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Abstract

Multiclass learning is an area of growing practical relevance, for which the currently avail-
able theory is still far from providing satisfactory understanding. We study the learn-
ability of multiclass prediction, and derive upper and lower bounds on the sample com-
plexity of multiclass hypothesis classes in different learning models: batch/online, real-
izable/unrealizable, full information/bandit feedback. Our analysis reveals a surprising
phenomenon: In the multiclass setting, in sharp contrast to binary classification, not all
Empirical Risk Minimization (ERM) algorithms are equally successful. We show that there
exist hypotheses classes for which some ERM learners have lower sample complexity than
others. Furthermore, there are classes that are learnable by some ERM learners, while
other ERM learner will fail to learn them. We propose a principle for designing good ERM
learners, and use this principle to prove tight bounds on the sample complexity of learn-
ing symmetric multiclass hypothesis classes (that is, classes that are invariant under any
permutation of label names). We demonstrate the relevance of the theory by analyzing
the sample complexity of two widely used hypothesis classes: generalized linear multiclass
models and reduction trees. We also obtain some practically relevant conclusions.

1 Introduction

The task of multiclass learning, that is learning to classify an object into one of many candidate
classes, surfaces in many domains including document categorization, object recognition in computer
vision, and web advertisement.

The centrality of the multiclass learning problem has spurred the development of various ap-
proaches for tackling the task. Many of the methods define a set of possible multiclass predictors,
H ⊆ YX (where X is the data domain and Y is the set of labels), called the hypothesis class, and
then use the training examples to choose a predictor from H (for instance Crammer and Singer,
2003). In this paper we study the sample complexity of such hypothesis classes, namely, how many
training examples are needed for learning an accurate predictor. This question has been extensively
studied and is quite well understood for the binary case, where |Y| = 2. In contrast, the existing
theory of the multiclass case, where |Y| > 2, is much less complete.

We study multiclass sample complexity in several learning models. These models vary in three
aspects:

• Interaction with the data source (batch vs. online protocols): In the batch protocol, we assume
that the training data is generated i.i.d. by some distribution D over X × Y. The goal is to
find a predictor h with a small probability to err, Pr(x,y)∼D(h(x) 6= y), with a high probabilty
over training samples. In the online protocol we receive examples one by one and are asked to
predict the labels on the fly. Our goal is to make as few prediction mistakes as possible in the
worst case (see Littlestone (1987)).

• The underlying labeling mechanism (realizable vs. agnostic): In the realizable case, we assume
that the labels of the instances are determined by some h⋆ ∈ H. In the agnostic case no
restrictions on the labeling rule are imposed, and our goal is to make predictions which are not
much worse than the best predictor in H.
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• The type of feedback (full information vs. bandits): In the full information setting, each example
is revealed to the learner along with its correct label. In the bandit setting, the learner first
sees an unlabeled example, and then outputs its guess for the label. Then a binary feedback is
received, indicating only whether the guess was correct or not, but not revealing the correct label
in the case of a wrong guess (see for example Auer et al. (2003, 2002), Kakade et al. (2008)).

In Section 2 we consider multiclass sample complexity in the PAC model (namely, the batch
protocol with full information). Natarajan (1989) provides a characterization of multiclass PAC
learnability in terms of a parameter of H known as the Natarajan dimension and denoted dN (H)
(see section 2.2 for the relevant definitions). For the realizable case we show in Section 2.3 that there
are constants C1, C2 such that the sample complexity of learning H with error ǫ and confidence 1−δ
satisfies

C1

(

d+ ln( 1δ )

ǫ

)

≤ mH(ǫ, δ) ≤ C2

(

d
(

ln( 1ǫ ) + ln(|Y|) + ln(d)
)

+ ln( 1δ )

ǫ

)

, (1)

where d = dN (H). This improves the best previously known upper bound (theorem 5), in which
there is a dependence on ln(|Y|) · ln( 1ǫ ).

The Natarajan dimension is equal to the VC dimension when |Y| = 2. However, for larger label
sets Y, the bound on the sample complexity is not as tight as the known bound for the binary case,
where the gap between the lower and upper bounds is only logarithmic in 1/ǫ. This invokes the
challenge of tightening these sample complexity bounds for the multiclass case. A common approach
to proving sample complexity bounds for PAC learning is to carefully analyze the sample complexity
of ERM learners. In the case of PAC learning, all ERM learners have the same sample complexity
(up to a logarithmic factor, see (Vapnik, 1995)). However, rather surprisingly, this is not the case
for multiclass learning1.

In Section 2.4 we describe a family of concept classes for which there exist “good” ERM learner
and “bad” ERM learner with a large gap between their sample complexities. Analyzing these
examples, we deduce a rough principle on how to choose a good ERM learner. We also determine
the sample complexity of the worst ERM learner for a given concept class, H, up to a multiplicative
factor of O(ln( 1ǫ )). We further show that if |Y| is infinite, then there are hypotheses classes that
are learnable by some ERM learners but not by all ERM learners. In Section 2.5 we employ the
suggested principle to derive an improved sample complexity upper bound for symmetric classes (H
is symmetric if φ◦f ∈ H whenever f ∈ H and φ is a permutation of Y). Symmetric classes are useful,
since they are a natural choice when there is no prior knowledge about the relations between the
possible labels. Moreover, many popular hypothesis classes that are used in practice are symmetric.

We conjecture that the upper bound obtained for symmetric classes holds for the sample com-
plexity of non-symmetric classes as well. Such a result cannot be implied by uniform convergence
alone, since, by the results mentioned above, there always exist bad ERM learners whose sample
complexity is higher than this conjectured upper bound. It therefore seems that a proof for our
conjecture will require the derivation of new learning rules. We hope that this would lead to new
insights in other statistical learning problems as well.

In Section 3 we study multiclass learnability in the online model. We describe a simple generaliza-
tion of the Littlestone dimension, and derive tight lower and upper bounds on the number, in terms
of that dimension, of mistakes the optimal online algorithm will make in the worst case. Section 4 is
devoted to a discussion of sample complexity of multiclass learning in the Bandit settings. Finally,
in Section 5 we calculate the sample complexity of some popular families of hypothesis classes, which
include linear multiclass hypotheses and filter trees, and discuss some practical implications of our
bounds.

2 Multiclass Learning in the PAC Model

2.1 Problem Setting and Notation

For a distribution D over X × Y, the error of a function f ∈ H with respect to D is Err(f) =
ErrD(f) = Pr(x,y)∼D(f(x) 6= y). A learning algorithm for a classH is a function, A : ∪∞

n=0(X×Y)n →
H. We denote a training sequence by Sm = (x1, y1), . . . , (xm, ym). An ERM learner for class H is
a learning algorithm that for any sample Sm returns a function f ∈ H that minimizes the number
of sample errors |{i ∈ [m] : f(xi) 6= yi}|. This work focuses on statistical properties of the learning
algorithms and ignores computatational complexity aspects.

1Note that Shalev-Shwartz et al. (2010) established gaps between ERM learners in the general learning
setting. However, here we consider multiclass learning, which seems very similar to binary classification.

2



The (agnostic) sample complexity of an algorithm A is the function ma
A defined as follows: For

every ǫ, δ > 0,ma
A(ǫ, δ) is the minimal integer such that for everym ≥ ma

A(ǫ, δ) and every distribution
D on X × Y,

Pr
Sm∼Dm

(

Err
D

(A(Sm)) > inf
f∈H

Err
D

(f) + ǫ

)

≤ δ. (2)

If there is no integer satisfying these requirements, define ma
A(ǫ, δ) = ∞. The (agnostic) sample

complexity of a class H is
ma

H(ǫ, δ) = inf
A
ma
A(ǫ, δ) ,

where the infimum is taken over all learning algorithms.
We say that a distribution D is realizable by a hypothesis class H if there exists some f ∈ H

such that ErrD(f) = 0. The realizable sample complexity of an algorithm A for a class H, denoted
mr
A, is the minimal integer such that for every m ≥ mr

A(ǫ, δ) and every distribution D on X × Y
which is realizable by H, Equation. (2) holds. The realizable sample complexity of a class H is
mr

H(ǫ, δ) = infAm
r
A(ǫ, δ) where the infimum is taken over all learning algorithms.

2.2 Known Sample Complexity Results

We first survey some known results regarding the sample complexity of multiclass learning. We
start with the realizable case and then discuss the agnostic case. Given a subset S ⊆ X , we denote
H|S = {f |S : f ∈ H}. Recall the definition of the Vapnik-Chervonenkis dimension (Vapnik, 1995):

Definition 1 (VC dimension) Let H ⊆ {0, 1}X be a hypothesis class. A subset S ⊆ X is shat-
tered by H if H|S = {0, 1}S . The VC-dimension of H, denoted VC(H), is the maximal cardinality
of a subset S ⊆ X that is shattered by H.

The VC-dimension is cornerstone in statistical learning theory as it characterizes the sample com-
plexity of a binary hypothesis class. Namely

Theorem 2 (Vapnik, 1995) There are absolute constants C1, C2 > 0 such that the realizable sam-
ple complexity of every hypothesis class H ⊆ {0, 1}X satisfies

C1

(

VC(H) + ln( 1δ )

ǫ

)

≤ mr
H(ǫ, δ) ≤ C2

(

VC(H) ln( 1ǫ ) + ln( 1δ )

ǫ

)

.

Moreover, the upper bound is attained by any ERM learner.

It is natural to seek a generalization of the VC-Dimension to hypothesis classes of non-binary func-
tions. A straightforward attempt is to redefine shattering of S ⊂ X by the property H|S = YS .
However, this requirement is too strong and does not lead to tight bounds on the sample complexity.
Instead, we recall two alternative generalizations, introduced by Natarajan (1989). In both defini-
tions, shattering is redefined to require that for any partition of S into T and S \ T , there exists a
g ∈ H whose behavior on T differs from its behavior on S \ T . The two definitions differ in how
“different behavior” is defined.

Definition 3 (Graph dimension and Natarajan dimension) Let H ⊆ YX be a hypothesis class
and let S ⊆ X . We say that H G-shatters S if there exists an f : S → Y such that for every T ⊆ S
there is a g ∈ H such that

∀x ∈ T, g(x) = f(x), and ∀x ∈ S \ T, g(x) 6= f(x).

We say that H N-shatters S if there exist f1, f2 : S → Y such that ∀y ∈ S, f1(y) 6= f2(y), and for
every T ⊆ S there is a g ∈ H such that

∀x ∈ T, g(x) = f1(x), and ∀x ∈ S \ T, g(x) = f2(x).

The graph dimension of H, denoted dG(H), is the maximal cardinality of a set that is G-shattered
by H. The Natarajan dimension of H, denoted dN (H), is the maximal cardinality of a set that is
N-shattered by H.

Both of these dimensions coincide with the VC-dimension for |Y| = 2. Note also that we always
have dN ≤ dG.

By reductions from and to the binary case, it is not hard to show, similarly to Natarajan (1989)
and Ben-David et al. (1995) (see Appendix A for a full proof), that
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Theorem 4 For the constants C1, C2 from theorem 2, for every H ⊆ YX we have

C1

(

dN (H) + ln( 1δ )

ǫ

)

≤ mr
H(ǫ, δ) ≤ C2

(

dG(H) ln( 1ǫ ) + ln( 1δ )

ǫ

)

.

Moreover, the upper bound is attained by any ERM learner.

From this theorem it follows that the finiteness of the Natarajan dimension is a necessary condi-
tion for learnability, and the finiteness of the graph dimension is a sufficient condition for learnability.
In Ben-David et al. (1995) it was proved that for every concept class H ⊆ YX ,

dN (H) ≤ dG(H) ≤ 4.67 log2(|Y|)dN (H) . (3)

It follows that if |Y| <∞ then the finiteness of the Natarajan dimension is a necessary and sufficient
condition for learnability. Incorporating Equation. (3) into theorem 4, it can be seen that the
Natarajan dimension, as well as the graph dimension, characterize the sample complexity of H ⊆ YX

up to a multiplicative factor of O(log(|Y|) log( 1ǫ )). Precisely,

Theorem 5 (Ben-David et al., 1995) For the constants C1, C2 from theorem 2,

C1

(

dN (H) + ln( 1δ )

ǫ

)

≤ mr
H(ǫ, δ) ≤ C2

(

dN (H) · ln(|Y|) · ln( 1ǫ ) + ln( 1δ )

ǫ

)

.

Moreover, the upper bound is attained by any ERM learner.

A similar analysis can be performed for the agnostic case. For binary classification we have that
for every hypothesis class H ⊆ {0, 1}X ,

ma
H(ǫ, δ) = Θ

(

1

ǫ2

(

V C(H) + ln(
1

δ
)

))

, (4)

and this is attained by any ERM learner. Here too it is possible to obtain by reduction from and to
the binary case that for every hypothesis class H ⊆ YX ,

Ω

(

1

ǫ2

(

dN (H) + ln(
1

δ
)

))

≤ ma
H(ǫ, δ) ≤ O

(

1

ǫ2

(

dG(H) + ln(
1

δ
)

))

. (5)

By Equation. (3) we have

ma
H(ǫ, δ) = O

(

1

ǫ2

(

log(|Y|) · dN (H) + ln(
1

δ
)

))

. (6)

Thus in the agnostic case as well, the Natarajan dimension characterizes the agnostic sample com-
plexity up to a multiplicative factor of O(log(|Y|)). Here too, all of these bounds are attained by
any ERM learner.

2.3 An Improved Result for the Realizable Case

The following theorem provides a sample complexity upper bound which can be better than Theo-
rem 5 when ln(dN (H)) ≪ ln(|Y|) · ln( 1ǫ ). The proof of the theorem is given in Appendix A. While
the proof is a simple adaptation of previous results, we find it valuable to present this result here,
as we could not find it in the research literature.

Theorem 6 For every concept class H ⊆ YX ,

mr
H(ǫ, δ) = O

(

dN (H)
(

ln( 1ǫ ) + ln(|Y|) + ln(dN (H))
)

+ ln( 1δ )

ǫ

)

.

Moreover, the bound is attained by any ERM learner.

Theorem 6 is the departure point of our research. As indicated above, one of our objectives is
to prove sample complexity bounds for the multiclass case with a ratio of O(ln( 1ǫ )) between the
upper bound and the lower bound, as in the binary case. In the next section we show that such
an improvement cannot be attained by uniform convergence analysis, since the ratio between the
sample complexity of the worst ERM learner and the best ERM learner of a given hypothesis class
might be as large as ln(|Y|).

4



2.4 The Gap between “Good ERM” and “Bad ERM”

The tight bounds in the binary case given in Theorem 2 are attained by any ERM learner. In
contrast to the binary case, we now show that in the multiclass case there can be a significant
sample complexity gap between different ERM learners. Moreover, in the case of classification with
an infinite number of classes, there are learnable hypothesis classes that some ERM learners fail to
learn. We begin with showing that the graph dimension determines the sample complexity of the
worst ERM learner up to a multiplicative factor of O(ln( 1ǫ )).

Theorem 7 There are absolute constants C1, C2 > 0 such that for every hypothesis class H ⊆ YX

and every ERM learner A,

mr
A(ǫ, δ) ≤ C2

(

dG(H) ln( 1ǫ ) + ln( 1δ )

ǫ

)

.

Moreover, there is an ERM learner Abad such that

mr
Abad

(ǫ, δ) ≥ C1

(

dG(H) + ln( 1δ )

ǫ

)

. (7)

Proof: The upper bound on mr
A is just a restatement of theorem 4. It remains to prove that there

exists an ERM learner, Abad, satisfying (7). We shall first consider the case where d = dG(H) <∞.
Let S = {x0, . . . , xd−1} ⊆ X be a set which is G-Shattered by H using the function f0. Let Abad

be an ERM learner with the property that upon seeing a sample whose instances are in T ⊆ S, and
whose labels are determined by f0, it returns f ∈ H such that f equals to f0 on T and f is different
from f0 on S \ T . The existence of such an f follows form the assumption that S is G-shattered
using f0.

Fix δ < e−1/6 and let ǫ small enough such that 1 − 2ǫ ≥ e−4ǫ. Define a distribution on X
by setting Pr(x0) = 1 − 2ǫ and for all 1 ≤ i ≤ d − 1, Pr(xi) = 2ǫ

d−1 . Suppose that the correct
hypothesis is f0 and let the sample size be m. Clearly, the hypothesis returned by Abad will err
on all the examples from S which are not in the sample. By Chernoff’s bound, if m ≤ d−1

6ǫ , then

with probability ≥ e−
1
6 ≥ δ, the sample will include no more than d−1

2 examples from S. Thus the
returned hypothesis will have error ≥ ǫ. Moreover, the probability that the sample includes only x0
(and thus Abad will return a hypothesis with error 2ǫ) is (1 − 2ǫ)m ≥ e−4ǫm, which is more than δ
if m ≤ 1

4ǫ ln(
1
δ ). We therefore obtain that

mr
Abad

(ǫ, δ) ≥ max

{

d− 1

6ǫ
,
1

2ǫ
ln(1/δ)

}

≥
d− 1

12ǫ
+

1

4ǫ
ln(1/δ) ,

as required. If dG(H) = ∞ then the argument above can be repeated for a sequence of pairwise
disjoint G-shattered sets Sn, n = 1, 2, . . . with |Sn| = n.

The following example shows that in some cases there are learning algorithms that are much
better than the worst ERM:

Example 8 (A Large Gap Between ERM Learners) Let X0 be any finite or countable domain set
and let X be some subset of X0. Let Pf (X ) denote the collection of finite and co-finite subsets
A ⊆ X . For every A ∈ Pf (X ), define fA : X0 → Pf (X ) ∪ {∗} by

fA(x) =

{

A if x ∈ A

∗ otherwise,

and consider the concept family HX = {fA : A ∈ Pf (X )}. We first note that any ERM learner that
sees an example of the form (x,A) for some A ⊆ X must return the hypothesis fA, thus to define
an ERM learner we only have to specify the hypothesis it returns upon seeing a sample of the form
Sm = {(x1, ∗), . . . , (xm, ∗)}. Note also that X is G-shattered using the function f∅, and therefore
dG(HX ) ≥ |X | (it is easy to see that, in fact dG(HX ) = |X |).

We consider two ERM learners – Agood, which on a sample of the form Sm returns the hypothesis
f∅, and Abad, which, upon seeing Sm, returns f{x1,...,xm}c , thus satisfying the specification of a bad
ERM algorithm from the proof of Theorem 7. It follows that the sample complexity of Abad is

Ω
(

|X |
ǫ + 1

ǫ ln(
1
δ )
)

. On the other hand,

Claim 9 The sample complexity of Agood is at most 1
ǫ ln

1
δ .
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Proof: Let D be a distribution over X0 and suppose that the correct labeling is fA. Let m be the size
of the sample. For any sample, Agood returns either f∅ or fA. If it returns fA then its generalization
error is zero. Thus, it returns a hypothesis with error ≥ ǫ only if PrD(A) ≥ ǫ and all the m examples
in the sample are from Ac. Assume m ≥ 1

ǫ ln(
1
δ ), then probability of the latter event is no more than

(1− ǫ)m ≤ e−ǫm ≤ δ.

Since X can be infinite in the above example we conclude that

Corollary 10 There exist sets X , Y and a hypothesis class H ⊆ YX , such that H is learnable by
some ERM learner but is not learnable by some other ERM learner.

What is the crucial feature that makes Agood better than Abad? If the correct labeling is fA ∈ HX ,
then for any sample, Agood might return at most one of two functions – namely fA or f∅. On the
other hand, if the sample is labeled by the function f∅, Abad might return every function in HX .
Thus, to return a hypothesis with error ≤ ǫ, Agood needs to reject only one hypothesis while Abad

needs to reject many more. We conclude the following (rough) principle: A good ERM is an ERM
that, for every target hypothesis, consider a small number of hypotheses.

Next, we formalize the above intuition by proving a general theorem that enables us to derive
sample complexity bounds for ERM learners that are designed using the above principle. Fix a
hypothesis class H ⊆ YX . We view an ERM learner as an operator that for any f ∈ H, S ⊆ X takes
the partial function f |S as input and extends it to a function g = A(f |S) ∈ H such that g|S = f |S .
For every f ∈ H, denote by FA(f) the set of all the functions that the algorithm A might return
upon seeing a sample of the form {(xi, f(xi))}

m
i=1 for some m ≥ 0. Namely,

FA(f) = {A(f |S) : S ⊆ X , |S| <∞}

To provide an upper bound on mr
A(ǫ, δ), it suffices to show that for every f ∈ H, with probability at

least 1− δ, all the functions with error at least ǫ in FA(f) will be rejected after seeing m examples.
This is formalized in the following theorem.

Theorem 11 Let A be an ERM learner for a hypothesis class H ⊆ YX . Define the growth function
of A by ΠA(m) = supf∈H ΠFA(f)(m), where for F ⊆ YX , ΠF (m) = sup{|F |S | : S ⊆ X , |S| ≤ m}.
Then

mr
A(ǫ, δ) ≤ min{m : ΠA(2m) 21−

ǫm
2 < δ} .

The theorem immediately follows from the following lemma.

Lemma 12 (The Double Sampling Lemma) Let A be an ERM learner. Fix a distribution D
over X and a function f0 ∈ H. Denote by Am the event that, after seeing m i.i.d. examples
drawn from D and labeled by f0, A returns a hypothesis with error at least ǫ. Then Pr(Am) ≤
2 ·ΠA(2m)2−

ǫm
2 .

Proof: Let S1 and S2 be two samples of m i.i.d. examples labeled by f0. Let Bm be the event that
there exists a function f ∈ H with error at least ǫ, such that (1) f is not rejected by S1 (i.e. f0(x) =
f(x) for all examples x in S1), and (2) there exist at least ǫm

2 examples (x, f0(x)) in S2 for which

f(x) 6= f0(x). By Chernoff’s bound, for m = Ω( 1ǫ ), Pr(Bm) = Pr(Bm|Am) Pr(Am) ≥ 1
2 Pr(Am).

W.l.o.g., we can assume that S1, S2 are generated as follows: First, 2m examples are drawn to create
a sample U . Then S1 and S2 are generated by selecting a random partition of U into two samples
of size m. Now, Pr(Bm) is bounded by the probability that there is an f ∈ H|U such that (1) there
are at least ǫm

2 examples in U such that f disagrees with f0 on these examples and (2) all of these
examples are located in S2. For a single f ∈ H|U that disagrees with f0 on l ≥ ǫm

2 samples, the

probability that all these examples are located in S2 is
(

m
l

)

/
(

2m
l

)

≤ 2−l ≤ 2−
ǫm
2 . Thus, using the

union bound we obtain that Pr(Bm) ≤ |H|U | 2
− ǫm

2 ≤ Π(2m)2−
ǫm
2 .

The bound in theorem 6 is based on the (trivial) inequality ΠA ≤ ΠH. However, as Example 8
shows, ΠA can be much smaller than ΠH. As we shall see in the sequel, we can apply the double
sampling lemma to get better sample complexity bounds for “good” ERM learners. The key tool for
these sample complexity bounds is Lemma 14, that is, in turn, based on the following combinatorial
result:

Lemma 13 (Natarajan, 1989) For every hypothesis class H ⊆ YX , |H| ≤ |X |dN (H)|Y|2dN (H).
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Lemma 14 Let H ⊆ YX be a class of functions. Assume that for some number r, for every h ∈ H,
the size of the range of h is at most r. Let A be an algorithm such that, for some set of values Y ′ ⊆ Y,
for every f ∈ H, and every sample Sm = ((x1, f(x1)), . . . (xm, f(xm))), the function returned by A
on input Sm is consistent with Sm and has its values in the set {f(x1), . . . , f(xm)} ∪ Y ′. Then,

mr
A(ǫ, δ) = O

(

dN (H)(ln( 1ǫ ) + ln(max{r, |Y ′|})) + ln( 1δ )

ǫ

)

.

Proof: The assumptions of the lemma imply that, for every f ∈ H, the range of the functions in
FA(f) is contained in the union of Y ′ and the range of f . Therefore, using Lemma 13 we obtain
that ΠA(2m) ≤ (2m)dN (H)(|Y ′|+ r)2dN (H), and the bound follows from Theorem 11.

Note that classes in which each function h ∈ H uses at most r values, for some r < dN (H) log(|Y|),
can have a large range Y and a graph dimension that is significantly larger than their Natarajan
dimension. In such cases, we may be able to show a gap between the sample complexity of bad and
good ERM learners, by applying the lower bound from Theorem 7. In particular, we get such a
result for the following family of hypotheses classes, which generalizes Example 8.

Corollary 15 Let H be a class of functions from X to some range set Y, such that, for some value
y0 ∈ Y, for every h ∈ H, the range of h contains at most one value besides y0. Assume also that
H contains the constant y0 function. Let d denote the Natarajan dimension of H. Then there exists
an ERM learning algorithm A for H such that the (ǫ, δ) sample complexity of A is

O

(

d · ln(1/ǫ) + ln(1/δ)

ǫ

)

.

Every class in that family that has a large graph dimension will therefore realize a gap between
the sample complexities of different ERM learners.

Example 16 Consider the set of all balls in Rn and, for each such ball, B = B(z, r) with center z
and radius r, let hB be the function defined by hB(x) = z if x ∈ B and hB(x) = ⋆ otherwise. Let
HBn = {hB : B = B(z, r) for some z ∈ Rn, r ∈ R} ∪ {h⋆} (where h⋆ is the constant ⋆ function).
It is not hard to see that dN (HBn) = 1 and dG(HBn) = n+ 1. Furthermore, let Agood be the ERM
learner that for every sample S = (x1, f(x1)), . . . (xm, f(xm)), returns hBS

, where BS is the minimal
ball that is consistent with the sample. Note that this algorithm uses, for every f ∈ HBn and every
sample S labeled by such f , at most one value (the value ⋆) on top of the values {f(x1), . . . , f(xm)}.

In this case, Theorem 7 implies that for some constant C1, there exists a bad ERM learner, Abad

such that

mr
Abad

(ǫ, δ) ≥ C1

(

n+ ln(1/δ)

ǫ

)

.

On the other hand, Lemma 14 implies that there is a good ERM learner, Agood and a constant C2

for which

mr
Agood

(ǫ, δ) ≤ C2

(

ln(1/ǫ) + ln(1/δ)

ǫ

)

.

Note that, if one restricts the hypothesis class to allow only balls that have their centers in
some finite set of grid points, the class uses only a finite range of labels. However, if such a grid is
sufficiently dense, the sample complexities of both algorithms, Abad and Agood, would not change.

2.5 Symmetric Classes

The principle for choosing a good ERM leads to tight bounds on the sample complexity of symmetric
classes. Recall that a class H is called symmetric if for any f ∈ H and any permutation φ on labels,
we have that φ ◦ f ∈ H as well.

Theorem 17 There are absolute constants C1, C2 such that for every symmetric hypothesis class
H ⊆ YX

C1

(

dN (H) + ln( 1δ )

ǫ

)

≤ mr
H(ǫ, δ) ≤ C2

(

dN (H)
(

ln( 1ǫ ) + ln(dN (H))
)

+ ln( 1δ )

ǫ

)

A key observation that enables us to employ our principle in this case is:
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Lemma 18 Let H ⊆ YX be a symmetric hypothesis class of Natarajan dimension d. Then, the
range of any f ∈ H is of size at most 2d+ 1.

Proof: If |Y| ≤ 2d + 1 we are done. Thus assume that there are 2d + 2 distinct elements
y1, . . . , y2d+2 ∈ Y. Assume to the contrary that there is a hypothesis f ∈ H with a range of
more than d values. Thus there is a set S = {x1, . . . , xd+1} ⊆ X such that f |S has d+1 values in its
range. It follows that H N-shatters S, thus reaching a contradiction. Indeed, since H is symmetric,
there are functions f0, f1 ∈ H such that fj(xi) = yj(d+1)+i. Similarly, for every T ⊆ S, there is a
g ∈ H such that g(x) = f0(x) for every x ∈ T and g(x) = f1(x) for every x ∈ S \ T .

We are now ready to prove Theorem 17.
Proof: (of Theorem 17) The lower bound is a restatement of Theorem 4. For the upper bound,
we define an algorithm A that conforms to the conditions in Lemma 14: Fix a set Y ′ ⊆ Y of size
|Y ′| = min{|Y|, 2dN (H) + 1}. Given a sample (x1, f(x1)), . . . , (xm, f(xm)), A returns a hypothesis
that is consistent with the sample and that attains only values in {f(x1), . . . , f(xm)} ∪ Y ′. It is
possible due to symmetry and Lemma 18.

A similar analysis can be performed for the agnostic case. LetH ⊆ YX be a symmetric hypothesis
class. Let Y ′ ⊆ Y be an arbitrary set of size min{|Y|, 4dN (G) + 2}. Denote H′ = {f ∈ H : f(X ) ⊆
Y ′}. Using lemma 18 and symmetry, it is easy to see that dG(H) = dG(H

′) and dN (H) = dN (H′).
By equation 3, we conclude that dG(H) = O(log(dN (H)) · dN (H)). Using equation 5 we obtain a
sample complexity bound of

ma
H(ǫ, δ) = O

(

1

ǫ2

(

log(min{dN (H), |Y|}) · dN (H) + ln(
1

δ
)

))

,

which is better than Equation. (6). Moreover, the ratio between this bound and the lower bound
(Equation. (5)) is O(log(dN (H))) regardless of |Y|. Note that this bound is attained by any ERM.
We present the following open question:

Open question 19 Examples 8 and 16 show that there are (non-symmetric) hypothesis classes with
a ratio of Ω(ln(|Y|)) between the sample complexities of the worst ERM learner and the best ERM
learner. How large can this gap be for symmetric hypothesis classes?

3 Multiclass Learning in the Online Model

Learning in the online model is conducted in a sequence of consecutive rounds. On each round
t = 1, 2, . . ., the environment presents a sample xt ∈ X , the algorithm should predict a value ŷt ∈ Y,
and then the environment reveals the correct value yt ∈ Y. The prediction at time t can be based
only on the examples x1, . . . , xt and the previous outcomes y1, . . . , yt−1. We start with the realizable
case, in which we assume that for some function f ∈ H, all the outcomes are evaluations of f , namely,
yt = f(xt). Given an online learning algorithm, A, define its (realizable) sample complexity, M(A),
to be the maximal number of wrong predictions that it might make on a legal sequence of any length.

The sample complexity of online learning has been studied by Littlestone (1987), who showed
that a combinatorial measure, called the Littlestone dimension, characterizes the sample complexity
of online learning. We now propose a generalization of the Littlestone dimension to classes of non-
binary functions.

Consider a rooted tree T whose internal nodes are labeled by X and whose edges are labeled by
Y, such that the labels on edges from a parent to its child nodes are all different from each other.
The tree T is shattered by H if, for every path from root to leaf x1, . . . , xk, there is a function f ∈ H
such that f(xi) equals the label of (xi, xi+1). The Littlestone dimension, L-dim(H), of H is the
maximal depth of a complete binary tree that is shattered by H.

It is not hard to see that, given a shattered tree of depth l, the environment can force any online
learning algorithm to make l mistakes. Thus, for any algorithm A, M(A) ≥ L-Dim(H). We shall
now present an algorithm whose sample complexity is upper bounded by L-Dim(H).

Algorithm: Standard Optimal Algorithm (SOA)
Initialization: V0 = H.
For t = 1, 2 . . .,

receive xt
for y ∈ Y, let V

(y)
t = {f ∈ Vt−1 : f(xt) = y}

predict ŷt ∈ argmaxy L-Dim(V
(y)
t )

receive true answer yt
update Vt = V

(tt)
t

8



Theorem 20 M(SOA) = L-Dim(H).

The proof is a simple adaptation of the proof of the binary case (see Littlestone, 1987). The idea is

to note that for each t there is at most one y ∈ Y with L-Dim(V
(y)
t ) = L-Dim(Vt), and for the rest

of the labels we have L-Dim(V
(y)
t ) < L-Dim(Vt). Thus, whenever the algorithm errs, the Littlestone

dimension of Vt decreases by at least 1, so after L-Dim(H) mistakes, Vt is composed of a single
function.

Note that we only considered deterministic algorithms. However, allowing the algorithm to
make randomized predictions does not substantially improve its sample complexity. It is easy to see
that given a shattered tree of depth l, the environment can enforce any randomized online learning
algorithm to make at least l/2 mistakes on average.

In the agnostic case, the sequence of outcomes, y1, . . . , ym, is not necessarily realizable by some
target function f ∈ H. In that case, our goal is to have a regret of at most ǫ, where the regret is
defined as

1

m
|{t ∈ [m] : ŷt 6= yt}| −min

f∈H

1

m
|{t ∈ [m] : f(xt) 6= yt}| .

We denote by ma
A(ǫ) the number of examples required so that the regret of an algorithm A will be

at most ǫ and by ma(ǫ) the infimum, over all algorithms A, of ma
A(ǫ).

Online learnability in the agnostic case, for classes of binary-output functions, has been studied
in Ben-David et al. (2009), who showed that the Littlestone dimension characterizes the sample
complexity in the agnostic case as well. The basic idea is to construct a set of experts by running
the SOA algorithm on all sub-sequences of the examples whose length is at most L-Dim(H), and then
to run an online algorithm for learning with experts. This idea can be generalized to the multiclass
case, but we leave this generalization to a longer version of this manuscript.

4 The Bandit Setting

So far we have assumed that each learning example is comprised of an instance and its corresponding
label. In this section we deal with the so-called bandit setting. In the bandit model, the learner does
not get to see the correct label of a training example. Instead, the learner first receives an instance
x ∈ X , and should guess a label, ŷ. The learner then receives a binary feedback, indicating whether
its guess is correct or not.

4.1 Bandit vs Full Information in the Batch Model

Let H ⊆ YX be a hypothesis class. Our goal is to analyze the realizable bandit sample complexity of

H, which we denote by mr,b
H (ǫ, δ), and the agnostic bandit sample complexity of H, which we denote

by ma,b
H (ǫ, δ). The following theorem provides upper bounds on the sample complexity.

Theorem 21 Let H ⊆ YX be a hypothesis class. Then,

mr,b
H (ǫ, δ) = O

(

|Y| ·
dG(H) · ln

(

1
ǫ

)

+ ln( 1δ )

ǫ

)

and ma,b
H (ǫ, δ) = O

(

|Y| ·
dG(H) + ln( 1δ )

ǫ2

)

.

Proof: Since the claim is trivial if |Y| = ∞, we can assume that k := |Y| <∞. Let Afull be a (full
information) ERM learner for H. Consider the following algorithm for the bandit setting: Given
a sample (xi, yi)

m
i=1, for each i the algorithm guesses a label ŷi ∈ Y drawn uniformly at random.

Then the algorithm returns the hypothesis returned by Afull with the input sample which consists
of the pairs (xi, yi) for which ŷi = yi. We claim that mAbandit

(ǫ, δ) ≤ 3k ·mAfull
(ǫ, δ2 ) (for both the

agnostic and the realizable case), so the theorem is implied by the bounds in the full information
setting (theorem 7 and equation 5). Indeed, suppose that m examples suffice for Afull to return,
with probability at least 1 − δ

2 a hypothesis with regret at most ǫ. Let (xi, yi)
3km
i=1 be a sample

for the bandit algorithm. By Chernoff bound, with probability at least 1 − δ
2 , the sample Abandit

transfers to Afull consist of at least m examples. Note that the sample that Afull receives is an i.i.d.
sample according to the same distribution from which the original sample was sampled. Thus, with
probability at least 1− δ

2 , Afull (and, consequently, Abandit) returns a hypothesis with regret at most
ǫ.

The price of bandit information in the batch model: Let H be a hypotheses class.

Define PBIH(ǫ, δ) =
mr,b

H
(ǫ,δ)

mr
H
(ǫ,δ) . By Theorems 21,4 and Equation 3 we see that, PBIH(ǫ, δ) =
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O(ln(|Y|) · ln( 1ǫ ) · |Y|). This is essentially tight since it is not hard to see that if both X ,Y are finite

and we let H = YX , then PBIH = Ω(|Y|).
Using Theorems 21,4 and Equations 5,3 we see that, as in the full information case, the finite-

ness of the Natarajan dimension is necessary and sufficient for learnability in the bandit setting
as well. However, the ratio between the upper and the lower bounds is Ω(ln(|Y|) · |Y|). It would
be interesting to find a more tight characterization of the sample complexity in the bandit setting.
The Natarajan dimension (as well as the graph dimension and other known notions of dimension
defined in (Ben-David et al., 1995), as they are all closely related to the Natarajan dimension) is
deemed to fail for the following reason: For every k, d, there are classes H ⊆ [k][d] of Natarajan

dimension d where the realizable bandit sample complexity is O(dǫ +
ln( 1

δ
)

ǫ ) (e.g. every class H such
that dN (H) = d and for every x ∈ [d], #{f(x) : f ∈ H} = 2). On the other hand, the realizable

bandit sample complexity of [k][d] is Ω
(

k ·
(

d
ǫ +

ln( 1
δ
)

ǫ

))

.

4.2 Bandit vs Full Information in the Online Model

We now consider Bandits in the online learning model. We focus on the realizable case, in which the
feedback provided to the learner is consistent with some function f0 ∈ H. We define a new notion
of dimension of a class, that determines the sample complexity in this setting. Let H ⊆ YX be a
hypothesis class and denote k = |Y|. Consider a rooted tree T whose internal nodes are labeled
by X and such that the labels on edges from a parent to its child nodes are all different from each
other. The tree T is BL-shattered by H if, for every path from root to leaf x1, . . . , xk, there is a
function f ∈ H such that for every i, f(xi) is different from the label of (xi, xi+1). The bandit
Littlestone dimension of H, denoted BL-dim(H), is the maximal depth of a complete k-ary tree
that is BL-shattered by H.

Theorem 22 Let H be a hypothesis class with L = BL-Dim(H). The sample complexity of every
deterministic online learning algorithm for H is at least L. Moreover, there is an online learning
algorithm whose sample complexity is exactly L.

Proof: First, let T be a BL-shattered tree of depth L. We first show that for every deterministic
learning algorithm there is a sequence x1, . . . , xL and a labeling function f0 ∈ H such that the
algorithm makes L mistakes on this sequence. The sequence consists of the instances attached to
nodes of T , when traversing the tree from the root to one of its leaves, such that the label of each
edge (xi, xi+1) is equal to the algorithm’s prediction ŷi. The labeling function f0 ∈ H is one such
that for all i, f0(xi) is different from the label of edge (xi, xi+1). Such a function exists since T is
BL-shattered.

Second, the following online learning algorithm makes at most L mistakes.

Algorithm: Bandit Standard Optimal Algorithm (BSOA)
Initialization: V0 = H.
For t = 1, 2 . . .,

receive xt
for y ∈ Y, let V

(y)
t = {f ∈ Vt−1 : f(xt) 6= y}

predict ŷt ∈ argminy BL-Dim(V
(y)
t )

receive an indication whether ŷt = f(xt)

if the prediction is wrong, update Vt = V
(ŷt)
t

To see that M(BSOA) ≤ L, note that at each time t, there is at least one V
(y)
t with BL-Dim(V

(y)
t ) <

BL-Dim(Vt−1). Thus, whenever the algorithm errs, the dimension of Vt decreases by one. Thus,
after L mistakes, the dimension is 0, which means that there is a single function that is consistent
with the sample, so no more mistakes can occur.

We conclude with an open question on the price of bandit information in the online model:

Open question 23 Let PBI(H) = BL-Dim(H)
L-Dim(H) and fix k ≥ 2. How large can PBI(H) be when H is

a class of functions from a domain X to a range Y of cardinality k?

5 The Sample Complexity of Known Multiclass Hypothesis Classes

In this section we analyze the sample complexity of two families of hypothesis classes for multiclass
classification: the generalized linear construction (Duda and Hart, 1973, Vapnik, 1998, Hastie and Tibshirani,
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1995, Freund and Schapire, 1997, Schapire and Singer, 1999, Collins, 2002, Taskar et al., 2003), and
multiclass reduction trees (Beygelzimer et al., 2007, 2009, Fox, 1997). In particular, a special case of
the generalized linear construction is the multi-vector construction (e.g. Crammer and Singer, 2003,
Fink et al., 2006). We show that the sample complexity of the multi-vector construction and the
reduction trees construction is similar and depends approximately linearly on the number of class
labels. Due to the lack of space, proofs are omitted and can be found in the appendix.

5.1 The Generalized Linear Multiclass Construction

A generalized linear multiclass hypothesis class is defined with respect to a class specific feature
mapping φ : X × Y → Rt, for some integer t. For any such φ define the hypothesis class Mt

φ =

{h[w] | w ∈ Rt}, where
h[w](x) = argmax

y∈Y
〈w, φ(x, y)〉,

where we ignore tie-breaking issues w.l.o.g. . A popular special case is the linear construction used
in multiclass SVM (Crammer and Singer, 2003) where X = Rd, Y = [k], t = dk, and φ = ψd,k,
defined by

ψd,k(x, i) , (0, . . . , 0, x[1], . . . , x[d], 0, . . . , 0),

where x[1] is in coordinate d(i − 1) + 1. We abbreviate Lkd , Mdk
ψd,k

. We first consider a general φ

and show that the sample complexity for any φ is upper-bounded by a function of t.

Theorem 24 Let dN be the Natarajan-dimension of Mt
φ. Then dN ≤ O(t log(t)).

For the linear construction a matching lower bound on the Natarajan dimension is shown in the
following theorem. Thus, as one might expect, the sample complexity of learning with Ldk is of the
order of dk.

Theorem 25 For d ≥ 0 and k ≥ 2, let dN be the Natarajan-dimension of Ldk. Then

Ω(dk) ≤ dN ≤ O(dk log(dk)).

5.2 Reduction trees

Reduction trees provide a way of constructing multiclass hypotheses from binary classifiers. A
reduction tree consists of a tree structure, where each internal node is mapped to a binary classifier
and each leaf is mapped to one of the multiclass labels. Classification of an example is done by
traversing the tree, starting from the root and ending in one of the leaves, where in each node the
result of the binary classifier determines whether to go left or right.

It has been shown that by using appropriate learning algorithms, one can guarantee a multiclass
classification error of no more than log2(k)ǫ, where k is the number of classes, and ǫ is the average
error of the binary classifiers (Fox, 1997, Beygelzimer et al., 2009). However, this result does not
directly provide sample complexity guarantees for these algorithms, since the value of ǫ itself depends
on the sample and on the learning algorithm.

In the following we analyze the sample complexity of any fixed reduction tree, under the assump-
tion that the binary classifiers all belong to some fixed hypothesis class with a finite VC-dimension
d. We provide bounds on the Natarajan dimension of the resulting multiclass hypothesis class, and
show that it can be as large as Ω(dk) for some hypothesis classes. We further analyze the special
case where the binary hypothesis class is the class of linear separators in Rd, and show that a similar
result, though slightly weaker, holds for this class as well.

We now formally define a reduction tree and the hypothesis class related to it (see Figure 1 in
the appendix for illustration). Let X be the domain of examples and let [k] be the set of possible
labels. A reduction tree is a full binary tree T . Denote the head node of T by H(T ). The sub-tree
which is the left child of H(T ) is denoted by L(T ) and the sub-tree which is the right child of H(T )
is denoted by R(T ). The set of internal nodes of T is denoted by N(T ), and the set of leaf nodes
of T is denoted by leaf(T ). A multiclass classifier is a triplet [T, λ, C] where T is a reduction tree,
λ is a one-to-one mapping λ[·] : leaf(T ) → [k], and C[·] : N(T ) → {0, 1}X is a mapping from the
internal nodes of T to binary classifiers on the domain X . [T, λ, C] : X → [k] is defined recursively
as follows:

[T, λ, C](x) =







[L(T ), λ, C](x) H(T ) /∈ leaf(T ) and C[H(T )](x) = 0,

[R(T ), λ, C](x) H(T ) /∈ leaf(T ) and C[H(T )](x) = 1,

λ[H(T )](x) H(T ) ∈ leaf(T ).
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Unless otherwise mentioned, we assume a fixed λ, and identify T with the pair (T, λ). Accordingly,
[T, λ, C] is abbreviated to [T,C]. Let H ⊆ {0, 1}X be a hypothesis class of binary classifiers on X .
The hypothesis class induced by H on the tree T with label mapping λ, denoted by H(T,λ), is the
set of multiclass classifiers which can be generated on T using binary classifiers from H. Formally,

H(T,λ) = {[T, λ, C] | ∀n ∈ N(T ), C[n] ∈ H}.

We abbreviate H(T,λ) to HT when the labeling λ is fixed.
Suppose that the VC-dimension of H is d. What can be said about the sample complexity of

HT for a given tree T? First, a simple counting argument provides an upper bound on the graph-
dimension and the Natarajan-dimension of HT : Any hypothesis in HT is a function of the values of
|N(T )| = k − 1 binary hypotheses from H. Therefore, the number of possible labelings of A by HT

for any A ⊆ X is bounded by |H|A|
k−1. By Sauer’s lemma, |H|A| ≤ |A|d. Thus |HT |A| ≤ |A|d(k−1).

If A is G-shattered or N-shattered by HT , then |HT |A| ≥ 2|A|. Thus 2|A| ≤ |A|d(k−1). It follows that
|A| ≤ O(dk log(dk)), thus the same upper bound holds for the graph-dimension and the Natarajan-
dimension. A closely matching lower bound is provided in the following theorem.

Theorem 26 Let k ≥ 2 and d ≥ 2 be integers. For any reduction tree T with k ≥ 2 leafs, there
exists a binary hypothesis class H with VC-dimension d such that HT has Natarajan dimension
d(k − 1).

Theorem 26 shows that for every tree there exists a binary hypothesis class which induces a
high sample complexity on the resulting multiclass hypothesis class. The following theorem shows
that moreover, the popular hypothesis class of linear separators in Rd induces reduction trees with
a sample complexity which is almost as large, up to a logarithmic factor.

LetWd be the class of non-homogeneous linear separators in Rd, that isWd = {x→ sign(〈x,w〉+
b) | w ∈ Rd, b ∈ R}. For a full binary tree T with k leaves, denote by n1(T ) the number of internal
nodes with one leaf child and one non-leaf child, and by n2(T ) the number of internal nodes with
two leaf children.

Theorem 27 For any multiclass-to-binary tree T with k leaves, the graph dimension of Wd
T is at

least (d+ 1) · n2(T ) + d · n1(T ) ≥ dk/2. Consequently the Natarajan dimension is Ω(dk/ log(k)).

We conclude that the sample complexity of different reduction trees is similar, and that this
sample complexity is also similar to that of the multi-vector construction. This implies that when
choosing between the different hypothesis classes, considerations other than the sample complexity
should determine the choice. One such important consideration is the approximation error. Since
sample complexity analysis bounds only the estimation error, one wishes to have the approximation
error as low as possible. Thus if there is some prior knowledge on the match between the hypothesis
class and the source distribution, this might guide the choice of the hypothesis class. The following
theorem shows, however, that for fairly balanced reduction trees this match is highly dependent on
the assignment of labels to leaf nodes. For any reduction tree T denote by Λ the set of one-to-one
mappings from the leaf(T ) to [k], and let U be the uniform distribution over Λ.

Theorem 28 Let T be a full binary tree with k leaves, and let n be the number of leaves on the left
sub-tree. For any hypothesis class H with VC-dimension d, and for any distribution D over X × [k]
which assigns non-zero probability to each label in [k],

Pr
λ∼U

[H(T,λ) separates D] ≤

(

ek

d

)d(
k

n

)−1

.

Thus if k ≫ d and n is a constant fraction of k, this probability decreases exponentially with k.

6 Conclusions and Open Problems

In this paper we have studied several new aspects of multiclass sample complexity. Many interesting
questions arise and some are listed below.

Consider the two example classes from section 2.4. It is interesting to note that, in both cases,
dN (H) = 1, and mr

H(ǫ, δ) = Θ( 1ǫ ln(
1
δ )). It seems like the Natarajan dimension is the parameter

that controls the sample complexity for those examples. That is also the case for symmetric classes
as well as some other classes that we have examined but did not include in this paper. We therefore
raise:
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Conjecture 29 There exists a constant C such that, for every hypothesis class H ⊆ YX ,

mr
H(ǫ, δ) ≤ C

(

dN (H) ln( 1ǫ ) + ln( 1δ )

ǫ

)

In light of theorem 7 and the fact that there are cases where dG ≥ log2(|Y| − 1)dN , in order to
prove the conjecture we will have to find a learning algorithm that is not just an arbitrary ERM
learner. So far, all the general upper bounds that we are aware of are valid for any ERM learner.
Understanding how to select among ERM learners is fundamental as it teaches us what is the correct
way to learn. We suspect that such an understanding might lead to improved bounds in the binary
case as well. We hope that our examples from section 2.4 and our result for symmetric classes will
prove to be the first steps in the search for the best ERM.

Another direction is the study of learnability conditions for additional hypotheses classes. Sec-
tion 5 shows that some well known multiclass constructions have surprisingly similar sample complex-
ity properties. It is of practical significance and theoretical interest to study learnability conditions
for other constructions, and especially to develop a fuller understanding of the relationship between
different constructions, in a manner that could guide an informed choice of a hypothesis class.
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A Proofs Omitted from the Text

Proof: (of theorem 4)
The lower bound: Let H ⊆ YX be a hypothesis class of Natarajan dimension d and Let Hd :=
{0, 1}[d]. We claim that mHd

≤ mH, so the lower bound is obtained by theorem 2. Let A be
a learning algorithm for H. Consider the learning algorithm, Ā, for Hd defined as follows. Let
S = {s1, . . . , sd} ⊆ X, f0, f1 be a set and functions that indicate that dN (H) = d. Given a sample
(xi, yi) ∈ [d]×{0, 1}, i = 1, . . . ,m, let g = A((sxi

, fyi(sxi
))mi=1). Define f = Ā((xi, yi)

m
i=1) by setting

f(i) = 1 if and only if g(si) = f1(si). It is not hard to see that mĀ ≤ mr
A, thus, mHd

≤ mH.
The upper bound: Let H ⊆ YX be a hypothesis class of graph dimension d. For every f ∈ H
define f̄ : X ×Y → {0, 1} by setting f̄(x, y) = 1 if and only if f(x) = y and let H̄ = {f̄ : f ∈ H}. It
is not hard to see that V C(H̄) = dG(H).

Suppose that f ∈ H is consistent with a sample (xi, f0(xi))
m
i=1 of m = Ω(dǫ ln(

1
ǫ ) +

1
ǫ ln(

1
δ ))

examples, drawn i.i.d. according to some distribution D on X . We must show that, with probability
≥ 1− δ, ErrD,f0(f) ≤ ǫ. However, by theorem 2,

ErrD,f0(f) = Pr
x∼D

(f̄(x, f0(x)) 6= 1) ≤ ǫ

With probability ≥ 1− δ.

Proof: (of Theorem 6) Let A be an ERM learner. Since FA(f) ⊆ H for every f , it follows that
ΠA ≤ ΠH. By lemma 13, ΠH(m) ≤ mdN (H)|Y|2dN (H). Incorporating it into Theorem 11 we get the
desired bound.

Proof: (of Theorem 24) Let S = {x1, . . . , xdN } ⊆ Rd be a set which is N-shattered by Mt
φ, and let

f1, f2 : S → Y be the functions that witness the shattering. For every i ∈ [dN ] let zi = φ(xi, f1(xi))−
φ(xi, f2(xi)) ∈ Rt. Denote Z = {zi}i∈[dN ]. Consider the hypothesis class of homogeneous linear
separators in Rt, defined by {z → sign(〈w, z〉) | w ∈ Rt}. Since the VC-dimension of this class is t,
by Sauer’s lemma the number of possible labelings of Z with this class is upper-bounded by (dN )t.
We now show that there is a one-to-one mapping from subsets T ⊆ S to labelings of Z: For any
T ⊆ S, let w ∈ Rt such that

{x ∈ S | h[w](x) = f1(x)} = T, and {x ∈ S | h[w](x) = f2(x)} = S \ T.

Then T = {x ∈ S | 〈w, φ(x, f1(x))〉 ≥ 〈w, φ(x, f2(x))〉} = {xi | 〈w, zi〉 ≥ 0}. Thus every T induces
a different labeling of Z. It follows that the number of subsets of S is bounded by the number of
labelings of Z, thus 2dN ≤ (dN )t. It follows that dN ≤ O(t log(t)).

Proof: (of Theorem 25) The upper bound is a direct consequence of Theorem 24. For the lower
bound, we show that there exists an N-shattered set of size ⌊d/2⌋ · ⌊k/2⌋. Let b = ⌊k/2⌋. Let
x1, . . . , xb ∈ R2 be b different vectors such that ∀i ∈ [b], ‖xi‖ = 1. Let S = {yi,j}i∈[b],j∈[⌊d/2⌋] ⊆ Rd,
where for s ∈ [d]:

yi,j [s] =







xi[1] s = 2j − 1

xi[2] s = 2j

0 otherwise.

We show that S is N-shattered, thus dN ≥ |S| = ⌊k/2⌋ · ⌊d/2⌋. Define functions f1, f2 : S → [k]
such that for yi,j ∈ S, f1(yi,j) = i and f2(yi,j) = b + i. For a subset T ⊆ S, let w ∈ Rdk such that
for i ∈ [b], s ∈ [d]

w[d(i− 1) + s] =







xi[1] yi,j ∈ Z and s = 2j − 1,

xi[2] yi,j ∈ Z and s = 2j,

0 otherwise.

and for i ∈ {b+ 1, . . . , 2b}, s ∈ [d],

w[d(i− 1) + s] =







xi[1] yi−b,j /∈ Z and s = 2j − 1,

xi[2] yi−b,j /∈ Z and s = 2j,

0 otherwise.

Then h[w] = f1(y) for y ∈ T and h[w] = f2(y) for y ∈ S \ T . Thus S is N-shattered.

Proof: (of Theorem 26) Let H(T ) be a binary hypothesis class for tree T . We construct H(T )
inductively on the structure of the tree. For every tree T , the domain of the binary hypotheses in
H(T ) will be [d]×N(T ).
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input: x

L(T )
R(T )

C[1]

C[2]

C[1](x) = 0 C[1](x) = 1

C[2](x) = 0 C[2](x) = 1

label: 1 label: 2

label: 3

H(T )

Figure 1: Illustration of a reduction tree

Induction basis: Assume that both L(T ) and R(T ) are leafs, thus k = 2 and |N(T )| = 1.
Define H(T ) = {h | h : [d]× {H(T )} → {0, 1}}.

Inductive step: Assume T has two children L(T ) and R(T ), and at least one of them is
not a leaf. By the induction hypothesis, if L(T ) is a non-leaf then H(L(T )) is a set of binary
hypotheses with domain [d]×N(L(T )). H(L(T )) has VC-dimension d, and the Natarajan dimension
of H(L(T ))L(T ) is d · |N(L(T ))|. The same holds for R(T ). Define H(T ) = {h0, h1}∪HL∪HR∪HH ,
where:

• h0(x) = 0 and h1(x) = 1 for all x ∈ [d]×N(T ),

• If L(T ) is a leaf, HL = ∅. Otherwise,

HL =
{

h : [d]×N(T ) → {0, 1} |∃hL ∈ H(L(T )), ∀x ∈ [d]×N(T ),

h(x) =

{

hL(x) x ∈ [d]×N(L(T )),

0 otherwise.

}

• HR is defined similarly, for R(T ) instead of L(T ).

• HH is defined as follows:

HH = {h : [d]×N(T ) → {0, 1} |∀x ∈ [d]×N(L(T )), h(x) = 0,

∀x ∈ [d]×N(R(T )), h(x) = 1}.

We now prove by induction that for every tree T the following claims hold:

• H(T ) has VC-dimension d,

• H(T )T has Natarajan dimension d · |N(T )|.

• An auxiliary claim: H(T ) includes the hypotheses h0 and h1.

Induction Basis: If both L(T ) and R(T ) are leafs, then the VC-dimension of H(T ) is clearly
d. The induced multiclass hypothesis class H(T )T is in fact a set of binary hypotheses which is
isomorphic to H(T ), thus its Natarajan dimension is also d = d(k − 1). The zero hypothesis is
clearly in H(T ) by construction.
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Induction Step: Assume T has two children L(T ) and R(T ), and at least one of them is not a
leaf. By the construction of H(T ), the auxiliary claim clearly holds. The following lemmas, whose
proofs follows, prove the two other claims:

Lemma 30 H(T ) has VC-dimension d.

Lemma 31 H(T )T has Natarajan dimension d|N(T )|.

Thus the induction hypothesis holds.

Proof: (of Lemma 30) The VC-dimension of H(T ) is at least d, since the VC-dimension of at least
one of H(L(T )) and H(R(T )) is d. Assume to the contrary that it is larger than d, then there
exists a set A = {x1, . . . , xd+1} ⊆ [d] × N(T ) which is shattered by H(T ). Denote for brevity
SL = [d]×N(L(T )), SR = [d]×N(R(T )) and SH = [d]×H(T ). By the construction of H(T ) and
the auxiliary claim, H(T )|SL

= H(L(T )) and H(T )|SR
= H(R(T )) whenever L(T ) and R(T ) are not

leaves respectively. In addition, since |SH | = d, A * SH . Since |A| ≥ 3, there exist three different
elements in x, y, z ∈ A such that at least two of them are in different sets out of SL, SH , SR. We
consider the different cases (where names of elements are w.l.o.g.) and show for each case a labeling
lx, ly, lz for x, y, z that cannot be achieved with a hypothesis in H(T ):

• If x ∈ SH , y ∈ SR then lx = 1, ly = 0 cannot be achieved.

• If x, y ∈ SL, z ∈ SH ∪ SR then lx = 1, ly = 0, lz = 1 cannot be achieved.

• If x ∈ SL, y, z ∈ SR then lx = 1, ly = 0, lz = 1 cannot be achieved.

• If x ∈ SL, y, z ∈ SH then lx = 1, ly = 0, lz = 1 cannot be achieved.

We have reached a contradiction, therefore no such A exists.

Proof: (of Lemma 31) The Natarajan dimension is upper bounded by the size of the domain, which
is d|N(T )|. By the induction hypothesis, H(L(T ))L(T ) and H(R(T ))R(T ) have Natarajan dimension
dL = d|L(T )| and dR = d|R(T )| respectively. Thus [d]×N(L(T )) and [d]×N(R(T )) are N-shattered
by H(L(T ))L(T ) and H(R(T ))R(T ) respectively. Let fL1 , f

L
2 , and fR1 , f

R
2 be the pairs of functions

that witness the N-shattering of H(L(T ))L(T ) and H(R(T ))R(T ) respectively. Let cL be the class of
the left-most child in L(T ), and let cR be the class of the left-most child in R(T ). define g1 and g2
as follows:

g1(x) =







fL1 (x) x ∈ [d]×N(L(T ))

fR1 (x) x ∈ [d]×N(R(T ))

cL x ∈ [d]× {H(T )}

g2(x) =







fL2 (x) x ∈ [d]×N(L(T ))

fR2 (x) x ∈ [d]×N(R(T ))

cR x ∈ [d]× {H(T )}

It is easy to verify that [d]×N(T ) is N-shattered using g1 and g2.

Proof: (of Theorem 27) The proof is by induction on the structure of the tree.
Induction basis: Assume that T is a tree with one internal node and two leaf children. Then

Wd
T is isomorphic up to label names to Wd. Thus the graph dimension of Wd

T is equal to the
VC-dimension of Wd, that is d+ 1 = (d+ 1) · n1(T ).

Inductive step: We consider two cases: Either both R(T ) and L(T ) are non-leaves or ons is a
leaf and one is not.

Case 1: Let T be a tree where both L(T ) and R(T ) are non-leaves. By the induction hypothesis,
the graph dimension ofWd

L(T ) is at least dL = (d+1)·n2(L(T ))+d·n1(L(T )) and the graph dimension

of Wd
R(T ) is at least dR = (d+1) ·n2(R(T ))+d ·n1(R(T )). Thus there exist sets AL = {a1, . . . , adL}

and BR = {b1, . . . , bdR} which are G-shattered by L(T ) and R(T ) respectively, using functions fL
and fR respectively. Let

aL = ( min
i∈[dL]

{ai[1]}+ 1, 0, . . . , 0) ∈ Rd

bR = (− max
i∈[dR]

{bi[1]} − 1, 0, . . . , 0) ∈ Rd

16



Let ÃL = {a1 + aL, . . . , adL + aL} and let B̃R = {b1 + bR, . . . , bdL + bR}. Then ∀x ∈ ÃL, x[1] > 0,

and ∀x ∈ B̃R, x[1] < 0.

We show that the set ÃL ∪ B̃R is G-shattered by Wd
T : Define

f(x) =

{

fR(x) x[1] > 0

fL(x) otherwise.

Let Z ⊆ ÃL ∪ B̃R. We construct a mapping C : N(T ) → H such that

{x ∈ ÃL ∪ B̃R | [T,C](x) = f(x)} = Z.

Let Y ⊆ AL ∩ BR = {ai | ai + aL ∈ Z} ∩ {bi | bi + bR ∈ Z}. Since AL and BR are G-shattered
with fL and fR, there exist mappings CL : N(L(T )) → Wd and CR : N(R(T )) → Wd such that

{x ∈ AL | [L(T ), CL](x) = fL(x)} = Y ∩AL,

{x ∈ BR | [R(T ), CR](x) = fR(x)} = Y ∩BR.

Define the mapping C as a translation of the mappings CL and CR, defined by:

∀n ∈ L(T ), CL[n] = (w, b) ⇒ C[n] = (w, b− 〈w, aL〉),

∀n ∈ R(T ), CR[n] = (w, b) ⇒ C[n] = (w, b− 〈w, bR〉).

Then

{x ∈ ÃL | [L(T ), C](x) = fL(x)} = Z ∩ ÃL,

{x ∈ B̃R | [R(T ), C](x) = fR(x)} = Z ∩ B̃R.

Now, set C[H(T )](x) = sign(〈x,w〉+ b) where w = (1, 0, . . . , 0) and b = 0. Then

∀x ∈ ÃL, [T,C](x) = [L(T ), C](x) = fL(x) = f(x),

∀x ∈ B̃R, [T,C](x) = [R(T ), C](x) = fR(x) = f(x).

Thus ÃL ∪ B̃R is G-shattered by Wd
T . It follows that the graph dimension of Wd

T is at least

|ÃL ∪ B̃R| = dL + dR = (d+ 1) · n2(T ) + d · n1(T ).
Case 2: Assume w.l.o.g. that T is a tree where L(T ) is not a leaf node and R(T ) is a leaf

node with λ[R(T )] = t. By the induction hypothesis, the graph dimension of Wd
L(T ) is at least

dL = (d + 1) · n2(L(T )) + d · n1(L(T )). Thus there exists a set A = {a1, . . . , adL} which is G-
shattered by L(T ) using the function fL.

Denote by ei the i’th unit vector in Rd, and let q > 0 be large enough such that {(0, . . . , 0), qe1, . . . , qed}
is shattered with a margin of 2M , where M = maxx∈A ‖x‖2. Let B = A ∪ {qe1, . . . , qed}. Then we
show B is G-shattered using the following function f :

f(x) =

{

fL ‖x‖ ≤ q

t otherwise.

Let Z ⊆ B. We construct a mapping C : N(T ) → H such that

{x ∈ B | [T,C](x) = f(x)} = Z. (8)

Since A is G-shattered using fL, there exists a mapping CL : N(L(T )) → Wd such that {x ∈ A |
[L(T ), CL](x) = fL(x)} = Z ∩A. Define C such that ∀n ∈ N(L(T )), C[n] = CL[n]. In addition, Let
C[H(T )] ∈ Wd be a hypothesis such that ∀i, ei ∈ Z ⇐⇒ h(ei) = 1, and ∀x, ‖x‖2 ≤M → h(0) = 0.
Then Equation. (8) holds. Thus the graph dimension of Wd

T is at least |B| = dL + d ≥ (d + 1) ·
n2(T ) + d · n1(T ).

Proof: (of Theorem 28) If suffices to consider distributions with deterministic labeling, such that
the correct label is a function f : X → [k]. Let A = {x1, . . . , xk} ∈ X such that for all i ∈ [k],
f(xi) = i. For any labeling λ ∈ Λ, let fλ : A → {0, 1} be the indicator function of the set of

labels assigned to leaves in L(T ), that is fλ(xi) = ~1[∃n ∈ leaf(L(T )), λ[n] = i]. If D is separable

with H(T,λ) then fλ = C[H((T, λ))]|A ∈ H|A. By Sauer’s lemma, |H|A| ≤
(

ek
d

)d
. There are

(

k
n

)

possible indicator functions fλ for a labeling λ, and they all have equal probability for λ ∼ U . Thus

Pλ∼U [fλ ∈ H|A] ≤
(

ek
d

)d
/
(

k
n

)

.
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