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WHY WHY RANDOMIZEDRANDOMIZED ALGORITHMS? ALGORITHMS?
Randomness is powerful resource for developing ef�cient
algorithms with provable performance guarantees.

Compared to deterministic algorithms, randomized algorithms are
often...

faster (or use less memory),
simpler to understand, and...
easier to implement, e.g. fewer special
cases to worry about.

Important to understand foundations!
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WHAT THIS COURSE IS ABOUTWHAT THIS COURSE IS ABOUT
How to use randomization to design better algorithms.

Discuss many applications where access to randomness provides
signi�cant bene�ts.

Equip you with necessary tools & techniques to analyze algorithms
and also other random processes.

Provide you with a foundation for using probabilistic concepts in
your own work.
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TOPICS (TENTATIVE)TOPICS (TENTATIVE)
Concentration bounds

Probabilistic data structures

Fast graph algorithms

Veri�cation using �ngerprinting techniques

Random walks, Markov chains

The probabilistic method

Resilience against adversarial attacks in networks

Symmetry breaking in networks

Low-memory algorithms; dealing with dynamically-changing data
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MARKING SCHEME (TENTATIVE *)MARKING SCHEME (TENTATIVE *)
Homework assignments (40%)

Presentations of a research or survey paper (20%)

Reviews of peers' presentations (5%)

Final project (35%): choice of systems-focused or theory-focused
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PREREQUISITESPREREQUISITES
Knowledge of data structures & algorithms (undergrad level) is
recommended... but most parts of the course are self-contained

Undergrad-level discrete mathematics: discrete probability, basic
knowledge of graph theory and combinatorics (e.g., how many
ways can we choose an object such that...?)

Basics of the  (e.g., being able to �gure out the
meaning of , , etc.)

Being able to write simple programs in <insert your programming
language of choice here>

Unsure if this course is suitable for you? Come talk to me.

Big-O notation
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RESOURCESRESOURCES

Material is loosely based on: Probability and computing:
Randomized algorithms and probabilistic analysis by Michael
Mitzenmacher and Eli Upfal. 2nd edition, 2017. Cambridge
University Press. (Not required but recommended.)

Various resources on the web; to be added as we need
them.
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WHAT ARE WHAT ARE RANDOMIZEDRANDOMIZED ALGORITHMS? ALGORITHMS?
Possible interpretations...

(1) Algorithms that make
random choices during their
executions. Use random number
generator to decide next step.

(2) Algorithms that execute
deterministically on randomly
selected inputs.

Which interpretation is standard?

The answer is (1). Option (2) refers to average case
analysis of algorithms.
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ROADMAP FOR TODAYROADMAP FOR TODAY
Veri�cation of Matrix Multiplication

Fast Min-Cut Computation

Some techniques & tools along the way
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PROBABILITY SPACE & PROBABILITY AXIOMSPROBABILITY SPACE & PROBABILITY AXIOMS
De�nition: A probability space  consists of...

a sample space : set of all possible outcomes

the set of events ; for discrete prob. space .

the probability function 

De�nition: A probability function  satis�es

1. 

2. 

3. for all �nite or countably in�nite sequences of mutually disjoint events 

, it holds that .

In discrete probability spaces:  either �nite or countably in�nite.
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THE RAM MODELTHE RAM MODEL
We analyze time complexity in the Random Access Machine model.

Single processor, sequential execution

Each simple operation takes 1 time step.

Loops and subroutines are not simple operations.

Each memory access takes one time step, and there is no shortage
of memory.
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APPLICATION: VERIFYING MATRIX MULTIPLICATIONAPPLICATION: VERIFYING MATRIX MULTIPLICATION
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THE PROBLEMTHE PROBLEM
Input: Given three  matrices , , and ; entries are rational
numbers.

Goal: Algorithm that veri�es whether ; answers either
"yes" or "no"

First Attempt: "Veri�cation by Computation"
Compute  and compare result with .
Problem: standard matrix multiplication algorithm requires 

 time. More sophisticated algorithms still take 

.

Can we solve this in  time if we avoid computing ?
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TOOL: SAMPLING UNIFORMLY AT RANDOMTOOL: SAMPLING UNIFORMLY AT RANDOM

Consider a �nite set  of size . We say that variable  is
sampled uniformly at random (u.a.r.) from  when  is
assigned to an element , and each element in  has

probability  to be the chosen one.

Example - "Sampling a random bit":
. Variable  contains either  or  with equal

probability.
Sampling  bit takes  unit of time in RAM model.
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ALGORITHM FOR VERIFYING MATRIX MULTIPLICATIONALGORITHM FOR VERIFYING MATRIX MULTIPLICATION

Steps:

1. Sample  bits u.a.r. and store them in vector .

2. Compute .

3. Compute , so .

4. Compute 

5. if  then output yes, else output no.

Time:

Total running time: 

Correctness?
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CONDITIONAL PROBABILITYCONDITIONAL PROBABILITY

De�nition: Consider events  and . The conditional
probability  is the probability that event  occurs
given that  occurs:

Well de�ned only if .

Useful consequence:

To simplify notation:
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INDEPENDENCE OF EVENTSINDEPENDENCE OF EVENTS

De�nition: We say events  are (mutually)
independent if, for any :

We can simplify probability terms when conditioning on independent
events:

Do we require ?
Yes:  is clearly dependent on .
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TOOL: LAW OF TOTAL PROBABILITYTOOL: LAW OF TOTAL PROBABILITY

Theorem: Let  be mutually disjoint events that
partition the sample space. Then, for any event :

Proof:
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Now back to analyzing the algorithm...
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CORRECTNESS OF ALGORITHMCORRECTNESS OF ALGORITHM
Deterministic algorithms either work or they don't.

Not necessarily true for randomized algorithms!

Two things could go wrong:

1. Algorithm outputs no but correct answer is yes:

Happens if  and .
But, if , then also , for any . So, this can't
happen here.

2. Algorithm outputs yes but correct answer is no:

Happens if  and .
This case is a bit trickier...
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EXAMPLEEXAMPLE

Let's look at instance where  and .

Will algorithm correctly output "no"?



Suppose we sample .

 and   Algorithm will output "no". Correct!

Now suppose we sample .

 and   Algorithm will output "yes". Error!

Algorithm detects  only for "good" choices of . Can
we quantify probability of sampling good ?
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Lemma: If  and elements of  are chosen u.a.r., then 

.

Proof - High-level:

De�ne . Then .

Let . Algorithm errs if .

For , it must be that .
[Details]

We just focus on the 1st row of  multiplied by . The same is true for all other rows of  too but it's not
important for our purpose.

 

Let's assume we sample bits in order .

After sampling : right-hand side of (1) is already �xed!



Since  is u.a.r sampled from , probability that (1) holds .
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Formal details of the Proof...
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We've seen that:

(1) if , then algorithm is correct with probability ;

(2) if , then algorithm is correct with probability .

This result doesn't seem very useful!

Let's look at how to improve this.
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BOOSTING THE PROBABILITY OF SUCCESSBOOSTING THE PROBABILITY OF SUCCESS
1. Repeat the following  times:

Run randomized veri�cation algorithm
If result is "no" break loop.

2. Output last result of randomized veri�cation
algorithm

 .

For , this is .

For , succeeds with high probability (w.h.p.), i.e.: 

.

Works because error is one-sided: always correct if .
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VERIFYING MATRIX MULTIPLICATION - WRAPPING UPVERIFYING MATRIX MULTIPLICATION - WRAPPING UP

Theorem: There is a randomized algorithm for verifying
matrix multiplication that runs in  time and

succeeds with high probability.

Similar �ngerprinting techniques have many applications (string
equality veri�cation, etc.)
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APPLICATION: FINDING THE MINIMUM CUT IN AAPPLICATION: FINDING THE MINIMUM CUT IN A
GRAPHGRAPH
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THE MIN-CUT PROBLEMTHE MIN-CUT PROBLEM
Consider connected undirected multigraph  with 

 vertices and  edges.
1 3

5

2 4

A cut  of  is set of edges that disconnect  if we remove them.

Goal: output the min-cut, which is a cut
of minimum size. 1 3

5

2 4

Real-world applications: reliability of supply or computer networks
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SIMPLE RANDOMIZED MIN-CUT ALGORITHMSIMPLE RANDOMIZED MIN-CUT ALGORITHM
Min-Cut Algorithm

Repeat until only  vertices left:

1. Sample edge  u.a.r. from available edges

2. Contract 

3. Remove self-loops but keep other multi-edges

Example

Min-cut .



TOOL: CHAIN RULE OF CONDITIONAL PROBABILITYTOOL: CHAIN RULE OF CONDITIONAL PROBABILITY

Let  be not necessarily independent events. Then
it holds:

Proof: Inductively resolve conjunction of conditioned events
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TOOL: UNION BOUNDTOOL: UNION BOUND

Consider any events . Then

Proof:

Follows by induction.

To see intuition, just consider case :
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ANALYSIS OF MIN-CUT ALGORITHMANALYSIS OF MIN-CUT ALGORITHM

Algorithm works as long as no min-cut edge is contracted

Since the min-cut is small by de�nition, likely to succeed!

What's the probability of sampling a min-cut edge?



Lemma: Let  be event that no min-cut edge is selected in
step . Let  be event that no min-cut edge was selected in

steps . Then .

Proof:

Conditioned on , there are  vertices.

Suppose min-cut has size . Then still  edges left.

.

.

30 . 2



Success probability is determined by .

30 . 3



MIN-CUT: WRAPPING UPMIN-CUT: WRAPPING UP

Theorem: There is an algorithm that �nds the min-cut with high
probability in  time.

Proof:

1. Probability of Success:
Outputs is edge-set that is always some cut, i.e., one-sided error.
Repeat algorithm  times and output smallest set

found.



2. Time Complexity

 iterations of sampling & contraction in base algorithm
Sampling and contracting random edge takes 

We repeat base algorithm  times

In total:  steps
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