
CHARACTERIZATIONS OF SEMICOMPUTABLE SETS
OF REAL NUMBERS

BO XIE, MING QUAN FU, AND JEFFERY ZUCKER

Abstract. We give some characterizations of semicomputability
of sets of reals by programs in certain While programming lan-
guages over a topological partial algebra of reals. We show that
such sets are semicomputable if and only if they are one of the
following:
(i) unions of effective sequences of disjoint algebraic open intervals;
(ii) unions of effective sequences of rational open intervals;
(iii) unions of effective sequences of algebraic open intervals.
For the equivalence (i), the While language must be augmented
by a strong OR operator, and for equivalences (ii) and (iii) it must
be further augmented by a strong existential quantifier over the
naturals (While∃N).

We also show that the class of While∃N semicomputable rela-
tions on reals is closed under projection. The proof makes essential
use of the continuity of the operations of the algebra.

1. Introduction

1.1. Background.

Our research in this paper is based on computations by high level pro-
gramming languages featuring the ‘while’ construct over many-sorted
topological partial algebras.
An algebra A is a finite family of sets

As1 , . . . , Asn

called carriers of sorts s1, . . . , sn, and a finite set of (total or partial)
functions defined over these sets1.
An algebra is said to be standard if it contains the sort of booleans

and the standard boolean operators. It is N-standard if in addition, it
contains the sort of naturals and the standard arithmetic operations.

Key words and phrases. Computability on reals, computability on topological
algebras, Engeler’s Lemma, semicomputable sets of reals.

Research supported by a grant from the Natural Sciences and Engineering Re-
search Council (Canada).

1We consider constants to be 0-ary functions.
1

2 BO XIE ET AL.

Classical computability theory on naturals has been studied since
the 1930’s. There are many extensions of this theory to abstract struc-
tures. One of these extensions has been the investigation of total (non-
topological) algebras of reals [BCSS98]. A detailed discussion of such
extensions is given in [TZ00]. We have adapted many of the definitions
and proofs from [TZ00] to fit topological partial algebras.
There are two kinds of computational models for algebras: abstract

and concrete. Abstract models are independent of the representations
of the data types of the algebras, while concrete models are depen-
dent on such representations. Typically abstract models are based on
high level programming language, such as the While language. This
is an imperative programming language with the basic operations of
assignment, sequential composition, conditional and the ‘while’ loop.
Examples of concrete models over R are the classical computable

analysis of Pour-El and Richards [PER89], and TTE (Type-2 Theory
of Effectivity) of Weihrauch [Wei00]; both these models represent reals
as effective Cauchy sequences of rationals, and their equivalence follows
from the results in [SHT99a].
Some work in bridging the gap between abstract and concrete models

is made in [TZ04, TZ05]. We will discuss this issue again in §6.2.
In studying computability theory on abstract algebras, we take, as a

guiding principle, the Continuity Principle [TZ99, TZ04]:

computability =⇒ continuity.

(This principle is ignored in [BCSS98].)
We will focus on the N-standard topological partial algebra R, which

is formed from the “N-standardization” of the ring of reals, by adding
the two boolean-valued partial operations:

eqR, lessR : R2 ⇀ B

It follows from the Continuity Principle that these operations have
to be partial. (This is because the set of reals is connected and the
booleans are discrete, so the only total continuous functions from the
reals to the booleans are constants.)
Abstract models of computability such as the While language, with

partial basic operations on R, suffer from a limitation, namely the
inability to implement interleaving or dovetailing. The problem is that
when interleaving two processes, one process may converge and the
other diverge locally (because of the partiality of the basic operations).
The resulting process will then diverge, whereas we would want it to
converge.

SEMICOMPUTABLE SETS OF REALS 3

To correct this deficiency, we establish two enhancements of the
While language and construct two new languages: WhileOR and
While∃N.
In the WhileOR language, we introduce a strong disjunction opera-

tion ‘▽ ’, where b1▽ b2 converges to true if either component converges
to true, even if the other one diverges. By means of this, interleaving
of finitely many processes can be simulated at the abstract level.
The While∃N language includes a strong ‘Exist’ construct over the

naturals:
xB := ∃ zP (t, z)

where z is a nat variable and P is a boolean-valued procedure. By
means of this, interleaving of infinitely many processes can be simulated
at the abstract level.
We will study the structure of semicomputable sets of reals in R,

where a set is said to be (for example) While semicomputable if it is
the halting set of a While procedure.

1.2. Results.

We will prove certain structure theorems for semicomputable sets of
reals in R:

(1) WhileOR semicomputable ⇐⇒
union of an effective countable seq. of disjoint algebraic intervals.2,3

(2) While∃N semicomputable ⇐⇒
union of an effective countable sequence of algebraic intervals.

(3) While∃N semicomputable ⇐⇒
union of an effective countable sequence of rational intervals.4

We have no structure theorem for While semicomputability over R,
only a partial result:

(4) (a) While semicomputable =⇒
countable union of eff. sequence of rational intervals;

(b) While semicomputable ⇐=
countable union of eff. sequence of disjoint rational intervals.

In (1) and (4), we need disjointedness because theWhile andWhileOR

languages cannot implement interleaving of infinitely many processes
over partial algebras. For that we need the ‘Exist’ construct, as in (2)
and (3).

2By “interval” we will always mean open interval of reals.
3An algebraic interval is an interval between two algebraic numbers.
4A rational interval is an interval between two rational numbers.

4 BO XIE ET AL.

The main tools in proving these results are:

(a) Engeler’s Lemma for standard topological partial algebras, which
states (roughly) that a semicomputable set can be expressed as
the disjunction of an effective infinite sequence of booleans. It is
proved by constructing a computation tree for the procedure being
considered.

(b) The Canonical Form Lemma for booleans overR, which states that
a boolean term over R can be expressed as a boolean combination
of polynomial equations and inequalities.

(c) The Partition Lemma for booleans over R, which states that a
boolean term with only one real variable partitions the real line into
finitely many disjoint “positive intervals”, “negative intervals”, and
“points of divergence”. The proof is by structural induction on the
boolean, using the Canonical Form Lemma.

Note that Engeler’s Lemma applies to all standard topological partial
algebras, whereas the Canonical Form and Partition Lemmas apply
only in special cases, such as the algebra R.
The sequence of booleans given by Engeler’s Lemma for While (OR)

has a semantic disjointedness property, which is used in the ‘=⇒’ di-
rection of the proof of (1). This property does not hold for While∃N,
because of the special nature of the associated “computation hyper-
tree”, which is not strictly a tree, but a directed acyclic graph.

1.3. Overview of the paper.

Section 2 reviews some preliminaries on numerical codings, computable
reals and basic algebraic results.
Section 3 defines the fundamental concepts of signature, algebra,

standard and N-standard algebra, and topological partial algebra, and
describes the topological partial algebra R, which is used throughout
the paper.
It also gives the syntax and semantics of the While , WhileOR and

While∃N languages, and reviews the notions of computability, rela-
tive computability, semicomputability and projective semicomputabil-
ity with respect to the While language and its variants.
In Section 4 we prove Engeler’s Lemma for the While , WhileOR

and While∃N languages over N-standard partial algebras. To prove
this Lemma, two kinds of computation trees are constructed, one for
While and WhileOR, and the other, a “hypertree”, for While∃N.
Section 5 focuses on the algebra R of reals. It gives a “modified se-

mantics” for atomic booleans in the language of R. It then presents the
Canonical Form and Partition Lemmas, followed by the four structure

SEMICOMPUTABLE SETS OF REALS 5

theorems listed above. This section concludes with a proof of the theo-
rem that While∃N semicomputability on R is closed under projection,
i.e., a projection of a While∃N semicomputable set of reals is again
While∃N semicomputable. This result is interesting because it does
not hold over the total (non-topological) algebra over the reals studied
in [TZ00]. We do not know if it holds for While or WhileOR over R.
Section 6 contains some ideas for future work. The most interesting

(and challenging) of these would be a generalization of the Partition
Lemma, and (hence) the structure theorems, to more than one dimen-
sion.

2. Preliminaries

2.1. Numerical codings.

We assume given families of effective numberings, i.e. surjective codings
of the syntactic classes with which we deal, with pEq denoting the code
of the expression E.
These numberings are standard, so we will assume that we can prim-

itive recursively simulate all operations involved in processing the syn-
tax of the programming language.
Further, we can define, in a standard way, numberings or codings of

the sets N2, N∗, Z and Q. We write 〈x, y〉 for the code of a pair (x, y) ∈
N2, [x1, . . . , xn] for the code of a tuple (x1, . . . , xn) ∈ N∗ (n ≥ 0), and
more generally, pxq for the code of an element x of Z, Q, etc.
By “effective(ly)”, we mean effective in the codes of the syntactic or

mathematical objects referred to.

2.2. Computable reals.

Definition 2.2.1 (Computable sequence of rationals). A sequence
(r0, r1, r2, . . .) of rationals is computable if the function n 7→ prnq
is recursive. A code of the sequence can be defined as an index of this
recursive function.

Definition 2.2.2 (Computable real number). A real number x is com-

putable if there exist

(1) a computable sequence (rn) of rationals converging to x, and

(2) a computable modulus of convergence, i.e., a total recursive strictly
increasing function M : N → N such that ∀n, |rn − x| < 2−M(n).

A code of a computable real x is then defined as a pair 〈e,m〉 where e
is an index of a convergent sequence (rn) for x, and m is an index for
its modulus of convergence.

6 BO XIE ET AL.

Lemma 2.2.3. For each (code for a) computable real number x, we

can effectively construct computable sequences of rationals (rn) and (sn)
such that (rn) is increasing and (sn) is decreasing and for all n:

0 < (x− rn) < 2−n,

and 0 < (sn − x) < 2−n.

Proof . The construction of the sequences (rn) and (sn) as required
from a computable sequence for x is straightforward. �

By “polynomial” we will mean a polynomial with integer coefficients.
A unary polynomial is a polynomial in one variable.
An algebraic number is a root of a unary polynomial. The code of

an algebraic number α can be defined as pαq = 〈ppq, k〉, where α
is the k-th smallest real root of the polynomial p, and p is a minimal
polynomial for α.

Lemma 2.2.4. Let A and Rc be the sets of algebraic and computable

real numbers respectively. Then the embeddings

Q →֒ A →֒ Rc

are effective in the respective codings.

In other words, there is a computable function f : N → N such that
if k is the code of a rational, then f(k) is the code of the same number
viewed as an algebraic number. Similarly for A →֒ Rc.
On R, the open intervals

(a, b), (−∞, a), (b,∞)

are called rational, algebraic or computable real intervals according as
a and b are rational, algebraic or computable reals respectively.
We can give a coding for such intervals in an obvious way.

Lemma 2.2.5. Let (c, d) be a computable interval. We can effectively

find a sequence of expanding rational intervals (ri, si) such that

(c, d) =
∞⋃

i=0

(ri, si).

Proof. By Lemma 2.2.3. �

2.3. Basic algebraic results.

The following results can be found, with proofs, in standard texts on
algebra [vdW64, Her90] and real analysis [Roy63, Rud76].

Proposition 2.3.1. A non-zero unary polynomial of degree n has at

most n real roots.

SEMICOMPUTABLE SETS OF REALS 7

Corollary 2.3.2. If a polynomial p(x1, . . . , xm) has the value 0 at all

points in Rm, then it must be the zero polynomial.

Proof. By induction on m, using Proposition 2.3.1. �

Proposition 2.3.3 (Intermediate value theorem). Let f be a real-

valued function that is continuous on the closed interval [a, b]. Suppose
f(a) and f(b) have different signs. Then there exists c ∈ (a, b) such

that f(c) = 0.

Corollary 2.3.4. A unary polynomial p of degree n > 0 with m(≤ n)
distinct real roots α1, . . . , αm defines m+ 1 algebraic intervals:

(−∞, α1), (α1, α2), . . . , (αm−1, αm), (αm, ∞)

in each of which p is either only positive or only negative.

Lemma 2.3.5. Given any unary polynomial p of degree n, we can find,

effectively in ppq,

(1) the number of distinct real roots m(≤ n) of p, and, writing these

as

α1 < α2 < . . . < αm,

(2) - a rational less than α1,

- a rational between αk and αk+1, for 1 ≤ k < m, and

- a rational bigger than αm.

Proof. From Sturm’s theorem [vdW64]. �

3. While computation on standard partial algebras

We study a number of high level imperative programming languages
based on the ‘while’ construct, applied to a many-sorted signature Σ.
We give semantics for these languages relative to a partial Σ-algebra A,
and define the notions of computability, semicomputability and projec-

tive semicomputability for these languages on A. Much of the material
is taken from [TZ00], adapted to partial algebras.
We begin by reviewing basic concepts: many-sorted signatures, al-

gebras, and, in particular, topological partial algebras. Next we define
the syntax and semantics of the While programming language. Then
we extend this language with special programming constructs to form
two new languages: WhileOR and While∃N.

3.1. Basic concepts: Signatures and algebras.

A many-sorted signature Σ is a pair 〈Sort(Σ),Func (Σ)〉 where

(a) Sort(Σ) is a finite set of (Σ-)sorts, s, s′,. . . .

8 BO XIE ET AL.

(b) Func (Σ) is a finite set of basic (Σ-)function symbols

F : s1 × · · · × sm → s (m ≥ 0)

The case m = 0 gives a constant symbol; we then write F : → s.

A (Σ-)product type has the form s1 × · · · × sm (m ≥ 0), where
s1, . . . , sm are sorts. We write u, v, . . . for product types.
A (Σ)-function type has the form u → s, where u is a product type.

A Σ-algebra A has, for each Σ-sort s, a non-empty set As, the carrier
of sort s, and for each Σ-function symbol F : s1 × · · · × sm → s, a
(not necessarily total) function 5

FA : Au ⇀ As

where u = s1 × · · · × sm, and Au = As1 × · · · × Asm .
We write Σ(A) for the signature of an algebra A.

Example 3.1.1 (Booleans). The signature Σ(B) of booleans is

signature Σ(B)
sorts bool

functions true, false : → bool,
not : bool → bool

or, and : bool2 → bool,
cor, cand : bool2 → bool,

The algebra B of booleans contains the carrier B = {tt, ff} of sort bool,
and the standard interpretations of the constant and function symbols
of Σ(B).
Note that B contains two sets of boolean operators: (1) the strict

operators ‘or’ and ‘and’; and (2) the “conditional” operators ‘cor’ and
‘cand’ (denoted by ‘||’ and ‘&&’ in C-like languages), “evaluated from
the left”, and non-strict in the 2nd argument, These become important
in the context of partial algebras such as R (Example 3.1.5).
We will also use the infix notations ‘∨’, ‘∧’ for the strict boolean

operators or, and; and ‘
c

∨ ’, ‘
c

∧ ’ for the “conditional” operators cor,
cand.

Example 3.1.2 (Naturals). The signature of naturals is defined as

5We use ‘⇀’ to denote partial functions.

SEMICOMPUTABLE SETS OF REALS 9

signature Σ(N)
import Σ(B)
sorts nat

functions 0 : → nat,
suc : nat → nat

eqN, lessN : nat2 → bool

The corresponding algebra of naturals N consists of the carrier N =
{0, 1, 2, . . . } of sort nat, the carrier B = {tt, ff} of sort bool, and the
standard constants and functions 0N : → N, sucN: N → N, and
eqN, lessN : N2 → B (apart from the standard boolean operations).
We will use the infix notation ‘=’ and ‘<’ for ‘eqN’ and ‘lessN’.

We come to the central concept of a topological partial algebra. First
we note that for any two topological spaces X and Y , a partial function
f : X ⇀ Y is said to be continuous if for every open V ⊆ Y ,

f−1[V] =df {x ∈ X|x ∈ dom(f) and f(x) ∈ V }

is open in X. (This reduces to the usual notion of continuity when f
is total.)

Definition 3.1.3 (Topological partial algebra). A topological partial
algebra is a partial Σ-algebra with topologies on the carriers such that
each of the basic Σ-functions is continuous, and the carriers B and N

(if present) have the discrete topology.

Remark 3.1.4 (Continuity of computable functions; the continuity
principle). The significance of the continuity of the basic functions of
a topological algebra A is that it implies continuity of all While com-
putable functions on A. This is the “Continuity Theorem” for topo-
logical algebras [TZ99, §6] [TZ00, §7.5].

This is in accordance with the Continuity Principle which can be
expressed as

computability =⇒ continuity.

This principle is discussed in [SHT99b, Sec. 1] and [TZ04, §3.1].6

Example 3.1.5 (Algebra of reals). The signature of the algebra R of
reals is given by

6Cf. also the relationship between scientific observation and continuity, formu-
lated as Hadamard’s Principle ([Had52], [CH53], discussed also in [TZ11]).

10 BO XIE ET AL.

signature Σ(R)
import Σ(N)
sorts real

functions 0, 1 : → real,
+,× : real2 → real,
− : real → real,
eqR, lessR: real

2 →bool

The corresponding algebraR has the carrier R of sort real, as well as the
imported carriers N and B, of sort nat and bool, the real constants and
operations (also written 0, 1,+,×,−), and the boolean-valued partial
functions eqR : R2 ⇀ B and lessp : R

2 ⇀ B, defined by:

eqR(x, y) =

{
↑ if x = y
ff if x 6= y

lessR(x, y) =





tt if x < y
ff if x > y
↑ if x = y

Again we use the infix notation ‘=’ and ‘<’ for ‘eqR’ and ‘lessR’.

Remarks 3.1.6 (Standard and N-standard algebras).

(a) The algebras N and R are standard, in the sense that they contain
the carrier B with the standard boolean operations. Standardness
of R is necessary for the theoretical development in this paper.
In fact we will assume that all algebras with which we deal are
standard.

(b) R is also N-standard, in the sense that it contains the carrier N

with the standard arithmetic operations. N-standardness of R is
not really necessary for our main result, since the integers, and
hence the naturals, can be implemented in the reals [TZ00, Prop.
6.17]. However, it is a very useful assumption (see e.g §3.9 below).

Discussion 3.1.7 (Motivation for definition of partial functions). We
want to motivate the definitions of partial functions in general, and
more specifically, the functions eqR and lessR in R. We present our
motivation in two ways: the first based on continuity considerations,
and the second based on a “thought experiment” concerning (concrete)
computation of the basic functions under discussion.

(a) The total versions of eqR and lessR are not continuous, as can
easily be checked. (By contrast, the total functions eqN, lessN on N
are continuous, because of the discrete topology on N .) Continuity of

SEMICOMPUTABLE SETS OF REALS 11

basic functions such as eqR and lessR, making R a topological algebra,
is consistent with the Continuity Principle (see Remark 3.1.4).

(b) Consider now a “thought experiment” involving the computation
of an atomic formula x = y, where x and y are real variables. Sup-
pose, at a particular state σ, we want to determine whether x = y is
true. Suppose also (we are now combining “abstract” and “concrete”
modes of description7) that the values of x and y at σ are “given by”
Cauchy sequences of rationals (r0, r1, r2, . . .) and (s0, s1, s2, . . .), which
(for convenience) we assume to be “fast”, i.e.,

∀n, ∀m ≥ n |rn − rm| < 2−n,

and similarly for (sn). Suppose also that for n = 0, 1, 2, . . . the inputs
rn and sn are observed (from some device) at n time units. Now x < y

is true at σ iff for some n, rn+2 ·2−n < sn, and this can be determined
within a finite amount of time. Correspondingly, x = y is true iff for
all n, |rn − sn| ≤ 2 · 2−n, but this cannot be determined within any
finite amount of time, and so the evaluation of x = y diverges. These
considerations explain the form of the partial definitions of equality
and order on the reals.

3.2. Syntax of Term(Σ).

Definition 3.2.1 (Σ-variables). For each Σ-sort s, Var s(Σ) is the set
of Σ-variables xs, ys, . . . of sort s.

Definition 3.2.2 (Σ-terms). Term(Σ) is the set of Σ-terms t, . . . ,
and Terms(Σ) is the set of Σ-terms ts, . . . of sort s, defined (in mod-
ified BNF) by

ts ::= xs|F (ts11 , . . . , tsmm)

where F is a Σ-function symbol of type s1 × · · · × sm → s.

We often drop the sort superscript s, and write t : s to indicate that
t ∈ Terms(Σ). More generally, we write t : u to indicate that t is a
tuple of terms of product type u. We write Terms for Terms(Σ), etc.
We also write b, . . . for boolean Σ-terms, i.e. Σ-terms of sort bool.

3.3. Syntax of While(Σ).

We will use ‘≡’ to denote syntactic identity between two expressions.

Definition 3.3.1 (Statements). Stmt(Σ) is the class of statements

S, . . . generated by:

S ::= skip | x := t | S1 ;S2 | if b then S1 else S2 fi | while b do S0 od

where the variable x and term t have the same Σ-sort.
7Recall the discussion in §1.1

12 BO XIE ET AL.

Definition 3.3.2 (Procedures). Proc(Σ) is the class of procedures

P, . . . of the form:

P ≡ proc D begin S end

where the statement S is the body and D is a variable declaration of
the form

D ≡ in a : u out b : v aux c : w

where a, b and c are tuples of input, output and auxiliary variables

respectively. We stipulate:

(i) a, b, c each consist of distinct variables, and are pairwise disjoint,

(ii) every variable occurring in S must be declared in D,8

(iii) all auxiliary and output variables are initialized with default values.

If a : u and b : v, then P is said to have type u → v, written P : u → v.

We turn to the semantics of terms, statements and procedures. Let
A be a standard partial Σ-algebra.

3.4. States.

Definition 3.4.1 (State).

(a) A state over A is a family 〈σs | s ∈ Sort(Σ)〉 of functions
σs : Var s → As.

(b) State(A) is the set of states on A, with elements σ,

We write σ(x) for σs(x) where x : s. For a tuple x ≡ (x1, . . . , xm),
we write σ[x] for (σ(x1), . . . , σ(xm)).

Definition 3.4.2 (Variant of a state). Let σ be a state over A, and for
some Σ-product type u, let x ≡ (x1, . . . , xn) : u and a = (a1, . . . , an) ∈
Au (for n ≥ 1). We define σ{x/a} to be the state over A formed from
σ by replacing its value at xi by ai for i = 1, . . . , n.

3.5. Semantics of terms.

For t ∈ Terms, we will define the function

[[t]]A : State(A) ⇀ As

where [[t]]Aσ is the value of t in A at state σ.

Notation 3.5.1.

(a) [[t]]Aσ↓ means that evaluation of [[t]]Aσ halts, or converges; and

[[t]]Aσ↓ a means that it converges to a value a.

(b) [[t]]Aσ↑ means that evaluation of [[t]]Aσ diverges.

8This will not hold for the auxiliary variable in the ‘Exist’ construct (§3.9).

SEMICOMPUTABLE SETS OF REALS 13

Notation 3.5.2 (Kleene equality). We write e.g

[[t1]]
Aσ ≃ [[t1]]

Aσ

to mean that the two sides of the equality either both converge to the
same value, or both diverge [Kle52, §63]

Definition 3.5.3 (Semantics of terms). The definition of [[t]]Aσ is by
structural induction on Σ-terms t:

[[x]]Aσ = σ(x)

[[F (t1, . . . , tm)]]
Aσ ≃





FA([[t1]]
Aσ, . . . , [[tm]]

Aσ) if [[ti]]
Aσ ↓

for 1 ≤ i ≤ m

↑ otherwise.

Note that if c : → s, i.e., c is a constant symbol of sort s, then
[[c]]Aσ = cA ∈ As.

Definition 3.5.4 (Semantic equivalence of terms). Two Σ-terms t1
and t2 of the same sort s are (semantically) equivalent over A, written
t1 ≈ t2, iff

∀σ ∈ State(A)
(
[[t1]]

Aσ ≃ [[t1]]
Aσ

)
.

Definition 3.5.5 (Weak semantic equivalence of booleans). Two Σ-
booleans b1 and b2 are weakly (semantically) equivalent over A, written
b1 ∼ b2, iff

∀σ ∈ State(A)
(
[[b1]]

Aσ ↓ tt ⇐⇒ [[b2]]
Aσ ↓ tt

)
.

3.6. Semantics of statements.

The meaning [[S]]A of a While(Σ) statement S is a partial state trans-
former on an algebra A:

[[S]]A : State(A) ⇀ State(A).

Its definition is standard [TZ99, TZ00] and lengthy, and so we omit it.
Briefly, it is based on defining the computation sequence of S starting

in a state σ, or rather the n-th component of this sequence, by a primary
induction on n, and a secondary induction on the size of S.
The following results show that the i/o semantics for statements S

satisfies certain desirable properties, which will be used later.

Lemma 3.6.1.

(i) For S atomic: S ≡ skip or S ≡ x := t,

[[skip]]Aσ = σ

[[x := t]]Aσ ≃ σ{x/[[t]]Aσ}.

14 BO XIE ET AL.

(ii) If S ≡ S1;S2,

[[S]]Aσ ≃ [[S2]]
A([[S1]]

Aσ).

(iii) If S ≡ if b then S1 else S2 fi,

[[S]]Aσ ≃





[[S1]]
Aσ if [[b]]Aσ ↓ tt

[[S2]]
Aσ if [[b]]Aσ ↓ ff

↑ if [[b]]Aσ ↑.

(iv) If S ≡ while b do S0 do,

[[S]]Aσ ≃





[[S0;S]]
Aσ if [[b]]Aσ ↓ tt

σ if [[b]]Aσ ↓ ff

↑ if [[b]]Aσ ↑.

Proof. As outlined in [TZ00, Thm 3.6] adapted to partial algebras. �

3.7. Semantics of procedures.

If
P ≡ proc in a out b aux c begin S end

is a procedure of type u → v, then its meaning is a partial function

PA : Au ⇀ Av

defined as follows. For a ∈ Au, let σ be any state on A such that
σ[a] = a, and σ[b] and σ[c] are given suitable default values. Then

PA(a) ≃

{
σ′[b] if [[S]]Aσ ↓ σ′ (say)

↑ if [[S]]Aσ ↑.

Note that PA is well defined, by the functionality lemma for statement
semantics [TZ00, Lemma 3.10].

3.8. While computability.

Definition 3.8.1 (While computable function).

(a) A function f on A of type u → v is said to be computable on A by

a While procedure P : u → v if f = PA.

(b) While(A) is the class of functions While computable on A.

Definition 3.8.2 (Halting set). The halting set of a procedure P : u → v
on A is the set

HaltA (P) =df { a ∈ Au | PA(a) ↓ }.

Definition 3.8.3 (While semicomputable set). A set R ⊆ Au is
While semicomputable on A if it is the halting set on A of someWhile

procedure.

SEMICOMPUTABLE SETS OF REALS 15

Definition 3.8.4 (Projectively While semicomputable set). A set
R ⊆ Au is projectively While semicomputable on A iff R is the projec-
tion of a While semicomputable set on A, i.e., for some product types
u and v, there is a While semicomputable set R′ ⊆ Au×v such that

∀x ∈ Au
[
x ∈ R ⇐⇒ ∃y ∈ Av : (x, y) ∈ R′

]
.

Generally, projective semicomputability is a more powerful (and less
algorithmic) concept than semicomputability. (But see Theorem 5 in
Section 5.)

3.9. Expanding While to WhileOR and While∃N.

Let Σ be a standard signature. Recall (from Example 3.1.1) that it
contains both the strict boolean operators ∨, ∧, and the “conditional”

operators
c

∨ ,
c

∧ .
Now we consider the addition to Σ of a third pair of boolean opera-

tors: the strong “Kleene operators”

OR,AND : bool2 → bool.

[Kle52, p. 334], which are non-strict in both arguments. We will use
the infix notation ‘▽ ’ and ‘△ ’ for these.
The ‘OR’ operator allows us to simulate interleaving at an abstract

level, since it lets us decide a disjunction b1▽ b1 of two boolean terms to
be true if either of these converges to tt (even if the other one diverges).
Let ΣOR be the expansion of Σ formed by adding ‘OR’. We then

define:
TermOR(Σ) = Term(ΣOR)

BoolOR(Σ) = Bool(ΣOR)

WhileOR(Σ) = While(ΣOR)

We can also extend the While language by adding a new boolean term

∃ zP (t, z)

where the procedure P has type u × nat → bool, and z is a “new”
variable of sort nat. This will occur only in the context:

xB := ∃ zP (t, z)

We define its semantics as:

[[∃ zP (t, z)]]Aσ ≃

{
tt if PA([[t]]Aσ, n) ↓ tt for some n
↑ otherwise.

(3.1)

This corresponds to the following operational semantics: interleave the
computations for

PA(t, 0), PA(t, 1), PA(t, 2), . . .

16 BO XIE ET AL.

and return tt if and only if any of these procedures terminates and
returns tt; otherwise keep on going.
This operation allows us to simulate infinite interleaving at the ab-

stract level.
Note that this is different from “evaluating from the left”, which can

be implemented by a simple loop:

find := false;
z:=0;
while find = false

do

find := P (t, z)
z:=z+1;

od

which will diverge in case, e.g.,

PA(t, 0) ↓ ff, PA(t, 1)↑, PA(t, 2) ↓ tt,

whereas ∃ zP (t, z) will converge to tt.
The usefulness of these new program constructs will become apparent

in Section 4.
Using the ‘Exist’ construct, we can “weakly simulate” OR, i.e, define

a procedure P such that

Exist z : P (b1, b2, z) ∼ b1▽ b2.

(recall Definition 3.5.5). In fact, we can define P (b1, b2, z) as

proc

in b1, b2 : bool
z : nat

out b : bool
begin

b := if z=1 then b1 else

if z=2 then b2 else

false

fi

fi

end.

Note that Exist z : P (b1, b2, z) is only weakly semantically equivalent
to b1▽ b2; in fact no construct of the form Exist z : P (b1, b2, z) can be
strongly equivalent to b1▽ b2, since when b1 and b2 both have the value
ff, then b1▽ b2 has the value ff, but Exist z : P (b1, b2, z) can only have
values tt and ↑, by (3.1).

SEMICOMPUTABLE SETS OF REALS 17

We can nevertheless think of ‘OR’ as a “finite” version of ‘Exist’,
and so we adjoin the ‘OR’ construct together with ‘Exist’ to form the
language While∃N(Σ).

We write Σ(OR) for the signature Σ or ΣOR, and similarly While (OR)

for the language While or WhileOR.

Remark 3.9.1 (Continuity of WhileOR and While∃N computable
functions). As stated above (Remark 3.1.4) all While computable
functions on a topological partial algebra are continuous. The same
applies to WhileOR and While∃N computable functions. We omit
proofs. Again, this is important because of the Continuity Principle.

Remark 3.9.2. The ‘Exist’ construct can be implemented from the
‘choose’ construct (or “countable choice” operator) [TZ04] by

xB := ∃ zP (t, z) ⇐⇒ n := choose z : P (t, z) ; xB := P (t, n).

However, unlike the ‘choose’ construct which is nondeterministic, the
‘Exist’ construct is “weakly” or “globally” deterministic, i.e., determin-
istic at the abstract level, although there is nondeterminism in the
actual choice of z in a concrete implementation.
Clearly,While computability impliesWhileOR computability, which

in turn implies While∃N computability.

3.10. While0 language.

To simplify the formal development in the next section, we restrict the
structure of While statements to a special form, and show that all
statements can be effectively transformed to this form.

Definition 3.10.1 (Special form for While statements).
A While(Σ) statement S is said to be in special form if (inductively)
it has one of the following forms:

• S ≡ skip

• S ≡ xs := ts

• S ≡ if xB then S1 else S2 fi

• S ≡ while xB do S0 od

• S ≡ S1;S2

where S0, S1 and S2 are also in special form.

In other words, S is in special form iff all boolean tests occurring in
S are variables.
Let While0(Σ) be the While(Σ) language restricted to special

form; and similarly for WhileOR

0 (Σ) and While∃N

0 (Σ).

18 BO XIE ET AL.

Lemma 3.10.2.

(a) All While statements can be effectively transformed into While0
statements, preserving the semantics.

(b) Similarly for WhileOR and While∃N.

The proofs are quite routine.

Remarks 3.10.3.

(a) In the While∃N

0 language, there are two kinds of assignment: the
‘Exist’ assignment, of the form

xB := ∃ zP (t, z)

and all other assignments

x := t

which we call simple assignments.

(b) In While0, WhileOR

0 or While∃N

0 statements, the only way for a
program to diverge locally is by the divergence of the right-hand
side of an assignment statement.

(c) From now on, we will only work with While0, WhileOR

0 and
While∃N

0 programs. To simplify the notation, we will still refer
to these as While (etc.) programs.

3.11. Definability property.

This is needed in the construction of the computation tree and in the
proof of Engeler’s Lemma in the next section.

Definition 3.11.1 (Definability predicate).

(a) A definability predicate at sort s for a Σ-algebra A is a Σ-boolean
expression defs, containing a distinguished free variable x : s, such
that for all Σ-terms t and all states σ on A (writing defs(t) for
defs〈x/t〉):

[[defs(t)]]
Aσ ≃

{
tt if [[t]]Aσ ↓
↑ otherwise

(b) A Σ-algebra has the definability property if it has a definability
predicate at all Σ-sorts.

For all the algebras A with which we deal, we assume:

Assumption 3.11.2 (Definability). A has the definability property.

In particular, we show:

Lemma 3.11.3. R has the definability property.

SEMICOMPUTABLE SETS OF REALS 19

Proof. In Σ(R), we can define defs(t) as follows:

At sort nat, put defnat(t) ≡ true.
At sort real, put defreal(t) ≡ lessR(t, t+ 1).
For the boolean term ∃ zP (t, z), put

defbool(∃ zP (t, z)) ≡ ∃ zP (t, z).

For any other term t of sort bool, put defbool(t) ≡ (t∨¬ t). �

4. Computation trees; Engeler’s Lemma

Engeler’s Lemma [Eng68] is an important theoretical tool for the re-
search described in this paper. It states (roughly) that a semicom-
putable set can be expressed as the disjunction of an effective infinite
sequence of booleans.
A proof of Engeler’s Lemma for the While language on total alge-

bras was given in [TZ00, §5]. Here we prove Engeler’s Lemma for the
While , WhileOR and While∃N languages on partial algebras. Our
proof is based on computation trees (in the case of While (OR)) and
“hypertrees” (in the case of While∃N).
We also prove a Semantic Disjointedness Lemma (4.4.2) which will

play a central role in our Structure Theorems.

4.1. Computation tree for While (OR)(Σ).

We define a computation tree T [S, x] for a While (OR) statement S
on R, where Var(S) ⊆ x ≡ (x1, . . . , xn) : u. The computation tree
T [S, x] is like an “unfolded flow chart” for S.
This is a version of the computation tree defined in [TZ00, §5.10],

adapted for the While (OR) languages and for partial algebras.
The root of T [S, x] is labeled ‘s’ (for ‘start’), and the leaves are

labeled ‘e’ (for ‘end’). The internal nodes are labeled with assignments
and boolean tests. Each edge is labeled with a syntactic state, i.e., a
tuple of terms t ≡ (t1, ..., tn) : u. The idea is that if S is executed at
an initial state σ, then the state at this point of the computation will
be σ{x/[[t]]Aσ}.
In the course of the following definition we will make use of the

restricted tree T −[S, x], which is just T [S, x] without the ‘s’ node.
We will also use the notation T [S, t] for the tree formed from T [S, x]

by replacing all edges labeled t′ (say) by t′〈x/t〉.
The definition of T [S, x] is by structural induction on S.

(1) S ≡ skip. Then T [S, x] is just

20 BO XIE ET AL.

♥s

❄

x

♥e

(2) S ≡ xj := t. Then T [S, x] is the tree

♥s

❄
x

xj := t

❄

(x1, ..., xj−1, t, xj+1, ...xn)

♥e

(3) S ≡ S1;S2. Then T [S, x] is formed from T [S1, x] by replacing
each leaf in a state t by the tree

❄

t

T −[S2, t]

(4) S ≡ if xB then S1 else S2 fi. Then T [S, x] is shown in Figure 1.
(5) S ≡ while xB do S0 od. Then T [S, x] is defined as the “limit” of the
sequence of trees T n[S, x], where T 0[S, x] is T [skip, x], as in (1) above,

and T n+1[S, x] is as shown in Figure 2, where T̃ n is the tree formed
from T −[S0, x] by replacing each leaf in a state t by T −

n [S, t].
Note that the construction of T [S, x] is effective in S and x. More

precisely: T [S, x] can be coded as an r.e.set of numbers, with r.e. index
primitive recursive in pSq and pxq.

SEMICOMPUTABLE SETS OF REALS 21

♥s

�
�
❅

❅�
�
❅
❅

xB

◗
◗
◗
◗

◗s

✑
✑

✑
✑

✑✰

❄

x x
tt ff

x

T −[S1, x] T −[S2, x]

Figure 1. Construction of T [S, x] (case 4)

♥s

�
�
❅

❅�
�
❅
❅

xB

❅
❅
❅❅❘

�
�

��✠

❄

x x
tt ff

x

T̃ n

♥e

Figure 2. Construction of T [S, x] (case 5)

4.2. Semantics of infinite disjunctions.

We will show that the halting set of a While , WhileOR or While∃N

procedure can be expressed as the countable disjunction of an effective
infinite sequence of booleans. We must therefore first consider carefully
some possible semantics for infinite disjunctions in 3-valued logic.

22 BO XIE ET AL.

Let bk be a sequence of ΣOR-booleans. There are (at least) two
different reasonable semantics for the infinite disjunction

∞∨

k=0

bk

for 3-valued logics (“reasonable” in the sense of having computational
significance), for which we use distinct notations:

(1) Infinite conditional disjunction (“evaluation from the left”),

denoted

∞

c∨
k=0

bk, with two possible outputs, tt and ↑:

[[

∞

c∨

k=0

bk]]
Aσ ≃

{
tt if ∃k : [[bk]]

Aσ ↓ tt ∧ ∀i < k [[bi]]
Aσ ↓ ff

↑ otherwise.

This definition is While computable (in the sequence pbkq) with
the following procedure:

Evaluate bk (k = 0, 1, . . .) one by one. There are 3 possibilities:
• for some k, evaluation of bk converges to tt, and all earlier bj

converge to ff, or

• for some k, evaluation of bk diverges, and all earlier bj converge
to ff (“local divergence”), or

• all the bk converge to ff (“global divergence”).

In the first case, evaluation of the disjunction converges to tt.
In the latter two cases, it diverges.

(2) Infinite strong disjunction (“strong Kleene evaluation”), denoted
∞̀

k=0

bk, again with two possible outputs, tt and ↑:

[[
∞h

k=0

bk]]
Aσ ≃

{
tt if ∃k [[bk]]

Aσ ↓ tt

↑ otherwise.

This definition is not (in general) While (OR) computable (in pbkq),
but it is While∃N computable, by the semantics of ∃ zP (t, z)
(§3.9).

Definition (2) is the one mainly used in this paper, e.g. in the formula-
tion of Engeler’s Lemma (Lemma 3.4.1 below). Intuitively, definitions

(1) and (2) generalize (respectively) the finite disjunctions ‘
c

∨ ’ and ‘▽ ’.

SEMICOMPUTABLE SETS OF REALS 23

Notation 4.2.1. For any boolean term b with Var(b) ⊆ x : u, and
a ∈ Au, we write b[a] to mean: [[b]]Aσ ↓ tt for any σ ∈ State(A) such
that σ[x] = a.

Definition 4.2.2 (Relation defined by boolean). AΣ(OR)-boolean term
b with Var(b) ⊆ x : u is said to define a relation R ⊆ Au (w.r.t. x) iff
for all a ∈ Au

a ∈ R ⇐⇒ b[a].

4.3. Engeler’s Lemma for While (OR).

Lemma 4.3.1 (Engeler’s Lemma forWhile (OR)). If a relation R ⊆ Au

is While(OR) semicomputable over a standard partial Σ-algebra A, then
R can be expressed as the (strong) disjunction of an effective sequence

of Σ(OR)-booleans over A.

Proof . Suppose R is the halting set in A of the While (OR) procedure:

P ≡ proc in a out b aux c begin S end. (4.1)

For each leaf λ of the computation tree T [S, x] there is a boolean bS,λ
with variables among x ≡ (a, b, c) which expresses the conjunction
(‘cand’) of the test results and definability predicates along the path
from the root to λ, as follows.
There are two cases to consider, according to the kind of node en-

countered along the path: assignment nodes and test nodes.

(1) An assignment node xs := ts in the path contributes to bS,λ the
conjunct expressing definability of the term t:

. . .
c

∧ defs(t)
c

∧ . . .

which guarantees that the boolean term bS,λ converges only if eval-
uation of t converges at that point.

(2) A test node labeled xB contributes as conjunct

either . . .
c

∧ xB
c

∧ . . .

or . . .
c

∧ ¬xB
c

∧ . . . ,

according to whether the path goes to the left or right here. Note
that since the boolean test only has the form of a boolean variable
xB, we do not need to add the def bool predicate here.

Next, we can effectively enumerate the leaves of the computation tree to
obtain a sequence (λk) by (for example) increasing the depth, and, at a
given depth, going from left to right. (To ensure that the corresponding

24 BO XIE ET AL.

sequence of booleans (bS,λk
) is infinite, we can “pad” it with the default

value false.) Then for all a ∈ Au (putting bS,k ≡ bS,λk
):

a ∈ R ⇐⇒ PA(a) ↓ ⇐⇒
∞h

k=0

bS,k [a].

Note we are using “infinite strong disjunction” (version (2) in §4.2).
Hence R can be expressed as the infinite strong disjunction of an

effective countable sequence of Σ(OR)-booleans over A. �

4.4. Semantic disjointedness.

Definition 4.4.1 (Semantic disjointedness). A sequence (b0, b1, b2, . . .)
of boolean terms is semantically disjoint over A if for any state σ on
A and any n,

[[bn]]
Aσ ↓ tt =⇒ ∀i 6= n, [[bi]]

Aσ ↓ ff.

Lemma 4.4.2 (Semantic Disjointedness Lemma). The sequence

of boolean terms generated from a While(OR) computation tree S as in

the proof of Engeler’s Lemma (4.3.1) is semantically disjoint.

Proof. Let i, j be distinct natural numbers and

bS,i ≡ bS,i1
c

∧ · · ·
c

∧ bS,im , (4.2a)

bS,j ≡ bS,j1
c

∧ · · ·
c

∧ bS,jn . (4.2b)

Note that for any k, the definition of bS,k determines a path from the
root to the k-th leaf of the computation tree of S. Therefore, consid-
ering the paths from the root to the i-th leaf and from the root to the
j-th leaf, there must be a branching node with label b (say), where the
two paths split, i.e. there exists some l < min(m,n) such that

bS,i1 ≡ bS,j1 , bS,i2 ≡ bS,j2 , . . . , bS,i(l−1)
≡ bS,j(l−1)

(4.3)

and
either (bS,il ≡ b and bS,jl ≡ ¬ b)

or (bS,il ≡ ¬ b and bS,jl ≡ b)
(4.4)

So for any σ, suppose

[[bS,i]]
Aσ = tt.

Then from (4.2a),

[[bS,il]]
Aσ = tt

and from (4.4),

[[bS,jl]]
Aσ = ff. (4.5)

SEMICOMPUTABLE SETS OF REALS 25

Also, since by (4.3)

[[bS,jk]]
Aσ = [[bS,ik]]

Aσ = tt for all k < l, (4.6)

then by (4.2b), (4.4) and (4.6) and the semantics of
c

∧ ,

[[bS,j]]
Aσ = tt

c

∧ · · ·
c

∧ tt
c

∧ ff
c

∧ · · · = ff. �

Lemma 4.4.3 (Semantic disjointedness evaluation). If an effec-

tive sequence of booleans (bk) is semantically disjoint over A, then9

∞h

k=0

bk ≈

∞

c∨
k=0

bk (4.7)

i.e., for any σ, [[
`

k bk]]
Aσ can be “evaluated from the left”.

Proof. For any σ, we consider two cases:

(1) There exists k such that [[bk]]
Aσ ↓ tt. Then by the definition (4.4.1)

of semantic disjointness, [[bi]]
Aσ ↓ ff for all i 6= k, and in particular

for all i < k. Hence both sides of (4.7) converge to tt at σ.
(2) Otherwise: as is easily seen, both sides diverge at σ. �

4.5. Computation tree for While∃N.

In order to prove Engeler’s Lemma for theWhile∃N language, we define
(inductively) the computation trees for While∃N statements, following

the cases in the definition of the While (OR) computation tree in §4.1.
We add a new case to the cases considered there:

(6) S ≡ xj := ∃ zP (t, z);S1, where

P ≡ proc in a out b aux c begin S0 end.

If S ≡ xj := ∃ zP (t, z) (with S1 missing), we just let S1 ≡ skip.
The tree for S is then formed from the tree in Figure 3 by replacing

each ‘e’ leaf of the trees T −[S0, (x, ı̄)] (i = 0, 1, 2, . . .) by the tree in
Figure 4, where

t̂ =df (x1, . . . , xj−1, true, xj+1, . . . , xn),

and then collapsing these multiple occurrences of the subtree T −[S1, t̂]
to form the tree shown in Figure 5.
We call the subtrees T −[S0, (x, ı̄)] (i = 0, 1, 2, . . .) appearing in Fig-

ure 5 proc-subtrees of the whole computation tree.
Define a channel in the tree of Figure 5 to be a path through one

of the “former leaves” of the proc-subtree T −[S0, (x, ī)], labeled ci,j,
where ‘i’ refers to the ith proc-subtree, and ‘j’ refers to the jth “former

9Recall the notation ‘≈’ for semantic equivalence (Definition 3.5.4)

26 BO XIE ET AL.

♥s

❄
x

xj := ∃ zP (t, z)

❄ ❄

� � �(x,0) (x,1)

T −[S0, (x, 0)] T −[S0, (x, 1)]

❄

(x,2)

T −[S0, (x, 2)] � � �

Figure 3. Construction of hypertree (step 1)

❄

t̂

T −[S1, t̂]

Figure 4. Construction of hypertree (step 2)

leaf” of the proc-subtree. Note that in this tree, there are (countably)
infinitely many channels from the root to the subtree T −[S1, t̂]. We
can effectively enumerate these channels by renaming channel ci,j as ck
where k = p(i, j)q.
Let T [S, x] be the computation tree defined as above. Strictly speak-

ing, T [S, x] is not a tree, but a dag (directed acyclic graph). Call the
node for xj := ∃ zP (t, z) shown in Figure 5, together with the sub-

graph below it (excluding the subtree T −[S1, t̂]), the hypernode for
xj := ∃ zP (t, z); and call the whole tree, constructed in this way, a
hypertree. We can reduce such hypernodes to “atomic nodes” by ignor-
ing their internal details, and so reduce the hypertree to a reduced tree

SEMICOMPUTABLE SETS OF REALS 27

♥s

❄
x

xj := ∃ zP (t, z)

❄ ❄

� � �(x,0) (x,1)

• • • •
T −[S0, (x, 0)] T −[S0, (x, 1)] � � �

T −[S1, t̂]

❄

c1,1
❄

c1,2 � � �

❄

c2,1
❄

c2,2 � � �

❄

t̂

Figure 5. Construction of hypertree (step 3)

(that is an actual tree, not a dag), just like the While (OR) computation
tree constructed in §4.1.
Notice that there are no leaves in the proc-subtrees because we have

replaced all the leaves by the subtree T −[S1, t̂]. So the leaves of the
hypertree can be identified with the leaves of the corresponding reduced
tree, and hence they can be effectively enumerated as in the proof of
Engeler’s Lemma.
We define a hyperpath to be a route in the hypertree from the root of

T [S, x] to a leaf. At a hypernode of the hypertree, the hyperpath goes
through a specific channel (cij in Figure 5). Similarly, a reduced path

is a path in the reduced tree, ignoring the details of the hypernodes.

28 BO XIE ET AL.

We exhibit a hyperpath in Figure 6. This shows part of the hypertree.
(Note that e1, e2, . . . here denote edges of the hypertree, not syntactic
states.) To simplify the drawing, we ignore the details of the proc-
subtrees, leaving only the enumerated channels of each hypernode.
From the root s to any given leaf e of the hypertree, there is one

reduced path corresponding to infinitely many hyperpaths; for example,
hpath (1, 2) consists of the edge e1, the channel c1 of the 1st hypernode,
the edges e2, e3, e4, e5, e6, the channel c2 of the 2nd hypernode, and
the edges e7, e8.
Notice that in an ‘Exist’ term ∃ zP (t, z) in the tree, there may be

other terms ∃zP ′(t′, z′) inside the procedure P . Then (recursively) we
expand all such proc-subtrees in P so as to form a hypertree without
any ‘Exist’ nodes.
Notice also that on each hyperpath, there are three kinds of node:

• simple10 assignment nodes xj := t,

• ‘Exist’ assignment nodes,

• branching nodes at boolean variables xB.

Associated with each leaf are (infinitely many) hyperpaths, because of
the multiple channels through the hypernodes which lead to that leaf.
We can then enumerate all the hyperpaths of each leaf as follows.

Let hpath (i1, . . . , im) be the hyperpath through the ithk channel at the
kth hypernode on the route (where k = 1, . . . ,m, assuming there are
m hypernodes on that hyperpath). Then we rename hpath (i1, . . . , im)
as hpath (i) where i = p(i1, . . . , im)q.
Finally, combining the enumeration of the leaves of the hypertree

as above, and the enumeration of the hyperpaths of each leaf, we can
effectively enumerate all hyperpaths of the computation tree.
Hence we have (compare Lemma 4.3.1):

Lemma 4.5.1 (Engeler’s Lemma for While∃N). If a relation R is

While∃N semicomputable over a standard partial Σ-algebra A, then R
can be expressed as the (strong) disjunction of an effective sequence of

ΣOR-booleans over A.

Proof. Suppose R is the halting set in A of the While∃N procedure

P ≡ proc in a out b aux c begin S end.

Consider the enumeration of the hyperpaths

ρ0, ρ1, ρ2, . . .

10Recall Remark 3.10.3(a).

SEMICOMPUTABLE SETS OF REALS 29

♥s

�
�
❅

❅�
�
❅

❅

❄

�
�

��✠

❅
❅
❅❅❘

Choice

❄

❄
c1 c2 c3 � � �

❄ ❄

Assign

❄

❄
c1 c2 c3 � � �

❄ ❄

�
�
❅

❅�
�
❅
❅

❄

�
�

��✠

❅
❅
❅❅❘

Choice

Assign

�
�
❅

❅�
�
❅
❅

❄

�
�

��✠

❅
❅
❅❅❘

Choice

♥e

e1

e2

e3

e4

e5

e6

e7

e8

Figure 6. Hyperpath

of the hypertree for S as described above. For each hyperpath ρ (not
leaf) of the computation tree T [S, x] there is a boolean bS,ρ with vari-
ables among x ≡ (a, b, c) which expresses the conjunction of results of

30 BO XIE ET AL.

the tests and the definability predicates from the root to the leaf of
T [S, x] along ρ. This boolean is constructed as follows.
A simple assignment node x := t in ̺ contributes to bS,ρ the conjunct

· · ·
c

∧ defs(t)
c

∧ · · ·

which guarantees that bS,ρ converges only if the evaluation of the term
t converges at this point.
Suppose the hyperpath goes through a test node xB. Consider the

most recent assignment to xB above this node. There are two cases:

(1) The most recent assignment to xB was a simple assignment xB :=

t. Then we add either · · ·
c

∧ xB
c

∧ · · · or · · ·
c

∧¬xB
c

∧ · · · as a
conjunct to bS,ρ, according to whether the hyperpath goes to the
left or right at this node.

(2) The most recent assignment to xB was an ‘Exist’ assignment
xB := ∃ zP (t, z). Then the hyperpath must go to the left (since
in this case xB must be true), and bS,ρ is unchanged (since adding
the conjunct true is redundant).

Define bS,k ≡ bS,ρk . Then R is expressed by the infinite disjunction
h

k
bS,k (4.8)

just as in the proof of Engeler’s Lemma 4.3.1 for While (OR). �

Remark 4.5.2. The sequence of booleans (bS,k) constructed in the
above proof (4.8) does not, in general, satisfy semantic disjointedness
(cf. Lemma 4.4.2), because of the nature of the While∃N computation
hypertree.

5. Structure theorems for semicomputable sets over R

In this section we present our structure theorems characterizing the
While , WhileOR and While∃N semicomputable sets over R. We will
discuss the limitations of the While language in this regard, and show
how the WhileOR and While∃N languages correct these deficiencies.
From now on, we will consider only the algebra A = R, and write Σ

for Σ(R), and similarly for ΣOR and Σ∃N.

5.1. Computational equivalence; Semantics of atomic booleans.

The proof of the Canonical Form Lemma 5.2.2 below (and hence the
Partition Lemma 5.2.4) requires a careful analysis of the semantics of
atomic booleans of the forms (1) t1 = t2 and (2) t1 < t2.
Assume for simplicity that t1 and t2 contain only the variable x : real.

SEMICOMPUTABLE SETS OF REALS 31

These atomic booleans can be simplified, respectively, to the forms
(1) p(x) = 0 and (2) p(x) > 0, for some integer polynomial p(x). Now
according to the semantics of ‘=’ and ‘<’ (Example 3.1.5), together
with the semantic rules for terms (Definition 3.5.3), the semantic eval-
uation of these two atoms at a state σ, where σ(x) = a, is given by

[[p(x) = 0]]σ ≃

{
↑ if p(a) = 0

ff if p(a) 6= 0
(5.1a)

[[p(x) > 0]]σ ≃





tt if p(a) > 0

ff if p(a) < 0

↑ if p(a) = 0.

(5.1b)

Hence at a root a of p(x), the booleans p(x) = 0 and p(x) > 0 both
diverge.
Now suppose p(x) has degree 0, i.e. p(x) ≡ c for some (integer)

constant c. Consider the two cases:

(1) c 6= 0. Then p has no roots, and (as we would want) at all states
p(x) = 0 evaluates to ff, and p(x) > 0 evaluates to tt if c is positive,
and ff if c is negative.

(2) c = 0. Now every real point is a root of p, but by (5.1) the atoms
p(x) = 0 and p(x) > 0, which simplify (resp.) to 0 = 0 and 0 > 0,
diverge at all states! But this is quite counter-intuitive.

Similarly, we would (presumably) want atoms t1 = t2 to evaluate to
tt, and not diverge, if (e.g.) t1 ≡ t2 ≡ 3, or t1 ≡ 2 ∗ x + 2 and
t2 ≡ 1+ x+ x+1, or more generally, where the equality t1 = t2 follows
from the ring axioms over R, and hence is true a priori .
Hence we must modify the semantics given by (5.1).
First, some remarks on representations of polynomials.

Remark 5.1.1 (Standard form for polynomials). Any polynomial can
be written in a standard form by (1) assuming a standard listing
x1, x2, . . . of the real variables, and (2) ordering the monomials xe11 . . . xenm
(e.g.) first by decreasing weight (= e1 + · · · + en), and secondly, lexi-
cographically in (e1, . . . , en), according to the order ‘>’ on N. We can
then define a coding of polynomials in standard form.
Note that our polynomial expressions in standard form have integer

coefficients, although the signature Σ does not have a data type int.
The point is that our “polynomial notation” does not involve integers
essentially. For example, the polynomial expression ‘2x2−x+3’ stands
for the Σ-term x∗x+x∗x+(−x)+1+1+1 (suitably parenthesized).

32 BO XIE ET AL.

Now let E be the equational calculus [SA91, §11.1] in the language
(0, 1,+,−, ∗), with the axioms for commutative rings with unit [Her90].
By “real term” we mean term of type real.

Definition 5.1.2 (Computational equivalence). Two real terms t1, t2
are computationally equivalent (written t1 ∼= t2) iff E ⊢ t1 = t2.

Lemma 5.1.3. Any real term t can be re-written uniquely as a poly-

nomial in standard form; more precisely, there is a unique polynomial

P[t] in standard form such that t ∼= P[t].

Lemma 5.1.4. For any two real terms t1, t2, the following three asser-

tions are equivalent:

(1) t1 ∼= t2
(2) P[t1] ≡ P[t2]
(3) P[t1 − t2] ≡ 0 (the zero polynomial).

Note that by the equivalence (1)⇔ (2) above, computational equiv-
alence between real terms is decidable.
The following lemma expresses the soundness and completeness of

computational equivalence w.r.t. semantic equivalence11.

Lemma 5.1.5. For any two real terms t1, t2

t1 ∼= t2 ⇐⇒ t1 ≈ t2

Proof. (⇒) is clear. (⇐) follows from the fact that if a polynomial
over R has value 0 everywhere, then it must be the zero polynomial,
by Corollary 2.3.2. �

Definition 5.1.6 (Modified semantics of boolean atoms).
For real terms t1, t2, we define:

[[t1 = t2]]σ ≃





tt if t1 ∼= t2

↑ if [[t1]]σ = [[t2]]σ but t1 ≇ t2
ff if [[t1]]σ 6= [[t2]]σ.

(5.2a)

[[t1 < t2]]σ ≃





tt if [[t1]]σ < [[t2]]σ

ff if [[t1]]σ > [[t2]]σ or t1 ∼= t2

↑ if [[t1]]σ = [[t2]]σ but t1 ≇ t2.

(5.2b)

These definitions will be used in the proof of the Canonical Form
Lemma (5.2.2).

11Recall the definition (3.5.4) of semantic equivalence.

SEMICOMPUTABLE SETS OF REALS 33

Discussion 5.1.7 (Justification for modified semantics).
Again, as in Discussion 3.1.7, we consider this issue in two ways: the
first based on continuity considerations, and the second, again, based
on a thought experiment involving concrete computations.

(a) Recall the discussion (3.1.7(a)) on the motivation for defining equal-
ity and order on the reals as partial functions eqR and lessR. Continuity
of WhileOR computable functions is a central concern here. We may
then well ask: do the above modified semantics (5.2) not “spoil” this
continuity result? The answer is no: with the above definitions, it still
holds that While (or WhileOR, or While∃N) computable functions
are continuous. The proof depends on the fact that the condition for
the atomic formula t1 = t2 to have an output of tt instead of ↑ (i.e. that
t1 ∼= t2) is independent of the state. Hence the proof of the Continuity
Theorem for While computable functions on topological algebras (see
Remark 3.1.4). can be easily adapted to the present case, with the
semantics based on Definition 5.1.6. We omit details.

(b) Another (“concrete”) approach to justifying this definition lies in
continuing with our thought experiment in Discussion 3.1.7(b). So
consider again an atomic formula of the form t1 = t2, and see what
is involved in trying to decide whether it is true or not. First, take
the case considered in Discussion 3.1.7(b)) where t1 ≡ x, and t2 ≡ y.
Suppose, again, that these are presented to us, at a given state σ, as
fast Cauchy sequences (rn) and (sn) of rationals respectively. Then, as
shown there (loc. cit.), we can only gain “negative” information in finite
time. In other words, if x = y is true at σ, then we cannot determine
this in finite time, and so the computation diverges. Suppose, however,
that (for example) t1 ≡ 1 + x and t2 ≡ x+ 1. Then it is clear a priori

that these terms are equal, regardless of the state, and without any
need to consult the Cauchy sequence for x at that state. After all, it is
the same variable, and hence the same Cauchy sequence, on both sides
of the equation! Hence in this case we let the atom t1 = t2 evaluate
to tt at all states.

5.2. Canonical form for ΣOR booleans.

Unless otherwise stated, the definitions and lemmas in this subsection
refer to the ΣOR-language, with the Σ-language as a special case. We
generally write b, b′, . . . for ΣOR-booleans.

Definition 5.2.1 (Boolean combination). A boolean combination of a
set of atomic booleans is a boolean expression built up from the atoms

t1 < t2 and t1 = t2 (with t1, t2 : real) by ∨, ∧,
c

∨ ,
c

∧ , ▽ , △ and ¬.

34 BO XIE ET AL.

Lemma 5.2.2 (Canonical form for booleans over R). A ΣOR-boolean

with variables among x ≡ (x1, . . . , xn) of sort real only, is effectively

semantically equivalent to a boolean combination of equations and in-

equalities of the form

p(x) = 0 and q(x) > 0

where p and q are polynomials in x.

Proof. By structural induction on the boolean b.
Base cases:

• b ≡ (t1 = t2) or (t1 < t2) for terms t1, t2 : real.
By Lemma 5.1.4 these are semantically equivalent to (respectively)
P[t1 − t2] = 0 and P[t2 − t1] > 0.

• b ≡ (t1 = t2) or (t1 < t2) for terms t1, t2: nat. It is easy to see
that every term t : nat without any nat variables must be closed,
and in fact a numeral, i.e., of the form

n̄ ≡ suc(suc(. . . (suc 0) . . .)) (n times ‘suc’)

for some n ∈ N. Hence in this case b has the form (n̄1 = n̄2) or
(n̄1 < n̄2) for some n1, n2 ∈ N, reducing to true or false in all cases.

Induction step: Suppose b1 and b2 are both effectively strongly equiva-
lent to boolean combinations of equations and inequalities of the form
p(x) = 0 and q(x) > 0. Then clearly the same holds for ¬b, b1∨b2,

b1∧b2, b1
c

∨ b2, b1
c

∧ b2, b1▽ b2 and b1△ b2. �

For a real variable x, let Bool(x) be the set of ΣOR-booleans with
no free variables other than x.
For the rest of this subsection, we consider only booleans in Bool(x).

Definition 5.2.3. For any b ∈ Bool(x), we define

• PS(b) (the positive set of b) = {x ∈ R | b[x] = tt }
• NS(b) (the negative set of b) = {x ∈ R | b[x] = ff }
• DS(b) (the divergence set of b) = {x ∈ R | b[x] ↑ }

Lemma 5.2.4 (Partition Lemma for booleans over R). Every boolean

b ∈ Bool(x) has semantics effectively represented by a partition of R

SEMICOMPUTABLE SETS OF REALS 35

of the form:

PS(b) =
k⋃

i=1

I+i

NS(b) =
ℓ⋃

i=1

I−i

DS(b) = {d1, . . . , dm}

where k, ℓ,m ≥ 0 and I+i , I
−

j are all disjoint algebraic open intervals,

such that

k⋃

i=1

I+i ∪
ℓ⋃

j=1

I−i ∪ {d1, . . . , dm} = R

and the divergence points d1, . . . , dm are precisely all the boundary

points of b, i.e., the end points of the intervals I+1 , . . . , I
+
k , I

−

1 , . . . , I
−

ℓ .

Proof. First convert the boolean to a canonical form given by the
Canonical Form Lemma (5.2.2). We will then prove the lemma by
structural induction on the boolean b in canonical form.
To clarify the details of the structural induction to follow, let us take

a simple example: the case of two boolean b1 and b2 whose positive sets
are single open intervals, i.e. PS(b1) = (α1, β1), and PS(b2) = (α2, β2),
where (e.g.) α1 < α2 < β1 < β2. Then

PS(b1 ∨ b2) = (α1, α2) ∪ (α2, β1) ∪ (β1, β2),

PS(b1
c

∨ b2) = (α1, β1) ∪ (β1, β2),

PS(b1 ▽ b2) = (α1, β2).

We now proceed by structural induction on b.

Base case: b ≡ p(x) = 0 or p(x) > 0. Use Corollary 2.3.4.
Note that in the case that p(x) has degree 0, i.e., it is a constant

integer c, the atomic boolean p(x) > 0 has the form c > 0, and so
reduces to true or false, depending on the value of c. Similarly with the
case of an atomic boolean p(x) = 0.

Induction step. Briefly, this follows from the fact that the class of finite
unions and intersection of algebraic intervals is closed under (binary)
union and intersection. In more detail, we consider the various cases:

• b ≡ ¬b1. Just interchange the positive and negative sets for b and b1.

36 BO XIE ET AL.

Next, suppose:

PS(b1) =

k1⋃

i=1

I+1i

NS(b1) =

ℓ1⋃

i=1

I−1i

DS(b1) = { d11, . . . , d1m1 }

PS(b2) =

k2⋃

j=1

I+2j

NS(b2) =

ℓ2⋃

j=1

I−2j

DS(b2) = {d21, . . . , d2m2}

• b ≡ b1∨b2. Then

PS(b) =
(k1⋃

i=1

k2⋃

j=1

(I+i1 ∩ I+2j)
)
∪

(k1⋃

i=1

ℓ2⋃

j=1

(I+1i ∩ I−2j)
)

∪
(ℓ1⋃

i=1

k2⋃

j=1

(I−1i ∩ I+2j)
)

NS(b) =

ℓ1⋃

i=1

ℓ2⋃

j=1

(I−1i ∩ I−2j)

DS(b) = {d11, . . . , d1m1 , d21, . . . , d2m2}.

• b ≡ b1∧b2. Then

PS(b) =

k1⋃

i=1

k2⋃

j=1

(I+1i ∩ I+2j)

NS(b) =
(ℓ1⋃

i=1

ℓ2⋃

j=1

(I−1i ∩ I−2j)
)
∪

(k1⋃

i=1

ℓ2⋃

j=1

(I+1i ∩ I−2j)
)

∪
(ℓ1⋃

i=1

k2⋃

j=1

(I−1i ∩ I+2j)
)

DS(b) = {d11, . . . , d1m1 , d21, . . . , d2m2}.

SEMICOMPUTABLE SETS OF REALS 37

• b ≡ b1
c

∨ b2. Then

PS(b) =

k1⋃

i=1

ℓ1⋃

j=1

k2⋃

k=1

I+1i ∪ (I−1j ∩ I+2k))

NS(b) =

ℓ1⋃

i=1

ℓ2⋃

j=1

(I−1i ∩ I−2j)

DS(b) = {d11, . . . , d1m1} ∪ {d2j | ∃i : d2j ∈ I−1i}.

• b ≡ b1
c

∧ b2. Then

PS(b) =

k1⋃

i=1

k2⋃

j=1

(I+1i ∩ I+2j)

NS(b) =

ℓ1⋃

i=1

m1⋃

j=1

ℓ2⋃

k=1

(I−1i ∪ (I+1j ∩ I−2k))

DS(b) = {d11, . . . , d1m1} ∪ {d2j | ∃i : d2j ∈ I+1i}.

• b ≡ b1▽ b2. Then

PS(b) =

k1⋃

i=1

k2⋃

j=1

(I+1i ∪ I+2j)

NS(b) =

ℓ1⋃

i=1

ℓ2⋃

j=1

(I−1i ∩ I−2j)

DS(b) =
(
{d11, . . . , d1m1} ∩ {d21, . . . , d2m2}

)

∪ {d1i | ∃j : d1i ∈ I−2j} ∪ {d2i | ∃j : d2i ∈ I−1j}.

• b ≡ b1△ b2. Then

PS(b) =

k1⋃

i=1

k2⋃

j=1

(I+1i ∩ I+2j)

NS(b) =

ℓ1⋃

i=1

ℓ2⋃

j=1

(I−1i ∪ I−2j)

DS(b) =
(
{d11, . . . , d1m1} ∩ {d21, . . . , d2m2}

)

∪ {d1i | ∃j : d1i ∈ I+2j} ∪ {d2i | ∃j : d2i ∈ I+1j}. �

Next we give several lemmas in preparation for the structure theo-
rems in §5.5.

38 BO XIE ET AL.

Lemma 5.2.5. There is a While computable embedding

ιN : N →֒ R.

Proof. By a simple while loop. �

From this we easily get:

Lemma 5.2.6. There is a While computable injection

ιZ : N → R

where for any m ∈ Z, ιZ(pmq) = m ∈ R.

Lemma 5.2.7. There is a While computable function

eval : N× R → R

such that for any integer polynomial p and a ∈ R:

eval(ppq, a) = p(a).

Proof. The function eval is defined by induction on the degree of p.
We omit details. �

Note that this lemma is a special case of the term evaluation property

(TEP) for R [TZ00, §4.7]. In fact, it is the main step in proving the
TEP for R.

Lemma 5.2.8. There is a While computable function

lessQ : N× R ⇀ B

such that for r ∈ Q and x ∈ R:

lessQ(prq, x) ≃





tt if r < x

ff if r > x

↑ if r = x.

Proof. Let r = m
n+1

(m ∈ Z, n ∈ N). Then by our assumptions on
the coding, we can primitive recursively retrieve pmq and n from prq.
Then (using Lemmas 5.2.5 and 5.2.6) define

lessQ(prq, x) ⇐⇒df ιZ(pmq) < (ιN(n) + 1)× x. �

Lemma 5.2.9. There is a WhileOR computable function

lessA : N× R ⇀ B

such that for α ∈ A and x ∈ R:

lessA(pαq, x) ≃





tt if α < x

ff if α > x

↑ if α = x

SEMICOMPUTABLE SETS OF REALS 39

✲x

y = p(x)

r1 r2α α′

Figure 7. Proof of Lemma 5.2.11, case 1

Proof. We can effectively retrieve from pαq the numbers ppq and k,
where α is the k-th root of p.
Then by Lemma 5.2.7, we have a While computable function eval

such that eval(ppq, a) = p(a). Also by Lemma 2.3.5, we can effec-
tively find two rationals r1 and r2 such that r1 < α < r2 and α is the
only root of p between these two rationals.
There are now four cases, which can be effectively distinguished by

Sturm’s Theorem.
In cases 1 and 2, α is a single root. In case 1 (Figure 7) p(x) changes

sign from negative to positive at α. Here we can see that α < x iff

[(r1 < x)∧(p(x) > 0)] ▽ [r2 < x].

Note the use of the strong disjunction. (See Remark 5.2.10 below.)
In case 2 (formed by reflecting Figure 7 about the x axis) p(x)

changes sign from positive to negative. This reduces to Case 1 by
replacing p(x) by −p(x).
In cases 3 and 4, α is a repeated root. In case 3 (Figure 8) p(x) is

positive near α. Here, by choosing r1 and r2 sufficiently close to α (so
that p ′(r2) > 0, p ′(r1) < 0 and there is no root of p ′(x) between r1
and α, or between α and r2) we have α < x iff

[(r1 < x)∧ (p ′(x) > 0)] ▽ [r2 < x]

where p ′ is the derivative of p.
Note again the use of the strong disjunction here.
In case 4 (formed by reflecting Figure 8 about the x axis) p(x) is

negative near α. This reduces to case 3 by replacing p(x) by −p(x).
Note that all the above operations on polynomials are effective; for

example, p−pq and pp′q are primitive recursive in ppq. �

Remark 5.2.10 (Need for strong disjunction). In case 1, if x = r2,
then the disjunct (r2 < x) will diverge, and so we need ‘▽ ’ to make
the whole expression converge. Similarly for the other cases.

40 BO XIE ET AL.

✲x

y = p(x)

r1 r2α α′

Figure 8. Proof of Lemma 5.2.11, case 3

Lemma 5.2.11. There is a While computable function

in Q : N× real ⇀ bool

such that

in Q(p(r1, r2)q, x) ≃





tt if x ∈ (r1, r2)

ff if x < r1 or r2 < x

↑ otherwise, i.e. if x = r1 or x = r2

where r1 and r2 are rationals with r1 < r2.

Proof. We can primitively recursively retrieve pr1q and pr2q from p(r1, r2)q,
and therefore define:

in Q(p(r1, r2)q, x) ⇐⇒df lessQ(pr1q, x) ∧ ¬lessQ(pr2q, x) (5.3)

which is While computable, by Lemma 5.2.8. �

Lemma 5.2.12. There is a WhileOR computable function

inA : N× real ⇀ bool

such that

inA(p(α, β)q, x) ≃





tt if x ∈ (α, β)

ff if x < α or β < x

↑ otherwise,

where α and β are algebraic numbers with α < β.

Proof. Like the proof of Lemma 5.2.11, except that instead of lessQ,
we use lessA, which is WhileOR computable by Lemma 5.2.9. �

5.3. Characterizations of semicomputable real sets.

In this subsection, we prove the ‘⇒’ direction of the structure theorems
given in §5.5 below.

SEMICOMPUTABLE SETS OF REALS 41

Lemma 5.3.1. If a set R ⊆ R is WhileOR semicomputable over R,

then R is the union of an effective countable sequence of disjoint alge-

braic intervals.

Proof. IfR ⊆ R isWhileOR semicomputable, then by Engeler’s Lemma
(4.3.1) for the WhileOR language,

a ∈ R ⇐⇒
∞h

k=0

bk[a]

for an effective sequence (bk) of ΣOR-booleans in Bool(x). By the
Semantic Disjointedness Lemma (4.4.2), this sequence (bk) is seman-
tically disjoint, and, further, by the Partition Lemma (5.2.4), each bk
itself defines an effective finite union of disjoint algebraic intervals. �

Lemma 5.3.2. If R ⊆ R is WhileOR semicomputable over R, then R
is the union of an effective countable sequence of rational intervals.

Proof. By Lemmas 5.3.1 and 2.2.5. �

Remark 5.3.3. We lose disjointedness here, because the rational in-
tervals generated by the proof of Lemma 2.2.5 are not disjoint.

Lemma 5.3.4. If R ⊆ R is While∃N semicomputable over R, then R
is the union of an effective countable sequence of algebraic intervals.

Proof. By Engeler’s Lemma (4.5.1) for While∃N, a While∃N semi-
computable set over R can be expressed as a countable disjunction of
an effective sequence of ΣOR-booleans, to which the Partition Lemma
again applies. �

Note again the lack of disjointedness of the sequence of intervals
obtained here. (See Remark 4.5.2.)

Lemma 5.3.5. If R ⊆ R is While∃N semicomputable over R, then R
is the union of an effective countable sequence of rational intervals.

Proof. By Lemmas 5.3.4 and 2.2.5. �

Note that we could have proved Lemma 5.3.2 as an immediate con-
sequences of this lemma.

5.4. Unions of eff. sequences of intervals are semicomputable.

We will now prove the reverse ‘⇐’ direction of the structure theorems.

Lemma 5.4.1. The union of an effective countable sequence of disjoint

rational intervals is While semicomputable over R.

42 BO XIE ET AL.

Proof. An effective sequence of rational intervals gives us a total recur-
sive function f : N → N such that f(n) is the code of the n-th rational
interval. So the union of such a sequence of intervals is the halting set
of the procedure

proc

in x : real;
aux i : nat;
begin

i := 0;
while not(in Q(Pf (i), x))
do i := i+ 1 od

end

where Pf is the While(N) (and hence While(R)) procedure which
computes f .
By Lemma 5.2.11, in Q is While computable, and so the above

procedure is While computable. �

Remarks 5.4.2.

(a) In the above procedure, if x lies on the boundary of one of the
intervals, there will be “local divergence”. But in that case, by
the disjointedness assumption, x cannot lie in any of the other
intervals, so this divergence still gives the correct result.

(b) This result is related to Lemma 4.4.3, which states that a disjunc-
tion of an effective sequence of semantically disjoint booleans can
be evaluated “from the left”, i.e., by a ‘while’ loop.

Lemma 5.4.3. The union of an effective countable sequence of disjoint

algebraic intervals is WhileOR semicomputable over R.

Proof. Just like the previous Lemma, but instead of in Q(f(i), r), we
use inA(Pf (i), r) which isWhileOR computable, by Lemma 5.2.12. �

Lemma 5.4.4. The union of an effective countable sequence of alge-

braic intervals is While∃N semicomputable over R.

Proof. An effective sequence of algebraic intervals is given by a total
While computable function f : N → N such that f(n) returns the code
of the n-th algebraic interval.
So the countable union of an effective sequence of algebraic intervals

is the halting set of the following While∃N procedure:

SEMICOMPUTABLE SETS OF REALS 43

proc

in x : real;
out b : bool;
begin

b := ∃zP (x, z)
end

where P (x, z) is the procedure defined as

proc

in x : real;
z : nat;

out b : bool;
begin

b:= inA(Pf (z),x);
end

and Pf : nat → nat is theWhile(N) (and henceWhile(R)) procedure
which computes f .
By Lemma 5.2.12, inA is WhileOR (and hence While∃N) com-

putable, and so the above procedure is While∃N computable. �

Corollary 5.4.5. The union of an effective countable sequence of ra-

tional intervals is While∃N semicomputable over R.

Proof. By Lemma 2.2.4, an effective sequence of rational intervals is
also an effective sequence of algebraic intervals. �

Discussion 5.4.6. To summarize the results of this subsection: When
an effective sequence of rational (or algebraic) intervals is disjoint, we
can represent their union as the halting set of a While (or WhileOR,
respectively) procedure (as in Lemmas 5.4.1 and 5.4.3), since it can be
evaluated from the left, i.e., by a ‘while’ loop.
However when the intervals are not disjoint, their union must be

evaluated by a While∃N procedure, using the ‘Exist’ construct (as in
Lemma 5.4.4 and Corollary 5.4.5).

5.5. Structure theorems for semicomputable sets over R.

We present our three structure theorems for WhileOR and While∃N

semicomputable sets over R.

Theorem 1. A subset of R is WhileOR semicomputable over R iff

it is the union of an effective countable sequence of disjoint algebraic

intervals.

Proof. By Lemmas 5.3.1 and 5.4.3. �

44 BO XIE ET AL.

Theorem 2. A subset of R is While∃N semicomputable over R iff it

is the union of an effective countable sequence of algebraic intervals.

Proof. By Lemmas 5.3.4 and 5.4.4. �

Theorem 3. A subset of R is While∃N semicomputable over R iff it

is the union of an effective countable sequence of rational intervals.

Proof. By Lemma 5.3.5 and Corollary 5.4.5. �

We do not have a structure theorem for While semicomputable sets.
We only have a partial result:

Theorem 4. For subsets of R,

(a) While semicomputable over R =⇒
union of effective sequence of rational intervals.

(b) Union of effective sequence of disjoint rational intervals =⇒
While semicomputable over R.

Proof. (a) By Lemma 5.3.2.
(b) By Lemma 5.4.1. �

See Remarks 5.3.3 and 5.4.2(a) for the reasons that disjointedness is
lost in part (a), but needed in part (b).

5.6. Projectively While∃N semicomputable sets.

We now prove that for the While∃N language, projective semicom-
putability is equivalent to semicomputability, i.e., semicomputability
is closed under projection onto R.

Lemma 5.6.1. Given a continuous partial function b : Rn ⇀ B, if

there exists an n-tuple of reals x = (x1, . . . , xn) such that b(x) ↓ tt, then

there exists an n-tuple of rationals r = (r1, . . . , rn) such that b(r) ↓ tt.

Proof. Suppose there exists a real tuple x = (x1, . . . , xm) ∈ Rn such
that b(x) ↓ tt. Then by continuity of b, there exists δ > 0 such that for
all real tuples y = (y1, . . . , yn) in the neighbourhood set

N(x, δ) =df {(y1, . . . , yn) |
√

(x1 − y1)2 + · · ·+ (xn − yn)2 < δ},

we have b(y) ↓ tt. But then, because of the density of Q in R, there
exists a rational tuple r = (r1, . . . , rn) ∈ N(x, δ). �

Theorem 5. A set R ⊆ Rn is While∃N projectively semicomputable

over R if, and only if, R is While∃N semicomputable over R.

SEMICOMPUTABLE SETS OF REALS 45

Proof. ‘⇐’: Trivial.
‘⇒’: SupposeR ⊆ Rn isWhile∃N projectively semicomputable. Then12

there exists a While∃N semicomputable relation R′ ⊂ Rm+n, such that
for all x ∈ Rn:

x ∈ R ⇐⇒ ∃y ∈ Rm (x, y) ∈ R′

⇐⇒ ∃y ∈ Rm
∨

k
bk[x, y]

for some effective sequence (bk) of Σ
OR-booleans,

by Engeler’s Lemma (4.5.1) for While∃N applied to R′

⇐⇒
∨

k
∃y ∈ Rm bk[x, y]

⇐⇒
∨

k
∃r ∈ Qm bk[x, r], by Lemma 5.6.1.

It is not hard to see that we can construct an effective double sequence
(bk,ℓ) of ΣOR-booleans, such that for all k, ℓ, if ℓ = prq then for all
x ∈ Rn

bk,ℓ[x] ⇐⇒ bk[x, r]

and so x ∈ R ⇐⇒
∨

k

∨
ℓ
bk,ℓ[x]. (5.3)

Finally, by a method similar to that in the proof of Lemma 5.4.4,
we can show that the r.h.s. of (5.3) is the halting set of a While∃N

procedure. �

Essentially, the above proof involves replacing existential quantifi-
cation over R by existential quantification over Q (using continuity
and density of Q in R), and then replacing the latter by a countable
disjunction.

Remarks 5.6.2.

(a) We do not know if this result holds for While or WhileOR.

(b) In a total (non-topological) algebraRt over the reals, the continuity
argument in the above proof would not work, and in fact, the
theorem fails! A counterexample is given in [TZ00, §6.2].

6. Conclusion and future work

6.1. Conclusion.

We have investigated computability, or rather semicomputability, for
the While language and certain extensions (WhileOR and While∃N)

12The ‘
∨
k
’ symbol below indicates strong disjunction (§4.2(2)).

46 BO XIE ET AL.

over a topological partial algebra R on the reals. We proved four struc-
ture theorems for semicomputable sets in R, of the form: a subset of
R is semicomputable in the While language, or one of these exten-
sions, if, and only if, it is the union of an effective countable sequence
of rational (or algebraic) open intervals (see §5.5).
We also proved a fifth theorem, stating that inR, projectiveWhile∃N

semicomutability is equivalent to While∃N semicomputability.

6.2. Future work and conjectures.

We list some ideas for future work in this area, and conjectures:

(1) Expanding R by including division by naturals:

divN : R× N → R

where divN(x, n) =
x

n+ 1

(This is easily seen to be equivalent to the expansion of R formed by
adding multiplication of a real by a rational.)
Now we can directly embed Q in R. The Canonical Form and Par-

tition Lemmas still hold. In fact it seems clear that the five theorems
in §5.5 also hold for the algebra R+ divN.

(2) Expanding R to an algebra Rdiv, which includes the (partial) real
division operation

div : R2 ⇀ R

where div(x, y) ≃
x

y
.

This expansion is a major step compared to (1). The Canonical Form
Lemma now becomes:

A ΣOR-boolean over Rdiv is effectively semantically equiv-

alent to a boolean combination of equations and inequal-

ities of the form r(x) = 0 and r(x) > 0, where

r(x) ≡
p(x)

q(x)
(6.1)

with p(x), q(x) integer polynomials.

The important thing to notice is that the zeros and poles of rational
functions are algebraic numbers, since in equation (6.1) the zeros and
poles of r(x) are respectively the roots of p(x) and of q(x). Thus it can
be seen that the Partition Lemma still holds for Rdiv. In fact:

p(x)

q(x)
> 0 ⇐⇒ (p(x)× q(x)) > 0

SEMICOMPUTABLE SETS OF REALS 47

where “⇐⇒” is weak semantic equivalence13.
We conjecture that the four structure theorems in §5.5 hold for Rdiv.

(3) Investigating the structure of semicomputable subsets of Rm for
m > 1. Although the Canonical Form Lemma (5.2.2) for booleans over
R still holds when m > 1, the Partition Lemma (5.2.4) for booleans is
problematic — even the formulation of a suitable generalization of it to
m > 1 provides a challenge. A useful approach may be the method of
cell decomposition, applied to o-minimal structures on R. [vdD98].14

(4) Bridging the gap between abstract models (e.g. While∃N) and con-
crete models of computation over R (e.g. Weihrauch’s TTE [Wei00]).
We have seen (Theorem 3) that for a relation R on R:

R is While∃N semicomputable in R ⇐⇒ R =
⋃

k
Ik (6.2)

where (Ik) is an effective sequence of rational intervals.
On the other hand, Weihrauch has shown [Wei00] that for his con-

crete model:

R is TTE-semicomputable ⇐⇒ R =
⋂

j

⋃
k
Ij,k (6.3)

where (Ij,k) is an effective double sequence of rational intervals.
We can try to bridge the gap between (6.2) and (6.3) by generalizing

the notion of semicomputability in R to that of approximable While∃N

semicomputability, where a set R ⊆ Rn is said to be approximably
While∃N semicomputable if for some While∃N procedure

P : nat× real ⇀ bool,

writing PR

n (x) =df PR(n, x),

we have R =
⋂

n
HaltR(PR

n).

We then conjecture that for a set R ⊆ Rm:

R is approx. While∃N semicomp. ⇐⇒ R is TTE semicomp.

The motivation for this conjecture, and the reason for the terminology
“approximable semicomputability”, is by analogy with the “complete-
ness theorem” in [TZ04], where for partial topological algebras A (such
as R) satisfying certain general conditions, it was proved that

WhileCC approx. computability ⇐⇒ concrete computability.

Here WhileCC is the While language extended by a nondetermin-
istic “countable choice” operator (see Remark 3.9.2), and a function

13Recall Definition 3.5.5.
14We thank Patrick Speissegger for this suggestion.

48 BO XIE ET AL.

f : Au ⇀ Av is said to be approximately WhileCC computable if for
some WhileCC procedure P : nat × u → v, the sequence of (many-
valued) functions

PA
n : Au ⇀ Av

converges or approximates to f (in a suitable sense).
In other words, for abstract computability to correspond to concrete

computability , it must be augmented by

(a) a non-deterministic choice operator ‘choose’ on N,
(b) approximability of computations.

Similarly, in the present case, we conjecture that for abstract semi-

computability to correspond to concrete semicomputability , it must be
augmented by

(a) the ‘Exist’ operator on N,
(b) approximability, which here means taking countable intersections.

Note that our ‘Exist’ operator can be viewed as a “weakly deterministic”
special case of the ‘choose’ operator (see again Remark 3.9.2).

Acknowledgments

This paper developed out of the first author’s M. Sc. Thesis [Xie04]. We
are grateful to Jacques Carette, Patrick Speissegger and an anonymous
referee for very helpful comments.

References

[BCSS98] L. Blum, F. Cucker, M. Shub, and S. Smale. Complexity and Real Com-

putation. Springer-Verlag, 1998.
[CH53] R. Courant and D. Hilbert.Methods of Mathematical Physics, Vol. II. In-

terscience, 1953. Translated and revised from the German edition [1937].
[Eng68] E. Engeler. Formal Languages: Automata and Structures. Markham,

1968.
[Had52] J. Hadamard. Lectures on Cauchy’s Problem in Linear Partial Differen-

tial Equations. Dover, 1952. Translated from the French edition [1922].
[Her90] I.N. Herstein. Abstract Algebra. Macmillan, 1990. 2nd edition.
[Kle52] S. C. Kleene. Introduction to metamathematics. North Holland, 1952.
[PER89] M. Pour-El and J. I. Richards. Computability in Analysis and Physics.

Springer-Verlag, 1989.
[Roy63] H. L. Royden. Real Analysis. Macmillan, 1963.
[Rud76] W. Rudin. Principle of Mathematical Analysis. McGraw-Hill, 3rd edi-

tion, 1976.
[SA91] V. Sperschneider and G. Antoniou. Logic: A Foundation for Computer

Science. Addison-Wesley, 1991.

SEMICOMPUTABLE SETS OF REALS 49

[SHT99a] V. Stoltenberg-Hansen and J.V. Tucker. Computable rings and fields. In
E. Griffor, editor, Handbook of Computability Theory. Elsevier, 1999.

[SHT99b] V. Stoltenberg-Hansen and J.V. Tucker. Concrete models of computa-
tion for topological algebras. Theoretical Computer Science, 219:347–378,
1999.

[TZ99] J.V. Tucker and J.I. Zucker. Computation by ‘while’ programs on topo-
logical partial algebras. Theoretical Computer Science, 219:379–420,
1999.

[TZ00] J.V. Tucker and J.I. Zucker. Computable functions and semicomputable

sets on many-sorted algebras, volume 5 of Handbook of Logic in Computer

Science, pages 317–523. Oxford University Press, 2000.
[TZ04] J.V. Tucker and J.I. Zucker. Abstract versus concrete computation on

metric partial algebras. ACM Transactions on Computational Logic,
5:611–668, 2004.

[TZ05] J.V. Tucker and J.I. Zucker. Computable total functions on metric alge-
bras, universal algebraic specifications and dynamical systems. Journal
of Logical and Algebraic Programming, 62:71–108, 2005.

[TZ11] J.V. Tucker and J.I. Zucker. Continuity of operators on continuous and
discrete time streams. Theoretical Computer Science, 412:3378–3403,
2011.

[vdD98] L. van den Dries. Tame Topology and O-minimal Structures. Cambridge
University Press, 1998.

[vdW64] B.L. van der Waerden. Modern Algebra, volume 1. Frederick Ungar, 2nd
edition, 1964.

[Wei00] K. Weihrauch. Computable Analysis, An Introduction. Springer-Verlag,
2000.

[Xie04] Bo Xie. Characterizations of semicomputable sets of real numbers.
M.Sc. Thesis, Department of Computing & Software, McMaster Uni-
versity, 2004. Technical Report CAS 04-06-JZ, August 2004, McMaster
University.

Department of Computing and Software, McMaster University, Hamil-

ton, Ontario L8S 4K1, Canada

Current address, Bo Xie: Watermark Insurance Services Inc., 1020 Brock Road
South, Suite 2005, Pickering, Ontario L1W 3H2, Canada

E-mail address, Bo Xie: tylerxie@yahoo.com
E-mail address, Ming Quan Fu: fumq@mcmaster.ca
E-mail address, Jeffery Zucker: zucker@mcmaster.ca

