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ABSTRACT
We give the first formal definition of the concept of simpli-
fication for general expressions in the context of Computer
Algebra Systems. The main mathematical tool is an adap-
tation of the theory of Minimum Description Length, which
is closely related to various theories of complexity, such as
Kolmogorov Complexity and Algorithmic Information The-
ory. In particular, we show how this theory can justify the
use of various “magic constants” for deciding between some
equivalent representations of an expression, as found in im-
plementations of simplification routines.

Categories and Subject Descriptors
I.1.1 [Symbolic and Algebraic Manipulation]: Simpli-
fication of expressions

General Terms
Theory

Keywords
Simplification of expressions, computer algebra, Kolmogorov
Complexity, model description length

1. INTRODUCTION
It is easy to argue that Maple’s simplify and Mathe-

matica’s Simplify and FullSimplify are some of the most
heavily used commands of either system. A short conver-
sation with end users or a survey of Maple worksheets (or
Mathematica notebooks) quickly confirms this impression.
But if one instead scours the scientific literature to find pa-
pers relating to simplification, a few are easily found: a few
early general papers [4, 6, 19] [and the earlier work they ref-
erence], some on elementary functions like [3], as well as pa-
pers on nested radicals [17, 26], but even dedicated searches
found little more. Looking at the standard textbooks on
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Computer Algebra Systems (CAS) [14, 11, 23] leaves one
even more perplexed: it is not even possible to find a proper
definition of the problem of simplification. There is an ex-
tensive discussion of the topic in [11] which largely focuses
on heuristics for useful transformations while avoiding a for-
mal definition of the problem. The Handbook of Computer
Algebra [15] does not even acknowledge that the problem
exists! This is all the more troubling as conversations with
system builders quickly convinces one that the code for the
simplification routines is as complex as that of a symbolic
integrator; integrators on the other hand are amply doc-
umented in the scientific literature, where the underlying
theory is clearly expounded even if their software design is
not. This paper is an attempt to fill this void: we will give
a formal definition of what it means for one expression to
be simpler than another semantically equivalent expression.

It is worth noting that the concept of simplification stud-
ied here is the one which is empirically implemented in sim-
plification routines in current systems: in other words, it is
a study of representational simplification. Issues of compu-
tational complexity and of “usefulness” of a representation
for further computations are not our concern, as it is not
the concern of simplify nor Simplify.

In some cases, some expressions are universally(?) recog-
nized as “simpler”: 0 is simpler than

(x+ 3)3 − x3 − 9x2 − 27x − 27,

1 +
√

2 is simpler than

3

q

7 + 5
√

2,

and 4 is simpler than 2 + 1 + 1. In other cases, the is-

sue is not as clear: is the expression 221024 − 1 simpler
than the universe-filling equivalent integer? Or consider the
10,000th Chebyshev polynomial: Is ChebyshevT(10000, x)
simpler than the several pages long expanded polynomial?
We argue that the former is simpler. Of course, most would
agree that x is simpler than ChebyshevT(1, x), while others
would rightfully argue that the latter contains valuable in-
formation which might be crucial for further computations,
but that is a different issue. Another question to ask is
whether 1 is simpler than x−1

x−1
, and x+ 3 is simpler than

x2 − 9

x− 3
.

A good overview of these issues is given by Moses [19], who
comes closest to defining simplification when he says “Thus



an ideal, but not very helpful, way to describe simplification
is that it is the process which transforms expressions into a
form in which the remaining steps of a computation can be
most efficiently performed”. We strenuously disagree with
this view of simplification, which puts undue emphasis on
the efficiency of uncertain future operations.

The examples in the previous paragraph should be suffi-
cient to convince the reader that the issue of simplification is
quite complex, as what is “simpler” does not a priori seem to
have a common definition from situation to situation. The
main contribution of this paper is to show that this is in fact
not the case, that there is a straightforward notion of sim-
plicity that underlies all of the above. An informal definition
would read

Definition 1. An expression A is simpler than an ex-
pression B if

• in all contexts where A and B can be used, they mean
the same thing, and

• the length of the description of A is shorter than the
length of the description of B.

In other words, we wish to put emphasis on the represen-
tational complexity of an expression. However, it should
also be clear that the context of an expression matters, and
thus the representational complexity has to depend on the
context. This is the problem we solve.

It is not our intent to discuss the interpretation of expres-
sions (as functions) within a context - the reader is directed
to texts on Logic [2] and on Denotational Semantics [22] for
the relevant background. For a good exposition on expres-
sion equivalence, see the work of Davenport and co-authors,
for example [10, 1]. We instead wish to concentrate of show-
ing how it is possible to properly define the informal notion
of the length of the description of an expression so as to get
a powerful tool to encapsulate the notion of simplification
of the representation of an expression.

The main contribution of this paper is to show how to
combine the theory of Minimum Description Length (MDL)
[21], and that of Biform Theories to give a clear definition
of the problem of simplification. Furthermore, as simplifi-
cation is in general an undecidable problem [6], our theory
gives guidelines to system builders on how to architect their
simplifier(s) from various transformation heuristics and spe-
cialized (semi-)decision procedures.

This paper is organized as follows: the next section gives
a quick introduction to Kolmogorov Complexity and MDL,
which are the theoretical tools used to define “simplicity”.
Section 3 defines biform theories, which give the context in
which to understand the notion of simplicity. The results
in those two section are then used in section 4 to define a
coherent theory of simplification of expressions. In section
5 we give an application of this theory to “magic constants”
as found in implementations of simplification routines in
CASes, followed by a description of part of Maple’s imple-
mentation of a simplifier augmented with comments relating
our theory and the implementation details. We finish with
some conclusions and outline further work to be done using
these concepts.

The author wishes to thank Bill Farmer for many fruitful
conversations on material relating to this paper. Comments
by Freek Wiedijk on a previous draft improved the presen-
tation of the material. Further comments by an anonymous

referee were also very useful. This paper grew out of the au-
thor’s desire to build a theoretical framework which could
justify the work of (amongst others) Michael Monagan and
Edgardo Cheb-Terrab on Maple’s simplify command.

2. COMPLEXITY

”Nulla pluralitas est ponenda nisi per rationem
vel experiantiam vel auctoritatem illius, qui non
potest falli nec errare, potest convivi.”

(A plurality should only be postulated if there
is some good reason, experience or infallible au-
thority for it.)

- William of Ockham (c. 1285 - c. 1349)

Out of the desire to define a stable notion of information
content as well as universal notions of randomness, several
people (Shannon, Kolmogorov, Rissanen, Solomonoff, and
Chaitin to name a few, see [18] for a complete treatment)
have developed theories of complexity of data. This sec-
tion will outline the main tenets of these theories, and the
next section will show how these apply to the problem of
simplification of expressions in Computer Algebra Systems.

Let us first remind the reader that although in CASes we
often wish to represent, via expressions, uncomputable func-
tions, we still want to perform computations on those rep-
resentations. Thus it makes sense to restrict all discussions
to computable expressions, even though those expressions
frequently represent formally uncomputable functions.

2.1 Kolmogorov Complexity
This subsection follows section 2.1 of [18] very closely,

where the interested reader can find a much more thorough
discussion of the issues. Let 〈·〉 : N × N → N be a standard
recursive bijective pairing function mapping the pair (x, y)
to the singleton 〈x, y〉.

To set the stage, we first need a fundamental result on
partial recursive functions.

Definition 2. Let x, y, p be natural numbers. Any par-
tial recursive function φ, together with p and y such that
φ(〈y, p〉) = x is a description of x. The complexity Cφ of x
conditional to y is defined by

Cφ(x|y) = min{length(p) : φ(〈y, p〉) = x},

and Cφ(x|y) = ∞ if there are no such p. We call p a pro-
gram to compute x by φ given the input y.

Theorem 1. There is a universal partial recursive func-
tion φ0 for the class of partial recursive functions to compute
x given y. Formally this says that Cφ0

(x|y) ≤ Cφ(x|y) + cφ
for all partial recursive functions φ and all x and y, where
cφ is a constant depending on φ but not on x or y.

From this theorem, it is easy to derive that, given two
such universal functions ψ, ψ′, there exists a constant cψ,ψ′

such that

|Cψ(x|y) − Cψ′(x|y)| ≤ cψ,ψ′ .

In other words, even though neither length is necessarily
optimal, they are equal up to a fixed constant, for all x and
y. This allows us to make the following definition.



Definition 3. Fix a universal φ0, and dispense with the
subscript by defining the conditional Kolmogorov complexity
C(·|·) by

C(x|y) = Cφ0
(x|y).

This particular φ0 is called the reference function for C.
We also fix a particular Turing machine U that computes
φ0 and call U the reference machine. The unconditional
Kolmogorov complexity C(·) is defined by

C(x) = C(x|0).

To be precise about our intent, we will regard U as being
chosen to be a universal Turing machine given as either the
programming languages Maple or Mathematica [as both of
these systems are Turing complete!]. In other words, we
fix U as a basic programming language, but we explicitly
want to allow for conservative extensions, and study their
effects. In other words, what effect (if any) does allowing the
addition of new definitions and subroutines (new “library”
code) have on the representational complexity of expressions
in a system?

There is one severe impediment to using C(x): it is not
computable! It is however approximable by partial recursive
functions (see section 2.3 in [18] for further details on these
points, as well as the references therein).

2.2 Minimum Description Length
It is a deep and extremely useful fact that the shortest

effective description of an object x can be expressed in terms
of a two-part code: the first part describing an appropriate
Turing machine and the second part describing the program
that interpreted by the Turing machine reconstructs x. By
examining the proof of theorem 1, it is possible to transform
the definition of Kolmogorov complexity into (essentially)

C(x) = min{length(T ) + length(p) : T (p) = x},

where we are minimizing over all Turing machines, and we
use a standard self-delimiting encoding of a Turing machine
program T to compute its length. The above emphasizes
the two-part code decomposition of x into what are called its
regular part (encoded in T ) and its random aspects (encoded
in p).

For our purposes however, we wish to regard T as describ-
ing the space of models, and p as being an index into that
model space which corresponds to x. In the works of J.J.
Rissanen and of C.S. Wallace and coauthors, this has been
developed into the

Minimum Description Length Principle.
Given a sample of data and an effective enumer-
ation of the appropriate alternative theories to
explain the data, the best theory is the one that
minimizes the sum of

• the length, in bits, of the description of the
theory;

• the length, in bits, of the data when encoded
with the help of the theory.

In other words, if there are regularities present in the data
which can be extracted (“factored out”), then the theory
which gives rise to the most overall compression is taken
as the one that most likely explains the data. Minimum

Description Length (MDL) is based on striking a balance
between regularity and randomness in the data.

The crucial aspect of MDL to remember is that it relies
on an effective enumeration of the appropriate alternative
theories rather than on the complete space of partial recur-
sive functions. This makes MDL much more amenable to
applications than pure Kolmogorov complexity. For a much
more thorough overview of (ideal) MDL, the reader should
consult section 5.5 of [18]; for a review of “modern” MDL,
Grünwald’s thesis [16] is recommended. Figure 1 shows a
typical result that one gets when applying this theory to
noisy data—the last graph is of a third degree polynomial.
It is also worth pointing out that there is a somewhat differ-
ent theory with similar results: Minimum Message Length
[24].

There is one important difference between classical MDL
and our own use: MDL tries to find the simplest model that
explains a set of inexact data, whereas we have only one ex-
act data point. But, as we will see later in section 4, this one
data point corresponds to a whole equivalence class of rep-
resentations, and so it makes sense to understand the data
set as varying over this equivalence class. Applying MDL to
expressions in context means that we seek to minimize the
sum of the size of the representation of an expression in a
context and the size of a representation of that context.

3. BIFORM THEORIES
At the heart of this work lies the notion of a “biform the-

ory”, which is the basis for ffmm, a Formal Framework for
Managing Mathematics [13]. The form of this notion is es-
sentially the one used in [5] for applications to trustable com-
munications between mathematical systems. Informally, a
biform theory is simultaneously an axiomatic and an algo-
rithmic theory.

3.1 Logics
A language is a set of typed expressions. The types include

∗, which denotes the type of truth values. A formula is an
expression of type ∗. For a formula A of a language L, ¬A,
the negation of A, is also a formula of L. A logic is a set
of languages with a notion of logical consequence. If K is a
logic, L is a language of K, and Σ∪{A} is a set of formulas
of L, then Σ |=K A means that A is a logical consequence
of Σ in K.

3.2 Transformers and Formuloids
Let Li be a language for i = 1, 2. A transformer Π from

L1 to L2 is an algorithm that implements a partial function
π : L1 ⇀ L2. For E ∈ L1, let Π(E) mean π(E), and let
dom(Π) denote the domain of π, i.e., the subset of L1 on
which π is defined. For more on transformers, see [12, 13].

A formuloid of a language L is a pair θ = (Π,M) where:

1. Π is a transformer from L to L.

2. M is a function that maps each E ∈ dom(Π) to a
formula of L.

M is intended to give the meaning of applying Π to an ex-
pression E. M(E) usually relates the input E to the output
Π(E) in some way; for many transformers, M(E) is the
equation E = Π(E), which says that Π transforms E into
an expression with the same value as E itself.
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The span of θ, written span(θ), is the set

{M(E) | E ∈ dom(Π)}

of formulas of L. Thus a formuloid has both an axiomatic
meaning—its span—and an algorithmic meaning—its trans-
former. The purpose of its span is to assert the truth of a set
of formulas, while its transformer is meant to be a deduction
or computation rule.

3.3 Biform Theories
A biform theory is a triple T = (K, L,Γ) where:

1. K is a logic called the logic of T .

2. L is a language of K called the language of T .

3. Γ is a set of formuloids of L called the axiomoids of T .

The span of T , written span(T ), is the union of the spans of
the axiomoids of T , i.e.,

[

θ∈Γ

span(θ).

A is an axiom of T if A ∈ span(T ). A is a (semantic) theorem
of T , written T |= A, if

span(T ) |=K A.

A theoremoid of T is a formuloid θ of L such that, for each
A ∈ span(θ), T |= A. Obviously, each axiomoid of T is also
a theoremoid of T . An axiomoid is a generalization of an
axiom; an individual axiom A (in the usual sense) can be
represented by an axiomoid (Π,M) such that dom(Π) = {A}
and M(A) = A.
T can be viewed as simultaneously both an axiomatic the-

ory and an algorithmic theory. The axiomatic theory is rep-
resented by

Taxm = (K, L, {M(E) | ∃Π.(Π,M) ∈ Γ and E ∈ dom(Π)}),

and the algorithmic theory is represented by

Talg = (K, L, {Π | (Π,M) ∈ Γ for some M}).

Let Ti = (K, Li,Γi) be a biform theory for i = 1, 2. T2 is
an extension of T1, written T1 ≤ T2, if L1 ⊆ L2 and Γ1 ⊆
Γ2. T2 is a conservative extension of T1, written T1 � T2,
if T1 ≤ T2 and, for all formulas A of L1, if T2 |= A, then
T1 |= A. Note that ≤ and � are partial orders.

3.4 Translations and Interpretations
Let Ki be a logic and Ti = (Ki, Li,Γi) be a biform theory

for i = 1, 2. A translation from T1 to T2 is a transformer Φ
from L1 to L2 that:

1. Respects types, i.e., if E1 and E2 are expressions in
L1 of the same type and Φ(E1) and Φ(E2) are defined,
then Φ(E1) and Φ(E2) are also of the same type.

2. Respects negation, i.e., if A is a formula in L1 and
Φ(A) is defined, then Φ(¬A) = ¬Φ(A).

T1 and T2 are called the source theory and the target theory
of Φ, respectively. Φ is total if Φ(E) is defined for each
E ∈ L1. Φ fixes a language L if Φ(E) = E for each E ∈ L.

An interpretation of T1 in T2 is a total translation Φ from
T1 to T2 such that, for all formulas A ∈ L1, if T1 |= A,
then T2 |= Φ(A). An interpretation thus maps theorems
to theorems. (Since any translation respects negation, an
interpretation also maps negated theorems to negated theo-
rems.) A retraction from T2 to T1 is an interpretation Φ of
T2 in T1 such that T1 ≤ T2 and Φ fixes L1.

Lemma 1. Let Φ1 be a retraction from T2 to T1 and Φ2

be a retraction from T3 to T2. Then Φ1 ◦ Φ2 is a retraction
from T3 to T1.

Proof. Let Φ = Φ1 ◦ Φ2. We first need to prove that
Φ is an interpretation. Φ is clearly total. Assume T3 |= A.
Then T2 |= Φ2(A) since Φ2 is an interpretation of T3 in T2.
In turn, T1 |= Φ1(Φ2(A)), i.e., T1 |= Φ(A) since Φ1 is an
interpretation of T2 in T1. Hence, Φ is an interpretation of
T3 in T1.

By transitivity of ≤, since T1 ≤ T2 and T2 ≤ T3, T1 ≤ T3.
Finally, we need to prove that Φ fixes L1. Let E ∈ L1 ⊆

L2 ⊆ L3. Φ2(E) = E since Φ2 is a retraction from T3 to T2

and E ∈ L2. Similarly, Φ1(Φ2(E)) = Φ1(E) = E since Φ1

is a retraction from T2 to T1 and E ∈ L1. Hence Φ(E) = E
and Φ fixes L1.

Proposition 1. If Φ is a retraction from T2 to T1, then
T1 � T2.

Proof. Let A be a formula of the language of T1 such
that T2 |= A. We must show that T1 |= A. By definition,
(1) Φ is an interpretation of T2 in T1 and (2) Φ fixes the
language of T1. (1) implies that T1 |= Φ(A), and (2) implies
Φ(A) = A. Therefore, T1 |= A.

Along the same lines, it is possible to define the union
and the intersection of theories. One must be careful, as
the union of two theories may produce a trivial (inconsis-
tent) theory, but there are no essential technical difficulties
involved.



4. SIMPLIFICATION OF EXPRESSIONS
Let T = (K, L,Γ) be a biform theory where

1. the language L contains the syntactic representation
of a programming language which is Turing complete,

2. there exists a total length function length : L → N

compatible with the subexpression relation, in other
words if E1 is a proper subexpression of E then

length(E1) < length(E),

3. all formuloids θ = (Π,M) are such that the algorithm
of Π is expressible in L,

4. Γ is finite, and the domain of the axiomoids of Γ are
finite.

5. Γ always contains at least the axiomoid corresponding
to the identity transformer.

We will call such a biform theory reflexive. Let ∼ be a
relation on L; we will interpret this relation as being the
“means the same thing as” relation. We explicitly refrain
from defining this relation. Our notion of simplification will
be parametrized by this relation; one could choose ∼ to be
equality, or such that 1 ∼ x

x
even as denotations of total

functions on the reals.

Definition 4. Let e1, e2 be two expressions of the lan-
guage L of T . We say that e1 < e2 if length(e1) < length(e2)
and e1 ∼ e2. Let c be a positive integer. We say that e1
and e2 are c-equivalent, denoted e1 ∼c e2 if e1 ∼ e2 and
| length(e1) − length(e2)| ≤ c.

Since our theories T are quite powerful, the coding does
not make a huge difference. But since it can make a differ-
ence for very simple expressions, it is generally better to con-
sider simplification of expressions only up to c-equivalence,
as the notion of “simpler” is not stable enough for c-equivalent
expressions. Our experience seems to show that taking c be-
tween 50 and 100 seems to lead to a meaningful notion of
“simpler”.

Definition 5. Let e be an expression of the language L
of T . The (absolute) complexity of e is

C(e) = min{length(p) : p() = e}
where p ranges over all nullary programs in L.

It is important to remark that if e is essentially random,
then the program () -> e will be the one to achieve this
minimum. The previous two definitions are the natural ones
coming directly from Kolmogorov complexity. However, al-
though intuitively clear, they are not very helpful in prac-
tice, which is why we have to turn to MDL.

From now on, to make the exposition simpler, we will
assume that we have a logic K and a fixed language L. As-
sume that we have a finite set of reflexive biform theories
Ti = (K, L,Γi) where the Γi form a complete lattice (with
union and intersection for join and meet), and that further-
more, if Γi ⊆ Γj then Γj must be a conservative extension
of Γi. This is not a very stringent restriction: it simply cor-
responds to proper modular construction of mathematical
software, where adding new modules does not modify the

meaning of previously defined notions. Denote by T such a
lattice of theories.

Let 〈Π1,Π2, . . .〉 be a recursively enumerable sequence of
transformers from a reflexive biform theory T , which corre-
spond to a sequence 〈Θ1,Θ2, . . .〉 of formuloids of T . Fur-
thermore, suppose that given an expression e ∈ L, not only
is e ∼ Πi(e) for all i, but in fact that e = Πi(e) is a theorem
of some member of T. Call ei = Πi(e) a reachable expres-
sion. It is instructive to think of these transformers as the
(composition of) all the basic term rewrites that preserve
the meaning of expressions, like sin2(x) + cos2(x) = 1 and
so on. It is very important the this sequence be recursively
enumerable, otherwise none of the theory of Kolmogorov
Complexity applies.

Definition 6. Let e be an expression of L, and Θ =
(Π,M) an axiomoid of some Tj ∈ T. Then there exists
a smallest reflexive biform theory Ti ∈ T such that e = Π(e)
is a theorem of Ti. Denote this as theory(e,Π) = Ti. The
theory of e, theory(e) is defined to be theory(e, Identity).

Note that an expression like sin(x) = sin(x) is only a
theorem of those Ti which have enough machinery to first
show the expression in question denotes a valid term in that
theory. For example 1/0 = 1/0 is rarely a theorem since 1/0
is usually non-denoting.

In the spirit of MDL, we are now ready to define the notion
of length we will use:

Definition 7. Let e be an expression of L. The length
of e in T is defined to be

lengthT(e) = length(e) + length(theory(e)),

where the length of a theory is defined to be the sum of the
length of the representation in L of all the spans of all the
axiomoids of theory(e).

Proposition 2. length
T
(e) is well-defined.

Proof. First, length(e) is clearly well-defined. Since T is
formed from a complete lattice of biform theories theory(e)
is also well-defined. Furthermore, we assumed that our the-
ories have finite Γi and the functions M are representable as
formulas of L—which means that length(theory(e)) is well-
defined and finite.

The length of an expression e with respect to a set of theories
is essentially the length of the axiomatic description of the
theory necessary to completely describe e, plus the length
of e, as encoded with the help of that theory. To completely
describe e, it is necessary to be able to prove that e denotes
a value.

It is important to note that although we use the trans-
formers Π constantly, their representation length is not used
at all in the definition of the length of an expression. This
is because we are not interested in computational complex-
ity issues, and such issues have very significant impact on
the size of the representation of the transformers. In other
words, the length of expressions only depends on the size of
the generators of the axiomatic part of the theory of that
expression.

Putting all of these ideas together, this leads naturally to

Definition 8. Let e be an expression of L, 〈Π0, Π1,
Π2, . . .〉 (where Π0 = Identity) be a recursively enumerable



sequence of transformers from some reflexive theory family
T. Let ej = Πj(e). The simplest reachable member from
this family is the ej which minimizes lengthT.

If we pick the sequence of transformers as 〈Identity,Π〉
where Π is idempotent, then for an expression e, simplest in
this context means choosing between e and Π(e) depending
on length

T
. Furthermore if theory(e) = theory(Π(e)), then

this notion further reduces to that implied by definition 4.

5. APPLICATIONS
We will first go through two example applications of the

above theory, to understand what this means in specific
cases. We then explain what this means for the architecture
of simplification routines in Computer Algebra Systems.

5.1 Examples
Let us first study a rather simple example, but one which

can be easily understood, and which in fact displays quite
a number of the issues rather well. Suppose we want to
know when 2n, with n an explicit positive integer, should
be displayed as is or as an explicit integer. Clearly 4 is
simpler than 22, yet 210000 is intuitively simpler than the
integer it represents.

Fix L to be the language of Maple, and K an appropriate
logic. For T , pick Γ to contain only two axiomoids, the iden-
tity and one which evaluates integer expressions built from
integers and the operations +, ∗, − and ˆ. We will encode
our integers in base 2, and measure length in bits; for techni-
cal issues (see [18] for the details), we encode our expressions
using self-delimiting bit strings. Note that in this example,
we are in the situation described in the last paragraph of
section 4 where we have only one idempotent transformer
and one fixed theory. The integer 2n takes 2n + 2 bits to
represent using a self-delimiting encoding (the length of the
complete integer, plus its length in unary, plus delimiters).
The expression 2n takes 2dlog2(n)e+2+9 bits where we use
9 extra bits to represent the function call ˆ(2, n). In other
words we wish to know when

2n+ 2 > 2dlog2(n)e + 11.

An easy computation shows that this happens whenever n ≥
8. With the particular encoding we have chosen, this says
that 27 is more complex than 128 but that 28 is simpler than
256.

It is also possible to analyze more complex examples fully,
in a very parametric fashion:

Proposition 3. Let T1 be a theory of expanded polyno-
mials, and T2 be a conservative extension of T1 which adds
machinery for Chebyshev polynomials. Let n ∈ N and x be
a symbol in T1, e2 = ChebyshevT (n, x) and e1 be the ex-
panded polynomial (in T1) such that e1 ∼ e2. Then there
exists a (computable) constant C such that if n > C then
e2 < e1. C depends only on length

T
(T2)− length

T
(T1), and

the constants appearing in the encodings of e1 in T1 and e2
in T2.

Proof. e1 can be encoded using at most a1n
2+a2ln(n)+

a3 bits in T1 (the coefficients grow exponentially with n, thus
their size grows linearly with n); e2 needs at least b1ln(n)+b2
bits in T2. Let T1 be encoded using c1 bits and T2 using
c1 + c2 bits. Choose C to be the largest positive real root of

|a1n
2 + (a2 − b1)ln(n) + (a3 − b2 − c2)| = 0

(if it exists), or 0 otherwise. The above expression is easily
seen to be real and increasing for n > 0, and negative for
n = 1 if a1 + a3 − b2 − c2 < 0. In typical encodings, a1 is
small, a3 and b2 are of comparable (small) size and c2 much
larger, making the overall expression negative.

In fact, with a = a1, b = a2 − b1, c = a3 − b2 − c2, one can
even get a closed form for the above constant C:

C =
1

2

r

2b

a

r

W−1(
2a

b
e−

2c

b ),

where W−1(z) denotes the −1 branch of the Lambert W
function [9]. The appearance of Lambert’s W function is due
to the fact that we are changing scales between a polynomial
scale and a (simple) exponentially larger scale.

Using this theory, we can also prove a non-simplification
theorem: given two explicit integers n and m, it is never the
case that the algebraic expression n+m is simpler than the
integer q equal to n +m; this result is indendent of the bit
representation of the explicit integers. This result does not
hold anymore if either of n or m are implicit intgers, or if
+ is replaced by ∗. In other words, representational issues
alone are not sufficient to argue for an inert representation
for + as being absolutely necessary in a CAS (much to the
author’s chagrin).

5.2 Implementations
A very rough description of a simplifier is as an ordered

collection of semantics-preserving expression transformations.
An expression is first decomposed into its basic components
(variables, special functions, operators, etc). To each of
these basic components, as well as to some specific com-
binations of components, is associated a set of applicable
transformations. These transformations are ordered, where
transformers from more complicated functions (like Gauss’s
hypergeometric function) to simpler ones (Bessel functions,
polynomials, etc) are placed first, followed by transforma-
tions that stay in the same class. These transformers are
then applied in order. This is repeated, as some transfor-
mations can produce new basic components, and thus the
list of applicable transformations has to be updated. Some
of these transformations are heuristic in nature - in other
words they may or may not produce a “simplification”. Oth-
ers, like the work of Monagan and Mulholland [20], could be
called structure revealing transformations, and are deeply
algorithmic; they tend to be intra-theory transformations.

For example, at a particular point in time (for Maple 9.5),
simplify classified sub-expressions according to the follow-
ing (ordered) categories:

CompSeq, constants, infinity, @@, @, limit, Limit,

max, min, polar, conjugate, D, diff, Diff, int,

Int, sum, Sum, product, Product, RootOf,

hypergeom, pochhammer, Si, Ci, LerchPhi, Ei, erf,

erfc, LambertW, BesselJ, BesselY, BesselK, BesselI,

polylog, dilog, GAMMA, WhittakerM, WhittakerW,

LegendreP, LegendreQ, InverseJacobi, Jacobi,

JacobiTheta, JacobiZeta, Weierstrass, trig,

arctrig, ln, radical, sqrt, power, exp, Dirac,

Heaviside, piecewise, abs, csgn, signum, rtable,

constant

Some of the categories contain single items (like BesselI),
while others contain many (like trig). The ordering in



Maple was obtained after a large number of practical ex-
periments [7]. In large part, the ordering is based on the
idea that the currently implemented transformations from
categories in the earlier parts of the list are more likely to
produce results from categories in latter parts of the list; this
naturally produces a lattice, which was then flattened to pro-
duce the given list. The exceptions are enabling transforma-
tions (like the ones in the constant and infinity classes),
which allow many more latter transformations to be per-
formed. Interestingly, the correspondence between this or-
dering and the one obtained by measuring theory length is
a good match. The match at the level of pure axiomatic
theories is not so good, but once the theories are augmented
with all the valid transformation theorems, as one needs to
do with proper biform theories that contain transformers for
conversions from one form to another, the match becomes
very good indeed. This points to an area where our defini-
tions could be improved to take this effect into account. The
only cases where theory and practice do not necessarily agree
are in cases where the difference in length between the the-
ories involved is small, so that the expressions involved are
frequently c-equivalent. In other words, this decomposition
into basic components is, in the context of the mathemat-
ical functions that simplify deals with, quite a good proxy
for the underlying axiomatic theories involved.

Here and there, there are “magic constants”, chosen com-
pletely at the whim of the developer, which control whether
a particular transformation routine will in fact expand a
function (like binomial) or not. For example, the Bessel
functions will automatically expand into a trigonometric
form (ie Jν/2(z) can be rewritten using only sin and cos
for integer ν). But this is done only if |ν/2| ≤ 10; similarly,
simplify will reduce Jν(z) using BesselJ’s recurrence rela-
tion, but only if |ν| < 100. The author previously did not
believe in such magic constants, as there did not seem to be
a reasonable way to choose them, although the pragmatism
behind the approach was very appealing. At least now it
might be possible to objectively choose these constants.

6. CONCLUSIONS AND FURTHER WORK
We have presented a framework for the simplification of

representations of expressions which precisely defines when
to choose between two particular semantically equivalent
representations of an expression. This is fundamentally in-
spired by the theories of Kolmogorov Complexity and mini-
mum description length. To be able to apply these theories
to the mixed computational-axiomatic formalism of expres-
sions in a Computer Algebra System, we have used biform
theories, which were invented expressly for this purpose of
mixing deduction and computation. We added a certain set
of reflexivity axioms to the base biform theories to refine
the framework to one immediately applicable to MDL and
current CASes. These axioms were needed to insure that we
had a uniform language which could express formulas and
algorithms, and that these formulas and algorithms could
be effectively enumerated in some cases of interest. Effec-
tive enumeration is one of the key ingredients which makes
the theory of Kolmogorov Complexity as powerful as it is.

An interesting aspect of this work that we have not had
a chance to explore is that changes in knowledge affect the
axiomatization of theories, which thus affects the length of
the expressions associated with those theories. Typically,
this serves to reduce the overall complexity of expressions. A

leading example is the explosion of work on using holonomy
as a unifying theory for special functions [25, 8], which has
had a tendency to make hitherto very complex expression
seem quite a bit simpler; our theory should help make this
intuition somewhat more quantifiable.

Another issue is that of computational complexity. Our
approach explicitly avoids such issues, both for computation
of the length as well as dealing with the fact that asymp-
totically computationally efficient algorithms for arithmetic
(like polyalgorithms for fast integer multiplication) tend to
make implementations much larger. Certainly it does not
seem wise to penalize expressions because they are part of
a computationally more efficient theory; however we do not
yet know how to adjust our framework to properly account
for this. A balanced approach, like that of MDL, seems best.
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