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Abstract
This work proposes a simple and computation-
ally efficient estimator for linear regression, and
other smooth and strongly convex loss minimiza-
tion problems. We prove loss approximation
guarantees that hold for general distributions, in-
cluding those with heavy tails. All prior re-
sults only hold for estimators which either as-
sume bounded or subgaussian distributions, re-
quire prior knowledge of distributional proper-
ties, or are not known to be computationally
tractable. In the special case of linear regres-
sion with possibly heavy-tailed responses and
with bounded and well-conditioned covariates in
d-dimensions, we show that a random sample
of size Õ(d log(1/δ)) suffices to obtain a con-
stant factor approximation to the optimal loss
with probability 1−δ, a minimax optimal sample
complexity up to log factors. The core technique
used in the proposed estimator is a new general-
ization of the median-of-means estimator to arbi-
trary metric spaces.

1. Introduction
Many standard methods for estimation and statistical learn-
ing are designed for optimal behavior in expectation, yet
they may be suboptimal for high-probability guarantees.
For instance, the population mean of a random variable
can be estimated by the empirical mean, which is minimax-
optimal with respect to the expected squared error. How-
ever, the deviations of this estimator from the true mean
may be large with constant probability unless higher-order
moments are controlled in some way, such as a subguas-
sianity assumption (Catoni, 2012); similar issues arise in
multivariate and high-dimensional estimation problems,
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such as linear regression and convex loss minimization. In
many practical applications, distributions are heavy-tailed
and thus are not subgaussian—they may not even have fi-
nite high-order moments. Thus, standard techniques such
as empirical averages may be inappropriate, in spite of their
optimality guarantees under restrictive assumptions.

A case in point is the classical problem of linear regres-
sion, where the goal is to estimate a linear function of a
random vector X (the covariate) that predicts the response
(label) Y with low mean squared error. The common ap-
proach for this problem is to use ordinary least squares or
ridge regression, which minimize the loss on a finite la-
beled sample (with regularization in the case of ridge re-
gression). The analyses of Srebro et al. (2010) and Hsu
et al. (2012) for these estimators give sharp rates of conver-
gence of the mean squared error of the resulting predictor
to the optimal attainable loss, but only under assumptions
of boundedness. Audibert & Catoni also analyze these es-
timators using PAC-Bayesian techniques, and manage to
remove the boundedness assumptions, but they only pro-
vide asymptotic guarantees or guarantees which hold only
if n ≥ Ω(1/δ). The failure of these estimators for gen-
eral unbounded distributions may not be surprising given
their inherent non-robustness to heavy-tailed distributions
as discussed later in this work.

To overcome the issues raised above, we propose simple
and computationally efficient estimators for linear regres-
sion and other convex loss minimization problems. The es-
timators have near-optimal approximation guarantees, even
when the data distributions are heavy-tailed. Our esti-
mator for the linear regression of a response Y on a d-
dimensional covariate vector X converges to the optimal
loss at an optimal rate with high probability, with only an
assumption of bounded constant-order moments forX and
Y (see Theorem 1). For comparison, the only previous re-
sult with a comparable guarantee is based on an estima-
tor which requires prior knowledge about the response dis-
tribution and which is not known to be computationally
tractable (Audibert & Catoni, 2011). Furthermore, in the
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case where X is bounded and well-conditioned (but the
distribution of Y may still be heavy-tailed), our estima-
tor achieves, with probability ≥ 1 − δ, a multiplicative
constant approximation of the optimal squared loss, with
a sample size of n ≥ O(d log(d) · log(1/δ)) (see Theo-
rem 2). This improves on the previous work of Mahdavi
& Jin (2013), whose estimator, based on stochastic gradi-
ent descent, requires under the same conditions a sample
size of n ≥ O(d5 log(1/(δLsq

? ))), where Lsq
? is the opti-

mal squared loss. We also prove an approximation guar-
antee in the case where X has a bounded distribution in
an infinite-dimensional Hilbert space, as well as general
results for other loss minimization problems with smooth
and strongly-convex losses.

Our estimation technique is a new generalization of the
median-of-means estimator used by Alon et al. (1999) and
many others (see, for instance, Nemirovsky & Yudin, 1983,
p. 243). The basic idea is to repeat an estimate several times
by splitting the sample into several groups, and then se-
lecting a single estimator out of the resulting list of candi-
dates with an appropriate criterion. If an estimator from
one group is good with better-than-fair chance, then the
selected estimator will be good with probability exponen-
tially close to one. Our generalization provides a new sim-
ple selection criterion which yields the aforementioned im-
proved guarantees. We believe that our new generalization
of this basic technique will be applicable to many other
problems with heavy-tailed distributions. Indeed, the full
version of this paper (Hsu & Sabato, 2013) reports addi-
tional applications to sparse linear regression and low-rank
matrix approximation. In an independent work, Minsker
(2013) considers other variations of the original median-
of-means estimator.

We begin by stating and discussing the main results for lin-
ear regression in Section 2. We then explain the core tech-
nique in Section 3. The application of the technique for
smooth and convex losses is analyzed in Section 4. Sec-
tion 5 provides the derivations of our main results for re-
gression.

2. Main results
In this section we state our main results for linear re-
gression, which are specializations of more general re-
sults given in Section 4. Unlike standard high-probability
bounds for regression, the bounds below make no assump-
tion on the range or the tails of the response distribution
other than a trivial requirement that the optimal squared
loss be finite. We give different bounds depending on con-
ditions on the covariate distributions.

Let [n] := {1, 2, . . . , n} for any natural number n ∈ N.
Let Z be a data space, X a parameter space, D a distri-

bution over Z , and Z a Z-valued random variable with
distribution D. Let ` : Z × X → R+ be a non-negative
loss function, and for w ∈ X, let L(w) := E(`(Z,w))
be the expected loss. Also define the empirical loss with
respect to a finite sample T ⊂ Z (where T is a multiset),
LT (w) := |T |−1

∑
z∈T `(z,w). Let Id be the identity op-

erator on X, and L? := minw L(w). Set w? such that
L? = L(w?).

For regression, we assume the parameter space X is a
Hilbert space with inner product 〈·, ·〉X, and Z := X ×
R. The loss is the squared loss ` = `sq, defined as
`sq((x, y),w) := 1

2 (x>w − y)2. The regularized squared
loss, for λ ≥ 0, is `λ((x, y),w) := 1

2 (〈x,w〉X − y)2 +
1
2λ〈w,w〉X; note that `0 = `sq. We analogously define
Lsq, Lsq

T , Lsq
? , Lλ, etc. as above.

Let X ∈ X be a random vector drawn according to
the marginal of D on X, and let Σ : X → X
be the second-moment operator a 7→ E(X〈X,a〉X).
For a finite-dimensional X, Σ is simply the (uncen-
tered) covariance matrix E[XX>]. For a sample T :=
{X1,X2, . . . ,Xm} of m independent copies of X , de-
note by ΣT : X→ X the empirical second-moment opera-
tor a 7→ m−1

∑m
i=1Xi〈Xi,a〉X.

The proposed algorithm for regression (Algorithm 1) is
as follows. First, draw k independent random sam-
ples i.i.d. from D, and perform linear regression with λ-
regularization on each sample separately, to obtain k linear
regressors. Then, use several independent estimations of
the covariance matrix Σ from i.i.d. samples to select a sin-
gle regressor from the k regressors at hand. The variant in
Step 5 may be used to obtain tighter bounds in some cases
discussed below.

Algorithm 1 Regression for heavy-tails
input λ ≥ 0, sample sizes n, n′, confidence δ ∈ (0, 1).
output Approximate predictor ŵ ∈ X.

1: Set k := dC ln(1/δ)e.
2: Draw k random i.i.d. samples S1, . . . , Sk fromD, each

of size bn/kc.
3: For each i ∈ [k], let wi ∈ argminw∈X L

λ
Si

(w).
4: Draw a random i.i.d sample T of size n′, and split it to
k samples {Tj}j∈[k] of equal size.

5: For each i ∈ [k], let ri be the median of the values in
{〈wi −wj , (ΣTj + λ Id)(wi −wj)〉 | j ∈ [k] \ {i}}.
[Variant: Use ΣT instead of ΣTj ].

6: Set i? := arg mini∈[k] ri.
7: Return ŵ := wi? .

First, consider the finite-dimensional case, where X = Rd,
and assumeΣ is not singular. In this case we obtain a guar-
antee for ordinary least squares with λ = 0. The guarantee
holds whenever the empirical estimate of Σ is close to the
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true Σ in expectation, a mild condition that requires only
bounded low-order moments. For concreteness, we assume
the following condition.1

Condition 1 (Srivastava & Vershynin 2013). There exists
c, η > 0 such that

Pr
[
‖ΠΣ−1/2X‖22 > t

]
≤ ct−1−η, for t > c · rank(Π)

for every orthogonal projection Π in Rd.

Under this condition, we show the following guarantee for
least squares regression.

Theorem 1. Assume Σ is not singular. IfX satisfies Con-
dition 1 with parameters c and η, then there is a con-
stant C = C(c, η) such that Algorithm 1 with λ = 0,
n ≥ Cd log(1/δ), and n′ ≥ C log(1/δ), with probability
at least 1− δ,

Lsq(ŵ) ≤

Lsq
? +O

(
E‖Σ−1/2X(X>w? − Y )‖22 log(1/δ)

n

)
.

Define the following finite fourth-moment conditions:

κ1 :=

√
E‖Σ−1/2X‖42

E‖Σ−1/2X‖22
=

√
E‖Σ−1/2X‖42

d
<∞ and

κ2 :=

√
E(X>w? − Y )4

E(X>w? − Y )2
=

√
E(X>w? − Y )4

Lsq
?

<∞.

Under these conditions, E‖Σ−1/2X(X>w? − Y )‖22 ≤
κ1κ2dL

sq
? (via Cauchy-Schwartz); if κ1 and κ2 are con-

stant, then we obtain the bound

Lsq(ŵ) ≤
(

1 +O

(
d log(1/δ)

n

))
Lsq
?

with probability ≥ 1 − δ. In comparison, the recent work
of Audibert & Catoni (2011) proposes an estimator for
linear regression based on optimization of a robust loss
function (see also Catoni, 2012) which achieves essentially
the same guarantee as Theorem 1 (with only mild differ-
ences in the moment conditions, see the discussion fol-
lowing their Theorem 3.1). However, that estimator de-
pends on prior knowledge about the response distribution,
and removing this dependency using Lepski’s adaptation
method (Lepski, 1991) may result in a suboptimal conver-
gence rate. It is also unclear whether that estimator can be
computed efficiently.

1As shown by Srivastava & Vershynin (2013), Condition 1
holds for various heavy-tailed distributions (e.g., when X has a
product distribution with bounded 4+εmoments for some ε > 0).
Condition 1 may be easily substituted with other moment condi-
tions, yielding similar results, at least up to logarithmic factors.

Theorem 1 can be specialized for other specific cases of
interest. For instance, suppose X is bounded and well-
conditioned in the sense that there exists R < ∞ such that
Pr[X>Σ−1X ≤ R2] = 1, but Y may still be heavy-tailed
(and, here, we do not assume Condition 1). Then, the fol-
lowing result can be derived using Algorithm 1, with the
variant of Step 5 for slightly tighter guarantees.

Theorem 2. AssumeΣ is not singular. Let ŵ be the output
of the variant of Algorithm 1 with λ = 0. With probability
at least 1 − δ, for n ≥ O(R2 log(R) log(1/δ)) and n′ ≥
O(R2 log(R/δ)),

Lsq(ŵ) ≤
(

1 +O

(
R2 log(1/δ)

n

))
Lsq
? .

Note that E(X>Σ−1X) = E tr(X>Σ−1X) = tr(Id) =
d, therefore R = Ω(

√
d). If indeed R = Θ(

√
d), then a

total sample size of O(d log(d) log(1/δ)) suffices to guar-
antee a constant factor approximation to the optimal loss.
This is minimax optimal up to logarithmic factors (see, e.g.,
Nussbaum, 1999). We also remark that the boundedness
assumption can be replaced by a subgaussian assumption
on X , in which case the sample size requirement becomes
O(d log(1/δ)).

In recent work of Mahdavi & Jin (2013), an algorithm
based on stochastic gradient descent obtains multiplica-
tive approximations to L?, for general smooth and strongly
convex losses `, with a sample complexity scaling with
log(1/L̃). Here, L̃ is an upper bound on L?, which must be
known by the algorithm. The specialization of Mahdavi &
Jin’s main result to square loss implies a sample complexity
of Õ(dR8 log(1/(δLsq

? )) if Lsq
? is known. In comparison,

Theorem 2 shows that Õ(R2 log(1/δ)) suffice when using
our estimator.

It is interesting to note that here we achieve a constant
factor approximation to L? with a sample complexity that
does not depend on the value of L?. This contrasts with
other parametric learning settings, such as classification,
where constant approximation requires Ω(1/L?) samples,
and even active learning can only improve the dependence
to Ω(log(1/L?)) (see, e.g., Balcan et al., 2006).

Finally, we also consider the case where X is a general,
infinite-dimensional Hilbert space, λ > 0, the norm of X
is bounded, and Y again may be heavy-tailed.

Theorem 3. Let V > 0 such that Pr[〈X,X〉X ≤
V 2] = 1. Let ŵ be the output of the variant of Algo-
rithm 1 with λ > 0. With probability at least 1 − δ, as
soon as n ≥ O((V 2/λ) log(V/

√
λ) log(1/δ)) and n′ ≥

O((V 2/λ) log(V/(δ
√
λ)),

Lλ(ŵ) ≤
(

1 +O

(
(1 + V 2/λ) log(1/δ)

n

))
Lλ? .
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If the optimal unregularized squared loss Lsq
? is achieved

by w̄ ∈ X with 〈w̄, w̄〉X ≤ B2, the choice
λ = Θ(

√
Lsq
? V 2 log(1/δ)/(B2n)) yields that as

soon as n ≥ Õ(B2V 2 log(1/δ)/Lsq
? ) and n′ ≥

Õ(B2V 2 log(1/δ)/Lsq
? ),

Lsq(ŵ) ≤ Lsq
? (1)

+O

(√
Lsq
? B2V 2 log(1/δ)

n
+

(Lsq
? +B2V 2) log(1/δ)

n

)
.

By this analysis, a constant factor approximation for Lsq
?

is achieved with a sample of size Õ(B2V 2 log(1/δ)/Lsq
? ).

As in the finite-dimensional setting, this rate is known to be
optimal up to logarithmic factors (Nussbaum, 1999).

3. The core technique
In this section we present the core technique from which
Algorithm 1 is derived. We first demonstrate the underly-
ing principle via the median-of-means estimator, and then
explain the generalization to arbitrary metric spaces.

3.1. Warm-up: median-of-means estimator

Algorithm 2 Median-of-means estimator
input Sample S ⊂ R of size n, number of groups k ∈ N

which divides n.
output Population mean estimate µ̂ ∈ R.

1: Randomly partition S into k groups S1, S2, . . . , Sk,
each of size n/k.

2: For each i ∈ [k], let µi ∈ R be the sample mean of Si.
3: Return µ̂ := median{µ1, µ2, . . . , µk}.

We first motivate our procedure for approximate loss min-
imization by considering the special case of estimating a
scalar population mean using a median-of-means estimator,
given in Algorithm 2. This estimator, heavily used in the
streaming algorithm literature (Alon et al., 1999, though
a similar technique also appears in the textbook by Ne-
mirovsky & Yudin, 1983 as noted by Levin, 2005), par-
titions a sample into k equal-size groups, and returns the
median of the sample means of each group. The input pa-
rameter k is a constant determined by the desired confi-
dence level (i.e., k = log(1/δ) for confidence δ ∈ (0, 1)).
The following result is well known.
Proposition 1. Let x be a random variable with mean µ
and variance σ2 <∞, and let S be a set of n independent
copies of x. Assume k divides n. With probability at least
1−e−k/4.5, the estimate µ̂ returned by Algorithm 2 on input
(S, k) satisfies |µ̂− µ| ≤ σ

√
6k/n.

Proof. Pick any i ∈ [k], and observe that Si is an i.i.d. sam-
ple of size n/k. Therefore, by Chebyshev’s inequality,

Pr[|µi − µ| ≤
√

6σ2k/n] ≥ 5/6. For each i ∈ [k], let
bi := 1{|µi − µ| ≤

√
6σ2k/n}. The bi are independent

indicator random variables, each with E(bi) ≥ 5/6. By
Hoeffding’s inequality, Pr[

∑k
i=1 bi > k/2] ≥ 1− e−k/4.5.

In the event {
∑k
i=1 bi > k/2}, at least half of the µi are

within
√

6σ2k/n of µ, so the same holds for the median of
the µi.

Remark 1. It is remarkable that the estimator has
O(σ/

√
n) convergence with exponential probability tails,

even though the random variable x may have heavy-tails
(e.g., no bounded moments beyond the variance). Catoni
(2012) also presents mean estimators with these properties
and also asymptotically optimal constants, although the es-
timators require σ as a parameter.

Remark 2. Catoni (2012) shows that the empirical mean
cannot provide a qualitatively similar guarantee: for any
σ > 0 and δ ∈ (0, 1/(2e)), there is a distribution with
mean zero and variance σ2 such that the empirical average
µ̂emp of n i.i.d. draws satisfies

Pr

[
|µ̂emp| ≥

σ√
2nδ

(
1− 2eδ

n

)n−1
2

]
≥ 2δ. (2)

Therefore the deviation of the empirical mean necessarily
scales with 1/

√
δ rather than

√
log(1/δ) (with probability

Ω(δ)).

3.2. Generalization to arbitrary metric spaces

We now consider a generalization of the median-of-means
estimator for arbitrary metric spaces, with a metric that can
only be crudely estimated. Let X be the parameter (solu-
tion) space, w? ∈ X be a distinguished point in X (the
target solution), and ρ a metric on X (in fact, a pseudomet-
ric suffices). Let Bρ(w0, r) := {w ∈ X : ρ(w0,w) ≤ r}
denote the ball of radius r around w0.

The first abstraction captures the generation of candidate
solutions obtained from independent subsamples. We as-
sume there is an oracle APPROXρ,ε which, upon query-
ing, returns a random w ∈ X satisfying

Pr
[
ρ(w?,w) ≤ ε

]
≥ 2/3. (3)

We assume that the responses of APPROXρ,ε are gener-
ated independently. Note that the 2/3 could be replaced
by another constant larger than half; we have not made any
attempt to optimize constants.

To second abstraction captures the limitations in calculat-
ing the metric. We assume there is an oracle DISTρ which,
if queried with any x,y ∈ X, returns a random number
DISTρ(x,y) satisfying

Pr
[
ρ(x,y)/2 ≤ DISTρ(x,y) ≤ 2ρ(x,y)

]
≥ 8/9. (4)
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Algorithm 3 Robust approximation with random distances
input Number of candidates k, query access to

APPROXρ,ε, query access to DISTρ.
output Approximate solution ŵ ∈ X.

1: For each i ∈ [k], let wi be the response from querying
APPROXρ,ε; set W := {w1,w2, . . . ,wk}.

2: For each i ∈ [k], let ri := median{DISTρ(wi,wj) :
j ∈ [k]}; set i? := arg mini∈[k] ri.

3: Return ŵ := wi? .

We assume that the responses of DISTρ are generated in-
dependently (and independent of APPROXρ,ε). Note that
the responses need not correspond to a metric. More-
over, we will only query DISTρ for the pairwise dis-
tances of k fixed points (the candidate parameters W =
{w1,w2, . . . ,wk}), and it will suffice for the responses
within each set {DISTρ(wi,wj)}j∈[k]\{i} for any fixed i
to be mutually independent.

The proposed procedure, given in Algorithm 3, generates k
candidate solutions by querying APPROXρ,ε k times, and
then selects a single candidate using a randomized gener-
alization of the median. Specifically, for each i ∈ [k], the
radius of smallest ball centered at wi that contains more
than half of {w1,w2, . . . ,wk} is approximated using calls
to DISTρ; the wi with the smallest such approximation is
returned. Again, the number of candidates k determines
the resulting confidence level. The following theorem pro-
vides a guarantee for Algorithm 3. The idea of the proof is
illustrated in Figure 1. A similar technique was proposed
by Nemirovsky & Yudin (1983), however their formulation
relies on knowledge of ε and the metric.

w?

ε

ŵ

ri?

Figure 1. The main argument in the proof of Theorem 4, illus-
trated on the Euclidean plane. With probability at least 1 − δ, at
least 3k/5 of the wi (depicted by full circles) are within ε of w?

(the empty circle). Therefore, with high probability, ŵ is within
ε+ ri? ≤ 9ε of w?.

Theorem 4. With probability at least 1 − (k + 1)e−k/45,
Algorithm 3 returns ŵ ∈ X satisfying ρ(w?, ŵ) ≤ 9ε.

Proof. For each i ∈ [k], let bi := 1{ρ(w?,wi) ≤ ε}.
Note that the bi are independent indicator random vari-
ables, each with E(bi) ≥ 2/3. By Hoeffding’s inequality,
Pr[
∑k
i=1 bi > 3k/5] ≥ 1 − e−k/45. Henceforth condition

on the event
∑k
i=1 bi > 3k/5, i.e., that more than 3/5 of

the wi are contained in Bρ(w?, ε).

Suppose wi ∈ Bρ(w?, ε), and let yi,j :=
1{DISTρ(wi,wj) ≤ 4ε}. Observe that for every
wj ∈ Bρ(w?, ε), ρ(wi,wj) ≤ 2ε by the triangle
inequality, and thus

Pr
[
DISTρ(wi,wj) ≤ 4ε

]
≥ Pr

[
DISTρ(wi,wj) ≤ 2ρ(wi,wj)

]
≥ 8/9

for such wj , i.e., E(yi,j) ≥ 8/9. Therefore
E(
∑k
j=1 yi,j) ≥

∑
j∈[k]:wj∈Bρ(w?,ε)

Eyi,j ≥ 8k/15 >

k/2. By Hoeffding’s inequality, Pr[
∑k
i=1 yi,j ≤ k/2] ≤

e−k/45. Thus, with probability at least 1 − e−k/45, ri =
median{DISTρ(wi,wj) : j ∈ [k]} ≤ 4ε.

Now suppose wi 6∈ Bρ(w?, 9ε). Let zi,j :=
1{DISTρ(wi,wj) > 4ε}. Observe that for every wj ∈
Bρ(w?, ε), ρ(wi,wj) ≥ ρ(w?,wi)− ρ(w?,wj) > 8ε by
the triangle inequality, and thus

Pr
[
DISTρ(wi,wj) > 4ε

]
≥ Pr

[
DISTρ(wi,wj) ≥ (1/2)ρ(wi,wj)

]
≥ 8/9

for such wj , i.e., E(zi,j) ≥ 8/9. Therefore, as be-
fore E(

∑k
j=1 zi,j) ≥ 8k/15 > k/2. By Hoeffding’s

inequality, with probability at least 1 − e−k/45, ri =
median{DISTρ(wi,wj) : j ∈ [k]} > 4ε.

Now take a union bound over the up to k events described
above (at most one for eachwi ∈W ) to conclude that with
probability at least 1−(k+1)e−k/45, (i) |W∩Bρ(w?, ε)| ≥
3k/5 > 0, (ii) ri ≤ 4ε for all wi ∈ W ∩ Bρ(w?, ε),
and (iii) ri > 4ε for all wi ∈ W \ Bρ(w?, 9ε). In this
event the wi ∈ W with the smallest ri must satisfy wi ∈
Bρ(w?, 9ε).

4. Minimizing strongly convex losses
In this section, we apply our core technique to the prob-
lem of approximately minimizing strongly convex losses,
which includes least squares linear regression as a special
case.

We employ the definitions for a general loss ` : Z × X →
R+ given in Section 2. To simplify the discussion through-
out, we assume ` is differentiable, which is anyway our
primary case of interest. We assume that L has a unique
minimizer w? := arg minw∈X L(w).2

Suppose (X, ‖ · ‖) is a Banach space. Denote by ‖ · ‖∗ the
dual norm, so ‖y‖∗ = sup{〈y,x〉 : x ∈ X, ‖x‖ ≤ 1} for

2This holds, for instance, if L is strongly convex.
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y ∈ X∗. Also, denote byB‖·‖(c, r) := {x ∈ X : ‖x−c‖ ≤
r} the ball of radius r ≥ 0 around c ∈ X.

The derivative of a differentiable function f : X → R at
x ∈ X in direction u ∈ X is denoted by 〈∇f(x),u〉. We
say f is α-strongly convex with respect to ‖ · ‖ if

f(x) ≥ f(x′) + 〈∇f(x′),x− x′〉+
α

2
‖x− x′‖2

for all x,x′ ∈ X; it is β-smooth with respect to ‖ · ‖ if for
all x,x′ ∈ X

f(x) ≤ f(x′) + 〈∇f(x′),x− x′〉+
β

2
‖x− x′‖2.

We say ‖ · ‖ is γ-smooth if x 7→ 1
2‖x‖

2 is γ-smooth with
respect to ‖ · ‖.

Fix a norm ‖ · ‖ on X with a dual norm ‖ · ‖∗. The met-
ric ρ used by Algorithm 3 is defined by ρ(w1,w2) =
‖w1 − w2‖. We denote ρ by ‖ · ‖ as well. We imple-
ment APPROX‖·‖,ε based on loss minimization over sub-
samples, as follows: Given a sample S ⊆ Z , randomly
partition S into k equal-size groups S1, S2, . . . , Sk, and let
the response to the i-th query to APPROX‖·‖,ε be the loss
minimizer on Si, i.e., arg minw∈X LSi(w). We call this
implementation subsampled empirical loss minimization.
We further assume that there exists some sample size nk
that allows DIST‖·‖ to be correctly implemented using any
i.i.d. sample of size n′ ≥ nk. Clearly, if S is an i.i.d. sam-
ple from D, and DIST‖·‖ is approximated using a separate
sample, then the queries to APPROX‖·‖,ε are independent
from each other and from DIST‖·‖. Thus, to apply Theo-
rem 4, it suffices to show that Eq. (3) holds.

We assume ‖ · ‖∗ is γ-smooth for some γ > 0. Let nα de-
note the smallest sample size such that the following holds:
With probability ≥ 5/6 over the choice of an i.i.d. sample
T of size |T | ≥ nα from D, for all w ∈ X,

LT (w) ≥ LT (w?)+〈∇LT (w?),w−w?〉+
α

2
‖w−w?‖2.

(5)
In other words, the sample T induces a loss LT which is
α-strongly convex around w?. We assume that nα < ∞
for some α > 0.

The following lemma proves that Eq. (3) holds under these
assumptions with

ε := 2

√
6γkE‖∇`(Z,w?)‖2∗

nα2
. (6)

Lemma 1. Assume k divides n, and that S is an i.i.d. sam-
ple from D of size n ≥ k · nα. Then subsampled empirical
loss minimization using the sample S is a correct imple-
mentation of APPROX‖·‖,ε for up to k queries.

Proof. It is clear that w1,w2, . . . ,wk are independent by
the assumption. Fix some i ∈ [k]. Observe that∇L(w?) =
E(∇`(Z,w?)) = 0, and therefore, since ‖ · ‖ is γ-smooth,
E‖∇LSi(w?)‖2∗ ≤ γ(k/n)E‖∇`(Z,w?)‖2∗ (see Juditsky
& Nemirovski, 2008). By Markov’s inequality,

Pr

[
‖∇LSi(w?)‖2∗ ≤

6γk

n
E(‖∇`(Z,w?)‖2∗)

]
≥ 5

6
.

Moreover, the assumption that n/k ≥ nα implies that with
probability at least 5/6, Eq. (5) holds for T = Si. By a
union bound, both of these events hold simultaneously with
probability at least 2/3. In the intersection of these events,
letting wi := arg minw∈X LSi(w),

(α/2)‖wi −w?‖2

≤ −〈∇LSi(w?),wi −w?〉+ LSi(wi)− LSi(w?)

≤ ‖∇LSi(w?)‖∗‖wi −w?‖,

where the last inequality follows from the definition of the
dual norm, and the optimality of wi on LSi . Rearranging
and combining with the above probability inequality im-
plies Pr[‖wi −w?‖ ≤ ε] ≥ 2/3.

Combining Lemma 1 and Theorem 4 gives the following
theorem.
Theorem 5. Assume k := Cdlog(1/δ)e (for some univer-
sal constant C > 0) divides n, S is an i.i.d. sample from
D of size n ≥ k · nα, and S′ is an i.i.d. sample from
D of size n′ ≥ nk. Further, assume Algorithm 3 uses
the subsampled empirical loss minimization to implement
APPROX‖·‖,ε, where ε is as in Eq. (6), as well as imple-
mentation of DIST‖·‖ using S′. Then with probability at
least 1 − δ, the parameter ŵ returned by Algorithm 3 sat-
isfies, (for some universal constant C)

‖ŵ −w?‖ ≤ C
√
γdlog(1/δ)eE‖∇`(Z,w?)‖2∗

nα2
.

We give an easy corollary of Theorem 5 for the case where
` is smooth.
Corollary 1. Assume the same conditions as Theorem 5,
and also that: (i)w 7→ `(z,w) is β-smooth with respect to
‖ · ‖ for all z ∈ Z , and (ii) w 7→ L(w) is β̄-smooth with
respect to ‖ · ‖. Then with probability at least 1 − δ, (for
some universal constant C > 0)

L(ŵ) ≤
(

1 +
Cββ̄γdlog(1/δ)e

nα2

)
L(w?).

Proof. Due to the smoothness assumption on `,
‖∇`(z,w?)‖2∗ ≤ 4β`(z,w?) for all z ∈ Z (Srebro et al.,
2010, Lemma 2.1). Thus, E[‖∇`(Z,w?)‖2∗] ≤ 4βL(w?).
The result follows using Theorem 5 and since
L(ŵ) − L(w?) ≤ β̄

2 ‖ŵ − w?‖2, due to the strong
smoothness of L and the optimality of L(w?).
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Corollary 1 implies that for smooth losses, Algorithm 3
provides a constant factor approximation to the optimal
loss with a sample size max{nα, γββ̄/α2} · O(log(1/δ))
(with probability at least 1 − δ). In subsequent sections,
we exemplify cases where the two arguments of the max
are roughly of the same order, and thus imply a sam-
ple size requirement of O(γβ̄β/α2 log(1/δ)). Note that
there is no dependence on the optimal loss L(w?) in the
sample size, and the algorithm has no parameters besides
k = O(log(1/δ)).

Remark 3. The problem of estimating a scalar population
mean is a special case of the loss minimization problem,
where Z = X = R, and the loss function of interest is the
square loss `(z, w) = (z − w)2. The minimum population
loss in this setting is the variance σ2 of Z, i.e., L(w?) =
σ2. Moreover, in this setting, we have α = β = β̄ = 2,
so the estimate ŵ returned by Algorithm 3 satisfies, with
probability at least 1− δ,

L(ŵ) =

(
1 +O

( log(1/δ)

n

))
L(w?).

In Remark 2 a result from Catoni (2012) is quoted which
implies that if n = o(1/δ), then the empirical mean
ŵemp := arg minw∈R LS(w) = |S|−1

∑
z∈S z (i.e., em-

pirical risk (loss) minimization for this problem) incurs loss

L(ŵemp) = σ2 + (ŵemp − w?)2 = (1 + ω(1))L(w?)

with probability at least 2δ. Therefore empirical risk mini-
mization cannot provide a qualitatively similar guarantee as
Corollary 1. It is easy to check that minimizing a regular-
ized objective also does not work, since any non-trivial reg-
ularized objective necessarily provides an estimator with a
positive error for some distribution with zero variance.

5. Least squares linear regression
We now show how to apply our analysis for squared loss
minimization using an appropriate norm and an upper
bound on nα. Assume X is a Hilbert space with inner prod-
uct 〈·, ·〉X, and that LT is twice-differentiable (which is the
case for square loss). By Taylor’s theorem, for anyw ∈ X,
there exist t ∈ [0, 1] and w̃ = tw? + (1− t)w such that

LT (w) =LT (w?) + 〈∇LT (w?),w −w?〉X

+
1

2
〈w −w?,∇2LT (w̃)(w −w?)〉X,

for any sample T ⊆ Z . Therefore, to establish a bound on
nα, it suffices to find a size of T such that for an i.i.d. sam-
ple T from D,

Pr

[
inf

δ∈X\{0},w̃∈Rd
〈δ,∇2LT (w̃)δ〉X

‖δ‖2
≥ α

]
≥ 5/6. (7)

For ease of exposition, we start with analysis for the case
where Y is allowed to be heavy-tailed, butX is assumed to
be light-tailed. The analysis is provided in Section 5.1 and
Section 5.2. The analysis for the case whereX can also be
heavy tailed is provided in Section 5.3.

Recall that for a sample T := {X1,X2, . . . ,Xm} of m
independent copies of a random vector X ∈ X, ΣT is the
empirical second-moment operator based on T . The fol-
lowing result bounds the spectral norm deviation of ΣT
from the population second moment operator Σ under a
boundedness assumption onX .

Lemma 2 (Specialization of Lemma 1 in Oliveira 2010).
Fix any λ ≥ 0, and assume 〈X, (Σ + λ Id)−1X〉X ≤ r2

λ

almost surely. For any δ ∈ (0, 1), if m ≥ 80r2
λ ln(4m2/δ),

then with probability at least 1− δ, for all a ∈ X,

1

2
〈a, (Σ + λ Id)a〉X ≤ 〈a, (ΣT + λ Id)a〉X

≤ 2〈a, (Σ + λ Id)a〉X.

We use the boundedness assumption on X for sake of
simplicity; it is possible to remove the boundedness as-
sumption, and the logarithmic dependence on the cardinal-
ity of T , under different conditions on X (e.g., assuming
Σ−1/2X has subgaussian projections, as in Litvak et al.
2005).

5.1. Finite-dimensional ordinary least squares

Consider first ordinary least squares in the finite-
dimensional case. In this case X = Rd and Algorithm 1
can be used with λ = 0. It is easy to see that Algorithm 1
is a specialization of Algorithm 3 with subsampled empiri-
cal loss minimization when ` = `sq. We now prove Theo-
rem 2. Recall that in this theorem we assume the variant of
Algorithm 1, in which step 5 uses the covariance matrix of
the entire T sample, ΣT , instead of separate matrices ΣTi,j .
Thus the norm we use in Algorithm 3 is ‖ · ‖T , defined as
‖a‖T =

√
a>ΣTa, with the oracle DIST‖·‖ = DIST‖·‖T

that always provides the correct distance.

Proof of Theorem 2. The proof is derived from Corollary 1
as follows. First, it is easy to check that the dual of ‖ · ‖T
is 1-smooth. Let the norm ‖ · ‖Σ be defined by ‖a‖Σ =√
a>Σa. By Lemma 2, if n′ ≥ O(R2 log(R/δ)), with

probability at least 1 − δ, (1/2)‖a‖2Σ ≤ ‖a‖2T ≤ 2‖a‖2Σ
for all a ∈ Rd. Denote this event E and assume for the
rest of the proof that E occurs. Since `sq is R2-smooth
with respect to ‖ · ‖Σ , and Lsq is 1-smooth with respect to
‖ · ‖Σ , the same holds, up to constant factors, for ‖ · ‖T .
Moreover, for any sample S,

δ>∇2LS(w̃)δ

‖δ‖2T
=
δ>ΣSδ

δ>ΣT δ
≥ δ

>ΣSδ

2δ>Σδ
.
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By Lemma 2 with λ = 0, if |S| ≥ 80R2 log(24|S|2)
then with probability at least 5/6, ∀δ ∈ Rd \ {0},
δ>ΣSδ/δ

>Σδ ≥ 1/2. Therefore Eq. (7) holds for ‖ · ‖T
with α = 1/4 and n1/4 = O(R2 logR). We can thus ap-
ply Corollary 1 with α = 1/4, β = 4R2, β̄ = 4, γ = 1,
and n1/4 = O(R2 logR), so with probability at least 1−δ,
the parameter ŵ returned by Algorithm 1 (with the variant)
satisfies

L(ŵ) ≤
(

1 +O

(
R2 log(1/δ)

n

))
L(w?), (8)

as soon as n ≥ O(R2 log(R) log(1/δ)). A union bound
over the probability that E also occurs finishes the proof.

5.2. Ridge regression

In a general, possibly infinite-dimensional, Hilbert space
X, the variant of Algorithm 1 can be used with λ > 0. In
this case, the algorithm is a specialization of Algorithm 3
with subsampled empirical loss minimization when ` = `λ,
with the norm defined by ‖a‖T,λ =

√
a>(ΣT + λ Id)a.

Proof of Theorem 3. First, it is easy to check that the dual
of ‖ · ‖T,λ is 1-smooth. As in the proof of Theorem 2,
by Lemma 2 if n′ ≥ O((V 2/λ) log(V/(δ

√
λ))) then with

probability 1−δ the norm ‖a‖T,λ is equivalent to the norm
‖ · ‖Σ,λ =

√
a>(Σ + λ Id)a up to constant factors. More-

over, since we assume that Pr[〈X,X〉X ≤ V 2] = 1, we
have 〈x, (Σ + λI)−1x〉X ≤ 〈x,x〉X/λ for all x ∈ X, so
Pr[〈X, (Σ + λI)−1X〉X ≤ V 2/λ] = 1. Therefore `λ is
(1 + V 2/λ)-smooth with respect to ‖ · ‖Σ,λ. In addition,
Lλ is 1-smooth with respect to ‖ · ‖Σ,λ. Using Lemma 2
with rλ = V/λ, we have, similarly to the proof of Theo-
rem 2, n1/4 = O((V 2/λ) log(V/

√
λ)). Setting α = 1/4,

β = 4(1 + V 2/λ), β̄ = 4, γ = 1, and n1/4 as above, to
match the actual norm ‖ · ‖T,λ, we have with probability
1− δ,

Lλ(ŵ) ≤
(

1 +O

(
(1 + V 2/λ) log(1/δ)

n

))
Lλ(w?),

as soon as n ≥ O((V 2/λ) log(V/
√
λ) log(1/δ)).

We are generally interested in comparing to the minimum
square loss Lsq

? := infw∈X L
sq(w), rather than the min-

imum regularized square loss infw∈X L
λ(w). Assuming

the minimizer is achieved by some w̄ ∈ X with 〈w̄, w̄〉X ≤
B2, the choice λ = Θ(

√
Lsq
? V 2 log(1/δ)/(B2n)) yields

Lsq(ŵ) + λ〈ŵ, ŵ〉X ≤ Lsq
?

+O

(√
Lsq
? B2V 2 log(1/δ)

n
+

(Lsq
? +B2V 2) log(1/δ)

n

)
as soon as n ≥ Õ(B2V 2 log(1/δ)/Lsq

? ).

5.3. Heavy-tailed covariates

In this section we prove Theorem 1. When the regression
covariates are not bounded or subgaussian as in the two pre-
vious sections, the empirical second-moment matrix may
deviate significantly from its population counterpart with
non-negligible probability. In this case we use Algorithm 1
with the original step 5 so that for any i ∈ [k], the responses
{DIST‖·‖(wi,wj)}j∈[k]\{i} are mutually independent.

For simplicity, we work in finite-dimensional Euclidean
space X := Rd and consider λ = 0. The analysis shows
that Algorithm 1 is an instance of subsampled empirical
loss minimization for `sq with the norm ‖a‖Σ =

√
a>Σa.

Recall that we assume Condition 1 given in Section 2. The
following lemma shows that under this condition, O(d)
samples suffice so that the expected spectral norm distance
between the empirical second-moment matrix and Σ is
bounded.

Lemma 3 (Corollary 1.2 from Srivastava & Vershynin
2013, essentially). Let X satisfy Condition 1, and let
X1,X2, . . . ,Xn be independent copies of X . Let Σ̂ :=
1
n

∑n
i=1XiX

>
i . For fixed η, c > 0, there is a constant

θ, such that for any ε ∈ (0, 1), if n ≥ θε−2−2/ηd, then
E‖Σ−1/2Σ̂Σ−1/2 − Id ‖2 ≤ ε.

Lemma 3 implies that for the norm ‖ · ‖Σ , n1/2 = O(c′ηd)

where c′η = θ ·2O(1+1/η). Therefore, for k = O(log(1/δ)),
subsampled empirical loss minimization requires n ≥ k ·
n1/2 = O(c′ηd log(1/δ)) samples to correctly implement
APPROX‖·‖Σ ,ε for ε as in Eq. (6).

Step 5 in Algorithm 1 implements DIST‖·‖Σ such that for
every i, {DIST‖·‖Σ (wi,wj)}j∈[k]\{i} are estimated using
independent samples Tj . We now need to show that this
implementation satisfies Eq. (4). By Lemma 3, for every
i, j ∈ [k] an i.i.d. sample Tj of size O(c′η) suffices so that
with probability at least 8/9,

(1/2)‖Σ1/2(wi −wj)‖2 ≤ ‖Σ1/2
Tj

(wi −wj)‖2
≤ 2‖Σ1/2(wi −wj)‖2.

Thus for k = O(log(1/δ), the total size of the sample T
in Algorithm 1 needs to be n′ = O(c′η log(1/δ)). Setting
α = 1/2, γ = 1 and nα = O(c′ηd), Theorem 1 is now
derived from Theorem 5, by applying the identity

‖∇`sq((X, Y ),w?)‖Σ,∗ = 2‖Σ−1/2X(X>w? − Y )‖2.
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