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Abstract

We investigate the extent to which cluster-
ing algorithms are robust to the addition of
a small, potentially adversarial, set of points.
Our analysis reveals radical differences in the
robustness of popular clustering methods.

k-means and several related techniques are
robust when data is clusterable, and we
provide a quantitative analysis capturing
the precise relationship between clusterabil-
ity and robustness. In contrast, com-
mon linkage-based algorithms and several
standard objective-function-based clustering
methods can be highly sensitive to the addi-
tion of a small set of points even when the
data is highly clusterable. We call such sets
of points oligarchies.

Lastly, we show that the behavior with re-
spect to oligarchies of the popular Lloyd’s
method changes radically with the initializa-
tion technique.

1 Introduction

Our investigation begins with the following question:
can the output of an algorithm be radically altered
by the addition of a small, possibly adversarial, set of
points? We use the term oligarchies to describe such
sets of “influential” points.

At first glance, it appears that all clustering meth-
ods are susceptible to oligarchies. Even k-means can
substantially change its output upon the addition of a
small set; if a data set has multiple structurally dis-
tinct solutions with near-optimal loss, then even a sin-
gle point can radically alter the resulting partition.
However, a more interesting picture emerges when

Appearing in Proceedings of the 16th International Con-
ference on Artificial Intelligence and Statistics (AISTATS)
2013, Scottsdale, AZ, USA. Volume 31 of JMLR: W&CP
31. Copyright 2013 by the authors.

considering how algorithms behave on well-clusterable
data1.

Examining their behavior on data that is well-
clusterable, we find that some clustering methods ex-
hibit a high degree of robustness to oligarchies; even
small sets chosen in an adversarial manner have very
limited influence on the output of these algorithms.
These methods include k-means, k-medians, and k-
medoids, as well as the popular Lloyd’s method when
initialized with random centers. We perform a quan-
titative analysis of these techniques, showing precisely
how clusterability effects their robustness to small sets.
Our results demonstrate that the more clusterable a
data set, the greater its robustness to the influence of
potential oligarchies.

In contrast, other well-known methods admit oli-
garchies even on data that is highly clusterable. We
prove that common linkage-based algorithms, includ-
ing the popular average-linkage, exhibit this behavior.
Several well-known objective-function-based methods,
as well as Lloyd’s method initialized with pairwise
distant centers, also fall within this category. More
generally, we prove that all methods that detect clus-
terings satisfying a natural separability criteria, ad-
mit oligarchies even when the original data is well-
clusterable.

Given the same well-clusterable input, algorithms that
admit oligarchies can produce very different outputs
from algorithms that prohibit them. For example,
consider the data set displayed in Figure 1(a) and set
the number of clusters, k, to 3. All algorithms that
we considered, both those that admit and those that
prohibit oligarchies, cluster this data as shown in Fig-
ure 1(a). As illustrated in Figure 1(b), when a small
number of points is added, algorithms that prohibit
oligarchies (eg. k-means) partition the original data
in the same way as they did before the small set was
introduced. In contrast, algorithms that admit oli-
garchies (eg. average-linkage) yield a radically differ-
ent partition of the original data after the small set is

1Notice that the behavior of a clustering algorithm is
often less important to the user when data is inherently
un-clusterable.
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added, as shown in Figure 1(c).

(a) (b)

(c)

Figure 1: Contrasting the input-output behaviour of
algorithms that prohibit oligarchies (b) with those that
admit them (c).

Our work relates to a line of research by Ackerman,
Ben-David, and colleagues [3, 16, 4, 2, 1] on a dis-
ciplined approach for selecting clustering algorithms.
This approach involves identifying significant charac-
teristics pertaining to the input-output behavior of
different clustering paradigms. The characteristics
should on the one hand distinguish between different
clustering paradigms, and on the other hand be rele-
vant to the domain knowledge that a user might have.
Based on domain expertise, users could then choose
which traits they want an algorithm to satisfy, and
select an algorithm accordingly.

For some clustering applications, algorithms that pro-
hibit oligarchies are preferred. This occurs, for ex-
ample, when some of the data may be faulty. This
may be the case in fields such as cognitive science and
psychology, when analyzing subject-reported data. In
such cases, an algorithm that is heavily influenced by
a small number of elements is inappropriate since the
resulting clustering may be an artifact of faulty data.

Algorithms that prohibit oligarchies may also be
preferable when the data is entirely reliable, but clus-
ters are expected to be roughly balanced (in terms of
the number of points). Consider, for example, the use
of clustering for identifying marketing target groups.
Since target groups are typically large, no small set of
individuals should have radical influence on how the
data is partitioned.

However, there are applications that call for algo-
rithms that admit oligarchies. Consider the task of
positioning a predetermined number of fire stations
within a new district. To ensure that the stations can
quickly reach all households in the district, we may re-
quire that the maximum distance of any household to

a station be minimized. It follows that a small number
of houses can have significantly effect on the resulting
clustering.

The paper is organized as follows. We begin with a
summary of related previous work followed by an in-
troduction of our formal framework. In Section 4, we
present a summary of our main results, contrasting the
manner in which different algorithms treat oligarchies.
In Section 5 and Section 6 we provide a quantitative
analysis of the extent to which some popular clustering
methods are robust to potential oligarchies.

2 Previous Work

Work on the robustness of clustering methods to the
addition of small set has so far focused on proposing
new methods that are robust in this regard ([10], [11],
[12], [13]). Previous measures of robustness to small
sets did not lead to interesting differences among clas-
sical techniques ([13], [14]). On the other hand, we
are able to obtain radical differences in the behaviour
of classical algorithms. The main technical difference
that makes this possible is that we bound the diameter
of the data. Without bounding the diameter, all the
standard clustering methods studied in this paper are
sensitive to the addition of small sets: even a single
outlier can radically modify the resulting clustering.
That is, when outliers are placed sufficiently far away,
clusters in the original data are forced to merge.

One notable algorithm designed to be robust to ar-
bitrarily distant small sets is trimmed k-means, which
discards a user-specified fraction of points that leads to
an optimal k-means cost for the remaining data ([13],
[14]). Similar to our work, [13] and [14] also rely on
data clusterability to show robustness. In addition,
just as in previous work, we also consider the setting
where the number of clusters is fixed (see [13] for a
detailed discussion on this condition). However, we
are the first to obtain sharp distinctions between the
behaviour of classical methods.

3 Notation and Definitions

We consider a space (E, d) where E is a set and d is a a
distance function d : E ×E → R+. It is assumed that
d is symmetric and non-negative, and d(x, x) = 0 for
all x ∈ E. The triangle inequality is assumed only if
explicitly stated. Throughout this paper we consider
only finite subsets of E.

The diameter of a set X ⊆ E is maxx,y∈X d(x, y). We
assume the diameter of E is at most 1. The size of a
set X, denoted |X|, refers to the number of elements
in X.
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For a set X ⊆ E and an integer k ≥ 1, a k-clustering of
X is a partition C = {C1, . . . , Ck} of X into k disjoint
sets, where ∪iCi = X. The diameter of a clustering C
is the maximal diameter of a cluster in C.

For a clustering C of X and points x, y ∈ X, we write
x ∼C y if x and y belong to the same cluster in C, and
x �C y otherwise.

The Hamming distance between clusterings C and C ′

of the same set X is defined by ∆(C1, C2) =

|{{x, y} ⊂ X | (x ∼C y)⊕ (x ∼C′ y)}|/
(
|X|
2

)
,

where ⊕ denotes the logical XOR operation.

For sets X,Z ⊆ E such that X ⊆ Z and a clustering
C of Z, C|X denotes the restriction of C to X, thus if
C = {C1, . . . , Ck}, then C|X = {C1 ∩X, . . . , Ck ∩X}.

A clustering algorithm A is a function that accepts a
set X ⊆ E and the space (E, d) and returns a cluster-
ing of X. A(X) denotes a clustering of X (since (E, d)
will be clear from context, it is omitted from the no-
tation of A). Some algorithms accept the number of
desired clusters as a parameter. In that case we de-
note the output clustering by A(X, k). k is sometimes
omitted when it is clear from context.

In this paper we consider the robustness of sets to a
small number of points. This is quantified by the fol-
lowing definition. Consider a data set X and a (typ-
ically large) subset Y , where the set O = X \ Y is
a potential oligarchy. The set Y is robust to the po-
tential oligarchy O relative to an algorithm, if Y is
clustered similarly with and without the points in O.

Definition 3.1 (δ-Robust). Given data sets X, Y and
O, where X = Y ∪O, Y is δ-robust to O with respect
to algorithm A, if

∆(A(Y ),A(X)|Y ) ≤ δ.

A small δ indicates a robust subset, meaning that the
data within that subset determines how it is clustered
(to a large extent). For example, if δ = 0, then how the
subset is clustered is entirely determined by the data
within that subset. On the other hand, large values
of δ represent a subset that is volatile to oligarchy
O, where data outside of this subset have substantial
influence on how data within this subset is partitioned.
Note that δ ranges between 0 and 1.

For a randomized algorithm A we define probabilistic
robustness as follows:

Definition 3.2 (Probabilistically δ-Robust). Let A be
a randomized algorithm. Given data sets X, Y , and O
where X = Y ∪ O, Y is δ-robust to O with respect to

algorithm A with probability 1 − ε, if with probability
1− ε over the randomization of A,

∆(A(Y ),A(X)|Y ) ≤ δ.

As our results will show, the robustness of a dataset is
affected by whether it is well-clusterable, as captured
in the following definition, based on a notion by Epter
et al [8].

Definition 3.3 (α-Separable). A clustering C of X is
α-separable for α ≥ 0 if for any x1, x2, x3, x4 ∈ X such
that x1 ∼C x2 and x3 �C x4, αd(x1, x2) < d(x3, x4).

If an algorithm contains an α-separable clustering
for some large α (such as α ≥ 1), then it is well-
clusterable. We define a balanced clustering based on
the balance of cluster cardinalities.

Definition 3.4 (β-Balanced). A clustering C =
{C1, . . . , Ck} of X is β-balanced if |Ci| ≤ β|X| for
all 1 ≤ i ≤ k.

Note that 1
k ≤ β ≤ 1 and that β = 1

k for a perfectly
balanced clustering.

4 Main Results

We demonstrate radical differences in the behaviour
of clustering algorithms under the addition of a small
number of elements. The k-means, k-medians and k-
medoids objective functions are robust to the addition
of small sets. Our first main result shows that the
robustness of a set to potential oligarchies with respect
to these objective functions is proportional to its size
and degree of clusterability.

In the following theorem, we consider data set X, a
typically large subset Y ⊂ X, and O = X \ Y repre-
senting a potential oligarchy. The set Y is α-separable
and β-balanced – this quantifies its degree of cluster-
ability.

Theorem 4.1 bounds the robustness of Y in terms of
its degree of clusterability and diameter, and the re-
lationship between its size and the size of the poten-
tial oligarchy. The theorem shows that the larger and
more clusterable a subset, the more robust it is to the
influence of small sets.

Theorem 4.1. Let A be one of k-means, k-medians
or k-medoids. Let p = 2 if A is k-means and p = 1
otherwise. Consider data sets X, Y , and O where X =
Y ∪O and the set Y has an α-separable, β-balanced k-
clustering of diameter s, for some α > 0, β ∈ [ 1k , 1]
and s ∈ (0, 1]. Then Y is δ-robust to O with respect to
A for

δ ≤ 4p
αp (1 + |O|2p

|Y |sp ) + 2k · β2.
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Section 5.1 is devoted to proving this result.

To see the implications of this theorem, suppose β =
c/k where c ≥ 1 is a small constant, so that the cluster
sizes are fairly balanced in C. Fix s, d and α, and
assume α� 4p. In that case, if the size of the potential
oligarchy is small, |O| � |Y |, then the robustness of
Y is bounded by approximately 2c2/k.

It is important to note that Theorem 4.1 applies when
some of the data in O is located within the convex
hull of Y , which can be thought of as noise within
Y . This effectively relaxes the clusterability condition
on the region containing Y , allowing some data to lie
between the well-separated clusters.

Note also that even if Y has a very small diameter, if
it sufficiently large and clusterable, then it is robust to
the influence of small sets.

In contrast to k-means and similar objective functions,
we show that many clustering techniques do not have
a property such as Theorem 4.1 in a strong sense. We
show that algorithms that detect α-separable cluster-
ings, for a large enough α, admit oligarchies.

Formally, we define this property of being α-
separability detecting as follows.2

Definition 4.2 (α-Separability Detecting). An algo-
rithm A is α-separability-detecting for α ≥ 1, if for all
X and all 2 ≤ k ≤ |X|, if there exists an α-separable
k-clustering C of X, then A(X, k) = C.

In other words, whenever there is a clustering of the
full data that consists of well-separated clusters, then
this clustering is produced by the algorithm.

The above property is satisfied by many well-known
clustering methods. In Section 6, we show that
the linkage-based algorithms single-linkage, average-
linkage, and complete-linkage, and the min-diameter
objective functions, are all 1-separability detecting,
and the k-center objective function is 2-separability-
detecting.

The following Theorem demonstrates a sharp contrast
between the behaviour of k-means (and similar objec-
tives) as captured in Theorem 4.1 and algorithms that
are α-separability detecting. It shows that for any de-
sired level of clusterability, there exists a data set X
with a subset Y ⊂ X and O = X \ Y , such that Y is
highly clusterable, the set O representing an oligarchy
that contains as few as k−1 points, and yet Y is poorly
robust to O with respect to these algorithms – thus Y
is volatile to the influence of the oligarchy O.

Theorem 4.3. Let A be an algorithm that is α-
separability detecting for some α ≥ 1. Then for any

2Note that for α ≥ 1, the α-separable k-clustering of
any given data set is unique, if it exists.

β ∈ [1/k, 1], s ∈ [0, 1
(α+1)2 ) and any integer m ≥ k−1,

there exist data sets X, Y , and O where X = Y ∪ O,
the set O contains at most m elements, Y has an α-
separable, β-balanced k-clustering with diameter s, and
yet Y is not even β(k − 1)-robust to O with respect to
A.

Proof. Let Y be a set of points with diameter s′ < 1
α+1

that contains all but k − 1 elements of X, and let Y
have an α-separable, β-balanced k-clustering with di-
ameter s < 1

(α+1)2 . Let the data set O contain k − 1

points at distance αs′ + ε from each other and from
any point in Y . Then A(X, k) places all elements in
Y within the same cluster because it is α-separability
detecting, while A(Y, k) produces a β-balanced clus-
tering of Y .

Theorem 4.3 shows that even when Y is very large

( |Y ||X| can be arbitrarily close to 1) and has an arbi-

trarily well-separable (α can be arbitrary large) and
balanced (β = 1

k ) partition, the robustness score of
Y to the oligarchy O can be bounded from below by
β(k− 1), which approaches the worst possible score of
robustness 1 as k grows.

This shows that α-separability detecting algorithms
admit oligarchies of constant size (in particular, size
k − 1), even on data that is highly clusterable.

Lastly, we show that the behaviour of Lloyd’s method
changes radically with the method of initialization.
The furthest-centroid initialization method determin-
istically selects a set of pairwise distant centers. We
show that this algorithm is 1-separability detecting,
implying that it admits oligarchies (see Section 6).

In contrast, in Section 5 below we show that Lloyd’s
method with random initialization behaves similarly
to the k-means objective function, whereby well-
clusterable sets are robust to the influence of a small
number of elements.

5 Methods that Prohibit Oligarchies

In this section, we study clustering methods that are
robust to the influence of a small number of elements
when the data is well-clusterable. We distinguish be-
tween clustering objective functions and practical clus-
tering algorithms, providing bounds for both popular
objective functions, such as k-means, k-medians and k-
medoids, and for Lloyd’s method with random center
initialization, a popular heuristic for finding cluster-
ings with low k-means loss. For this section we assume
that (E, ‖·‖) is a normed space, with d(x, y) = ‖x−y‖
for any x, y ∈ E.
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5.1 k-means, k-medians and k-medoids
objective functions

k-means and k-medians find the clustering C =
{C1, . . . , Ck} that minimizes the relevant cost denoted
by costp(C) =

∑
i∈[k] minci∈E{

∑
x∈Ci

‖x − ci‖p},
where the k-means cost is cost2 and the k-medians
cost is cost1. The k-medoids cost relies on clus-
ter centers selected from the input set, costm(C) =∑
i∈[k] minci∈Ci{

∑
x∈Ci

‖x− ci‖}.

We work towards proving Theorem 4.1 by first showing
that if the optimal clustering of a subset is relatively
stable in terms of cost, then the subset is robust. Some
stability assumption is necessary, since if there are two
very different clusterings for the data set which have
very similar costs, then even a single additional point
might flip the balance between the two clusterings. We
use the following notion of a cost-optimal clustering
(which bears similarity to a notion by Balcan et al
[7]).

Definition 5.1 ((δ, c)-cost-optimal). A clustering C
of X is (δ, c)-cost-optimal with respect to a cost func-
tion cost if for all clusterings C ′ of X for which
cost(C ′) ≤ cost(C) + c, ∆(C,C ′) ≤ δ.

Lemma 5.2. Let A be one of k-means, k-medians or
k-medoids. Consider data sets X and Y ⊆ X. If
there exists a (δ, 2p|X \ Y |)-cost-optimal clustering of
Y relative to the cost associated with A, then Y is 2δ-
robust in X with respect to A.

Proof. Let C = {C1, . . . , Ck} be the assumed cost-
optimal clustering of Y . Let cost be the cost asso-
ciated with A. Let p = 2 if A is k-means and p = 1
otherwise. For i ∈ [k], let Ti = E if A is k-means or
k-medians, and let Ti = Ci if A is k-medoids.

Let c̄i = argminci∈Ti
{
∑
x∈Ci

‖x − ci‖p}. Then, the
cost of the clustering A(X) is at most the cost of the
clustering C1, . . . , Ck−1, Ck∪X \Y , since this is a pos-
sible clustering of X. Thus

cost(A(X)) ≤
∑
i∈[k]

∑
x∈Ci

‖x− c̄i‖p +
∑

z∈X\Y

‖z − c̄k‖p.

We now show that for all algorithms, for all z ∈ X \Y ,
‖z − c̄k‖ ≤ 2. If Ti = Ci then this is trivial, since
X has diameter at most 1. If Ti = E, then let
x̄ = argminx∈Ck

‖x − c̄k‖p. Clearly, ‖x̄ − c̄k‖ ≤
1, since otherwise

∑
x∈Ck

‖x − c̄k‖p > |Ck|, while∑
x∈Ck

‖x− x̄‖p ≤ |Ck| − 1, contrary to the optimal-
ity of c̄k. It follows that for all z ∈ X \ Y ,

‖z − c̄k‖ ≤ ‖z − x̄‖+ ‖x̄− c̄k‖ ≤ 2.

Since cost(A(X)|Y ) ≤ cost(A(X)), it follows that

cost(A(X)|Y ) ≤∑
i∈[k]

∑
x∈Ci

‖x− c̄i‖p + 2p|X \ Y |

= cost(C) + 2p|X \ Y |.

Thus, by the cost-optimality property of C,
∆(A(X)|Y,C) ≤ δ. In addition, cost(A(Y )) ≤
cost(C), thus ∆(A(Y ), C) ≤ δ. It follows that
∆(A(X)|Y,A(Y )) ≤ 2δ, thus the robustness of Y in
X with respect to A is at most 2δ.

The next lemma provides a useful connection between
the Hamming distance of two clusterings, and the
number of disjoint pairs that belong to the same clus-
ter in one clustering, but to different clusters in the
other.

Lemma 5.3. Let C1 and C2 be two clusterings of
Y , where C1 is β-balanced and has k clusters. If
∆(C1, C2) ≥ δ, then the number of disjoint pairs
{x, y} ⊆ Y such that x �C1

y and x ∼C2
y is at least

1
2 (δ − k · β2)|Y |.

Proof. Let A = {{x, y} | x �C1 y, x ∼C2 y}, and let
B = {{x, y} | x ∼C1 y, x �C2 y}. If ∆(C1, C2) ≥ δ
then |A ∪ B| ≥ 1

2δ|Y |(|Y | − 1). Since every cluster in
C1 is of size at most β|Y |,

|B| ≤ |{{x, y} | x ∼C1 y}| ≤ 1
2k · β|Y |(β|Y | − 1).

It follows that

|A| ≥ 1
2δ|Y |(|Y | − 1)− 1

2k · β|Y |(β|Y | − 1),

thus

|A| ≥ 1
2 (δ − k · β2)|Y |(|Y | − 1).

Now, for every x such that {x, y} ∈ A, there are at
most |Y | − 1 pairs in A that include x. Thus the
number of disjoint pairs in A is at least |A|/(|Y | − 1).
Therefore that are at least 1

2 (δ−k ·β2)|Y | disjoint pairs
in A.

We now show that clusterings that are balanced and
well-separable in a geometrical sense are also cost-
optimal.

Lemma 5.4. Suppose a k-clustering C of Y is α-
separable, β-balanced and has diameter s. Let cost
be one of cost1, cost2 or costm. Let p = 2 if cost
is cost2 and p = 1 otherwise. Then for any δ ∈ (0, 1),

C is (δ, |Y |sp(α
p(δ−k·β2)

2p −1) )-cost-optimal with respect
to cost.
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Proof. Let C ′ be a clustering of Y such that
∆(C,C ′) ≥ δ. For i ∈ [k], let Ti = E if A is
k-means or k-medians, and let Ti = Ci if A is k-
medoids. Let ci = argminci∈Ti

{
∑
x∈Ci

‖x−ci‖p}, and
c′i = argminc′i∈Ti

{
∑
x∈C′

i
‖x− c′i‖p}.

For every cluster Ci in C, and every x ∈ Ci, ‖x−ci‖p ≤
sp. Thus cost(C) ≤ |Y |sp. On the other hand, for
every pair {x, y} ⊆ Y , if x �C y and x ∼C′ y, then for
p = {1, 2}

‖x− c′i‖p + ‖y − c′i‖p ≥ ‖x− y‖p/p ≥ (αs)p/p.

The first inequality is the triangle inequality for p = 1.
For p = 2 the inequality can be derived by observing
that the left hand side is minimized for c′i = (x+y)/2.
The last inequality follows from the properties of C
and the fact that x �C y.

By Lemma 5.3, there are at least |Y | 12 (δ − k · β2) such
{x, y} pairs. Thus cost(C ′) ≥ |Y | 12p (αs)p(δ − k · β2).

It follows that cost(C ′)−cost(C) ≥ |Y |( 1
2p (αs)p(δ−

k ·β2)− sp). The lemma follows from the definition of
cost-optimality.

The proof of our first main result, Theorem 4.1, follows

by letting δ′ = 2p
αp (1+ |O|2

p

|Y |sp )+k ·β2. Then, by Lemma

5.4, C is (δ′, 2p|O|)-cost-optimal. Thus by Lemma 5.2,
the robustness of Y to O is at most 2δ′.

5.2 Lloyd’s Method with Random Initial
Centers

The results above pertain to algorithms that find the
minimal-cost clustering. In practice, this task is often
not tractable, and algorithms that search for a locally
optimal clustering are used instead. For k-means, a
popular algorithm is Lloyd’s method. A common ini-
tialization for Lloyd’s method is to select k random
points from the input data set [9]. We call this algo-
rithm Randomized Lloyd. It is also commonly referred
to as “the k-means algorithm.”

In order to find a solution with low k-means loss, it
is common practice to run Randomized Lloyd multi-
ple times and then select the minimal cost clustering.
We show that clusterable data sets are immune to the
influence of oligarchies when Randomizes Lloyd is re-
peated enough times. Specifically, we show that large
clusterable subsets are robust with respect to this tech-
nique.

Formally, for a set A ⊆ E, define µ(A) =
∑
x∈A x/|A|.

Lloyd’s method operates as follows:

1. Input: a dataset Z ⊆ E, an integer k, and an
initial set of centers {p01, . . . , p0k} ⊆ Z.

2. t← 0.

3. Repeat until P t = P t−1:

(a) Let P t ← {P t1 , . . . , P tk} be the clustering of
Z induced by:
x ∈ P ti ⇐⇒ i = argmini∈[k]‖x− pti‖.

(b) For all i ∈ [k], pt+1
i ← µ(P ti ).

(c) t← t+ 1.

4. Output: P t.

We consider the following procedure: Run Random-
ized Lloyd n times with independent draws of ini-
tial centers, and output the final clustering with the
least cost. We show that whenever there is a large
subset that can be partitioned into a nice clustering
C = {C1, . . . , Ck}, then with high probability over the
randomization of the procedure, this subset is robust
with respect to this procedure. The following two lem-
mas will allow us to show that if the initial centers are
each in a different cluster of C, then the final clustering
will be similar to C.

Lemma 5.5. Suppose that the set Y ⊆ E has an α-
separable k-clustering C = {C1, . . . , Ck} with diameter
s, for α ≥ 1. Let P be the clustering of Y induced by
p1, . . . , pk ∈ E as in step 3a. If there exists a permuta-
tion σ : [k]→ [k] such that ∀i ∈ [k], ‖pσ(i) − µ(Ci)‖ <
(α−1)s

2 , then ∀i ∈ [k], P tσ(i) = Ci.

Proof. Without loss of generality, let σ be the identity
permutation. For any x ∈ Ci, ‖x−pi‖ ≤ ‖x−µ(Ci)‖+
‖µ(Ci)−pi‖ ≤ s+ (α−1)s

2 = (α+1)s
2 . On the other hand,

for every j 6= i, ‖x−pj‖ ≥ ‖x−µ(Cj)‖−‖µ(Cj)−pj‖ >
αs− (α−1)s

2 = (α+1)s
2 . Therefore ‖x− pi‖ < ‖x− pj‖,

thus x ∈ Pi.

Lemma 5.6. Let Y ⊆ X ⊆ E. Let P = {P1, . . . , Pk}
be a k-clustering of X and let Ci = Pi ∩ Y for i ∈ [k].

Then ∀i ∈ [k], ‖µ(Pi)− µ(Ci)‖ < |X\Y |
|Ci| .

Proof. For any i ∈ [k], let Zi = Pi \ Ci. We have

µ(Pi) =
|Ci|

|Ci|+ |Zi|
µ(Ci) +

|Zi|
|Ci|+ |Zi|

µ(Zi).

therefore µ(Pi)− µ(Ci) =(
|Ci|

|Ci|+ |Zi|
− 1

)
µ(Ci) +

|Zi|
|Ci|+ |Zi|

µ(Zi)

= (µ(Zi)− µ(Ci))
|Zi|

|Ci|+ |Zi|
.

Since µ(Ci) and µ(Zi) are both in the convex hull of
E which has diameter at most 1, ‖µ(Zi)−µ(Ci)‖ ≤ 1.
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In addition, 0 ≤ |Zi| ≤ |X \ Y |. Therefore

‖µ(Pi)−µ(Ci)‖ = ‖µ(Zi)−µ(Ci)‖
|Zi|

|Ci|+ |Zi|
≤ |X \ Y |
|Ci|

.

We now show that if Randomized Lloyd is repeated
enough times, then with high probability, at least one
draw of initial centers has each of the centers in a dis-
tinct cluster of C.

Lemma 5.7. Consider data sets X and Y ⊆ X, and
a clustering C of Y , such that the smallest cluster in
C is of size m. Then, for ε ∈ (0, 1), if Randomized

Lloyd’s is run n times, where n ≥
(
e|X|
km

)k
log(1/ε),

then with probability at least 1 − ε, at least one draw
of initial centers has each of the points in a distinct
cluster of C.

Proof. The probability that a single run of Random-
ized Lloyd has initial points in distinct clusters of C

is θ = k!
∏
i∈[k]

|Ci|
|X| ≥ k!

(
m
|X|

)k
≥
(
km
e|X|

)k
, where

the last inequality follows from Stirling’s formula. If
n ≥ ln(1/ε)/θ, then the probability that at least one
draw has initial points in distinct clusters of C is at
least 1− (1− θ)n ≥ 1− exp(−θn) ≥ 1− ε.

We can now prove that if Randomized Lloyd is run
enough times with independent random initial centers
then large clusterable sets are robust to oligarchies. In
Section 6.2, we show that the type of initialization for
Lloyd’s method is a crucial factor in this outcome.

Theorem 5.8. Consider data sets X, Y and O where
X = Y ∪ X such that there exists an α-separable, β-
balanced k-clustering C of Y with diameter s > 0, for
some α ≥ 3. Let m be the size of the smallest cluster

in C, and assume m ≥ 2|O|
(α−1)s . Then with probability

at least 1− ε, Y is δ-robust to O with respect to n runs
of Randomized Lloyd, for

n ≥
(
e|X|
km

)k
log(2/ε),

and

δ ≤ 8

α2

(
1 +

4|O|
s2|Y |

)
+ 2β2k.

Proof. First, we show that if Lloyd’s method is exe-
cuted with initial centers each belonging to a distinct
cluster of C, and P is the output of this run of Lloyd’s
method, then P |Y = C. Assume without loss of gen-
erality that ∀i ∈ [k], p0i ∈ Ci.

We prove by induction that for any t ≥ 0, P t|Y = C.
Induction basis: For all i ∈ [k], p0i ∈ Ci, thus

‖p0i −µ(Ci)‖ ≤ s ≤ (α−1)s
2 . By Lemma 5.5, P 0|Y = C.

Inductive step: Assume that P t|Y = C. By Lemma
5.6, there is a numbering of the clusters in P t such

that ‖µ(P ti )−µ(Ci)‖ ≤ |O|
|Ci| ≤

(α−1)s
2 . By Lemma 5.5,

P t+1|Y = C.

Now, by Lemma 5.7, with probability 1−ε/2, Random-
ized Lloyd’s with n repeats has at least one run with
initial clusters belonging to distinct clusters of C for
each of the inputs X and Y . Thus the probability of
both runs to have a least one such run is at least 1− ε.
For the input X, this run results in a clustering P̄ such
that P̄ |Y = C. Thus the clustering P = A(X) cho-
sen out of all the runs satisfies cost(P ) ≤ cost(P̄ ).
It follows (similarly to the derivation in Lemma 5.2),
that

cost(P |Y ) ≤ cost(P̄ |Y ) + 4|O| = cost(C) + 4|O|.

Let δ = 4
α2 (1 + 4|O|

s2|Y | ) + kβ2. By Lemma 5.4, C is

(δ, |O|)-cost-optimal. Thus d(A(X)|Y,C) ≤ δ. For
the run with input Y , the same lemma can be applied
with X = Y , and it implies d(A(Y ), C) ≤ δ. Thus
∆(A(Y ),A(X)|Y ) ≤ 2δ.

6 Methods that Admit Oligarchies

We now turn to algorithms that admit oligarchies. In
Section 4, we proved Theorem 4.3, showing that all
algorithms that detect α-separable clusterings admit
oligarchies even on data that is highly clusterable.

Theorem 4.3 demonstrates a sharp contrast between
the behaviour of α-separability detecting algorithms
and the behaviour captured in Theorem 4.1 for k-
means and similar objective functions. We will now
show that many well-known clustering methods are α-
separability-detecting, resulting in the immediate con-
clusion that Theorem 4.3 holds for them.

6.1 Separability-detecting algorithms

In this section, we show that several common algo-
rithms are α-seperability detecting. First, we consider
linkage-based clustering, one of the most commonly-
used clustering paradigms. Linkage-based algorithms
use a greedy approach; at first every element is in its
own cluster. Then the algorithm repeatedly merges
the “closest” pair of clusters until some stopping cri-
terion is met (see, for example, [3]).

To identify the closest clusters, these algorithms use a
linkage function, which maps each pair of clusters to a
real number representing their proximity.
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Formally, a linkage function is a function

` : 2E × 2E → R+.

The following are the linkage-functions of some of the
most popular linkage-based algorithms:

• Single linkage: `(A,B) = mina∈A,b∈B d(a, b)

• Complete linkage: `(A,B) = maxa∈A,b∈B d(a, b)

• Average linkage:

`(A,B) =
∑

a∈A,b∈B

d(a, b)/(|A| · |B|).

For all of these linkage functions,

∀A,B ⊆ E, min
a∈A,b∈B

d(a, b) ≤ `(A,B) ≤ max
a∈A,b∈B

d(a, b).

(1)

We consider linkage-based algorithms with the well-
known k-stopping criterion, which terminates a
linkage-based algorithm when the data is merged into
k clusters, and returns the resulting clustering.

Theorem 6.1. Let A be a clustering algorithms that
uses a linkage-based function ` to merge clusters, and
stops when there are k clusters. If Eq. 1 holds for `,
then A is 1-separability-detecting.

Proof. By way of contradiction, assume that there ex-
ists a data set X with a 1-separable k-clustering C,
but A(X, k) 6= C. Consider the first iteration of the
algorithm in which the clustering stops being a refine-
ment of C. Let C ′ be the clustering before this iter-
ation. There are clusters C ′1, C

′
2, C

′
3 ∈ C ′ such that

C ′1, C
′
2 ∈ Ci for some i, C ′3 ∈ Cj for j 6= i, and the

algorithm merges C ′1 and C ′3.

Thus `(C ′1, C
′
2) ≥ `(C ′1, C

′
3). By Eq.

1, `(C ′1, C
′
2) ≤ maxa∈C′

1,b∈C′
2
d(a, b), and

mina∈C′
1,b∈C′

3
d(a, b) ≤ `(C ′1, C

′
3). Since

C is 1-separable, maxa∈C′
1,b∈C′

2
d(a, b) <

mina∈C′
1,b∈C′

3
d(a, b), so `(C ′1, C

′
2) < `(C ′1, C

′
3),

contradicting the assumption.

We show that there are also clustering objective func-
tions that are α-separability-detecting. Thus clus-
tering algorithms that minimize them satisfy Theo-
rem 4.3.

The min-diameter objective function [6] is simply the
diameter of the clustering. We show that it is 1-
separability-detecting.

Theorem 6.2. Min-diameter is 1-separability-
detecting.

Proof. For a set X, assume that there exists a 1-
separable k-clustering C with diameter s. For any
k-clustering C ′ 6= C there are points x, y such that
x ∼C′ y while x �C y. d(x, y) > s, thus the diame-
ter of C ′ is larger than s. Thus C ′ is not the optimal
clustering for X.

The k-center [5] objective functions finds a cluster-
ing that minimizes the maximum radius of any clus-
ter in the clustering. In k-center the centers are arbi-
trary points in the underlying space, thus the cost of a
k-clustering C is maxi∈[k] mint∈E maxx∈Ci d(x, t). In
discrete k-center they are a subset of the input points.
We show that if d satisfies the triangle inequality then
k-center and discrete k-center are 2-separability de-
tecting.

Theorem 6.3. If d satisfies the triangle inequality
then k-center and discrete k-center are 2-separability
detecting.

Proof. Assume that there exists a 2-separable k-
clustering C of a set X. Then the k-center cost
is at most the diameter of C. For any k-clustering
C ′ 6= C there are points x, y such that x �C y while
x ∼C′ y. Hence the radius of C ′ is at least than
1
2 · minx 6∼Cy d(x, y) > maxx∼Cy d(x, y), and thus it is
larger than the cost of C. The proof for discrete k-
center is similar.

6.2 Lloyd’s method with furthest centroids
initialization

In Section 5.2, we have shown that large clusterable
sets are robust with respect to Randomized Lloyd.
This does not hold for the furthest-centroid initializa-
tion method [15], which admits oligarchies.

Using the furthest-centroid initialization method [15],
the initial points p01, . . . , p

0
k for an input set Z are

chosen as follows: p01 is the point with maximum
norm (or an arbitrary point if no norm exists). Then,
for all i between 2 and k, p0i is set to be the point
in Z that maximizes the distance from the other
points that were already chosen. That is, p0i =
argmaxp∈Z minj∈[i−1] d(p, p0j ).

Lemma 6.4. Lloyd’s method with furthest centroid
initialization is 1-separability detecting.

Proof. If Z has a 1-separable k-clustering C, then
between-cluster distances are larger than within-
cluster distances. Thus, for every i ≥ 2, the cluster of
C that includes p0i is different from the clusters that in-
clude p01, . . . , p

0
i−1. Thus the clustering induced by the

initial points is C. In the next iteration, p1i = µ(Ci)
for all i ∈ [k], thus the clustering remains C.
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