Representation Learning for Clustering: A Statistical Framework

Hassan Ashtiani School of Computer Science University of Waterloo mhzokaei@uwaterloo.ca Shai Ben-David School of Computer Science University of Waterloo shai@uwaterloo.ca

1 Motivation

- 2 Our Approach
- 3 Previous Work
- Our Model
- 5 The Algorithm
- 6 Results
- 7 Sketch of the Proof
- 8 Conclusions

• There is a huge number of applications for clustering

э

- There is a huge number of applications for clustering
- Tons of algorithmic choices
 - Clustering algorithms
 - Similarity metrics
 - Preprocessing techniques
 - Many conflicting outcomes
- How should we select among them?

- There is a huge number of applications for clustering
- Tons of algorithmic choices
 - Clustering algorithms
 - Similarity metrics
 - Preprocessing techniques
 - Many conflicting outcomes
- How should we select among them?
 - Domain Knowledge
- How can such knowledge be incorporated into the clustering?
 - Trial and error?
 - Intuitions?
 - A more principled way?

Motivation

Our Approach

3 Previous Work

4 Our Model

5 The Algorithm

6 Results

7 Sketch of the Proof

8 Conclusions

Communicating Domain Knowledge

- Take a small random subset of the data
- e Have a domain expert cluster the subset
- "Learn" a model consistent with that clustering
- Oluster the rest of data based on the model

Central Questions

- Any guarantees for the outcome?
- How large should the sample be?
- How shall models for clustering be represented?

- Rather than searching for an algorithm, we fix the algorithm and search for a suitable notion of similarity metric
- The algorithm we chose as our fixed clustering tool is *k*-means.
- Is this flexible enough?

- Rather than searching for an algorithm, we fix the algorithm and search for a suitable notion of similarity metric
- The algorithm we chose as our fixed clustering tool is *k*-means.
- Is this flexible enough?
 - Varying the metric over instances yields any possible data partition (I.e., *k*-means enjoys the richness property).

- Rather than searching for an algorithm, we fix the algorithm and search for a suitable notion of similarity metric
- The algorithm we chose as our fixed clustering tool is *k*-means.
- Is this flexible enough?
 - Varying the metric over instances yields any possible data partition (I.e., *k*-means enjoys the richness property).
- How can we avoid overfitting?

- Rather than searching for an algorithm, we fix the algorithm and search for a suitable notion of similarity metric
- The algorithm we chose as our fixed clustering tool is *k*-means.
- Is this flexible enough?
 - Varying the metric over instances yields any possible data partition (I.e., *k*-means enjoys the richness property).
- How can we avoid overfitting?
 - Select the metric from a specific class of candidate metrics

- Rather than searching for an algorithm, we fix the algorithm and search for a suitable notion of similarity metric
- The algorithm we chose as our fixed clustering tool is *k*-means.
- Is this flexible enough?
 - Varying the metric over instances yields any possible data partition (I.e., *k*-means enjoys the richness property).
- How can we avoid overfitting?
 - Select the metric from a specific class of candidate metrics
- What if the optimal metric is not inside the class?

- Rather than searching for an algorithm, we fix the algorithm and search for a suitable notion of similarity metric
- The algorithm we chose as our fixed clustering tool is *k*-means.
- Is this flexible enough?
 - Varying the metric over instances yields any possible data partition (I.e., *k*-means enjoys the richness property).
- How can we avoid overfitting?
 - Select the metric from a specific class of candidate metrics
- What if the optimal metric is not inside the class?
 - We will establish an agnostic guarantee!

Communicating Domain Knowledge - Revisited

- Take a small random subset of the data
- e Have a domain expert cluster the subset
- Ict the algorithm select a metric (from a class of metrics)
- Perform k-means clustering using the metric and cluster the rest of the data
- What kind of algorithm should we use?
- What kind of guarantee can we expect?
 - We will establish PAC-type guarantees.

Motivation

- 2 Our Approach
- 3 Previous Work
- Our Model
- 5 The Algorithm
- 6 Results
- 7 Sketch of the Proof
- 8 Conclusions

• Semi-Supervised Clustering

- Constrained clustering (must/cannot links)
- Modify the clustering objective (Demiriz et al. (1999); Law et al. (2005); Basu et al. (2008))
- Metric learning (Xing et al. (2002); Alipanahi et al. (2008))
- Mostly ad hoc, with focus on computational aspects rather than statistical guarantees
- Property-based Clustering (Ackerman, Ben-David and Loker, 2010)
 - Appropriate for selecting the algorithm
 - Properties are not yet user-level

Motivation

- 2 Our Approach
- 3 Previous Work
- Our Model
 - 5 The Algorithm
 - 6 Results
 - 7 Sketch of the Proof
 - 8 Conclusions

- X: The domain
- $f: X \mapsto \mathbb{R}^d$
- Learning the mappings is equivalent to learning similarity metric/kernel
- C_X^f : The clustering of X induced by first mapping the data by f and then doing k-means clustering
- \mathcal{F} : A class of mappings from X to \mathbb{R}^d
- C*: Optimal (unknown) k-clustering of X
- Algorithm $A(S, C_S^*)$ takes a sample $S \subset X$ and its clustering C_S^* , and outputs a mapping $f_A \in \mathcal{F}$

Definitions II

- f_A may not be optimal. How can we measure its "error"?
- The error is the $\Delta_X(C^*, C_X^{f_A})$ (the difference between C^* and the clustering induced by f_A)
- f_A is ϵ -optimal when $\Delta_X(C^*, C_X^{f_A}) \leq \epsilon$

Definitions II

- f_A may not be optimal. How can we measure its "error"?
- The error is the $\Delta_X(C^*, C_X^{f_A})$ (the difference between C^* and the clustering induced by f_A)
- f_A is ϵ -optimal when $\Delta_X(C^*, C_X^{f_A}) \leq \epsilon$
- Agnostic ϵ -optimality:

$$\Delta_X(C^*, C_X^{f_A}) \leq \inf_{f \in \mathcal{F}} \Delta_X(C^*, C_X^f) + \epsilon$$

Definitions II

- f_A may not be optimal. How can we measure its "error"?
- The error is the $\Delta_X(C^*, C_X^{f_A})$ (the difference between C^* and the clustering induced by f_A)
- f_A is ϵ -optimal when $\Delta_X(C^*, C_X^{f_A}) \leq \epsilon$
- Agnostic ϵ -optimality:

$$\Delta_X(C^*, C_X^{f_A}) \leq \inf_{f \in \mathcal{F}} \Delta_X(C^*, C_X^f) + \epsilon$$

• A natural choice of distance between two k-clusterings:

$$\Delta_X(\mathcal{C}^1,\mathcal{C}^2) = \min_{\sigma\in\pi^k}rac{1}{|X|}\sum_{i=1}^k |\mathcal{C}_i^1\Delta\mathcal{C}_{\sigma(i)}^2|$$

PAC Supervised Representation Learning for K-Means (PAC-SRLK)

A is a PAC-SRLK learner for \mathcal{F} with $m_{\mathcal{F}}$ samples if

For every X and C^{*}, if S is a randomly (uniformly) selected subset of X of size at least $m_{\mathcal{F}}(\epsilon, \delta)$, then with probability at least $1 - \delta$

$$\Delta_X(C^*, C_X^{f_A}) \leq \inf_{f \in \mathcal{F}} \Delta_X(C^*, C_X^f) + \epsilon$$

PAC Supervised Representation Learning for K-Means (PAC-SRLK)

A is a PAC-SRLK learner for \mathcal{F} with $m_{\mathcal{F}}$ samples if

For every X and C^{*}, if S is a randomly (uniformly) selected subset of X of size at least $m_{\mathcal{F}}(\epsilon, \delta)$, then with probability at least $1 - \delta$

$$\Delta_X(C^*, C_X^{f_A}) \leq \inf_{f \in \mathcal{F}} \Delta_X(C^*, C_X^f) + \epsilon$$

• Can we bound the sample complexity, $m_{\mathcal{F}}(\epsilon, \delta)$?

PAC Supervised Representation Learning for K-Means (PAC-SRLK)

A is a PAC-SRLK learner for $\mathcal F$ with $m_{\mathcal F}$ samples if

For every X and C^{*}, if S is a randomly (uniformly) selected subset of X of size at least $m_{\mathcal{F}}(\epsilon, \delta)$, then with probability at least $1 - \delta$

$$\Delta_X(C^*, C_X^{f_A}) \leq \inf_{f \in \mathcal{F}} \Delta_X(C^*, C_X^f) + \epsilon$$

- Can we bound the sample complexity, $m_{\mathcal{F}}(\epsilon, \delta)$?
- Intuitively, the richer \mathcal{F} , the more samples we need.

Motivation

- 2 Our Approach
- 3 Previous Work
- Our Model
- 5 The Algorithm
 - 6 Results
 - 7 Sketch of the Proof

8 Conclusions

• What kind of algorithm can be a PAC-SRLK learner?

Transductive Empirical Risk Minimization (TERM)

A TERM learner for \mathcal{F} takes as input a sample $S \subset X$ and its clustering Y and outputs:

$$A^{TERM}(S,Y) = \arg\min_{f \in \mathcal{F}} \Delta_{S}(C_{X}^{f} \Big|_{S},Y)$$

• It finds the mapping based on which if you cluster X, the empirical error will be minimized.

Motivation

- 2 Our Approach
- 3 Previous Work
- Our Model
- 5 The Algorithm

6 Results

7 Sketch of the Proof

8 Conclusions

Sample Complexity of PAC-SRLK

Theorem

The sample complexity of representation learning for k-means clustering (PAC-SRLK) with respect to \mathcal{F} is upper bounded by

$$m_{\mathcal{F}}(\epsilon, \delta) \leq \mathcal{O}(rac{k + Pdim(\mathcal{F}) + \log(rac{1}{\delta})}{\epsilon^2})$$

where \mathcal{O} hides logarithmic factors.

• Pseudo-dimension measures the capacity of ${\cal F}$

Sample Complexity of PAC-SRLK

Theorem

The sample complexity of representation learning for k-means clustering (PAC-SRLK) with respect to \mathcal{F} is upper bounded by

$$m_{\mathcal{F}}(\epsilon, \delta) \leq \mathcal{O}(rac{k + Pdim(\mathcal{F}) + \log(rac{1}{\delta})}{\epsilon^2})$$

where \mathcal{O} hides logarithmic factors.

• Pseudo-dimension measures the capacity of ${\cal F}$

Corollary

Let \mathcal{F} be a set of *linear* mappings from \mathbb{R}^{d_1} to \mathbb{R}^{d_2} . Then

$$m_{\mathcal{F}}(\epsilon,\delta) \leq \mathcal{O}(rac{k+d_1d_2+\log(rac{1}{\delta})}{\epsilon^2})$$

Motivation

- 2 Our Approach
- 3 Previous Work
- Our Model
- 5 The Algorithm
- 6 Results
- Sketch of the Proof

B Conclusions

- **1** Bound $Pdim(\mathcal{F})$
- **2** Bound $\mathcal{N}(\mathcal{F}, d_{L_1}^X, \epsilon)$ based on $Pdim(\mathcal{F})$ and ϵ
- Sound $\mathcal{N}(\mathcal{F}, \Delta_X, \epsilon)$ based on $\mathcal{N}(\mathcal{F}, d_{L_1}^X, \epsilon)$
- Bound the $m_{UC}^{\mathcal{F}}(\epsilon, \delta)$ based on δ and $\mathcal{N}(\mathcal{F}, \Delta_X, \epsilon)$
- Solution $m^{\mathcal{F}}(\epsilon, \delta)$ based on $m_{UC}^{\mathcal{F}}(\epsilon, \delta)$

Motivation

- 2 Our Approach
- 3 Previous Work
- Our Model
- 5 The Algorithm
- 6 Results
- 7 Sketch of the Proof

- We proposed a framework for exploiting domain knowledge into clustering.
- We defined the notion of PAC-SRLK for the framework.
- The sample complexity of learning was bounded based on the pseudo-dimension of the class of mappings.
- The algorithm used to prove the result was a variant of empirical risk minimization.
- Open Problems
 - Computational complexity?
 - Generalizing the results to other clustering algorithms

Thank You!

э.

・ロト ・ 日 ト ・ 田 ト ・