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Abstract9

In this paper, we study fault-tolerant distributed consensus in wireless systems. In more detail, we produce10

two new randomized algorithms that solve this problem in the abstract MAC layer model, which captures11

the basic interface and communication guarantees provided by most wireless MAC layers. Our algorithms12

work for any number of failures, require no advance knowledge of the network participants or network13

size, and guarantee termination with high probability after a number of broadcasts that are polynomial in14

the network size. Our first algorithm satisfies the standard agreement property, while our second trades a15

faster termination guarantee in exchange for a looser agreement property in which most nodes agree on16

the same value. These are the first known fault-tolerant consensus algorithms for this model. In addition17

to our main upper bound results, we explore the gap between the abstract MAC layer and the standard18

asynchronous message passing model by proving fault-tolerant consensus is impossible in the latter in the19

absence of information regarding the network participants, even if we assume no faults, allow randomized20

solutions, and provide the algorithm a constant-factor approximation of the network size.21
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1 Introduction26

Consensus provides a fundamental building block for developing reliable distributed systems [23–25].27

Accordingly, it is well studied in many different system models [36]. Until recently, however, little28

was known about solving this problem in distributed systems made up of devices communicating29

using commodity wireless cards. Motivated by this knowledge gap, this paper studies consensus in30

the abstract MAC layer model, which abstracts the basic behavior and guarantees of standard wireless31

MAC layers. In recent work [43], we proved deterministic fault-tolerant consensus is impossible32

in this setting. In this paper, we describe and analyze the first known randomized fault-tolerant33

consensus algorithms for this well-motivated model.34

The Abstract MAC Layer. Most existing work on distributed algorithms for wireless networks35

assumes low-level synchronous models that force algorithms to directly grapple with issues caused36

by contention and signal fading. Some of these models describe the network topology with a graph37

(c.f., [8,16,20,28,32,39]), while others use signal strength calculations to determine message behavior38

(c.f., [17, 21, 26, 27, 38, 40]).39

As also emphasized in [43], these models are useful for asking foundational questions about40

distributed computation on shared channels, but are not so useful for developing algorithmic strategies41

suitable for deployment. In real systems, algorithms typically do not operate in synchronous rounds42
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and they are not provided unmediated access to the radio. They must instead operate on top of a43

general-purpose MAC layer which is responsible for many network functions, including contention44

management, rate control, and co-existence with other network traffic.45

Motivated by this reality, in this paper we adopt the abstract MAC layer model [34], an asyn-46

chronous broadcast-based communication model that captures the basic interfaces and guarantees47

provided by common existing wireless MAC layers. In more detail, if you provide the abstract48

MAC layer a message to broadcast, it will eventually be delivered to nearby nodes in the network.49

The specific means by which contention is managed—e.g., CSMA, TDMA, uniform probabilistic50

routines such as DECAY [8]—is abstracted away by the model. At some point after the contention51

management completes, the abstract MAC layer passes back an acknowledgment indicating that it52

is ready for the next message. This acknowledgment contains no information about the number or53

identities of the message recipient.54

(In the case of the MAC layer using CSMA, for example, the acknowledgment would be generated55

after the MAC layer detects a clear channel. In the case of TDMA, the acknowledgment would be56

generated after the device’s turn in the TDMA schedule. In the case of a probabilistic routine such as57

DECAY, the acknowledgment would be generated after a sufficient number of attempts to guarantee58

successful delivery to all receivers with high probability.)59

The abstract MAC abstraction, of course, does not attempt to provide a detailed representation60

of any specific existing MAC layer. Real MAC layers offer many more modes and features then is61

captured by this model. In addition, the variation studied in this paper assumes messages are always62

delivered, whereas more realistic variations would allow for occasional losses.63

This abstraction, however, still serves to capture the fundamental dynamics of real wireless64

application design in which the lower layers dealing directly with the radio channel are separated65

from the higher layers executing the application in question. An important goal in studying this66

abstract MAC layer, therefore, is attempting to uncover principles and strategies that can close the67

gap between theory and practice in the design of distributed systems deployed on standard layered68

wireless architectures.69

Our Results. In this paper, we studied randomized fault-tolerant consensus algorithms in the abstract70

MAC layer model. In more detail, we study binary consensus and assume a single-hop network71

topology. Notice, our use of randomization is necessary, as deterministic consensus is impossible in72

the abstract MAC layer model in the presence of even a single fault (see our generalization of FLP73

from [43]).74

To contextualize our results, we note that the abstract MAC layer model differs from standard75

asynchronous message passing models in two main ways: (1) the abstract MAC layer model provides76

the algorithm no advance information about the network size or membership, requiring nodes to77

communicate with a blind broadcast primitive instead of using point-to-point channels, (2) the abstract78

MAC layer model provides an acknowledgment to the broadcaster at some point after its message has79

been delivered to all of its neighbors. This acknowledgment, however, contains no information about80

the number or identity of these neighbors (see above for more discussion of this fundamental feature81

of standard wireless MAC layers).82

Most randomized fault-tolerant consensus algorithms in the asynchronous message passing model83

strongly leverage knowledge of the network. A strategy common to many of these algorithms, for84

example, is to repeatedly collect messages from at least n− f nodes in a network of size n with at85

most f crash failures (e.g., [9]). This strategy does not work in the abstract MAC layer model as86

nodes do not know n.87

To overcome this issue, we adapt an idea introduced in early work on fault-tolerant consensus in88

the asynchronous shared memory model: counter racing (e.g., [5, 12]). At a high-level, this strategy89

has nodes with initial value 0 advance a shared memory counter associated with 0, while nodes with90
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initial value 1 advance a counter associated with 1. If a node sees one counter get ahead of the other,91

they adopt the initial value associated with the larger counter, and if a counter gets sufficiently far92

ahead, then nodes can decide.93

Our first algorithm (presented in Section 3) implements a counter race of sorts using the ac-94

knowledged blind broadcast primitive provided by the model. Roughly speaking, nodes continually95

broadcast their current proposal and counter, and update both based on the pairs received from other96

nodes. Proving safety for this type of strategy in shared memory models is simplified by the atomic97

nature of register accesses. In the abstract MAC layer model, by contrast, a broadcast message is98

delivered non-atomically to its recipients, and in the case of a crash, may not arrive at some recipients99

at all.1 Our safety analysis, therefore, requires novel analytical tools that tame a more diverse set of100

possible system configurations.101

To achieve liveness, we use a technique loosely inspired by the randomized delay strategy102

introduced by Chandra in the shared memory model [12] . In more detail, nodes probabilistically103

decide to replace certain sequences of their counter updates with nop placeholders. We show that if104

these probabilities are adapted appropriately, the system eventually arrives at a state where it becomes105

likely for only a single node to be broadcasting updates, allowing progress toward termination.106

Formally, we prove that with high probability in the network size n, the algorithm terminates107

after O(n3 logn) broadcasts are scheduled. This holds regardless of which broadcasts are scheduled108

(i.e., we do not impose a fairness condition), and regardless of the number of faults. The algorithm,109

as described, assumes nodes are provided unique IDs that we treat as comparable black boxes (to110

prevent them from leaking network size information). We subsequently show how to remove that111

assumption by describing an algorithm that generates unique IDs in this setting with high probability.112

Our second algorithm (presented in Section 4) trades a looser agreement guarantee for more effi-113

ciency. In more detail, we describe and analyze a solution to almost-everywhere agreement [18], that114

guarantees most nodes agree on the same value. This new algorithm terminates afterO(n2 log4 n log logn)115

broadcasts, which is a linear factor faster than our first algorithm (ignoring log factors). The almost116

everywhere consensus algorithm consists of two phases. The first phase is used to ensure that almost117

all nodes obtain a good approximation of the network size. In the second phase, nodes use this118

estimate to perform a sequence of broadcasts meant to help spread their proposal to the network.119

Nodes that did not obtain a good estimate in Phase 1 will leave Phase 2 early. The remaining nodes,120

however, can leverage their accurate network size estimates to probabilistically sample a subset121

to actively participate in each round of broadcasts. To break ties between simultaneously active122

nodes, each chooses a random rank using the estimate obtained in Phase 1. We show that with high123

probability, after not too long, there exists a round of broadcasts in which the first node receiving its124

acknowledgment is both active and has the minimum rank among other active nodes—allowing its125

proposal to spread to all remaining nodes.126

Finally, we explore the gap between the abstract MAC layer model and the related asynchronous127

message passage passing model. We prove (in Section 5) that fault-tolerant consensus is impossible in128

the asynchronous message passing model in the absence of knowledge of network participants, even129

if we assume no faults, allow randomized algorithms, and provide a constant-factor approximation of130

n. This differs from the abstract MAC layer model where we solve this problem without network131

participant or network size information, and assuming crash failures. This result implies that the132

fact that broadcasts are acknowledged in the abstract MAC layer model is crucial to overcoming the133

difficulties induced by limited network information.134

Related Work. Consensus provides a fundamental building block for reliable distributed comput-135

1 We note that register simulations are also not an option in our model for two reasons: standard simulation algorithms
require knowledge of n and a majority correct nodes, whereas we assume no knowledge of n and wait-freedom.
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ing [23–25]. It is particularly well-studied in asynchronous models [2, 35, 42, 45].136

The abstract MAC layer approach2 to modeling wireless networks was introduced in [33] (later137

expanded to a journal version [34]), and has been subsequently used to study several different138

problems [14, 15, 29, 30, 43]. The most relevant of this related work is [43], which was the first paper139

to study consensus in the abstract MAC layer model. This previous paper generalized the seminal140

FLP [19] result to prove deterministic consensus is impossible in this model even in the presence of a141

single failure. It then goes on to study deterministic consensus in the absence of failures, identifying142

the pursuit of fault-tolerant randomized solutions as important future work—the challenge taken up143

here.144

We note that other researchers have also studied consensus using high-level wireless network145

abstractions. Vollset and Ezhilchelvan [46], and Alekeish and Ezhilchelvan [4], study consensus146

in a variant of the asynchronous message passing model where pairwise channels come and go147

dynamically—capturing some behavior of mobile wireless networks. Their correctness results depend148

on detailed liveness guarantees that bound the allowable channel changes. Wu et al. [47] use the149

standard asynchronous message passing model (with unreliable failure detectors [13]) as a stand-in150

for a wireless network, focusing on how to reduce message complexity (an important metric in a151

resource-bounded wireless setting) in solving consensus.152

A key difficulty for solving consensus in the abstract MAC layer model is the absence of advance153

information about network participants or size. These constraints have also been studied in other154

models. Ruppert [44], and Bonnet and Raynal [10], for example, study the amount of extra power155

needed (in terms of shared objects and failure detection, respectively) to solve wait-free consensus in156

anonymous versions of the standard models. Attiya et al. [6] describe consensus solutions for shared157

memory systems without failures or unique ids. A series of papers [3, 11, 22], starting with the work158

of Cavin et al. [11], study the related problem of consensus with unknown participants (CUPs), where159

nodes are only allowed to communicate with other nodes whose identities have been provided by a160

participant detector formalism.161

Closer to our own model is the work of Abboud et al. [1], which studies single hop networks in162

which participants are a priori unknown, but nodes do have a reliable broadcast primitive. They prove163

deterministic consensus is impossible in these networks under these assumptions without knowledge164

of network size. In this paper, we extend these existing results by proving this impossibility still holds165

even if we assume randomized algorithms and provided the algorithm a constant-factor approximation166

of the network size. This bound opens a sizable gap with our abstract MAC layer model in which167

consensus is solvable without this network information.168

We also consider almost-everywhere (a.e.) agreement [18], a weaker variant of consensus, where169

a small number of nodes are allowed to decide on conflicting values, as long as a sufficiently large170

majority agrees. Recently, a.e. agreement has been studied in the context of peer-to-peer networks171

(c.f. [7, 31]), where the adversary can isolate small parts of the network thus rendering (everywhere)172

consensus impossible. We are not aware of any prior work on a.e. agreement in the wireless settings.173

2 Model and Problem174

In this paper, we study a variation of the abstract MAC layer model, which describes system175

consisting of a single hop network of n ≥ 1 computational devices (called nodes in the following)176

that communicate wirelessly using communication interfaces and guarantees inspired by commodity177

2 There is no one abstract MAC layer model. Different studies use different variations. They all share, however,
the same general commitment to capturing the types of interfaces and communication/timing guarantees that are
provided by standard wireless MAC layers
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wireless MAC layers.178

In this model, nodes communicate with a bcast primitive that guarantees to eventually deliver179

the broadcast message to all the other nodes (i.e., the network is single hop). At some point after a180

given bcast has succeeded in delivering a message to all other nodes, the broadcaster receives an ack181

informing it that the broadcast is complete (as detailed in the introduction, this captures the reality182

that most wireless contention management schemes have a definitive point at which they know a183

message broadcast is complete). This acknowledgment contains no information about the number or184

identity of the receivers.185

We assume a node can only broadcast one message at a time. That is, once it invokes bcast,186

it cannot broadcast another message until receiving the corresponding ack (formally, overlapping187

messages are discarded by the MAC layer). We also assume any number of nodes can permanently188

stop executing due to crash failures. As in the classical message passing models, a crash can occur189

during a broadcast, meaning that some nodes might receive the message while others do not.190

This model is event-driven with the relevant events scheduled asynchronously by an arbitrary191

scheduler. In more detail, for each node u, there are four event types relevant to u that can be192

scheduled: initu (which occurs at the beginning of an execution and allows u to initialize), recv(m)u193

(which indicates that u has received message m broadcast from another node), ack(m)u (which194

indicates that the message m broadcast by u has been successfully delivered), and crashu (which195

indicates that u is crashed for the remainder of the execution).196

A distributed algorithm specifies for each node u a finite collection of steps to execute for each of197

the non-crash event types. When one of these events is scheduled by the scheduler, we assume the198

corresponding steps are executed atomically at the point that the event is scheduled. Notice that one199

of the steps that a node u can take in response to these events is to invoke a bcast(m)u primitive for200

some message m. When an event includes a bcast primitive we say it is combined with a broadcast.3201

We place the following constraints on the scheduler. It must start each execution by scheduling an202

init event for each node; i.e., we study the setting where all participating nodes are activated at the203

beginning of the execution. If a node u invokes a valid bcast(m)u primitive, then the scheduler must204

subsequently eventually schedule a single recv(m)v event for each non-crashed v 6= u. At some205

point after these events are scheduled, it must then eventually schedule an ack(m)u event at u. These206

are the only recv and ack events it schedules (i.e., it cannot create new messages from scratch or207

cause messages to be received/acknowledged multiple times). If the scheduler schedules a crashu208

event, it cannot subsequently schedule any other events for u.209

We assume that in making each event scheduling decision, the scheduler can use the schedule210

history as well as the algorithm definition, but it does not know the nodes’ private states (which211

includes the nodes’ random bits). When the scheduler schedules an event that triggers a broadcast212

(making it a combined event), it is provided this information so that it knows it must now schedule213

receive events for the message. We assume, however, that the scheduler does not learn the contents of214

the broadcast message.4215

Given an execution α, we say the message schedule for α, also indicated msg[α], is the sequence216

3 Notice, we can assume without loss of generality, that the steps executed in response to an event never invoke more
than a single bcast primitive, as any additional broadcasts invoked at the same time would lead to the messages being
discarded due to the model constraint that a node must receive an ack for the current message before broadcasting a
new message.

4 This adversary model is sometimes called message oblivious and it is commonly considered a good fit for schedulers
that control network behavior. This follows because it allows the scheduler to adapt the schedule based on the
number of messages being sent and their sources—enabling it to model contention and load factors. One the other
hand, there is not good justification for the idea that this schedule should somehow also depend on the specific bits
contained in the messages sent. Notice, our liveness proof specifically leverages the message oblivious assumption
as it prevents the scheduler from knowing which nodes are sending updates and which are sending nop messages.
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of message events (i.e., recv, ack, and crash) scheduled in the execution. We assume that a message217

schedule includes indications of which events are combined with broadcasts.218

The Consensus Problem. In this paper, we study binary consensus with probabilistic termination.219

In more detail, at the beginning of an execution each node is provided an initial value from {0, 1} as220

input. Each node has the ability to perform a single irrevocable decide action for either value 0 or221

1. To solve consensus, an algorithm must guarantee the following three properties: (1) agreement:222

no two nodes decide different values; (2) validity: if a node decides value b, then at least one node223

started with initial value b; and (3) termination (probabilistic): every non-crashed node decides with224

probability 1 in the limit.225

Studying finite termination bounds is complicated in asynchronous models because the scheduler226

can delay specific nodes taking steps for arbitrarily long times. In this paper, we circumvent this issue227

by proving bounds on the number of scheduled events before the system reaches a termination state228

in which every non-crashed node has: (a) decided; or (b) will decide whenever the scheduler gets229

around to scheduling its next ack event.230

Finally, in addition to studying consensus with standard agreement, we also study almost-231

everywhere agreement, in which only a specified majority fraction (typically a 1− o(n) fraction of232

the n total nodes) must agree.233

3 Upper Bound234

Here we describe analyze our first randomized binary consensus algorithm: counter race consensus235

(see Algorithms 1 and 2 for pseudocode, and Section 3.1 for a high-level description of its behavior).236

This algorithm assumes no advance knowledge of the network participants or network size. Nodes are237

provided unique IDs, but these are treated as comparable black boxes, preventing them from leaking238

information about the network size. (We will later discuss how to remove the unique ID assumption.)239

It tolerates any number of crash faults.240

3.1 Algorithm Description241

The counter race consensus algorithm is described in pseudocode in the figures labeled Algorithm 1242

and 2. Here we summarize the behavior formalized by this pseudocode.243

The core idea of this algorithm is that each node u maintains a counter cu (initialized to 0) and244

a proposal vu (initialized to its consensus initial value). Node u repeatedly broadcasts cu and vu,245

updating these values before each broadcast. That is, during the ack event for its last broadcast of cu246

and vu, node u will apply a set of update rules to these values. It then concludes the ack event by247

broadcasting these updated values. This pattern repeats until u arrives at a state where it can safely248

commit to deciding a value.249

The update rules and decision criteria applied during the ack event are straightforward. Each250

node u first calculates ĉ(0)
u , the largest counter value it has sent or received in a message containing251

proposal value 0, and ĉ(1)
u , the largest counter value it has sent or received in a message containing252

proposal value 1.253

If ĉ(0)
u > ĉ

(1)
u , then u sets vu ← 0, and if ĉ(1)

u > ĉ
(0)
u , then u sets vu ← 1. That is, u adopts the254

proposal that is currently “winning" the counter race (in case of a tie, it does not change its proposal).255

Node u then checks to see if either value is winning by a large enough margin to support a256

decision. In more detail, if ĉ(0)
u ≥ ĉ(1)

u + 3, then u commits to deciding 0, and if ĉ(1)
u ≥ ĉ(0)

u + 3, then257

u commits to deciding 1.258

What happens next depends on whether or not u committed to a decision. If u did not commit to259

a decision (captured in the if newm = ⊥ then conditional), then it must update its counter value. To260
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Algorithm 1 Counter Race Consensus (for node u with UID idu and initial value vu)

Initialization:
cu ← 0
nu ← 2
Cu ← {(idu, cu, vu)}
peers← {idu}
phase← 0
active← true

decide← −1
k ← 3
c← k + 3
bcast(nop, idu, nu)

On Receiving ack(m):
phase← phase+ 1
if m = (decide, b) then

decide(b) and halt()
else

newm← ⊥
C ′u ← Cu
ĉ
(0)
u ← max counter in C ′u paired with value 0 (default to 0 if no such elements)
ĉ
(1)
u ← max counter in C ′u paired with value 1 (default to 0 if no such elements)

if ĉ(0)
u > ĉ

(1)
u then vu ← 0

else if ĉ(1)
u > ĉ

(0)
u then vu ← 1

if ĉ(0)
u ≥ ĉ(1)

u + k or decide = 0 then newm← (decide, 0)
else if ĉ(1)

u ≥ ĉ(0)
u + k or decide = 1 then newm← (decide, 1)

if newm = ⊥ then
if max{ĉ(0)

u , ĉ
(1)
u } ≤ cu and m 6= nop then cu ← cu + 1

else if max{ĉ(0)
u , ĉ

(1)
u } > cu then cu ← max{ĉ(0)

u , ĉ
(1)
u }

update (idu, ∗, ∗) element in Cu with new cu and vu
newm← (counter, idu, cu, vu, nu)

if phase % c = 1 then with probability 1/nu active← true otherwise active← false

if newm = (decide, ∗) or active = true then
bcast(newm)

else
bcast(nop, idu, nu)

On Receiving Message m:
updateEstimate(m)
if m = (decide, b) then

decide← b

else if m = (counter, id, c, v, n′) then
if ∃c′, v′ such that (id, c′, v′) ∈ Cu then

remove (id, c′, v′) from Cu

add (id, c, v) to Cu
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Algorithm 2 The updateEstimate(m) subroutine called by Counter Race Consensus during recv(m)
event.

if m contains a UID id and network size estimate n′ then
peers← peers ∪ {id}
nu ← max{nu, |peers|, n′}

do so, it compares its current counter cu to ĉ(0)
u and ĉ(1)

u . If cu is smaller than one of these counters, it261

sets cu ← max{ĉ(0)
u , ĉ

(1)
u }. Otherwise, if cu is the largest counter that u has sent or received so far, it262

will set cu ← cu + 1. Either way, its counter increases. At this point, u can complete the ack event263

by broadcasting a message containing its newly updated cu and vu values.264

On the other hand, if u committed to deciding value b, then it will send a (decide, b) message265

to inform the other nodes of its decision. On subsequently receiving an ack for this message, u266

will decide b and halt. Similarly, if u ever receives a (decide, b) message from another node, it will267

commit to deciding b. During its next ack event, it will send its own (decide, b) message and decide268

and halt on its corresponding ack. That is, node u will not decide a value until it has broadcast its269

commitment to do so, and received an ack on the broadcast.270

The behavior described above guarantees agreement and validity. It is not sufficient, however, to271

achieve liveness, as an ill-tempered scheduler can conspire to keep the race between 0 and 1 too close272

for a decision commitment. To overcome this issue we introduce a random delay strategy that has273

nodes randomly step away from the race for a while by replacing their broadcast values with nop274

placeholders ignored by those who receive them. Because our adversary does not learn the content275

of broadcast messages, it does not know which nodes are actively participating and which nodes276

are taking a break (as in both cases, nodes continually broadcast messages)—thwarting its ability to277

effectively manipulate the race.278

In more detail, each node u partitions its broadcasts into groups of size 6. At the beginning of each279

such group, u flips a weighted coin to determine whether or not to replace the counter and proposal280

values it broadcasts during this group with nop placeholders—eliminating its ability to affect other281

nodes’ counter/proposal values. As we will later elaborate in the liveness analysis, the goal is to282

identify a point in the execution in which a single node v is broadcasting its values while all other283

nodes are broadcasting nop values—allowing v to advance its proposal sufficiently far ahead to win284

the race.285

To be more specific about the probabilities used in this logic, node u maintains an estimate nu286

of the number of nodes in the network. It replaces values with nop placeholders in a given group287

with probability 1/nu. (In the pseudocode, the active flag indicates whether or not u is using nop288

placeholders in the current group.) Node u initializes nu to 2. It then updates it by calling the289

updateEstimate routine (described in Algorithm 2) for each message it receives.290

There are two ways for this routine to update nu. The first is if the number of unique IDs that u291

has received so far (stored in peers) is larger than nu. In this case, it sets nu ← |peers|. The second292

way is if it learns another node has an estimate n′ > nu. In this case, it sets nu ← n′. Node u learns293

about other nodes’ estimates, as the algorithm has each node append its current estimate to all of294

its messages (with the exception of decide messages). In essence, the nodes are running a network295

size estimation routine parallel to its main counter race logic—as nodes refine their estimates, their296

probability of taking useful breaks improves.297

3.2 Safety298

We begin our analysis by proving that our algorithm satisfies the agreement and validity properties299

of the consensus problem. Validity follows directly from the algorithm description. Our strategy to300
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prove agreement is to show that if any node sees a value b with a counter at least 3 ahead of value301

1− b (causing it to commit to deciding b), then b is the only possible decision value. Race arguments302

of this type are easier to prove in a shared memory setting where nodes work with objects like atomic303

registers that guarantee linearization points. In our message passing setting, by contrast, in which304

broadcast messages arrive at different receivers at different times, we will require more involved305

definitions and operational arguments.5306

We start with a useful definition. We say b dominates 1− b at a given point in the execution, if307

every (non-crashed) node at this point believes b is winning the race, and none of the messages in308

transit can change this perception.309

To formalize this notion we need some notation. In the following, we say at point t (or at t), with310

respect to an event t from the message schedule of an execution α, to describe the state of the system311

immediately after event t (and any associated steps that execute atomically with t) occurs. We also312

use the notation in transit at t to describe messages that have been broadcast but not yet received at313

every non-crashed receiver at t.314

I Definition 1. Fix an execution α, event t in the corresponding message schedule msg[α],315

consensus value b ∈ {0, 1}, and counter value c ≥ 0. We say α is (b, c)-dominated at t if the316

following conditions are true:317

1. For every node u that is not crashed at t: ĉ(b)u [t] > c and ĉ(1−b)u [t] ≤ c, where at point t, ĉ(b)u [t]318

(resp. ĉ
(1−b)
u [t]) is the largest value u has sent or received in a counter message containing319

consensus value b (resp. 1− b). If u has not sent or received any counter messages containing b320

(resp. 1− b), then by default it sets ĉ(b)u [t]← 0 (resp. ĉ(1−b)u [t]← 0) in making this comparison.321

2. For every message of the form (counter, id, 1− b, c′, n′) that is in transit at t: c′ ≤ c.322

The following lemma formalizes the intuition that once an execution becomes dominated by a323

given value, it remains dominated by this value.324

I Lemma 2. Assume some execution α is (b, c)-dominated at point t. It follows that α is (b, c)-325

dominated at every t′ that comes after t.326

Proof. In this proof, we focus on the suffix of the message schedule msg[α] that begins with event327

t. For simplicity, we label these events E1, E2, E3, ..., with E1 = t. We will prove the lemma by328

induction on this sequence.329

The base case (E1) follows directly from the lemma statement. For the inductive step, we330

must show that if α is (b, c)-dominated at point Ei, then it will be dominated at Ei+1 as well. By331

the inductive hypothesis, we assume the execution is dominated immediately before Ei+1 occurs.332

Therefore, the only way the step is violated is if Ei+1 transitions the system from dominated to333

non-dominated status. We consider all possible cases for Ei+1 and show none of them can cause such334

a transition.335

The first case is ifEi+1 is a crashu event for some node u. It is clear that a crash cannot transition336

a system into non-dominated status.337

The second case is if Ei+1 is a recv(m)u event for some node u. This event can only transition338

the system into a non-dominated status if m is a counter message that includes 1− b and a counter339

c′ > c. For u to receive this message, however, means that the message was in transit immediately340

before Ei+1 occurs. Because we assume the system is dominated at Ei, however, no such message341

can be in transit at this point (by condition 2 of the domination definition).342

5 We had initially hoped there might be some way to simulate linearizable shared objects in our model. Unfortunately,
our nodes’ lack of information about the network size thwarted standard simulation strategies which typically
require nodes to collect messages from a majority of nodes in the network before proceeding to the next step of the
simulation.
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The third and final case is if Ei+1 is a ack(m)u event for some node u, that is combined with a343

bcast(m′)u event, where m′ is a counter message that includes 1− b and a counter c′ > c. Consider344

the values ĉ(b)u and ĉ(1−b)u set by node u early in the steps associated with this ack(m)u event. By345

our inductive hypothesis, which tells us that the execution is dominated right before this ack(m)u346

event occurs, it must follow that ĉ(b)u > ĉ
(1−b)
u (as ĉ(b)u = ĉ

(b)
u [Ei] and ĉ(1−b)u = ĉ

(1−b)
u [Ei]). In the347

steps that immediately follow, therefore, node u will set vu ← b. It is therefore impossible for u to348

then broadcast a counter message with value vu = 1− b. J349

To prove agreement, we are left to show that if a node commits to deciding some value b, then it350

must be the case that b dominates the execution at this point—making it the only possible decision351

going forward. The following helper lemma, which captures a useful property about counters, will352

prove crucial for establishing this point.353

I Lemma 3. Assume event t in the message schedule of execution α is combined with a bcast(m)v ,354

where m = (counter, idv, c, b, nv), for some counter c > 0. It follows that prior to t in α, every355

node that is non-crashed at t received a counter message with counter c− 1 and value b.356

Proof. Fix some t, α, v and m = (counter, idv, c, b, nv), as specified by the lemma statement. Let357

t′ be the first event in α such that at t′ some node w has local counter cw ≥ c and value vw = b. We358

know at least one such event exists as t and v satisfy the above conditions, so the earliest such event,359

t′, is well-defined. Furthermore, because t′ must modify local counter and/or consensus values, it360

must also be an ack event.361

For the purposes of this argument, let cw and vw be w’s counter and consensus value, respectively,362

immediately before t′ is scheduled. Similarly, let c′w and v′w be these values immediately after t′ and363

its steps complete (i.e., these values at point t′). By assumption: c′w ≥ c and v′w = b. We proceed by364

studying the possibilities for cw and vw and their relationships with c′w and v′w.365

We begin by considering vw. We want to argue that vw = b. To see why this is true, assume for366

contradiction that vw = 1− b. It follows that early in the steps for t′, node w switches its consensus367

value from 1− b to b. By the definition of the algorithm, it only does this if at this point in the ack368

steps: ĉ(b)w > ĉ
(1−b)
w ≥ cw (the last term follows because cw is included in the values considered369

when defining c(1−b)w ). Note, however, that c(b)w must be less than c. If it was greater than or equal to370

c, this would imply that a node ended an earlier event with counter ≥ c and value b—contradicting371

our assumption that t′ was the earliest such event. If c(b)w < c and c(b)w > cw, then w must increase its372

cw value during this event. But because ĉ(b)w > ĉ
(1−b)
w ≥ cw, the only allowable change to cw would373

be to set it to ĉ(b)w < c. This contradicts the assumption that c′w ≥ c.374

At this checkpoint in our argument we have argued that vw = b. We now consider cw. If cw ≥ c,375

then w starts t′ with a sufficiently big counter—contradicting the assumption that t′ is the earliest376

such event. It follows that cw < c and w must increase this value during this event.377

There are two ways to increase a counter; i.e., the two conditions in the if/else-if statement that378

follows the newm = ⊥ check. We start with the second condition. If max{ĉ(b)w , ĉ
(1−b)
w } > cw, then379

w can set cw to this maximum. If this maximum is equal to ĉ(b)w , then this would imply ĉ(b)w ≥ c. As380

argued above, however, it would then follow that a node had a counter ≥ c and value b before t′. If381

this is not true, then ĉ(1−b)w > c
(b)
w . If this was the case, however, w would have adopted value 1− b382

earlier in the event, contradicting the assumption that v′w = b.383

At this next checkpoint in our argument we have argued that vw = b, cw < c, and w increases384

cw to c through the first condition of the if/else if; i.e., it must find that max{ĉ(b)w , ĉ
(1−b)
w } ≤ cw385

and m 6= nop. Because this condition only increases the counter by 1, we can further refine our386

assumption to cw = c− 1.387

To conclude our argument, consider the implications of the m 6= nop component of this con-388

dition. It follows that t′ is an ack(m)w for an actual message m. It cannot be the case that m is389
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a decide message, as w will not increase its counter on acknowledging a decide. Therefore, m390

is a counter message. Furthermore, because counter and consensus values are not modified after391

broadcasting a counter message but before receiving its subsequent acknowledgment, we know392

m = (counter, idw, cw, vw, ∗) = (counter, idw, c− 1, b, ∗) (we replace the network size estimate393

with a wildcard here as these estimates could change during this period).394

Because w has an acknowledgment for this m, by the definition of the model, prior to t′: every395

non-crashed node received a counter message with counter c − 1 and consensus value b. This is396

exactly the claim we are trying to prove. J397

Our main safety theorem leverages the above two lemmas to establish that committing to decide b398

means that b dominates the execution. The key idea is that counter values cannot become too stale. By399

Lemma 3, if some node has a counter c associated with proposal value 1− b, then all nodes have seen400

a counter of size at least c− 1 associated with 1− b. It follows that if some node thinks b is far ahead,401

then all nodes must think b is far ahead in the race (i.e., b dominates). Lemma 2 then establishes that402

this dominance is permanent—making b the only possible decision value going forward.403

I Theorem 4. The Counter Race Consensus algorithm satisfies validity and agreement.404

Proof. Validity follows directly from the definition of the algorithm. To establish agreement, fix405

some execution α that includes at least one decision. Let t be the first ack event in α that is combined406

with a broadcast of a decide message. We call such a step a pre-decision step as it prepares nodes to407

decide in a later step. Let u be the node at which this ack occurs and b be the value it includes in the408

decide message. Because we assume at least one process decides in α, we know t exists. We also409

know it occurs before any decision.410

During the steps associated with t, u sets newm ← (decide, b). This indicates the following411

is true: ĉ(b)u ≥ ĉ
(1−b)
u + 3. Based on this condition, we establish two claims about the system at t,412

expressed with respect to the value ĉ(1−b)u during these steps:413

Claim 1. The largest counter included with value 1− b in a counter message broadcast6 before t414

is no more than ĉ(1−b)u + 1.415

Assume for contradiction that before t some v broadcast a counter message with value 1− b and416

counter c > ĉ
(1−b)
u + 1. By Lemma 3, it follows that before t every non-crashed node receives a417

counter message with value 1− b and counter c− 1 ≥ ĉ(1−b)u + 1. This set of nodes includes u.418

This contradicts our assumption that at t the largest counter u has seen associated with 1− b is419

ĉ
(1−b)
u .420

Claim 2. Before t, every non-crashed node has sent or received a counter message with value b421

and counter at least ĉ(1−b)u + 2.422

By assumption on the values u has seen at t, we know that before t some node v broadcast a423

counter message with value b and counter c ≥ ĉ(1−b)u + 3. By Lemma 3, it follows that before t,424

every node has sent or received a counter with value b and counter c− 1 ≥ ĉ(1−b)u + 2.425

Notice that claim 1 combined with claim 2 implies that the execution is (b, ĉ(1−b)u + 1)-dominated426

before t. By Lemma 2, the execution will remain dominated from this point forward. We assume427

t was the first pre-decision, and it will lead u to tell other nodes to decide u before doing so itself.428

Other pre-decision steps might occur, however, before all nodes have received u’s preference for b.429

With this in mind, let t′ be any other pre-decision step. Because t′ comes after t it will occur in a430

6 Notice, in these claims, when we say a message is “broadcast" we only mean that the corresponding bcast event
occurred. We make no assumption on which nodes have so far received this message.
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(b, ĉ(1−b)u + 1)-dominated system. This means that during the first steps of t′, the node will adopt b as431

its value (if it has not already done so), meaning it will also promote b.432

To conclude, we have shown that once any node reaches a pre-decision step for a value b, then the433

system is already dominated in favor of b, and therefore b is the only possible decision value going434

forward. Agreement follows directly. J435

3.3 Liveness436

We now turn our attention liveness. Our goal is to prove the following theorem:437

I Theorem 5. With high probability, within O(n3 lnn) scheduled ack events, every node executing438

counter race consensus has either crashed, decided, or received a decide message. In the limit, this439

termination condition occurs with probability 1.440

Notice that this theorem does not require a fair schedule. It guarantees its termination criteria441

(with high probability) after any O(n3 lnn) scheduled ack events, regardless of which nodes these442

events occur at. Once the system arrives at a state in which every node has either crashed, decided, or443

received a decide message, the execution is now univalent (only one decision value is possible going444

forward), and each non-crashed node u will decide after at most two additional ack events at u.7445

Our liveness proof is longer and more involved than our safety proof. This follows, in part,446

from the need to introduce multiple technical definitions to help identify the execution fragments447

sufficiently well-behaved for us to apply our probabilistic arguments. With this in mind, we divide448

the presentation of our liveness proof into two parts. The first part introduces the main ideas of the449

analysis and provides a road map of sorts to its component pieces. The second part contains the full450

formal analysis.451

3.3.1 Main Ideas452

Here we discuss the main ideas of our liveness proof. A core definition used in our analysis is the453

notion of an x-run. Roughly speaking, for a given constant integer x ≥ 2 and node u, we say an454

execution fragment β is an x-run for some node u, if it starts and ends with an ack event for u, it455

contains x total ack events for u, and no other node has more than x ack events interleaved. We456

deploy a recursive counting argument to establish that an execution fragment β that contains at least457

n · x total ack events, must contain a sub-fragment β′ that is an x-run for some node u.458

To put this result to use, we focus our attention on (2c + 1)-runs, where c = 6 is the constant459

used in the algorithm definition to define the length of a group (see Section 3.1 for a reminder of460

what a group is and how it is used by the algorithm). A straightforward argument establishes that a461

(2c+ 1)-run for some node u must contain at least one complete group for u—that is, it must contain462

all c broadcasts of one of u’s groups.463

Combining these observations, it follows that if we partition an execution into segments of length464

n · (2c+1), each such segment i contains a (2c+1)-run for some node ui, and each such run contains465

a complete group for ui. We call this complete group the target group ti for segment i (if there are466

multiple complete groups in the run, choose one arbitrarily to be the target).467

These target groups are the core unit to which our subsequent analysis applies. Our goal is to468

arrive at a target group ti that is clean in the sense that ui is active during the group (i.e., sends its469

actual values instead of nop placeholders), and all broadcasts that arrive at u during this group come470

7 In the case where u receives a decide message, the first ack might correspond to the message it was broadcasting
when the decide arrived, and the second ack corresponds to the decide message that u itself will then broadcast.
During this second ack, u will decide and halt.
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from non-active nodes (i.e., these received messages contain nop placeholders instead of values). If471

we achieve a clean group, then it is not hard to show that ui will advance its counter at least k ahead472

of all other counters, pushing all other nodes into the termination criteria guaranteed by Theorem 5.473

To prove clean groups are sufficiently likely, our analysis must overcome two issues. The first474

issue concerns network size estimations. Fix some target group ti. Let Pi be the nodes from which ui475

receives at least one message during ti. If all of these nodes have a network size estimate of at least476

ni = |Pi| at the start of ti, we say the group is calibrated. We prove that if ti is calibrated, then it is477

clean with a probability in Ω(1/n).478

The key, therefore, is proving most target groups are calibrated. To do so, we note that if some ti479

is not calibrated, it means at least one node has an estimate strictly less than ni. During this group,480

however, all nodes will receive broadcasts from at least ni unique nodes, increasing all network481

estimates to size at least ni.8 Therefore, each target group that fails to be calibrated increases the482

minimum network size estimate in the system by at least 1. It follows that at most n target groups can483

be non-calibrated.484

The second issue concerns probabilistic dependencies. Let Ei be the event that target group ti485

is clean and Ej be the event that some other target group tj is clean. Notice that Ei and Ej are not486

necessarily independent. If a node u has a group that overlaps both ti and tj , then its probabilistic487

decision about whether or not to be active in this group impacts the potential cleanliness of both ti488

and tj .489

Our analysis tackles these dependencies by identifying a subset of target groups that are pairwise490

independent. To do so, roughly speaking, we process our target groups in order. Starting with the first491

target group, we mark as unavailable any future target group that overlaps this first group (in the sense492

described above). We then proceed until we arrive at the next target group not marked unavailable493

and repeat the process. Each available target group marks at most O(n) future groups as unavailable.494

Therefore, given a sufficiently large set T of target groups, we can identify a subset T ′, with a size in495

Ω(|T |/n), such that all groups in T ′ are pairwise independent.496

We can now pull together these pieces to arrive at our main liveness complexity claim. Consider497

the first O(n3 lnn) ack events in an execution. We can divide these into O(n2 lnn) segments of498

length (2c + 1)n ∈ Θ(n). We now consider the target groups defined by these segments. By our499

above argument, there is a subset T ′ of these groups, where |T ′| ∈ Ω(n lnn), and all target groups500

in T ′ are mutually independent. At most n of these remaining target groups are not calibrated. If501

we discard these, we are left with a slightly smaller set, of size still Ω(n lnn), that contains only502

calibrated and pairwise independent target groups.503

We argued that each calibrated group has a probability in Ω(1/n) of being clean. Leveraging504

the independence between our identified groups, a standard concentration analysis establishes with505

high probability in n that at least one of these Ω(n/ lnn) groups is clean—satisfying the Theorem506

statement.507

3.3.2 Full Analysis508

Our proof of Theorem 5 proceeds in two steps. The first step introduces useful notation for describing509

parts of message schedules, and proves some deterministic properties regarding these concepts. The510

second step leverages these definitions and properties in making the core probabilistic arguments.511

8 This summary is eliding some subtle details tackled in the full analysis concerning which broadcasts are guaranteed
to be received during a target group. But these details are not important for understanding the main logic of this
argument.



XX:14 Fault-Tolerant Consensus with an Abstract MAC Layer

3.3.2.1 Definitions and Deterministic Properties512

Each node keeps a counter called phase. This counter is initialized to 0 and is incremented with513

each ack event. Given a message schedule and node u, we can divide the schedule into phases with514

respect to u based on u’s local phase counter. In more detail, label the acku events in the schedule,515

a1, a2, a3.... For each i ≥ 1, we define phase i (with respect to u) to be the schedule fragment that516

starts with acknowledgment ai and includes all events up to but not including ai+1. If no such ai+1517

exists (i.e., if ai is the last acku event in the execution), we consider phase i undefined and consider u518

to only have i− 1 phases in this schedule. Notice, by our model definition, during a given phase i, all519

non-crashed nodes receive the message broadcast as part of the ack that starts the phase.520

We partition a given node u’s phases into groups, which we define with respect to the constant c521

used in the algorithm definition as part of the logic for resetting the nodes’ active flag. In particular,522

we partition the phases into groups of size c. For a given node u, phases 1 to c define group 1, phases523

c+ 1 to 2c define group 2, and, more generally, for all i ≥ 1, phases (i− 1)c+ 1 to i · c define group524

i. Notice, by the definition of our algorithm, a node only updates its active flag at the beginning of525

each group. Therefore, the messages sent by a give node during a given one of its groups are either526

all nop messages, or all non-nop messages.527

We now introduce the higher level concept of a run, which will prove useful going forward.528

I Definition 6. Fix an execution α with corresponding message schedulemsg[α], an integer x ≥ 2,529

and a node u. We call a subsequence β of msg[α] an x-run for u if it satisfies the following three530

properties:531

1. β starts and ends with an acku event,532

2. β contains x total acks for u, and533

3. no other node has more than x acks in β.534

We now show that for any x, any sufficiently long (defined with respect to x) fragment from a535

message schedule will contain an x-run for some node:536

I Lemma 7. Fix an execution α and integer x ≥ 2. Let γ be any subsequence of the corresponding537

message schedule msg[α] that includes at least n · x ack events. There exists a subsequence β of γ538

that is an x-run for some node u.539

Proof. Because γ contains n · x total acks, a straightforward counting argument provides that at540

least one node v has at least x acks in γ. Consider the the subsequence γ′ of γ that starts with the541

first ackv event and ends with the xth such ackv event. (That is, we remove the prefix of γ before the542

first ackv and the suffix after the xth ackv event.)543

It is clear that γ′ satisfies the first properties of our definition of an x-run for v. If it also satisfies544

the third property (that no other node has more than x acks in γ′), then we are done: setting β ← γ′545

satisfies the lemma statement.546

On the other hand, if γ′ does not satisfy the third property, there must exist some node u that has547

more than x ack events in γ′. In this case, we can apply the above argument recursively to u and γ′,548

identifying a subsequence of γ′ that starts with the first acku and ends after the xth such event. The549

resulting γ′′ satisfies the first two properties of the definition of an x-run for u. If it also satisfies the550

third property, we are done. Otherwise, we can recurse again on γ′′.551

Because each such recursive application of this argument strictly reduces the size of the sub-552

sequence (at the very least, you are trimming off the first and last ack), and the original γ has a553

bounded number of events, the recursion must eventually arrive at a subsequence that satisfies all554

three properties of the x-run definition. J555
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We next prove an additional useful property of x-runs. In particular, a (2c+ 1)-run defined for556

some node u is long enough that it must contain all phases of at least one of u’s groups. Identifying557

complete groups of this type will be key to the later probabilistic algorithms.558

I Lemma 8. Let β be a (2c+ 1)-run for some node u. It follows that β contains all of the phases559

for at least one of u’s groups (i.e., a complete group for u).560

Proof. Because x = 2c+ 1, β must contain at least 2c+ 1 acku events. It follows that it contains561

at least 2c of node u’s phases (extra final ack of the 2c+ 1 ensures that all of the events that define562

phase 2c of the run are included in the run). Because each node u group consists of c phases, any563

sequence of 2c phases must include all c phase of at least one full group. J564

We next introduce the notion of a clean group, and establish that the occurence of a clean group565

guarantees that we arrive at the termination state from our main theorem.566

I Definition 9. Let β be a complete group for some node u. We say β is clean if the following two567

properties are satisfied:568

1. Node u sets active to true at the beginning of the group described by β.569

2. For every recvu(m) event that occurs in the first c− 1 phases of β, m is a nop message. (We do570

not restrict the messages received during the final phase of the clean group.)571

I Lemma 10. Fix some execution α. Assume fragment β from α is a clean group for some node u.572

It follows that by the end of β all nodes have either crashed, decided, or received a decide message.573

Proof. Fix some α, β and u as specified by the lemma statement. Let b be the consensus value u574

adopts for the first phase of the clean group. Because u only receives nop messages during all but the575

last phase of a clean group, we know u will not change this value again in this group until (potentially)576

the last phase. As we will now argue, however, it will have already decided before this last phase, so577

the fact that u might receive values in that phase is inconsequential.578

In more detail, let ĉ(b)u and ĉ(1−b)u be the largest counter values that u has seen for b and 1 − b,579

respectively, by the time it completes the ack that begins the first phase. Because we just assumed that580

u adopts b at this point, we know ĉ
(b)
u ≥ ĉ(1−b)u . Furthermore, because u only receives nop messages,581

we know that in every phase starting with phase 2 of the group, u will either increment the counter582

associated b or send a decide message. The largest counter associated with 1− b will not increase583

beyond ĉ(1−b)u during these phases.584

It follows that if u has not yet sent a decide message by the start of phase k+ 2, it will see during585

the ack event that starts this phase that its largest counter for b is k larger than the largest counter586

for 1− b. Accordingly, during this phase u will send a decide message. During the ack event that587

starts k + 3, u will receive this ack and decide. At this point, all other nodes have received its decide588

message as well. Because this is the last phase of the group, it is possible that u receives non-nop589

messages from other nodes—but at this point, this is too late to have an impact as u has already590

decided and halted. (It is here that we see why k + 3 is the right value for the group length c.) J591

3.3.2.2 Randomized Analysis592

In Part 1 of this analysis we introduced several useful definitions and execution properties. These593

culminated with the argument in Lemma 10 that if we ever get a clean group in an execution, then we594

will have achieved the desired termination property. Our goal in this second part of the analysis is595

to leverage the tools from the preceding part to prove, with high probability, that the algorithm will596

generate a clean group after not too many acks are scheduled.597
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On Network Size Assumptions. If n = 1, then all that is required for the single node u to experience a598

clean group is for it to set active to true. By Lemma 10, it will then decide and halt in the group that599

follows. By the definition of the algorithm, this occurs with probability 1/2 at the beginning of each600

group, as u initializes nu ← 2, and this will never change. Therefore: with high probability, u will601

decide within O(logn) groups (and therefore, O(c logn) scheduled acks), and with probability 1, it602

will decide in the limit. This satisfies our liveness theorem. In the analysis that follows, therefore, we603

will assume n > 1.604

On Independence Between the Schedule and Random Choices. According to our model assumptions605

(Section 2), the scheduler is provided no advance information about the nodes’ state or the contents of606

the messages they send. All the scheduler learns is the input assignment, and whether or not a given607

node sent some message (but not the message contents) as part of the steps it takes for a given init or608

recv event. By the definition of our algorithm, however, until it halts, each node sends a message609

when initialized and after every ack, regardless of its random choices or the specific contents of the610

messages its receives. It follows that the scheduler learns nothing new about the nodes’ states beyond611

their input values until the first node halts—at which point, some additional information might be612

inferred. For a node to halt, however, means it has already sent a decide message and received an ack613

for this message, meaning that we have already satisfied the desired termination property at this point.614

Accordingly, in the analysis that follows, we can treat the scheduler’s choices as independent of the615

nodes’ random choices. This allows us to fix the schedule first and then reason probabilistically about616

the messages sent during the schedule, without worrying about dependence between the schedule and617

those choices.9618

In analyzing the probability of a group ending up clean, a key property is whether or not the nodes619

participating in that group all have good estimates of the network size (e.g., their nv values used620

in setting their active flags). We call a group with good estimates a calibrated group. The formal621

definition of this property requires some care to ensure it exactly matches how we later study it:622

I Definition 11. Fix an execution α. Let β be a complete group for some node u in the message623

schedule msg[α]. Let Pβ be the set of nodes that have at least one of their messages received by u in624

the first c− 1 phases of u’s group, let nβ = |Pβ |, and for each v ∈ Pβ , let tv be the event in msg[α]625

that starts the node v group that sends the first of its messages received by u in β. We say that group626

β is calibrated if for every v ∈ Pβ : the value nv used in event tv to probabilistically set v’s active627

flag is of size at least nβ .628

Notice in the above that if Pβ is empty than the property is vacuously true. Another key property629

of calibration is that it is determined entirely by the message schedule. That is, given an prefix of a630

message schedule, you can correctly determine the network size estimation of all nodes at the end631

of that prefix without needing to know anything about their input values or random choices. This632

follows because network size estimates are based on two things: the number of UIDs from which you633

have received messages (of any type), and other nodes’ reported estimates (which are included on all634

message types). As argued above, the only thing impacted by the node random choices and inputs are635

the types of messages they send, not when they send.636

Therefore, given a message schedule and a group within the message schedule, we can determine637

whether or not that group is calibrated independent of the nodes’ random choices, supporting the638

following:639

9 Technically speaking, in the analysis above, we imagine, without loss of generality, that the scheduler creates an
infinite schedule that describes how it wants the execution to unfold until it learns the first node halts. At that point,
it can modify the schedule going forward.
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I Lemma 12. Let α be a message schedule generated by the scheduler. Let β be a (2c+ 1)-run for640

some node u in α, and γ be a complete group for u in β. If γ is calibrated, then the probability that γ641

is clean is at least 1/(64n).642

Proof. Fix some α, γ and β and u as specified by the lemma statement. Fix Pγ , nγ , and the tv643

events, as specified in our definition of calibrated (Definition 11).644

We note that if Pγ is empty, then the only condition that must hold for γ to be clean is for u to set645

active to true. This occurs with probability 1/nu ≥ 1/n > 1/(64n)—satisfying the lemma.646

Continuing, we consider the case where Pγ is non-empty. Fix any v ∈ Pγ . We begin by bounding647

the total number of v’s groups that might send a message that is received by u in γ. To do so, we note648

that because γ is a (2c+ 1)-run, v cannot have more than 2c+ 1 ack events in γ. Therefore, no more649

than 3 of v’s groups can overlap γ (as each group requires c ack events), and therefore there are at650

most 3 groups that both overlap γ and deliver a message from v to u in this group.651

We now lower bound the probability that v sets active to false (and therefore only sends nop652

messages to u) at the beginning of all of these groups. We consider two cases based on the value653

of nγ . If nγ = 1, then the fact that this group is calibrated only tells us that nv ≥ 1—which is not654

useful. In this case, however, we note that the definition of the algorithm guarantees that nv ≥ 2, as655

it initializes nv to 2 and these estimates never decrease. We can therefore crudely lower bound the656

probability that v sets active to false in all overlapping groups, by noting that it must be at least657

(1− 1/nv)3 ≥ (1− 1/2)3 = 1/8 > 1/(64n)—satisfying the lemma.658

We now consider the case where nγ > 1. In this case, we leverage the definition of calibrated,659

which tells us that at the beginning of the first of these overlapping groups, v has a network estimate660

nv ≥ nγ , and that this remains true for all overlapping groups as these estimates never decrease.661

Therefore, the probability that v delivers only nop messages to u during the first c− 1 phases of γ is662

at least: (1− 1/nv)3 ≥ (1− 1/nγ)3.663

Combining the above probability with the straightforward observation that u is active during γ664

with probability at least 1/n (as n is the largest possible network size estimate), yields the following665

probability that γ is clean:666

(1/n) ·
∏
v∈Pγ

(1− (1/nv))3 ≥ (1/n) ·
∏
v∈Pγ

(1− (1/nγ))3
667

= (1/n) ·
(
(1− (1/nγ))3)|Pγ |

668

= (1/n) · (1− (1/nγ))3nγ
669

≥ (1/n) · (1/4)(3nγ)/nγ
670

≥ 1/(64n),671

as required by the lemma statement. J672

We have established that if a group is calibrated then it has a good chance (≈ 1/n) of being clean673

and therefore ensuring termination. To leverage this result, however, we must overcome two issues.674

The first is proving that calibrated groups are sufficiently common in a given schedule. The second is675

dealing with dependencies between different groups. Assume, for example, we want to calculate the676

probability that at least one group from among a collection of target groups is clean. Assume some677

node u has a group that overlaps multiple groups in this collection. If u sets active to true in this678

group this reduces the probability of cleanliness for several groups in this collection. In other words,679

cleanness probability is not necessarily independent between different target groups.680
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On Good Target Groups. We overcomes these challenges by proving that any sufficiently long681

message schedule must contain a sufficient number of calibrated and pairwise independent target682

groups.683

To do so, let α be some message schedule generated by the scheduler that contains qnx ack684

events, where x = 2c+ 1 and q = n+ gn2c lnn, for any constant g ≥ 512. Partition this schedule685

in q segments each containing nx ack events. Label these segments s1, s2, ..., sq .686

By Lemma 7, each segment si contains an x-run for some node ui. Applying Lemma 8, it follows687

that this x-run contains at least one complete group for ui. We call this complete group the target688

group for si, and label it ti. (If there are more than one complete groups for ui in the x-run, then we689

set ti to the first such group in the run.) Let T = {t1, t2, ..., tq} be the complete set of these target690

groups.691

We turn our attention to this set T of target groups. To study their useful for inducing termination,692

we will use the notion of calibrated introduced earlier, as well as the following formal notion of693

non-overlapping:694

I Definition 13. Fix two target groups ti and tj . We say ti and tj are non-overlapping if there does695

not exist a group that has at least one recv event in ti and tj . If ti and tj are not non-overlapping,696

then we say they overlap.697

Our goal is to identify a subset of these target groups that are good—a property which we define698

with respect to calibration and non-overlapping properties as follows:699

I Definition 14. Let T ′ ⊆ T be a subset of the q target groups. We say the groups in T ′ are700

good if: (1) every ti ∈ T ′ is calibrated; and (2) for every ti, tj ∈ T ′, where i 6= j, ti and tj are701

non-overlapping.702

Notice that both the calibration and non-overlapping status of groups are a function entirely of the703

message schedule. Therefore, given a message schedule, we can partition it into segments and target704

groups as described above, and label the status of these target groups without needing to consider the705

nodes’ random bits.706

To do so, we first prove a useful bound on the prevalence of calibration in T . The core idea in the707

following is that every time a target group fails calibration, all nodes increase their network estimates.708

Clearly, this can only occur n times before all estimates are the maximum possible value of n, after709

which calibration is trivial. We then apply this result in making a more involved argument that on the710

frequency of good groups.711

I Lemma 15. At most n groups in T are not calibrated.712

Proof. Fix some ti ∈ T that is not calibrated. Let Pi be the set of nodes that deliver at least one713

message to ui in the first c− 1 phases of ti. By the definition of calibration, if ti is not calibrated,714

then at least one node v ∈ Pi starts its relevant group with a network estimate nv < |Pi|.715

During the first c− 1 phases of ti, node ui receives a message from every node in Pi (this is the716

definition of Pi). This means that by the start of the final phase of ti, ui’s network estimate is of717

size at least |Pi|. The message that ui sends in the final phase therefore will be labelled with this718

network size. By the end of this final phase, all non-crashed processes will have received this estimate.719

Therefore, all these processes will update their network size to be at least |Pi| at the beginning of720

their next phases.721

At this point, |Pi| is now a minimum network size for the entire network. Therefore, if a722

subsequent group tj is not calibrated, then it must be the case that |Pj | > |Pi|, and by the end of this723

group, the minimum network size for the entire network will increase to at least |Pj |. Clearly, this724

increase process can happen at most n times before the entire network has the maximum possible725

network size of n, and every subsequent target group is trivially calibrated. J726
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I Lemma 16. There exists a subset T ′ ⊆ T such that the groups in T ′ are good and |T ′| ≥ gn lnn.727

728

Proof. Fix some T as specified by the lemma statement. We approach this proof from an algorithmic729

perspective. That is, we describe below an algorithm that identifies a good subset T ′ of T , and then730

argue the subset produced by the algorithm is sufficiently large.731

for i← 1 to q do
if ti is calibrated then

`i ← good

else
`i ← bad

for i← 1 to q do
if `i = good then

for j ← i+ 1 to q do
if ti overlaps tj then tj ← bad

T ′ ← {ti | `i = good}

We argue that T ′ is good. First we note that by the definition of the algorithm, when a label gets732

set to bad it can never again be changed back to good.733

Next we note that if `i = good when T ′ is defined in the final step, then it could not be the case734

that `i was set to bad in the first for loop, as, by our first note, this would ensure that `i remained bad.735

Therefore, `i must have been set to good in the first for loop, indicating it is calibrated.736

Now we consider overlaps. If `i ends up good then it must have been good when the second for737

loop arrived at this value. It follows that no preceding group overlaps ti. During this iteration, the738

nested for loop will permanently set to bad and succeeding target groups that ti overlaps. Combined,739

it follows that if `i = good at this point, then for every tj that overlaps ti (i 6= j), `j = bad before740

the second for loop completes.741

We conclude that T ′ is a good subset of T . We now consider its sizes. By Lemma 15, we know742

that the first for loop marks at most n groups bad with the rest initialized to good.743

Now consider an iteration i of the second for loop that finds `i = good. We can bound the744

number of groups the inner for loop then sets to bad. For each v 6= ui, v can have at most one group745

that delivers messages to both ti and future groups. Call this group gv. Because gv delivers c total746

messages, the maximum number of future groups it can deliver messages to is at most c− 1. In the747

worst case, each v 6= ui therefore causes no more than c− 1 future groups to be labelled bad. There748

are n− 1 total possible nodes, so at most (n− 1)(c− 1) future groups get labelled bad for each good749

group identified by the second for loop. Therefore, if we divide these groups by (n− 1)(c− 1) + 1,750

we get a lower bound on the number of good groups that remain:751

q − n
(n− 1)(c− 1) + 1 ≥

q − n
nc

= (n+ gn2c lnn)− n
nc

= gn lnn,752

as claimed by the lemma statement. J753

The target groups in the set T ′ identified by Lemma 16 are calibrated and pairwise non-overlapping.754

By Lemma 12, each such group has a reasonable probability of being clean. We will conclude our755

analysis by arguing that with high probability at least one will end up clean.756

I Lemma 17. Let T ′ ⊆ T be a subset of the target groups T such that the groups in T ′ are good757

and |T ′| ≥ gn lnn, for some constant g ≥ 512. Then with high probability in n: at least one group758

in T ′ is clean.759
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Proof. Fix some T ′ as specified by the lemma statement. We describe the cleanliness of each ti ∈ T ′760

with a random indicator variable Xi, where Xi = 1 indicates ti is clean, and Xi = 0 indicates it is761

not clean. By Lemma 12, we know that for each ti ∈ T ′: P(Xi = 1) ≥ 1/(64n).762

We next argue that these random variables are independent. To see why, notice that the only763

random choices made by a given node when reseting active at the start of each group. Each such764

choice is made with independent randomness: i.e., the choice for one group is independent from the765

choice made for any other group. For any ti, tj ∈ T ′, where i 6= j, by the definition T ′, there are no766

groups that overlap both ti and tj . Therefore, the random choices relevant to determine if ti is clean767

are distinct from the random choices that will determine if tj is clean. It follows that Xi and Xj are768

independent.769

Let Y =
∑
ti∈T ′ Xi be the total number of clean groups. It follows by linearity of expectation,770

Lemma 12, and our assumption on the size of T ′:771

E(Y ) = E

(∑
ti∈T ′

Xi

)
=
∑
ti∈T ′

E(Xi) ≥ |T ′|/(64n) ≥ (g/64) lnn.772

Because the X indicators are independent, we can apply a Chernoff bound to concentrate around773

this expectation.10 In particular, let µ = E(Y ) ≥ (g/64) lnn. We bound the probability that Y is a774

constant factor smaller than expected:775

P(Y ≤ µ/2) ≤ e−
(1/2)2(g/64) lnn

2776

= e−(g/512) lnn
777

= 1/ng/512
778

≤ 1/n779

Given our assumption on g, we know µ/2 ≥ 1. Therefore, Pr(Y ≤ µ/2) is less than or equal to780

the probability that no group is clean. J781

We can now pull together the pieces to prove our main liveness result (Theorem 5):782

Proof (of Theorem 5). We handled the case where n = 1 at the beginning of the liveness analysis.783

Here we consider only n > 1, the case for which the above lemma hold. To prove the first part of the784

theorem, fix some constant g ≥ 512, and define q and x as in the above definitions of segments and785

target groups. Consider the first qnx = (n + gn2c lnn) · n · (2c + 1) = Θ(n3 lnn) ack events of786

the message schedule generated by the scheduler. We can extract a set T containing q target groups787

from this prefix of the message schedule as described above.788

By Lemma 16, there exists a subset T ′ ⊆ T such that the groups in T ′ are good and |T ′| ≥ gn lnn.789

By Lemma 17, with high probability, at least one of these target groups is clean. Finally, by Lemma 10:790

if any group is clean, then by the end of that group every process has either crashed, decided, or791

received a decide message.792

The second part of the theorem, which addresses termination in the limit, we first note that if we793

continually apply the argument from Lemma 17 to fresh batches of groups, the probability that we do794

not generate a clean group approaches 0 in the limit. Combined with Lemma 10, this provides the795

needed probabilistic termination condition. J796

10 We use the following loose form of the bound that holds for µ = E(Y ) when 0 ≤ δ ≤ 1: P(Y ≤ (1−δ)µ) ≤ e− δ2µ
2 .
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3.4 Removing the Assumption of Unique IDs797

The consensus algorithm described in this section assumes unique IDs. We now show how to eliminate798

this assumption by describing a strategy that generates unique IDs w.h.p., and discuss how to use this799

as a subroutine in our consensus algorithm.800

We make use of a simple tiebreaking mechanism as follows: Each node u proceeds by iteratively801

extending a (local) random bit string that eventually becomes unique among the nodes. Initially,802

u broadcasts bit b1, which is initialized to 1 (at all nodes), and each time u samples a new bit b, it803

appends b to its current string and broadcasts the result. For instance, suppose that u’s most recently804

broadcast bit string is b1 . . . bi. Upon receiving ack(b1 . . . bi), node u checks if it has received a805

message identical to b1 . . . bi. If it did not receive such a message, then u adopts b1 . . . bi as its ID and806

stops. Otherwise, some distinct node must have sampled the same sequence of bits as u and, in this807

case, the ID b1 . . . bi is considered to be already taken. (Note that nodes do not take receive events for808

their own broadcasts.) Node u continues by sampling its (i+ 1)-th bit bi+1 uniformly at random, and809

then broadcasts the string b1 . . . bibi+1, and so forth.

Algorithm 3 Generating unique IDs using randomized tiebreaking. Code for node u.
1: Initialization:
2: b1 ← 1; R← ∅; i = 1
3: bcast(b1)

4: On Receiving ack(b1 . . . bi)
5: if (b1 . . . bi) /∈ R then
6: idu ← (b1 . . . bi)
7: adopt idu as ID and terminate

8: i← i+ 1
9: sample bit bi uniformly at random

10: bcast(b1 . . . bi)

11: On Receiving message (b′1 · · · b′j), (j ≥ 1):
12: if u has not yet assigned idu then add (b′1 · · · b′j) to R

810

We first show that the algorithm is safe in the sense that no two nodes ever assign themselves the811

same ID:812

I Lemma 18. Suppose that nodes u and v both terminate Algorithm 3. Then it holds that idu 6= idv .813

Proof. Consider an execution α and the corresponding message schedule msg[α]. Suppose, in814

contrary, that idu = idv . Let ru and rv denote the number of acks that u respectively v receive before815

assigning an ID and, without loss of generality, assume ru ≤ rv. Clearly, if ru < rv, then idv is at816

least one bit longer than idu, thus idv > idu. Now suppose that ru = rv , i.e., both u and v receive the817

same number of acks. Let tu and tv be the events in msg[α] where u and v receive their respective818

ru-th ack and, without loss of generality, assume that tu precedes tv in msg[α]. By assumption,819

u was non-faulty until receiving its ack in event tu and hence v must have received u’s broadcast820

message (idu) before receiving its own ack in step tv. Since u and v have generated the same bits821

by assumption, the if-conditional ensures that v samples at least one additional bit compared to u,822

providing a contradiction. J823

Next, we show liveness in Lemma 19 by arguing that each node receives an ID within its firstO(logn)824

broadcast events with high probability.825
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I Lemma 19. With high probability, each node broadcasts at most O(logn) times before choosing826

an ID in Line 6 of Algorithm 3.827

Proof. Consider an execution α and assume, towards a contradiction, that a node u executes at828

least d4 log2 ne + 2 broadcasts. Let (b1 . . . bd4 log2 ne+1) be the (d4 log2 ne + 1)-length bit string829

broadcast by u, and let t be the event where u receives ack(b1 . . . bd4 log2 ne+1) for the corresponding830

broadcast. By assumption, u does not pass the if-condition in event t and thus there is a set of nodes831

W (u /∈W ) that also broadcast bit strings of length d4 log2 ne+ 1 and whose messages are received832

by u before event t. While the first bit b1 is initialized to 1 by every node, the string b2 . . . bd4 log2 ne+1)833

corresponds to a uniform random sample from a range of size at least n4. The probability that v has834

sampled precisely the same d4 log2 ne bits as u (and hence broadcast (b1b2 . . . bd4 log2 ne+1)) is at835

most 1
n4 . Taking a union bound over all other nodes in W and over all possible choices for u, shows836

that all nodes will execute at most d4 log2 n+ 1e broadcasts with high probability. J837

From the previous two lemmas, we obtain the following result:838

I Theorem 20. Consider an execution α of the tiebreaking algorithm. Let tu be an event in the839

message schedule msg[α] such that node u is scheduled for Ω(logn) ack events before tu. Then, for840

each correct node u, it holds that u has a unique ID of O(logn) bits with high probability at tu.841

Equipped with Theorem 20 we can execute the consensus algorithm in networks without unique842

IDs, by instructing each node u to first execute Algorithm 3, while locally buffering all messages843

received from nodes already executing the consensus algorithm; however, u does not yet process844

these messages. Once u obtains an ID, it performs the initialization step of the consensus algorithm845

and locally simulates taking receive steps for all previously buffered messages.846

4 Almost-Everywhere Agreement847

In the previous section, we showed how to solve consensus in O(n3 logn) events. Here we show848

how to improve this guarantee by a near linear factor by loosening the agreement guarantees. In849

more detail, we consider a weaker variant of consensus, introduced in [18], called almost-everywhere850

agreement. This variation relaxes the agreement property of consensus such that o(n) nodes are851

allowed to decide on conflicting values so long as the remaining nodes all decide the same value. For852

many problems that use consensus as a subroutine, this relaxed agreement property is sufficient.853

In more detail, we present an algorithm for solving almost-everywhere agreement in the abstract854

MAC layer model when nodes start with arbitrary (not necessarily binary) input values. The algorithm855

consists of two phases; see Algorithm 4 for the pseudo code.856

Phase 1: In this phase, nodes try to obtain an estimate of the network size by performing local coin857

flipping experiments. Each node u records the number of times that its coin comes up tails before858

observing the first heads in a variable X . Then, u broadcasts its value of X once, and each node859

updates X to the highest outcome that it has seen until it receives the ack for its broadcast. In our860

analysis, we show that, by the end of Phase 1, variable X is an approximation of log2(n) with an861

additive O(log logn) term, for all nodes in a large set called EST , and hence N := 2X is a good862

approximation of the network size n for any node in EST .863

Phase 2: Next, we use X and N as parameters of a randomly rotating leader election procedure.864

Each node decides after T = Θ(N log3(N) log log(N)) rounds, where each round corresponds to865

one iteration of the for-loop in Algorithm 4. (Note that due to the asynchronous nature of the abstract866

MAC layer model, different nodes might be executing in different rounds at the same point in time.)867

We now describe the sequence of steps comprising a round in more detail: A node u becomes active868
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with probability 1/Nu at the start of each round.11 If it is active, then u samples a random rank ρ869

from a range polynomial in Xu, and broadcasts a message 〈r, ρ, val〉 where val refers to its current870

consensus input value. To ensure that the scheduler cannot derive any information about whether a871

node is active in a round, inactive nodes simply broadcast a dummy message with infinite rank. While872

an (active or inactive) node v waits for its ack for round r, it keeps track of all received messages873

and defers processing of a message sent by a node in some round r′ > r until the event in which874

v itself starts round r′. On the other hand, if a received message was sent in r′ < r, then v simply875

discards that late message as it has already completed r′. Node v uses the information of messages876

originating from the same round r to update its consensus input value, if it receives such a message877

from an active node that has chosen a smaller rank than its own. (Recall that inactive nodes have878

infinite rank.) After v has finished processing the received messages, it moves on the next round.879

We first provide some intuition why it is insufficient to focus on a round r where the “earliest”880

node is also active: Ideally, we want the node w1 that is the first to receive its ack for round r to be881

active and to have the smallest rank among all active nodes in round r, as this will force all other882

(not-yet decided) nodes to adopt w1’s value when receiving their own round r ack, ensuring a.e.883

agreement. However, it is possible that w1 and also the node w2 that receives its round r ack right884

after w1, are among the few nodes that ended up with a small (possibly constant) value of X after885

Phase 1. We cannot use the size of EST to reason about this probability, as some nodes are much886

likelier to be in EST than others, depending on the schedule of events in Phase 1. In that case, it887

could happen that both w1 and w2 become active and choose a rank of 1. Note that it is possible that888

the receive steps of their broadcasts are scheduled such that roughly half of the nodes receive w1’s889

message before w2’s message, while the other half receive w2’s message first. If w1 and w2 have890

distinct consensus input values, then it can happen that both consensus values gain large support in891

the network as a result.892

To avoid this pitfall, we focus on a set of rounds where all nodes not in EST have already893

terminated Phase 2 (and possibly decided on a wrong value): from that point onwards, only nodes894

with sufficiently large values of X and N keep trying to become active. We can show that every node895

in EST has a probability of at least Ω(1/(n logn)) to become active and a probability of Ω(1/ logn)896

to have chosen the smallest rank among all nodes that are active in the same round. Thus, when897

considering a sufficiently large set of rounds, we can show that the event, where the first node in898

EST that receives its ack in round r becomes active and also chooses a rank smaller than the rank of899

any other node active active in the same round, happens with probability 1− o(1).900

In the remainder of this section, we will formalize the above discussion by proving the following901

main theorem regarding this algorithm:902

I Theorem 21. With high probability, the following two properties are true of our almost-903

everywhere consensus algorithm: (1) within O(n2 log4 n · log logn) scheduled ack events, every904

node has either crashed, decided, or will decided after it is next scheduled; (b) all but at most o(n)905

nodes that decide, decide the same value.906

We begin our proof of Theorem 21 by analyzing the properties of variables N and X . We say907

that a node u fails in round r if u performs its round r broadcast in some event, but crashes before908

receiving its corresponding ack; otherwise, we say u is alive in r. Note that there is no guarantee909

about which nodes receive u’s final broadcast.910

I Lemma 22. There exists a set of nodes EST of size at least
(

1−O
(

log logn
logn

))
n − f , such911

that the following hold with probability at least 1− o(1):912

11 We use the convention Nu when referring to the local variable N of a specific node u.
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Algorithm 4 Almost-everywhere agreement in the abstract MAC layer model. Code for node u.
1: val← consensus input value
2: . Phase 1
3: initialize X ← 0; R← ∅
4: while flip_coin() = heads do
5: X ← X + 1
6: bcast(X)
7: while waiting for ack do
8: add received messages to R

9: X ← max(R ∪ {X})
10: N ← 2X
11: . Phase 2
12: T ← dcN log3(N) log log(N)e, where c is a sufficiently large constant.
13: initialize array of sets R[1], . . . , R[T ]← ∅
14: for i← 1, . . . , T do . Start of round i at u
15: u becomes active with probability 1

N

16: if u is active then
17: ρ← unif. at random sampled integer from [1, X4]
18: else
19: ρ←∞
20: bcast(〈i, ρ, val〉)
21: while waiting for ack do
22: add received messages to R[i]
23: for each message m = 〈i′, ρ′, val′〉 ∈ R[i] do
24: if i′ = i and ρ′ < ρ then . Received message from node with smaller rank
25: val← val′

26: else if i′ > i then . Received message from node active in future round
27: add m to R[i′]
28: else
29: discard message m

30: decide on val
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(a) for all u ∈ EST , when u receives its ack for its first broadcast, it holds that913

n

log2 n
≤ Nu ≤ n logn and log2 n− log2(logn) ≤ Xu ≤ log2 n+ log2 logn; (1)914

915

(b) for all v /∈ EST , we have Nv ≤ n
2 log2 n

.916

Our proof of Lemma 22 requires a technical result on the distribution of observed coin flips.917

I Claim 23. Consider any set S of at least 2n log logn
logn correct nodes and letX∗ = max{Xu | u ∈ S},918

where Xu refers to u’s variable before node u receives any messages in Phase 1. It holds with919

probability at least 1−O(1/ logn) that log2 n− log2(logn) ≤ X∗ ≤ log2 n+ log2 logn.920

Proof of Claim 23. Observe that Xu is geometrically distributed with parameter 1
2 and hence921

Pr [Xu ≥ log2 n+ log2 logn] ≤ 2− log2 n−log2 logn = 1
n logn.922

Taking a union abound over all nodes in S and noting that |S| ≤ n, implies that X∗ ≤ log2 n +923

log2 logn with probability at least 1− 1/ logn, proving the upper bound.924

For the lower bound, we first bound the probability that the estimate of a single node u ∈ S is925

above the required threshold. We get926

Pr [Xu≥ log2 n− log2(logn)] ≥ Pr [Xu=log2 n− log2(logn)] = 2− log2 n+log2(logn)−1 = logn
2n ,927

where the second last equality follows from the properties of the geometric distribution. Considering928

the complementary event, namely that Xu is below the threshold, and taking a union bound over the929

set S, yields930

Pr [∀u ∈ S : Xu < log2 n− log2(logn)] ≤
(

1− logn
2n

)2n log logn/ logn
≤ exp

(
−2n logn log logn

2n logn

)
,931

thus completing the proof of Claim 23. J932

Proof of Lemma 22. We note that the values N are powers of 2 and, since any node not in EST933

must have a value of X strictly smaller than for any node that is in EST , Part (b) follows. Thus we934

focus on (a) in the remainder of the proof.935

To obtain a lower bound on the size of EST , we define the set S in the premise of Claim 23936

to consist of the first
⌈

2n log logn
logn

⌉
nodes that receive the ack for their broadcast in Phase 1 of the937

algorithm. Let S̄ be the set of alive nodes that are not in S. Then, all nodes in S̄ are guaranteed to938

receive the maximum value broadcast by nodes in S before completing Phase 1. Observe that any939

node u ∈ S̄ must have Nu ≤ n logn by instantiating Claim 23 with set S̄. Since EST contains at940

least all nodes in S̄, the lemma follows. J941

We now focus on Phase 2 of the algorithm which is conceptually structured into rounds, where942

each round consists of one iteration of the for-loop of Algorithm 4. When talking about some event E943

in round r that concerns a set of nodes U , we refer to the collection of events in the message schedule944

where the nodes in U execute the corresponding events. We say that u ∈ EST is the earliest node in945

round r, if u receives its ack for its round r broadcast before all other nodes in the message schedule.946

Note that which node is the earliest depends on the scheduler and can change from round to round.947

I Lemma 24. With probability 1−O(1/ logn), there exists a set Γ of at least Ω
(
n log2 n log logn

)
948

rounds in which no node crashes and where the following hold:949

(a) in every round r ∈ Γ, at most 4 log2 n nodes in EST become active in r, and950
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(b) all nodes in EST remain undecided until the last round of Γ.951

Proof. For Part (a), recall from Lemma 22.(a) that each node u ∈ EST becomes active with952

probability 1/Nu ≤ log2 n
n and hence the expected number of active nodes is at most log2 n. Since953

nodes become active independently, an application of a standard Chernoff bound [37] shows that at954

most 4 log2 n nodes in EST become active with high probability.955

We now consider Part (b). We know that the number of rounds executed by any node v /∈ EST is956

at most957

Tv =
⌈
cNv log3(Nv) log log(Nv)

⌉
≤ cn

2 log2 n
log3

(
n

2 log2 n

)
log log

(
n

2 log2 n

)
+ 1

(by Lem. 22.(b))

958

≤ 19
36

cn

logn log3
(

n

2 logn

)
log log

(
n

2 logn

)
959

≤ 19
36cn log2 n log logn. (2)960

961

On the other hand, Lemma 22.(a) tells us that any u ∈ EST executes at least962

Tu ≥ cNu log3(Nu) log log(Nu) ≥ cn

log2 n
log3

(
n

log2 n

)
log log

(
n

log2 n

)
963

rounds. For sufficiently large n, it holds that log3
(

n
log2 n

)
≥ 5

6 log3 n and similarly log log
(

n
log2 n

)
≥964

5
6 log logn. Thus, simplifying the right-hand side in the above inequality yields965

Tu ≥ 25
36cn log2 n log logn.966

Recalling (2), it follows that there is a set Γf of at least Tu − Tv ≥ c
6n log2 n log logn rounds where967

only nodes in EST execute the code in the for-loop. Since nodes can fail in at most n− 1 rounds of968

the algorithm, it follows that there exists a subset Γ ⊆ Γf of size at least Ω
(
n log2 n log logn

)
, as969

required. J970

I Lemma 25. Suppose that there is a set EST as stated in Lemma 22 and assume that the set of971

rounds Γ implied by Lemma 24 exists. Then there exists a round r ∈ Γ such that, with probability972

1−O(1/ logn), the earliest node is alive in r, becomes active, and has the minimum rank.973

Proof. Below, we restrict our attention to the set of rounds Γ where only nodes in EST participate.974

We will first lower bound the probability that an active node has the lowest rank among all nodes975

active in round r ∈ Γ.976

Condition on the event that the earliest node u is active in r. Let q be the probability that u chooses977

a unique minimum rank among active nodes and consider the threshold L = log2 n− log2(logn).978

Recall from (1), that all nodes in EST choose their rank from a range [1, `] where ` ≥ L4. Let “ρu979

min” be the event that u chooses the smallest rank in this round. We get980

q = Pr [ρu min | u ∈ Active] ≥ Pr
[
ρu min | u ∈ Active, ρu ≤ L4] ·Pr

[
ρu ≤ L4 | u ∈ Active

]
.

(3)981

For all active v ∈ EST , it holds that ρv ≤ (log2 n+ log2 logn)4 ≤ 2 log4
2 n. Together with the fact982

that L ≥ 1
2 log2 n, this implies that983

Pr
[
ρu ≤ L4 | u ∈ Active

]
≥ L4

2 log4
2 n
≥ 1

4 . (4)984

985
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Next, we will derive a bound on Pr
[
ρu min | u ∈ Active, ρu ≤ L4]. Lemma 24.(a) tells us that there986

are at most 4 log2 n active nodes in any given round r ∈ Γ. Consider some active node v. If we987

condition on all nodes choosing their rank from the range [1, L4], the probability that all nodes choose988

distinct ranks from the rank of v must be at least
(
1− 1

L4

)4 log2 n. In that case, a union bound over989

the active nodes implies that, for the event dist, which occurs when all nodes have unique ranks, we990

get991

Pr
[
dist | u ∈ Active,∀v ∈ Active : ρv ≤ L4] ≥ (1− 1

L4

)4 log2
2 n

≥ 1−O
(
1/ log2 n

)
. (5)992

993

Moreover, conditioning on the event that all active nodes choose ranks from [1, L4] does not increase994

the probability of u choosing the smallest rank, which tells us that995

Pr
[
ρu min | u ∈ Active, ρu ≤ L4] ≥ Pr

[
ρu min | u ∈ Active,∀v ∈ Active : ρv ≤ L4]

996

≥ Pr
[
ρu min | u ∈ Active,∀v ∈ Active : ρv ≤ L4,dist

](
1−O

(
1

log2 n

))
,997

998

where last inequality follows from (5). Given dist and the premise of the lemma of having at most
4 log2 n active nodes, the probability of u picking the smallest rank is at least 1/4 log2 n.999

Pr
[
ρu min | u ∈ Active, ρu ≤ L4] ≥ 1

4 log2 n

(
1−O

(
1

log2 n

))
1000

≥ 1
5 log2 n

,1001
1002

Plugging the above bound and (4) into the right-hand side of (3) shows that q ≥ 1
20 log2 n

.1003

Conditioned on Lemma 22.(a), we know that every node in EST , and in particular, the earliest1004

node u, has probability at least 1
n logn of being active in any single round r ∈ Γ. We have1005

Pr [ρu min ∧ u ∈ Active] ≥ q

n logn ≥
1

20n log2
2 n

,1006

1007

for any round r ∈ Γ and the respective earliest node u in r.1008

Recalling that Γ comprises Ω(n log2 n log logn) rounds, it follows that the event that, for none of1009

the rounds in Γ, the earliest node becomes the smallest ranked active node, happens with probability1010

at most1011 (
1− 1

20n log2
2 n

)|Γ|
≤ exp

(
− |Γ|

20n log2
2 n

)
= O

(
1

logn

)
.1012

J1013

Proof of Theorem 21:1014

Validity follows since any value written to variable val was the input value of some node.1015

For termination, notice the number of rounds executed by any node u depends on the value of1016

Tu = O(Nu log3(Nu) log log(Nu)) in Phase 2. From Claim 23, we know that Nu ≤ n logn for all1017

nodes u with probability 1− o(1) and hence the maximum number of rounds executed by any node1018

u is O(n log4 n log logn), which results in the same bound for the total number of broadcasts by u.1019

Taking into account that there are n nodes, the claimed termination bound follows.1020

Conditioned on the properties of set EST (cf. Lemma 22), we now show that almost all nodes1021

decide on a common value. From Lemma 25 we know that with probability 1− o(1), there is a set Γ1022
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containing a round r ∈ Γ, in which the earliest node u is active, non-faulty, and has the minimum1023

rank. Let t′ be the event when u receives the corresponding ack for its round r broadcast message1024

mu carrying valu. By Lemma 24.(b), we know that every node v ∈ EST is performing all rounds in1025

Γ and hence will receive u’s message mu in some receive event tv that precedes t′ in the message1026

schedule. Moreover, since u was the earliest node in round r, it follows that event tv must be part1027

of some round r′ ≤ r (at v) and in particular must occur before v receives its ack for round r. If1028

r′ < r, then v defers the processing of message mu until v reaches round r; otherwise, if r′ = r,1029

then v adopts u’s value when it receives its ack. By Lemma 24.(b), the nodes in EST execute all1030

rounds of Γ and hence all of them will adopt valu when receiving their ack in round r; for each node1031

v ∈ EST , let tv denote this event.1032

To complete the proof, we will argue that no node in EST will change its value after round1033

r. For the sake of a contradiction, suppose that there is some w ∈ EST that adopts some value1034

z 6= valu during an ack event t′w in some round rw > r. Moreover, assume that tw is the earliest1035

such event in the message schedule that is causally influenced by u’s round r broadcast event t. Since1036

u has the smallest rank in r, it follows that w must have received a message 〈r′, ρ′, x〉, which was1037

sent by some node u′ during its round r′ 6= r. First, observe that if r′ < r, then also r′ < rw and1038

hence w would have discarded that message in event tw. Now consider the case r′ > r. Since only1039

nodes in EST perform broadcasts during the rounds in Γ, it follows that u′ ∈ EST , and hence by1040

the above argument we know that u′ must have broadcast x 6= valu after having adopted valu in1041

its round r. This means that u′ updated its value after round r, contradicting the fact that tw was1042

the earliest event in the message schedule where such an update occurred. It follows that at least1043

|EST | − f = n
(

1−O
(

log logn
logn

))
− f nodes decide on a common value.1044

When applying Lemmas 22, 24, and 25 in the argument above, we condition on events each of1045

which happens with probability 1− o(1). Hence we can remove the conditioning while retaining a1046

probability of success of 1− o(1). J1047

5 Lower Bound1048

We conclude our investigation by showing a separation between the abstract MAC layer model and1049

the related asynchronous message passing model. In more detail, we prove below that fault-tolerant1050

consensus with constant success probability is impossible in a variation of the asynchronous message1051

passing model where nodes are provided only a constant-fraction approximation of the network1052

size and communicate using (blind) broadcast. This bounds holds even if we assume no crashes1053

and provide nodes unique ids from a small set. Notice, in the abstract MAC layer model, we solve1054

consensus with broadcast under the harsher constraints of no network size information, no ids, and1055

crash failures. The difference is the fact that the broadcast primitive in the abstract MAC layer1056

model includes an acknowledgment. This acknowledgment is therefore revealed to be the crucial1057

element of the our model that allows algorithms to overcome lack of network information. We1058

note that this bound is a generalization of the result from [1], which proved deterministic consensus1059

was impossible under these constraints. In the proof of the theorem, we show that, for any given1060

randomized algorithm we can construct scenarios that are indistinguishable for the nodes, thus causing1061

conflicting decisions.1062

I Theorem 26. Consider an asynchronous network of n nodes that communicate by broadcast1063

and suppose that nodes are unaware of the network size n, but have knowledge of an integer that is1064

guaranteed to be a 2-approximation of n. No randomized algorithm can solve binary consensus with1065

a probability of success of at least 1− ε, for any constant ε < 2−
√

3. This holds even if nodes have1066

unique identifiers chosen from a range of size at least 2n and all nodes are correct.1067
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Proof. In our proof we construct admissible executions by restricting ourselves to schedules that are1068

infinite sequences of layers (cf. [41]). For a given set of nodes S, we define a layer L(S) to consist of1069

an arbitrarily ordered sequence of nodes in S, say 〈u1, . . . , uk〉, followed by a sequence of sets of1070

received messages 〈M1, . . . ,Mk〉, where Mi denotes the set of messages received by node ui. Layer1071

L(S) defines a schedule where each ui takes a compute step (in the given order), in which it can1072

perform some local computation and broadcast a message. We conclude the layer by scheduling each1073

uj ∈ S to take sufficiently many receive steps to ensure that all messages in Mj are delivered. We1074

restrict the sets Mj such that each message m ∈Mj must have been broadcast in L(S) or some layer1075

preceding L(S) in the schedule.1076

Assume, towards a contradiction, that there is a randomized consensus algorithm that succeeds1077

with probability ≥ 1− ε. Consider the n-node clique network H0 of nodes u1, . . . , un where each1078

node is equipped with some arbitrary unique identifier and all nodes start with consensus input 0.1079

Moreover, nodes are given the network size estimate 2n. By a slight abuse of notation, we use H0 to1080

refer to both, the network and the set of nodes in the network. We specify the schedule σ0 to be the1081

infinite sequence 〈L(H0), L(H0), . . . 〉 where layer L(H0) is such that all broadcasts by nodes in H01082

are received by all nodes in H0 in the very same layer in which they are sent. Since σ0 results in an1083

admissible execution according to the asynchronous broadcast model, there exists a fixed integer t01084

such that all nodes in H0 have decided with probability at least 1− 1/n within the first t0 steps of σ0.1085

Validity and agreement tell us that, if nodes decide in the t0-step prefix σ′0 of σ0, their decision must1086

be on 0 with probability at least 1− ε.1087

Similarly, we define a schedule σ1 = 〈L(H1), L(H1), . . . 〉 on a network H1 of n nodes where1088

all nodes start with input 1, a network size estimate of 2n, and nodes are given a set of unique IDs1089

disjoint from the IDs used for H0. By a similar argument as above, there is an integer t1 such that1090

the algorithm ensures a common decision on 1 with probability at least 1− ε, conditioned on nodes1091

deciding within t1 steps (which itself is bound to happen with probability ≥ 1− 1/n); we denote the1092

corresponding schedule prefix by σ′1.1093

Now, we consider the clique network G on the set of nodes H0 ∪H1 where nodes in H0 have1094

input 0, nodes in H1 start with input 1, and the same set of IDs are assigned as above. Here nodes1095

are given the same network size estimate, i.e., 2n, as in networks H0 and H1, which unbeknownst to1096

them is the actual network size of G. We define an infinite “synchronous” schedule σ2 consisting of1097

layers such that, in each layer, all nodes in H0 ∪H1 take compute steps in round-robin order and then1098

perform receive steps of all pending messages. We construct an infinite schedule by concatenating1099

the schedules σ′0σ
′
1σ2 in the natural way; we refer the reader to [36] for the formal definitions of1100

concatenating schedules. It is straightforward to verify that σ′0σ
′
1σ2 results in an admissible execution1101

for the clique network G according to the asynchronous broadcast model.1102

To conclude our proof, we use an indistinguishability argument. For a given network H , let r1103

be a vector of |H| bit-strings, representing the respective sequences of random coin flips observed1104

by the nodes in H . We define α(H, r,N, σ) to be the execution where nodes in H observe the coin1105

flips given by r, have knowledge of the network size estimate N , and execute steps according to1106

some schedule σ. Note that α(H, r,N, σ) is an execution prefix if σ is finite. By construction, all1107

messages between H0 and H1 are still pending for delivery at the end of schedule σ′0σ
′
1. It follows1108

that, for any vector of random strings r, the execution prefixes α(G, r, 2n, σ′0) and α(H0, r, 2n, σ′0)1109

are indistinguishable for nodes in H0, i.e., they perform the same sequence of local state transitions.1110

Similarly, α(G, r, 2n, σ′0σ′1) and α(H1, r, σ
′
1) are indistinguishable for nodes in H1.1111

Recall that the lengths of the prefixes σ′0 and σ′1 are chosen in a way such that all nodes in H01112

(resp. H1) decide in the (finite) schedule σ′0 (resp. σ′1) with probability ≥ 1− 1/n, and by the above1113

indistinguishability, the same is true by the end of schedule σ′0σ
′
1. Conditioned on the event E that1114

this is happens, we have argued above that all nodes in H0 decide on 0 with probability at least 1− ε1115
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when executing the schedule σ′0σ
′
1σ2 in the network G. Given the same schedule, nodes in H1 decide1116

on 1 with probability≥ 1− ε and hence agreement is violated with probability at least (1− ε)2. Let F1117

be the event that the algorithm fails. Since we have assumed that the algorithm fails with probability1118

at most ε, we get1119

ε ≥ Pr [F ] ≥ Pr [F | E] Pr [E] ≥ (1− ε)2 (1− 1
n

)2 ≥ 1
2 (1− ε)2

.1120

Solving the inequality yields ε ≥ 2−
√

3 as required. J1121
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