
On the Relative Value of Local Scheduling versus Routing in Parallel Server
Systems

Rong Wu
ask.com

343 Thornall Street
Edison, NJ, USA 08837

Douglas G. Down
Department of Computing and Software

McMaster University
Hamilton, Ontario, Canada L8S 4K1

Abstract

We consider a system with a dispatcher and several iden-
tical servers in parallel. Task processing times are known
upon arrival. We first study the impact of the local schedul-
ing policy at a server. To this end, we study random rout-
ing followed by a priority scheme at each server. Our nu-
merical results show that the performance (mean waiting
time) of such a policy could be significantly better than
the best known suggested policies that use FCFS at each
server. We then propose to use multi-layered round robin
routing, which is shown to further improve system perfor-
mance. Our analysis involves a combination of compar-
ing analytic models, heavy traffic asymptotic and numerical
work.

1. Introduction

A system with a front-end dispatcher and several back-
end parallel servers can be used to model systems such as
clustered web servers. We study models in which task pro-
cessing times are known upon arrival. Many scheduling
policies have been proposed and studied for such a system
(we list several references below).

The scheduling policies that we consider have two com-
ponents. The first is therouting policy, which is used to
determine how tasks are assigned to servers. Examples are
random routing, where an arrival is assigned to a server
according to a fixed set of probabilities, round robin (RR)
(theith arriving task is assigned to the(i mod c)th server,
wherec is the number of servers), and Join the Shortest
Queue (JSQ). Notice that different information about the
system state may be required by a routing rule: round robin
does not require any information from the servers, while
JSQ requires the queue length information at each server.
The second part is thelocal scheduling policy, which sched-
ules the order of processing at a server. Examples are First

Come First Served (FCFS) and Shortest Remaining Pro-
cessing Time (SRPT).

Recent research shows that high task processing time
variance appears to be a feature in many aspects of com-
puting systems, such as sizes of files transferred through
the Web [2], I/O times [9], and sizes of FTP transfers in the
Internet [8]. For a system with high task size variability,
Harchol-Balter and her co-authors in [6] proposed a size
based policy called SITA-E. There is a size range associ-
ated with each server and a task is routed to the appropriate
server by its size. Each server uses FCFS local scheduling
to process its assigned tasks. They also showed that under
highly variable task processing time distributions, SITA-E
routing may significantly outperform a routing policy that
assigns arrivals to the queue with the smallest workload
(with FCFS local scheduling). The advantage of SITA-E is
that it reduces the variance of task processing times at each
server and thus improves the overall system performance.
Similar policies such as EquiLoad and AdaptLoad are sug-
gested in the work of Riska et al. [1, 11, 15]. In Zhang et al.
[14], the authors considered a size based policy for the situa-
tion where tasks are autocorrelated. They proposed a policy
which distributes tasks such that the load to each server is
proportional to the correlation structure of the arrival pro-
cess. Their results showed that for the autocorrelated case,
not all servers are equally utilized, but this imbalance brings
significant performance improvement. Currently, this group
of policies appears to demonstrate the best performance in
the literature. They are all also relatively easy to implement.

For a single server system, Schrage in [12] showed that
for an arbitrary arrival process and arbitrary processing time
distribution, SRPT minimizes the number of tasks in sys-
tem. Therefore if one wishes to look at such performance
measures as mean waiting time, SRPT is a good choice
for the local scheduling policy. In [3], we did simulations
for SITA-E and round robin routing followed by shortest-
remaining-processing-time local scheduling (RR-SRPT) for
processing times that follow a bounded Pareto distribution.
The results showed that the expected queue length for SITA-

E can be significantly larger than that for RR-SRPT. In
[4], we proposed the use of multi-layered round robin rout-
ing followed by SRPT local scheduling (RRK-SRPT) for
a discrete task processing time distribution (withK types
of tasks). By multi-layered round robin, we mean that the
dispatcher uses independent round robin policies for each
type of task. We showed that RRK-SRPT performed better
than RR-SRPT in heavy traffic (RRK-SRPT is asymptot-
ically optimal in heavy traffic). This provides some evi-
dence that similar policies may be good in general, but is
not completely convincing. The main drawbacks are that
[3] is based on simulation only, while in [4], continuous
distributions are not considered, which in turn prevents a
fair comparison with policies considered elsewhere in the
literature.

There are two barriers to a further study of SRPT-based
policies. On the theoretical side, it is difficult to analyze
SRPT. For example, the expressions in Schrage and Miller
[13] for an M/G/1 queue are quite complicated, so when
we move to the multiple server environment, where in par-
ticular the arrival stream to an individual server may no
longer be Poisson, exact analysis becomes quite difficult.
One possibility would be to look at a diffusion approxima-
tion as in [4], but unfortunately no results exist for the dif-
fusion approximation of a single queue under SRPT when
the processing time distribution is continuous. The other
barrier is on the implementation side. In most applications,
SRPT is simply too difficult to implement. However, in [5],
Harchol-Balter et al. show that SRPT may be approximated
by a priority scheme in a manner that is straightforward
to implement. We provide more details of this scheme in
Section 3 below. It turns out that examining such an ap-
proximate policy allows us to set aside the difficulties in the
theoretical analysis of SRPT. In [7], Jaiswal provided a for-
mula to calculate the mean number of each type of tasks
for an M/G/1 preemptive priority queue, which gives us a
way to analyze the performance directly. In addition, dif-
fusion approximations for priority systems are well studied,
see Reiman [10], amongst others. We are concerned in this
paper with showing that there exists a routing policy that,
combined with the SRPT approximation, yields better per-
formance than if FCFS were used as the local scheduling
policy (in particular, we make comparisons with SITA-E).
Thus, our contribution is not so much methodological (we
apply existing results), but shows that a different viewpoint
on scheduling systems of parallel servers can yield better
performance. Rather than using routing to compensate for
inefficiencies in the local scheduling policy (when FCFS is
used in the face of high variance), we suggest using routing
to play to the strengths of a more efficient (yet still imple-
mentable) local scheduling policy. If one has control over
the local scheduling policy (which is not always the case),
then it may be worthwhile to consider such policies. It is

worth noting that many operating systems have built in sup-
port for such priority schemes.

To emphasize this viewpoint we first study a system con-
sisting of naive (i.e. random) routing of arrivals followed
by priority scheduling at each server. We give expres-
sions for the performance of such a system that are valid
over all system loads and perform a numerical study. We
then give asymptotic results that show superior performance
even with naive routing. We then give a simple adjustment
to the routing scheme that in turn gives a performance im-
provement. We hope that our results will in general per-
suade designers to first tackle local scheduling in such sys-
tems (if at all possible) and if time/resources permit. then
examine the routing issue.

The organization of this paper is as follows. In Section 2,
we study the performance of preemptive priority schedul-
ing (KLP) on a single server. We provide an algorithm
to calculate the cutoff points for task types. In Section 3,
we introduce the multiserver model and describe SITA-E
and our proposed policy (Random-KLP). In Section 4, we
compare the performance of SITA-E and Random-KLP by
both numerical and heavy traffic analysis. In Section 5,
we discuss the performance of RRK-KLP by simulation
and heavy traffic analysis, demonstrating additional perfor-
mance gains. Section 6 provides some concluding remarks.

2. K Level Preemptive Priority on a Single
Server

In this section, we describe the proposed policy for a sin-
gle server. We assume that arrivals follow a Poisson process
with rateλ0. The processing times are assumed to be in-
dependent and identically distributed (i.i.d.) and followa
densityf(x). We also assume that the processing times are
known upon arrival. We have mentioned that the authors in
[5] suggested to use preemptive priority scheduling to ap-
proximate SRPT. For the proposed policy, we partition the
support of the processing time distribution intoK intervals.
A task whose processing time lies in intervalk given by
[yk−1, yk) is called a typek task. Typei tasks have pre-
emptive priority over typej tasks ifi < j. The proportion
of typek tasks isαk =

∫ yk

yk−1

f(y)dy, and the conditional
density function for the size of a task given that it is type
k is fk(y) = f(y)/αk, y ∈ [yk−1, yk). A server then uses
FCFS within tasks of the same type. There areK priority
levels. Note that this differs slightly from the policy in [5],
as they appear to implement a mechanism that dynamically
changes a task’s priority. The performance of their policy
should actually be better than that described here but is dif-
ficult to analyze. On the other hand, the proposed policy is
very straightforward to implement, if a priority scheduling
policy is available. We call such a policyK level preemp-
tive priority (KLP).

2

Jaiswal in [7] derived the formula for the mean queue
length of typek tasks (̄Qk) for an M/G/1 preemptive prior-
ity queue, where typek′ tasks have preemptive (resume)
priority over typek tasks if k′ < k. Let λk = αkλ0,
µk = 1/(

∫ yk

yk−1

yfk(y)dy), andρk = λk/µk. For KLP,

if
∑k

i=1 ρi < 1, from (7.42) of [7], we have

Q̄k =
ρk

1 −∑k−1
i=1 ρi

+
λk

∑k
i=1 λiE[Y 2

i]

2(1 −∑k−1
i=1 ρi)(1 −∑k

i=1 ρi)
,

(1)
whereE[Y 2

i] =
∫ yi

yi−1

y2fi(y)dy, andρk = λk/µk is the
load due to typek tasks. The total mean queue length over
all types,Q̄0 is

Q̄0 =

K
∑

k=1

(

ρk

1 −
∑k−1

i=1 ρi

+
λk

∑k
i=1 λiE[Y 2

i]

2(1 −∑k−1
i=1 ρi)(1 −∑k

i=1 ρi)

)

. (2)

The expression for the mean total queue length is quite com-
plicated. One would like to compute the cutoffs for task
type i using (2), however this is quite difficult. In general,
one should choose as many intervals as possible. If, for im-
plementation reasons, one wishes to decrease the number
of task types, Procedure 1 below gives a means to use (2) to
find a reasonable number of task types.

Procedure 1 For an M/G/1 system operated underKLP
with arrival rate λ0, if the task processing times follow a
continuous distribution with density functionf(x), the cut-
off points can be calculated by the following steps.

Step i: Partition the support of the processing time dis-
tribution into N intervals (we also call themN
types) such thatρi = ρj for all 1 ≤ i, j ≤ N
and i 6= j, whereρi is the load for typei tasks
(ρi = λi/µi). Calculate the total mean queue
lengthQ̄N with theN intervals by using (2). Let
Q̄min = Q̄N .

Step ii: If N = 1
then stop;
else decrease the number of intervals by 1 by
merging two adjacent intervals. Note that this in-
volvesN − 1 cases. Calculate the mean queue
length for each of theN − 1 cases withN − 1 in-
tervals and take the minimum mean queue length
Q̄N−1. When merging intervalsk and k + 1
(1 ≤ k ≤ N − 1), the load for the merged in-
terval isρk + ρk+1.

Step iii: If Q̄N−1−Q̄min

Q̄min

> δ (δ ≥ 0, is chosen by the user);
then stop, return theN intervals.
else go to the next step.

Step iv: If Q̄N−1 < Q̄min

then Q̄min = Q̄N−1.
LetN = N − 1, go back to Step ii.

We now study the performance numerically. Tables 1
and 2 provide the mean queue length for different cutoff
points (K is the number of intervals) with different system
loads using processing times following a bounded Pareto
distribution, varying the parameters to achieve different
workloads (ρ). The bounded Pareto distribution has density
f given by:

f(x) =

{

αpα

1

1−(p1/p2)α x−α−1 0 < p1 ≤ x ≤ p2

0 otherwise

where0 < α < 2 is the exponent of the power law,p1

is the smallest possible observation, andp2 is the largest
possible observation. We letp1 = 512 and p2 = 1010.
The reason we choose these parameters is to keep consistent
with the study in [6]. Tables 1 and 2 show how, for various
α, expression (2) varies when one starts with 20 intervals
and uses Procedure 1 to reduce the number of intervals. It
is not hard to see that varyingδ will yield different results.
Further, note that if we choose the tolerance as small asδ =
0.1, for the bounded Pareto distribution, we could achieve
better mean queue length using 4-6 types. If we allow a
higher tolerance, for moderate and light system loads, good
performance can be achieved using just two types. In the
next section, we applyKLP to multiple servers.

We now move to showing how well parallel server sys-
tems (each implementingKLP) perform, under naive (ran-
dom) routing.

Table 1. Mean Queue Length with ρ = 0.9 for
a Single Server

K α = 1.2 α = 1.5 α = 1.9
3 27.030 8.869 4.412
4 4.800 8.234 3.838
6 2.935 7.801 3.736
7 2.808 7.790 3.735
9 2.700 7.774 3.742
13 2.670 7.779 3.758
20 2.675 7.795 3.782

3. Parallel Server Model

In this section, we introduce the system model for the
proposed policy, SITA-E, and related policies. We assume

3

Table 2. Mean Queue Length with ρ = 0.5 for
a Single Server

K α = 1.2 α = 1.5 α = 1.9
2 5.788 2.113 0.939
3 2.573 1.643 0.766
4 0.862 0.838 0.752
5 0.808 0.813 0.749
6 0.760 0.811 0.750
8 0.717 0.810 0.752
13 0.711 0.812 0.757
20 0.713 0.816 0.762

that arrivals follow a Poisson process with rateλ. Upon ar-
rival, a task must be immediately assigned to one ofc iden-
tical servers. The processing times are assumed to be i.i.d.
and follow a densityf(x) which satisfies

∫∞

0 x2f(x)dx <
∞. Note that this discounts some heavy-tailed distributions,
but certainly allows for processing times with high variance
(we consider bounded Pareto distributions later). We let
{ui, i ≥ 1} and {vi, i ≥ 1} be the interarrival and pro-
cessing time sequences,µ be the processing rate, ands the
variance of the processing times.

3.1. SITA-E and related policies

For SITA-E [6], an arrival is routed to serverk if its pro-
cessing time lies in the range[xk−1, xk), wherex0 = 0 and
xc = ∞. The intervals are chosen such that

∫ x1

0

xf(x)dx =

∫ x2

x1

xf(x)dx = · · · =

∫ ∞

xc−1

xf(x)dx.

The local scheduling policy at each server is FCFS. Note
that the choice of intervals balances the load at each of the
servers, while at the same time yielding a processing time
variance at each server that is typically much less than the
overall processing time variance. Simulation results in [6]
show that this policy appears to significantly outperform
other policies (in particular a routing policy that assignsar-
rivals to the queue with the smallest workload, followed by
FCFS local scheduling).

Other size based policies in [1, 11, 15] are similar to
SITA-E. If the task processing time distribution is fixed, the
performance of these policies is the same as SITA-E. There-
fore, in this paper, we only compare the proposed policy
with SITA-E. Notice that we do not consider the situation
when the task processing time distribution is not fixed. We
refer the reader to [1, 11, 15] for policies that react to time
varying workloads.

3.2. Random-KLP

For the proposed policy, we would like to useKLP as
the local scheduling policy. To focus on the relative im-
portance of the local scheduling policy, we first consider a
naive routing policy (random routing).

4. SITA-E and Random-KLP - Performance
Analysis

In this section, we compare SITA-E and Random-KLP
both numerically and asymptotically (in a heavy traffic
sense). Section 4.1 compares the performance by using ex-
act analytic expressions. In Section 4.4, we compare the
performance in heavy traffic.

4.1. Analytic models

In this section, we compare the performance of SITA-E
and Random-KLP by providing expressions for both the
mean waiting time and slowdown. The formulas are of
sufficient complexity that a direct comparison is not pos-
sible, so we provide numerical results to support our find-
ings. Section 4.2 provides the numerical results for mean
queue length. Section 4.3 discusses the slowdown of each
task type.

4.2. Mean queue length

We are interested in minimizing the mean waiting time,
but due to Little’s Law, we can equivalently look at the mean
number of tasks in the system.

Let Q̄k denote the mean queue length at serverk and
Q̄ represent the total mean queue length for SITA-E. Also,
let βk =

∫ xk

xk−1

f(x)dx be the proportion of arrivals that
are assigned to serverk. Define λk = βkλ and µk =
1/(
∫ xk

xk−1

xf(x)/βkdx).

We then have, using thePollaczek-Kinchinformula for
each server,

Q̄ =

c
∑

k=1

(

ρk +
ρ2

k + λ2
ksk

2(1 − ρk)

)

, (3)

where ρk = λk/µk, and sk =
∫ xk

xk−1

x2f(x)/βkdx −
(

∫ xk

xk−1

xf(x)/βkdx
)2

.

In Section 2, we provided the formula for total mean
queue length ofKLP at a single server. Letλ′

k = αkλ/c
andµ′

k = 1/(
∫ yk

yk−1

yfk(y)dy). For Random-KLP, the total

4

mean queue length (̄Q′) is thus

Q̄′ = c
K
∑

k=1

(

ρ′k

1 −∑k−1
i=1 ρ′i

+
λ′

k

∑k
i=1 λ′

iE[Y 2
i]

2(1 −∑k−1
i=1 ρ′i)(1 −∑k

i=1 ρ′i)

)

, (4)

whereE[Y 2
i] =

∫ yi

yi−1

z2fi(z)dz, andρ′k = λ′
k/µ′

k, which
is the load due to typek tasks at a server.

It is hard to comparēQ andQ̄′ since the expressions (3)
and (4) are quite complicated. Thus, we use the expres-
sions (3) and (4) to gain insight through numerical compar-
isons. Tables 3 and 4 provide some numerical results for
SITA-E and Random-KLP using processing times follow-
ing a bounded Pareto distribution, varying the parameters to
achieve different workloads (ρ).

In the “Policy” column in Tables 3 and 4 we add a sym-
bol ’*’ to represent the case when the cutoff points are
chosen to balance the loads for each type of tasks at each
server. This means we choose a cutoff point such that
λi/µi = λj/µj (λi represents the arrival rate for typei
tasks to a single server), where1 ≤ i, j ≤ K. For the poli-
cies without ’*’, we use the cutoff points calculated accord-
ing to Procedure 1 (with a starting point of 20 intervals).
Note that for Random-KLP, we get the results directly from
the single server formula.

Table 3. Mean Queue Length with ρ = 0.9
Policy c α = 1.2 α = 1.5 α = 1.9

SITA-E 4 896.018 1510.558 78.115
Random-3LP 4 108.120 35.476 22.060
Random-4LP 4 19.200 32.936 15.352
Random-4LP* 4 680.337 1158.060 57.778
Random-7LP 4 11.232 31.160 14.940
Random-9LP 4 10.800 31.096 14.968
Random-13LP 4 10.680 31.180 15.032

SITA-E 8 153.127 785.025 92.038
Random-3LP 8 216.240 70.952 35.296
Random-7LP 8 22.464 62.320 29.880
Random-8LP* 8 83.739 459.658 55.144
Random-13LP 8 21.360 62.232 30.064

SITA-E 16 103.411 451.920 126.281
Random-4LP 16 76.800 131.744 61.408
Random-13LP 16 42.720 124.464 60.512
Random-16LP* 16 47.386 191.441 66.797

The numerical results for the mean queue length un-
der both policies show that, under bounded Pareto distri-
butions, if we choose the same task intervals for Random-
KLP and SITA-E, Random-KLP consistently outperforms
SITA-E for different system loads and task processing time

Table 4. Mean Queue Length with ρ = 0.5
Policy c α = 1.2 α = 1.5 α = 1.9

SITA-E 4 57.079 95.027 6.599
Random-2LP 4 23.152 8.452 3.756
Random-4LP 4 3.448 3.352 3.008
Random-4LP* 4 24.380 39.684 4.383
Random-5LP 4 3.232 3.252 2.996

SITA-E 8 13.005 52.014 9.239
Random-4LP 8 6.896 6.704 6.016
Random-5LP 8 6.464 6.504 5.992
Random-8LP 8 5.736 6.480 6.016
Random-8LP* 8 7.170 16.005 6.658

SITA-E 16 13.495 35.007 14.905
Random-5LP 16 12.928 13.008 11.984
Random-8LP 16 11.472 12.960 12.032
Random-13LP 16 11.376 12.992 12.112
Random-16LP* 16 11.489 14.335 12.297

variance. A further significant improvement can be made by
using Procedure 1. While these numerical results are quite
suggestive, they are not conclusive. We provide additional
evidence in the form of heavy traffic asymptotic results in
Section 4.4.

4.3. Slowdown

Slowdown is a performance metric that incorporates the
notion of fairness. For any policy, ifE[W (x)] is the mean
waiting time for a task of sizex, theslowdownfor a task of
sizex, S(x), is given by

S(x) =
E[W (x)]

x
. (5)

For SITA-E, the mean waiting time for typek (1 ≤ k ≤
c) tasks is

E[W (x)] = 1/µk+
ρ2

k + λ2
ksk

2λk(1 − ρk)
, xk−1 ≤ x < xk. (6)

For Random-KLP, the mean waiting time for typek
(1 ≤ k ≤ K) tasks is

E[W ′(x)] =
ρ′k

λ′
k(1 −∑k−1

i=1 ρ′i)
+

∑k
i=1 λ′

iE[X2
i]

2(1 −∑k−1
i=1 ρ′i)(1 −∑k

i=1 ρ′i)
,

(7)
wherexk−1 ≤ x < xk. Combining (5), (6), and (7), we can
compare the slowdown for each type of tasks under SITA-E
and Random-KLP.

Figure 1 gives the slowdown for tasks under SITA-E and
Random-4LP with 4 servers, whereα = 1.2 andρ = 0.9.
The cutoff points for Random-4LP are calculated according
to Procedure 1.

5

10
5

10
6

10
7

10
8

10
9

10
10

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Task Size x

S
lo

w
do

w
n

Random−4LP

SITA−E

Figure 1. Slowdown for Random- 4LP (unbal-
anced loads) and SITA-E

The results show that for a bounded Pareto distribution,
if we use the cutoff points calculated by Procedure 1, the
slowdown of Random-KLP for some tasks may not be bet-
ter, although the mean queue length is better. However, if
we use the same types for SITA-E and Random-KLP, the
slowdown for each type of tasks for Random-KLP appears
to be better than that of SITA-E. Figure 2 illustrates such a
situation, where we choose four types with balanced work
loads forα = 1.2 andρ = 0.9.

10
2

10
3

10
4

10
5

10
6

0

5

10

15

20

25

30

35

Task size x

S
lo

w
do

w
n

SITA−E

Random−4LP

Figure 2. The Slowdown for SITA-E and
Random- 4LP (balanced loads)

Our numerical studies suggest that the performance for
Random-KLP is better than that of SITA-E for bounded
Pareto distributions if we use the same task type intervals.
To achieve lower mean queue length, we could use Proce-
dure 1 with lower tolerance (e.g. 0.1) and a larger number
of starting points (20 in our examples) to partition tasks.
However, the tradeoff for this is that the slowdown for cer-
tain types of task for Random-KLP could be worse than for
SITA-E. The expressions we use here allow one to experi-
ment to choose a good performance tradeoff, according to
the designer’s goals (there is no need to resort to simula-
tion).

4.4. Performance analysis in heavy traffic

In the previous section, we provided evidence of the rel-
ative benefits of local scheduling versus routing. In this sec-
tion, while we are unable to provide a proof that Random-
KLP outperforms SITA-E over all loads, we are able to
show better performance in an asymptotic sense, when the
load on the system approaches one. We use the tool of
heavy traffic limits to approximate the mean queue length
for SITA-E and Random-KLP. To do this, assume that
there is a sequence of systems indexed by(n) such that
λ(n) → λ, µ(n) → µ, ands(n) → s, asn → ∞. Fur-
ther assumptions on the sequence of systems will be made
as needed below.

4.5. SITA-E

We first consider the performance of SITA-E. For each
serverk, let {uk

i , i ≥ 1}, {vk
i , i ≥ 1} represent the inter-

arrival and processing time sequences, respectively. For the
sequence of systems indexed by(n), we have for1 ≤ k ≤
c,

λk(n) = (E[uk
1(n)])−1 = βkλ(n) −→ λk = βkλ,

ak(n) = V ar(uk
1(n)) =

1

β2
kλ2(n)

−→ ak =
1

β2
kλ2

,

µk(n) = (E[vk
1 (n)])−1 =

1
∫ xk

xk−1

xf
(n)
k (x)dx

−→ µk =
1

∫ xk

xk−1

xfk(x)dx
,

sk(n) = V ar(vk
1 (n))

=

∫ xk

xk−1

x2f
(n)
k (x)dx −

(

∫ xk

xk−1

xf
(n)
k (x)dx

)2

−→ sk =

∫ xk

xk−1

x2fk(x)dx −
(

∫ xk

xk−1

xfk(x)dx

)2

.

We also require supn≥1 E[(uk
1(n))2+ε] < ∞ and

supn≥1 E[(vk
1 (n))2+ε] < ∞, for someε > 0.

6

The load of typek tasks in thenth system is defined as
ρk(n) = λ(n)βk/µk(n), 1 ≤ k ≤ K. We have

ρk(n) −→ ρk = βkλ/µk (8)

for all k. We assume thatρk(n) < 1 for all k andn, and
ρk(n) → 1 asn → ∞ for all k.

We defineQk(t) to be the number of tasks at server

k at time t. We are interested in the processQ̂
(n)
k (t) =

n−1/2Q
(n)
k (nt). We assume thatQ(n)

k (0) = 0, 1 ≤ k ≤
c. For each serverk, we also need to definedk(n) =√

n (ρk(n) − 1). We assume

dk(n) −→ d asn → ∞, −∞ < d < 0. (9)

We call (9) the heavy traffic condition (note that (9) implies
our earlier assumption thatρk(n) → 1 asn → ∞). We
now have the following result, where RBM(a, b) denotes
a reflected Brownian motion with drifta and varianceb.
Also,=⇒ denotes weak convergence in the metric spaceD
consisting of all right continuous functions with left limits.

Theorem 1 For queuek (1 ≤ k ≤ c) in a system operating
under SITA-E, under the heavy traffic conditions,

Q̂
(n)
k =⇒ µkRBM

(

d, βkλsk +
1

βkλ

)

. (10)

Proof. This follows directly from Theorem 3.4 of [10].

4.6. Random-KLP

We focus on one server and separate theK different
types into different arrival streams for that server. For each
type k, we use{ũk

i , i ≥ 1}, {ṽk
i , i ≥ 1} to repre-

sent the interarrival and processing time sequences (at each
server), respectively. Without loss of generality, we have
ũk

1 =
∑c

j=1 uk
j and ṽk

1 = vk
1 , where{uk

i , i ≥ 1} and
{vk

i , i ≥ 1} are the interarrival and processing time se-
quences for typek tasks to the system. Ifλ′

k, a′
k, µ′

k, ands′k
are, respectively, the arrival rate, interarrival time variance,
service rate, and processing time variance for typek tasks
at a single server, we then have

λ′
k(n) −→ λ′

k =

E[

c
∑

j=1

uk
j]

−1

= αkλ/c,

a′
k(n) −→ a′

k = V ar(

c
∑

j=1

uk
j) =

c2

α2
kλ2

, (11)

µ′
k(n) −→ µk = (E[vk

1])−1 =
1

∫ yk

yk−1

yfk(y)dy
,

s′k(n) −→ sk = V ar(vk
1)

=

∫ yk

yk−1

y2fk(y)dy −
(

∫ yk

yk−1

yfk(y)dy

)2

.

We also requiresupn≥1 E
[

(
∑c

j=1 uk
j (n))2+ε

]

< ∞ and

supn≥1 E[(ṽk
1 (n))2+ε] < ∞, for someε > 0.

We defineQ′
k(t) to be the number of typek tasks at

a single server at timet. As in the previous section, we

are interested in the procesŝQ′
(n)

k (t) = n−1/2Q′(n)
k (nt).

We assume thatQ′(n)
k (0) = 0, 1 ≤ k ≤ K. We also

defined′k(n) =
√

n
(

∑k
i=1 ρ′i(n)/c − 1

)

, whereρ′i(n) =

λ(n)αi/µ′
i(n) denotes the load of typei tasks on the sys-

tem.
We make the following assumptions

d′k(n) −→ −∞ asn → ∞, 1 ≤ k ≤ K − 1,(12)

d′K(n) −→ d′ asn → ∞, −∞ < d′ < 0. (13)

From the definition ofρ′k(n), we have the load of typek
tasks on a single server

ρ′k(n)/c −→ ρ′k/c (14)

asn → ∞, 0 ≤ ρ′k/c < 1, 1 ≤ k ≤ K − 1. We call (12),
(13), and (14) theheavy trafficconditions. We can now give
a result for the heavy traffic limit under Random-KLP.

Theorem 2 For a single queue operating under Random-
KLP, under the heavy traffic conditions,

Q̂′
(n)

k =⇒ 0, 1 ≤ k ≤ K − 1, (15)

Q̂′
(n)

K =⇒ µ′
KRBM

(

d′,

K
∑

k=1

(

αkλs′k
c

+
αkλ(

∫ zk

zk−1

yfk(y)dy)2

c

))

. (16)

Proof. This follows directly from Theorem 4.1 and Theo-
rem 4.3 of [10].

4.7. Comparison

Now we can compare SITA-E and Random-KLP in
heavy traffic. We first need to compute the mean of the
heavy traffic limit for the total number of tasks in the
system. LetQ̄Random = cQ̄′

Random, where Q̄′
Random

is the mean of the RBM in (16). Also let̄QSITA-E =
∑c

k=1 Q̄k
SITA-E, whereQ̄k

SITA-E is the mean of the RBM
in (10). The following theorem suggests that RRK-KLP
should outperform SITA-E under high loads, for all pro-
cessing time distributions with finite variance.

Theorem 3 For a continuous processing time distribution
with density functionf(x), where

∫∞

−∞
x2f(x)dx < ∞,

7

in heavy traffic, if the processing time distribution is par-
titioned for Random-KLP in an identical manner as for
SITA-E (which in turn impliesK = c for Random-KLP),
Q̄Random< Q̄SITA-E.

Proof. First, we note that the fact thatK = c implies that
the assumptions we made for both systems are in fact equiv-
alent, so the comparison is fair. It also implies thatxk = yk,
d = d′, µk = µ′

k, ak = a′
k, sk = s′k, andαk = βk, so in the

remainder of the proof we will use the quantities on the left
hand side of each of the above equalities. First, for SITA-E,

Q̄SITA-E =

K
∑

k=1

µk
1

2|d|

(

1

αkλ
+ αkλsk

)

=
K

2|d| +
1

2|d|

K
∑

k=1

αkλskµk.

The last step is due to the heavy traffic conditions (the load
on serverk approaches1). Now, for Random-KLP,

Q̄Random =
cµK

2|d|

K
∑

k=1

(

αkλ

cµ2
k

+
αkλsk

c

)

<
1

2|d|

K
∑

k=1

αkλµK

µkµK
+

1

2|d|

K
∑

k=1

αkλskµk

=
K

2|d| +
1

2|d|

K
∑

k=1

αkλskµk

= Q̄SITA-E.

So, we have a result that suggests that Random-KLP
outperforms SITA-E for heavily loaded systems. Note
that this is for a particular choice ofK, so if we were to
find the optimal value ofK (and the associated intervals
[yk−1, yk)), one would expect the performance to further
improve. However, we will see that if we were to use the
limiting process to do such an optimization, the problem is
not well-posed. We emphasize that the main result of this
section provides aguaranteeof better performance with re-
spect to the limiting processes. Of course, one suggestion
would be to use the techniques described in Section 2.

Using the asymptotic expressions, it is not possible to
calculate the optimal cutoff points, even for the case of
K = 2. LetT be the sole cutoff point forK = 2. We cannot
use (16) to calculate the cutoff point. The reason is that the
expression for̄QRandomis decreasing asT is increasing. As
T goes to the maximum value of the task processing time,
α1 goes to1 andµ′

1 goes toµ. Hence the load for type1
tasks isλ/(cµ), which equals1. This contradicts the as-
sumption thatρ′1 < 1. In other words, (15) will not hold for
this case. The fact that the optimal value ofT in (16) leads
to a situation which violates the assumptions required for

Theorem 2 leads to a logical inconsistency that prevents us
from using the limiting processes to find the optimal cutoff
point. Such problems also arise for larger values ofK.

5. Multi-layered Round Robin Routing

We have provided some guidelines for parameter choices
such that Random-KLP performs better than SITA-E. Our
results in [4] suggest that if we use multi-layered round
robin routing (tasks of typek follow a round robin policy
that is independent of arrivals of all other task types), we
may achieve much better performance. We use RRK to
represent multi-layered round robin routing. In this section,
we discuss the performance of RRK-KLP. Section 5.1 pro-
vides some simulation results for RRK-KLP. Section 5.2
provides asymptotic results for RRK-KLP.

5.1. Simulation results

Our simulation is based on a bounded Pareto distribu-
tion for the processing times. Table 5 gives the 90% confi-
dence interval for the mean queue length withρ = 0.9 and
c = 4 for RRK-KLP. We ran 30 replications for each case,
and each replication consists of1 × 108 arrivals. The cut-
off points are chosen according to Procedure 1, where we
use the best cutoff points (the one providing the minimum
mean queue length for Random-KLP). We also put the cor-
responding numerical results for Random-KLP in the table.

Table 5. Mean Queue Length of RR K-KLP and
Random- KLP

Policy α 1/λ Mean Queue Length
RR13-13LP 1.2 823.61 (8.185, 9.348)

Random-13LP 1.2 823.61 10.680
RR9-9LP 1.5 426.57 (10.104, 28.396)

Random-9LP 1.5 426.57 31.096
RR7-7LP 1.9 33.25 (8.920, 12.497)

Random-7LP 1.9 33.25 14.940

5.2. Heavy traffic

As we did for Random-KLP in Section 4.6, we focus on
one server and separate theK different types into different
arrival streams for that server.

Define Q′′
k(t) to be the number of typek tasks at a

single server at timet. We are interested in the process

Q̂′′
(n)

k (t) = n−1/2Q′′(n)
k (nt). We assume thatQ′′(n)

k (0) =
0, k = 1, . . . , K. Under the same conditions as Theo-
rem 2 (note that the interarrival time variance converges to
c/(α2

kλ2) (see (11))), we have the following result.

8

Theorem 4 For a single queue operating under RRK-

KLP, under the heavy traffic conditions,̂Q′′
(n)

k ⇒ 0, k =
1, . . . , K − 1 and

Q̂′′
(n)

K =⇒ µ′
KRBM

(

d′,

K
∑

k=1

(

αkλs′k
c

+
αkλ(

∫ zk

zk−1

yfk(y)dy)2

c2

))

. (17)

Proof. This follows directly from Theorem 4.1 and Theo-
rem 4.3 of [10].

Let Q̄RRK = cQ̄′′
RRK, whereQ̄′′

RRK is the mean of the
RBM in (17). The following theorem suggests that RRK-
KLP outperforms both Random-KLP and SITA-E under
high loads, for all processing time distributions with finite
variance.

Theorem 5 For a continuous processing time distribution
with density functionf(x), where

∫∞

−∞
x2f(x)dx < ∞,

in heavy traffic, if the processing time distribution is par-
titioned in an identical manner for RRK-KLP, Random-
KLP, and SITA-E (which in turn impliesK = c for RRK-
KLP and Random-KLP), Q̄RRK< Q̄Random< Q̄SITA-E.

Proof. For RRK-KLP,

Q̄RRK =
cµK

2|d|

K
∑

k=1

(

αkλ

c2µ2
k

+
αkλsk

c

)

<
cµK

2|d|

K
∑

k=1

(

αkλ

cµ2
k

+
αkλsk

c

)

= Q̄Random.

Combining with Theorem 3, we immediately get that
Q̄RRK < Q̄Random< Q̄SITA-E.

6. Conclusion

We have shown that policies that are simple to imple-
ment and focus on local server scheduling yield better heavy
traffic performance than polices which use FCFS for local
scheduling. We have provided a detailed algorithm and
guidelines for parameter choices that guarantee a perfor-
mance improvement, with formulas that allow easily com-
puted comparisons should a designer wish to choose other
parameter values. Considering fairness issues, our study
also shows that good mean waiting time may not lead to
good mean slowdown for all type of tasks at a server. How-
ever, if we balance the load for each type of tasks, the pro-
posed policy performs (mean waiting time and slowdown)

better than policies based on FCFS local scheduling. Fi-
nally, it would be worthwhile to explore whether there is a
means to directly calculate the optimal cutoff points (num-
ber and location).

References

[1] G. Ciardo, A. Riska, and E. Smirni. “equiload: a load bal-
ancing policy for clustered web servers”.Performance Eval-
uation, 46:101–124, 2001.

[2] M. E. Crovella and A. Bestavros. “self-similarity in world
wide web traffic: evidence and possible causes”.IEEE/ACM
Transactions on Networking, 5:835–846, 1997.

[3] D. G. Down and R. Wu. “scheduling distributed server sys-
tems with highly variable processing times”. InProceed-
ings of the 2003 International Symposium on Performance
Evaluation of Computer and Telecommunication Systems
(SPECTS’03), Montreal, 2003.

[4] D. G. Down and R. Wu. “multi-layered round robin routing
for parallel servers”.Queueing Systems, 53:177–188, 2006.

[5] M. Harchol-Balter, N. Bansal, B. Schroeder, and
M. Agrawal. "implementation of SRPT scheduling in
web servers". InProc. 7th Annual Workshop on Job
Scheduling Strategies for Parallel Processing, pages 11–35,
2001.

[6] M. Harchol-Balter, M. Crovella, and C. Murta. “on choos-
ing a task assignment policy for a distributed server sys-
tem”. Journal of Parallel and Distributed Computing,
59:204–228, 1999.

[7] N. Jaiswal.Priority Queues. Academic Press, 1968.
[8] V. Paxson and S. Floyd. “wide-area traffic: the failure of

poisson modeling”. IEEE/ACM Transactions on Network-
ing, pages 226–244, 1995.

[9] D. L. Peterson and D. B. Adams. “fractal patterns in dasd
i/o traffic”. In CMG Proceedings, 1996.

[10] M. Reiman. “some diffusion approximations with state
space collapse”. InLecture Notes in Controls and Infor-
mation Sciences, volume 60, pages 209–240, 1984.

[11] A. Riska, W. Sun, E. Smirni, and G. Ciardo. “adaptload:
effective balancing in clustered web servers under transient
load conditions”. pages 104–112, 2002.

[12] L. Schrage. “a proof of the optimality of the shortest re-
maining processing time discipline”.Operations Research,
16:687–690, 1968.

[13] L. Schrage and L. W. Miller. "the queue M/G/1 with the
shortest remaining processing time discipline".Operations
Research, 14:672–684, 1966.

[14] Q. Zhang, N. F. Mi, A. Riska, and E. Smirni. “load un-
balancing to improve performance under autocorrelated traf-
fic”. In Proceedings of the 26th International Conference on
Distributed Computing Systems (ICDCS’06), 2006.

[15] Q. Zhang, A. Riska, W. Sun, E. Smirni, and G. Ciardo. “load
balancing for clustered web servers”.IEEE Transactions on
Parallel and Distributed Systems, 16:219–233, 2005.

9

