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Abstract—We address the K Nearest Neighbors (KNN) prob-
lem in large binary datasets which is of major importance in
several applied areas. The goal is to find the K nearest items in
a dataset to a query point where both the query and the items lie
in a Hamming space. We address this problem in its online setting,
that is, data items are inserted sequentially into the dataset. We
propose a data structure that partitions the feature space by
exploiting the Hamming weights of the binary codes and their
substrings. The proposed data accommodates efficient similarity
search and fast insertion of new items. Empirical evaluations
on large-scale datasets used in binary hashing techniques show
significant speedup over the best known solutions.

I. INTRODUCTION

Recent decades have witnessed a growing surge of research
on representing large datasets with binary features. A typical
example is the representation of text documents as term vectors,
where absence or presence of words (or shingles) are captured
with binary variables [1], [2]. Also, in machine vision, binary
feature extractors have been used to describe images [3], [4].

Perhaps the most notable application of binary codes is the
binary hashing [5] which has garnered much interest in the
last decade. Binary hashing techniques aim at encoding high
dimensional vectors with compact similarity preserving binary
codes (vectors). Such codes are mainly used for the task of
nearest neighbors search as they facilitate storage and benefit
distance computation. There exists a large body of work on
generating compact similarity-preserving binary codes for the
purpose of fast retrieval [6], [7], [8], [9], [10]. The performance
of binary hashing techniques is measured in terms of the length
of the generated code and fidelity to the similarity measure.
However, the problem of efficiently searching in large-scale
binary datasets is still a bottleneck for fast retrieval.

The task of finding the closest neighbor to a given query
point in the Hamming space, known as the Hamming nearest
neighbor (HNN) problem, arises as a core procedure in many
applications of binary datasets such as machine learning,
information retrieval and data mining. This problem admits
a straightforward solution–linearly scanning the entire set of
items–but for today’s large-scale datasets, the linear scan time
can take more than several minutes [11].

Modern real-life datasets are not only large in the number of
data points, but also are open-ended and dynamic: new items
appear and are added to the dataset over time. For example, a
search engine often has numerous new web pages containing
images and textual data, that are continuously arriving at the
data center everyday. In online HNN therefore, the nearest
neighbor queries must be answered based on the total data that
has been gathered so far. This leads to a natural question: can

we perform better than linear scan (search) for the task of
large-scale HNN in online settings?

This question has not been answered adequately in the
literature. Some recent researches have addressed the problem
of learning compact binary codes in online settings [12], [13].
They have shown that it is possible to gradually update the
hash function (that maps real data to binary codes), as the
data items becomes available, such that the function can better
preserve the similarities. However, the problem of efficiently
searching among the so-far collected binary codes seems to
have remained unsettled. In practice, researches often resort to
linear scan to find nearest neighbors in online applications. In
this study, we revisit the exact nearest neighbor search in the
Hamming metric for compact binary codes. We propose a data
structure for solving the online HNN problem with efficient
search and insertion time. The main contributions of the paper
are as follows:
• We propose the Hamming Weight Tree (HWT), a data

structure for partitioning the feature space based on the
Hamming weights (i.e. `1 norm) of the binary codes.

• We develop two algorithms to search for the nearest
neighbor and to insert new items to the tree.

• We empirically evaluate the performance of the pro-
posed data structure on large binary datasets. The results
demonstrate several orders of magnitude speed up for
HWT in comparison with linear scan and better average
performance compared with the state of the art for batch
HNN.

II. BACKGROUND REVIEW

The nearest neighbor search problem in the Hamming
space, originally presented by Minsky and Papert [14], has
been extensively studied in the literature both because of its
theoretical importance and because of its numerous applications
that abound in image retrieval [6], [15], duplicate detection [16]
and matching local features [17]. From the theoretical stand-
point, like many other proximity problems, nearest neighbor
search (even in the Hamming space) suffers from the curse
of dimensionality phenomenon: as the number of dimensions
increases, all algorithms would be inferior to linear scan [18].
Unfortunately, to this day, there is no algorithm with polynomial
pre-processing and storage costs which guarantees sublinear
query time [19]. Some studies have focused on approximate
solutions that trade accuracy for scalability [20]. This line
of work managed to break the linear query time bottleneck
and had enormous impact. However, this paper is primarily
concerned with the exact search problem.



Despite the discouraging theoretical results for finding the
exact solution of HNN, vast empirical evidence strongly
suggests that it is possible to perform better than linear scan
in many cases and achieve acceptable search time on standard
benchmarks [21], [22], [23]. From this perspective, several
studies have provided practical solutions for the HNN problem
in the static setting. Space-partitioning algorithms such as kd-
tree and Voronoi diagram are among the best known nearest
neighbor algorithms for low dimensional spaces (up to 20 or
30) [24]. However, the query time of such techniques degrade
exponentially with the number of dimensions. Moreover, most
of space-partitioning techniques for the task of nearest neighbor
search do not support dynamic datasets [21].

Since binary codes lie in a discrete space, some researches
have mentioned the use of hash table to reduce the search
cost. The idea is to populate a hash table with binary codes of
dataset and then probe the buckets within some ball around the
query to find the nearest neighbors [25]. This approach is also
interesting in online settings as the amortized cost of inserting
a new item into hash tables is constant. However, for long
codes, vast majority of buckets are empty and in turn the search
algorithm must increase the radius until the ball around query
hits a point. Unfortunately, oftentimes, the required radius of
search is large enough to make the number of probed buckets
exceed the total number of points in the dataset. This issue
turns linear scan into a faster alternative.

Multi-index hashing (MIH) [23] is a rigorous approach for
handling this issue. The key idea of MIH is that two similar
binary strings must also have similar substrings. Therefore,
rather than populating a single huge hash table, MIH builds
multiple smaller hash tables on the substrings of binary codes.
To find the nearest neighbors, the query is similarly partitioned
into several substrings and search is performed in each hash
table independently. Empirical experiments show that MIH
can provide dramatic speed-up over the linear scan baseline.
Recently, Ong and Bober [11] proposed an algorithm for tuning
the length of substrings assigned to each hash table.

Despite its success, the performance of MIH heavily depends
on knowing the number of dataset items beforehand. In [23]
and [26], the empirical analysis shows that the best performance
of MIH is often achieved when for every log2 n bits (where n
is the number of items), one hash table is constructed. Just as
importantly, the same analysis indicates that setting the number
of hash tables to a wrong number can incur extra work, even
significantly more than what is required for the linear scan.
Consequently, MIH is mostly applicable for batch data in which
the number of items remains constant and known.

III. HAMMING WEIGHT TREE

We address two closely related problems. Given a dataset
of binary codes B = {bi ∈ {0, 1}p}ni=1, and a binary query
vector q = {0, 1}p, the first problem is the r-neighbor problem
or range query, whose goal is to report all codes in B that
are within a given distance r from q. The second problem, K
nearest neighbor, aims at finding the K codes in B that are
closest to q in terms of the Hamming distance. We address

both problems in their online settings; that is, the items in
B become available sequentially and the size of dataset is
unknown.

A. Depth One Tree

We first propose a data structure for solving the r-neighbor
problem and then apply the data structure to solve the KNN
problem. The key idea of this paper rests on the following
statement: when two binary codes h and g differ by at most
r bits then the difference between their Hamming weights is
at most r where the Hamming weight of a binary code is the
number non-zero entires in the code. This leads to our first
proposition:

Proposition 1: If ‖h− g‖H = r, then we have:

r − |‖h‖H − ‖g‖H | ∈ {0, 2, . . . , r − 2, r}. (1)

where ‖.‖H denotes the Hamming weight (Proof in Ap-
pendix A).

It is easy to see that based on Proposition 1, for two binary
codes with Hamming distance of at most r (‖h− g‖H ≤ r),
the difference of Hamming weights is also at most r. In other
words, the difference of Hamming weights, or the Hamming
weight distance, is a lower bound for the Hamming distance.
Computing the Hamming weight is an extremely fast operation
as many of the modern CPUs provide popcnt (population count)
instruction which implements the Hamming weight function
at the hardware level.

The significance of (1) stems from the fact that to solve the
r-neighbor search problem for the given query q, one needs
to retrieve binary codes with Hamming weights in the set
{‖q‖H − r, . . . , ‖q‖H + r} and ignore the rest of the points.
Unfortunately, the retrieved codes are not restricted to the
Hamming radius of interest around the query. Hence, not all
items in the target sets are r-neighbors of the query, so we
need to cull any candidate that is not a true r-neighbor.

For example, to answer a 2-neighbor problem for the query
code q on a dataset of 128-bit binary codes, we can create
a tree, which we call the Hamming Weight Tree, with 129
leaves (one for each possible Hamming weight), and assign
the codes of dataset to their corresponding leaf node based
on their Hamming weights (see Figure 1). Assuming that
we have ‖q‖H = 64, to answer the 2-neighbor query, the
algorithm linearly searches among the codes belonging to
nodes 62,63,64,65,66 and ignores the other 124 nodes. More
generally, to solve 2-neighbor query for any query point, the
algorithm needs to check at most five leaf nodes.

To create the HWT, the pre-processing step of our algorithm
partitions the binary codes of B into p + 1 sets, each
corresponding to one of the possible Hamming weights. Then,
during the query phase, the algorithm retrieves the points in
the nodes whose Hamming weight difference from q is at most
r. Interestingly, inserting new items to the HWT is easy as we
only need to compute the Hamming weight of the new code
and add it to the corresponding leaf.

An ideal scenario for solving the nearest neighbor problem
using the HWT occurs when the algorithms only needs to
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Fig. 1. A Hamming weight tree with depth one
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Fig. 2. (a) Average radius of search for solving the KNN problem for different
values of K. (b) Hamming weight histogram of 1 billion SIFT vectors that
are mapped to binary space using hyperplane LSH

check a few leaf nodes and such nodes contain a small portion
of the dataset points.

However, the pruning power of a depth-one HWT is limited
in real applications, mainly due to the fact that the codes are
not distributed uniformly among the nodes. While a depth-
one HWT can potentially prune the search space of the
r-neighbor problem and consequently use fewer Hamming
distance computations compared to the linear scan, it is only
beneficial for small radii of search or very long code lengths.
Some problems restrict the search to exact matches [27] or
small search radius, but in most cases of interest the desired
search radius is large and binary codes are compact. The
following two facts limit the performance of a depth-one HWT:
1) Concentration of Hamming weights: since the number of
possible binary codes with Hamming weight c is

(
p
c

)
, Hamming

weights of binary codes (both query and dataset) are highly
concentrated around p/2. This means that the leaf nodes with
Hamming weights around p/2 are assigned with a great portion
of the points. 2) Large radii of search: solving the KNN
problem often requires a not-so-small radius and thus we have
to check several nodes in such cases. Because of these two
observations, we often need to search among several nodes
with weights around p/2 which unfortunately constitutes a
great portion of the codes, thus not much pruning can be done
in such cases and the query is virtually compared with all the
dataset codes.

To further illustrate this problem in a real application,
Figure 2(a) shows the required radius for solving the KNN
problem with different values of K for a dataset of 1
billion binary codes. Figure 2(b) shows the distribution of
Hamming weights for the same dataset which clearly shows
the concentration of Hamming weights around p/2. As a case in
point, to solve the 10NN problem for 64-bit codes, the required
search radius is 5 in average. This indicates that to search for
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[32,32] . . .. . . [64,0][0,64]

Fig. 3. A HWT with depth 2.

nearest neighbors of a query with ‖q‖H = 32 we have to look
among the nodes with Hamming weights {27, . . . , 37} which
(based on Figure 2(b)) contain 80% of the points. The problem
is that in a vast majority of cases the algorithm requires to
compare the query with all of the points in several leaf nodes
each of which stores a relatively large number of points. Next,
we show that further pruning can be achieved by extending
the HWT to higher depths.

B. Hamming Weight Tree on Substrings

Our approach for enhancing the pruning is to put a limit on
the number of binary codes that a leaf node stores. If a node
is assigned with more than τ number of points, it is split by
assigning children to the node and moving each binary code
to its corresponding child. The children of a node are labeled
based on the Hamming weights of substrings of the binary
codes.

For example, each code that belongs to the node 64 in depth-
one tree of Figure 1, can be partitioned into two substrings
with equal lengths (the left 64 bits and the right 64 bits).
We know that for each code that belongs to this node, the
sum of the Hamming weights of the left and right substrings
is 64, Therefore, we assign 65 children to this node (see
Figure 3), where each child is labeled with one of the possible
combinations of Hamming weights for left and right substrings
and then move the codes from node 64 to their corresponding
children.

In general, each binary code h ∈ {0, 1}p, can be partitioned
into d disjoints substrings, {h(1)

d , . . . ,h
(d)
d } each of length

bp/dc or dp/de. For convenience, in what follows we assume
that the substrings contain contiguous bits and p = 2t and that
p is divisible by d.

Instead of just considering the Hamming weight of the whole
string, we let the tree also incorporate the Hamming weight of
the substrings. To that aim, we define the vector transformation
Qd : {0, 1}p → Nd0 as follows:

Qd(h) = [‖h(1)
d ‖H , . . . , ‖h

(d)
d ‖H ], (2)

where N0 denotes the set of non-negative integers. Therefore,
Qd(h) is a vector of length d that contains the Hamming
weights of the h’s substrings. We call the output of this
transformation the d-Hamming weight pattern of h, in which
the i-th entry denotes the Hamming weight of the i-th substring.
For example, for the binary code b = [1, 1, 0, 0], we have
Q2(b) = [2, 0]. The insight is that if two binary codes are



close to each other, then their Hamming weight patterns must
also be similar.

To measure the similarities between the patterns, one can use
the `p norms since patterns lie in a vector space. In particular,
we use the `1 distance as the measure of similarity between
two patterns. Formally, two binary codes h and g are said to
be (r, d)-neighbor pattern of each other if we have:

‖Qd(h)−Qd(g)‖1 ≤ r. (3)

A special case is when d = p for which we have that h and
g are (r, p)-neighbor pattern of each other if and only if they
are r-neighbors of each other.

We can now apply (1) to the substrings of binary codes:
Proposition 2: If ‖h− g‖ = r, then for any d < p we have:

r − ‖Qd(h)−Qd(g)‖1 ∈ {0, 2, . . . , r}. (4)

It is easy to see that proposition 2 is a generalization
proposition 1.

Now, reconsider the example of solving the 2-neighbor
problem for the query point q, with ‖q‖H= 64, in the HWT
shown in Figure 4. As mentioned, only nodes 62,. . . , 66 can
contain such a neighbor. When the algorithm recurses on node
64, it descends down the tree, as it is not a leaf node. Lets
assume that for the query code we have that Q2(q) = [32, 32].
Now, based on (4) it suffices to only search among the nodes
[31,33], [33,31], and [32,32] while the remaining 62 children of
this node can be ignored. Similarly, if the node [32,32] is later
assigned with more than τ number of points, the algorithm splits
it by partitioning each of the two substrings, h

(1)
2 ,h

(2)
2 , into

four smaller substrings, h
(1)
4 ,h

(2)
4 ,h

(3)
4 ,h

(4)
4 . Figure 4 shows

an example of the paths that must be covered for finding the
codes lying at distance r from the query.

Formally, a HWT consists of multiple levels from −1 to l
for l ≤ log2 p (for the sake of simplicity in the calculations,
we assume that the depth of root is -1). Each binary code of
dataset is stored in exactly one leaf node and each node at
level s (s ≥ 0) is labeled with vector Φ = [φ1, . . . , φ2s ] where
φi ∈ N0. The label of a node specifies the Hamming weight
pattern of the codes that belongs to its subtree. In other words,
for each code h that belongs to a node with label Φ we have
that Φ = Qd(h).

Based on (1), to solve the r-neighbor problem at depth s of
the tree, the algorithm only needs to recurse on the nodes with
labels such as Φ = [φ1, . . . , φ2s ] that satisfy the following
equations:

‖Q2s(q)−Φ‖1 ≤ r (5)

which is similar to (2). The only difference is that in (5), we
are searching for labels of nodes (instead of binary codes) that
are (r, 2s)-neighbors of the query. A node at depth s of tree is
called a promising node if its label is a (r, 2s)-neighbor pattern
of the query.

Note that as we descend the tree, more constraints are im-
posed on the neighbor patterns since the algorithm incorporates
piecewise Hamming weights of increasingly finer partitions

of the codes. Therefore, not only the Hamming weight of the
whole string must be close to the query but also the Hamming
weights of the substrings cannot deviated by more than r from
those of the query.

In the following, we describe the insert and search operations
of HWT in more details.

Insert. On the arrival of a new binary code such as h, based
on the Hamming weights of h and its substring, we descend
the tree until a leaf node is reached. To descend from a node
at level s to a node at level s+ 1, the 2s+1-Hamming weight
pattern of h is computed and the child whose label matches
the tuple is selected. Therefore, each particular point only
participates in one branch of recursion during insertion. Upon
reaching a leaf node, the code h is added to the node if the leaf
node is not full. Otherwise, to split a full leaf node at depth
d, the algorithm computes the d+ 1-Hamming weight pattern
of the binary codes stored at this node, and then moves each
of the codes to its corresponding child based on the pattern.
Finally, the code h is similarly added to its corresponding
child.

The branching factor of such a node is (φ1 + 1) × . . . ×
(φw+1). We note that the branching factor can get quite large
for deep nodes, however, in high depths, many of children
do not store any code. Consequently, instead of initializing
all children of a node at once, we use lazy initialization to
avoid memory allocation for empty children. To do that, rather
than storing all children (empty and non-empty), we define an
ordering for the children’s labels and assign an index to each
one. Then, for each node, a hash table is used to store key
value pairs where indicies of non-empty children serve as keys,
and the values are the pointers to the children. This reduces the
storage cost as we only need to store the non-empty children.
Meanwhile, insertion, deletion and searching for a child still
can be performed in amortized constant time.

Search. r-neighbor search on a HWT can be answered
by proceeding recursively, starting at the root. The search
procedure descends through the tree level by level, keeping
track of the subset of nodes that may contain the r-neighbors
of the query. When visiting an internal node, the algorithm
only recurses on the children whose label satisfy (5). Thus,
starting from the root node, at each depth such as s, the search
procedure only investigates the non-empty children whose
labels are (r, 2s+1)-neighbor patterns of the query. There are
two options for finding the non-empty children that satisfy (5):

• Option 1: The first option is to simply iterate through all
children and recurse on those whose pattern satisfy (5).

• Option 2: The second option is to first find the index of
all children that satisfy (5) and then recurse on those that
exist in the hash table.

For the second approach, the algorithm must enumerate over
all promising children of the current node. To that aim, for a
node with label vector [φ1, . . . , φw], we find all solutions of
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Fig. 4. The paths that must be traversed for finding the codes lying at distance r from the query q with ‖q‖H= 64, ‖q(1)
2 ‖H= 32 and ‖q(2)

2 ‖H= 32. Note
that to solve the r-neighbor problem, we need to check all nodes lying at distance r′ ≤ r from the query. For example, to solve the 2-neighbor problem in this
tree, we have to traverse all the dashed paths.

the following system of equations:

x1 + x2 = φ1

. . .

x2w−1 + x2w = φw∑2w
i=1 |‖q

(i)
2w‖H−xi| ≤ r

xi ∈ N0,

(6)

Each solution vector, [x1, . . . , x2w], denotes a label of a child
that we need to recurse on (provided that it exists in the tree).
The equations of the form x2i−1 + x2i = φi are necessary to
make sure that the solutions are the labels of j’s children. The
inequality, on the other hand, is necessary to ensure that the
solutions are the r-neighbor patterns of q.

Not surprisingly, there is a natural trade-off between the
two options. For small radii of search and in low depths, the
number of solutions to (6) is small and therefore it is perhaps
more computationally efficient to use option two. On the other
hand, if a node has a small number of children then it is often
more efficient to use option 1.

In our implementation, we use the following lower bound
on the number of children to decide between the two options:

Proposition 3: The number of solutions for (6) is greater
than:

b r2 c∑
r′=0

(
w + r′ −

∑w
i=1 |φi| − 1

w − 1

)
. (7)

(Proof in Appendix B).
We use this lower bound such that, at node j, if the number

of non-empty children is less than (7), then the algorithm
proceeds with option 1 otherwise, it proceeds with option 2.

C. Storage and Computational Costs

We next analyze the storage and computational costs of
HWT. Storing the database of binary codes requires O(np)
bits. The storage of tree comprises the number of nodes in the
tree plus the storage cost of the hash table per node. For each
code in a leaf node, we need an identifier that refers to the
code in the dataset. This allows one to store the identifier of
a code in its corresponding leaf and fetch the full code when
necessary. Thus, the total cost of storing identifiers would be
n log2 n. The maximum number of nodes happens when τ = 1
which forms a tree with n leaves in which each leaf stores
only one code (provided that there is no duplicate). Assuming
that each internal node has at least two children, the number of

internal nodes is at most n− 1. Therefore, the tree has at most
2n− 1 nodes. The total cost of hash tables is also bounded by
the number of nodes in tree, since each hash table only stores
non-empty children. Therefore the storage cost of tree is linear
in the number of points.

The storage cost of hash tables depend on the length of
keys which in our application represent the index of the nodes.
In general, the required length of indices gets longer as we
descend in the tree. The number of possible children of a node
at a certain depth depends on both the depth itself and the
label of node. It is easy to see that for a node at depth s, the
maximum number of children belongs to the node with pattern
[ p
2s+1 , . . . ,

p
2s+1 ], and the number of children for this pattern

is:

I(s) =
( p

2s+1
+ 1
)2s

(8)

Considering the fact that for an internal node we have s < log p,
the maximum of I(s) occurs at s = log p − 1. Therefore,
assuming p = 2t, the number of bits required to index a child
of a node is upper bounded by:

log(max(I(s))) = 2t−1 log
( p
2t

+ 1
)
=
p

2
, (9)

which is of O(p). Since the number of node indicies in the
hash tables is n, the total storage complexity of HWT is of
O(np+ n log n) = O(np).

Interestingly, the storage cost of HWT is the same as linear
scan and better than multi-index hashing technique proposed
in [26] and the same as the one in [23].

The insertion time of HWT is also appealing. Starting from
the root, at each depth, we just need to compute the pattern of
the code at that depth which can done in O(p). Retrieving a
pointer to a specific child at a node can be done in amortized
O(1) as we are using hash tables. Since the maximum depth
of tree is O(log p), the total cost of inserting a new item is
O(p log p). Finally, each insertion in the worst case can trigger
reinsertions of τ other items but for a fixed τ the cost is still
of O(p log p).

We also show that, for uniformly distributed binary points,
the computational cost of r-neighbor search is sublinear in the
number data points.

Theorem 1: [Search Complexity for Uniform Data] Let Xn

be a set of n points, generated independently from the uniform
distribution over the p-dimensional binary cube {0, 1}p. Then,
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Fig. 5. Average query time of the nearest neighbor search for τ=100, 1000 and 10000 on ANN_1B dataset.

the expected cost of a single r-neighbour search over the
Hamming Weight Tree built on Xn is O(p log p(log n)4r).
(Proof in Appendix D)

Therefore the query cost is sublinear in the number of data
points for small radii. The exponential dependency on r can
be reduced by incorporating similar ideas used in [26], [28],
[29]. The idea is that, given a data structure that solves the
r-neighbor problem in sublinear time, one can create several
such data structures (say m of them) on the substrings of binary
codes (in our case it would be a forest of Hamming weight
trees with m trees on the substrings). Based on the pigeonhole
principle, instead of solving the r-neighbor problem on the
whole binary code, one can solve m number of r

m -neighbor
problems, one per substring, and then aggregate the results
to retrieve the neighbors. While our current implementation
of HWT supports search on multiple trees, we postpone the
theoretical and empirical analysis of this idea to future works.

D. K Nearest Neighbors Search
HWT is inherently designed to answer r-neighbor queries.

Consequently, each search query to this data structure should
contain the query vector and the radius of search, however,
the nearest neighbor search does not provide the radius in
the query, making it a harder problem than the r-neighbor
problem. It turns out that for the nearest neighbor of query, the
required radius of search for two different query points may
vary significantly, depending on how dense the area around
the query is populated. Even for a single dataset, the required
radius of search for different queries may vary dramatically [30],
[23]. If the search radius is set too small, then the algorithm
may return no points. On the contrary, large values of radius
can result in non-informative neighbors. Moreover, for a large
radius of search, the needed time to retrieve the neighbors
would be high. Therefore, it is natural for many tasks to fix the
number of neighbors and let the radius depend on the query and
dataset distribution. Fortunately, a careful implementation of
the proposed HWT can be adapted to accommodate the nearest
neighbor search queries. Given a binary query point, starting
from radius search of zero (r = 0), one can progressively
increase r until the nearest neighbors are retrieved.

In a naive implementation of HWT, when the radius
increases, the new r-neighbor search starts from scratch and we
have to check all the nodes that may contain the r-neighbors

in their subtrees. However, many of such nodes overlap with
those that are checked for smaller values of r. In fact, when
r increases, the algorithm have already checked all the nodes
that can contain codes with any distance less than r from
query. Therefore, we just need to search for the codes that lie
at exact distance of r from the query. More specifically, it is
easy to see that, all the nodes that must be visited for solving
the r-neighbor problem, must be also visited for solving the
(r + 2)-neighbor problem (see Figure 4 for r = 0 and r = 2).
To avoid such extra checking, one can store a list of identifiers
to the so far internal visited nodes along with their radius
of search for which the specific node was visited. Then, to
solve the (r + 2)-neighbor problem, the algorithm can iterate
through the list and for each node recuse on those children
that may can contain the codes with distance r + 2 from the
query (refer to 4). By doing so, the algorithm can skip many
of edge traversals when the radius increases.

IV. EXPERIMENTAL RESULTS

In this section, we empirically gauge the performance of
HWT in comparison with linear scan baseline and MIH. The
following experiments are run on a single core 2.0 GHz CPU
with 256 GB of RAM. Linear scan and HWT are both coded
in C++ and compiled with GCC 4.4.4 using same flags. We
used the publicly available implementation of MIH in our
experiments.

A. Datasets

We evaluate the performance of HWT using two well-
known real-world datasets which are publicly available: 1)
ANN_1B [31] with 1 billion 128D SIFT vectors, and 2)
80 million 384D Gist descriptors from the 80 million tiny
images [32]. Each experiment requires two sets of items; base
set for populating HWT and the query set that comprises the
query points. For 80M Gist descriptors, we randomly select
1000 points to form the query set and use the remaining as the
base set. The ANN_1B corpus is already divided into 1 billion
base data points and 104 query points from which we randomly
select 1000 query points. Therefore, each experiment involves
1000 queries for which the average run-time is reported.

To binarize the datasets, we use the well-known hyperplane
LSH [33] which utilizes sign-random projection. More specifi-
cally, after zero-centering the data, to encode each bit, first a



random hyperplane is selected where each component of the
direction is generated from a normal density, then the value of
the bit is specified depending on which side of the hyperplane
the point lies. For each dataset, we generate 32-bit, 64-bit and
128-bit binary datasets. With two datasets, and three different
code lengths, we obtain 6 binary datasets.

B. Effect of Threshold Value

We first investigate the effect of parameter τ on the average
query time. This parameter determines the maximum number
of binary codes that can be assigned to a leaf node. We have a
natural trade-off for different settings of this parameter. Large
values of τ form shallow trees and therefore less pruning
takes place which increases the required number of Hamming
distance computations. Meanwhile, for each query, fewer node
traversals and child checkings are required. In the extreme case,
we can create a depth-one tree by setting τ sufficiently large.
On the other hand, small values of τ cause further pruning
and more node traversals.

Figure 5 shows the average query time for different values
of τ . The figure indicates that smaller values of τ results in
a faster query time. This shows that further pruning of the
search space often results in a better average query time, even
with the overhead imposed for finding the promising children
of nodes. Nonetheless, since we create a hash table for each
internal node, we observed that the memory footprint increases
as we decrease τ . Interestingly, this parameter can be set based
on the available memory of the target platform to balance the
query time and memory requirement.

Note that in some limited cases the query time decreases
for larger sizes of dataset. This is mainly due to the fact that
increasing the number of points often makes the required search
radius for retrieving the nearest neighbor smaller. This in turn
lets the tree to search among a fewer number of nodes.

For the following experiments, we choose τ = 1000. For
this choice of τ , our current implementation of HWT requires
50 GB, 62 GB, and 73 GB of memory to index 1 billion 32-bit,
64-bit, and 128-bit codes, respectively, which is comparable
with that of MIH (refer to [28]).

C. HWT vs Linear Scan

In this experiment, we focus on comparing the average query
time of HWT and linear scan on all datasets. First, we report
the average query time when all items are inserted in the
tree (batch data), and then we illustrate the query time when
the data is inserted sequentially (online data). Table I reports
the average query time of the linear scan baseline and HWT
along with speed up factors gained by using HWT for different
KNN problems. For a large range of code lengths and different
values of K, HWT can achieve orders of magnitude speed up
in comparison with the linear scan. Note that the running time
of linear scan neither depends on K nor on the underlying
distribution of points, however, both factors affect HWT. As
K increases, the required search radius also increases which
causes longer query time. This is reflected in the reduction of
speed up factors when the value of K increases.

#bits Method K Time (s) Speed-up

A
N

N
_1

B

32

LS Any K 18.14 1×
HWT 1 0.0008 22675×
HWT 10 0.0055 3088×
HWT 100 0.015 1029×

64

LS Any K 22.47 1×
HWT 1 0.049 458×
HWT 10 0.078 150×
HWT 100 0.249 90×

128

LS Any K 32.11 1×
HWT 1 0.07 459×
HWT 10 0.09 356×
HWT 100 0.366 88×

G
IS

T
80

M

32

LS Any K 1.02 1×
HWT 1 0.003 340×
HWT 10 0.005 204×
HWT 100 0.003 340×

64

LS Any K 1.22 1×
HWT 1 0.009 113×
HWT 10 0.015 81×
HWT 100 0.053 23×

128

LS Any K 2.5 1×
HWT 1 0.08 31×
HWT 10 0.15 16×
HWT 100 0.5 5×

TABLE I
AVERAGE RUNNING TIME FOR A SINGLE NEAREST NEIGHBOR QUERY WITH

HWT AND LINEAR SCAN (LS) ALGORITHMS ON TWO DATASETS WITH
THREE DIFFERENT CODE LENGTHS.

It is also important to compare the average query time
of linear scan and HWT in online setting where the size of
the dataset grows gradually. To that end, Figure 6 shows the
average query time for the task of KNN search for different
sizes of dataset and various values of K. All plots are shown
on log-log axes as the normal axes. It is evident that HWT is
faster than linear scan for a wide range of database sizes. Also,
the difference between HWT and linear scan grows for larger
datasets, making HWT more efficient for large-scale datasets.

D. HWT vs MIH

We also compare the performance of HWT with MIH which
to the best of our knowledge has the best query time for solving
the exact HNN problem. To set the number of hash tables for
MIH, Norouzi et. al [23] used a hold-out validation set of
the database entries. From that set, the running time of the
algorithm for different values of m (number of hash tables) is
estimated, and the one with the best result is selected. They
empirically observed that the optimal value for m is typically
close to p/ log2 n. However, in online settings the data points
become available sequentially thus the value of n varies over
time and the items of dataset are not available in advance. In
our experiments, we execute MIH with different values of m
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Fig. 7. Average query time of HWT and MIH for the task of nearest neighbor search. The value of m denotes the number of hash tables used in MIH.

for different sizes of the database to investigate the relative
performance of these two technique. Not surprisingly, there is
a natural trade off between large and small values of m. Large
values result in assigning fewer number of bits to each table.
Therefore, each bucket of hash table can be assigned with
several codes and consequently the query must be compared
with more codes. On the other hand, small values leads to
checking more buckets.

Figure 7 shows the average query time of MIH and HWT for
the task of nearest neighbor search (1NN). For MIH, we tried
all values of m ∈ {1, . . . , 10} and measured the average query
time (some values resulted in segmentation fault due to high
memory overhead) but here we only report those that exhibit
better performance than HWT for at least one of the dataset
sizes. The figure shows that, for each value of m, there is often
a range of database size in which MIH outperforms HWT
(often when m is close to p/ log2 n). This trend can be seen
more clearly in 64-bit and 128-bit codes, nevertheless outside
of this range the HWT performs better. Moreover, for large
number of codes HWT often exhibit superior performance. Due
to the lack of space, the average performance of techniques
over different sizes of dataset is omitted from this section,
but it indicates that for all lengths of code the average query
time of HWT (averaged over different sizes of dataset) is the
smallest. In general, MIH in its optimal parameter setting has
a marginally better performance but when the number of hash
table deviates from its optimal value, HWT outperforms MIH.
Therefore, when all binary codes are available at one time,
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Fig. 8. Average insertion time for different sizes of database and different
code lengths.

using HWT is not the best choice as compared with the MIH.
However, HWT solves a different problem with its own merits.

E. Insertion Time

One of the key features of the HWT is that it supports
insertion of new items. To empirically gauge the performance
of the insert procedure, the binary codes of the ANN_1B are
sequentially inserted into the tree and the average insertion
time for each size is reported in Figure 8. It shows that HWT
enjoys a very fast insertion time, making it a suitable fit for
dynamic datasets. In particular, the average insertion time is
less than 20 microseconds in all of experiments. As the size of
the dataset increases, there is a slight growth in the insertion
time, mainly due to the collision handling and also rehashing of
the elements when the load factor goes beyond a threshold. The
total time for inserting the whole 1 billion points was around
2, 3 and 4 hours for 32, 64 and 128 bits codes, respectively.



V. CONCLUSION

In this work, we focused on the K nearest neighbors search
problem in binary datasets when both the query points and
dataset items become available gradually. Based on the branch
and bound paradigm, we proposed a tree data structure that
solves the nearest neighbor problem much faster than the
linear scan and MIH. The proposed data structure constructs
a tree over data points in an incremental fashion by routing
incoming points to the leaves. We empirically showed that the
proposed technique can achieve orders of magnitude speed up
in comparison with the linear scan and MIH specially when
the size of the dataset is large.
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APPENDIX

A. Proof of proposition 1
By definition of Hamming distance, r bits of h are flipped

in g. Such flips can be of types 1) zero to one, or 2) one to
zero. Let r1, r2 denote the number of type 1 and type 2 flips
respectively, thus we have r1 + r2 = r. We have:

‖h‖H + r1 − r2 = ‖g‖H . (10)

Using r1 + r2 = r, we have:

‖h‖H − ‖g‖H = 2r2 − r. (11)

The proof is concluded considering the fact that r2 ≤ r

B. Proof of proposition 3
The unknowns of (6) come in pairs, tied together only by

the last inequality. To solve it, one can consider r+ 1 systems
of equations, one for each possible value of

∑2w
i=1 |‖q

(i)
2w‖H −

xi| = r′, r′ ∈ {0, . . . r} , and solve them independently.
Now consider one of such systems in which

∑2w
i=1 ‖q

(i)
2w‖H−

xi| = r′. Given r′k and φk (0 ≤ k ≤ w), the following system
of equations can be solved easily:{

x2k−1 + x2k = φk

|‖q(2k−1)
2w ‖H − x2k−1|+ |‖q(2k)

2w ‖H − x2k| = r′k.
(12)



which has a set of solutions only if i) r′k ≥ |φk| and ii)
r′k ≡ φk mod 2. For each k, it can be solved by considering
four cases according to whether x2k−1 and x2k are positive or
negative. To recover all solutions for a specific value of r′, we
need to iterate through all possible values of r′ks and for each
iteration we must solve an instance of (12). In other words,
we need to generate all possible distributions of r′ among the
w equations. The total number of distributions for a specific r′

is essentially the number of partitions of parameter r′ into w
non-negative integers, r1+ . . .+rw = r′, given by the multiset
coefficient: ((

r′ + 1

w − 1

))
,

(
w + r′ − 1

w − 1

)
. (13)

Thus, the total number of instances of (12) that we need to
solve is:

r∑
r′=0

((
r′ + 1

w − 1

))
. (14)

However, many of the instances do not yield a solution as
they can violate constraints (i) or (ii). What we show is that
we can skip those instances with a simple approach. To skip
the instances that violate constraint (i), we can first find all
partitions of r1 + . . .+ rw = r′−

∑w
i=1 |φi| and then for each

partition add the |φi| to its corresponding ri. This reduces the
number of instances to

∑r
r′=0

((
r′+1−

∑w
i=1 φi

w−1

))
.

Now, to also ensure that all partitions satisfy constraint (ii),
we can limit the radius to r/2 which would result in (7). In
simple terms, instead of finding all

∑r
r′=0

((
r′+1−

∑w
i=1 φi

w−1

))
solutions and then discarding those not satisfying the r′k ≡
φk mod 2 condition, one can first find all solutions of r′1+. . .+
r′w = r′/2−

∑w
i=1 |φi| and then for each solution multiply all

of the r′is (1 ≤ i ≤ w) by two. Finally, the entries that must
be odd are added by one. Going from (14) to (7) saves us a
lot of unnecessary computation as the first quantity is much
bigger.

Using this approach, each generated instance of (12) has
at least one solution which directly translate to that (7) is a
lower bound for the number of children that must be checked.

C. Proof of proposition 2

If ‖h−g‖H= r, we have that
∑d
i=1 ‖h

(i)
d −g

(i)
d ‖ = r. Due

to proposition 1, for the i-th substring, 1 ≤ i ≤ d, we have:

ri − |‖h(i)
d ‖H − ‖g

(i)
d ‖H | ∈ {0, 2, . . . , ri} (15)

where ri = ‖h(i)
d −g

(i)
d ‖H . Summing over all substrings would

result in:

d∑
i=1

ri −
d∑
i=1

|‖h(i)
d ‖H − ‖g

(i)
d ‖H | ∈ {0, 2, . . . ,

d∑
i=1

ri}

The proof is completed considering the fact that r =
∑d
i=1 ri

and ‖Qd(h)−Qd(g)‖1 =
∑d
i=1 |‖h

(i)
d ‖H − ‖g

(i)
d ‖H |

D. Proof of Theorem 1

We start the proof of Theorem 1 by defining the event of
collision over d-patterns, and then provide an upper bound on
the probability of such collision.

Definition 1 (Collision): Let Xn = {xi}ni=1 be a set of
p-dimensional binary vectors, i.e., xi ∈ {0, 1}p. We say that
query q ∈ {0, 1}p d-collides with Xn if

∃i ∈ [n], s.t. Qd(xi) = Qd(q)

Lemma 1: Let Xn = {xi}ni=1 and q be n + 1 iid random
variables generated from the uniform distribution over the p-
dimensional binary cube. Then, for every 0 < d ≤ p, the
probability that q d-collides with Xn is at most n(dp )

d
2 .

proof. Note that because q is uniformly generated, the
distribution of its Hamming weight (i.e., distribution of ‖q‖H )
is binomial. Similarly, the distribution of the Hamming weight
of any substring of q is binomial, i.e., ‖qd‖H ∼ Bin(pd , 1/2).
Here, Bin(n, p) denotes a binomial pdf with parameters n
(number of draws) and p (probability of success). Now with
an application of union bound, and the fact that the d different
patterns are generated independently we have:

Pr
[
∃i ∈ [n] s.t. Qd(xi) = Qd(q)

]
≤ nPr

[
Qd(x

1) = Qd(q)
]

≤ n
(
Pr
[
‖x1(1)

d ‖H = ‖qd‖H
])d

≤ n

 p
d∑
j=0

Pr
[
‖x1(1)

d ‖H = ‖q(1)
d ‖H = j

]d

≤ n

 p
d∑
j=0

Pr
[
‖x1(1)

d ‖H = j
]
Pr
[
‖q(1)

d ‖H = j
]d

≤ n

 p
d∑
j=0

Bin(
p

d
, 1/2)

∣∣∣∣
j

Bin(
p

d
, 1/2)

∣∣∣∣
j

d

≤ n

 p
d∑
j=0

Bin(
p

d
, 1/2)

∣∣∣∣
j

Bin(
p

d
, 1/2)

∣∣∣∣
p
2d

d

≤ n

√d

p

p
d∑
j=0

Bin(
p

d
, 1/2)

∣∣∣∣
j

d

≤ n
(
d

p

) d
2

where we used the fact that the binomial pmf, Bin(pd , 1/2)|j ,
is maximized when j = p

2d .
Now we are ready to prove Theorem 1. We first bound the

computational cost of search associated with a single layer,
and then aggregate the cost over all of the layers.

In depth s, each node corresponds to a d-pattern where
d = 2s. Also, for any query q, the number of (r, d)-neighbors
patterns (r-vicinity) for q is at most r

(
d+r−1
r

)
≤ dr. In other

words, in layer s, there are at most dr = 2rs different potential
nodes that are the (r, d)-neighbor patterns of q. The critical
observation is that any operation in layer s is performed on a
subset of these nodes, but not all of these potential nodes are
actually materialized.



In fact, a node is accessed only if it is (i) non-empty, and (ii)
d-collides with a point in r-vicinity of q. But based on Lemma
1, the expected number of such nodes—i.e., non-empty nodes in
layer s that d-collide with a point in r-vicinity of q—is bounded
by 2rsmin

(
1, n( 2

s

p )
2s−1

)
. For each of these nodes, we check

at most 2rs potential solutions to Equation 6. Therefore, in layer
s, in total we would have at most 2rs2rsmin

(
1, n( 2

s

p )
2s−1

)
many patterns to check.

The cost of checking whether two d-dimensional binary
vectors have the same d-pattern is O(p). Hence, the total
cost associated with layer s is O

(
p22rsmin

(
1, n( 2

s

p )
2s−1

))
.

Finally, we have at most log p layers, so the total cost is
O
(
22rsmin

(
1, n( 2

s

p )
2s−1

)
p log p

)
, which we claim is in fact

O
(
p log p(log n)4r

)
. This is clear when s < 1+log log n. Also,

if s ≥ 1 + log log n, we can assume p > s
2 (because the last

layer will not have any children) so 22rsmin
(
1, n( 2

s

p )
2s−1

)
≤

(log n)4 which completes the proof.
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