] = 0 and P[t2 − t1] > 0.

• b ≡ (t1 = t2) or (t1 < t2) for terms t1, t2 : nat. It is easy to see that every term t : nat without any nat variables must be
closed, and in fact a numeral, i.e., of the form

n̄ ≡ suc(suc(. . . (suc 0) . . .)) (n times ‘suc’)

for some n ∈ N. Hence in this case b has the form (n̄1 = n̄2) or (n̄1 < n̄2) for some n1,n2 ∈ N, reducing to true or false
in all cases.

Induction step: Suppose b1 and b2 are both effectively strongly equivalent to boolean combinations of equations and inequal-

ities of the form p(x) = 0 and q(x) > 0. Then clearly the same holds for ¬b, b1 ∨ b2, b1 ∧ b2, b1
c∨ b2, b1

c∧ b2, b1 �b2 and
b1 � b2. �

For a real variable x, let Bool(x) be the set of ΣOR-booleans with no free variables other than x.
For the rest of this subsection, we consider only booleans in Bool(x).

Definition 5.2.3. For any b ∈ Bool(x), we define

• PS(b) (the positive set of b) = {x ∈ R | b[x] = tt}.
• NS(b) (the negative set of b) = {x ∈ R | b[x] = ff}.
• DS(b) (the divergence set of b) = {x ∈ R | b[x] ↑}.

Lemma 5.2.4 (Partition Lemma for booleans over R). Every boolean b ∈ Bool(x) has semantics effectively represented by a partition
of R of the form:

PS(b) =
k⋃

i=1

I+i

NS(b) =

⋃

i=1

I−i

DS(b) = {d1, . . . ,dm}
where k, 
,m � 0 and I+i , I−j are all disjoint algebraic open intervals, such that

k⋃
i=1

I+i ∪

⋃

j=1

I−i ∪ {d1, . . . ,dm} =R

and the divergence points d1, . . . ,dm are precisely all the boundary points of b, i.e., the end points of the intervals I+1 , . . . , I+k , I−1 ,

. . . , I−
 .

Proof. First convert the boolean to a canonical form given by the Canonical Form Lemma 5.2.2. We will then prove the
lemma by structural induction on the boolean b in canonical form.

To clarify the details of the structural induction to follow, let us take a simple example: the case of two boolean b1 and
b2 whose positive sets are single open intervals, i.e. PS(b1) = (α1, β1), and PS(b2) = (α2, β2), where (e.g.) α1 < α2 < β1 < β2.
Then

PS(b1 ∨ b2) = (α1,α2) ∪ (α2, β1) ∪ (β1, β2)

PS(b1
c∨ b2) = (α1, β1) ∪ (β1, β2)

PS(b1 �b2) = (α1, β2).

We now proceed by structural induction on b.

Base case: b ≡ p(x) = 0 or p(x) > 0. Use Corollary 2.3.4.
Note that in the case that p(x) has degree 0, i.e., it is a constant integer c, the atomic boolean p(x) > 0 has the form

c > 0, and so reduces to true or false, depending on the value of c. Similarly with the case of an atomic boolean p(x) = 0.
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Induction step. Briefly, this follows from the fact that the class of finite unions and intersection of algebraic intervals is closed
under (binary) union and intersection. In more detail, we consider the various cases:

• b ≡ ¬b1. Just interchange the positive and negative sets for b and b1.
Next, suppose:

PS(b1) =
k1⋃

i=1

I+1i

NS(b1) =

1⋃

i=1

I−1i

DS(b1) = {d11, . . . ,d1m1}

PS(b2) =
k2⋃

j=1

I+2 j

NS(b2) =

2⋃

j=1

I−2 j

DS(b2) = {d21, . . . ,d2m2}.
• b ≡ b1 ∨ b2. Then

PS(b) =
( k1⋃

i=1

k2⋃
j=1

(
I+i1 ∩ I+2 j

)) ∪
( k1⋃

i=1


2⋃
j=1

(
I+1i ∩ I−2 j

)) ∪
(


1⋃
i=1

k2⋃
j=1

(
I−1i ∩ I+2 j

))

NS(b) =

1⋃

i=1


2⋃
j=1

(
I−1i ∩ I−2 j

)
DS(b) = {d11, . . . ,d1m1 ,d21, . . . ,d2m2}.

• b ≡ b1 ∧ b2. Then

PS(b) =
k1⋃

i=1

k2⋃
j=1

(
I+1i ∩ I+2 j

)

NS(b) =
(


1⋃
i=1


2⋃
j=1

(
I−1i ∩ I−2 j

)) ∪
( k1⋃

i=1


2⋃
j=1

(
I+1i ∩ I−2 j

)) ∪
(


1⋃
i=1

k2⋃
j=1

(
I−1i ∩ I+2 j

))
DS(b) = {d11, . . . ,d1m1 ,d21, . . . ,d2m2}.

• b ≡ b1
c∨ b2. Then

PS(b) =
k1⋃

i=1


1⋃
j=1

k2⋃
k=1

(
I+1i ∪ (

I−1 j ∩ I+2k

))

NS(b) =

1⋃

i=1


2⋃
j=1

(
I−1i ∩ I−2 j

)
DS(b) = {d11, . . . ,d1m1} ∪ {

d2 j
∣∣ ∃i: d2 j ∈ I−1i

}
.

• b ≡ b1
c∧ b2. Then

PS(b) =
k1⋃

i=1

k2⋃
j=1

(
I+1i ∩ I+2 j

)

NS(b) =

1⋃

i=1

m1⋃
j=1


2⋃
k=1

(
I−1i ∪ (

I+1 j ∩ I−2k

))
DS(b) = {d11, . . . ,d1m1} ∪ {

d2 j
∣∣ ∃i: d2 j ∈ I+

}
.
1i
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• b ≡ b1 �b2. Then

PS(b) =
k1⋃

i=1

k2⋃
j=1

(
I+1i ∪ I+2 j

)

NS(b) =

1⋃

i=1


2⋃
j=1

(
I−1i ∩ I−2 j

)
DS(b) = ({d11, . . . ,d1m1} ∩ {d21, . . . ,d2m2}

) ∪ {
d1i

∣∣ ∃ j: d1i ∈ I−2 j

} ∪ {
d2i

∣∣ ∃ j: d2i ∈ I−1 j

}
.

• b ≡ b1 � b2. Then

PS(b) =
k1⋃

i=1

k2⋃
j=1

(
I+1i ∩ I+2 j

)

NS(b) =

1⋃

i=1


2⋃
j=1

(
I−1i ∪ I−2 j

)
DS(b) = ({d11, . . . ,d1m1} ∩ {d21, . . . ,d2m2}

) ∪ {
d1i

∣∣ ∃ j: d1i ∈ I+2 j

} ∪ {
d2i

∣∣ ∃ j: d2i ∈ I+1 j

}
. �

Next we give several lemmas in preparation for the structure theorems in Section 5.5.

Lemma 5.2.5. There is a While computable embedding

ιN:N ↪→R.

Proof. By a simple while loop. �
From this we easily get:

Lemma 5.2.6. There is a While computable injection

ιZ : N→R

where for any m ∈ Z, ιZ(�m�) = m ∈R.

Lemma 5.2.7. There is a While computable function

eval : N×R →R

such that for any integer polynomial p and a ∈R:

eval(�p�,a) = p(a).

Proof. The function eval is defined by induction on the degree of p. We omit details. �
Note that this lemma is a special case of the term evaluation property (TEP) for R [14, §4.7]. In fact, it is the main step in

proving the TEP for R.

Lemma 5.2.8. There is a While computable function

lessQ : N×R ⇀ B

such that for r ∈Q and x ∈R:

lessQ(�r�, x) �
{

tt if r < x
ff if r > x
↑ if r = x.
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Fig. 7. Proof of Lemma 5.2.11, case 1.

Fig. 8. Proof of Lemma 5.2.11, case 3.

Proof. Let r = m
n+1 (m ∈ Z,n ∈ N). Then by our assumptions on the coding, we can primitive recursively retrieve �m� and n

from �r�. Then (using Lemmas 5.2.5 and 5.2.6) define

lessQ(�r�, x) ⇐⇒df ιZ(�m�) <
(
ιN(n) + 1

) × x. �
Lemma 5.2.9. There is a WhileOR computable function

lessA : N×R ⇀ B

such that for α ∈A and x ∈ R:

lessA(�α�, x) �
{

tt if α < x
ff if α > x
↑ if α = x.

Proof. We can effectively retrieve from �α� the numbers �p� and k, where α is the k-th root of p.
Then by Lemma 5.2.7, we have a While computable function eval such that eval(�p�,a) = p(a). Also by Lemma 2.3.5, we

can effectively find two rationals r1 and r2 such that r1 < α < r2 and α is the only root of p between these two rationals.
There are now four cases, which can be effectively distinguished by Sturm’s Theorem.
In cases 1 and 2, α is a single root. In case 1 (Fig. 7) p(x) changes sign from negative to positive at α. Here we can see

that α < x iff[
(r1 < x) ∧ (

p(x) > 0
)]
� [r2 < x].

Note the use of the strong disjunction. (See Remark 5.2.10 below.)
In case 2 (formed by reflecting Fig. 7 about the x axis) p(x) changes sign from positive to negative. This reduces to case 1

by replacing p(x) by −p(x).
In cases 3 and 4, α is a repeated root. In case 3 (Fig. 8) p(x) is positive near α. Here, by choosing r1 and r2 sufficiently

close to α (so that p′(r2) > 0, p′(r1) < 0 and there is no root of p′(x) between r1 and α, or between α and r2) we have
α < x iff[

(r1 < x) ∧ (
p′(x) > 0

)]
� [r2 < x]

where p′ is the derivative of p.
Note again the use of the strong disjunction here.
In case 4 (formed by reflecting Fig. 8 about the x axis) p(x) is negative near α. This reduces to case 3 by replacing p(x)

by −p(x).
Note that all the above operations on polynomials are effective; for example, �−p� and �p′� are primitive recursive

in �p�. �
Remark 5.2.10 (Need for strong disjunction). In case 1, if x = r2, then the disjunct (r2 < x) will diverge, and so we need ‘�’ to
make the whole expression converge. Similarly for the other cases.

Lemma 5.2.11. There is a While computable function

inQ : N×R ⇀ B
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such that

inQ
(
�(r1, r2)�, x

) �
{

tt if x ∈ (r1, r2)

ff if x < r1 or r2 < x
↑ otherwise, i.e. if x = r1 or x = r2

where r1 and r2 are rationals with r1 < r2 .

Proof. We can primitively recursively retrieve �r1� and �r2� from �(r1, r2)�, and therefore define:

inQ
(
�(r1, r2)�, x

) ⇐⇒df lessQ(�r1�, x) ∧ ¬lessQ(�r2�, x)

which is While computable, by Lemma 5.2.8. �
Lemma 5.2.12. There is a WhileOR computable function

inA :N×R⇀ B

such that

inA
(
�(α,β)�, x

) �
{

tt if x ∈ (α,β)

ff if x < α or β < x
↑ otherwise

where α and β are algebraic numbers with α < β .

Proof. Like the proof of Lemma 5.2.11, except that instead of lessQ , we use lessA , which is WhileOR computable by
Lemma 5.2.9. �
5.3. Characterizations of semicomputable real sets

In this subsection, we prove the ‘⇒’ direction of the structure theorems given in Section 5.5 below.

Lemma 5.3.1. If a set R ⊆ R is WhileOR semicomputable over R, then R is the union of an effective countable sequence of disjoint
algebraic intervals.

Proof. If R ⊆ R is WhileOR semicomputable, then by Engeler’s Lemma 4.3.1 for the WhileOR language,

a ∈ R ⇐⇒
∞�

k=0

bk[a]

for an effective sequence (bk) of ΣOR-booleans in Bool(x). By the Semantic Disjointedness Lemma 4.4.2, this sequence (bk)

is semantically disjoint, and, further, by the Partition Lemma 5.2.4, each bk itself defines an effective finite union of disjoint
algebraic intervals. �
Lemma 5.3.2. If R ⊆ R is WhileOR semicomputable over R, then R is the union of an effective countable sequence of rational intervals.

Proof. By Lemmas 5.3.1 and 2.2.5. �
Remark 5.3.3. We lose disjointedness here, because the rational intervals generated by the proof of Lemma 2.2.5 are not
disjoint.

Lemma 5.3.4. If R ⊆ R is While∃N semicomputable over R, then R is the union of an effective countable sequence of algebraic
intervals.

Proof. By Engeler’s Lemma 4.5.1 for While∃N , a While∃N semicomputable set over R can be expressed as a countable
disjunction of an effective sequence of ΣOR-booleans, to which the Partition Lemma again applies. �

Note again the lack of disjointedness of the sequence of intervals obtained here. (See Remark 4.5.2.)

Lemma 5.3.5. If R ⊆ R is While∃N semicomputable over R, then R is the union of an effective countable sequence of rational intervals.

Proof. By Lemmas 5.3.4 and 2.2.5. �
Note that we could have proved Lemma 5.3.2 as an immediate consequences of this lemma.
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5.4. Unions of eff. sequences of intervals are semicomputable

We will now prove the reverse ‘⇐’ direction of the structure theorems.

Lemma 5.4.1. The union of an effective countable sequence of disjoint rational intervals is While semicomputable over R.

Proof. An effective sequence of rational intervals gives us a total recursive function f : N→N such that f (n) is the code of
the n-th rational interval. So the union of such a sequence of intervals is the halting set of the procedure

proc
in x : real;
aux i : nat;
begin
i := 0;
while not(inQ(P f (i),x))
do i := i+ 1 od

end

where P f is the While(N ) (and hence While(R)) procedure which computes f .
By Lemma 5.2.11, inQ is While computable, and so the above procedure is While computable. �

Remarks 5.4.2.

(a) In the above procedure, if x lies on the boundary of one of the intervals, there will be “local divergence”. But in that
case, by the disjointedness assumption, x cannot lie in any of the other intervals, so this divergence still gives the correct
result.

(b) This result is related to Lemma 4.4.3, which states that a disjunction of an effective sequence of semantically disjoint
booleans can be evaluated “from the left”, i.e., by a ‘while’ loop.

Lemma 5.4.3. The union of an effective countable sequence of disjoint algebraic intervals is WhileOR semicomputable over R.

Proof. Just like the previous Lemma, but instead of inQ( f (i), r), we use inA(P f (i),r) which is WhileOR computable, by
Lemma 5.2.12. �
Lemma 5.4.4. The union of an effective countable sequence of algebraic intervals is While∃N semicomputable over R.

Proof. An effective sequence of algebraic intervals is given by a total While computable function f : N → N such that f (n)

returns the code of the n-th algebraic interval.
So the countable union of an effective sequence of algebraic intervals is the halting set of the following While∃N proce-

dure:

proc
in x : real;
out b : bool;
begin
b := ∃zP (x,z)

end

where P (x,z) is the procedure defined as

proc
in x : real;

z : nat;
out b : bool;
begin
b := inA(P f (z),x);

end

and P f : nat → nat is the While(N ) (and hence While(R)) procedure which computes f .
By Lemma 5.2.12, inA is WhileOR (and hence While∃N) computable, and so the above procedure is While∃N com-

putable. �
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Corollary 5.4.5. The union of an effective countable sequence of rational intervals is While∃N semicomputable over R.

Proof. By Lemma 2.2.4, an effective sequence of rational intervals is also an effective sequence of algebraic intervals. �
Discussion 5.4.6. To summarize the results of this subsection: When an effective sequence of rational (or algebraic) in-
tervals is disjoint, we can represent their union as the halting set of a While (or WhileOR , respectively) procedure (as in
Lemmas 5.4.1 and 5.4.3), since it can be evaluated from the left, i.e., by a ‘while’ loop.

However when the intervals are not disjoint, their union must be evaluated by a While∃N procedure, using the ‘Exist’
construct (as in Lemma 5.4.4 and Corollary 5.4.5).

5.5. Structure theorems for semicomputable sets over R

We present our three structure theorems for WhileOR and While∃N semicomputable sets over R.

Theorem 1. A subset of R is WhileOR semicomputable over R iff it is the union of an effective countable sequence of disjoint algebraic
intervals.

Proof. By Lemmas 5.3.1 and 5.4.3. �
Theorem 2. A subset of R is While∃N semicomputable over R iff it is the union of an effective countable sequence of algebraic intervals.

Proof. By Lemmas 5.3.4 and 5.4.4. �
Theorem 3. A subset of R is While∃N semicomputable over R iff it is the union of an effective countable sequence of rational intervals.

Proof. By Lemma 5.3.5 and Corollary 5.4.5. �
We do not have a structure theorem for While semicomputable sets. We only have a partial result:

Theorem 4. For subsets of R,

(a) While semicomputable over R �⇒ union of effective sequence of rational intervals.
(b) Union of effective sequence of disjoint rational intervals �⇒ While semicomputable over R.

Proof. (a) By Lemma 5.3.2.
(b) By Lemma 5.4.1. �
See Remarks 5.3.3 and 5.4.2(a) for the reasons that disjointedness is lost in part (a), but needed in part (b).

5.6. Projectively While∃N semicomputable sets

We now prove that for the While∃N language, projective semicomputability is equivalent to semicomputability, i.e., semi-
computability is closed under projection onto R.

Lemma 5.6.1. Given a continuous partial function b : Rn ⇀ B, if there exists an n-tuple of reals x = (x1, . . . , xn) such that b(x) ↓ tt,
then there exists an n-tuple of rationals r = (r1, . . . , rn) such that b(r) ↓ tt.

Proof. Suppose there exists a real tuple x = (x1, . . . , xm) ∈ Rn such that b(x) ↓ tt. Then by continuity of b, there exists δ > 0
such that for all real tuples y = (y1, . . . , yn) in the neighborhood set

N(x, δ) =df
{
(y1, . . . , yn)

∣∣ √
(x1 − y1)2 + · · · + (xn − yn)2 < δ

}
,

we have b(y) ↓ tt. But then, because of the density of Q in R, there exists a rational tuple r = (r1, . . . , rn) ∈ N(x, δ). �
Theorem 5. A set R ⊆ Rn is While∃N projectively semicomputable over R if, and only if, R is While∃N semicomputable over R.

Proof. ‘⇐’: Trivial.
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‘⇒’: Suppose R ⊆ Rn is While∃N projectively semicomputable. Then13 there exists a While∃N semicomputable relation
R ′ ⊂ Rm+n , such that for all x ∈ Rn:

x ∈ R ⇐⇒ ∃y ∈Rm(x, y) ∈ R ′

⇐⇒ ∃y ∈Rm
∨

k

bk[x, y]

for some effective sequence (bk) of ΣOR-booleans,

by Engeler’s Lemma 4.5.1 for While∃N applied to R ′

⇐⇒
∨

k

∃y ∈Rmbk[x, y]

⇐⇒
∨

k

∃r ∈Qmbk[x, r], by Lemma 5.6.1.

It is not hard to see that we can construct an effective double sequence (bk,
) of ΣOR-booleans, such that for all k, 
, if

 = �r� then for all x ∈Rn

bk,
[x] ⇐⇒ bk[x, r] and so

x ∈ R ⇐⇒
∨

k

∨



bk,
[x]. (5.3)

Finally, by a method similar to that in the proof of Lemma 5.4.4, we can show that the r.h.s. of (5.3) is the halting set of a
While∃N procedure. �

Essentially, the above proof involves replacing existential quantification over R by existential quantification over Q (using
continuity and density of Q in R), and then replacing the latter by a countable disjunction.

Remarks 5.6.2.

(a) We do not know if this result holds for While or WhileOR .
(b) In a total (non-topological) algebra Rt over the reals, the continuity argument in the above proof would not work, and

in fact, the theorem fails! A counterexample is given in [14, §6.2].

6. Conclusion and future work

6.1. Conclusion

We have investigated computability, or rather semicomputability, for the While language and certain extensions (WhileOR

and While∃N) over a topological partial algebra R on the reals. We proved four structure theorems for semicomputable sets
in R, of the form: a subset of R is semicomputable in the While language, or one of these extensions, if, and only if, it is
the union of an effective countable sequence of rational (or algebraic) open intervals (see Section 5.5).

We also proved a fifth theorem, stating that in R, projective While∃N semicomutability is equivalent to While∃N semi-
computability.

6.2. Future work and conjectures

We list some ideas for future work in this area, and conjectures:
(1) Expanding R by including division by naturals:

divN :R×N →R, where

divN(x,n) = x

n + 1

(This is easily seen to be equivalent to the expansion of R formed by adding multiplication of a real by a rational.)
Now we can directly embed Q in R. The Canonical Form and Partition Lemmas still hold. In fact it seems clear that the

five theorems in Section 5.5 also hold for the algebra R+ divN .

13 The ‘
∨

k ’ symbol below indicates strong disjunction (Section 4.2(2)).
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(2) Expanding R to an algebra Rdiv , which includes the (partial) real division operation

div :R2 ⇀ R, where

div(x, y) � x

y
.

This expansion is a major step compared to (1). The Canonical Form Lemma now becomes:

A ΣOR-boolean over Rdiv is effectively semantically equivalent to a boolean combination of equations and inequalities of the form
r(x) = 0 and r(x) > 0, where

r(x) ≡ p(x)

q(x)
(6.1)

with p(x), q(x) integer polynomials.

The important thing to notice is that the zeros and poles of rational functions are algebraic numbers, since in Eq. (6.1)
the zeros and poles of r(x) are respectively the roots of p(x) and of q(x). Thus it can be seen that the Partition Lemma still
holds for Rdiv . In fact:

p(x)

q(x)
> 0 ⇐⇒ (

p(x) × q(x)
)
> 0

where “⇐⇒” is weak semantic equivalence.14

We conjecture that the four structure theorems in Section 5.5 hold for Rdiv .
(3) Investigating the structure of semicomputable subsets of Rm for m > 1. Although the Canonical Form Lemma 5.2.2

for booleans over R still holds when m > 1, the Partition Lemma 5.2.4 for booleans is problematic – even the formulation
of a suitable generalization of it to m > 1 provides a challenge. A useful approach may be the method of cell decomposition,
applied to o-minimal structures on R [18].15

(4) Bridging the gap between abstract models (e.g. While∃N) and concrete models of computation over R (e.g.
Weihrauch’s TTE [20]).

We have seen (Theorem 3) that for a relation R on R:

R is While∃N semicomputable in R ⇐⇒ R =
⋃

k

Ik (6.2)

where (Ik) is an effective sequence of rational intervals.
On the other hand, Weihrauch has shown [20] that for his concrete model:

R is TTE-semicomputable ⇐⇒ R =
⋂

j

⋃
k

I j,k (6.3)

where (I j,k) is an effective double sequence of rational intervals.
We can try to bridge the gap between (6.2) and (6.3) by generalizing the notion of semicomputability in R to that

of approximable While∃N semicomputability, where a set R ⊆ Rn is said to be approximably While∃N semicomputable if for
some While∃N procedure

P : nat × real ⇀ bool

writing PR
n (x) =df PR(n, x)

we have R =
⋂

n

HaltR
(

PR
n

)
.

We then conjecture that for a set R ⊆Rm:

R is approx. While∃N semicomp. ⇐⇒ R is TTE semicomp.

The motivation for this conjecture, and the reason for the terminology “approximable semicomputability”, is by analogy
with the “completeness theorem” in [15], where for partial topological algebras A (such as R) satisfying certain general
conditions, it was proved that

WhileCC approx. computability ⇐⇒ concrete computability.

14 Recall Definition 3.5.5.
15 We thank Patrick Speissegger for this suggestion.
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Here WhileCC is the While language extended by a nondeterministic “countable choice” operator (see Remark 3.9.2), and
a function f : Au ⇀ Av is said to be approximately WhileCC computable if for some WhileCC procedure P : nat × u → v , the
sequence of (many-valued) functions

P A
n : Au ⇀ Av

converges or approximates to f (in a suitable sense).
In other words, for abstract computability to correspond to concrete computability, it must be augmented by

(a) a nondeterministic choice operator ‘choose’ on N,
(b) approximability of computations.

Similarly, in the present case, we conjecture that for abstract semicomputability to correspond to concrete semicomputability,
it must be augmented by

(a) the ‘Exist’ operator on N,
(b) approximability, which here means taking countable intersections.

Note that our ‘Exist’ operator can be viewed as a “weakly deterministic” special case of the ‘choose’ operator (see again
Remark 3.9.2).
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