An Introduction to Temporal Logics

©2001,2004 M. Lawford

Outline

- Motivation: Dining Philosophers
- Safety, Liveness, Fairness & Justice
- Kripke structures, LTS, SELTS, and Paths
- Linear Temporal Logic
- Branching Temporal Logics: CTL and CTL*
- Real-time Temporal Logics: RTTL, RTL, etc.

An Introduction to Temporal Logics

References:

- E.M. Clarke, E.A. Emerson, and A.P. Sistla, "Automatic verification of finite state concurrent systems using temporal logic specifications." ACM Trans on Prog Languages & Systems, Vol. 8, No. 2, April 1986, pp. 244-263.
- Z. Manna and A. Pnueli. *The Temporal Logic of Reactive and Concurrent Systems*. Springer-Verlag, New York, 1992.
- A. Arnold, *Finite Transition Systems*. Prentice Hall, 1994.
- J.S. Ostroff. *Temporal Logic for Real-Time Systems*. Research Studies Press/Wiley, Taunton, UK, 1989.
- E.A. Emerson et al. "Quantitative temporal reasoning." *Real-Time Systems, No. 4*, pp. 331-352, 1992.

Motivation:

- Want to be able to express & verify properties of system dynamics:
 - Safety (invariance): Nothing bad will happen
 - Liveness: Something good will happen
- Allows for abstract specification of properties without providing all the details
- Can express properties that are not expressible by defining 1 step transition relation (e.g. fairness)

Detailed Outline

- Motivation
- System Models
 - Kripke Structures
 - Labeled Transitions Systems (LTS)
 - State-Event Labeled Transition Systems (SELTS)
 - Duality of State & Event representations
- Temporal Logics
 - Propositional Logic
 - LTL Linear Temporal Logic
 - CTL Computational Tree Logic
 - CTL*
- LTL and CTL What's the difference?
 - Expressivity, Complexity, & Decidability

Motivation: Dining Philosophers & Deadlock

Abstraction of resource sharing problem common in many systems.

- n philosophers seated at round table with food in center
- n chop sticks, one between each pair
- Philosophers are either thinking or eating
- To eat a philosopher must use 2 chopsticks (the one to their left & one to their right

Greedy heuristic: Hold on to any chop-stick until you get to eat.

Deadlock: When the system is prevented from taking *any* action (no transitions are possible since all enablement conditions are false).

Problem: System can deadlock (how?)

Motivation for Fairness

Less Greedy heuristic: Only pick up right chopstick if left present.

Assumptions:

 weak fairness: any transition that is continuously enabled eventually happens (i.e. philosopher who is eating will always eventually finish)

Still not enough!

 strong fairness: any transition that is enabled infinitely often will eventually occur. (If his/her two chop-sticks are available infinitely often, philosopher will eventually eat - and hence eat infinitely often.)

Motivation: Dining Philosophers & Livelock

Strong fairness assumption for "Less Greedy" heuristic still not enough to prevent individual starvation due to *livelock*.

Livelock: When system component is prevented from taking any action or a particular action (individual starvation).

Two can starve in n = 4 (4 philosophers) case if consecutive feedings allowed. How?

- a) 1 starts eating, then 3.
- b) 1 finishes, then starts feeding again before 3 finishes.
- c) 3 finishes, then starts again before 1 finishes. . .

Even disallowing consecutive feedings for $n \ge 5$, one philosopher can still starve due "live-lock". How?

Motivation

Want to be able to express & verify properties of system dynamics:

Safety : Nothing bad will happen.

Liveness : Something good will happen.

Fairness : Independent processes will progress.

Temporal logics:

- Allows for formal abstract specification of above properties
- Can express properties that are not expressible by describing 1 step transition relation (e.g. fairness).
- Can be "effectively" model-checked for finite state systems

Predicate logic allows to reason about a state. Temporal logic allows to reason about sequences of states.

Kripke Structures

 $\mathbf{M} := \langle S, R, S_0, A, P \rangle$

- S is a set of states
- $R \subseteq S \times S$ is a transition relation (or equivalently $R : S \to \mathcal{P}(S)$)
- $S_0 \subseteq S$ is a set of initial states
- A is a set of atomic propositions (e.g. y=1)
- P: S → P(A) labels each state with the set of atomic propositions satisfied by the state

is a *Kripke structure* (aka. labeled state transition graph)

A path in M is a sequence of states π :

• $\pi := s_0 s_1 \dots s_n \in S^+$ and $R(s_n) = \emptyset$ or,

•
$$\pi := s_0 s_1 \ldots \in S^{\omega}$$

such that $s_0 \in S_0$ and for all $i \ge 0$, $(s_i, s_{i+1}) \in R$ in which case we write $s_i \rightarrow s_{i+1}$.

9

Paths & Postfixes

Let $|\pi|$ be the *length of the path* π . Any path or *computation* π in a Kripke structure satisfies the following:

- i) Initialization: s_0 is an initial state of M.
- ii) Succession: $0 \le i < |\pi|$ implies $(s_i, s_{i+1}) \in R$ (i.e. $s_i \to s_{i+1}$ in M)
- **iii)** Diligence: π is finite, ending in state s_n iff $R(s_n) = \emptyset$.

Def: The *k*th *postfix of a path* $\pi = s_0 s_1 \dots$, denoted π^k will be used to denote the *k*-shifted suffix of π , that is $\pi^k := s_k s_{k+1} \dots$

Labeled Transition Systems (LTS)

 $\mathbf{M} := \langle S, \boldsymbol{\Sigma}, R_{\boldsymbol{\Sigma}}, S_{\boldsymbol{0}} \rangle$

- S is a set of states
- Σ is a set of transition labels ("events")
- $R_{\Sigma} = \{ \alpha^{\mathbf{M}} \subseteq S \times S | \alpha \in \Sigma \}$ is a set of transition relations (or, equivalently, for each $\alpha \in \Sigma, \ \alpha^{\mathbf{M}} : S \to \mathcal{P}(S) \}$
- $S_0 \subseteq S$ is a set of initial states
- is a Labeled Transition System (LTS)

A *path in* M is a sequence of states and events π :

• $\pi := s_0 \xrightarrow{\alpha_1} s_1 \xrightarrow{\alpha_2} \dots \xrightarrow{\alpha_{n-1}} s_n$ and $(\forall \alpha \in \Sigma) \alpha^{\mathbf{M}}(s_n) = \emptyset$, or • $\pi := s_0 \xrightarrow{\alpha_1} s_1 \xrightarrow{\alpha_2} \dots$

such that $s_0 \in S_0$ and for all $i \ge 0, (s_i, s_{i+1}) \in \alpha_i^{\mathbf{M}}$ in which case we write $s_i \xrightarrow{\alpha_i} s_{i+1}$.

11

State Event Labeled Transition Systems (SELTS)

 $\mathbf{M} := \langle S, \boldsymbol{\Sigma}, R_{\boldsymbol{\Sigma}}, S_{\boldsymbol{0}}, P \rangle$

- where $\langle S, \Sigma, R_{\Sigma}, S_0 \rangle$ is a LTS, and
- $P: S \to \mathcal{P}(A)$ is a state output map,

is a *State Event Labeled Transition System* (SELTS)

A *path in* M is defined the same as for a LTS. Such paths in a transition system satisfying the "diligence" property are also known as *maximal paths*.

An SELTS Example

Duality of State and Event Models

Claim 1: Any LTS has an equivalent Kripke structure representation.

Proof: For LTS $\mathbf{M} := \langle S, \Sigma, R_{\Sigma}, S_0 \rangle$ create Kripke structure $\mathbf{M}' := \langle S', R', S'_0, A', P' \rangle$:

Let $S' := S \times \Sigma$. Then $(s_1, \alpha_1) \rightarrow (s_2, \alpha_2)$ in \mathbf{M}' iff $(\exists s \in S) s_1 \xrightarrow{\alpha_1} s_2 \xrightarrow{\alpha_2} s$ in \mathbf{M} defines R'. Take

$$S'_{0} := \{ (s_{0}, \alpha_{0}) \in S' | s_{0} \in S_{0} \land \alpha_{0}^{\mathbf{M}}(s_{0}) \neq \emptyset \}$$

Let η be the *next event* variable. Take

$$A' := \{\eta = \alpha | \alpha \in \Sigma\}$$

So $P': S' \to \mathcal{P}(A')$ is given by $(s, \alpha) \stackrel{P'}{\mapsto} (\eta = \alpha)$

Corollary: Any SELTS has an equivalent Kripke structure representation.

Claim 2: Any Kripke structure has an equivalent LTS representation.

Linear Temporal Logic: Syntax

The definition of linear temporal logic formula adds two new operators X and U, to the definition of a propositional formula.

Def: A *formula* is defined as follows:

- 1. If $\phi \in A \cup \{\bot, \top\}$ then ϕ formula.
- 2. If ϕ and ψ are formulas, so are:

 $(\neg \phi), (\phi \land \psi), (\phi \lor \psi), (\phi \to \psi), (\phi \leftrightarrow \psi)$

3. If ϕ and ψ are formulas, then so are:

 $X\phi$ and $\phi U\psi$

Linear Temporal Logic: Semantics

Def: (Satisfaction) For LTL formulas ϕ , ϕ_1 and ϕ_2 , M a Kripke structure and $\pi := s_0 s_1 \dots$, a path in M then the satisfaction relation is defined as follows:

• If $\phi \in A \cup \{\bot, \top\}$, is an atomic proposition or logical constant, then $\pi \models \phi$ iff $s_0 \models \phi$ (i.e. $\phi \in P(s_0)$ or ϕ is \top)

•
$$\pi \models \phi_1 \lor \phi_2$$
 iff $\pi \models \phi_1$ or $\pi \models \phi_2$

•
$$\pi \models \phi_1 \land \phi_2$$
 iff $\pi \models \phi_1$ and $\pi \models \phi_2$

•
$$\pi \models \neg \phi$$
 iff $\pi \not\models \phi$

•
$$\pi \models \mathsf{X}\phi$$
 iff π^1 exists and $\pi^1 \models \phi$

•
$$\pi \models \phi_1 \cup \phi_2$$
 iff $\pi \models \phi_2$, or
($\exists k > 0$) π^k is defined, $\pi^k \models \phi_2$ and
($\forall i : 0 \le i < k$) $\pi^i \models \phi_1$.

We say that state s of \mathbf{M} satisfies formula ϕ , written $\mathbf{M}, s \models \phi$ iff for every path π in \mathbf{M} starting at s, we have $\pi \models \phi$.

We say that $\mathbf{M} \models \phi$ iff for every path π in \mathbf{M} it is the case that $\pi \models \phi$

16

Derived Operators: F & G

Linear Temporal Logic (LTL) allows us to say:

• A formula will eventually be true on a path

• A formula will alway be true on a path Consider the temporal formula $\top U\phi$

Since \top is true in every state, $\top \cup \phi$ is satisfied by any path π for which $(\exists k \ge 0)\pi^k \models \phi$ (i.e. EVENTUALLY ϕ is true in path π).

As an abbreviation for $\top U\phi$ we write $F\phi$.

If ϕ is always true at every state in π , then it must be the case that $\neg \phi$ is never true. i.e. $\pi \models \neg \mathsf{F} \neg \phi$.

In this case we say that *HENCEFORTH* ϕ is true in π . As an abbreviation for $\neg F \neg \phi$ we write $G\phi$.

17

Combining Temporal Operators

Let π be an infinite path. By combining the F and G operators we can say:

• At a certain point, a formula is true at all future states of the path

$$\pi \models \mathsf{FG}\phi \quad \text{iff} \quad (\exists k \ge 0)\pi^k \models \mathsf{G}\phi \\ \text{iff} \quad (\exists k \ge 0)(\forall i \ge k)\pi^i \models \phi$$

 A formula is true at infinitely many states on the path

$$\pi \models \mathsf{GF}\phi \quad \mathsf{iff} \quad (\forall k \ge 0)\pi^k \models \mathsf{F}\phi \ \mathsf{iff} \quad (\forall k \ge 0)(\exists i \ge k)\pi^i \models \phi$$

Fairness Formulas

Strong Fairness: $FG\phi_1 \rightarrow GF\phi_2$

E.g. For Dining philosophers, want paths to satisfy property:

$$FG(x_i = Feed) \rightarrow GF(x_i = Think)$$

If a philosopher tries to feed forever, then he will always eventually be thinking. This simplifies to $\neg FG(x_i = Feed)$ (i.e. He won't succeed at feeding forever) for philosopher with two states.

Weak Fairness: $GF\phi_1 \rightarrow GF\phi_2$

$$GF(x_i = Think) \rightarrow GF(x_i = Feed)$$

If a philosopher is thinking infinitely often, he will feed infinitely often.

Computational Tree Logic (CTL): Syntax

The definition of a CTL formula adds four new operators $EX, AX, E(\cdot \cup \cdot)$ and $A(\cdot \cup \cdot)$, to the definition of a propositional formula.

Def: A *formula* is defined as follows:

1. If $\phi \in A$ or ϕ is \top or \bot then ϕ formula.

2. If ϕ and ψ are formulas, so are:

 $(\neg \phi), (\phi \land \psi), (\phi \lor \psi), (\phi \to \psi), (\phi \leftrightarrow \psi)$

3. If ϕ and ψ are formulas, then so are:

 $EX\phi, AX\phi$, and $E(\phi \cup \psi), A(\phi \cup \psi)$

CTL: Semantics

Def: (Satisfaction) For temporal formulas ϕ , ϕ_1 and ϕ_2 , M a Kripke structure and $s_0 \in S$ a state of M, the satisfaction relation \models is defined as follows:

- If φ ∈ A∪{⊥, ⊤}, is an atomic proposition or logical constant, then M, s₀ ⊨ φ iff s₀ ⊨ φ (i.e. φ ∈ P(s₀) or φ is ⊤)
- $\mathbf{M}, s_0 \models \phi_1 \lor \phi_2$ iff $\mathbf{M}, s_0 \models \phi_1$ or $\mathbf{M}, s_0 \models \phi_2$
- $\mathbf{M}, s_0 \models \phi_1 \land \phi_2$ iff $\mathbf{M}, s_0 \models \phi_1$ and $\mathbf{M}, s_0 \models \phi_2$
- $\mathbf{M}, s_0 \models \neg \phi \text{ iff } \mathbf{M}, s_0 \not\models \phi$
- $\mathbf{M}, s_0 \models EX\phi \text{ iff } (\exists s' \in S)s_0 \rightarrow s' \text{ and } \mathbf{M}, s' \models \phi$
- $\mathbf{M}, s_0 \models AX\phi$ iff $(\forall s' \in S)$ if $s_0 \rightarrow s'$ then $\mathbf{M}, s' \models \phi$

CTL: Semantics (cont.)

•
$$\mathbf{M}, s_0 \models E(\phi_1 \cup \phi_2)$$
 iff

$$-\mathbf{M}, s_0 \models \phi_2$$
, or

- $(\exists \pi = s_0 \rightarrow s_1 \rightarrow \dots s_n \rightarrow \dots)$, a path in M s.t. $(\exists k > 0)$, $\mathbf{M}, s_k \models \phi_2$, and $(\forall i : 0 \le i < k)\mathbf{M}, s_i \models \phi_1$.

•
$$\mathbf{M}, s_0 \models A(\phi_1 \cup \phi_2)$$
 iff

$$-\mathbf{M}, s_0 \models \phi_2$$
, or

- ($\forall \pi = s_0 \rightarrow s_1 \rightarrow \dots s_n \rightarrow \dots$), paths in M,
 - * $(\exists k > 0)$, $\mathbf{M}, s_k \models \phi_2$, and $(\forall i : 0 \le i < k)\mathbf{M}, s_i \models \phi_1$
 - * $\pi = s_0 \rightarrow s_1 \rightarrow \dots s_n$ is a finite path and $(\forall i : 0 \le i \le n)\mathbf{M}, s_i \models \phi_1.$

Expressivity of LTL and CTL

A logic is said to be more *expressive* than another if it can *express* (say) more things.

In terms of expressivity, LTL and CTL are not comparable in the sense that each logic can say things that the other cannot, e.g.

- LTL cannot express the existence of a path like CTL can (e.g. $EX\phi$)
- CTL cannot express fairness constraints such as the LTL formula

$$\mathsf{GF}(\eta = tick) \to \mathsf{GF}(\eta = \beta)$$

This motivates the creation of CTL*, a logic that is more expressive than both LTL and CTL.

CTL*: Syntax

In terms of expressivity CTL^* is a superset of both LTL and CTL.

A state formula is any formula of the form:

$$\phi ::= p |\top| (\neg \phi) | (\phi \land \phi) | A[\alpha] | E[\alpha]$$

where p is any atomic proposition and α is a path formula and

A *path formula* is any formula of the form:

$$\alpha ::= \phi | (\neg \alpha) | (\alpha \land \alpha) | \alpha \mathsf{U} \alpha | \mathsf{X} \alpha$$

where ϕ is any state formula.

Real Time Temporal Logic (RTTL)

Assume we are dealing with a SELTS $\ensuremath{\mathrm{M}}.$

Consider path:

$$\pi := s_0 \stackrel{\alpha_1}{\to} s_1 \stackrel{\alpha_2}{\to} \dots$$

For an event $\alpha \in \Sigma$, define

$$\#\alpha(\pi,k) = \begin{cases} \text{number of } \alpha \text{'s from } s_0 \text{ and } s_k \\ \text{undefined if } k > |\pi| \end{cases}$$

• $\pi \models F_1 \mathcal{U}_{[l,u]}^{\alpha} F_2$ iff $\exists k \geq 0$ such that π^k is defined, $\pi^k \models F_2$ and $\forall i, 0 \leq i < k, \pi^i \models F_1$ and $l \leq \#\alpha(\pi, k) \leq u$.

If we have a distinguished event *tick* that represents the tick of a global clock, then

$$\pi \models F_1 \mathcal{U}_{[l,u]}^{tick} F_2$$

iff path π satisfies F_1 until F_2 between the *l*th and u + 1th *tick* transition.