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MOTIVATION

e There are tons of algorithmic choices for clustering.
e Fach of these choices results in a different outcome.

e We have to use the domain knowledge to choose between these op-
tions.

e What kind of protocol/framework should we use to communicate
prior knowledge?

e What kind of model should we use to leverage this knowledge?

e What kind of guarantees can we expect?

CONTRIBUTIONS

e We propose a framework for incorporating domain knowledge into
clustering.

e In this framework, the domain expert provides a clustering of a rela-
tively small random sample of the data set

e An algorithm uses this to come up with a data representation under
which A-means clustering results in a clustering that is consistent
with the domain knowledge.

e We provide a formal statistical model for analyzing the sample com-
plexity of learning a clustering representation with this paradigm.

e We introduce a notion of capacity of a class of possible represen-

tations, in the spirit of the VC-dimension, showing that classes of

representations that have finite such dimension can be successtully
learned with sample size error bounds

DEFINITIONS
e X: The domain

o f: X — R

o C’}f(: The clustering of X induced by first mapping the data by f and
then doing k-means clustering

e 7: A class of mappings from X to R?
e C*: Optimal (unknown) k-clustering of X

e Algorithm A(S, C%) takes a sample S C X and its clustering C%, and
outputs a mapping fa4 € F

e The error is the A X(C’*,C}’}“) (the difference between C* and the
clustering induced by f4)

e A natural choice of distance between two k-clusterings:

Ax(Ct,C?) = min —Z\ClAOQ@\
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PAC-TYPE FRAMEWORK

Let F be a set of mappings from X to R%. A representation learning
algorithm A is a PAC-SRLK with sample complexity mz : (0,1)* — N
with respect to F, if for every (¢,0) € (0,1)%, every domain set X and
every clustering of X, C'*, the following holds:

For every X and C*, if S is a randomly (uniformly) selected subset of X
of size at least mxz(e, ), then with probability at least 1 — ¢

Ax(C",C{) < inf Ax(C7,Cf) +e

TERM ALGORITHM

A Transductive Empirical Risk Minimizer (TERM) for F takes as input a
sample S C X and its clustering Y and outputs:

ATEEM Gy = arg min AS(C';; YY)
feF 5

e It finds the mapping based on which if you cluster X, the empirical
error will be minimized.

RESULT

e Sample complexity of PAC-SRLK:

k + Pdim(F) + log(%))

m;(e, 5) < O(

€

where O hides logarithmic factors.

o Let F be a set of linear mappings from R* to R%2. Then

k+ dids + log(3)

m;(e, 5) S 0( 5 )
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e Pseudo-dimension: the size of the largest pseudo-shattered set (real-
valued functions)

e We have defined a vector-valued version of it

UNIQUENESS ASSUMPTION

e k-means’ solution may not be unique for some mappings
e Such mappings should not be selected!

e We should compare the the output of the algorithm only to those
mappings in F that have unique solutions

o (1,€)-Uniqueness: Every n-optimal solution to k-means’ cost is e-
close to the optimal solution

PROOF SKETCH
Sketch:

1. Bound Pdim(F)

2. Bound N (F,d7 ,€) based on Pdim(F) and €

3. Bound NV (F, Ax,e€) based on N (F,d7 ,e)

4. Bound the mi;- (e, d) based on § and N (F,Ax,e)

5. Bound m” (e, §) based on mi;~ (e, d)

COVERING NUMBER

e d(.,.): a metric over F

e A-distance between two mappings:
AX(fla f2) — AX(C)f(la O)fg)

e [, distance between two mappings:

5 (1) = 1 2 @) = (@)l
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e N(F,d,e) or covering number: Roughly, the number of e-different
members of F with respect to df., .)



