Preprocessing Expression-Based Constraint
Satisfaction Problems for Stochastic Local
Search

Sivan Sabato and Yehuda Naveh

IBM Haifa Research Lab, Haifa University Campus, Haifa 31905, Israel
{sivans,naveh}@il.ibm.com

Abstract. This work presents methods for processing a constraint sat-
isfaction problem (CSP) formulated by an expression-based language,
before the CSP is presented to a stochastic local search solver. The ar-
chitecture we use to implement the methods allows the extension of the
expression language by user-defined operators, while still benefiting from
the processing methods. Results from various domains, including indus-
trial processor verification problems, show the strength of the methods.
As one of our test cases, we introduce the concept of random-expression
CSPs as a new form of random CSPs. We believe this form emulates
many real-world CSPs more closely than other forms of random CSPs.
We also observe a satisfiability phase transition in this type of problem
ensemble.

1 Introduction

The most important aspect of constraint programming (CP) over other variable-
assignment paradigms (e.g., Satisfiability or integer linear programming) is its
ease of modeling. CP allows users to describe the problem at hand in a way that
is close to the problem’s domain, as opposed to a formal language derived from
the solution scheme in other methods. One generic way to allow this natural
modeling is to define an expression-based language with simple operators that
have a wide range of semantics. Operators may be arithmetic (e.g., +,-), logi-
cal (e.g., and, or), set operators (e.g., member-of), or problem-domain specific.
They may be binary (e.g., equal-to, less—than) or global (e.g., all-different,
equal-sum). One example of a generic expression language is OPL [1], supported
by ILOG.

Some classes of constraint satisfaction problems (CSPs) are recognized as not
easily solved by systematic methods, and stochastic local search (SLS) methods
need to be called upon [2]. In this paper we show that the ease with which
SLS methods can solve a CSP model written in an expression language highly
depends on the way the model is processed and analyzed before it is presented
to the SLS solver. We present generic processing algorithms that transform the
input CSP model into an SLS model that is easier to solve in many cases. As
in [3], the processing algorithms use interfaces (or abstract methods) to support

the addition of any user-defined operator. However, while previous works focus
on abstracting methods related to the search phase [4,3], we are interested in
processing the CSP model itself, before entering the search phase.

One of the main tasks in developing an SLS solver involves enhancing its abil-
ity to escape local minima in the topography defined by the cost function of all
complete assignments. Therefore, SLS solvers (e.g., Walksat [5] or COMET [3]),
can incorporate many types of meta-heuristics, such as simulated annealing [6],
min-conflicts [7], Tabu Search [8], or variable-neighborhood search [9], designed
to escape local minima. Still, for all these methods, it is highly beneficial to have
the CSP mapped into a topography with fewer local minima and plateaus.

The abstract interfaces and concrete methods we present aim to achieve this
goal in a generic way. More specifically, real world CSPs are sometimes composed
of differently structured constraints, written independently from each other. The
resulting problem of ‘bad models’ is known [10], and processing algorithms aimed
at improving the models exist for non-SLS search schemes (e.g., in Satisfiability
[10] and arc-consistency methods [11]). Here we extend these methods to SLS.

This paper is outlined as follows. Section 2 defines an expression language
we use to model the input CSP. Section 3 describes the architecture of the SLS
solver and its use of operators in the expression language. Section 4, which forms
the main part of the paper, refines this architecture to support the processing
methods and presents the processing algorithms. Experimental results are shown
in Section 5, where the concept of random expression CSP is also presented.

2 Expression-Based CSPs

The formal grammar of the example language we use as input throughout the pa-

per is listed in Figure 1. This language captures many of the basic constructs ex-
pected from a general-purpose expression-based CSP language. While additional
generic or domain-specific operators may be added, this language is powerful
enough to easily model many of the problems in CSPLib (http://www.csplib.org/),
as well as a large number of real world problems.

In Figure 1, words in upper case stand for non-terminals and underlined
words are reserved. The entire CSP is generated from the non-terminal P. A
CSP description is comprised of a list of declarations of integer variables and
their domains, and a list of constraints created from logical, arithmetic, and other
operators. Domains of variables are defined as ranges of integers. An example for
the use of the input language is given in Figure 2. We will sometimes formulate
CSP descriptions more loosely for ease of presentation, when it is obvious how
one would translate them to a valid description using our grammar.

3 System Architecture

3.1 Internal CSP Representation

An expression-based CSP is represented by a rooted tree as exemplified in Figure
3. The leaves of the tree are mapped to variables or constants and the nodes to

P — VARDECL constraints CONSDECL
VARDECL — VD ; VARDECL | ¢
CONSDECL — CONS; CONSDECL | €
VD — VAR RANGES

RANGES — RANGES, [NUM, NUM]

Bread [0,2], [4,5];

RANGES — [NUM, NUM] gﬁlelzig[?gz}
CONS — (CONS) OP (CONS) B 02

CONS — not (CONS)

CONS — ((EXP) COMPARE (EXP))
CONS — all-diff(VARLIST)
CONS — some-equal(VARLIST)
EXP — ((EXP) EXP_OP (EXP))
EXP — NUM

EXP — VAR

VARLIST — VAR, VARLIST | ¢

OP — and | or | implies | iff
COMPARE — =|#|>|<|< | >
EXPOP — + | —| x|/ Fig. 2. Input language example
NUM — [0-9]+

VAR — [A-Za-z_|[A-Za-z0-9_]+

Apple [0,3], [6,6];

Payment [0,1000];

constraints

(Bread = Cheese + Butter);
(Apple < 2) implies (Bread > 1);
(Cheese + Butter < 3);

((Apple = 1) or (Bread = 0));
(all-diff(Milk, Cheese, Butter));
(Payment = Milkx3 + Cheesex4);

Fig. 1. Input language grammar

operators. Nodes that are mapped to arithmetic operators represent expressions,
while nodes that are mapped to comparison operators or to logical operators
represent sub-constraints. The root node is mapped to an and operator and its
children are the individual constraints in the input CSP.

Fig. 3. A CSP tree and the flow of information when calculating an assignment’s cost,
where ’c’ stands for constraint cost (or penalty) and v’ stands for expression value.
Natural cost functions were chosen for the various operators.

CSP:

B=4or A#T7
C+A>B
C=A

Assignment:
A=T
B=3
C=2

A sub-constraint node is defined by its operator and by its children. We refer
to sub-constraints with comparison operators as atomic, since their children
are expressions and not other sub-constraints. We refer to sub-constraints with
logical operators as compound. Global constraints such as all-different can
be implemented either as atomic operators or as compound expressions.

Nodes are implemented as objects that are sub-classed from an abstract sub-
constraint object or from an abstract expression object. Sub-constraint objects
implement (among other) the usual interface:

CalculateCost(Assignment)

which returns the cost that the sub-constraint assigns to Assignment. Expression
objects implement the interface:

CalculateValue(Assignment)

This interface returns the value of the expression in Assignment. The solver only
has access to the interfaces of the root of the constraint tree. The computational
cost of calculating the cost of the CSP tree for any single assignment is linear in
the number of nodes in the tree.!

The cost function implemented for any sub-constraint is zero if and only
if the sub-constraint is satisfied; otherwise it is positive. In addition, this cost
function should exhibit the best possible fitness-distance correlation (FDC) [12]:
The further the state is from a solution, the higher the cost of the state should be.
There are no conceptual problems with the definition of a cost function for atomic
sub-constraints, whether simple expressions or global constraints [13]. However,
implementing the cost of a compound sub-constraint is not as straightforward,
since it should depend only on the cost of its child sub-constraints. This is
because the same sub-constraint (and hence the same implementation of its cost
function) may span very different sub-trees of sub-constraints and variables.
Some operators may benefit from the fact that there exists a cost function whose
topography is related to the topographies of the child constraints. This is the
case for and and or operators with the natural costs of sum and min of children,
respectively. However, for other operators, it may be impossible to implement
a cost function that reflects the topographies of the child constraints. Notable
examples are not, implies and iff. We address this problem in detail in Section
4.1.

3.2 The Search Scheme

A typical scheme of a greedy SLS algorithm is outlined in Algorithm 1. The
algorithm starts with an initial assignment. In each iteration, it generates a set
of steps from the current assignment to a set of new assignments, and calcu-
lates the cost of each of the resulting assignments. If at least one step results
in an assignment with a lower cost, this assignment becomes the current one.
Otherwise, the topography of the problem is modified by giving a larger weight
to constraints that are not satisfied by the current assignment. The algorithm
stops when a zero-cost assignment is reached or at timeout. One of the main dif-
ferentiators between solvers that use this scheme is the neighborhood function
that generates S.

! Powerful heuristics that exploit the fact that each step in the search space usually
changes the cost of only a few of the CSP tree nodes are also applied, but are similar
to those reported elsewhere [3].

Algorithm 1 General Scheme of Search Algorithm
Initialize A to an initial complete assignment
repeat
repeat
if cost(A) =0 then
Return
end if
Initialize S to a set of possible steps
Calculate cost(A + s) for all s € S
s1 «— argmin g cost(A + s)
if cost(A + s1) < cost(A) then
A «— A —+ S1
end if
until cost(A + s1) > cost(A)
Set constraint weights such that unsatisfied constraints get a larger weight
until Timeout is reached

3.3 The Search Space

In our implementation, we follow Algorithm 1 and define the neighborhood of
an assignment to be the assignments in which up to M bits are changed in the
2’s complement bit-representation of the integer variables of the CSP, where M
is given, and calculated by dynamic heuristics [14]. In this representation, an
additional unary constraint is added for each variable whose domain is not a
power of two, to enforce the domain requirement. This simple approach is favor-
able for some constraint types (e.g., less-than and greater-than). It is also
particularly useful in hardware verification where many constraints are defined
on bit-ranges [15]. However, most methods presented below can be generalized
to other representation schemes and more sophisticated neighborhood functions.

4 Model Processing for SLS

In this section we present several methods for processing the input CSP model.
The processing methods rely on implementing specific interfaces for sub-constraints
and expressions. Unlike the interfaces CalculateCost () and CalculateValue ()
that define the semantics of the objects, the interfaces presented below are used
only by the processing algorithms and do not change the semantics of the CSP.
Hence, it is not necessary to implement all interfaces for all operators in the
language.

We demonstrate our methods on the grammar of Figure 1, but the meth-
ods can be applied to grammars that use other operators by implementing the
required abstract interfaces for each operator. The modeler of a CSP may thus
experiment with different types of newly-defined operators, without changing
the processing or search algorithms. This extends the regular generic interface
of the search phase to the pre-search phase. To demonstrate the operation of the
processing methods, we present the following simple CSP example.

V1,V2,V3,V4,V5,V6 [0,5000];

constraints

1. (V3 # V5+3) or (V5 > 10)) implies (V2 # V3));
2. ((V4 > 11) and (V2 =V3));

3. (V1 < 5)or ((V1 <12) and (V1 > V3-4)));

This problem exemplifies a mixture of logical and arithmetic operators and a
diverse structure of constraints often found in real world problems. We define
the variable domains in this example to be relatively large, since the problem
is small for didactic reasons and we want to keep the search space large. In
the 2’s complement representation, each variable is represented by 13 bits and
constraints of the form V,, < 5000 are added.

4.1 Transformation to Negation Normal Form

In Section 3.1, we mentioned sum and min as reasonable cost functions for the
Boolean operators and and or. We now show that other Boolean operators may
present an inherent problem to the tree structure of the cost function.

Consider the unary operator not. Let us look at a sub-constraint node
C = not(C"). We need to implement a cost function f,; such that on any com-
plete assignment A, cost(C, A) = fnot(cost(C’, A)) . For f,ot to be a legal cost
function, it must output zero if C” is not satisfied by A (i.e., if cost(C’, A) > 0)
and non-zero if C is satisfied (i.e., if cost(C’; A) = 0). The only functions that
obey these limitations are of the following form, for some k& > 0:

fmt(c):{k; for ¢=0

0 otherwise

This implies that f,.: has zero gradient when it is unsatisfied, leaving no possibil-
ity of finding a satisfying assignment using gradient descent ('greedy’) methods.
In other words, the not operator ‘hides’ information on the location of minima
in its child sub-constraint cost function. A similar problem is encountered with
the logical operators implies and iff. All these operators are, however, a basic
part of any natural expression language. Our first processing method therefore
transforms the model to negation normal form (NNF), which substitutes the
ill-behaved operators with the better-behaved and and or.

The NNF transformation is applied in the regular manner to compound sub-
constraints realizing the above operators. Atomic sub-constraint operators need
to implement the following interface in order to take advantage of this method:

GetNegatedOperator().

For example, the implementation of the = operator would return the opera-
tor #, the operator > would return the operator <, and the global operator
all-different would return its negation some-equal. The transformation is
applied to the input CSP recursively from top to bottom. Its time-complexity
is linear in the size of the CSP tree and the resulting tree is about the same
size as the original one. In our example CSP, the NNF transformation changes
constraint No. 1 to: (((V3=V5+3) and (V5 < 10)) or (V2 #£ V3));

4.2 Reducing the Search Space Size

Two processing methods presented here perform low-cost inferences that enable
the pruning of large parts of the search space for which search is useless. These
inferences are special and simple cases of domain reductions that could have also
been achieved using propagators in an arc-consistency algorithm. While there
are many ways to combine arc-consistency with local search (see [16] for an
early example), the overall search may be prohibitive in problems that are not
suitable for arc-consistency methods. In contrast, here we limit our processing
methods to ones whose processing cost is linear in the size of the CSP tree, and
we apply the methods only on the initial CSP model before starting SLS. Hence,
our search is dominated by SLS and the inference cost is usually negligible.

The two methods presented in this section rely on the dimensions defining
the search space. In a bit-representation (sub-section 3.3), each dimension is
defined by a single bit. In other representations, each dimension may correspond
to a single CSP variable or to any combination of variables’ values.

If the cost function does not depend on the dimension’s value in any as-
signment, the solver does not need to change this value during search. We term
such a dimension unimportant. For example, in the bit-representation, the least-
significant-bit of a variable X in the constraint “X > 5” is unimportant. Alter-
natively, if we can infer in advance that the value in a given dimension is the
same for all solutions, the solver can set the value to this fixed value and remove
the dimension from the search space. We refer to such a dimension as predeter-
mined. An example of a predetermined dimension in the bit-representation is
the least-significant-bit of a variable V constrained by “V mod 2 = 0”.

Finding Unimportant Dimensions We find unimportant dimensions by hav-
ing sub-constraint- and expression-objects implement the interface:

GetDependentDimensions()

which returns the list of dimensions that may affect the object’s cost or value.
Dimensions that do not appear in the list returned by the root node are unimpor-
tant. Note that finding all unimportant dimensions in a general CSP is NP-hard:
If the CSP includes one constraint that is a 3-CNF formula, deciding whether
there are any important dimensions is tantamount to finding whether the for-
mula is satisfiable.

In our CSP example, the variable V6 is not used by any constraint; Hence,
all its bits are found to be unimportant. The same applies to the two least-
significant-bits of V4. Additional unimportant bits of this CSP will be found
after other processing methods are applied.

Finding Predetermined Dimensions We find predetermined dimensions
(PDs) using a recursive and iterative algorithm: Each sub-constraint node im-
plements the interface

InferPredeterminedDimensions(CurrentPredeterminedDimensions)

which returns a set of PDs along with their predetermined value. For atomic
sub-constraints, the interface uses the currently known PDs and tries to find
new PDs according to its own semantics. For example, in a bit-representation,
in the atomic constraint “X < 57, the bits higher than the 3 least-significant-bits
in X are zero.

For a compound sub-constraint, the interface calls InferPredetermined-
Dimensions (CurrentPredeterminedDimensions) for each of its child sub-cons-
traints, and decides on the actual PDs according to its own semantics. For ex-
ample, an and sub-constraint returns the union of the results of the child con-
straints, while an or sub-constraint returns the intersection of the results of the
child constraints. Since new PDs are decided according to current ones, the pro-
cess is iterative and stops when no more PDs are found. In our CSP example,
we infer from the third constraint that the nine most-significant-bits of V1 are
predetermined to be 0.

4.3 Dealiasing

The Dealiasing processing method finds and enforces aliases. An alias is a pair
(V, f(V)) of a variable and a function of other CSP variables, such that V = f(V)
in any solution to the CSP. Dealiasing limits the search space to assignments
that satisfy the aliases.
VI,V2 [0,M]; dAn ?li}z:s fc’an be \i;1fer]1;]e)(3 If)rom isub{;;onstraint
: node of the form “V = ” where V is a vari-
i?réi;;aft&) or (V1 = 0); able and EXP an expression,? but only if the
2. (V2 = M) or (V2 = 0); sub-constraint’s path to the root node is com-
3. (V1 = V2) posed only of and (or equivalent) operators. Af-
ter collecting all the aliases that can be identified
in the CSP, all the references to the aliased variables are replaced by references
to the corresponding functions. Before describing the Dealiasing algorithm, let
us illustrate the criticality of aliasing for SLS®. Consider the simple CSP in the
above box, for some positive number M. A natural cost derived from the and
operator at the root of the CSP, and or operators of constraints 1 and 2 is:

Cost = min (||[M — V1||,||V1 = 0]|) + min (||M — V2||,]|V2=0]]) + |[V1 - V2||

where ||A— B|| is the distance between A and B according to some defined metric.
For any choice of a reasonable linear metric (e.g., absolute-value of difference,
or Hamming distance) this cost induces huge plateaus in the search space. For
example, all states for which V1 is closer to M than to 0, while V2 is closer to
0 are plateau states. This renders the problem, as formulated, hard for SLS.

After Dealiasing, the CSP contains two copies of the second constraint and
the cost becomes Cost = 2min (||[M — V2||,||[V2 — 0||). This cost has two global
minima, no local minima, and no plateaus.

The Dealiasing algorithm uses two sub-constraint node interfaces:

GetAliases()
ApplyAliases()

2 An alias can also be inferred from a sub-constraint if it can be transformed to a
functional form. For example V1 4+ V4 = 7 can be transformed to V1 = 7—V4.

3 In contrast, Dealiasing hardly helps reach a solution in MAC-based algorithms be-
cause an aliased constraint of the form V = f(V) will just propagate from V to
V.

GetAliases() returns a list of all the aliases found in the sub-constraint: For
example, an and sub-constraint returns the union of the lists returned by its
children, while an or sub-constraint returns no aliases. ApplyAliases() replaces
all occurrences of the aliased variable with a reference to the function to which
the variable is aliased (possibly turning the CSP tree into a DAG).

The Dealiasing processing method is implemented by calling GetAliases()
for the root node of the CSP tree to get a set of aliases A, finding a consistent
subset of aliases A1 C A (in order to avoid cyclic definitions between the aliases),
and calling ApplyAliases() for the root node with A1%. In our CSP example
we now infer that V2 is aliased to V3 from the second constraint. We replace all
occurrences of V2 by V3 accordingly. The reformulated problem is now:

1. ((V3 = V543) and (V5 < 10)) or (V3 # V3);
2. (V4 > 11) and (V3 =V3));
3. (V1 < 5) or (V1 < 12) and (V1 > V3-4))):

4.4 Pruning - Removing Tautologies and Contradictions

In the prune processing method, we recursively remove sub-constraints that are
identified as tautological or contradictory. Tautological sub-constraints are ones
that would be satisfied in any assignment consistent with known predetermined
dimensions. Contradictory sub-constraints would be unsatisfied by any such as-
signment. We call both contradictory and tautological sub-constraints redundant
sub-constraints. Removing redundant sub-constraints serves three purposes:

1. The cost function of the pruned CSP exhibits better FDC. For example,
suppose that in a sub-constraint of the form “Cl or C2”, C1 is contradic-
tory. Then the natural cost function min(Cost(C'1), Cost(C2)) may exhibit a
local minimum where Cost(C1) is minimized. Replacing “C1 or C2” by the
equivalent “C2” immediately prevents this problem.

2. Creating more opportunities for inferences by other processing methods. In
Section 4.5, we exemplify this effect on our CSP example.

3. Reducing the computational toll of calculating the cost function.

Though, in general, it has been shown that removing redundant constraints
does not necessarily improve gradient solutions [18], in our experiments this has
proved to be a vital step in complex expression-based problems. We attribute
this to the combination of the three items listed above. These items may be less
relevant to simple and well-structured CSPs. (Item 2 is only relevant to solvers
applying our other processing methods.)

The following interface is implemented for any sub-constraint node type:

Prune()

4 Finding a maximal set Al is equivalent to the Directed Feedback Edge Set problem,
which is NP-complete [17]. We therefore implement a heuristic algorithm that does
not guarantee global maximality.

10

To run the pruning method, Prune() is called for the CSP tree root node.
Prune () for an atomic sub-constraint may identify two kinds of redundant sub-
constraints. First, it may identify patterns syntactically recognized as redundant,
for instance “A > A”] “A = A”. (These patterns may exist in real-world CSPs
that were generated automatically.) Second, it may identify constraints that
are redundant due to constants and predetermined dimensions. The Prune ()
method for a compound sub-constraint may call Prune() for each of its child
constraints and operate according to its own semantics. For example, the sub-
constraint and would remove a tautological child node and would report itself
as contradictory if one of its child nodes is contradictory. In our CSP example,
the pruning method finds a contradiction and a tautology, resulting in:

1. (V3 = V513) and (V5 < 10);
2. (V4 > 11);
3. (V1 <5)or (VI <12) and (V1 > V3—4)));

4.5 Combining Processing Methods

We apply an iterative algorithm to make full use of the interaction between the
processing methods, stopping when no more changes occur.
Transform to NNF
repeat
Find Predetermined Dimensions
Apply Dealiasing
Prune
until No changes have occurred in the last iteration
Find Unimportant Dimensions
This algorithm runs for two iterations on our CSP example. The first iteration
results in the form given in Section 4.4. The second iteration then finds more
predetermined dimensions in V5 and results in the alias (V3,V5+3). This allows
another round of successful pruning. The final CSP is:
1. (V5 < 10)
2. (V4 > 11);
3. (V1 <5)or ((V1 < 12) and (V1 > (V5+3)—4)));
The 9 most-significant-bits of V1 and of V5 are predetermined to be 0.

This formulation is invariant to all processing methods. The unimportant di-
mensions are now inferred to be all bits of variables V2, V3 and V6, and the two
unimportant bits of V4 found earlier.

5 Experimental Results

Experimental results were obtained using a tool called Stocs, which implements
Simulated Variable Range Hopping (SVRH) [14]. Run-times reported include
both the preprocessing and search phases, though the latter dominates in all
cases not solved by preprocessing alone. The experiments were run on a single-
core Intel (TM) 3GHz PC running Red-Hat Linux.

11

5.1 Artificial Example

Results for the CSP example are presented in the following table for several
configurations of the processing methods. In the first column, results of using all
processing methods are shown. In each of the other columns, one of the methods
was disabled. Each scenario was run 10 times, with different starting states and
random seeds. The timeout was 10 seconds.

All No Predetermined [No NNF No
Methods|Dimensions transformation|Dealiasing
Solved 10 10 0 9
Avg. Time (sec)|0.10 0.26 N/A 2.08
Min. Time (sec) |0.08 0.10 N/A 0.33
Max. Time (sec) [0.12 0.43 N/A 5.97

5.2 ‘Still Life’ CSP
The table on the right lists

results for the Still Life problem Board|Live |Solved with|Avg. |Solved w/o|Avg.
(prob0032 in CSPLib). The prob- Size |Cells|Processing |Time|Processing |Time
lem was modeled in a straight- 6X6 |14 |100% 21 |70% 188
forward manner using the input 6X6 |15 |95% 33 |35% 245
language of Figure 1. To change 6X6 |16 |100% 54 |40% 241
it from an optimization problem 6X6 |17 |100% 42 110% 294
to a CSP, a constraint requiring a [6X6 |18 100% 57 125% 290
minimum number of live cells was |[7X7 |24 |95% 60 |15% 355
added. Each Life CSP was run 20 |7X7 |25 |75% 112 5% 356
times with and without our pro- [7X7 [26 |70% 126 |0 N/A
cessing methods, starting from |7X7 (27 [656% 139 |0 N/A
different initial states and ran- |7X7 (28 [65% 219 |0 N/A
dom seeds. Times are in seconds. [8X8 (30 [95% 78 |0 N/A
The timeout was 500 seconds. [8X8 (32 |75% 167 |0 N/A
The main processing method to [9X9 (35 [90% 152 1o N/A
affect the Still Life problem is the [9X9 (37 [70% 161 |0 N/A
NNF transformation described in [9X9 (39 [80% 138 |0 N/A

Section 4.1.

5.3 Processor Verification

Most CSPLib problems are not natural candidates for testing our processing
methods, as they have a simple recurring structure that can be easily modeled
without requiring automatic processing to improve modeling. Industrial prob-
lems, on the other hand, can be very large and irregular, thus making it hard to
manually model them in a way that would not hinder the results of an SLS solver.
Moreover, the model is sometimes generated in a distributed fashion, making it
even harder to take into account global considerations such as removing redun-
dancies when modeling the CSP. Hardware verification [15] is one example of a

12

domain where such problems are abundant. OQur processing methods were ap-
plied to an industrial processor verification problem, generated automatically
from user-interfaces for modeling the micro-architecture of the processor [19].
Typical problems consisted of 1,500 variables and 15,000 constraints. Details of
the results of this work are beyond the scope of the paper, however, we can
report that our processing methods reduced the number of variable-bits in the
search space from about 100,000 to about 33,000, and enabled the SLS solver to
reach significantly deeper local minima at a much shorter run-time.

5.4 Random Expression-Based CSPs

In order to test our algorithm in a less controlled environment, we generated a
new type of random CSPs. Given a formal grammar of an input language such
as the one shown in Figure 1, we consider ensembles of problems created by
probabilistic formal grammar rules that generate a subset of the input language.
A random expression-based problem is defined by < N, D, M,G,p >, where N
is the number of variables, D is the domains, M is the number of constraints, G
is the formal grammar, and p is a probability-vector for the probabilistic rules.
Like many real-world problems, random problems generated using this scheme
exhibit little regularity despite the small number of parameters that control their
creation, with constraints of varying tree-depth and complexity. ®

Table 1. Probabilistic Grammar for Random CSP Generation

CONS — (0.9) PC | (0.1) (not PC)

EXP — (0.1) (EXP ARITH EXP) | (0.72) VAR | (0.08) NUM
PC — (0.3) (CONS OP CONS) | (0.7) (EXP COMP EXP)
OP — (0.25) and | (0.25) or | (0.25) implies | (0.25) iff

ARITH — (0.33) + | (0.66) *

COMP — (0.35) > | (0.35) < | (0.15) = | (0.15) #

VAR — Uniform probability over variables

NUM — Uniform probability over domain range

We generated 300 random CSPs according to the probabilistic grammar of
Table 1. Each CSP had 50 variables with domains [0,1000], and 20 constraints
generated by the non-terminal CONS. Relatively large variable domains were
chosen because such domains are characteristic of many industrial problems, such
as verification [15] and workforce management [20]. Additionally, the problem
is much harder to solve with larger domains. Making it harder by increasing
the number of variables and constraints would make it cumbersome to analyze.
The structure of the random expressions created by this particular grammar is
reminiscent in many ways of the processor verification problems discussed above.

The solver was run 20 times on each CSP in 4 configurations. A total of 156
CSPs were solved at least once. For these, we compared solve-times between a

® A repository of CSP instances generated according to this scheme
and wused in this and the next sub-section can be found in
http://www.haifa.il.ibm.com/projects/verification/octopus/random.

13

configuration that involves no processing methods, a configuration that includes
all methods, and configurations that disable one method. We consider only sta-
tistically significant differences in solve-times®. Figure 4 shows the improvements
in solve-times achieved for each CSP in the different configurations, compared
to solving the CSP with no preprocessing. The following table summarizes the
results, again comparing solve-times when using some preprocessing methods to
using no preprocessing.

Applying All |[No Predetermined [No NNF No Dealiasing
Methods Dimensions transformation
Improvement|79% (123) [69% (107) 39% (61) [40% (63)
Deterioration [17% (26) 18% (28) 6% (9) 10% (16)
No Difference [4% (7) 13% (21) 55% (86) 50% (77)

Fig. 4. Effect of the methods on ran-
dom expression CSPs. The X axis cor-
responds to 156 CSPs, sorted by as-
cending ratio of improvement by our
methods. The Y axis is loga of the ra-
tio of time improvement by each con-
figuration. Points above the zero line
are ones in which improvement was

achieved. Legend: circle = no prede-
termined dimensions, plus = no NNF-
transformation, star = no Dealiasing,

x = all methods applied

5.5 Phase Transition in Random Expression-Based Problems

It is well documented that random tabular CSP and random SAT problems
exhibit satisfiability phase transitions [21, 22]. There exists a critical curve that
describes the percentage of satisfiable instances of the random ensemble as a
function of some parameter, e.g., the ratio between the number of constraints
and the number of variables. Given a structure of the random problem, in the
thermodynamic limit (i.e., with a large number of variables), the critical curve
is universal — it does not depend on specifics such as the number of variables
in the problem. Furthermore, instances with near-critical parameter values are
found to be the hardest for systematic search.

We report a preliminary investigation of this phenomena on the random
expression-based CSPs defined in the previous section. We used the grammar
of Figure 1 with a probability-vector p to generate ensembles of 50 random
problems for given numbers of variables Ny and constraints N¢. Figure 5 shows
the percentage of problems solved by Stocs within a timeout of up to one minute.”

5 A paired t-test with significance level of 0.05 was used.
" The timeout was set to a value much larger than the longest time for which a solution
was ever found at a given combination of Ny and Nc.

14

A clear transition from solvable to unsolvable is observed as a universal function
of N¢/Ny. We also find that the exact location of the transition depends on
the probability-vector p. As with systematic search, the hardest instances are
around the critical area. Although the solver is not complete, it easily identifies
unsatisfiable instances for CSPs far above the critical area during the application
of its model-processing methods.

6 Summary

We presented a set of methods for pro-

cessing a CSP model that is expressed

using an expression language, in order ‘ ‘ ‘ —rI
to make this model more suitable for :
solving with an SLS solver. We used
an architecture that allows definition
of operators as part of an input ex-
pression language for SLS solvers. By
implementing the abstract interfaces
for a new operator, the CSP defined
by those operators automatically ben-
efits from the model-processing meth- . % ; T 2 > s
ods we introduced. This extends the e

clear separation between the model
and the search algorithm to the pre-
search phase.

One part of the work that we only briefly investigated covers the random
expressions introduced in sub-sections 5.4. We conjecture that this form of ran-
dom CSPs resembles real world CSPs much better than random-table CSPs or
random SAT instances. More specifically, by tuning the rules and parameters of
the formal grammar, different ensembles may be generated, each possibly resem-
bling a different application domain. Investigation of such ensembles may guide
the design of algorithms and heuristics suitable for the particular domain.

Percentage of Solved Instances

Fig.5. Phase transition in expression
based CSPs.

7 Acknowledgments

We are grateful to Eyal Bin for presenting us with the processor verification
problem and for defining much of the syntax of the expression language we used.

References

1. van Hentenryck, P.: The OPL optimization programming language. MIT Press,
Cambridge, MA, USA (1999)

2. Hoos, H.H., Steutzle, T.: Stochastic Local Search: Foundations and Applications.
Morgan Kaufmann, San Francisco (2004)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

15

van Hentenryck, P., Michel, L.: Control abstractions for local search. In: CP 2003.
(2003)

Nareyek, A.: Using global constraints for local search. In: Constraint Programming
and Large Scale Discrete Optimization, DIMACS Vol. 57. (2001) 9-28

Selman, B., Kautz, H., Cohen, B.: Local search strategies for satisfiability testing.
In: DIMACS Series in Discrete Mathematics and Theoretical Computer Science,
Vol. 26. (1996)

Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing.
Science 220 (1983) 671-680

Minton, S., Johnston, M., Phillips, A., Laird, P.: Solving large-scale constraint
satisfaction and scheduling problems using a heuristic repair method. In: AAAI-
90. (1990) 1724

Glover, F., Laguna, M.: Tabu Search. Kluwer (1997)

Hansen, P., Mladenovic, N.: Introduction to variable neighbourhood search. In:
Metaheuristics: Advances and Trends in Local Search Procedures for Optimization.
(1999) 433-458

Bacchus, F.: Enhancing Davis Putnam with extended binary clause reasoning. In:
AAAT-02. (2002)

Bacchus, F., Walsh, T.: Propagating logical combinations of constraints. In: IJCAI-
05. (2005) 35-40

Boese, K.D., Kahng, A.B., Muddu, S.: A new adaptive multi-start technique for
combinatorial global optimizations. Operations Res. Lett. 16(3) (1994) 101-113
Bohlin, M.: Improving cost calculations for global constraints in local search. In:
CP 2002. (2002) 772

Naveh, Y.: Stochastic solver for constraint satisfaction problems with learning of
high-level characteristics of the problem topography. In: Local Search Techniques
in Constraint Satisfaction (LSCS-04). (2004)

Naveh, Y., Rimon, M., Jaeger, 1., Katz, Y., Vinov, M., Marcus, E., Shurek, G.:
Constraint-based random stimuli generation for hardware verification. AI Maga-
zine (2007)

Shaw, P.: Using constraint programming and local search methods to solve vehicle
routing problems. Lecture Notes in Computer Science 1520 (1998) 417

Garey, M., Johnson, D.: Computers and Intractability: a Guide to Theory of NP-
completeness. W.H.Freeman (1979)

Hentenryck, P.V., Michel, L.: Constraint-Based Local Search. The MIT Press
(2005)

Adir, A., Bin, E., Peled, O., Ziv, A.: Piparazzi: A test program generator for micro-
architecture flow verification. In: Eighth IEEE International High-Level Design
Validation and Test Workshop, HLDVT-03. (2003) 23-28

Naveh, Y., Richter, Y., Altshuler, Y., Gresh, D.L., Connors, D.P.: Workforce
optimization: Identification and assignment of professional workers using constraint
programming. IBM Journal or Research and Development (2007)

Prosser, P.: An empirical study of phase transition in binary constraint satisfaction
problems. Artificial Intelligence 81 (1996) 81-109

Monasson, R., Zecchina, R., Kirkpatrick, S., Selman, B., Ttroyansky, L.: Deter-
mining computational complexity from characteristic 'phase transition’. Nature
400 (1999) 133-137

