
An Introduction to Temporal

Logics

c©2001,2004 M. Lawford

Outline

• Motivation: Dining Philosophers

• Safety, Liveness, Fairness & Justice

• Kripke structures, LTS, SELTS, and Paths

• Linear Temporal Logic

• Branching Temporal Logics: CTL and CTL∗

• Real-time Temporal Logics: RTTL, RTL,

etc.

1

An Introduction to Temporal Logics

References:

• E.M. Clarke, E.A. Emerson, and A.P. Sistla, “Auto-
matic verification of finite state concurrent systems
using temporal logic specifications.” ACM Trans on

Prog Languages & Systems, Vol. 8, No. 2, April
1986, pp. 244-263.

• Z. Manna and A. Pnueli. The Temporal Logic of

Reactive and Concurrent Systems. Springer-Verlag,
New York, 1992.

• A. Arnold, Finite Transition Systems. Prentice Hall,
1994.

• J.S. Ostroff. Temporal Logic for Real-Time Sys-

tems. Research Studies Press/Wiley, Taunton, UK,
1989.

• E.A. Emerson et al. “Quantitative temporal rea-
soning.” Real-Time Systems, No. 4, pp. 331-352,
1992.

2

Motivation:

• Want to be able to express & verify prop-

erties of system dynamics:

– Safety (invariance): Nothing bad will

happen

– Liveness: Something good will happen

• Allows for abstract specification of proper-

ties without providing all the details

• Can express properties that are not express-

ible by defining 1 step transition relation

(e.g. fairness)

3

Detailed Outline

• Motivation

• System Models

– Kripke Structures

– Labeled Transitions Systems (LTS)

– State-Event Labeled Transition Systems (SELTS)

– Duality of State & Event representations

• Temporal Logics

– Propositional Logic

– LTL - Linear Temporal Logic

– CTL - Computational Tree Logic

– CTL*

• LTL and CTL - What’s the difference?

– Expressivity, Complexity, & Decidability

4

Motivation: Dining Philosophers &
Deadlock

Abstraction of resource sharing problem com-

mon in many systems.

• n philosophers seated at round table with

food in center

• n chop sticks, one between each pair

• Philosophers are either thinking or eating

• To eat a philosopher must use 2 chop-

sticks (the one to their left & one to their

right

Greedy heuristic: Hold on to any chop-stick

until you get to eat.

Deadlock: When the system is prevented from

taking any action (no transitions are possible

since all enablement conditions are false).

Problem: System can deadlock (how?)

5

Motivation for Fairness

Less Greedy heuristic: Only pick up right chop-

stick if left present.

Assumptions:

• weak fairness: any transition that is con-

tinuously enabled eventually happens (i.e.

philosopher who is eating will always even-

tually finish)

Still not enough!

• strong fairness: any transition that is en-

abled infinitely often will eventually occur.

(If his/her two chop-sticks are available in-

finitely often, philosopher will eventually

eat - and hence eat infinitely often.)

6

Motivation: Dining Philosophers &
Livelock

Strong fairness assumption for “Less Greedy”

heuristic still not enough to prevent individual

starvation due to livelock.

Livelock: When system component is pre-

vented from taking any action or a particular

action (individual starvation).

Two can starve in n = 4 (4 philosophers) case

if consecutive feedings allowed. How?

a) 1 starts eating, then 3.

b) 1 finishes, then starts feeding again before 3

finishes.

c) 3 finishes,then starts again before 1 finishes. . .

Even disallowing consecutive feedings for n ≥

5, one philosopher can still starve due “live-

lock”. How?

7

Motivation

Want to be able to express & verify properties

of system dynamics:

Safety : Nothing bad will happen.

Liveness : Something good will happen.

Fairness : Independent processes will progress.

Temporal logics:

• Allows for formal abstract specification of

above properties

• Can express properties that are not express-

ible by describing 1 step transition relation

(e.g. fairness).

• Can be “effectively” model-checked for fi-

nite state systems

Predicate logic allows to reason about a state.

Temporal logic allows to reason about sequences

of states.

8

Kripke Structures

M := 〈S,R, S0, A, P 〉

• S is a set of states

• R ⊆ S×S is a transition relation (or equiv-

alently R : S → P(S))

• S0 ⊆ S is a set of initial states

• A is a set of atomic propositions (e.g. y=1)

• P : S → P(A) labels each state with the

set of atomic propositions satisfied by the

state

is a Kripke structure (aka. labeled state tran-

sition graph)

A path in M is a sequence of states π:

• π := s0s1 . . . sn ∈ S+ and R(sn) = ∅ or,

• π := s0s1 . . . ∈ Sω

such that s0 ∈ S0 and for all i ≥ 0, (si, si+1) ∈ R

in which case we write si → si+1.

9

Paths & Postfixes

Let |π| be the length of the path π. Any path

or computation π in a Kripke structure satisfies

the following:

i) Initialization: s0 is an initial state of M.

ii) Succession: 0 ≤ i < |π| implies

(si, si+1) ∈ R (i.e. si → si+1 in M)

iii) Diligence: π is finite, ending in state sn iff

R(sn) = ∅.

Def: The kth postfix of a path π = s0s1 . . .,

denoted πk will be used to denote the k-shifted

suffix of π, that is πk := sksk+1

10

Labeled Transition Systems (LTS)

M := 〈S,Σ, RΣ, S0〉

• S is a set of states

• Σ is a set of transition labels (“events”)

• RΣ = {αM ⊆ S × S|α ∈ Σ} is a set of tran-

sition relations (or, equivalently, for each

α ∈ Σ, αM : S → P(S))

• S0 ⊆ S is a set of initial states

is a Labeled Transition System (LTS)

A path in M is a sequence of states and events

π:

• π := s0
α1→s1

α2→ . . .
αn−1
→ sn and

(∀α ∈ Σ)αM(sn) = ∅, or

• π := s0
α1→s1

α2→ . . .

such that s0 ∈ S0 and for all i ≥ 0, (si, si+1) ∈

αM
i in which case we write si

αi→si+1.

11

State Event Labeled Transition Sys-
tems (SELTS)

M := 〈S,Σ, RΣ, S0, P 〉

• where 〈S,Σ, RΣ, S0〉 is a LTS, and

• P : S → P(A) is a state output map,

is a State Event Labeled Transition System

(SELTS)

A path in M is defined the same as for a LTS.

Such paths in a transition system satisfying the

“diligence” property are also known as maxi-

mal paths.

12

An SELTS Example

(0,1,a)

(0,1,a)

[0,0,0]

(0,1,a)
[0,0,0]

[0,0,0]

[0,0,0] [0,0,0]

[1,0,1]

[2,0,2]

(0,1,c)
[0,0,2]
(1,1,b)

(1,1,e)

(1,1,b)

(1,1,b)

(1,1,b)
[0,1,1]

[0,2,2]
(1,1,b)(1,1,b)

[0,0,1]

[0,1,2]

(2,0,d)

α

γ

tick

tick

ticktick

tick

γ

q0

β

tick

tick tick

α

(u, v, x)
[cα, cβ, cγ]

γ γ

State Legend

α

13

Duality of State and Event Models

Claim 1: Any LTS has an equivalent Kripke

structure representation.

Proof: For LTS M := 〈S,Σ, RΣ, S0〉 create
Kripke structure M′ := 〈S′, R′, S′

0, A
′, P ′〉 :

Let S′ := S ×Σ. Then (s1, α1)→(s2, α2) in M′

iff (∃s ∈ S)s1
α1→s2

α2→s in M defines R′. Take

S′
0 := {(s0, α0) ∈ S′|s0 ∈ S0 ∧ αM

0 (s0) 6= ∅}

Let η be the next event variable. Take

A′ := {η = α|α ∈ Σ}

So P ′ : S′ → P(A′) is given by (s, α)
P ′
7→ (η = α)

Corollary: Any SELTS has an equivalent Kripke

structure representation.

Claim 2: Any Kripke structure has an equiva-

lent LTS representation.

14

Linear Temporal Logic: Syntax

The definition of linear temporal logic formula

adds two new operators X and U, to the defi-

nition of a propositional formula.

Def: A formula is defined as follows:

1. If φ ∈ A ∪ {⊥,>} then φ formula.

2. If φ and ψ are formulas, so are:

(¬φ), (φ ∧ ψ), (φ ∨ ψ), (φ→ ψ), (φ↔ ψ)

3. If φ and ψ are formulas, then so are:

Xφ and φUψ

15

Linear Temporal Logic: Semantics

Def: (Satisfaction) For LTL formulas φ, φ1
and φ2, M a Kripke structure and π := s0s1 . . .,
a path in M then the satisfaction relation is
defined as follows:

• If φ ∈ A ∪ {⊥,>}, is an atomic proposition
or logical constant, then π |= φ iff s0 |= φ

(i.e. φ ∈ P (s0) or φ is >)

• π |= φ1 ∨ φ2 iff π |= φ1 or π |= φ2

• π |= φ1 ∧ φ2 iff π |= φ1 and π |= φ2

• π |= ¬φ iff π 6|= φ

• π |= Xφ iff π1 exists and π1 |= φ

• π |= φ1Uφ2 iff π |= φ2, or
(∃k > 0) πk is defined, πk |= φ2 and
(∀i : 0 ≤ i < k)πi |= φ1.

We say that state s of M satisfies formula φ,
written M, s |= φ iff for every path π in M

starting at s, we have π |= φ.

We say that M |= φ iff for every path π in M

it is the case that π |= φ

16

Derived Operators: F & G

Linear Temporal Logic (LTL) allows us to say:

• A formula will eventually be true on a path

• A formula will alway be true on a path

Consider the temporal formula >Uφ

Since > is true in every state, >Uφ is satisfied

by any path π for which (∃k ≥ 0)πk |= φ

(i.e. EVENTUALLY φ is true in path π).

As an abbreviation for >Uφ we write Fφ.

If φ is always true at every state in π, then it

must be the case that ¬φ is never true. i.e.

π |= ¬F¬φ.

In this case we say that HENCEFORTH φ is

true in π. As an abbreviation for ¬F¬φ we write

Gφ.

17

Combining Temporal Operators

Let π be an infinite path. By combining the F

and G operators we can say:

• At a certain point, a formula is true at all

future states of the path

π |= FGφ iff (∃k ≥ 0)πk |= Gφ
iff (∃k ≥ 0)(∀i ≥ k)πi |= φ

• A formula is true at infinitely many states

on the path

π |= GFφ iff (∀k ≥ 0)πk |= Fφ
iff (∀k ≥ 0)(∃i ≥ k)πi |= φ

18

Fairness Formulas

Strong Fairness: FGφ1 → GFφ2

E.g. For Dining philosophers, want paths to

satisfy property:

FG(xi = Feed)→ GF(xi = Think)

If a philosopher tries to feed forever, then he

will always eventually be thinking. This simpli-

fies to ¬FG(xi = Feed) (i.e. He won’t succeed

at feeding forever) for philosopher with two

states.

Weak Fairness: GFφ1 → GFφ2

GF(xi = Think)→ GF(xi = Feed)

If a philosopher is thinking infinitely often, he

will feed infinitely often.

19

Computational Tree Logic (CTL):
Syntax

The definition of a CTL formula adds four new

operators EX,AX,E(·U·) and A(·U·), to the

definition of a propositional formula.

Def: A formula is defined as follows:

1. If φ ∈ A or φ is > or ⊥ then φ formula.

2. If φ and ψ are formulas, so are:

(¬φ), (φ ∧ ψ), (φ ∨ ψ), (φ→ ψ), (φ↔ ψ)

3. If φ and ψ are formulas, then so are:

EXφ,AXφ, and E(φUψ), A(φUψ)

20

CTL: Semantics

Def: (Satisfaction) For temporal formulas φ,

φ1 and φ2, M a Kripke structure and s0 ∈ S

a state of M, the satisfaction relation |= is

defined as follows:

• If φ ∈ A∪{⊥,>}, is an atomic proposition or

logical constant, then M, s0 |= φ iff s0 |= φ

(i.e. φ ∈ P (s0) or φ is >)

• M, s0 |= φ1∨φ2 iffM, s0 |= φ1 orM, s0 |= φ2

• M, s0 |= φ1 ∧ φ2 iff M, s0 |= φ1 and

M, s0 |= φ2

• M, s0 |= ¬φ iff M, s0 6|= φ

• M, s0 |= EXφ iff (∃s′ ∈ S)s0→s′ andM, s′ |=

φ
• M, s0 |= AXφ iff

(∀s′ ∈ S) if s0→s′ then M, s′ |= φ

21

CTL: Semantics (cont.)

• M, s0 |= E(φ1Uφ2) iff

– M, s0 |= φ2, or

– (∃π = s0→s1→ . . . sn→ . . .), a path in M

s.t. (∃k > 0), M, sk |= φ2, and

(∀i : 0 ≤ i < k)M, si |= φ1.

• M, s0 |= A(φ1Uφ2) iff

– M, s0 |= φ2, or

– (∀π = s0→s1→ . . . sn→ . . .), paths in M,

∗ (∃k > 0), M, sk |= φ2, and

(∀i : 0 ≤ i < k)M, si |= φ1

∗ π = s0→s1→ . . . sn is a finite path and

(∀i : 0 ≤ i ≤ n)M, si |= φ1.

22

Expressivity of LTL and CTL

A logic is said to be more expressive than an-

other if it can express (say) more things.

In terms of expressivity, LTL and CTL are not

comparable in the sense that each logic can

say things that the other cannot, e.g.

• LTL cannot express the existence of a path

like CTL can (e.g. EXφ)

• CTL cannot express fairness constraints such

as the LTL formula

GF(η = tick)→ GF(η = β)

This motivates the creation of CTL∗, a logic

that is more expressive than both LTL and

CTL.

23

CTL∗: Syntax

In terms of expressivity CTL∗ is a superset of

both LTL and CTL.

A state formula is any formula of the form:

φ ::= p|>|(¬φ)|(φ ∧ φ)|A[α]|E[α]

where p is any atomic proposition and α is a

path formula and

A path formula is any formula of the form:

α ::= φ|(¬α)|(α ∧ α)|αUα|Xα

where φ is any state formula.

24

Real Time Temporal Logic (RTTL)

Assume we are dealing with a SELTS M.

Consider path:

π := s0
α1→s1

α2→ . . .

For an event α ∈ Σ, define

#α(π, k) =

{

number of α’s from s0 and sk
undefined if k > |π|

• π |= F1U
α
[l,u]

F2 iff ∃k ≥ 0 such that πk is

defined, πk |= F2 and ∀i,0 ≤ i < k, πi |= F1 and

l ≤#α(π, k) ≤ u.

If we have a distinguished event tick that rep-

resents the tick of a global clock, then

π |= F1U
tick
[l,u] F2

iff path π satisfies F1 until F2 between the lth

and u+1th tick transition.

25

