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Motivation
• There are tons of algorithmic choices for clustering.

• Each of these choices results in a different outcome.

• We have to use the domain knowledge to choose between these op-
tions.

• What kind of protocol/framework should we use to communicate
prior knowledge?

• What kind of model should we use to leverage this knowledge?

• What kind of guarantees can we expect?

Contributions
• We propose a framework for incorporating domain knowledge into

clustering.

• In this framework, the domain expert provides a clustering of a rela-
tively small random sample of the data set

• An algorithm uses this to come up with a data representation under
which k-means clustering results in a clustering that is consistent
with the domain knowledge.

• We provide a formal statistical model for analyzing the sample com-
plexity of learning a clustering representation with this paradigm.

• We introduce a notion of capacity of a class of possible represen-
tations, in the spirit of the VC-dimension, showing that classes of
representations that have finite such dimension can be successfully
learned with sample size error bounds

Definitions
• X: The domain

• f : X 7→ Rd

• CfX : The clustering of X induced by first mapping the data by f and
then doing k-means clustering

• F : A class of mappings from X to Rd

• C∗: Optimal (unknown) k-clustering of X

• Algorithm A(S,C∗S) takes a sample S ⊂ X and its clustering C∗S , and
outputs a mapping fA ∈ F

• The error is the ∆X(C∗, CfAX ) (the difference between C∗ and the
clustering induced by fA)

• A natural choice of distance between two k-clusterings:
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PAC-Type Framework

Let F be a set of mappings from X to Rd. A representation learning
algorithm A is a PAC-SRLK with sample complexity mF : (0, 1)2 7→ N
with respect to F , if for every (ε, δ) ∈ (0, 1)2, every domain set X and
every clustering of X, C∗, the following holds:

For every X and C∗, if S is a randomly (uniformly) selected subset of X
of size at least mF (ε, δ), then with probability at least 1− δ

∆X(C∗, CfAX ) ≤ inf
f∈F

∆X(C∗, CfX) + ε

TERM Algorithm
A Transductive Empirical Risk Minimizer (TERM) for F takes as input a
sample S ⊂ X and its clustering Y and outputs:

ATERM (S, Y ) = arg min
f∈F

∆S(CfX

∣∣∣
S
, Y )

• It finds the mapping based on which if you cluster X, the empirical
error will be minimized.

Result

• Sample complexity of PAC-SRLK:

mF (ε, δ) ≤ O(
k + Pdim(F) + log( 1

δ )

ε2
)

where O hides logarithmic factors.

• Let F be a set of linear mappings from Rd1 to Rd2 . Then

mF (ε, δ) ≤ O(
k + d1d2 + log( 1

δ )

ε2
)

• Pseudo-dimension: the size of the largest pseudo-shattered set (real-
valued functions)

• We have defined a vector-valued version of it

Uniqueness Assumption
• k-means’ solution may not be unique for some mappings

• Such mappings should not be selected!

• We should compare the the output of the algorithm only to those
mappings in F that have unique solutions

• (η, ε)-Uniqueness: Every η-optimal solution to k-means’ cost is ε-
close to the optimal solution

Proof Sketch
Sketch:

1. Bound Pdim(F)

2. Bound N (F , dXL1
, ε) based on Pdim(F) and ε

3. Bound N (F ,∆X , ε) based on N (F , dXL1
, ε)

4. Bound the mFUC(ε, δ) based on δ and N (F ,∆X , ε)

5. Bound mF (ε, δ) based on mFUC(ε, δ)

Covering Number
• d(., .): a metric over F

• ∆-distance between two mappings:

∆X(f1, f2) = ∆X(Cf1X , C
f2
X )

• L1 distance between two mappings:

dXL1
(f1, f2) =

1

|X|
∑
x∈X
‖f1(x)− f2(x)‖2

• N (F , d, ε) or covering number: Roughly, the number of ε-different
members of F with respect to d(., .)


