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Abstract. This paper compares two scheme-based models of computation on abstract many-sorted
algebras A: Feferman’s system ACP(A) of “abstract computational procedures” based on a least
fixed point operator, and Tucker and Zucker’s system µPR(A) based on primitive recursion on the
naturals together with a least number operator. We prove a conjecture of Feferman that (assuming
A contains sorts for natural numbers and arrays of data) the two systems are equivalent. The main
step in the proof is showing the equivalence of both systems to a system Rec(A) of computation by
an imperative programming language with recursive calls. The result provides a confirmation for a
Generalized Church-Turing Thesis for computation on abstract data types.
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1. Introduction

Schemes for recursive definitions of functions form an important component of computability theory.
Their theory is fully developed over the natural numbers N. A well known recursive definition scheme is
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Kleene’s schemes [9] for general recursive functions on N based on the primitive recursion schemes of
Dedekind and Gödel, and the least number operator of Kleene. Another group of schemes [12, 14, 15,
3, 4, 5, 6] employs the concept of least fixed points. In such schemes, functions are defined as the least
fixed points of second-order functionals.

Recent research concerns not only the computability of functions on N, but also that of functions
on arbitrary structures, modelled as many-sorted algebras. A many-sorted algebra A consists of a finite
family of non-empty sets As1 , . . . , Asn called the carriers of the algebra; and a finite family of functions
on these sets with types like

F : s1 × · · · × sn → s.

We are interested in N-standard partial algebras whose carriers include the set B of booleans and the set
N of naturals, and whose functions include the standard operations on these carriers.

Recursion schemes are also generalized to work over many-sorted algebras. A generalization of
Kleene’s scheme is Tucker and Zucker’s µPR scheme, which generates functions by starting from some
basic functions and applying to these composition, simultaneous primitive recursion on N and the least
number operator. Feferman’s abstract computation procedures (ACP) for functionals of type level 2
over abstract algebras, characterized by using the LFP (least fixed point) scheme, is developed in [6]. A
natural question is the following.

What is the relation between the sets of functions defined by these two schemes?

Since ACP, unlike µPR, deals with functionals of type level 2, in order to compare two schemes, we
need some definitions.

A function on A is µPR∗(A) computable if it is defined by a µPR scheme over A∗, which expands
A by including new starred (array) sorts s∗ for each sort s of Σ as well as standard array operations.
Similarly, a function on A is ACP∗(A) computable if it is defined by a ACP scheme over A∗, and
ACP∗1(A) is the set of ACP∗ computable functions (type level ≤ 1) on A.

The above question can now be re-stated more precisely:

For any abstract many-sorted algebra A, is µPR∗(A) = ACP∗1(A)?

S. Feferman raised this question in [6] and conjectured that the answer is “Yes”.
Inspired by the denotational (or “fixed point”) semantics of recursive procedures in [1, 17], we prove

the following circle of inclusions in Figure 1.

ACP∗1(A) Rec∗∗∗(A)

µPR∗(A) While∗∗∗(A)�

-

6

?

Figure 1. Implication cycle
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Rec is an imperative language employed to generate the least fixed points of second-order functionals
by properly chosen recursive procedure calls. Rec∗∗∗ is the extension of Rec with arrays. Rec∗∗∗(A) is the
set of Rec∗∗∗ computable functions on A. Similarly, While∗∗∗(A) is the set of While∗∗∗ computable functions
on A, where While is another imperative programming language characterized by the ‘while’ construct.
(Precise definitions are given in Section 4.)

The equivalence between While∗∗∗(A) and µPR∗(A) was proved in [18]. We proceed by proving the
following relations.

µPR∗(A) ⊆ ACP∗1(A) (1)

ACP∗1(A) ⊆ Rec∗∗∗(A) (2)

Rec∗∗∗(A) ⊆ While∗∗∗(A) (3)

Of the above three inclusions, (1) is quite straightforward, and (3) can be derived from the semantic
investigation of While programs in [20]. The really interesting new result is (2), which forms the core of
the paper (Section 6).

In the proof of (2), even if we are considering functions of type level ≤ 1, we nevertheless have
to deal with functionals of type level 2, since functions are defined as the least fixed points of level 2
functionals. To generate these, we therefore develop a second-order version of Rec, namely Rec2, and
prove that

ACP(A) ⊆ Rec2(A)

for functionals of type level ≤ 2. Then (2) follows as a corollary. Although the programming language
Rec2 is used as a device for proving the circle of implications, it is interesting in its own right. Recursion
schemes for functions are certainly of great importance. They have been used in studying recursion
on abstract structures [6, 7], and in various applications, such as modelling and verifying hardware [8],
analog machines [13, 16], and computation on continuous data type [2].

We should point out that we have modified Feferman’s schemes by replacing his simple LFP scheme
by a simultaneous LFP scheme. However this seems a very reasonable modification of Feferman’s
system.

Our proof gives further confirmation to the Generalized Church-Turing Thesis [18, 20], which states
that the class of functions computable by finite deterministic algorithms on A is precisely µPR∗(A) (or
equivalently While∗∗∗(A)).

The paper is organized as follows. In Section 2, we introduce the basic concepts of abstract many-
sorted algebras that we will need. In particular, we will define the first-order many-sorted algebras with
booleans and natural numbers, possibly extended by auxiliary array structures. We will also investigate
second-order version of these algebras. In Section 3, we define the two computational models based on
recursive schemes discussed above, namely ACP and µPR. In Section 4, we define two computational
models based on imperative languages, Rec and While. The semantics of Rec is fully discussed, while
the While language is presented briefly (details being given in [18, 20]). Sections 5, 6 and 7 prove (1), (2)
and (3) respectively. As stated above, Section 6 forms the core of the paper. It proves that any function
computable by an ACP scheme is computable by some Rec procedure. Section 8 concludes this paper
with a short summary and future work. In the Appendix, we give some proofs of a technical nature,
omitted from previous sections.

The paper developed out of the MSc thesis of the first author [23]. The authors are grateful to three
anonymous referees for some very helpful comments.
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2. Basic concepts

In this section, we will introduce some basic concepts concerning signatures and algebras, which will be
used in the following sections. In particular, we have two groups of concepts extracted from [18, 20] and
[6] respectively. We will use the definitions in [18, 20] as the framework, and introduce the differences
and connections between that and [6] in §2.5. We present this section to make the paper self-contained,
and to simplify the presentation. Interested readers can refer to [6, 18, 20] for detailed discussions.

2.1. Signatures
Definition 2.1.1. (Many-sorted signatures)
A many-sorted signature Σ is a pair 〈Sort(Σ),Func (Σ)〉 where

(a) Sort(Σ) is a finite set of sorts.

(b) Func (Σ) is a finite set of (primitive or basic) function symbols F : s1 × · · · × sm → s (m ≥ 0).
Each symbol F has a type s1 × · · · × sm → s, where m ≥ 0 is the arity of F, and s1, . . . , sm ∈
Sort(Σ) are the domain sorts and s ∈ Sort(Σ) is the range sort of F. The casem = 0 corresponds
to constant symbols, we then write F : → s.

Definition 2.1.2. (Product types over Σ)
A product type over Σ, or Σ-product type, is a symbol of the form s1 × · · · × sm (m ≥ 0), where
s1, . . . , sm are sorts of Σ, called its component sorts. We use u, v, w, . . . for Σ-product types.

For a Σ-product type u and Σ-sort s, let Func (Σ)u → s denote the set of all Σ-function symbols of
type u→ s.

Definition 2.1.3. (Function types)
Let A be a Σ-algebra. A function type over Σ, or Σ-function type, is a symbol of the form u→ s, with
domain type u and range type s, where u is a Σ-product type. We use τ1, τ2, . . . for Σ-function types.

Definition 2.1.4. (Σ-algebras)
A Σ-algebra A has, for each sort s of Σ, a non-empty set As, called the carrier of sort s, and for each
Σ-function symbol F : s1 × · · · × sm → s, a (partial) function FA : As1 × · · · × Asm ⇀ As. (If
m = 0, this is an element of As.)

For a Σ-product type u = s1 × · · · × sm, we define Au =df As1 × · · · × Asm . Thus x ∈ Au iff
x = (x1, . . . , xm), where xi ∈ Asi for i = 1, . . . ,m. So each Σ-function symbol F : u→ s has an
interpretation FA : Au ⇀ As. If u is empty, i.e., F is a constant symbol, then FA is an element of As.

The algebra A is total if FA is total for each Σ-function symbol F. Without such a totality assump-
tion, A is called partial. In this paper we deal mainly with partial algebras.

We will write Σ(A) to denote the signature of an algebra A.
We present some examples which will be important for us.
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Example 2.1.5. (a) The signature of booleans can be defined as

signature Σ(B)
sorts bool
functions true, false : → bool,

and,or : bool2 → bool,
not : bool → bool

The algebra B of booleans contains the carrier B = {tt, ff} of sort bool, and, as constants and
functions, the standard interpretations of the function and constant symbols of Σ(B).

(b) The signature of naturals can be defined as

signature Σ(N0)
sorts nat
functions 0 : → nat,

suc : nat → nat

The corresponding algebra of naturals N0 consists of the carrier N for sort nat and functions
0N0 : → N and sucN0 : N → N.

Definition 2.1.6. (Σ-variables)
Let Var(Σ) be the class of Σ-variables x, y, . . ., and Vars be the class of variables of sort s. For
u = s1 × · · · × sm, we write x : u to mean that x is a u-tuple of distinct variables.

Definition 2.1.7. (Σ-terms)
Let Term(Σ) be the class of Σ-terms t, . . ., and Terms be the class of terms of sort s, defined by

ts ::= xs | F(ts1
1 , . . . , t

sm
m ),

where F ∈ Func (Σ)u → s and u = s1 × · · · × sm. We write t : s to indicate that t ∈ Terms. Further,
we write t : u to indicate that t is a u-tuple of terms, i.e., a tuple of terms of sorts s1, . . . , sm. (Note that
in a standard signature Σ, defined below, the definition of Term(Σ) is extended to include a conditional
constructor, cf. Definition 2.2.3.)

Assumption 2.1.8. (Instantiation)
For each s ∈ Sort(Σ), there is a closed term, called the default term δs, of that sort.

This guarantees the existence of a default value δs
A for all sort s, and default tuple δu

A for all product
types u in a Σ-algebra A.
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2.2. Standard signatures and algebras
Definition 2.2.1. (Standard signatures)
A signature Σ is standard if Σ(B) ⊆ Σ.

Definition 2.2.2. (Standard algebras)
Given a standard signature Σ, a Σ-algebra A is a standard algebra if it is an expansion1 of B, as defined
in Example 2.1.5 (a).

Definition 2.2.3. (Σ-terms for standard signatures)
We extend Term(Σ) to include a conditional constructor as follows, where b is a term of sort bool.

ts ::= . . . |if b then ts1 else ts2 fi

Any many-sorted signature Σ can be standardized to a signature ΣB by adjoining the sort bool
together with the standard boolean operations; and, correspondingly, any algebra A can be standardized
to an algebra AB by adjoining the algebra B together with a conditional constructor.

2.3. N-standard signatures and algebras
Definition 2.3.1. (N-standard signature)
A standard signature Σ is called N-standard if it includes (as well as bool) the numerical sort nat, and
also function symbols for the standard operations of zero, successor, equality and order on the naturals:

0 : → nat
S : nat → nat

eqnat : nat2 → bool
lessnat : nat2 → bool.

Definition 2.3.2. (N-standard algebra)
The corresponding Σ-algebra A is N-standard if the carrier Anat is the set of natural numbers N=
{0,1,2,. . .}, and the standard operations (listed above) have their standard interpretations on N.

Note that any standard Σ-algebra A can be N-standardized to a ΣN -algebra AN , by adjoining a
carrier N of sort nat, and the operation listed in Definition 2.3.1.

Assumption 2.3.3. (N-Standardness)
All signatures Σ and Σ-algebras A are N-standard.

2.4. Algebras A∗ of signature Σ∗

Definition 2.4.1. (Signature Σ∗ and algebras A∗)
Given a signature Σ, and Σ-algebra A, we extend Σ to a signature Σ∗, and expand A to a Σ∗-algebra
A∗, as follows. Include, for eachΣ-sort s, a new starred sort s∗, and also the function symbols described
below. Define, for each sort s of Σ, the carrier A∗

s of sort s∗, to be the set of finite sequences (or arrays)
a∗ over As.
1The concept expansion of an algebra is defined in [20]
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(i) Lgths : s∗ → nat, where LgthA
s (a∗) gives the length of the array a∗ ∈ A∗

s;

(ii) Nulls : → s∗, where NullAs is the array in A∗
s of zero length;

(iii) Aps : s∗ × nat → s, where

ApA
s (a∗, k) =

{
a∗[k] if k < LgthA

s (a∗),
δs

A otherwise;

(iv) Updates : s∗ × nat × s → s∗, where UpdateA
s (a∗, n, x) is the array b∗ ∈ A∗

s such that
LgthA

s (b∗) = LgthA
s (a∗) and for all k < LgthA

s (a∗),

b∗[k] =

{
a∗[k] if k 6= n,

x if k = n;

(v) Newlengths : s∗×nat → s∗, where NewlengthA
s (a∗,m) is the array b∗ of length m, such that for

all k < m,

b∗[k] =

{
a∗[k] if k < LgthA

s (a∗),
δs

A otherwise;

A sort of Σ∗ is called simple or starred according as it has the form s or s∗(respectively), for some
s ∈ Sort(Σ). Similarly, a variable is called simple or starred according as its sort is simple or starred.

Remark 2.4.2. The reason for introducing starred sorts is the lack of effective coding of finite sequences
within abstract algebras in general. Starred sorts have significance in programming languages, since
starred variables can be used to model arrays, and (hence) finite but unbounded memory. They give us
the power of dynamic memory allocation.

2.5. Second-order signatures and algebras

The algebras in [18, 20] are first order algebras, since all functional symbols are interpreted as first-order
functions within the algebras. In general, however, Feferman’s ACP deals with second-order many-sorted
algebras [6]. This subsection provides the background for Feferman’s ACP schemes in the next section.
The N-Standardness Assumption (Assumption 2.3.3) holds here as elsewhere throughout this paper.

Definition 2.5.1. (Second-order signatures)
A second-order signature Σ is a pair 〈Sort(Σ),Func (Σ)〉 where

(a) Sort(Σ) is a finite set of sorts, where bool ∈ Sort(Σ), i.e., Σ is standard.

(b) Func (Σ) is a finite set of functional symbols F : τ1 × · · · × τm×s1 × · · · × sn → s. Each symbol F
has a type τ1 × · · · × τm×s1 × · · · × sn → s, wherem ≥ 0 and n ≥ 0, s1, . . . , sm, s ∈ Sort(Σ),
and τ1, . . . , τm are Σ-function types (see Definition 2.1.3). When m = 0, the symbol F is first-
order, i.e. a function symbol.
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Definition 2.5.2. (Second-order algebras)
A (full) second-order Σ-algebra A has:

(a) for each sort s of Σ, a non-empty set As, called the carrier of sort s. In particular, we have B as the
carrier of sort bool. Then, for each τ = u→ s, we take Aτ = {ϕ | ϕ : Au ⇀ As}.

(b) for each functional symbol F : τ1 × · · · × τm × s1 × · · · × sn → s, a (partial) functional FA :
Aτ1 × · · · ×Aτm ×As1 × · · · ×Asn ⇀ As. (Again, if m = n = 0, this is an element of As.)

We will write π, . . . for function product types τ1 × · · · × τm (m ≥ 0). If π = τ1 × · · · × τm, we
write Aπ = Aτ1 × · · · ×Aτm .

Remarks 2.5.3. (a) Given a signatureΣ, aΣ-function symbol F : τ1 × · · · × τm×s1 × · · · × sn → s
is of type level 2, 1, or 0, according as m > 0, m = 0 and n > 0, or m = n = 0.

(b) Σ is said to be first-order if each F ∈ Func (Σ) is of type level ≤ 1, in that it is equivalent to the
standard (first-order) signature defined in §2.2.

(c) Corresponding to each F ∈ Func (Σ), FA is of type level 2, 1 or 0; and corresponding to Σ, a
Σ-algebra A is of second or first order.

We note that a thorough investigation of higher order algebras has been undertaken in [10].

3. Models of computation based on recursive schemes

In this section, we will introduce two models of computation based on recursive schemes, ACP and µPR.
The contents are taken from [6] and [18] respectively with necessary modification.

3.1. Feferman’s ACP schemes

In general, abstract computational procedures (ACP) deal with many-sorted algebras A with objects of
type level ≤ 2 (see Remark 2.5.3). With each signature Σ are associated the following formal schemes
for computation procedures on Σ-algebras.

I. (Initial functionals) F(ϕ, x) ' Fk(ϕ, x) (for each Fk ∈ Func (Σ));
II. (Identity) F(x) = x;

III. (Application) F(ϕ, x) ' ϕ(x);
IV. (Conditional) F(ϕ, x, b) ' [if b then G(ϕ, x) else H(ϕ, x)];
V. (Structural) F(ϕ, x) ' G(ϕf , xg);

VI. (Individual substitution) F(ϕ, x) ' G(ϕ, x,H(ϕ, x)));
VII. (Function substitution) F(ϕ, x) ' G(ϕ, λy · H(ϕ, x, y), x);

VIII. (Least fixed point) F1(ϕ, x, y1) ' %ϕ,x
1 (y1), . . . , Fn(ϕ, x, yn) ' %ϕ,x

n (yn)
where (%ϕ,x

1 , . . . , %ϕ,x
n ) =

LFP((λ%1 · . . . · λ%n · λz1 · G1(ϕ, %1, . . . , %n, x, z1)),
. . . ,

(λ%1 · . . . · λ%n · λzn · Gn(ϕ, %1, . . . , %n, x, zn))).
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The partial equality “'” above is to be interpreted as meaning that either both sides of the equation
converge and are equal, or both sides diverge. In scheme V, f : {1, . . . ,m′} → {1, . . . ,m}, g :
{1, . . . , n′} → {1, . . . , n} and the scheme itself abbreviates

F(ϕ1, . . . , ϕm, x1, . . . , xn) ' G(ϕf (1), . . . , ϕf (m′), xg(1), . . . , xg(n′)).

As shown in [6], the schemes are invariant under isomorphism.

Definition 3.1.1. (a) ACP(Σ) is the collection of all F generated by the schemes for signature Σ.

(b) For any Σ-algebra A, ACP(A) is the collection of all FA for F∈ ACP(Σ).

(c) ACP1(A) is the collection of all functions of type level ≤ 1 in ACP(A).

Definition 3.1.2. (a) ACP∗(Σ) is the collection of all F in ACP(Σ∗), with the restriction that the domain
and range types of F are simple (i.e., unstarred).

(b) For any Σ-algebra A, ACP∗(A) is the collection of all FA for F ∈ ACP∗(Σ).

(c) ACP∗1(A) is the collection of all functions of type level ≤ 1 in ACP∗(A).

Notation 3.1.3. In context of scheme VIII, we use

(a) Ĝ
ϕ,x

i as abbreviations of λ%1 · . . . · λ%n · λzi ·Gi(ϕ, %1, . . . , %n, x, zi);

(b) Ĝ
x

i as abbreviations of λ%1 · . . . · λ%n · λzi ·Gi(%1, . . . , %n, x, zi).

Notation 3.1.4. Let (a) Ĝ
ϕ,x
i be the interpretation of Ĝ

ϕ,x

i in A; (b) Ĝ
x
i be the interpretation of Ĝ

x

i in A.

Remark 3.1.5. (Simultaneous LFP)
In the least fixed points scheme VIII, we diverge from [6] by using simultaneous least fixed points, in the
sense that, for i = 1, . . . , n,

%0
i = ⊥

%k+1
i = Ĝ

ϕ,x
i (%k

1, . . . , %
k
n)

and %ϕ,x
i =

∞
∪

k=0
%k

i for i = 1, . . . , n.

This seems necessary to prove the equivalence of ACP1(A) with µPR(A) which uses simultaneous
primitive recursion [18, 20].

Note that if our type structure incorporated product types, then the simultaneous LFP scheme could
be replaced (or coded) by a simple LFP scheme in an obvious way.

Remarks 3.1.6. (a) The types of the schemes and their arguments are not specified but should be clear.
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(b) Since we consider only first-order algebras, i.e. all primitive functions Fk are objects of type level
≤ 1, by [6, Theorem 4] all FA are trivially continuous, hence, monotonic 2. This justifies the use
of scheme VIII, i.e. the existence of the least fixed points.

Remark 3.1.7. Let ACP0 stand for ACP minus scheme VII. By [6, Theorem 3], ACP0(A) is closed
under scheme VII for first-order algebrasA, i.e. ifA is first-order, then ACP0(A) = ACP(A). Therefore,
we need not distinguish ACP and ACP0.

3.2. µPR schemes

We give the definitions of µPR computability in this section. Most of the contents are taken from [18]
with some necessary modifications. We avoid excessive formality.

From now on, we will use ↓ and ↑ to denote, respectively, convergence (definedness) and divergence
(undefinedness) of relevant function applications.

For eachΣ, we have the following induction schemes which specify the functions over all N-standard
algebras A of signature Σ.

I. (Primitive functions) f(x) ' Fk(x) (for each Fk ∈ Func (Σ));
II. (Projection) f(x) = xi;

III. (Definition by cases) f(x) '


g1(x) if h(x) ↓tt
g2(x) if h(x) ↓ff
↑ if h(x) ↑;

IV. (Composition) f(x) ' h(g1(x), . . . ,gm(x));
V. (Simultaneous primitive recursion)

f1(x, 0) ' g1(x)
. . . ,

fn(x, 0) ' gn(x)
f1(x, z + 1) ' h1(x, z, f1(x, z), . . . , fn(x, z))
. . . ,

fn(x, z + 1) ' hn(x, z, f1(x, z), . . . , fn(x, z));
VI. (Least number operator) f(x) ' µz[g(x, z)↓tt].

Similar to ACP, the schemes are invariant under isomorphism.

Remarks 3.2.1. (a) The types of the schemes and their arguments are not specified but should be clear.

(b) The semantics of the schemes should be clear from their formal presentation. (Formal semantics can
be found in [18].) We should however point out that the least number or µ operator in scheme VI

2Our definitions of monotonic and continuous functionals follow the treatment in [6] as follows:
F is monotonic if (F(ϕ, x)↓ and ϕ ⊆ ψ) =⇒ F(ϕ, x) = F(ψ, x).
F is continuous if, whenever F(ϕ, x) = y, there exists finite ψ ⊆ ϕ such that F(ψ, x) = y.
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is the constructive µ-operator, with the operational semantics: “Test g(z, 0), g(z, 1), g(z, 2), . . .
in turn until you find k such that g(z, k) is true; then halt with output k.” This is a partial operator;
e.g. if g(z, 0)↓ff, g(z, 1)↑ and g(z, 2)↓tt, then f(z)↑ (i.e., it does not converge to 2).

(c) µPR(A) is the set of all partial functions obtained from the basic functions defined in I-III by means
of the operations defined in IV-VI.

(d) We can see, from schemes V and VI, the reason for the N-standardness assumption.

Definition 3.2.2. (a) µPR(Σ) is the collection of all f generated by the schemes for the signature Σ.

(b) For any Σ-algebra A, µPR(A) is the collection of all fA for f ∈ µPR(Σ).

Definition 3.2.3. (a) µPR∗(Σ) is the collection of f in µPR(Σ∗), with the restriction that the domain
and range types of f are simple.

(b) For any Σ-algebra A, µPR∗(A) is the collection of all fA for f ∈ µPR∗(Σ).

Remark 3.2.4. (PR schemes)
PR(Σ) is the collection of all f generated by the schemes I-V for signature Σ, and similarly for the
collections PR(A), PR∗(A), and PR(A∗) for a Σ-algebra A. We say that f is primitive recursive on A
to mean that f ∈ PR(A).

4. Models of computation based on imperative languages

In this section, we will study two models of computation based on imperative programming languages,
Rec and While. Rec is of particular interest, since we will use it to bridge ACP and µPR. While is
presented briefly in the last subsection (4.11) to make this paper self-contained.

First, we define an imperative programming language Rec = Rec(Σ) on standard Σ-algebras. Then,
we will define the abstract syntax and semantics of this language.

4.1. Syntax

We define five syntactic classes: variables, procedure name, terms, statements, and procedures.

(a) Var(Σ) is the class of Σ-variables x, y, . . . (see Definition 2.1.6).

(b) ProcName(Σ) is the class of procedure names P1, P2, . . . . We write ProcNameu → v for all pro-
cedure names of type u→ v.

(c) Term(Σ) is the class of Σ-terms t, . . . (see Definition 2.2.3).

(d) Stmt(Σ) is the class of statements S, . . ., defined by

S ::= skip | xu := tu | S1;S2 | if b then S1 else S2 fi | xv := P (tu)

where xu := tu is a concurrent assignment and xv := P (tu) is a procedure call, with P ∈
ProcNameu → v for some product types u, v.
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(e) Proc(Σ) is the class of procedures R, . . ., defined by

R ::= 〈Dp : Dv : S〉,

where Dp is a procedure declaration, Dv is a variable declaration, and S is the body.

Dp is defined by

Dp ::= P1 ⇐= R1, . . . , Pm ⇐= Rm, (m ≥ 0)

where Ri ::= 〈Dp
i : Dv

i : Si〉, for i = 1, . . . ,m; Dp
i and Dv

i are defined like Dp and Dv.

Dv is defined by
Dv ::= in a out b aux c,

where a, b, and c are lists of input variables, output variables, and auxiliary variables respectively,
subject to the conditions: (i) a, b, and c are pairwise disjoint; (ii) every variable occurring in
S must be declared in Dv; (iii) the input variables must not occur on the left hand side of
assignments in S.

We will sometimes write Stmt for Stmt(Σ), and Stmt∗ for Stmt(Σ∗), etc.

4.2. Closed programs

Notation 4.2.1. For a procedure declaration Dp, we use the following notation to indicate its depth
in the main procedure: (a) If Dp is the main procedure declaration, we write Dp[0] for Dp. (b) Let
Dp ≡ 〈Pi ⇐= Ri〉mi=1 and Ri ≡ 〈Dp

i : Dv
i : Si〉 for i = 1, . . . ,m. If Dp ≡ Dp[k], we write Dp[k+1]

i for
Dp

i , for i = 1, . . . ,m.
So k is the depth of the procedure declaration. When k = 0, Dp[k] is the main procedure declaration;

when k > 0, Dp[k] is an intermediate procedure declaration.

Definition 4.2.2. ProcSet(Dp[k]) is the set of procedure variables associated with Dp[k] defined as fol-
lows:

(a) for Dp[0] ≡ 〈Pi ⇐= Ri〉mi=1, ProcSet(Dp[0]) ≡ {P1, . . . , Pm};

(b) for Dp[k] ≡ 〈Pi ⇐= Ri〉mi=1, where Ri ≡ 〈Dp[k+1]
i : Dv

i : Si〉, and Dp[k+1]
i ≡ 〈Pij ⇐= Rij〉nj=1,

ProcSet(Dp[k+1]
i ) ≡ ProcSet(Dp[k]) ∪ {Pi1, . . . , Pin}

Note that the definition is by recursion on the depth k of the declaration, i.e. “top-down”. ProcSet(Dp[k])
consists of all procedure variables currently declared in Dp[k], as well as those declared in the “prior”
declarations Dp[0], . . . , Dp[k-1]. Thus the definition depends implicitly on a main declaration Dp[0] as a
global context.

Let ProcVar(S) be the set of procedure names occurring in the statement S (as procedure calls).

Definition 4.2.3. (Closed declaration)
A procedure declaration Dp ≡ 〈Pi ⇐= Ri〉mi=1, where Ri ≡ 〈Dp

i : Dv
i : Si〉, is closed if (i) Dp

i is
closed and (ii) ProcVar(Si) ⊆ ProcSet(Dp

i ), for i = 1, . . . ,m.
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Again, this is a recursive definition, but unlike Definition 4.2.2, it is “bottom-up”, i.e. structural
recursion on Dp, with the base case when m = 0.

Definition 4.2.4. (Closed procedure)
A procedure R ≡ 〈Dp : Dv : S〉 is closed if (i) Dp is closed and (ii) ProcVar(S) ⊆ ProcSet(Dp).

Assumption 4.2.5. (Closure)
All procedure declarations and procedures are closed.

4.3. States
Definition 4.3.1. (State)
For each standardΣ-algebraA, a state onA is a family 〈σs | s ∈ Sort(Σ)〉 of functions σs : Vars → As.

Let State(A) be the set of states on A, with elements σ, . . . . For x ∈ Vars, we often write σ(x) for
σs(x). Also, for a tuple x ≡ (x1, . . . , xm), we write σ[x] for (σ(x1), . . . , σ(xm)).

Definition 4.3.2. (Variant of a state)
Let σ be a state over A, x ≡ (x1, . . . , xn) : u and a = (a1, . . . , an) ∈ Au (for n ≥ 1). Then σ{x/a}
is the variant of σ defined by, for all variables y:

σ{x/a}(y) =

{
σ(y) if y 6≡ xi for i = 1, . . . , n
ai if y ≡ xi.

4.4. Semantics of terms

For t ∈ Terms, we define the partial function

[[t]]A : State(A) ⇀ As,

where [[t]]Aσ is the value of t in A at state σ. The definition is by structural induction on t,

[[x]]Aσ = σ(x)

[[F(t1, . . . , tm)]]Aσ '

{
FA([[t1]]Aσ, . . . , [[tm]]Aσ) if [[ti]]Aσ↓ (i = 1, . . . ,m)
↑ otherwise

[[if b then ts1 else ts2 fi]]Aσ '


[[ts1]]

Aσ if [[b]]A↓tt
[[ts2]]

Aσ if [[b]]A↓ff
↑ if [[b]]A↑.

For a tuple of terms t = (t1, . . . , tm), we use the notation [[t]]Aσ =df ([[t1]]Aσ, . . . , [[tm]]Aσ).

Definition 4.4.1. For any M ⊆ Var, and states σ1 and σ2, σ1≈
M
σ2 means σ1 � M = σ2 � M .

Lemma 4.4.2. (Functionality lemma for terms)
For any term t and states σ1 and σ2, if σ1≈

M
σ2 (M = var(t)), then [[t]]Aσ1 ' [[t]]Aσ2.

Proof:
By structural induction on t. ut
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4.5. Algebraic operational semantics

Algebraic operational semantics is a general method for defining the meaning of a statement S, in a wide
class of imperative programming languages, as a partial state transformation, i.e., a partial function

[[S]]A : State(A) ⇀ State(A).

We will present an outline of this approach following [20]. Assume, firstly, that (for the language under
consideration) there is a class AtSt ⊂ Stmt of atomic statements for which we have a (partial) meaning
function

〈|S|〉A : State(A) ⇀ State(A),

for S ∈ AtSt, and secondly, that we have two functions

First : Stmt → AtSt
Rest A : Stmt × State(A) ⇀ Stmt,

where, for a statement S and state σ, First(S) is an atomic statement which gives the first step in the
execution of S, and Rest A(S, σ) is a statement which gives the rest of the execution in state σ.

Then, we define the “one-step computation of S at σ” function

CompA
1 : Stmt × State(A) ⇀ State(A)

by
CompA

1 (S, σ) ' 〈|First(S)|〉Aσ.

Finally, the definition of the computation step function

CompA : Stmt × State(A)× N ⇀ State(A) ∪ {∗}

follows by a simple recursion on n:

CompA(S, σ, 0) = σ

CompA(S, σ, n+ 1) '

{
∗ if n > 0 and S is atomic
CompA(Rest A(S, σ),CompA

1 (S, σ), n) otherwise.

Note that for n = 1, this yields CompA(S, σ, 1) ' CompA
1 (S, σ).

The symbol ‘∗’ indicates that the computation is over.
If we put σn = CompA(S, σ, n), assuming it converges, then the sequence of states σ0, . . . , σn, . . .

is called the computation sequence generated by S at σ. There are three possibilities: (a) the sequence
terminates in a final state σl, where CompA(S, σ, l + 1)↓∗; (b) it is infinite (global divergence); (c) it
is undefined from some point on (local divergence). In case (a) the computation has an output, given
by the final state; in case (b) the computation is non-terminating, and has no output; and in case (c)
the computation is also non-terminating, and has no output, because a state at one of the time cycles is
undefined, as a result of a divergent computation of a term.

Now we are ready to derive the i/o (input/output) semantics. First we define the length of a compu-
tation of a statement S, starting in state σ, as the partial function

CompLengthA : Stmt × State(A) ⇀ N
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by

CompLengthA(S, σ) '


least n s.t. CompA(S, σ, n+ 1) ↓ ∗ if such an n exists (which implies

CompA(S, σ, k)↓ for all k < n+ 1)
↑ otherwise.

Note that CompLengthA(S, σ)↓ in case (a) above only. Then we define

[[S]]A(σ) ' CompA(S, σ,CompLengthA(S, σ)).

4.6. Operational semantics of statements

We now apply the above theory to the language Rec(Σ). Even if the original statement concerns only
algebras A, we nevertheless have to work over A∗ (see Case 4 and Remark 4.6.6 below). Therefore, in
what follows, σ ∈ State(A∗), and we define the semantic functions over A∗.

There are two atomic statements: skip and concurrent assignment. We define 〈|S|〉A
∗

for these:

〈|skip|〉A
∗
σ = σ

〈|x := t|〉A
∗
σ = σ{x/[[t]]A

∗
σ}.

Note that x and t could be of starred sort.
Next we define First and Rest A∗

by structural induction on S ∈ Stmt∗.
Case 1. S is atomic.

First(S) = S

Rest A∗
(S, σ) = skip.

Case 2. S ≡ S1;S2.

First(S) = First(S1)

Rest A∗
(S, σ) '

{
S2 if S1 is atomic
Rest A∗

(S1, σ);S2 otherwise.

Case 3. S ≡ if b then S1 else S2 fi.

First(S) = skip

Rest A∗
(S, σ) '


S1 if [[b]]A

∗
σ↓tt

S2 if [[b]]A
∗
σ↓ff

↑ if [[b]]A
∗
σ↑.

Case 4. S ≡ x := Pi(t) (i = 1, . . . ,m)

First(S) = skip
Rest A∗

(S, σ) = Ŝi

where Ŝi is the statement defined in Figure 2.
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a∗ := Newlengthsa
(a∗,Lgthsa

(a∗) + 1);
b∗ := Newlengthsb

(b∗,Lgthsb
(b∗) + 1);

c∗ := Newlengthsc
(c∗,Lgthsc

(c∗) + 1);
a∗ := Updatesa

(a∗,Lgthsa
(a∗)− 1, a);

b∗ := Updatesb
(b∗,Lgthsb

(b∗)− 1, b);
c∗ := Updatesc

(c∗,Lgthsc
(c∗)− 1, c);

a := t;
b := δsb ;
c := δsc ;

Si

btmp := b;
a := Apsa

(a∗,Lgthsa
(a∗)− 1);

b := Apsb
(b∗,Lgthsb

(b∗)− 1);
c := Apsc

(c∗,Lgthsc
(c∗)− 1);

a∗ := Newlengthsa
(a∗,Lgthsa

(a∗)− 1);
b∗ := Newlengthsb

(b∗,Lgthsb
(b∗)− 1);

c∗ := Newlengthsc
(c∗,Lgthsc

(c∗)− 1);
x := btmp;
btmp := δsb ;

Figure 2. The statement of Ŝi

Here Ŝi looks complicated; however, the idea is simple. We want Ŝi to have the same functionality
as Pi without any side effects. In other words, we want x to get its required value via the computation
of Ŝi, but with all other variables in a, b, and c left unchanged, which is crucial for the proof of Lemma
4.7.3. Therefore, as is customary in most recursive procedure semantics, we first store the current values
in some temporary storage; then execute the body of the procedure; and finally restore the values of the
variables. We now give some details.

• We use array structures for temporary storage. In most compilers, stacks are used, and in this case,
stacks would also be the better choice in principle; however, we want to avoid introducing too
many data types. Actually, we simulate stacks by our array variables in Ŝi. It is here that starred
variables are introduced in the definition of Rest A∗

(see Remark 4.6.6).

• In the construction of Ŝi, we assume a, b, and c are single variables to keep the notation manage-
able. It is, however, not hard to generalize this to the case that a, b, and c are tuples of variables.

• We introduce btmp to avoid erasing the output of Si when restoring the value of b.

• Before the execution of the body Si, we need to initialize the local variables a, b, and c.
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• sa, sb, and sc are sorts corresponding to the variables a, b, and c. Then δsb and δsc are the
corresponding default values for b and c.

• The expressions ‘t+ 1’ and ‘t− 1’ (for a term t : nat) can easily be interpreted in the language of
N-standard signatures (§2.3).

The following shows that the i/o semantics, derived from our algebraic operational semantics, satis-
fies the usual desirable properties.

Theorem 4.6.1. (a) For S atomic, [[S]]A
∗

= 〈|S|〉A
∗
, i.e.,

〈|skip|〉A
∗
σ = σ

〈|x := t|〉A
∗
σ '

{
σ{x/[[t]]Aσ} if [[t]]Aσ↓
↑ otherwise.

(b) [[S1;S2]]A
∗
σ ' [[S2]]A

∗
([[S1]]A

∗
σ).

(c)

[[if b then S1 else S2 fi]]A
∗
σ '


[[S1]]A

∗
σ if [[b]]A

∗↓tt
[[S2]]A

∗
σ if [[b]]A

∗↓ff
↑ if [[b]]A

∗
σ↑.

(d) [[x := Pi(t)]]A
∗
σ ' [[Ŝi]]A

∗
σ.

Proof:
The results follow from Lemmas 4.6.2 – 4.6.5 below. ut

Lemma 4.6.2. For S atomic, CompA∗
(S, σ, n) '

{
〈|S|〉A

∗
σ if n = 1

∗ otherwise.

Lemma 4.6.3. CompA∗
(S1;S2, σ, n) '

CompA∗
(S1, σ, n) if ∀k < nCompA∗

(S1, σ, k + 1) 6= ∗
CompA∗

(S2, σ
′, n− n0) if ∃k < nCompA∗

(S1, σ, k + 1) = ∗
where n0 is the least such k, and σ′ = CompA∗

(S1, σ, n0).

Lemma 4.6.4. CompA∗
(if b then S1 else S2 fi, σ, n+ 1) '


CompA∗

(S1, σ, n) if [[b]]A
∗
σ↓tt

CompA∗
(S2, σ

′, n) if [[b]]A
∗
σ↓ff

↑ if [[b]]A
∗
σ↑.

Lemma 4.6.5. CompA∗
(x := Pi(t), σ, n+ 1) ' CompA∗

(Ŝi, σ, n).
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Remark 4.6.6. In caseA is an N-standardΣ-algebra without starred sorts, we still need starred variables
to define the semantic functions (see Case 4 in the definition of Rest A∗

). Thus, we have to work with A∗

for these semantic functions. An intuitive explanation is the following:

For a Rec procedure, we need finite but arbitrarily large memory, since a recursive procedure
can be called arbitrarily many times and we have to store information for all callers in order
to make the caller work properly when the callee terminates and returns. This requires
dynamic memory allocation, which is simulated by the array structure.

For the semantics of procedures, we need the following. Let M ⊆ Var, and σ, σ′ ∈ State(A∗).

Lemma 4.6.7. (Functionality lemma for computation sequences)
Suppose var(S) ⊆M . If σ1 ≈

M
σ2, then for all n ≥ 0, either

(i) CompA∗
(S, σ1, n)↓σ′1 and CompA∗

(S, σ2, n)↓σ′2 (say), where σ′1 ≈
M
σ′2, or

(ii) CompA∗
(S, σ1, n)↑ and CompA∗

(S, σ2, n)↑.

Proof:
By induction on n. Use the functionality lemma (4.4.2) for terms. ut

Lemma 4.6.8. (Functionality lemma for statements)
Suppose var(S) ⊆M . If σ1 ≈

M
σ2, then either

(i) [[S]]Aσ1 ↓ σ′1 and [[S]]Aσ2 ↓ σ′2 (say), where σ′1 ≈
M
σ′2, or

(ii) [[S]]Aσ1↑ and [[S]]Aσ2↑.

4.7. Semantics of procedures
Assumption 4.7.1. (Initialization)
All but the input variables are initialized to the default values of the same sort.

Definition 4.7.2. (Semantics of procedures)
Let R ≡ 〈Dp : Dv : S〉, where Dv ≡ in a out b aux c, be a procedure of type u→ v. Then its meaning
is a function

[[R]]A : Au ⇀ Av

defined as follows. For a ∈ Au, let σ be any state on A∗ such that σ[a] = a. Then

[[R]]A(a) '

{
σ′[b] if [[S]]A

∗
σ ↓ σ′

↑ if [[S]]A
∗
σ↑.

Note, this is well defined by the functionality lemma (4.6.8) for statements.

Lemma 4.7.3. (Procedure assignment lemma)
Consider a statement x := Pi(t), where Pi ⇐= Ri. Then [[x := Pi(t)]]A

∗
σ ' σ{x/[[Ri]]A([[t]]A

∗
σ)}.
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Note that this lemma amounts to saying that the semantics of a procedure call statement is a state
transformation which transforms a state to its variant in which the tuple x gets the required values while
all other variables are left unchanged; in other words, there are no side effects.

Proof:
Suppose Ri ≡ 〈Dp

i : Dv
i : Si〉. Consider Ŝi (Figure 2) and let σ′ = σ{a, b, c/[[t]]A∗

σ, δsb , δsc}. By
Definition 4.7.2,

[[Ri]]A([[t]]A
∗
σ) ' ([[Si]]A

∗
σ′)[b]. (4)

By Theorem 4.6.1 (d),

[[x := Pi(t)]]A
∗
σ ' [[Ŝi]]A

∗
σ. (5)

We will show

[[Ŝi]]A
∗
σ ' σ{x/([[Si]]A

∗
σ′)[b]}. (6)

The result follows from (4), (5) and (6).
To show (6), note that [[Ŝi]]A

∗
is a state transformation involving only variables a∗, b∗, c∗, a, b, c,

btmp, and x (cf. Figure 2). We will investigate the behavior of these variables to show that a∗, b∗, c∗, a, b,
c are unchanged, and x gets the desired values, i.e. ([[Si]]A

∗
σ′)[b]. A formal proof will be tedious, since

we need to record many state transformations carefully. An informal proof, however, is easy to provide,
and, we believe, clear enough.

(a) a∗, b∗, and c∗ are extended by one at the beginning of Ŝi and trimmed by one at the end. Within the
execution of Ŝi, only the last locations of a∗, b∗, and c∗, which are trimmed, are modified. Clearly,
a∗, b∗, and c∗ keep their original values.

(b) The original values of a, b, and c are stored in the last locations in a∗, b∗, and c∗ respectively before
the execution of Si, and restored after the execution. So their original values are kept.

(c) The last line of Ŝi ensures that btmp takes the default value.

(d) The atomic statements btmp := b and x := btmp in Ŝi guarantee that x takes the desired value
([[Si]]A

∗
σ′)[b].

ut

Remark 4.7.4. The importance of the procedure assignment lemma is that, by stating that the semantics
of a procedure call assignment is a state variant (without side-effects), it justifies the replacement of such
a call by an oracle call statement (see §4.8 for the definition).

Definition 4.7.5. (Rec computable functions)
(a) A function f on A is computable on A by a Rec procedure R if f = [[R]]A. It is Rec computable on

A if it is computable on A by some Rec procedure.

(b) Rec(A) is the class of functions Rec computable on A.
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Definition 4.7.6. A Rec∗∗∗(Σ) procedure is a Rec(Σ∗) procedure in which the input and output variables
are simple. (However the auxiliary variables may be starred.)

Definition 4.7.7. (Rec∗∗∗ computable functions)
(a) A function f on A is computable on A by a Rec∗∗∗ procedure R if f = [[R]]A. It is Rec∗∗∗ computable

on A if it is computable on A by some Rec∗∗∗ procedure.

(b) Rec∗∗∗(A) is the class of functions Rec∗∗∗ computable on A.

4.8. RelRec computability

Let ϕ ≡ ϕ1, . . . , ϕn be a tuple of (partial) functions ϕi : Aui ⇀ Avi . We define the programming
language Rec(φ) (or by abuse of notation, Rec(ϕ)) which extends the language Rec by including a set
of special function symbols φ1, . . . , φn. We can think of φ1, . . . , φn as “oracles” for ϕ1, . . . , ϕn.

We will use RelRec for the class of all Rec(φ) procedures without specifying the oracle names.
The atomic statements of Rec(φ) include oracle calls as follows, where t : ui and x : vi.

x := φi(t)

The semantics of this is given by

〈|x := φi(t)|〉
Aσ '

{
σ{x/b} if [[t]]Aσ ↓ a and also ϕi(a) ↓ b
↑ otherwise.

Following is the general form for a Rec(φ) procedure R. Note that the oracle list is global, hence it
is not presented in the inner procedures R1, . . . ,Rn.

oracles φ1, . . . , φm

P1 ⇐= R1, . . . ,Pn ⇐= Rn

in a out b aux c

S

Note that the semantic functions for statements as well as other related functions like the computation
step functions will all depend on the interpretations of the oracles. Therefore we will have functions
Rest A∗

ϕ , CompA∗
ϕ , CompLengthA∗

ϕ , and [[S]]A
∗∗∗

ϕ instead of Rest A∗
, CompA∗

, CompLengthA∗
, and [[S]]A

∗
.

The definitions of these functions follow along lines similar to those in §4.6.
We will use notation [[R]]Aϕ for the function defined by the Rec(φ) procedure R on A when φ is

interpreted as ϕ. We may drop the subscript ϕ when it is clear from the context.
Therefore, the semantics of a RelRec procedure R : u → v, where R ≡

oracles φ
P1 ⇐= R1, . . . ,Pn ⇐= Rn

in a out b aux c

S
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(with φ : π and a : u) is a function [[R]]Aϕ : Au ⇀ Av, given by

[[R]]Aϕ (a) '

{
σ′[b] if [[S]]A

∗∗∗
ϕ σ ↓ σ′

↑ if [[S]]A
∗∗∗

ϕ σ↑.

where σ can be any state on A∗ such that σ[a] = a.
In this way we can define the notion of Rec(ϕ) computability or Rec computability relative to ϕ, and

Rec∗∗∗(ϕ) computability or Rec∗∗∗ computability relative to ϕ.
The reason for introducing Rec(ϕ) computability is that we need oracle call statements to simulate

functions as arguments in higher order functionals.

4.9. Monotonicity of RelRec procedures

Notation 4.9.1. For any functions ϕ and ϕ′ of the same type, ϕ v ϕ′ means that for any input x,

ϕ(x)↓ =⇒ ϕ′(x)↓ and ϕ(x) = ϕ′(x).

Note thatv is a partial order over the set of partial functions of the same type, where the totally divergent
function is the bottom element.

Notation 4.9.2. Let ϕ ≡ ϕ1, . . . , ϕm and ϕ′ ≡ ϕ′1, . . . , ϕ
′
m be tuples of functions. We write ϕ v ϕ′ to

mean that ϕi v ϕ′i for i = 1, . . . ,m.

Below, ϕ and ϕ′ are two interpretations of the oracle tuple φ.

Lemma 4.9.3. Let S be a statement with oracles φ. If ϕ v ϕ′, then 〈|First(S)|〉A
∗

ϕ v 〈|First(S)|〉A
∗

ϕ′ .

Proof:
By definition, First(S) is an atomic statement. We have three cases: (a) First(S) ≡ skip; (b) First(S) ≡
x := t; (c) First(S) ≡ x := φi(t). Cases (a) and (b) are trivial, while Case (c) follows directly from
condition ϕ v ϕ′. ut

Lemma 4.9.4. Let S be a statement with oracles φ. If ϕ v ϕ′, then Rest A∗
ϕ (S, · ) v Rest A∗

ϕ′ (S, · )3.

Proof:
By induction on the complexity of S. ut

Lemma 4.9.5. Let S be a statement with oracles φ. Ifϕvϕ′, then CompA∗
ϕ (S, ·, n) v CompA∗

ϕ′ (S, ·, n).

Proof:
By induction on n. ut

Corollary 4.9.6. Let S be a statement with oracles φ. If ϕ v ϕ′, then [[S]]A
∗∗∗

ϕ v [[S]]A
∗∗∗

ϕ′ .

3Here we use the notation f(x, · ) for λy · f(x, y).
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Theorem 4.9.7. (Monotonicity Theorem for RelRec procedures)
Let R be a RelRec procedure with oracles φ. If ϕ v ϕ′, then [[R]]Aϕ (x) v [[R]]Aϕ′(x).

Proof:
Suppose R ≡ 〈Dp : Dv : S〉. Let σ be any state such that σ[a] = x. By definition of the semantics of
procedures

[[R]]Aϕ (x) =

{
σ1[b] if [[S]]A

∗∗∗
ϕ σ↓σ1

↑ if [[S]]A
∗∗∗

ϕ σ↑.

and

[[R]]Aϕ′(x) =

{
σ2[b] if [[S]]A

∗∗∗
ϕ′ σ↓σ2

↑ if [[S]]A
∗∗∗

ϕ′ σ↑.

If [[R]]Aϕ (x)↓, then by Lemma 4.9.6, [[S]]A
∗∗∗

ϕ σ = [[S]]A
∗∗∗

ϕ′ σ, in other words σ1 = σ2. Hence, σ1[b] = σ2[b],
and [[R]]Aϕ (x) = [[R]]Aϕ′(x). ut

4.10. Rec2 computability

We will extend Rec to a second-order programming language Rec2 with the following syntax extensions:

• A class of function variables φ1, φ2, . . . , with corresponding types τ1, τ2, . . . .

• A new program term constructor as follows, where φ : u → s, tu : u and ts : s.

ts ::= . . . | φ(tu)

• A function variables declaration, where φ ≡ φ1, . . . , φm is a tuple of function symbols andm ≥ 0.

Df ::= functions φ

• A more general form for the procedure call

x := P(T, t)

where T ≡ T1, . . . , Tm is a tuple of function instances and 0 ≤ m. Note that each Ti (i =
1, . . . ,m) is either a function variable declared in the current or “higher” procedure, or a primitive
function symbol Fk. (For a discussion of an alternative, more complicated form of the procedure
call statements, see §6.2).

Notation 4.10.1. We will use the notation R̄, . . ., and the general form as follows for Rec2 procedures.

functions φ
P1 ⇐= R1, . . . ,Pn ⇐= Rn

in a out b aux c

S
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Remark 4.10.2. Note the differences between RelRec and Rec2:

(a) In RelRec the function symbols φ are interpreted as (oracles for) function parameters, while in Rec2

they are interpreted as function inputs.

(b) In RelRec the oracle declaration is global, and inner procedures have no oracle declaration, and so
have type level 1; while in Rec2 each procedure can have its own function symbol declaration, and
so may have type level 2.

The semantic functions for terms will depend on the interpretations of the function variables. We
will use the notation [[t]]Aϕ for the semantic function of t when function variables φ in t are interpreted as
ϕ. The definitions are similar to those in §4.4 except that we need to give the semantics of the new term
constructor as follows:

[[φi(t1, . . . , tm)]]Aϕi
σ '

{
ϕi([[t1]]Aσ, . . . , [[tm]]Aσ) if [[tj ]]Aσ ↓ (j = 1, . . . ,m)
↑ otherwise.

Similarly as for RelRec, we will have functions Rest A∗
ϕ , CompA∗

ϕ , CompLengthA∗
ϕ , and [[S]]A

∗∗∗
ϕ , de-

pending on the interpretation of oracles.
Therefore, the semantics of a Rec2 procedure R̄ : π × u → v, where R̄ ≡

functions φ
P1 ⇐= R1, . . . ,Pn ⇐= Rn

in a out b aux c

S

(with φ : π and a : u) is a functional [[R̄]]A : Aπ ×Au ⇀ Av given by

[[R̄]]A(ϕ, a) '

{
σ′[b] if [[S]]A

∗∗∗
ϕ σ ↓ σ′

↑ if [[S]]A
∗∗∗

ϕ σ↑

where σ can be any state on A∗ such that σ[a] = a.
In this way we define the notion of Rec2 computability and Rec∗∗∗2 computability.
We will prove (Theorem 4.10.5) a correspondence between RelRec and Rec2 computability. We need

two lemmas.

Lemma 4.10.3. (RelRec ⇒ Rec2)
Let R be a RelRec procedure of type u→ v with oracle tuple φ of type π. We can transform R to a Rec2

procedure R̄ of type π × u→ v such that for all ϕ : π and x : u,

[[R̄]]A(ϕ, x) ' [[R]]Aϕ (x).

Proof:
(This is the easy direction). The transformation consists of re-interpreting the oracle declaration of R as
a function declaration and adding the same function variable declaration “functions φ” to every inner
procedure of R. Some points to be notes are:
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(1) The oracle call statement x := φ(t) is re-interpreted as an assignment statement.

(2) The new function variable declaration for any inner procedures has the same form as the main
function variable declaration. This guarantees that φi in any inner procedures has the same inter-
pretation as φi in the main procedure.

(3) Some new function variable declaration for inner procedures may be redundant in the sense that the
function variables are not used in the body of the procedure; however, this does no harm.

ut

Lemma 4.10.4. (Rec2 ⇒ RelRec)
Let R̄ be a Rec2 procedure of type π × u→ v. We can transform R̄ to a RelRec procedure R of type
u→ v with oracle φ of type π such that for all ϕ : π and x : u,

[[R̄]]A(ϕ, x) ' [[R]]Aϕ (x).

Proof:
The idea of this transformation is fairly simple, but it is complicated to write out in detail. We therefore
illustrate the transformation by some simple examples, which we believe will make the general situation
clear. There are two main points to consider.

(1) (Interpreting assignments as oracle calls) In R̄ the new term constructor makes it possible that a
term t, in an assignment x := t, has as a subterm a function application which is not allowed in
R. The following example illustrate how to eliminate such a function application within a term.
Consider an assignment statement

x := Fk(φ(t′)),

where Fk is a primitive function symbol. We replace the assignment statement by a sequence of
assignments

z := t′; y := φ(z); x := Fk(y),

where y and z are two newly introduced variables disjoint from the variables currently declared.
This procedure is then repeated if necessary for the term tuple t′, and so on. The method can also
be generalized to the case that t occurs in other contexts, such as boolean tests.

(2) (Interpreting inner function variable declarations) Consider the following Rec2 procedure R̄ ≡

functions φ1

P′ ⇐= R̄′

in a out b aux c

. . .

x1 := P′(φ1, t1);
. . .

x2 := P′(Fk, t2);
. . .
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where R̄′ ≡

functions ρ

in a′ out b′ aux c′

S

We can see that ρ is being interpreted as two different functions, corresponding to the interpreta-
tions of φ1 and the primitive function symbol Fk respectively. We can transform the above Rec2

procedure to a RelRec procedure R ≡

oracles φ1

P1 ⇐= R1,P2 ⇐= R2

in a out b aux c

. . .

x1 := P1(t1);
. . .

x2 := P2(t2);
. . .

where for i = 1, 2, Ri ≡

in a′ out b′ aux c′

Si

S1 and S2 are obtained from S by replacing all occurrences of ρ by φ1 and Fk respectively.

This technique can be extended to cover all possible cases, because we have only finitely many
function variables declared and finitely many primitive function symbols.

With this techniques, we can eliminate all inner function variable declarations by instantiating
the function variables in the inner procedures either as function variables in the main procedure
(which, in turn, are re-interpreted as oracles) or as primitive function symbols.

ut

From Lemmas 4.10.3 and 4.10.4 immediately follows:

Theorem 4.10.5. Let F : Aπ × Au ⇀ Av be a second-order functional. F is computable by a Rec2

procedure R̄ iff there exist a RelRec procedure R such that for all ϕ : π and x : u,

F(ϕ, x) ' [[R̄]]A(ϕ, x) ' [[R]]Aϕ (x).
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4.11. While procedures

The syntax of the language While(Σ) is like Rec(Σ), except that While(Σ) contains a loop statement
instead of the procedure call statement. In short, statements S in While(Σ) are defined by

S ::= skip | x := t | S1;S2 | if b then S1 else S2 fi | while b do S od.

The semantics of While procedures are derived along similar lines as those for the semantics of Rec
procedures. Details can be found in [20].

Definition 4.11.1. (While computable functions)
(a) A function f onA is computable onA by a While procedure P if f = [[P ]]A. It is While computable

on A if it is computable on A by some While procedure.

(b) While(A) is the class of functions While computable on A.

Definition 4.11.2. A While∗∗∗(Σ) procedure is a While(Σ∗) procedure in which the input and output
variables are simple. (However the auxiliary variables may be starred.)

Definition 4.11.3. (While∗∗∗ computable functions)
(a) A function f onA is computable onA by a While∗∗∗ procedure P if f = [[P ]]A. It is While∗∗∗ computable

on A if it is computable on A by some While∗∗∗ procedure.

(b) While∗∗∗(A) is the class of functions While∗∗∗ computable on A.

We will not discuss While computability any further, since [20] contains a full discussion. However,
we need to mention following significant theorem proved in [18].

Theorem 4.11.4. (a) While(A) = µPR(A).

(b) While∗∗∗(A) = µPR∗(A).

5. From µPR to ACP

In this section, we will prove that, if a function f on A is µPR computable, then it is ACP computable;
and hence, if f is µPR∗ computable, it is ACP∗ computable. Even though we gave formal definitions for
ACP and µPR schemes in Section 3, we prefer to present informal proofs in this section, in the sense
that we ignore the distinction between syntax and semantics for both ACP and µPR. We believe that our
informal approach is convincing.

Lemma 5.1. Let f , g, h be functions defined respectively by

(a) f (x) ' Fk(x) where Fk ∈ Func (Σ)

(b) g(~x) = xi

(c) h(x) '


h2(x) if h1(x) ↓tt
h3(x) if h1(x) ↓ff
↑ if h1(x) ↑

,
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then f , g, h ∈ ACP(A), provided h1, h2, and h3 ∈ ACP(A).

Lemma 5.2. Let f be a function defined by f (x) ' h(g1(x), . . . , gm(x)). If h, g1, . . . , gm ∈ ACP(A),
then so is f .

Lemma 5.3. Let f 1, . . . , f m be functions defined by

f 1(x, 0) ' g1(x)
. . . ,

f m(x, 0) ' gm(x)
f 1(x, z + 1) ' h1(x, z, f 1(x, z), . . . , f m(x, z))

. . . ,

f m(x, z + 1) ' hm(x, z, f 1(x, z), . . . , f m(x, z)).

If g1, . . . , gm, h1, . . . , hm ∈ ACP(A), then so are f 1, . . . , f m.

Lemma 5.4. Let f be a function defined by f (x) ' µz[g(x, z)↓tt]. If g ∈ ACP(A), then so is f .

The proofs of Lemma 5.3 and 5.4 are given in Appendices A.1 and A.2.

Theorem 5.5. µPR(A) ⊆ ACP(A).

Proof:
Following Lemmas 5.1–5.4, we can associate, with each µPR scheme for a function f , an ACP scheme
for f , by structural induction on µPR schemes. ut

Corollary 5.6. µPR∗(A) ⊆ ACP∗(A).

6. From ACP to Rec

In this section, we will prove
ACP(A) ⊆ Rec2(A).

We will prove this by induction on the schemes of ACP, i.e. associate to every ACP scheme a Rec2

procedure for the same functional. From this will follow

ACP1(A) ⊆ Rec(A) (cf. Definition 3.1.1 for ACP1)

and hence
ACP∗1(A) ⊆ Rec∗∗∗(A) (cf. Definition 3.1.2 for ACP∗1).
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6.1. Translating ACP to Rec2

In this subsection, we describe the translation of ACP to Rec2 (both second order systems). As a Corol-
lary (6.1.7), we derive the translation of ACP1 to Rec (both first order systems). For the latter translation,
we need to replace Rec2 by RelRec (using Theorem 4.10.5; see Remark 6.1.8). This replacement of Rec2

by RelRec is also convenient to one of the steps of this (second order) translation (Lemma 6.1.5).

Lemma 6.1.1. Let F ≡ FA, G ≡ GA, and H ≡ HA be functionals defined by (i) F(ϕ, x) ' Fk(ϕ, x);
(ii) G(x) ' x; and (iii) H(ϕ, x) ' ϕ(x). Then F, G and H are Rec2-computable.

Lemma 6.1.2. Let F ≡ FA, G ≡ GA, and H ≡ HA be functionals, and let F be defined by

F(ϕ, x, b) ' [if b = tt then G(ϕ, x) else H(ϕ, x)].

If G and H are Rec2-computable, then so is F.

Lemma 6.1.3. Let F ≡ FA and G ≡ GA be functionals, and let F be defined by

F(ϕ, x) ' G(ϕf , xg) (refer to §3.1 for the meanings of f and g).

If G is Rec2-computable, then so is F.

Lemma 6.1.4. Let F ≡ FA, G ≡ GA, and H ≡ HA be functionals, and let F be defined by

F(ϕ, x) ' G(ϕ, x,H(ϕ, x)).

If G and H are Rec2-computable, then so is F.

The LFP scheme, treated in the following lemma, is the most interesting case for the proof of Theo-
rem 6.1.6 below.

Lemma 6.1.5. Let F1 ≡ FA
1 , . . . ,Fn ≡ FA

n , G1 ≡ GA
1 , . . . ,Gn ≡ GA

n be functionals, where F1, . . . ,Fn

are defined by

F1(ϕ, x, y1) ' %ϕ,x
1 (y1)

. . . ,

Fn(ϕ, x, yn) ' %ϕ,x
n (yn)

where

(%ϕ,x
1 , . . . , %ϕ,x

n ) = LFP(Ĝ
ϕ,x

1 , . . . , Ĝ
ϕ,x

n ).

If G1, . . . ,Gn are Rec2-computable, then so are F1, . . . ,Fn.

Refer to Notation 3.1.3–3.1.4 for Ĝ
ϕ,x

i and Ĝ
x

i above, and Ĝ
ϕ,x
i and Ĝ

x
i used in the following proof.

Proof:
We can prove this lemma by constructing directly the Rec2 procedures for F1, . . . ,Fn analogous to the
proofs of Lemmas 6.1.1–6.1.4. However, this would require repeating many of the technical details in
the proofs of Lemmas 4.10.3 and 4.10.4. We therefore construct corresponding RelRec procedures.

By assumption, we have Rec2 procedures R̄G1 , . . . , R̄Gn , such that for i = 1, . . . , n, Gi = [[R̄Gi ]]
A.

By Theorem 4.10.5, we have,for i = 1, . . . , n, RelRec procedures RGi ≡
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oracles φ, ρ1, . . . , ρn

PGi,1 ⇐= RGi,1 , . . . ,PGi,mi
⇐= RGi,mi

in aGi,1 aGi,2 out bGi aux cGi

SGi

such that for all ϕ, %1, . . . , %n, x and yi, [[R̄Gi ]]
A(ϕ, %1, . . . , %n, x, yi) ' [[RGi ]]

A
ϕ,%1, . . . , %n

(x, yi).
We can then construct, for i = 1, . . . , n, RelRec procedures RFi ≡

oracles φ
PG1 ⇐= RP

G1
, . . . ,PGn ⇐= RP

Gn

in aFi,1 aFi,2 out bFi

bFi := PGi(aFi,1 , aFi,2)

where, for i = 1, . . . , n, RP
Gi
≡

PGi,1 ⇐= RP
Gi,1

, . . . ,PGi,mi
⇐= RP

Gi,mi

in aGi,1 aGi,2 out bGi aux cGi

SP
Gi

Here, for i = 1, . . . , n, RP
Gi,1

, . . . ,RP
Gi,mi

, and SP
Gi

are the same as RGi,1 , . . . ,RGi,mi
, and SGi , except

that all occurrences of oracle call statements of the form c := ρj(t) are replaced by procedure calls
c := PGj (aGi,1 , t). We are, essentially, replacing oracle call statements by simultaneous recursive calls.

We claim that, if φ are interpreted as ϕ and for i = 1, . . . , n, σ[aFi,1 ] = x and σ[aFi,2 ] = yi, then

[[RFi ]]
A
ϕ (x, yi) ' Fi(ϕ, x, yi). (7)

Then by Theorem 4.10.5, there exist Rec2 procedures R̄F1 , . . . , R̄Fn such that, for all ϕ, x and yi

[[R̄Fi ]]
A(ϕ, x, yi) ' [[RFi ]]

A
ϕ (x, yi) ' Fi(ϕ, x, yi).

Hence F1, . . . ,Fn are Rec2-computable. The proof of (7) is given in Appendix A.3. ut

Theorem 6.1.6. ACP(A) ⊆ Rec2(A).

Proof:
By induction on schemes for ACPs. Precisely, we will associate, with each ACP scheme, a Rec2 proce-
dure. For schemes I-III, use Lemma 6.1.1. For schemes IV-VI, use Lemmas 6.1.2–6.1.4. For scheme
VIII, use Lemma 6.1.5. Recall Remark 3.1.7 that we can ignore scheme VII for first-order algebras. ut

Corollary 6.1.7. ACP1(A) ⊆ Rec(A).
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Proof:
For any function f ∈ ACP1(A), it follows directly from Theorem 6.1.6 and Theorem 4.10.5 that there
are a Rec2 procedure R̄ without function variables in the main procedure and a RelRec procedure R, such
that for all x : u,

f (x) ' [[R̄]]A(x) ' [[R]]A(x).

Since f ∈ ACP1(A), it follows that R̄ has no first order arguments, and so R has no oracles, and is
therefore a Rec procedure, which ends the proof. ut

Remark 6.1.8. Note that (unlike the proof of Lemma 6.1.5) RelRec is necessary in above proof, in the
sense that we need to eliminate all inner function calls in the Rec2 procedure, which essentially translates
the Rec2 procedure to a RelRec procedure — in fact a Rec procedure in this case.

Corollary 6.1.9. ACP∗1(A) ⊆ Rec∗∗∗(A).

6.2. Digression: The programming language λRec2

Our translation of ACP into Rec2 (Lemma 6.1.1–6.1.5) made use of the fact that in ACP, the function
substitution scheme

VII: F(ϕ, x) ' G(ϕ, λy.H(ϕ, x, y), x)

is redundant [6, Theorem 3] for first-order algebras.
The simple individual substitution scheme

VII: F(ϕ, x) ' G(ϕ, x,H(ϕ, x)))

can easily be interpreted by a Rec2 functional (see Lemma 6.1.4) or a RelRec functional, for that matter.
Suppose we were unaware that scheme VII was redundant in ACP. We should then have had to

interpret it by a recursive functional as follows.

Lemma 6.2.1. Assume that we have procedures RG and RH such that G = [[RG]]A and H = [[RH ]]A:
RG ≡

functions φ, ρ

PG1 ⇐= RG1 , . . . ,PGm ⇐= RGm

in aG out bG aux cG

SG

RH ≡

functions φ
PH1 ⇐= RH1 , . . . ,PHm ⇐= RHm

in aHx aHy out bH aux cH

SH

We can construct a procedure RF as follows
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functions φ
PG ⇐= RG, PH ⇐= RH

in aF out bF aux cF

bF := PG(φ, λcF · PH(φ, aF , cF ), aF )

Then [[RF ]]A(ϕ, x) ' F(ϕ, x).

Note now, however, that RF is not a Rec2 procedure, as we have defined. It is in an extended
language, which we call λRec2, in which procedure calls have a more complicated form

x := P(T, t) (8)

where T ≡ T1, . . . , Tm (m ≥ 0) and each Ti can have any one of the following forms:

(1) A primitive function symbol Fk.

(2) A function variable φ declared in the current procedure.

(3) A term abstraction λx · t obtained by λ abstraction from a term. If λx · t instantiates a function
symbol ρ, then the term ρ(t′) is instantiated by (λx · t)(t′), which is rewritten as t[x/t′] (i.e.
automatic β-conversion).

(4) A procedure abstraction λy · P (φ, x, y). If λy · P (φ, x, y) instantiates a function symbol ρ, then the
term ρ(t) is instantiated by (λy · P (φ, x, y))(t), which is rewritten as P (φ, x, t).

Note that in the definition of Rec2 we only have cases (1) and (2). Note also that we are assuming
automatic β-conversion in the operational semantics of λRec2.

Next, in order to proceed with our translation of Rec into While (Section 7), we would have to prove:

λRec2 is reducible to Rec2 (and hence to RelRec). (9)

The proof of (9) involves showing that all terms Ti defined by λ-abstraction occurring as parameters
in procedure calls (8) eventually occur in the context of an application to an individual term t, and so
disappear by β-conversion, so that their call was redundant (cf. the proof of Theorem 4 in [19, §7.6]).

This proof actually parallels the proof of the redundancy of scheme VII in ACP. So in fact, the proof
of the redundancy of scheme VII in ACP in [6] saved us the trouble of having to prove (9).

7. From Rec∗∗∗ to µPR∗

In this section, we want to prove that, if a function f over A is Rec∗∗∗-computable, then it is µPR∗ com-
putable. We will first prove that Rec∗∗∗ computability implies While∗∗∗ computability, and the result then
follows from Theorem 4.11.4.

We begin by giving a Gödel numbering of the syntax of Rec procedures and representations of states.
In this way, we can define representation functions for CompA and CompLength, which we prove to be
While∗∗∗ computable.

The proof is parallel to the argument in [20, §4], which this section follows closely, except that we
are considering Rec procedures, while [20] considers While procedures. We just present the differences
between them, and interested readers can refer to [20] for details.
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7.1. Gödel numbering of syntax

We assume given a family of numerical codings, or Gödel numberings, of the classes of syntactic ex-
pressions of Σ and Σ∗, i.e., a family gn of effective mappings from expressions E to natural numbers
pEq = gn(E), which satisfy certain basic properties: (i) pEq increases strictly with the complexity
of E, and in particular, the code of an expression is larger than those of its subexpressions; (ii) sets of
codes of the various syntactic classes, and of their respective subclasses, such as {ptq | t ∈ Term},
{ptq | t ∈ Terms}, etc., are primitive recursive; (iii) we can go primitive recursively from codes of
expressions to codes of their immediate subexpressions, and vice versa.

In short, we can primitive recursively simulate all operations involved in processing the syntax of the
programming language.

We will use the notation pTermq =df {ptq | t ∈ Term} etc., for sets of Gödel numbers of syntactic
expressions.

7.2. Representation of states

We are interested in the representation of various semantic functions on syntactic classes by functions on
A or A∗, and in the computability of these representing functions. These semantic functions have states
as arguments, so we must first define a representation of states.

Let x be a u-tuple of program variables. A state σ on A is represented (relative to x) by a tuple of
elements a ∈ Au if σ[x] = a.

The state representing function, Rep A
x : State(A) → Au, is defined by

Rep A
x (σ) = σ[x].

The modified state representing function, Rep A
x ∗ : State(A) ∪ {∗} → B×Au, is defined by

Rep A
x ∗(σ) = (tt, σ[x])

Rep A
x ∗(∗) = (ff, δu

A)

where δu
A is the default tuple of type u in A.

7.3. Representation of term evaluation

Let x be a u-tuple of variables. Let Term x be the class of all Rec(Σ) program terms (see §4.1 for
definition) with variables among x only, and for all sorts s of Σ, let Term x,s be the class of such terms
of sort s. Similarly we write TermTupx for the class of all term tuples with variables among x only, and
TermTupx,v for the class of all v-tuples of such terms.

The term evaluation function on A relative to x, TE A
x,s : Term x,s × State(A) ⇀ As, defined by

TE A
x,s(t, σ) ' [[t]]Aσ,

is represented by the function, te A
x,s : pTerm x,sq×Au ⇀ As, defined by

te A
x,s(ptq, a) ' [[t]]Aσ,
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where σ is any state on A such that σ[x] = a. (This is well defined, by the functionality lemma for
terms.) We can see that a term t is represented by its Gödel number, and a state by a tuple of values. In
other words, the following diagram commutes:

Term x,s × State(A)

pTerm x,sq×Au As
-

Q
Q

Q
Q

Q
Q

Q
QQs

?

TE A
x,s

te A
x,s

〈gn,Rep A
x 〉

Further, an evaluation function for tuples of terms can easily be defined in a similar fashion.

7.4. Representation of computation step function

Let AtSt x be the class of Rec(Σ) atomic statements (see §4.5 for definition) with variables among x only.
The atomic statement evaluation function on A relative to x, AE A

x : AtSt x × State(A) ⇀ State(A),
defined by

AE A
x (S, σ) ' 〈|S|〉Aσ

is represented by the function ae A
x : pAtSt xq×Au ⇀ Au, defined by

ae A
x (pSq, a) ' (〈|S|〉Aσ)[x],

where σ is any state on A such that σ[x] = a. In other words, the following diagram commutes.

AtSt x × State(A) State(A)

pAtSt xq×Au Au-

-

? ?

AE A
x

ae A
x

〈gn,Rep A
x 〉 Rep A

x

Next, let Stmt x be the class of Rec(Σ) statements (see §4.1 for definition) with variables among x
only, and define

Rest A
x =df Rest A � (Stmt x × State(A)) :

Then First and Rest A
x are represented by the functions

first : pStmtq → pAtStq
rest A

x : pStmt xq×Au ⇀ pStmt xq

which are defined so as to make the following diagrams commute:
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Stmt AtSt

pStmtq pAtStq-

-

? ?

First

first

gn gn

Stmt x × State(A) Stmt x

pStmt xq×Au pStmt xq-

-

? ?

Rest A
x

rest A
x

〈gn,Rep A
x 〉 gn

Note that first is a function from N to N, and (unlike rest A
x and most of the other representing

functions here) does not depend on A or x.
Next, the computation step function (relative to x)

Comp A
x = CompA � (Stmt x × State(A)× N) : Stmt x × State(A)× N ⇀ State(A) ∪ {∗}

is represented by the function comp A
x : pStmt xq×Au×N ⇀ B×Au, which is defined so as to make

the following diagram commute:

Stmt x × State(A)× N State(A) ∪ {∗}

pStmt xq×Au × N B×Au-

-

? ?

Comp A
x

comp A
x

〈gn,Rep A
x , idN〉 Rep A

x

We put

comp A
x (pSq, a, n) = (notover A

x (pSq, a, n), state A
x (pSq, a, n))

with the two “component functions”

notover A
x : pStmt xq×Au × N ⇀ B

state A
x : pStmt xq×Au × N ⇀ Au

where notover A
x (pSq, a, n) tests whether the computation of pSq at a is over by step n, and state A

x (pSq, a, n)
gives the value of the state (representative) at step n.
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7.5. Representation of statement evaluation

The statement evaluation function on A relative to x, SE A
x : Stmt x × State(A) ⇀ State(A), defined by

SE A
x (S, σ) ' [[S]]Aσ,

is represented by the (partial) function se A
x : pStmt xq×Au ⇀ Au, defined by

se A
x (pSq, a) ' ([[S]]Aσ)[x]

where σ is any state on A such that σ[x] = a. In other words, the following diagram commutes.

Stmt x × State(A) State(A)

pStmt xq×Au Au-

-

? ?

SE A
x

se A
x

〈gn,Rep A
x 〉 Rep A

x

7.6. Representation of procedure evaluation

Let a, b, c be pairwise disjoint lists of variables, with types a : u, b : v and c : w. Let Proc a, b, c be the
class of Rec procedures of type u→ v, with declaration in a out b aux c. The procedure evaluation
function on A relative to a, b, c, PE A

a, b, c : Proc a, b, c ×Au ⇀ Av, defined by

PE A
a, b, c(R, a) ' [[R]]A(a)

is represented by the function pe A
a, b, c : pProc a, b, cq×Au ⇀ Av, defined by

pe A
a, b, c(pRq, a) ' [[R]]A(a).

In other words, the following diagram commutes:

Proc a, b, c ×Au

pProc a, b, cq×Au Av-

Q
Q

Q
Q

Q
Q

Q
QQs

?

PE A
a, b, c

pe A
a, b, c

〈gn, idAu〉

7.7. Computability of semantic representing functions

By examining the definitions of the various semantic functions in Section 4, we can infer the relative
computability of the corresponding representing functions, as follows. Note that by Remark 4.6.6, we
need to work over A∗.
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Lemma 7.7.1. The function first : N → N is primitive recursive, and hence While computable on A,
for any N-standard Σ-algebra A.

Lemma 7.7.2. Let x be a tuple of program variables and A∗ a standard Σ∗-algebra.

(a) ae A∗
x and rest A∗

x are While computable in 〈te A∗
a,s | s ∈ Sort(Σ∗)〉 on A∗.

(b) comp A∗
x , and its two component functions notover A∗

x and state A∗
x , are While computable in ae A∗

x

and rest A∗
x on A∗.

(c) se A∗
x is While computable in comp A∗

x on A∗.

(d) pe A∗
a, b, c is While computable in se A∗

x on A∗, where x ≡ a, b, c.

(e) te A∗
x,s is While computable in peA

x,y,〈〉 on A∗, where y is a variable of sort s, not in x.

Proof:
Note first that if a semantic function is defined from others by structural recursion on a syntactic class of
expressions, then a representing function for the former is definable from representing functions for the
latter by course of values recursion [18] on the set of Gödel numbers of expressions of this class [20].

The proofs are analogous to those for [20, Lemma 4.2]. Note, for part (b)–(e), the proofs in [20]
are based on the general algebraic operational semantics, without any assumption about the language,
whether it is While or Rec. Thus the results can be used directly, with the only difference that we are
working over Σ∗ algebras.

For part (a), clearly, the function ae A∗
x is primitive recursive on A∗, since we only have two kinds

of atomic statements, skip and concurrent assignment. The function rest A∗
x is course of value recursive

on nat with range sort nat, which is reducible to primitive recursive on nat (see proof for [20, Lemma
4.2]). Hence, they are While computable on A∗. Note that a procedure call statement S is not an atomic
statement. ut

Lemma 7.7.3. The following are equivalent.

(a) For all x and s, the term evaluation representing function te A∗
x,s is While computable on A∗.

(b) For all x, the atomic statement evaluation representing function ae A∗
x , and the representing function

rest A∗
x , are While computable on A∗.

(c) For all x, the computation step representing function comp A∗
x , and its two component functions

notover A∗
x and state A∗

x , are While computable on A∗.

(d) For all x, the statement evaluation representing function se A∗
x is While computable on A∗.

(e) For all a, b, c, the procedure evaluation representing function pe A∗
a, b, c is While computable on A∗.

Proof:
From the transitivity of relative computability [20, Lemma 3.32], and Lemma 7.7.2. ut
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7.8. Rec∗∗∗ computability =⇒ µPR∗ computability

Lemma 7.8.1. The term evaluation representing function on A∗ is While computable, and hence µPR
definable, on A∗.

For a proof of Lemma 7.8.1, see [18, 20].

Theorem 7.8.2. (a) Rec(A) ⊆ While∗∗∗(A),

(b) Rec∗∗∗(A) ⊆ While∗∗∗(A).

Proof:

(a) Suppose f is Rec computable on A. Then there is a Rec procedure R such that f = [[R]]A. Let

R ::= 〈Dp : Dv : S〉 and Dv ::= in a out b aux c.

It follows from Lemmas 7.7.3 and 7.8.1 that there exist a function pe A∗
a, b, c which is While com-

putable on A∗, actually While∗∗∗ computable on A, since the input and output variables are simple.
Substituting the variable for the Gödel number in the While∗∗∗ procedure for pe A∗

a, b, c by the numeral
for the Gödel number of R, we obtain the While∗∗∗ procedure for [[R]]A, i.e. f .

(b) By part (a), Rec∗∗∗(A) ⊆ While∗∗∗∗∗∗(A) = While∗∗∗(A), since we can effectively code a “double starred”
object (i.e. two-dimensional array) of a given sort as a single starred (or one-dimensional array) of
the same sort [20, Remark 2.31].

ut

Corollary 7.8.3. (a) Rec(A) ⊆ µPR∗(A),

(b) Rec∗∗∗(A) ⊆ µPR∗(A).

Proof:
From Theorems 7.8.2 and 4.11.4. ut

8. Conclusion

We have proved that
ACP∗1(A) = µPR∗(A)

via the circle of inclusions in Figure 1 for N-standard many-sorted algebras A.
Some questions which arise from our work are:

8.1. Simultaneous vs. simple LFP scheme

The ACP schemes introduced in §3.1 differ from those in [6] by using a simultaneous instead of simple
least fixed point scheme (cf. Remark 3.1.5). An interesting question is:

In the absence of product types, can our ACP∗ schemes be reduced to Feferman’s version,
i.e. with simple (not simultaneous) least fixed points?
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8.2. Necessity of auxiliary array sorts

Another question is : Can we prove that

ACP1(A) = µPR(A)

for N-standard many-sorted algebras A without arrays?
In connection with this, we have shown that µPR(A) ⊆ ACP1(A) and ACP1(A) ⊆ Rec (Theorems

5.5 and 6.1.7). The remaining question is, whether Rec ⊆ µPR(A). In Remark 4.6.6, we discuss the
difficulty in avoiding the use of arrays when defining the semantics of Rec procedures. We therefore
conjecture that Rec ⊆ µPR(A) is not true in general; however, we lack a proof.

8.3. Second-order version of equivalence results

Since ACP∗ is a second-order system, and µPR∗ is first-order, in order to prove equivalence we have to
modify one or the other. We chose to work with a first-order version ACP∗1 of ACP∗. An alternative,
and perhaps better, approach would be to work with second-order versions of µPR∗ and While∗∗∗ and
then prove the complete circle of inclusions in Figure 1 for second-order systems. Our results for the
first-order systems would then follow easily.

A. Proofs omitted from previous sections

A.1. Proof of Lemma 5.3.

Let

ϕx,1 =df λz · f1(x, z)
. . . ,

ϕx,m =df λz · fm(x, z);

and

Fϕ,x,1(z) '

{
g1(x) if z=0
h1(x, z − 1, ϕ1(z − 1), . . . , ϕm(z − 1)) otherwise

. . . ,

Fϕ,x,m(z) '

{
gm(x) if z=0
hm(x, z − 1, ϕ1(z − 1), . . . , ϕm(z − 1)) otherwise

where ϕ ≡ ϕ1, . . . , ϕm, and

F̂ x,1 =df λϕ1 · . . . · λϕm · Fϕ,x,1

. . . ,

F̂ x,m =df λϕ1 · . . . · λϕm · Fϕ,x,m.

Note that Fx,1, . . . ,Fx,m are ACPs by scheme IV. It is easy to verify that
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(i) (ϕx,1, . . . , ϕx,m) is a fixed point of the tuple (F̂ x,1, . . . , F̂ x,m).

Moreover, if we define, for 1 ≤ i ≤ m,

ϕ0
x,i = λz · ⊥,

ϕk+1
x,i = F̂ x,i(ϕk

x,1, . . . , ϕ
k
x,i),

then:

(ii) for any fixed point (ψ1, . . . , ψm) of (F̂ x,1, . . . , F̂ x,m),

ϕk
x,i v ψi for 1 ≤ i ≤ m

by induction on k, and hence
∞
t

k=0
ϕk

x,i v ψi ,

(iii) for all z ∈ N,
ϕx,i(z) ' ϕz+1

x,i (z) for 1 ≤ i ≤ m

by induction on z, and hence

ϕx,i v
∞
t

k=0
ϕk

x,i .

From (i), (ii) and (iii) follows

ϕx,i =
∞
t

k=0
ϕk

x,i

and hence
(ϕx,1, . . . , ϕx,m) = LFP (F̂ x,1, . . . , F̂ x,m)

from which the lemma follows.

A.2. Proof of Lemma 5.4.

Define (using informal but suggestive notation) the function

f ′(x, z) ' µy ≥ z[g(x, y)↓tt].

Note that

f ′(x, z) '


z if g(x,z) ↓tt
f ′(x, z + 1) if g(x,z) ↓ff
↑ otherwise.

Clearly, f(x) ' f ′(x, 0). Now we can prove that f ′ is ACP, provided g is. Put

ϕx = λz · f ′(x, z)

Fϕ,x(z) '


z if g(x,z) ↓tt
ϕ(z + 1) if g(x,z) ↓ff
↑ otherwise

F̂ x = λϕ · Fϕ,x.

It is easy to show that ϕx = LFP (F̂ x) by a method like that used in A.1, from which the lemma follows.
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A.3. Proof of [[R̄Fi
]]A(ϕ, x, yi) ' [[RFi

]]Aϕ(x, yi) ' Fi(ϕ, x, yi) [in Lemma 6.1.5].

In order to prove (7) we prove, for 1 ≤ i ≤ n,

λyi · Fi(ϕ, x, yi) v λyi · [[RFi ]]
A
ϕ (x, yi), (10)

λyi · [[RFi ]]
A
ϕ (x, yi) v λyi · Fi(ϕ, x, yi). (11)

To prove (10), put, for 1 ≤ i ≤ n,

%0
i = ⊥

%k+1
i = Ĝ

ϕ,x
i (%k

1, . . . , %
k
n)

By definition of least fixed points, it is sufficient to prove that,

for all k, %k
i v λyi · [[RFi ]]

A
ϕ (x, yi), for 1 ≤ i ≤ n. (12)

We will prove this by simultaneous induction on k.
Note first that by definition of procedure RGi , and interpreting φ, ρ1, . . . , ρn as ϕ, %k

1, . . . , %
k
n, re-

spectively, we get

[[RGi ]]
A
ϕ,%k

1 , . . . , %k
n
(x, yi) ' Gi(ϕ, %k

1, . . . , %
k
n, x, yi) ' %k+1

i (yi). (13)

By induction hypothesis %k
i v λyi · [[RFi ]]

A
ϕ (x, yi), for i = 1, . . . , n. Therefore by the monotonicity

theorem for RelRec procedures (Theorem 4.9.7), for i = 1, . . . , n

λyi · [[RGi ]]
A
ϕ,%k

1 , . . . , %k
n
(x, yi) v λyi · [[RGi ]]

A
ϕ,λy1·[[RF1 ]]Aϕ (x,y1),...,λyn·[[RFn ]]Aϕ (x,yn)

(x, yi).

So by (13) and Sublemma A.3.1 below,

%k+1
i v λyi · [[RFi ]]

A
ϕ (x, yi)

which proves (12) by induction on k, and hence (10).
The reverse direction (11) is proved by simultaneous course of values induction on CompLength(R,ϕ,a).

Here, CompLength(R,ϕ,a) denotes the computation length of procedure R with inputs ϕ and a, defined
by

CompLength(R, ϕ, a) = CompLengthA
ϕ (S, σ)

where R ≡ 〈Dp : Dv : S〉, with oracles φ intepreted as ϕ, Dv ≡ in a out b aux c, and σ[a] = a.
Assume that, for 1 ≤ i ≤ n, for all inputs ϕ, x and yi, if CompLength(RFi , ϕ, (x, yi)) < l, then

[[RFi ]]
A
ϕ (x, yi)↓ =⇒ [[RFi ]]

A
ϕ (x, yi) = Fi(ϕ, x, yi). (14)

Suppose now that for some ϕ, x and yi

[[RFi ]]
A
ϕ (x, yi)↓ and CompLength(RFi , ϕ, (x, yi)) = l.

By Sublemma A.3.1 below and [[RFi ]]
A
ϕ (x, yi)↓, we have:

[[RFi ]]
A
ϕ (x, yi) = [[RGi ]]

A
ϕ,%(x, yi)

= Gi(ϕ, %, x, yi).
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where % ≡ %1, . . . , %n and
%i = λzi · [[RFi ]]

A
ϕ (x, zi) i = 1, . . . , n.

Clearly, within the computation for [[RFi ]]
A
ϕ (x, yi), λzj · [[RFj ]]

A
ϕ (x, zj) (for j = 1, . . . , n) will only be

applied to certain z (say) which are the values of some terms t, such that

CompLength(RFj , ϕ, (x, z)) < CompLength(RFi , ϕ, (x, yi)) = l.

Therefore for all such z, by induction hypothesis

[[RFj ]]
A
ϕ (x, z) = Fj(ϕ, x, z)

This justifies the replacement of λzj · [[RFj ]]
A
ϕ (x, zj) by λzj · Fj(ϕ, x, zj) within the computation of

[[RFi ]]
A
ϕ (x, yi) and hence

[[RFi ]]
A
ϕ (x, yi)

= Gi(ϕ, λz1 · [[RF1 ]]
A
ϕ (x, z1), . . . , λzn · [[RFn ]]Aϕ (x, zn), x, yi)

= Gi(ϕ, λz1 · F1(ϕ, x, z1), . . . , λzn · Fn(ϕ, x, zn), x, yi))
= Fi(ϕ, x, yi),

which proves (14) for arbitrary computation lengths, and hence (11).

Sublemma A.3.1. Let RFi and RGi , 1 ≤ i ≤ n, be the procedures defined in the proof of Lemma 6.1.5.
Then for arbitrary ϕ, x and yi,

[[RFi ]]
A
ϕ (x, yi) ' [[RGi ]]

A
ϕ,%(x, yi),

where
%i = λzi · [[RFi ]]

A
ϕ (x, zi) i = 1, . . . , n.

Proof:
By definition of the semantics of procedures,

[[RFi ]]
A
ϕ (x, yi) '

{
σ′[bFi ] if [[bFi := PGi(aFi,1 , aFi,2)]]

A
ϕσ↓σ′

↑ if [[bFi := PGi(aFi,1 , aFi,2)]]
A
ϕσ↑

where σ[aFi,1 ] = x, σ[aFi,2 ] = yi and φ are intepreted as ϕ.
By the procedure assignment lemma (Lemma 4.7.3),

[[bFi := PGi(aFi,1 , aFi,2)]]
A
ϕσ ' σ{bFi/[[R

P
Gi

]]Aϕ ([[aFi,1 ]]
Aσ, [[aFi,2 ]]

Aσ)}
' σ{bFi/[[R

P
Gi

]]Aϕ (x, yi)}

Therefore,

[[RFi ]]
A
ϕ (x, yi) ' (σ{bFi/[[R

P
Gi

]]Aϕ (x, yi)})[bF i ] ' [[RP
Gi

]]Aϕ (x, yi). (15)

In other words, [[RFi ]]
A
ϕ = [[RP

Gi
]]Aϕ . Now we must just show

[[RP
Gi

]]Aϕ (x, yi) ' [[RGi ]]
A
ϕ,%(x, yi). (16)
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and the result will follow.
By definition,

[[RP
Gi

]]Aϕ (x, yi) '

{
σ′1[bGi ] if [[SP

Gi
]]Aϕσ1↓σ′1

↑ if [[SP
Gi

]]Aϕσ1↑
(17)

where σ1[aGi,1 ] = x, σ1[aGi,2 ] = yi and φ are intepreted as ϕ. Also

[[RGi ]]
A
ϕ,%(x, yi) '

{
σ′2[bGi ] if [[SGi ]]

A
ϕ,%σ2↓σ′2

↑ if [[SGi ]]
A
ϕ,%σ2↑

(18)

where σ2[aGi,1 ] = x, σ2[aGi,2 ] = yi and φ, ρ are intepreted as ϕ, % respectively.
So to prove(16), we must just show that (17) and (18) define the same function.
Now SGi and RGi,1 , . . . ,RGi,mi

are the same as SP
Gi

and RP
Gi,1

, . . . ,RP
Gi,mi

, except that all occurrences

of oracle call statements c := ρj(t) in SGi are replaced by procedure calls c := PGj (aGi,1 , t) in SP
Gi

.
Thus, comparing (17) and (18), it is sufficient to prove

[[c := PGj (aGi,1 , t)]]
A
ϕ ' [[c := ρj(t)]]

A
ϕ,%. (19)

By the procedure assignment lemma, and since [[aGi,1 ]]
Aσ = x and φ are interpreted as ϕ,

[[c := PGj (aGi,1 , t)]]
A
ϕσ ' σ{c/[[RP

Gj
]]Aϕ (x, [[t]]Aσ)}.

By the semantics of term and assignment statements, and since ρj is the oracle for %j = λz ·
[[RFj ]]

A(ϕ, x, z),

[[c := ρj(t)]]
A
ϕ,%σ ' σ{c/%j([[t]]

Aσ)} ' σ{c/[[RFj ]]
A
ϕ (x, [[t]]Aσ)}.

By (15), [[RP
Gj

]]Aϕ = [[RFj ]]
A
ϕ , from which (19) follows, ending the proof. ut
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