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Abstract

We propose a learning setting in which unlabeled data is free, and the cost of a
label depends on its value, which is not known in advance. We study binary clas-
sification in an extreme case, where the algorithm only pays for negative labels.
Our motivation are applications such as fraud detection, in which investigating
an honest transaction should be avoided if possible. We term the setting audit-
ing, and consider the auditing complexity of an algorithm: the number of negative
labels the algorithm requires in order to learn a hypothesis with low relative er-
ror. We design auditing algorithms for simple hypothesis classes (thresholds and
rectangles), and show that with these algorithms, the auditing complexity can be
significantly lower than the active label complexity. We also show a general com-
petitive approach for learning with outcome-dependent costs.

1 Introduction

Active learning algorithms seek to mitigate the cost of learning by using unlabeled data and sequen-
tially selecting examples to query for their label to minimize total number of queries. In some cases,
however, the actual cost of each query depends on the true label of the example and is thus not known
before the label is requested. For instance, in detecting fraudulent credit transactions, a query with
a positive answer is not wasteful, whereas a negative answer is the result of a wasteful investigation
of an honest transaction, and perhaps a loss of good-will. More generally, in a multiclass setting,
different queries may entail different costs, depending on the outcome of the query. In this work we
focus on the binary case, and on the extreme version of the problem, as described in the example of
credit fraud, in which the algorithm only pays for queries which return a negative label. We term
this setting auditing, and the cost incurred by the algorithm its auditing complexity.

There are several natural ways to measure performance for auditing. For example, we may wish
the algorithm to maximize the number of positive labels it finds for a fixed “budget” of negative
labels, or to minimize the number of negative labels while finding a certain number or fraction of
positive labels. In this work we focus on the classical learning problem, in which one attempts to
learn a classifier from a fixed hypothesis class, with an error close to the best possible. Similar to
active learning, we assume we are given a large set of unlabeled examples, and aim to learn with
minimal labeling cost. But unlike active learning, we only incur a cost when requesting the label of
an example that turns out to be negative.

The close relationship between auditing and active learning raises natural questions. Can the au-
diting complexity be significantly better than the label complexity in active learning? If so, should
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algorithms be optimized for auditing, or do optimal active learning algorithms also have low audit-
ing complexity? To answer these questions, and demonstrate the differences between active learning
and auditing, we study the simple hypothesis classes of thresholds and of axis-aligned rectangles in
Rd, in both the realizable and the agnostic settings. We then also consider a general competitive
analysis for arbitrary hypothesis classes.

Other work. Existing work on active learning with costs (Margineantu, 2007; Kapoor et al., 2007;
Settles et al., 2008; Golovin and Krause, 2011) typically assumes that the cost of labeling each
point is known a priori, so the algorithm can use the costs directly to select a query. Our model is
significantly different, as the costs depend on the outcome of the query itself. Kapoor et al. (2007)
do mention the possibility of class-dependent costs, but this possibility is not studied in detail. An
unrelated game-theoretic learning model addressing “auditing” was proposed by Blocki et al. (2011).

Notation and Setup

For an integer m, let [m] = {1, 2, . . . ,m}. The function I[A] is the indicator function of a set A.
For a function f and a sub-domain X , f |X is the restriction of f to X . For vectors a and b in Rd,
the inequality a ≤ b implies ai ≤ bi for all i ∈ [d].

We assume a data domain X and a distribution D over labeled data points in X × {−1,+1}. A
learning algorithm may sample i.i.d. pairs (X,Y ) ∼ D. It then has access to the value of X , but the
label Y remains hidden until queried. The algorithm returns a labeling function ĥ : X → {−1,+1}.
The error of a function h : X → {−1,+1} on D is err(D,h) = E(X,Y )∼D[h(X) 6= Y ]. The error
of h on a multiset S ⊆ X × {−1,+1} is given by err(S, h) = 1

|S|
∑

(x,y)∈S I[h(x) 6= y]. The
passive sample complexity of an algorithm is the number of pairs it draws from D. The active label
complexity of an algorithm is the total number of label queries the algorithm makes. Its auditing
complexity is the number of queries the algorithm makes on points with negative labels.

We consider guarantees for learning algorithms relative to a hypothesis class H ⊆ {−1,+1}X . We
denote the error of the best hypothesis in H on D by err(D,H) = minh∈H err(D,h). Similarly,
err(S,H) = minh∈H err(S, h). We usually denote the best error for D by η = err(D,H).

To describe our algorithms it will be convenient to define the following sample sizes, using universal
constantsC, c > 0. Let δ ∈ (0, 1) be a confidence parameter, and let ε ∈ (0, 1) be an error parameter.
Let mag(ε, δ, d) = C(d+ ln(c/δ))/ε2. If a sample S is drawn from D with |S| = mag(ε, δ, d) then
with probability 1− δ, ∀h ∈ H, err(D,h) ≤ err(S, h) + ε and err(S,H) ≤ err(D,H) + ε (Bartlett
and Mendelson, 2002). Let mν(ε, δ, d) = C(d ln(c/νε) + ln(c/δ))/ν2ε. Results of Vapnik and
Chervonenkis (1971) show that if H has VC dimension d and S is drawn from D with |S| = mν ,
then for all h ∈ H,

err(S, h) ≤ max {err(D,h)(1 + ν), err(D,h) + νε} and (1)
err(D,h) ≤ max {err(S, h)(1 + ν), err(S, h) + νε} .

2 Active Learning vs. Auditing: Summary of Results

The main point of this paper is that the auditing complexity can be quite different from the active
label complexity, and that algorithms tuned to minimizing the audit label complexity give improve-
ments over standard active learning algorithms. Before presenting these differences, we note that in
some regimes, neither active learning nor auditing can improve significantly over the passive sample
complexity. In particular, a simple adaptation of a result of Beygelzimer et al. (2009), establishes
the following lower bound.

Lemma 2.1. Let H be a hypothesis class with VC dimension d > 1. If an algorithm always finds a
hypothesis ĥ with err(D, ĥ) ≤ err(D,H)+ε for ε > 0, then for any η ∈ (0, 1) there is a distribution
D with η = err(D,H) such that the auditing complexity of this algorithm for D is Ω(dη2/ε2).

That is, when η is fixed while ε → 0, the auditing complexity scales as Ω(d/ε2), similar to the
passive sample complexity. Therefore the two situations which are interesting are the realizable
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case, corresponding to η = 0, and the agnostic case, when we want to guarantee an excess error ε
such that η/ε is bounded. We provide results for both of these regimes.

We will first consider the realizable case, when η = 0. Here it is sufficient to consider the case
where a fixed pool S of m points is given and the algorithm must return a hypothesis ĥ such that
err(S, ĥ) = 0 with probability 1. A pool labeling algorithm can be used to learn a hypothesis
which is good for a distribution by drawing and labeling a large enough pool. We define auditing
complexity for an unlabeled pool as the minimal number of negative labels needed to perfectly
classify it. It is easy to see that there are pools with an auditing complexity at least the VC dimension
of the hypothesis class.

For the agnostic case, when η > 0, we denote α = ε/η and say that an algorithm (α, δ)-learns a
class of distributions D with respect to H if for all D ∈ D, with probability 1 − δ, ĥ returned by
the algorithm satisfies err(D, ĥ) ≤ (1 + α)η. By Lemma 2.1 an auditing complexity of Ω(d/α2)
is unavoidable, but we can hope to improve over the passive sample complexity lower bound of
Ω(d/ηα2) (Devroye and Lugosi, 1995) by avoiding the dependence on η.

Our main results are summarized in Table 1, which shows the auditing and active learning complex-
ities in the two regimes, for thresholds on [0, 1] and axis-aligned rectangles in Rd, where we assume
that the hypotheses label the points in the rectangle as negative and points outside as positive.

Active Auditing

Realizable Thresholds Θ(lnm) 1
Rectangles m 2d

Agnostic Thresholds Ω
(

ln
(

1
η

)
+ 1

α2

)
O
(

1
α2

)
Rectangles Ω

(
d
(

1
η + 1

α2

))
O
(
d2 ln2

(
1
η

)
· 1
α2 ln

(
1
α

))
Table 1: Auditing complexity upper bounds vs. active label complexity lower bounds for realizable
(pool size m) and agnostic (err(D,H) = η) cases. Agnostic bounds are for (α, δ)-learning with a
fixed δ, where α = ε/η.

In the realizable case, for thresholds, the optimal active learning algorithm performs binary search,
resulting in Ω(lnm) labels in the worst case. This is a significant improvement over the passive label
complexity of m. However, a simple auditing procedure that scans from right to left queries only
a single negative point, achieving an auditing complexity of 1. For rectangles, we present a simple
coordinate-wise scanning procedure with auditing complexity of at most 2d, demonstrating a huge
gap versus active learning, where the labels of all m points might be required. Not all classes enjoy
reduced auditing complexity: we also show that for rectangles with positive points on the inside,
there exists pools of size m with an auditing complexity of m.

In the agnostic case we wish to (α, δ)-learn distributions with a true error of η = err(D,H), for
constant α, δ. For active learning, it has been shown that in some cases, the Ω(d/η) passive sample
complexity can be replaced by an exponentially smaller O(d ln(1/η)) active label complexity (Han-
neke, 2011), albeit sometimes with a larger polynomial dependence on d. In other cases, an Ω(1/η)
dependence exists also for active learning. Our main question is whether the dependence on η in the
active label complexity can be further reduced for auditing.

For thresholds, active learning requires Ω(ln(1/η)) labels (Kulkarni et al., 1993). Using auditing,
we show that the dependence on η can be completely removed, for any true error level η > 0, if
we know η in advance. We also show that if η is not known at least approximately, the logarithmic
dependence on 1/η is unavoidable also for auditing. For rectangles, we show that the active label
complexity is at least Ω(d/η). In contrast, we propose an algorithm with an auditing complexity
of O(d2 ln2(1/η)), reducing the linear dependence on 1/η to a logarithmic dependence. We do not
know whether a linear dependence on d is possible with a logarithmic dependence on 1/η.

Omitted proofs of results below are provided in the extended version of this paper (Sabato et al.,
2013).
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3 Auditing for Thresholds on the Line

The first question to ask is whether the audit label complexity can ever be significantly smaller than
the active or passive label complexities, and whether a different algorithm is required to achieve this
improvement. The following simple case answers both questions in the affirmative. Consider the
hypothesis class of thresholds on the line, defined over the domain X = [0, 1]. A hypothesis with
threshold a is ha(x) = I[x − a ≥ 0]. The hypothesis class is Ha = {ha | a ∈ [0, 1]}. Consider
the pool setting for the realizable case. The optimal active label complexity of Θ(log2m) can be
achieved by a binary search on the pool. The auditing complexity of this algorithm can also be as
large as Θ(log2(m)). However, auditing allows us to beat this barrier. This case exemplifies an in-
teresting contrast between auditing and active learning. Due to information-theoretic considerations,
any algorithm which learns an unlabeled pool S has an active label complexity of at least log2 |H|S |
(Kulkarni et al., 1993), where H|S is the set of restrictions of functions in H to the domain S. For
Ha, log2 |Ha|S | = Ω(log2m). However, the same considerations are invalid for auditing.

We showed that for the realizable case, the auditing label complexity for Ha is a constant. We now
provide a more complex algorithm that guarantees this for (α, δ)-learning in the agnostic case. The
intuition behind our approach is that to get the optimal threshold in a pool with at most k errors, we
can query from highest to lowest until observing k + 1 negative points and then find the minimal
error threshold on the labeled points.
Lemma 3.1. Let S be a pool of size m in [0, 1], and assume that err(S,Ha) ≤ k/m. Then the
procedure above finds ĥ such that err(S, ĥ) = err(S,Ha) with an auditing complexity of k + 1.

Proof. Denote the last queried point by x0, and let ha∗ = argminh∈Ha err(S,Ha). Since
err(S, ha∗) ≤ k/m, a∗ > x0. Denote by S′ ⊆ S the set of points queried by the procedure.
For any a > x0, err(S′, ha) = err(S, ha) + |{(x, y) ∈ S | x < x0, y = 1}|/m. Therefore,
minimizing the error on S′ results in a hypothesis that minimizes the error on S.

To learn from a distribution, one can draw a random sample and use it as the pool in the procedure
above. However, the sample size required for passive (α, δ)-learning of thresholds is Ω(ln(1/η)/η).
Thus, the number of errors in the pool would be k = η·Ω(ln(1/η)/η) = Ω(ln(1/η)), which depends
on η. To avoid this dependence, the auditing algorithm we propose uses Alg. 1 below to select a
subset of the random sample, which still represents the distribution well, but its size is only Ω(1/η).
Lemma 3.2. Let δ, ηmax ∈ (0, 1). Let S be a pool such that err(S,Ha) ≤ ηmax. Let Sq be the
output of Alg. 1 with inputs S, ηmax, δ, and let ĥ = argminh∈Ha err(Sq,Ha). Then with probability
1− δ,

err(Sq, ĥ) ≤ 6ηmax and err(S, ĥ) ≤ 17ηmax.

The algorithm for auditing thresholds on the line in the agnostic case is listed in Alg. 2. This
algorithm first achieves (C, δ) learning of Ha for a fixed C (in step 7, based on Lemma 3.2 and
Lemma 3.1, and then improves its accuracy to achieve (α, δ)-learning for α > 0, by additional
passive sampling in a restricted region. The following theorem provides the guarantees for Alg. 2.

Algorithm 1: Representative Subset Selection
1: Input: pool S = (x1, . . . , xm) (with hidden labels), xi ∈ [0, 1], ηmax ∈ (0, 1], δ ∈ (0, 1).
2: T ← max{b1/3ηmaxc, 1}.
3: Let U = {x1, . . . , x1︸ ︷︷ ︸

T copies

, . . . , xm, . . . , xm︸ ︷︷ ︸
T copies

} be the multiset with T copies of each point in S.

4: Sort and rename the points in U such that x′i ≤ x′i+1 for all i ∈ [Tm].
5: Let Sq be an empty multiset.
6: for t = 1 to T do
7: S(t)← {x′(t−1)m+1, . . . , x

′
tm}.

8: Draw 14 ln(8/δ) random points from S(t) independently uniformly at random and add them
to Sq (with duplications).

9: end for
10: Return Sq (with the corresponding hidden labels).
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Algorithm 2: Auditing for Thresholds with a constant α
1: Input: ηmax, δ, α ∈ (0, 1), access to distribution D such that err(D,Ha) ≤ ηmax.
2: ν ← α/5.
3: Draw a random labeled pool (with hidden labels) S0 of size mν(η, δ/2, 1) from D.
4: Draw a random sample S of size mag((1 + ν)ηmax, δ/2, 1) uniformly from S0.
5: Get a subset Sq using Alg. 1 with inputs S, 2(1 + ν)ηmax, δ/2.
6: Query points in Sq from highest to lowest. Stop after d12|Sq|(1 + ν)ηmaxe+ 1 negatives.
7: Find â such that hâ minimizes the error on the labeled part of Sq .
8: Let S1 be the set of the 36(1 + ν)ηmax|S0| closest points to â in S from each side of â.
9: Draw S2 of size mag(ν/72, δ/2, 1) from S1 (see definition on page 2).

10: Query all points in S2, and return ĥ that minimizes the error on S2.

Theorem 3.3. Let ηmax, δ, α ∈ (0, 1). Let D be a distribution with error err(D,Ha) ≤ ηmax.
Alg. 2 with input ηmax, δ, α has an auditing complexity of O(ln(1/δ)/α2), and returns ĥ such that
with probability 1− δ, err(D, ĥ) ≤ (1 + α)ηmax.

It immediately follows that if η = err(D,H) is known, (α, δ)-learning is achievable with an auditing
complexity that does not depend on η. This is formulated in the following corollary.
Corollary 3.4 ((α, δ)-learning for Ha). Let η, α, δ ∈ (0, 1]. For any distribution D with error
err(D,Ha) = η, Alg. 2 with inputs ηmax = η, α, δ (α, δ)-learns D with respect to Ha with an
auditing complexity of O(ln(1/δ)/α2).

A similar result holds if the error is known up to a multiplicative constant. But what if no bound
on η is known? The following lower bound shows that in this case, the best active complexity for
threshold this similar to the best active label complexity.
Theorem 3.5 (Lower bound on auditingHa without ηmax). Consider any constant α ≥ 0. For any
δ ∈ (0, 1), if an auditing algorithm (α, δ)-learns any distribution D such that err(D,Ha) ≥ ηmin,
then the algorithm’s auditing complexity is Ω(ln( 1−δ

δ ) ln(1/ηmin)).

In the next section show that there are classes with a significant gap between active and auditing
complexities even without an upper bound on the error.

4 Axis Aligned Rectangles

A natural extension of thresholds to higher dimension is the class of axis-aligned rectangles, in which
the labels are determined by a d-dimensional hyperrectangle. This hypothesis class, first introduced
in Blumer et al. (1989), has been studied extensively in different regimes (Kearns, 1998; Long and
Tan, 1998), including active learning (Hanneke, 2007b). An axis-aligned-rectangle hypothesis is a
disjunction of 2d thresholds. For simplicity of presentation, we consider here the slightly simpler
class of disjunctions of d thresholds over the positive orthant Rd+. It is easy to reduce learning of an
axis-aligned rectangle in Rd to learning of a disjunction of thresholds in R2d by mapping each point
x ∈ Rd to a point x̃ ∈ R2d such that for i ∈ [d], x̃[i] = max(x[i], 0) and x̃[i+d] = max(0,−x[i])).
Thus learning the class of disjunctions is equivalent, up to a factor of two in the dimensionality, to
learning rectangles1. Because auditing costs are asymmetric, we consider two possibilities for label
assignment. For a vector a = (a[1], . . . , a[d]) ∈ Rd+, define the hypotheses ha and h−a by

ha(x) = 2I[∃i ∈ [d], x[i] ≥ a[i]]− 1, and h−a (x) = −ha(x).

Define H2 = {ha | a ∈ Rd+} and H−2 = {h−a | a ∈ Rd+}. In H2 the positive points are outside
the rectangle and in H−2 the negatives are outside. Both classes have VC dimension d. All of our
results for these classes can be easily extended to the corresponding classes of general axis-aligned
rectangles on Rd, with at most a factor of two penalty on the auditing complexity.

1This reduction suffices if the origin is known to be in the rectangle. Our algorithms and results can all be
extended to the case where rectangles are not required to include the origin. To keep the algorithm and analysis
as simple as possible, we state the result for this special case.
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4.1 The Realizable Case

We first consider the pool setting for the realizable case, and show a sharp contrast between the
auditing complexity and the active label complexity for H2 and H−2 . Assume a pool of size m.
While the active learning complexity forH2 andH−2 can be as large asm, the auditing complexities
for the two classes are quite different. ForH−2 , the auditing complexity can be as large as m, but for
H2 it is at most d. We start by showing the upper bound for auditing ofH2.
Theorem 4.1 (Pool auditing upper bound for H2). The auditing complexity of any unlabeled pool
Su of size m with respect toH2 is at most d.

Proof. The method is a generalization of the approach to auditing for thresholds. Let h∗ ∈ H2 such
that err(S, h∗) = 0. For each i ∈ [d], order the points x in S by the values of their i-th coordinates
x[i]. Query the points sequentially from largest value to the smallest (breaking ties arbitrarily) and
stop when the first negative label is returned, for some point xi. Set a[i] ← xi[i], and note that h∗

labels all points in {x | x[i] > a[i]} positive. Return the hypothesis ĥ = ha. This procedure clearly
queries at most d negative points and agrees with the labeling of h∗.

It is easy to see that a similar approach yields an auditing complexity of 2d for full axis-aligned
rectangles. We now provide a lower bound for the auditing complexity of H−2 that immediately
implies the same lower bound for active label complexity ofH−2 andH2.
Theorem 4.2 (Pool auditing lower bound for H−2 ). For any m and any d ≥ 2, there is a pool
Su ⊆ Rd+ of size m such that its auditing complexity with respect toH−2 is m.

Proof. The construction is a simple adaptation of a construction due to Dasgupta (2005), originally
showing an active learning lower bound for the class of hyperplanes. Let the pool be composed ofm
distinct points on the intersection of the unit circle and the positive orthant: Su = {(cos θj , sin θj)}
for distinct θj ∈ [0, π/2]. Any labeling which labels all the points in Su negative except any one
point is realizable forH−2 , and so is the all-negative labeling. Thus, any algorithm that distinguishes
between these different labelings with probability 1 must query all the negative labels.
Corollary 4.3 (Realizable active label complexity ofH2 andH−2 ). ForH2 andH−2 , there is a pool
of size m such that its active label complexity is m.

4.2 The Agnostic Case

We now consider H2 in the agnostic case, where η > 0. The best known algorithm for ac-
tive learning of rectangles (2, δ)-learns a very restricted class of distributions (continuous product
distributions which are sufficiently balanced in all directions) with an active label complexity of
Õ(d3p(ln(1/η)p(ln(1/δ))), where p(·) is a polynomial (Hanneke, 2007b). However, for a general
distribution, active label complexity cannot be significantly better than passive label complexity.
This is formalized in the following theorem.
Theorem 4.4 (Agnostic active label complexity of H2). Let α, η > 0, δ ∈ (0, 12 ). Any learning
algorithm that (α, δ)-learns all distributions such that err(D,H) = η for η > 0 with respect toH2

has an active label complexity of Ω(d/η).

In contrast, the auditing complexity ofH2 can be much smaller, as we show for Alg. 3 below.
Theorem 4.5 (Auditing complexity of H2). For ηmin, α, δ ∈ (0, 1), there is an algorithm that
(α, δ)-learns all distributions with η ≥ ηmin with respect to H2 with an auditing complexity of
O(d

2 ln(1/αδ)
α2 ln2(1/ηmin)).

If ηmin is polynomially close to the true η, we get an auditing complexity of O(d2 ln2(1/η)), com-
pared to the active label complexity of Ω(d/η), an exponential improvement in η. It is an open
question whether the quadratic dependence on d is necessary here.

Alg. 3 implements a ‘low-confidence’ version of the realizable algorithm. It sequentially queries
points in each direction, until enough negative points have been observed to make sure the thresh-
old in this direction has been overstepped. To bound the number of negative labels, the algorithm
iteratively refines lower bounds on the locations of the best thresholds, and an upper bound on the
negative error, defined as the probability that a point from D with negative label is classified as
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positive by a minimal-error classifier. The algorithm uses queries that mostly result in positive la-
bels, and stops when the upper bound on the negative error cannot be refined. The idea of iteratively
refining a set of possible hypotheses has been used in a long line of active learning works (Cohn
et al., 1994; Balcan et al., 2006; Hanneke, 2007a; Dasgupta et al., 2008). Here we refine in a par-
ticular way that uses the structure ofH2, and allows bounding the number of negative examples we
observe.

We use the following notation in Alg. 3. The negative error of a hypothesis is errneg(D,h) =
P(X,Y )∼D[h(X) = 1 and Y = −1]. It is easy to see that the same convergence guarantees that
hold for err(·, ·) using a sample size mν(ε, δ, d) hold also for the negative error errneg(·, ·) (see
Sabato et al., 2013). For a labeled set of points S, an ε ≤ (0, 1) and a hypothesis class H, denote
Vν(S, ε,H) = {h ∈ H | err(S, h) ≤ err(S,H) + (2ν + ν2) · max(err(S,H), ε)}. For a vector
b ∈ Rd+, defineH2[b] = {ha ∈ H2 | a ≥ b}.

Algorithm 3: Auditing forH2

1: Input: ηmin > 0, α ∈ (0, 1], access to distribution D over Rd+ × {−1,+1}.
2: ν ← α/25.
3: for t = 0 to blog2(1/ηmin)c do
4: ηt ← 2−t.
5: Draw a sample St of size mν(ηt, δ/ log2(1/ηmin), 10d) with hidden labels.
6: for i = 1 to d do
7: j ← 0
8: while j ≤ d(1 + ν)ηt|St|e+ 1 do
9: If unqueried points exist, query the unqueried point with highest i’th coordinate;

10: If query returned −1, j ← j + 1.
11: end while
12: bt[i]← the i’th coordinate of the last queried point, or 0 if all points were queried.
13: end for
14: Set Sbt

to St, with unqueried labels set to −1.
15: Vt ← Vν(Sbt

, ηt,H2[bt]).
16: η̂t ← maxh∈Vt errneg(Sbt , h).
17: if η̂t > ηt/4 then
18: Skip to step 21
19: end if
20: end for
21: Return ĥ ≡ argminh∈H2[bt] err(Sbt

, h).

Theorem 4.5 is proven in Sabato et al. (2013). . The proof idea is to show that at each round t,
Vt includes any h∗ ∈ argminh∈H err(D,h), and η̂t is an upper bound on errneg(D,h∗). Further,
at any given point minimizing the error on Sbt is equivalent to minimizing the error on the entire
(unlabeled) sample. We conclude that the algorithm obtains a good approximation of the total error.
Its auditing complexity is bounded since it queries a bounded number of negative points at each
round.

5 Outcome-dependent Costs for a General Hypothesis Class

In this section we return to the realizable pool setting and consider finite hypothesis classes H. We
address general outcome-dependent costs and a general space of labels Y , so that H ⊆ YX . Let
S ⊆ X be an unlabeled pool, and let cost : S × H → R+ denote the cost of a query: For x ∈ S
and h ∈ H, cost(x, h) is the cost of querying the label of x given that h is the true (unknown)
hypothesis. In the auditing setting, Y = {−1,+1} and cost(x, h) = I[h(x) = −1]. For active
learning, cost ≡ 1. Note that under this definition of cost function, the algorithm may not know the
cost of the query until it reveals the true hypothesis.

Define OPTcost(S) to be the minimal cost of an algorithm that for any labeling of S which is
consistent with some h ∈ H produces a hypothesis ĥ such that err(S, ĥ) = 0. In the active learning
setting, where cost ≡ 1, it is NP-hard to obtain OPTcost(S) for general H and S. This can be
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shown by a reduction to set-cover (Hyafil and Rivest, 1976). A simple adaptation of the reduction
for the auditing complexity, which we defer to the full version of this work, shows that it is also
NP-hard to obtain OPTcost(S) in the auditing setting.

For active learning, and for query costs that do not depend on the true hypothesis (that is cost(x, h) ≡
cost(x)), Golovin and Krause (2011) showed an efficient greedy strategy that achieves a cost of
O(OPTcost(S) · ln(|H|)) for any S. This approach has also been shown to provide considerable
performance gains in practical settings (Gonen et al., 2013). The greedy strategy consists of itera-
tively selecting a point whose label splits the set of possible hypotheses as evenly as possible, with
a normalization proportional on the cost of each query.

We now show that for outcome-dependent costs, another greedy strategy provides similar approx-
imation guarantees for OPTcost(S). The algorithm is defined as follows: Suppose that so far the
algorithm requested labels for x1, . . . , xt and received the corresponding labels y1, . . . , yt. Letting
St = {(x1, y1), . . . , (xt, yt)}, denote the current version space by V (St) = {h ∈ H|S | ∀(x, y) ∈
St, h(x) = y}. The next query selected by the algorithm is

x ∈ argmax
x∈S

min
h∈H

|V (St) \ V (St ∪ {(x, h(x))})|
cost(x, h)

.

That is, the algorithm selects the query that in the worst-case over the possible hypotheses, would
remove the most hypotheses from the version spaces, when normalizing by the outcome-dependent
cost of the query. The algorithm terminates when |V (St)| = 1, and returns the single hypothesis in
the version space.

Theorem 5.1. For any cost function cost, hypothesis class H, pool S, and true hypothesis h ∈ H,
the cost of the proposed algorithm is at most (ln(|H|S | − 1) + 1) ·OPT.

If cost is the auditing cost, the proposed algorithm corresponds to the following intuitive strategy: At
every round, select a query such that, if its result is a negative label, then the number of hypotheses
removed from the version space is the largest. This strategy is consistent with a simple principle
based on a partial ordering of the points: For points x, x′ in the pool, define x′ � x if {h ∈ H |
h(x′) = −1} ⊇ {h ∈ H | h(x) = −1}, so that if x′ has a negative label, so does x. In the auditing
setting, it is always preferable to query x before querying x′. Therefore, for any realizable auditing
problem, there exists an optimal algorithm that adheres to this principle. It is thus encouraging that
our greedy algorithm is also consistent with it.

An O(ln(|H|S |)) approximation factor for auditing is less appealing than the same factor for active
learning. By information-theoretic arguments, active label complexity is at least log2(|H|S |) (and
hence the approximation at most squares the cost), but this does not hold for auditing. Nonetheless,
hardness of approximation results for set cover (Feige, 1998), in conjunction with the reduction to
set cover of Hyafil and Rivest (1976) mentioned above, imply that such an approximation factor
cannot be avoided for a general auditing algorithm.

6 Conclusion and Future Directions

As summarized in Section 2, we show that in the auditing setting, suitable algorithms can achieve
improved costs in the settings of thresholds on the line and axis parallel rectangles. There are many
open questions suggested by our work. First, it is known that for some hypothesis classes, active
learning cannot improve over passive learning for certain distributions (Dasgupta, 2005), and the
same is true for auditing. However, exponential speedups are possible for active learning on certain
classes of distributions (Balcan et al., 2006; Dasgupta et al., 2008), in particular ones with a small
disagreement coefficient (Hanneke, 2007a). It is an open question whether a similar property of
the distribution can guarantee an improvement with auditing over active or passive learning. This
might be especially relevant to important hypothesis classes such as decision trees or halfspaces. An
interesting generalization of the auditing problem is a multiclass setting with a different cost for each
label. Finally, one may attempt to optimize other performance measures for auditing, as described
in the introduction. These measures are different from those studied in active learning, and may lead
to new algorithmic insights.
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