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Abstract

In this thesis we study two important supervised learning settings: linear classifiers with a margin,

and Multiple-Instance Learning, and provide novel results concerningthe ability to learn in each of

these settings.

In supervised learning, the goal is to learn to classify objects into one of several classes, using

only examples of objects, along with the class that they belong to (also termed their label). We focus

on binary supervised learning, in which each object should be classifiedinto one of two classes. As

an example, consider the task of predicting whether a patient will present with diabetes, based on

the patient’s blood test results. In this example, one class represents patients who will present with

diabetes and the other class represents patients who will not present with diabetes. The learner is

given a set of examples, where each example is constituted of the blood testresults of a patient,

along with information on whether this patient has presented with diabetes or not. We term this set

of examples thetraining set, or thetraining sample. The training set is used by the learner to infer

a classification rule, which can be used to predict whether a new patient will present with diabetes,

based on this patient’s blood test results. The goal of the learner is to find aclassification rule which

is as accurate as possible in its predictions.

An important measure of the effectiveness of learning is how many labeled examples are needed

in order to achieve a certain degree of classification accuracy. Thesample complexityof a learning

problem is the size of a training set required to guarantee a given accuracy on this problem. Equiva-

lently, it is the accuracy that can be guaranteed for the learner, given the size of the training sample.

We distinguish between the sample complexity, which is a statistical measure of the difficulty of

learning, and computational complexity, which measures the amount of computation required to

implement a learning strategy.

The “No free lunch” theorem for supervised learning [Wolpert and Macready, 1997] shows that

no single supervised learning algorithm can provide a high-accuracy classification rule for all learn-

ing problems using the same sample size. In other words, the sample complexity ofsupervised

learning without additional assumptions is unbounded. It follows that in order to have guarantees

on learning, we need to consider more restricted classes of learning problems.
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Most commonly, we restrict the set of learning problems that we consider byintroducing the

notion of ahypothesis class. This is a set of classification rules to which we wish to compare the

result of our learning algorithm. In a specific learning context, the hypothesis class can represent our

beliefs on the true nature of the classification rule for the problem. For instance, if we believe that

diabetes can be identified via a boolean function using at most two values in a patient’s blood test

results, we can use the hypothesis class consisting only of such boolean functions. If our learning

problem can indeed be classified with maximum accuracy using one of the classification rules in

our hypothesis class, then we say that the problem isrealizable. In this case, we can hope that

our learning algorithm will achieve high accuracy, in absolute terms, when given enough labeled

examples. If the problem is not realizable, then we say that we are in theagnosticsetting. In this

case, we hope that our learning algorithm will achieve a smallrelativeaccuracy. That is, we hope

that its classification accuracy will be close to that of the best classifier in our hypothesis class.

The sample complexity of learning relative to a specific hypothesis class strongly depends on

its complexity. Loosely speaking, the complexity of a class is related to the number of mappings

between objects and labels that it allows. There are several popular complexity measures for hy-

pothesis classes, which can be used to derive sample complexity guarantees.

Usually, a sample complexity upper bound is derived for a specific hypothesis class and for

a large class of distributions. For instance, the class oflinear classifiershas upper bounds that

depend on the dimension of the input data points, and other upper bounds that depend on their

norm. Such upper bounds can be useful for understanding the positive aspects of a learning rule.

But it is difficult to understand the deficiencies of a learning rule, or to compare between different

rules, based on upper bounds alone. This is because it is possible, andis often the case, that the true

sample complexity for a given distribution is much lower than the bound.

Some sample complexity upper bounds are known to be tight or to have an almost-matching

lower bound. This means that there exists some distribution in the class covered by the upper bound

that actually requires that many examples in order to learn with high accuracy. These results show

that there cannot be a better upper bound that holds for the entire class of distributions that the upper

bound covers. But they do not imply that the upper bound characterizesthe true sample complexity

for any specificdistribution in the class, except for the ones for which the upper bound is indeed

tight. For instance, in the case of linear classifiers, although the sample-complexity upper bound

that depends on the norm is tight, if the distribution is supported by a low-dimensional sub-space,

then the true number of examples required to reach high accuracy is much smaller.

In the first part of this thesis, our goal is to identify a simple quantity, which is afunction of the

distribution, thatdoesprecisely characterize the sample complexity of learning this distribution un-

der a specific learning rule. We focus on the popular rule of Margin Error Minimization (MEM), and

on the class of linear classifiers. We present a new quantity, termed themargin-adapted dimension,
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and use it to provide a tighter distribution-dependent upper bound, and amatching distribution-

dependent lower bound, for MEM algorithms for linear classifiers. The upper bound is universal,

and the lower bound holds for a rich class of distributions.

The margin-adapted dimension refines both the dimension and the average norm of the data

distribution, and can be easily calculated from the covariance matrix and the mean of the distribu-

tion. Our tight characterization, and in particular the distribution-specific lower bound on the sample

complexity that we establish, can be used to compare large-margin (L2 regularized) learning to other

learning rules. We provide two such examples: we use our lower bound to rigorously establish a

sample complexity gap betweenL1 andL2 regularization previously studied inNg [2004], and to

show a large gap between discriminative and generative learning on a Gaussian-mixture distribution.

Our lower bound hinges on several new results:

• We show that for a convex hypothesis class, fat-shattering is equivalent to shattering with

exact margins.

• We link the fat-shattering of a set of vectors with the eigenvalues of the dot-product matrix

(the Gram matrix) of the vectors in the set.

• We relate fat-shattering to hardness of learning using MEM.

• We provide a new lower bound for the smallest eigenvalue of a random Gram matrix generated

by sub-Gaussian variables, thus extending previous results in analysis of random matrices.

As mentioned above, complexity measures of hypothesis classes are typicallyanalyzed on a

case-by-case basis. For instance, the complexity of the class of linear classifiers has been analyzed

as a function of parameters such as the dimension of the ambient space and the maximal norm of

the separator. In the second part of this thesis, we consider the usefulsetting ofMultiple Instance

Learning, and propose a generic analysis for this setting, that holds across many different hypothesis

classes.

Multiple-Instance Learning (MIL), first introduced inDietterich et al.[1997], is a special type

of a supervised classification problem. As in classical supervised classification, in MIL the learner

receives a sample of labeled examples drawn i.i.d. from an arbitrary and unknown distribution, and

its objective is to discover a classification rule with a small expected classification error over the

same distribution. In MIL additional structure is assumed, whereby the examples are received as

bagsof instances, such that each bag is composed of several instances. It is assumed that each

instance has a true label, however the learner only observes the labels ofthe bags. The label of

each bag is determined by the hidden labels of the instances in the bag, via somefunction which is

known a-priori. Classical works on MIL assume that the function is the Boolean OR. In this work

we consider a more general setting which allows other functions as well.
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MIL has been used in numerous applications. InDietterich et al.[1997] the drug design applica-

tion motivates this setting. In this application, the goal is to predict which moleculeswould bind to

a specific binding site. Each molecule has several possible conformations (shapes) it can take. If at

least one of the conformations binds to the binding site, then the molecule is labeled positive. How-

ever, it is not possible to experimentally identify which conformation was the successful one. Thus,

a molecule can be thought of as a bag of conformations, where each conformation is an instance in

the bag representing the molecule. This application employs the hypothesis class of Axis Parallel

Rectangles (APRs), and has made APRs the hypothesis class of choice in several theoretical works.

There are many other applications for MIL, including image classification [Maron and Ratan, 1998],

web index page recommendation [Zhou et al., 2005] and text categorization [Andrews, 2007].

We propose a formal framework for generalized MIL, which allows analyzing any MIL problem

as a function of the underlying hypothesis class: This is the hypothesis class of the possible map-

pings from single instances to labels. In addition, the analysis depends on the function determining

the bag labels based on the instance labels. We provide a generic analysis that bounds the com-

plexity of learning a MIL problem based on the complexity of learning the underlying hypothesis

class.

The generic approach has the advantage that it automatically extends all knowledge and meth-

ods that apply to non-MIL problems into knowledge and methods that apply to MIL, without requir-

ing specialized analysis for each specific MIL problem. Our results are thus applicable to diverse

hypothesis classes and bag labeling functions. Moreover, the generic approach allows a better the-

oretical understanding of the relationship, in general, between regular learning and Multi-Instance

Learning with the same hypothesis class.

Our sample complexity analysis shows that for binary hypotheses and thresholded real-valued

hypotheses, the distribution-free sample complexity for generalized MIL grows only logarithmically

with the maximal bag size. We also provide poly-logarithmic sample complexity bounds for the case

of margin learning. We further provide distribution-dependent sample complexity bounds for more

general loss functions. These bound are useful when only the average bag size is bounded. The

results imply generalization bounds for previously proposed algorithms forMIL. Addressing the

computational feasibility of MIL, we provide a new learning algorithm with provable guarantees

for a class of bag-labeling functions that includes the Boolean OR as a special case. Given a non-

MIL learning algorithm for the desired hypothesis class, which can handleone-sided errors, we

improperly learn MIL with the same hypothesis class. The construction is simple toimplement, and

provides a computationally efficient PAC-learner for MIL, with only a polynomial dependence of

the run time on the bag size. We further show a setting in which MIL can be usedto improve the

sample complexity of non-MIL learning, by constructing artificial bags. We propose an approach

for implementing this paradigm in practice.
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Chapter 1

Introduction

In this thesis we study two important supervised learning settings: linear classifiers with a margin,

and Multiple-Instance Learning, and provide novel results concerningthe ability to learn in each of

these settings. In this chapter we present background on supervised learning, and describe our main

contributions.

In supervised learning, the goal is to learn to classify objects into one of several classes, using

only examples of objects, along with the class that they belong to. We focus onbinary supervised

learning, in which each object should be classified into one of two classes.As an example, consider

the task of predicting whether a patient will present with diabetes, based onthe patient’s blood test

results. In this example, one class represents patients who will present withdiabetes and the other

class represents patients who will not present with diabetes. The learneris given a set of examples,

where each example is constituted of the blood test results of a patient, along with information on

whether this patient has presented with diabetes or not. We term this set of examples thetraining

set, or thetraining sample. The training set is used by the learner to infer aclassification rule, which

can be used to predict whether a new patient will present with diabetes, based on this patient’s blood

test results. The goal of the learner is to find a classification rule which is asaccurate as possible in

its predictions.

An important measure of the effectiveness of learning is how many labeled examples are needed

in order to achieve a certain degree of classification accuracy. Thesample complexityof a learning

problem is the size of a training set required to guarantee a given accuracy on this problem. Equiva-

lently, it is the accuracy that can be guaranteed for the learner, given the size of the training sample.

We distinguish between the sample complexity, which is a statistical measure of the difficulty of

learning, and computational complexity, which measures the amount of computation required to

implement a learning strategy.

The “No free lunch” theorem for supervised learning [Wolpert and Macready, 1997] shows that
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CHAPTER 1. INTRODUCTION 2

no single supervised learning algorithm can provide a high-accuracy classification rule for all learn-

ing problems using the same sample size. In other words, the sample complexity ofsupervised

learning without additional assumptions is unbounded. It follows that in order to have guarantees

on learning, we need to consider more restricted classes of learning problems.

Most commonly, we restrict the set of learning problems that we consider byintroducing the

notion of ahypothesis class. This is a set of classification rules to which we wish to compare the

result of our learning algorithm. In a specific learning context, the hypothesis class can represent our

beliefs on the true nature of the classification rule for the problem. For instance, if we believe that

diabetes can be identified via a boolean function using at most two values in a patient’s blood test

results, we can use the hypothesis class consisting only of such boolean functions. If our learning

problem can indeed be classified with maximum accuracy using one of the classification rules in

our hypothesis class, then we say that the problem isrealizable. In this case, we can hope that

our learning algorithm will achieve a small error, in absolute terms, when given enough labeled

examples. If the problem is not realizable, then we say that we are in theagnosticsetting. In this

case, we hope that our learning algorithm will achieve a smallrelativeerror. That is, we hope that

its classification accuracy will be close to that of the best classifier in our hypothesis class.

The sample complexity of learning relative to a specific hypothesis class strongly depends on

its complexity. Loosely speaking, the complexity of a class is related to the number of different

mappings between objects and labels that it allows. In this chapter we present several useful com-

plexity measures for hypothesis classes, and the sample complexity guarantees that can be provided

for them.

We start with defining our notation in Section1.1. We then formally define a binary learning

problem in Section1.2. We present some popular and useful measures of learning accuracyin Sec-

tion 1.3. We then turn to present relevant sample complexity results for binary supervised learning.

The classical approach to sample complexity analysis of supervised learning is distribution-free

analysis. In this approach we are interested in sample-complexity guarantees that hold regardless of

the distribution of the labeled objects. We discuss this type of analysis in Section1.4. We present

tools fordistribution-dependentanalysis in Section1.5. We apply each of the tools to the commonly

used hypothesis class oflinear classifiersin Section1.6. Finally, we present the main contributions

of this thesis in Section1.7.
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1.1 Notation

We denote the set of real numbers byR, and the set of natural numbers byN. We use the function

sign : R→ {±1} where

sign(x) =





1 x > 0

−1 x < 0

0 x = 0.

For any integern ∈ N, we denote by[n] the set{1, . . . , n}. For a real numberx, we denote

[x]+ = max{0, x} andJxK = min([x]+, 1). LetA andB be sets and letf : A→ B be a function.

LetF ⊆ BA be a set of functions fromA toB. For a subsetX ⊆ A, we denote the restriction off

toX by f |X . The restriction of the set of functionsF toX is denoted byF |X = {f |X | f ∈ F}.
For a functionf : R→ R, we denote its first and second derivatives byf ′ andf ′′ respectively.

Consider a probability distributionD over some domain. We denote the probability of a pred-

icatep according to a distributionD by PX∼D[p(X)], althoughX ∼ D might be omitted when it

is clear from context. Similarly,EX∼D[f(X)] denotes the expected value off(X) according toD.

For a finite setA, we useA also to denote the uniform distribution over the elements ofA.

Let d be an integer, and consider the Euclidean spaceR
d. For a vectorx ∈ R

d, we denote its

Euclidean norm by‖x‖. For a real matrixX ∈ R
d×n, ‖X‖ stands for the Euclidean operator norm,

that is‖X‖ = supx∈Rn:‖x‖≤1 ‖Xx‖. We denote an origin-centered ball of radiusr in a normed

space(S, ‖ · ‖) byBr(S) = {x ∈ S | ‖x‖ ≤ r}. ForS = R
d, we writeBd

r = Br(R
d).

We sometimes represent sets of vectors inR
d using matrices. We say thatX ∈ R

m×d is the

matrix of a set{x1, . . . , xm} ⊆ R
d if the rows in the matrix are exactly the vectors in the set.

For uniqueness, we assume the rows ofX are sorted according to an arbitrary fixed full order on

vectors inRd. For a PSD matrixX denote the largest eigenvalue ofX by λmax(X) and the smallest

eigenvalue byλmin(X).

We useO-notation as follows: Whenever the expressionO(ξ) is used, it stands forC1+C2 ·ξ for

some constantsC1, C2 ≥ 0. Similarly,Ω(ξ) stands forC2 · ξ − C1 for some constantsC1, C2 ≥ 0.

Õ(ξ) stands forξ · p(ln(ξ)) + C for some polynomialp(·) and some constantC > 0. We denote

universal constants byC, c orC1, C2 etc. The values of these constants may change from statement

to statement or even from line to line. The notations are summarized in Table1.1.

1.2 Binary Supervised Learning

In binary supervised learning there are two possible classes, and we wish to predict which of these

classes matches given objects. The two classes are commonly named thepositive classand the
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Table 1.1: Summary of Notation
R The real numbers
N The natural numbers
sign(x) The sign ofx
[n] {1, . . . , n}
[x]+ max{0, x}
JxK min([x]+, 1)
BA The functions fromA toB
f |X The restriction off toX
F |X {f |X | f ∈ F}
f ′ The first derivative of a function
f ′′ The second derivative of a function
P Probability
E Expectation
‖x‖ The Euclidean norm ofx
X A matrix
‖X‖ The Euclidean operator norm ofX
Br(S) {x ∈ S | ‖x‖ ≤ r}
B
d
r Br(R

d)
λmax(X) The largest eigenvalue ofX
λmin(X) The smallest eigenvalue ofX
O(ξ) C1 + C2 · ξ for some constantsC1, C2 ≥ 0
Ω(ξ) C2 · ξ − C1 for some constantsC1, C2 ≥ 0

Õ(ξ) ξ · p(ln(z)) + C for a polynomialp(·) andC > 0
C, c, C1, C2, . . . Posivite constants (value may change between expressions)

negative class, and are denoted bylabels+1 and−1 respectively. We say that an object has a

particular label if it belongs to the class denoted by that label. Aclassification rule, or aclassifier,

is a function from the domain of possible objects to the set of reals. We interpret the sign of the

classifier’s output as its prediction on the object—whether it is in the positive class or the negative

class. The magnitude of the output is sometimes interpreted as the confidence of the classifier in its

prediction.

To measure the accuracy of a classifier, we use the notion ofloss, measured by aloss function.

A loss function is a measure of the discrepancy between possible true labelsand possible classifier

outputs. Formally, it is a functionℓ : {±1} × R → R+. When a classifier provides outputŷ for a

given object with true labely, it incurs lossℓ(y, ŷ). An accurate classifier is one that incurs a low

classification loss.

The components of a binary supervised learning problem are a data domainX , the label set

{±1}, a hypothesis classH ⊆ R
X , a distributionD overX × {±1}, and a loss functionℓ. We
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assume thatX is equipped with aσ-algebra, and consider only distributions that are measurable

with respect to thisσ-algebra. We denote byDX the marginal distributionD induces onX , and by

DY |X the conditional distribution thatD induces on{±1} given anX ∈ X .

Each element in the data domainX represents an object to be classified. For instance, in the

diabetes example we can setX = R
d, whered is the number of measurements in a blood test. Then

each elementx ∈ X is ad-coordinate vector representing a single patient, where each coordinate

holds the value of a single measurement in the patients’ blood test results. ThedistributionD here

is the probability of having a patient with measurementsx ∈ R
d and conditiony ∈ {±1}.

Given the loss functionℓ, we denote the loss of a labeling functionh over the distributionD by

ℓ(h,D) = E(X,Y )∼D[ℓ(Y, h(X))].

Given the distributionD, the best classification rule for a learning problem is well defined: Consider

the random pair(X,Y ) ∼ D, so thatX ∈ X andY ∈ {±1}. The best possible classifier is Bayes’

optimal classifier: For a givenx ∈ X , predictŷ ∈ argminy∈R E[ℓ(Y, y) | X = x].

The minimal loss that can be achieved by a classifier in the hypothesis classH is

ℓ∗(H, D) = inf
h∈H

ℓ(h,D).

If ℓ∗(H, D) = 0 then the learning problem is realizable, otherwise it is agnostic. We omitH and

write simplyℓ∗(D) if H is clear from context.

The training sample that the learning algorithm receives as input is a set ofm examplesS =

{(x1, y1), . . . , (xm, ym)} ⊆ X × {±1}, wherem is the sample size.1 Given S, we denote the

set of its examples without their labels bySX = {x1, . . . , xm}. Crucially, we assume that each

pair (xi, yi) is drawn independently according toD. A learning algorithmis a (possibly non-

deterministic) functionA : ∪∞m=1(X × {±1})m → R
X , that receives a training set, and returns a

function for classifying objects inX into real values. We say thatA is doingproper learningof H
if for any possible training setS,A(S) ∈ H. The loss of a learning algorithm with input sampleS

is simplyℓ(A(S), D).

We analyze learning algorithms in the Probably Approximately Correct (PAC)framework

[Valiant, 1984]: We bound the loss of the algorithm with a high probability over the random draw

of samples. The high-probability loss of an algorithmA with respect to samples of sizem, a distri-

butionD and a confidence parameterδ ∈ (0, 1) is

ℓ(A, D,m, δ) = inf{ǫ ≥ 0 | PS∼Dm [ℓ(A(S), D) ≥ ǫ] ≤ δ}.
1Samples are in fact multisets, since a labeled example may repeat several times. We use the set notation for simplicity.
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In words, we say that with probability at least1− δ over samples of sizem drawn fromDm,A has

a loss of no more thanǫ.

1.3 Common Loss Functions

As mention above, a loss functionℓ : {±1}×R→ R+ measures the accuracy of a prediction given

the true label. Different loss functions represent different measuresof accuracy. In this section we

discuss several popular and useful loss functions, which will be usedthroughout this work.

We interpret the sign of the classifier’s output as its prediction for the labelof the input object,

where an output of zero is interpreted as “no prediction”. Thus, perhaps the most natural loss

function is the one which penalizes the classifier by a constant amount whenever the sign of its

output (that is, the classifier’s prediction) is different from the true label of the object. This loss is

termed thezero-one loss, and is defined byℓ0/1(y, ŷ) = I[yŷ ≤ 0] (see Figure1.1). It is easy to

see thatℓ0/1(h,D) = P(X,Y )∼D[Y 6= sign(h(X))], thus the average zero-one loss is simply the

probability that the classifier does not predict the correct label.

ŷ

ℓ0/1(y, ŷ)

Figure 1.1: The zero-one loss fory = 1.

The magnitude of the classifier’s output can be interpreted as a measure ofits “confidence” in

the prediction. Thus, it makes sense to require that the predictor not only output the right label, but

do so with a high confidence. This is captured by themargin loss: Define a confidence valueγ > 0,

also termed themargin, and penalize any prediction that is either incorrect, or correct but with a

confidence (also margin) of less thanγ. Formally, the margin-loss isℓγ(y, ŷ) = I[yŷ ≤ γ] (see

Figure1.2).

ŷ

ℓγ(y, ŷ)

γ

Figure 1.2: The margin loss fory = 1 andγ = 0.5.
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While the margin loss and the zero-one loss are very natural, they pose a problem for computa-

tionally efficient implementations, since it is NP-hard to minimize them on many usefulnatural hy-

pothesis classes, such as the class of linear classifiers that we describein Section1.6[Höffgen et al.,

1995]. Thus, in many cases asurrogate lossis used instead of these losses. A surrogate loss needs

to be computationally easy to optimize, while close in some sense to the loss is replaces. A popular

choice is thehinge-loss, defined byℓhl(γ)(y, ŷ) = [1−yŷ/γ]+ (see Figure1.3). This loss is convex,

which means that it can be minimized efficiently. It is an upper bound for the zero-one loss, and if

there are no low-confidence predictions, it is also an upper bound for the margin-loss. Thus, if the

hinge-loss is small, then the zero-one loss and perhaps the margin loss are also small. The hinge-

loss can be considered as natural even without regarding it as a surrogate for another loss, since it

penalizes a classifier more if it is more “confident” in its wrong prediction.

Another useful property of the hinge-loss is that it isLipschitz: In general, a functionf from a

normed space to a normed space isc-Lipschitz forc ≥ 0 if ‖f(a)− f(b)‖ ≤ c‖a− b‖ for anya, b

in the domain. For losses, we say that they arec-Lipschitz if they arec-Lipschitz in their second

argument, with respect to the absoulte-value norm. Formally, a loss isc-Lipschitz if

∀y ∈ {±1}, a, b ∈ R, |ℓ(y, a)− ℓ(y, b)| ≤ c|a− b|.

The hinge-loss with a margin parameterγ is thus1/γ-Lipschitz. This property implies that the value

of the loss is closely coupled with the value of the prediction. As a result, certain sample-complexity

analysis tools can be easily applied to this loss.

ŷ

ℓhl(γ)(y, ŷ)

Figure 1.3: The hinge-loss fory = 1 andγ = 0.5.

Finally, we also consider theramp-loss, defined forγ > 0 by rampγ(y, ŷ) = J1 − yŷ/γK (see

Figure1.4). The ramp-loss is equal to the hinge-loss, except that it is never more than 1. Thus, a

classifier is penalized by a constant amount for wrong predictions, and by a smaller amount for the

right prediction with a small confidence. As we shall see, the ramp-loss is a useful tool for proving

sample complexity bounds, since it is upper-bounded by the margin loss and lower-bounded by the

zero-one loss. Furthermore, it is1/γ-Lipschitz just like the hinge-loss.
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ŷ

rampγ(y, ŷ)

Figure 1.4: The ramp loss fory = 1 andγ = 0.5.

1.4 Distribution-Free Sample Complexity

In distribution-free analysis, we are interested in sample-complexity guarantees that hold regardless

of the distributionD. In other words, we are interested in the quantity

inf
A

max
D

ℓ(A, D,m, δ),

where the infimum onA is taken over all learning algorithms, and the maximum onD is taken

over all the distributions over theσ-algebra ofX × {±1}. The critical factor in determining the

distribution-free sample-complexity of a supervised learning problem is the complexity of the hy-

pothesis classH. Several complexity measures for hypothesis classes have been proposed, each

providing a different type of guarantee.

1.4.1 The VC dimension

We first consider learning with respect to the zero-one loss. We may assume without loss of gen-

erality thatH ⊆ {0,−1,+1}X , by considering the setsign ◦ H = {sign ◦ h | h ∈ H}, since the

zero-one loss is affected only by the sign of the prediction. However, thecommon view, which we

adhere to here, considersH ⊆ {±1}X , by arbitrarily fixingsign(0) = 1.

For the zero-one loss, it can be shown that the quantity controlling the samplecomplexity of

the best learning algorithm forH ⊆ {±1}X is the number of different labelings thatH induces

on finite sets from the domainX . Intuitively, if there are less possible labelings, then the learner

can achieve a high accuracy with fewer training examples, since it needs todistinguish between

fewer possibilities. The number of labelings is measured by thegrowth functionof H, which is the

functionΠH : N→ N defined by

ΠH(n) = max{|H|X | | X ⊆ X , |X| = n}.

We would like to establish an upper bound for distribution-free binary supervised learning, as

a function of the growth function. Ths can be shown via auniform convergenceargument: For
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every individual hypothesish ∈ H, its loss on a random sample converges fast to its loss on the

distribution as the sample size grows. The effective number of hypothesesthat need to be considered

can be bounded by the growth function. Thus, a union bound can be used to show that with high

probability, all of the hypotheses simultaneouslyincur a loss on the random sample that is close

to the loss they incur on the distribution. This means that a learning algorithm maychoose the

hypothesis that is the most accurate on the sample, and is guaranteed that its loss on the distribution

will also be low. The principle of choosing the hypothesis that does best onthe sample is known as

Empirical Risk Minimization (ERM). Formally, we define an ERM algorithm as follows.

Definition 1.1 (ERM algorithm). A learning algorithmA is anERM algorithmfor hypothesis class

H and lossℓ if

∀S ⊆ X × {±1}, A(S) ∈ argmin
h∈H

ℓ(h, S).

We are now refdy to state the distribution-free upper bound based on the growth function. This

result can be derived fromAnthony and Bartlett[1999] (Theorem 4.3). The first results of this type

are due toVapnik and Chervonenkis[1971].

Theorem 1.2. There exists a universal constantC such that the following holds. LetH ⊆ {±1}X

be some hypothesis class. For any ERM algorithmA for ℓ0/1, and for any distributionD,

ℓ0/1(A, D,m, δ)− ℓ∗0/1(H, D) ≤

√
C · ln(4ΠH(2m)

δ )

m
.

As it turns out, a single quantity suffices to characterize the growth function, and hence the

distribution-free sample complexity of binary supervised learning, up to logarithmic factors. This

quantity is theVC-dimensionof H [Vapnik and Chervonenkis, 1971]. As we shall now show, the

VC-dimension can be used to provide both an upper bound and a lower bound on the distribution-

free sample complexity of binary supervised learning. The VC-dimension ofa hypothesis class is

defined using the notion ofshattering.

Definition 1.3 (Shattering). LetH ⊆ {±1}X be some hypothesis class. A setX ⊆ X is shattered

byH if for every labeling ofX, denotedg : X → {±1}, there exists a hypothesish ∈ H such that

h|X = g.

For instance, suppose the domainX is [0, 1], and the hypothesis class is the set of functions

h[a,b] that map[a, b] to +1 and the rest of[0, 1] to −1. Then any set of two different points in

[0, 1] is shattered, by choosing an appropriate interval for each possible labeling (see Figure1.5,

top). However, no set of three points is shattered, since there is a labelingthat no functionh[a,b] can

generate (see Figure1.5, bottom).
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+ +
[ ]

− +
[ ]

+ −
[ ]

− −
[ ]

+ − +

Figure 1.5: Top: A set of two points is shattered. Bottom: A set of three pointsis not shattered.

The VC-dimension is the largest size of a shattered set in the domain. Formally,

Definition 1.4 (VC-dimension). LetH ⊆ {±1}X be some hypothesis class. TheVC-dimensionof

H, denotedVC(H), is the size of the largest subset ofX that is shattered byH.

It is easy to see that the existence of a shattered set of sizen implies thatΠH(m) ≥ 2n for

anym ≥ n. Sauer’s Lemma [Sauer, 1972, Vapnik and Chervonenkis, 1971] shows that the VC-

dimension provides an upper bound to the growth function as well.

Lemma 1.5(Sauer’s Lemma). LetX be a set of sizen, and letA be a set of functions fromX to

{±1}. If the VC-dimension ofA is d, then|A| ≤∑d
i=1

(
n
i

)
.

For anym ≥ d, we have [Chari et al., 1994]

d∑

i=1

(
m

i

)
<
(em
d

)d
.

Thus, for any hypothesis classH with VC-dimensiond and anyn ≥ d,

2d ≤ ΠH(n) ≤
(em
d

)d
.

The logarithm of the growth function is thus about the same as the VC-dimension, up to logarithmic

factors. Therefore, we can conclude a sample-complexity upper boundusing the VC-dimension.

The following formulation followsAnthony and Bartlett[1999] (Theorem 4.2).

Theorem 1.6.There are universal constantsC andc such that the following holds. LetH ⊆ {±1}X

be some hypothesis class with VC-dimensiond. For any ERM algorithmA, and for any distribution

D, for anym ≥ d andδ ∈ (0, 1)

ℓ0/1(A, D,m, δ)− ℓ∗0/1(H, D) ≤

√
C(d ln(2emd ) + ln( cδ ))

m
.
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It is possible to get an improved upper bound using a method known aschaining. The following

is based onAnthony and Bartlett[1999], Theorem 4.10.

Theorem 1.7. There is a universal constantC such that the following holds. LetH ⊆ {±1}X be

some hypothesis class with VC-dimensiond. For any ERM algorithmA, and for any distribution

D, for anym ≥ d andδ ∈ (0, 1)

ℓ0/1(A, D,m, δ)− ℓ∗0/1(H, D) ≤

√
C(d+ ln(1δ ))

m
.

It is also possible to show a lower bound on the distribution-free sample complexity based on the

VC-dimension. For a distribution-free lower bound, it suffices to show that for any learning there

exists a distribution such that the algorithm would require many examples to learnit accurately.

Intuitively, if the distributionD is supported by a shattered set, then the label of any element in the

set provides no indication on the labels of the other elements. Based on this idea, the following

theorem can be proved.

Theorem 1.8.There exist universal constantsc, C > 0 such that For any learning algorithmA and

any integerm, and for every hypothesis classH with VC-dimensiond, there exists a distributionD

such that and for anyδ ≤ c,

ℓ0/1(A, D,m, δ)− ℓ∗0/1(H, D) ≥
√
C · d
m

.

This result has appeared in several places, includingVapnik and Chervonenkis[1974] and

Devroye and Lugosi[1995]. Here we follow the formulation ofAnthony and Bartlett[1999], theo-

rem 5.2.

Considering Theorem1.7and Theorem1.8together, we conclude that ERM algorithms achieve

the best possible distribution-free sample complexity.

1.4.2 Covering Numbers

We have seen that if the VC-dimension is bounded, then the effective number of hypotheses is

bounded, and thus a uniform convergence argument can be used to provide a sample complexity

guarantee. When the VC-dimension is not bounded, we cannot use uniform convergence in the

same way. In fact, Theorem1.8shows that the same type of guarantee as in Theorem1.7does not

exist in this case. Nonetheless, a guarantee can be provided, if we require slightly less from the

learning algorithm.
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We will provide a guarantee on the zero-one loss of the learning algorithm relative not to the best

achievable margin loss. This is in contrast with the last section, where the guarantee was relative

to the best achievable zero-one loss. This will imply a high classification accuracy if it is possible

to classify the objects in the domain correctly andwith high confidenceusing the given hypothesis

class.

When comparing to the margin loss, we can use a uniform convergence argument as follows:

Instead of counting the number of different labelings induced by hypotheses in our hypothesis class,

we will “bundle together” classifiers that emit similar values, and count only the number of classi-

fiers that are sufficiently far from each other. Whenever this number is bounded, a guarantee relative

to the margin loss can be provided.

Formally, we count classifiers that are sufficiently far from each other using the notion of a

covering number. Let (B, ‖ · ‖◦) be a normed space. Aγ-coverof this space is a subsetC ⊆ B such

that for anyx ∈ B there exists ay ∈ C such that‖x − y‖◦ ≤ γ. The covering number for given

γ > 0, B and◦, denoted byN (γ,B, ◦), is the size of the smallest suchγ-covering forB.

We use covering numbers to measure the “effective size” of the hypothesis class with respect to

a given setX ⊆ X . Thus, we consider normed spaces of functions(F , ‖ · ‖Lp(X)), whereF ⊆ R
X

is a set of real-valued functions, and the normLp(X) for p ≥ 1 is defined by

‖f‖Lp(X) =

(
1

|X|
∑

s∈X
|f(s)|p

)1/p

.

For p = ∞, L∞(X) is defined by‖f‖L∞(X) = maxs∈X |f(X)|. The covering number ofF for a

sample sizem with respect to theLp norm is

Nm(γ,F , p) = sup
X⊆X :|X|=m

N (γ,F , Lp(X)).

As we will see in the next section, a small covering number for a function class implies faster

uniform convergence rates, hence a smaller sample complexity for learning.

While the covering number can be much larger than the growth function, the relation between

the two quantities can be bounded. ByDudley[1978], for anyHwith VC-dimensiond, anyX ⊆ X ,

and anyγ > 0,

lnN (γ,H, L2(X)) ≤ 2d ln

(
4e

γ2

)
. (1.1)
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1.4.3 The Fat-shattering dimension

The covering number of a hypothesis class can be thought of as a scale-sensitive version of the

growth function. Just as the behavior of the growth function can be characterized by the combinato-

rial notion of a VC-dimension, it is possible to characterize the behavior of certain covering numbers

using a scale-sensitive combinatorial notion termed thefat-shattering dimension, first introduced in

Kearns and Schapire[1994]. The fat-shattering dimension is defined using the scale-sensitive notion

of fat-shattering.

Definition 1.9 (Fat-shattering). Let H ⊆ R
X be a hypothesis class, and letγ > 0. A set

{x1, . . . , xm} ⊆ X is γ-shattered by H if there is a vectorr ∈ R
m such that for every vector

y ∈ {±1}m there is anh ∈ H such that

∀i ∈ [m], y[i](h(xi)− r[i]) ≥ γ.

The fat-shattering dimension is the size of the largest set which is fat-shattered.

Definition 1.10 (Fat-shattering dimension). The γ-fat-shattering dimension of H, denoted

Fat(γ,H), is the size of the largest subset ofX that isγ-shattered byH.

The fat-shattering dimension is strongly related to the behavior of theL∞ covering numbers of

H. This can be seen in the following bounds. The first bound is fromBartlett et al.[1997]

Theorem 1.11.LetF be a set of real-valued functions and letγ > 0. Form ≥ Fat(16γ, F ),

eFat(16γ,F )/8 ≤ Nm(γ, F,∞).

The reverse bound, listed below, is due toAnthony and Bartlett[1999] (Theorem 12.8), follow-

ing Alon et al.[1993].

Theorem 1.12. Let F be a set of real-valued functions with range in[0, B]. Let γ > 0. Let

d = Fat(γ4 ,F). For all m ≥ 1,

Nm(γ, F,∞) < 2

(
4B2m

γ2

)d log(4eBm/γd)

.

We use the termMargin Error Minimization(MEM) algorithms to refer to ERM algorithms that

minimize the margin loss. Using Theorem1.12and a uniform convergence argument, it is possible

to derive a sample complexity guarantee for MEM algorithms as a function of thefat-shattering

dimension. This is stated in the following theorem, based onAnthony and Bartlett[1999] (Theorem

13.4).
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Theorem 1.13. There are universal constantsC, c > 0 such that the following holds. Letγ > 0.

LetH ⊆ R
X be some hypothesis class withFat(γ/8,H) = d ≥ 1. Then for any integerm and

δ ∈ (0, 1), and for any distributionD, for any margin-error minimization algorithmA forH,

ℓ0/1(A, D,m, δ)− ℓ∗γ(H, D) ≤
√
C(d ln( c·md ) ln(c ·m) + ln( cδ ))

m
.

1.4.4 The Pseudo-dimension

By taking the marginγ to zero, we can get a guarantee for the zero-one loss relative to the best

zero-one lossℓ∗0/1, sinceℓ0/1 = limγ→0 ℓγ . Theγ-shattering dimension ofH ⊆ R
X for γ → 0 is

termed thepseudo-dimension[Pollard, 1984] of H. This dimension is equal to the VC-dimension

of the classTH = {(x, z) 7→ sign(h(x)− z) | h ∈ H}, wherex ∈ X andz ∈ R. Alternatively, the

pseudo-dimension can be defined directly on the classH as follows.

Definition 1.14 (Pseudo-shattering). Let H ⊆ R
X be a class of real-valued functions. A set

{x1, . . . , xm} ⊆ X is pseudo-shattered by H if there is a vectorr ∈ R
m such that for every

y ∈ {±1}m there is anh ∈ H such that

∀i ∈ [m], sign(h(xi)− r[i]) = y[i].

Definition 1.15 (Pseudo-dimension). Let H ⊆ {±1}X be some hypothesis class. Thepseudo-

dimensionofH is the size of the largest subset ofX that is pseudo-shattered byH.

The sample complexity guarantees of Theorem1.13hold also withd standing for the pseudo-

dimension andℓ∗0/1 instead ofℓ∗γ .

TheL2 covering number of a function class can be bounded using the pseudo dimension as

follows [see e.g.Bartlett, 2006, Theorem 3.1]: There are constantsC1 andC2 such that if the

pseudo-dimension ofH ⊆ [0, 1]X is d, then

N (γ,H, L2(S)) ≤ C1

(
C2

γ2

)d

. (1.2)

1.5 Distribution Dependence and General Losses

In the previous section we showed distribution-free sample-complexity bounds when the target loss

is the zero-one loss. Can we bound the sample complexity required to achievea low loss for other

target losses? Furthermore, is it possible to get better upper bounds thandistribution-free bounds,

based on the properties of the specific distribution in our learning problem?
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These two questions can be answered in the affirmative, using the tool ofRademacher com-

plexity [Bartlett and Mendelson, 2002]. Let us start with necessary definitions. LetZ be some

domain. Theempirical Rademacher complexityof a class of functionsF ⊆ R
Z with respect to a

setS = {zi}i∈[m] ⊆ Z is

R(F , S) = 1

m
Eσ[| sup

f∈F

∑

i∈[m]

σif(zi)|],

where σ = (σ1, . . . , σm) are m independent uniform{±1}-valued variables. Theaverage

Rademacher complexityof F with respect to a distributionD overZ and a sample sizem is

Rm(F , D) = ES∼Dm [R(F , S)].

Assume a hypothesis classH ⊆ R
X and a loss functionℓ : {±1} × R → R. For a hypothesis

h ∈ H, we introduce the functionhℓ : X × {±1} → R, defined byhℓ(x, y) = ℓ(y, h(x)). We

further define the function classHℓ = {hℓ | h ∈ H} ⊆ R
X×{±1}.

As shown inBartlett and Mendelson[2002], Rademacher complexities can be used to derive

sample complexity bounds for general bounded losses: Assume that the range ofHℓ is in [0, 1].

For anyδ ∈ (0, 1), with probability of1 − δ over the draw of samplesS ⊆ X × {±1} of sizem

according toD, everyh ∈ H satisfies

ℓ(h,D) ≤ ℓ(h, S) + 2Rm(Hℓ, D) +

√
8 ln(2/δ)

m
. (1.3)

This distribution-dependentguarantee can be used, for instance, to bound the loss of an ERM al-

gorithmA for H andℓ, relative to the best lossℓ∗(H, D), as follows. From Eq. (1.3) we have that

with probability1− δ/2 over the samplesS of sizem,

ℓ(A(S), D) ≤ ℓ(A(S), S) + 2Rm(Hℓ, D) +

√
8 ln(2/δ)

m
. (1.4)

Seth∗ ∈ H such thatℓ(h∗, D) = ℓ∗(H, D).2 SinceA is an ERM algorithm,ℓ(A(S), S) ≤ ℓ(h∗, S).
Now, by Hoeffding’s inequality, since the range ofHℓ is in [0, 1], with probability at least1− δ/2

ℓ(h∗, S) ≤ ℓ(h∗, D) +

√
ln(2/δ)

2m
.

2If no element inH achieves the infimumℓ∗(H, D), a similar yet more arduous argument can be carried out by setting
h∗ such thatℓ(h∗, D) ≤ ℓ∗(H, D) + ǫ, for anyǫ > 0.
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Therefore we conclude that

ℓ(A, D,m, δ) ≤ ℓ∗(H, D) + 2Rm(Hℓ, D) +

√
14 ln(2/δ)

m
. (1.5)

To get distribution-free results with general losses, one can use theworst-case Rademacher

complexity, defined as follows for any integerm:

Rsup
m (F) = sup

S⊆Zm
R(F , S).

Thus, the upper bounds shown above can be turned into distribution-free bounds by replacing

Rm(Hℓ, D) withRsup
m (Hℓ).

A closely related complexity measure, termed theGaussian complexity, can be defined analo-

gously to the Rademacher complexity. The empirical Gaussian complexity is

G(F , S) = 1

m
Es[| sup

f∈F

∑

i∈[m]

sif(xi, yi)|],

Wheres = (s1, . . . , sm) are independent standard normal variables. Similarly,Gm(F , D) is the

expectation ofG(F , S) over samples of sizem. The Gaussian complexity and the Rademacher

complexity are related as follows [Tomczak-Jaegermann, 1989]: There are constantsc, C > 0 such

that for all function classesF and distributionsD,

c · Rm(F , D) ≤ Gm(F , D) ≤ C · ln(m)Rm(F , D). (1.6)

1.5.1 Relationships with other complexity measures

The Rademacher complexity can be related to the other complexity measures we have defined in

previous sections. In this section we survey some useful relationships.

First, the Rademacher complexity can be bounded by the VC-dimension as follows

[Bartlett and Mendelson, 2002]. For any distributionD overX × {±1},

Rm(Hℓ0/1 , D) ≤ O
(√

V C(H)
m

)
.



CHAPTER 1. INTRODUCTION 17

It is also easy to see, by considering the upper bound in Eq. (1.3) and the lower bound in Theo-

rem1.8, that there exists a distributionD such that

Rm(Hℓ0/1 , D) ≥ O
(√

V C(H)
m

)
.

For classes of real-valued functions, the Rademacher complexity can be bounded as a function

of the fat-shattering dimension of the class, but this depends on the entire behavior of the fat-

shattering dimension as a function ofγ [Mendelson, 2002]. For the other direction, the worst-case

Rademacher complexity can be tied to the fat-shattering dimension via the followingresult [See e.g.

Mendelson, 2002, Theorem 4.11].

Theorem 1.16.Letm ≥ 1 andγ ≥ 0. If Rsup
m (F) ≤ γ then theγ-fat-shattering dimension ofF is

at mostm.

The Rademacher complexity is strongly related to theL2 covering number of the function class.

First, we have an upper bound for theL2 covering number based on the Rademacher complexity.

Sudakov’s minoration theorem (Sudakov 1971, and see alsoLedoux and Talagrand, 1991) states

that there exists a constantC > 0 such that for anyη > 0

lnN (η,F , L2(S)) ≤
Cm

η2
G2(F , S). (1.7)

Due to Eq. (1.6), this implies a bound on the Rademacher complexity as well.

To bound for the Rademacher complexity from above using covering numbers, one needs to

consider the behavior of the covering number as a function ofγ. A classical result is Dudley’s

entropy integral [Dudley, 1967], which states that

R(F , S) ≤ 12√
m

∫ ∞

0

√
lnN (γ,F , L2(S)) dγ. (1.8)

If the integral is unbounded, the following refinement can be used [Srebro et al., 2010, Lemma A.3]:

For all ǫ ∈ (0, 1], for all real function classesF with range[0, 1] and for all setsS,

R(F , S) ≤ 4ǫ+
10√
m

∫ 1

ǫ

√
lnN (γ,F , L2(S)) dγ. (1.9)

Lastly, instead of an integral, one can bound the Rademacher complexity alsousing a finite sum as

follows [Mendelson, 2002, Lemma 3.7]: Letǫi = 2−i. Then

√
mR(RAMPγ , S) ≤ C

∑

i∈[N ]

ǫi−1

√
lnN (ǫi, RAMPγ , L2(S)) + 2ǫN

√
m. (1.10)



CHAPTER 1. INTRODUCTION 18

1.6 Linear Classifiers

When defining a learning problem, the hypothesis class should representour prior knowledge or

beliefs about what classifiers might be good predictors in this problem. In this way, the learning

algorithm can enjoy a hypothesis class of low complexity while keeping the bestlossℓ∗(H, D) low

as well, thus a small sample will suffice to achieve a good prediction accuracy.

While this prior knowledge can be specific to a problem, it turns out that some hypothesis

classes can be used very successfully on a vast range of problems. In particular, a common and

successful approach is to set the data domain to beX ⊆ R
d for some integerd, so that each

object is represented by a vectorx ∈ R
d, and to learn a predictor relative to the hypothesis class

of linear classifiers. A linear classifier is the functionhw, for some vectorw ∈ R
d, defined by

hw(x) = 〈w, x〉. The label predicted by such a classifier issign◦hw(x) = sign(〈w, x〉). The use of

linear classifiers has proved very useful in practice, and is at the coreof popular learning algorithms

such as the Perceptron [Rosenblatt, 1958] and Support Vector Machines (SVMs) [Boser et al., 1992,

Cortes and Vapnik, 1995, Vapnik, 1995].

It should be noted that the class of linear classifiers is sometimes defined with abias:hw,b(x) =

〈w, x〉 − b for w ∈ R
d andb ∈ R. However, the two formulations are practically equivalent, since

any biased classifier can be turned into an unbiased classifier by adding another dimensiond + 1

and settingx[d + 1] = 1 for all the objects in the domain. We will adhere to the formulation of

linear classifiers without a bias, also termedhomogeneous linear classifiers.

In this work we focus on homogeneous linear classifiers that can be described by vectors in the

unit ball. For a normed spaceS, denoteW(S) = {hw | w ∈ S, ‖w‖ ≤ 1}. We write simplyW
whenS is clear from context. There are well-known bounds for the complexity termsof hypothesis

classes of this form. First, the VC-dimension and the pseudo-dimension for linear classifiers in

Euclidean space can be calculated exactly [Dudley, 1978, Pollard, 1984].

Theorem 1.17.The VC-dimension ofW(Rd) is exactlyd.

Theorem 1.18.The pseudo-dimension ofW(Rd) is exactlyd.

By Theorem1.7, this implies that a bounded relative zero-one loss can be achieved by an ERM,

using a sample of sizeO(d/ǫ2). Now, suppose the dimensiond is very large. In that case, the sample

complexity guarantees based on the VC-dimension might be meaningless. It turns out that by using

a margin formulation, it is possible to get guarantees that are independent of the dimensionality

of the space. Thus, we can use even an infinite-dimensional space: Instead of a Euclidean space

R
d, consider a real-valuedHilbert space: This is a vector spaceX with an associated real-valued

inner product〈·, ·〉 : X × X → R. The norm on the Hilbert space is defined by‖x‖ =
√
〈x, x〉.

Linear classifiers can be defined on Hilbert spaces similarly to their definitiononRd, using the inner
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product of the Hilbert space. The dimension of a Hilbert space can be either finite or infinite. A

real-valued finite-dimensional Hilbert space with dimensiond is isomorphic to the Euclidean space

R
d. A Hilbert space with a countable dimension is termed aseparableHilbert space. We have the

following bound on the fat-shattering dimension of linear classifiers in a Hilbert space, originally

from Gurvits[1997].

Theorem 1.19. Let S be a separable Hilbert space. LetB > 0 such thatX ⊆ BB(S). Then the

γ-fat-shattering dimension ofW(S) is at mostB
2

γ2 .

Thus, we can conclude from Theorem1.13that a bounded zero-one loss (relative to theγ-margin

loss) can be achieved by a MEM algorithm, using a sample of sizeÕ(B2/γ2ǫ2). For Lipschitz

losses, such as the hinge-loss and the ramp-loss, a sample complexity boundthat depends on the

average squared norm of the data can be derived using Rademacher complexities, as the following

result shows [Bartlett and Mendelson, 2002].

Theorem 1.20. LetS be a separable Hilbert space. Letℓ be ac-Lipschitz loss function. Then for

any distributionD overS × {±1}, Rm(W(S)ℓ, D) ≤
√

c2E[‖x‖2]
m , where the expectation is over

the marginal ofD onS.

This theorem, combined with Eq. (1.5), allows deriving sample complexity upper bounds for

learning algorithms that minimize the hinge-loss or the ramp-loss. Consider firstthe hinge-loss—

this is the loss that is minimized in soft-margin SVM [Cortes and Vapnik, 1995]. Since the hinge-

loss with marginγ is 1/γ-Lipschitz, we get a Rademacher complexity upper bound of
√

E[‖x‖2]
mγ2 .

This implies that a sample size ofO(E[‖x‖2]/γ2) suffices to achieve a small relative hinge-loss,

compared to the best achievable hinge-loss. This can be done using an ERM algorithm for the

hinge-loss, such as soft-margin SVM. Since the hinge-loss is an upper bound on the zero-one loss,

this implies a guarantee also on the zero-one loss of the classifier emitted by the algorithm, although

this guarantee is with respect to the best achievable hinge-loss.

For the ramp-loss, an even stronger result can be derived. The ramp-loss is also1/γ-Lipschitz,

thus it has the same Rademacher complexity upper bound of
√

E[‖x‖2]
mγ2 . By Eq. (1.3), it follows

that a sample size ofO(E[‖x‖2]/γ2) suffices so that all linear classifiers in the unit ball have their

ramp-loss on the distribution not much larger than their ramp-loss on the sample.The ramp-loss is

lower-bounded by the zero-one loss and upper-bounded by the margin-lossℓγ . Therefore, we can

conclude that a sample size ofO(E[‖x‖2]/γ2) suffices so that all linear classifiers in the unit ball

have their zero-one loss on the distribution not much larger than theirγ-margin loss on the sample.

It follows that a MEM algorithm will also require only that many examples to achieve a low zero-

one loss relative to the best margin loss. The following lower bound shows that this guarantee is

tight.
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Theorem 1.21.There are constantsC, c such that the following holds. LetS be a separable Hilbert

space of infinite dimension. LetB > 0. For any learning algorithmA and any integerm, there is a

distributionD overBB(S)× {±1} such that for anyδ ≤ c,

ℓ0/1(A, D,m, δ)− ℓ∗γ(W(S), D) ≥
√
C ·B2

γ2m
.

Proof. Assume to the contrary that there exists an algorithmA such that for all distributionsD over

BB(S)× {±1},

ℓ0/1(A, D,m, δ)− ℓ∗γ(W(S), D) <

√
C ·B2

γ2m
.

Let xi = B · ei ∈ BB(S) whereei is the i’th vector in an orthonormal basis forS. The set

X = {x1, . . . , xn}, for n = ⌊B2

γ2 ⌋, is γ-shattered byW(S), since for any labelingy1, . . . , yn ∈
{±1}n, we can setw = γ

B

∑n
i=1 yiei, and we get that for alli ∈ [n], yi〈w, xi〉 = γ. In addition,

‖w‖ = γ
B

√
n ≤ 1, hencehw ∈ W(S). It follows that for any distributionD with support in

X × {±1}, we haveℓ∗γ(W(S), D) ≤ ℓ∗0/1(W(S), D). Thus we have

ℓ0/1(A, D,m, δ)− ℓ∗0/1(W(S), D) <

√
C ·B2

γ2m
≤
√
C · (n+ 1)

m
.

But the setX is shattered bysign ◦ H, thus the VC-dimension ofH|X is n. Therefore, by Theo-

rem1.8, there exists a universal constantC such that no algorithm can satisfy this inequality. We

have thus reached a contradiction.

Thus we can conclude the following: The distribution-free sample-complexityof learning ho-

mogeneous linear classifiers in the unit ball is proportional tod, and can be achieved by an ERM

for the zero-one loss. The distribution-free sample-complexity with respect to the margin loss is

proportional tomin(d, B
2

γ2 ), and can be achieved by an MEM algorithm. Thus, in high or infinite

dimensions, the sample-complexity of binary classification might be prohibitive,while the sample

complexity of margin learning can be reasonable.

In this work we do not specifically address Hilbert spaces, and work for convenience with linear

separators inRd. However, our results are not specific to Euclidean spaces, and they can be easily

adapted to general separable Hilbert spaces.
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1.7 Main Contributions

As we have shown in the previous sections, many complexity measures allow bounding the sample

complexity of various hypothesis classes and algorithms. These complexity measures are usually

used to provide upper-bounds for the sample complexity of a specific hypothesis class. These upper

bounds typically hold for a large class of distributions. For instance, consider homogeneous linear

classifiers in the unit ball, in the Euclidean spaceR
d. As shown in Section1.6, the distribution-

free sample complexity of learning with this class, for any data distribution, is proportional tod.

In addition, the sample complexity upper bound of large-margin classification isproportional to

B2/γ2, whereB2 is the average squared norm of the data andγ is the size of the margin.

Such upper bounds can be useful for understanding the positive aspects of a learning rule. But

it is difficult to understand the deficiencies of a learning rule, or to comparebetween different rules,

based on upper bounds alone. This is because it is possible, and is oftenthe case, that the true

sample complexity for a given data distribution is much lower than the bound.

As we have shown above, some sample complexity upper bounds are known tobe tight or to

have an almost-matching lower bound. For instance, the VC-dimension lower bound in Theorem1.8

shows that there exists a distribution in the class covered by the VC-dimensionupper bound, for

which this bound is tight. This holds in particular for linear classifiers in the unitball. The lower

bound for margin learning of linear classifiers, in Theorem1.21, shows a similar result for the

margin-based upper bound.

These results show that there cannot be a better upper bound that holdsfor the same class of

distributions that the upper bound covers. But they do not imply that the upper bound characterizes

the true sample complexity for anyspecificdistribution in the class, except for the ones for which

the upper bound is indeed tight. For instance, although the sample-complexity upper bound of

O(B2/γ2) for margin-learning is tight, Theorem1.6and Theorem1.17imply that if the distribution

is supported by a low-dimensional sub-space, then the true number of examples required to reach a

low error is much smaller.

In the first part of this thesis, our goal is to identify a simple quantity, which is afunction of

the distribution, thatdoesprecisely characterize the sample complexity of learning this distribu-

tion under a specific learning rule. We focus on the popular rule of MarginError Minimization

(MEM), defined in Section1.4.3, and on the class of homogeneous linear classifiers. We present

a new quantity, termed themargin-adapted dimension, and use it to provide a tighter distribution-

dependent upper bound, and a matching distribution-dependent lower bound, for MEM algorithms

for linear classifiers. The upper bound is universal, and the lower bound holds for a rich class of

distributions.

The margin-adapted dimension, which we denote bykγ for a margin ofγ, refines both the
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dimension and the average norm of the data distribution, and can be easily calculated from the co-

variance matrix and the mean of the distribution. We provide a sample-complexity upper bound

showing thatÕ(
kγ
ǫ2
) examples suffice in order to learn any distribution with a margin-adapted di-

mension ofkγ . We then show that for a rich family of ‘light tailed’ distributions, q the number of

samples required for learning by minimizing the margin error is also lower-bounded byΩ(kγ).

Our lower bound hinges on several new results:

• We relate fat-shattering to hardness of learning using MEM.

• We show that for a convex hypothesis class, fat-shattering is equivalent to shattering with

exact margins.

• We link the fat-shattering of a set of vectors with the eigenvalues of the dot-product matrix

(the Gram matrix) of the vectors in the set.

• We provide a new lower bound for the smallest eigenvalue of a random Gram matrix gener-

ated by sub-Gaussian variables. This bound extends previous results inanalysis of random

matrices.

Some of the results in this part have appeared inSabato et al.[2010b].

As mentioned above, complexity measures of hypothesis classes are typicallyanalyzed on a

case-by-case basis. For instance, the complexity of the class of linear classifiers has been analyzed

as a function of parameters such as the dimension of the ambient space and the maximal norm of

the separator. In the second part of this thesis, we consider the usefulsetting ofMultiple Instance

Learning, and propose a generic analysis for this setting, that holds across many different hypothesis

classes.

Multiple-Instance Learning (MIL), first introduced inDietterich et al.[1997], is a special type

of a supervised classification problem. As in classical supervised classification, in MIL the learner

receives a sample of labeled examples drawn i.i.d. from an arbitrary and unknown distribution, and

its objective is to discover a classification rule with a small expected classification error over the

same distribution. In MIL additional structure is assumed, whereby the examples are received as

bagsof instances, such that each bag is composed of several instances. It is assumed that each

instance has a true label, however the learner only observes the labels ofthe bags, which is is de-

termined by the hidden labels of the instances via some function which is known a-priori. Classical

works on MIL assume that the function is the Boolean OR. In this work we consider a more general

setting which allows other functions as well.

We propose a formal framework for generalized MIL, which allows analyzing any MIL problem

as a function of the underlying hypothesis class: : This is the hypothesis class of the possible map-

pings from single instances to labels. In addition, the analysis depends on the function determining
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the bag labels based on the instance labels. We provide a generic analysis that bounds the complex-

ity of learning a MIL problem based on the complexity of learning the underlying hypothesis class.

Our main contributions are:

• Bounding the sample complexity of MIL as a function of the complexity of the underlying

hypothesis class. We provide bounds for the following complexity measures.

– VC-dimension

– Pseudo-dimension

– Covering numbers

– Fat-shattering dimension

– Rademacher complexity

• A generic learning algorithm, which operates by using a regular supervised learning algorithm

for the underlying hypothesis class as an oracle. The algorithm is computationally efficient if

the oracle is an efficient learner in the agnostic setting.

• We present and analyze a setting in which MIL can be used to improve the sample complexity

of non-MIL learning, by constructing artificial bags.

Some of these results have appeared inSabato and Tishby[2009], Sabato et al.[2010a].

To make this dissertation coherent and due to the lack of space, some of my research work was

omitted from this thesis. For example, I have worked on the generalization abilityof the Information

Bottleneck method [Shamir et al., 2010, 2008], on multiclass learnability [Daniely et al., 2011] and

on active learning [Gonen et al., 2011].
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Margin Learning
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Chapter 2

Introduction (Part I)

In this part we pursue a tight characterization of the sample complexity of learning a classifier

under a particular data distribution, and using a particular learning rule. Specifically, we treat the

case where the data domain isX = R
d, and the hypothesis class is the homogeneous classifiers in

the unit ball,H = W(Rd). We obtain a tight distribution-specific characterization of the sample

complexity of large-margin learning.

Denote bym(ǫ, γ,D) the number of examples required to achieve an excess error of no more

thanǫ relative to the best possibleγ-margin error for a specific distributionD, using a MEM algo-

rithm. Our main result shows that for a rich family of ‘light-tailed’ distributions,

Ω(kγ(D)) ≤ m(ǫ, γ,D) ≤ Õ
(
kγ(D)

ǫ2

)
.

The upper bound is in fact universal and holds for any distribution, while the lower bound holds for

a family of distributions that we define below.

As can be seen in this bound, we do not tightly characterize the dependence of the sample

complexity on the desired error [as done e.g. inSteinwart and Scovel, 2007], thus our bounds are

not tight for asymptotically small error levels. Our results are most significant if the desired error

level is a constant well below chance but bounded away from zero. This is in contrast to classical

statistical asymptotics that are also typically tight, but are valid only for very small ǫ. As was

recently shown byLiang and Srebro 2010, the sample complexity for very smallǫ (in the classical

statistical asymptotic regime) depends on quantities that can be very different from those that control

the sample complexity for moderate error rates, which are more relevant formachine learning.

Our tight characterization, and in particular the distribution-specific lower bound on the sample

complexity that we establish, can be used to compare large-margin (L2 regularized) learning to other

learning rules. We provide two such examples: we use our lower bound to rigorously establish a

25
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sample complexity gap betweenL1 andL2 regularization previously studied inNg [2004], and to

show a large gap between discriminative and generative learning on a Gaussian-mixture distribution.

We start by discussing related work in Section2.1. We then present the problem setting and

notation in Section2.2. We introduce the margin-adapted dimension in Section2.3. The sample-

complexity upper bound is proved in Chapter3. Chapter4 is dedicated to the proof of the lower

bound. In Chapter5 we give examples of implications, and also show that any non-trivial sample-

complexity lower bound for more general distributions must employ propertiesother than the co-

variance matrix of the distribution.

2.1 Related Work

Most work on “sample complexity lower bounds” is directed at proving that under some set of as-

sumptions, there exists a data distribution for which one needs at least a certain number of examples

to learn with required error and confidence [for instanceAntos and Lugosi, 1998, Ehrenfeucht et al.,

1988, Gentile and Helmbold, 1998]. This type of a lower bound does not, however, indicate much

on the sample complexity of other distributions under the same set of assumptions.

For distribution-specific lower bounds, the classical analysis of Vapnik [Vapnik, 1995, Theorem

16.6] provides not only sufficient but also necessary conditions for the learnability of a hypothesis

class with respect to a specific distribution. The essential condition is that themetric entropy of the

hypothesis class with respect to the distribution be sub-linear in the limit of an infinite sample size.

In some sense, this criterion can be seen as providing a “lower bound” on learnability for a specific

distribution. However, we are interested in finite-sample convergence rates, and would like those

to depend on simple properties of the distribution. The asymptotic arguments involved in Vapnik’s

general learnability claim do not lend themselves easily to such analysis.

Benedek and Itai[1991] show that if the distribution is known to the learner, a specific hypoth-

esis class is learnable if and only if there is a finiteǫ-cover of this hypothesis class with respect to

the distribution.Ben-David et al.[2008] consider a similar setting, and prove sample complexity

lower bounds for learning with any data distribution, for some binary hypothesis classes on the real

line. Vayatis and Azencott[1999] provide distribution-specific sample complexity upper bounds for

hypothesis classes with a limited VC-dimension, as a function of how balanced the hypotheses are

with respect to the considered distributions. These bounds are not tight for all distributions, thus they

also do not fully characterize the distribution-specific sample complexity.Caramanis and Mannor

[2007] provide lower bounds for the margin error of separating hyperplaneson nearly log-concave

distributions. These bounds are related to the fact that such distributions donot satisfy large-margin

separation. In contrast, our bounds hold for all distributions, including ones that can be separated

with zero margin error.
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2.2 Problem setting and definitions

In this chapter we consider the domainX = R
d, and the function class of linear separators with a

unit norm,H =W(Rd). We write simplyw to denote the functionhw = 〈w, x〉 for somew ∈ R
d.

Our goal is to bound the zero-one lossℓ0/1. We consider MEM algorithms relative to the margin

lossℓγ for someγ > 0. We denote such an algorithm for a margin ofγ byAγ . For a distributionD

overX × {±1}, we denote byDX the marginal distribution ofD onX .

The distribution-specific sample complexity for MEM algorithms is defined as follows:

Definition 2.1 (Distribution-specific sample complexity). For γ > 0, ǫ, δ ∈ [0, 1], and a distribution

D, thedistribution-specific sample complexity, denoted bym(ǫ, γ,D, δ), is the minimal sample size

such that for any MEM algorithmA, and for anym ≥ m(ǫ, γ,D, δ),

ℓ0/1(Aγ , D,m, δ)− ℓ∗γ(H, D) ≤ ǫ.

Note that while we are considering a specific distribution, we require thatall possible MEM

algorithms do well on this distribution. This is because we are interested in the MEM strategy in

general, and thus we study the guarantees that can be provided regardless of the specific MEM

implementation.

In the rest of the chapter we write simplyℓ∗γ(D) and omit the fixed termH. We also sometimes

omit δ and write simplym(ǫ, γ,D), indicating thatδ is assumed to be some fixed small constant.

2.3 The margin-adapted dimension

The sample complexity of MEM for linear classifiers with unit norm can be upper-bounded in terms

of the average norm relative to the marginE[‖X‖2]/γ2, or alternatively in terms of the dimension-

ality d (see Section1.6). Although both of these bounds are tight in the worst-case sense, i.e., they

are the best bounds that rely only on the norm or only on the dimensionality respectively, neither is

tight in a distribution-specific sense: If the average norm is unbounded while the dimension is small,

then there can be an arbitrarily large gap between the true distribution-dependent sample complexity

and the bound that depends on the average norm. If the converse holds, that is, the dimension is

arbitrarily large while the average-norm is bounded, then the dimensionality bound is loose.

Seeking a tight distribution-specific analysis, one simple approach to tighten these bounds is

to consider their minimum, which is proportional tomin(d,E[‖X‖2]/γ2). Trivially, this is an

upper bound on the sample complexity as well. However, this simple combination is also not tight:

Consider a distribution in which there are a few directions with very high variance, but the combined

variance in all other directions is small (see Figure2.1). We will show that in such situations the
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Figure 2.1: Illustrating covariance matrix ellipsoids. left: norm bound is tight; middle: dimension
bound is tight; right: neither bound is tight.

sample complexity is characterized not by the minimum of dimension and norm, but by the sum of

the number of high-variance dimensions and the average squared norm inthe other directions. This

behavior is captured by themargin-adapted dimension. We define it using the following property

of a distribution.

Definition 2.2. Letb > 0 and letk be a positive integer. A distributionDX overRd is (b, k)-limited

if there exists a sub-spaceV ⊆ R
d of dimensiond − k such thatEX∼DX

[‖OV ·X‖2] ≤ b, where

OV is an orthogonal projection ontoV .

Definition 2.3 (margin-adapted dimension). Themargin-adapted dimensionof a distributionDX ,

denoted bykγ(DX), is the minimumk such that the distribution is(γ2k, k)-limited.

We sometimes drop the argument ofkγ when it is clear from context. It is easy to see that for any

distributionDX overRd, kγ(DX) ≤ min(d,E[‖X‖2]/γ2). Moreover,kγ can be much smaller than

this minimum. For example, consider a random vectorX ∈ R
1001 with mean zero and statistically

independent coordinates, such that the variance of the first coordinate is1000, and the variance in

each remaining coordinate is0.001. We havek1 = 1 butd = E[‖X‖2] = 1001.

kγ(DX) can be calculated from the uncentered covariance matrixEX∼DX
[XXT ] as follows:

Let λ1 ≥ λ2 ≥ · · ·λd ≥ 0 be the eigenvalues of this matrix. Then

kγ = min{k |
d∑

i=k+1

λi ≤ γ2k}. (2.1)

A quantity similar to this definition ofkγ was studied previously inBousquet[2002]. The eigenval-

ues of theempiricalcovariance matrix were used to provide sample complexity bounds, for instance

in Scḧolkopf et al.[1999]. However,kγ generates a different type of bound, since it is defined based

on the eigenvalues of the distribution and not of the sample. We will see that for small finite samples,

the latter can be quite different from the former.



Chapter 3

A Distribution-Dependent Upper Bound

In this chapter we prove an upper bound on the sample complexity of learningwith MEM. To

do that, we will use the ramp-lossrampγ which was defined in Section1.3. We show uniform

convergence of the training error and test error with respect to this loss. The ramp-loss is lower-

bounded by the zero-one loss and upper-bounded by the margin loss. Thus, the uniform convergence

result will allow us to bound the true zero-one loss of MEM as a function of the best margin error

on the distribution. We denote

RAMPγ = Hrampγ = {(x, y) 7→ rampγ(w, x, y) | w ∈ B
d
1}.

We will show uniform convergence overRAMPγ by bounding the Rademacher complexity of

this class as a function of the data distribution. We will boundRm(RAMPγ , D) on any(B2, k)-

limited distribution, by restating the functions inRAMPγ as sums of two functions, each selected

from a function class with bounded complexity. The first function class will be bounded because

of the norm bound on the subspaceV , and the second function class will have a bounded pseudo-

dimension. However, the second function class will depend on the choice of the first function in

the sum. Therefore, we require the following lemma, which allows combining covering numbers of

different function classes. We use the notion of aHausdorff distancebetween two setsG1,G2 ⊆ X ,

defined as∆H(G1,G2) = supg1∈G1
infg2∈G2 ‖g1 − g2‖◦.

Lemma 3.1. Let (X , ‖ · ‖◦) be a normed space. LetF ⊆ X be a set, and letG : X → 2X be a

mapping from objects inX to sets of objects inX . Assume thatG is c-Lipschitz with respect to the

Hausdorff distance on sets, that is

∀f1, f2 ∈ X ,∆H(G(f1),G(f2)) ≤ c‖f1 − f2‖◦.

29
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LetFG = {f + g | f ∈ F , g ∈ G(f)}. Then

N (η,FG , ◦) ≤ N (η/(2 + c),F , ◦) · sup
f∈F
N (η/(2 + c),G(f), ◦).

Proof. For any setA ⊆ X , denote byCA a minimalη-covering forA with respect to‖ · ‖◦, so

that |CA| = N (η,A, ◦). Let f + g ∈ FG such thatf ∈ F , g ∈ G(f). There is af̂ ∈ CF
such that‖f − f̂‖◦ ≤ η. In addition, by the Lipschitz assumption there is ag̃ ∈ G(f̂) such that

‖g − g̃‖◦ ≤ c‖f − f̂‖◦ ≤ cη. Lastly, there is âg ∈ CG(f̂) such that‖g̃ − ĝ‖◦ ≤ η. Therefore

‖f + g − (f̂ + ĝ)‖◦ ≤ ‖f − f̂‖◦ + ‖g − g̃‖◦ + ‖g̃ − ĝ‖◦ ≤ (2 + c)η.

Thus the set{f + g | f ∈ CF , g ∈ CG(f)} is a(2+ c)η cover ofFG . The size of this cover is at most

|CF | · supf∈F |CG(f)| ≤ N (η,F , ◦) · supf∈F N (η,G(f), ◦).

The following lemma shows a useful class of mappings that are Lipschitz with respect to the

Hausdorff distance as required by Lemma3.1.

Lemma 3.2. Let f : X → R be a function and letZ ⊆ R
X be a function class over some domain

X . LetG : RX → 2R
X

be the function defined by

G(f) , {x 7→ Jf(x) + z(x)K− f(x) | z ∈ Z}. (3.1)

ThenG is 1-Lipschitz with respect to the Hausdorff distance.

Proof. For a functionf : X → R and az ∈ Z, define the functionG[f, z] by

∀x ∈ X , G[f, z](x) = Jf(x) + z(x)K− f(x).

Let f1, f2 ∈ R
X be two functions, and letg1 = G[f1, z] ∈ G(f1) for somewb ∈ V̄ . Then, since

G[f2, z] ∈ G(f2), we haveinfg2∈G(f2) ‖g1 − g2‖L2(S) ≤ ‖G[f1, z]−G[f2, z]‖. Now, for allx ∈ R,

|G[f1, z](x)−G[f2, z](x)| = |Jf1(x) + z(x)K− f1(x)− Jf2(x) + z(x)K + f2(x)|
≤ |f1(x)− f2(x)|.

Thus

‖G[f1, z]−G[f2, z]‖2L2(S)
= EX∼S(G[f1, z](X)−G[f2, z](X))2

≤ EX∼S(f1(X)− f2(X))2 = ‖f1 − f2‖2L2(S)
.
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It follows that infg2∈G(f2) ‖g1 − g2‖L2(S) ≤ ‖f1 − f2‖L2(S). This holds for anyg1 ∈ G(f1), thus

∆H(G(f1),G(f2)) ≤ ‖f1 − f2‖L2(S).

We will also require the following lemma, which uses the pseudo-dimension of a function class

to bound the pseudo-dimension of a different class that is derived fromit.

Lemma 3.3. Let f : X → R be a function and letZ ⊆ R
X be a function class over some domain

X . LetG(f) be defined as in Eq. (3.1). Then the pseudo-dimension ofG(f) is at most the pseudo-

dimension ofZ.

Proof. Let k be the pseudo-dimension ofG(f), and let{x1, . . . , xk} ⊆ X be a set which is pseudo-

shattered byG(f). We show that the same set is pseudo-shattered byZ as well, thus proving the

lemma. SinceG(f) is pseudo-shattered, there exists a vectorr ∈ R
k such that for ally ∈ {±1}k

there exists agy ∈ G(f) such that∀i ∈ [m], sign(gy(xi)−r[i]) = y[i]. Therefore for ally ∈ {±1}k

there exists azy ∈ Z such that

∀i ∈ [k], sign(Jf(xi) + zy(xi)K− f(xi)− r[i]) = y[i].

By considering the casey[i] = 1, we have

0 < Jf(xi) + zy(xi)K− f(xi)− r[i] ≤ 1− f(xi)− r[i].

By considering the casey[i] = −1, we have

0 > Jf(xi) + zy(xi)K− f(xi)− r[i] ≥ −f(xi)− r[i].

Therefore0 < f(xi) + r[i] < 1. Now, lety ∈ {±1}k and consider anyi ∈ [k]. If y[i] = 1 then

Jf(xi) + zy(xi)K− f(xi)− r[i] > 0

It follows that

Jf(xi) + zy(xi)K > f(xi) + r[i] > 0,

thus

f(xi) + zy(xi) > f(xi) + r[i].

In other words,sign(zy(xi)− r[i]) = 1 = y[i]. If y[i] = −1 then

Jf(xi) + zy(xi)K− f(xi)− r[i] < 0.
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It follows that

Jf(xi) + zy(xi)K < f(xi) + r[i] < 1,

thus

f(xi) + zy(xi) < f(xi) + r[i].

in other words,sign(zy(xi)− r[i]) = −1 = y[i]. We conclude thatZ shatters{x1, . . . , xk} as well,

using the same vectorr ∈ R
k. Thus the pseudo-dimension ofZ is at leastk.

The bound on the Rademacher complexity ofRAMPγ is provided in the following theorem. We

then state a corollary that uses Theorem3.4 to derive a sample-complexity upper bound for MEM

that depends only onkγ .

Theorem 3.4. LetD be a distribution overRd × {±1}, and assumeDX is (B2, k)-limited. Then

R(RAMPγ , D) ≤
√
O(k +B2/γ2) ln(m)

m
.

Proof. In this proof all absolute constants are assumed to be positive and are denoted byC or Ci

for some integeri. Their values may change from line to line or even within the same line.

Consider the distributioñD which results from drawing(X,Y ) ∼ D and emitting(Y ·X, 1).
It too is (B2, k)-limited, andR(RAMPγ , D) = R(RAMPγ , D̃). Therefore, we assume without loss

of generality that for all(X,Y ) drawn fromD, Y = 1. Accordingly, we henceforth omit they

argument fromrampγ(w, x, y) and write simplyrampγ(w, x) , rampγ(w, x, 1).

Let OV be an orthogonal projection onto a sub-spaceV of dimensiond − k such that

EX∼DX
[‖OV ·X‖2] ≤ B2. Let V̄ be the complementary sub-space toV . LetS = {x1, . . . , xm} ⊆

R
d, and denoteB(S) =

√
EX∼S [‖OV ·X‖2]. For a functionf : Rd → R, theL2(S) norm off is

‖f‖L2(S) =
√
EX∼S [f(X)2].

We will bound the Rademacher complexity ofRAMP by first bounding the covering number

of RAMPγ with respect toL2(S), and then using Eq. (1.10). To boundN (η, RAMPγ , L2(S)) for

η > 0, note thatrampγ(w, x) = J1 − 〈w, x〉/γK = 1 − J〈w, x〉/γK. Since shifting by a constant

and negating do not change the covering number of a function class,N (η, RAMPγ , L2(S)) is equal

to the covering number of{x 7→ J〈w, x〉/γK | w ∈ B
d
1}. Moreover, let

RAMP′
γ = {x 7→ J〈wa + wb, x〉/γK | wa ∈ B

d
1 ∩ V,wb ∈ V̄ }.

Then{x 7→ J〈w, x〉/γK | w ∈ B
d
1} ⊆ RAMP′

γ , thus it suffices to bound the covering number of

RAMP′
γ . To do that, we show thatRAMP′

γ satisfies the assumptions of Lemma3.1 for the the space

(RRd
, ‖ · ‖L2(S)).
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LetF = {x 7→ 〈wa, x〉/γ | wa ∈ B
d
1 ∩ V }. LetG : RRd → 2R

R
d

be the mapping defined by

G(f) , {x 7→ Jf(x) + 〈wb, x〉/γK− f(x) | wb ∈ V̄ }.

Clearly,FG = {f+g | f ∈ F , g ∈ G(f)} = RAMP′
γ . Furthermore, by Lemma3.2, G is 1-Lipschitz

as required by Lemma3.1. Thus, by Lemma3.1

N (η, RAMP′
γ , L2(S)) ≤ N (η/3,F , L2(S)) · sup

f∈F
N (η/3,G(f), L2(S)). (3.2)

We now proceed to bound the two covering numbers on the right hand side.First, consider

N (η/3,G(f), L2(S)). By Lemma3.3, the pseudo-dimension ofG(f) is the same as the pseduo-

dimension of{x 7→ 〈w, x〉/γ | w ∈ V̄ }, which is exactlyk, the dimension of̄V . Therefore, by

Eq. (1.2),

N (η/3,G(f), L2(S)) ≤ C1

(
C2

η2

)k

. (3.3)

Second, considerN (η/3,F , L2(S)). By Sudakov’s minoration, stated in Eq. (1.7) for anyη > 0

lnN (η,F , L2(S)) ≤
Cm

η2
G2(F , S).

The right-hand side can be bounded as follows:

γ ·m · G(F , S) = γ · Es[sup
f∈F
|

m∑

i=1

sif(xi)|] = Es[ sup
w∈Bd

1∩V
|〈w,

m∑

i=1

sixi〉|]

≤ Es[‖
m∑

i=1

siOV xi‖] ≤

√√√√Es[‖
m∑

i=1

siOV xi‖2] =
√∑

i∈[m]

‖OV xi‖2 =
√
mB(S).

ThereforelnN (η,F , L2(S)) ≤ C B2(S)
γ2η2

. Substituting this and Eq. (3.3) for the right-hand side in

Eq. (3.2) and adjusting constants we get

lnN (η, RAMPγ , L2(S)) ≤ lnN (η, RAMP′
γ , L2(S)) ≤ C1(1 + k ln(

C2

η
) +

B2(S)

γ2η2
),
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To finalize the proof, we plug this inequality into Eq. (1.10) to get

√
mR(RAMPγ , S) ≤ C1

∑

i∈[N ]

ǫi−1

√
1 + k ln(C2/ǫi) +

B2(S)

γ2ǫ2i
+ 2ǫN

√
m

≤ C1



∑

i∈[N ]

ǫi−1

(
1 +

√
k ln(C2/ǫi) +

√
B2(S)

γ2ǫ2i

)
+ 2ǫN

√
m

= C1



∑

i∈[N ]

2−i+1 +
√
k
∑

i∈[N ]

2−i+1 ln(C2/2
−i) +

∑

i∈[N ]

B(S)

γ


+ 2−N+1√m

≤ C
(
1 +
√
k +

B(S) ·N
γ

)
+ 2−N+1√m.

In the last inequality we used the fact that
∑

i i2
−i+1 ≤ 4. SettingN = ln(2m) we get

R(RAMPγ , S) ≤
C√
m

(
1 +
√
k +

B(S) ln(2m)

γ

)
.

Taking expectation over both sides, and noting thatE[B(S)] ≤
√
E[B2(S)] ≤ B, we get

R(RAMPγ , S) ≤
C√
m
(1 +

√
k +

B ln(2m)

γ
) ≤

√
O(k +B2 ln(2m)/γ2)

m
.

Corollary 3.5 (Sample complexity upper bound). LetD be a distribution overRd × {±1}. Then

m(ǫ, γ,D) ≤ Õ
(
kγ(DX)

ǫ2

)
.

Proof. LetA be a MEM algorithm, and letw∗ ∈ argminw∈Bd
1
ℓγ(w,D). By Eq. (1.4), with proba-

bility 1− δ/2

rampγ(Aγ(S), D) ≤ rampγ(Aγ(S), S) + 2Rm(RAMPγ , D) +

√
8 ln(2/δ)

m
.

Seth∗ ∈ H such thatℓγ(h∗, D) = ℓ∗γ(H, D). We have

rampγ(Aγ(S), S) ≤ ℓγ(Aγ(S), S) ≤ ℓγ(h∗, S).

The first inequality follows since the ramp loss is upper bounded by the marginloss. The second
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inequality follows sinceA is a MEM algorithm. Now, by Hoeffding’s inequality, since the range of

rampγ is in [0, 1], with probability at least1− δ/2

ℓγ(h
∗, S) ≤ ℓγ(h∗, D) +

√
ln(2/δ)

2m
.

It follows that with probability1− δ

rampγ(Aγ(S), D) ≤ ℓ∗γ(H, D) + 2Rm(RAMPγ , D) +

√
14 ln(2/δ)

m
. (3.4)

By definition ofkγ(DX),DX is (γ2kγ , kγ)-limited. Therefore, by Theorem3.4,

Rm(RAMPγ , D) ≤
√
O(kγ(DX)) ln(m)

m
.

In addition,ℓ0/1 ≤ rampγ . Combining these with Eq. (3.4) we conclude that

ℓ0/1(Aγ , D,m, δ) ≤ ℓ∗γ(H, D) +

√
O(kγ(DX) ln(m) + ln(1/δ))

m
.

Bounding the second right-hand term byǫ, we conclude thatm(ǫ, γ,D) ≤ Õ(kγ/ǫ
2).



Chapter 4

A Distribution-Dependent Lower Bound

The new upper bound presented in Cor.3.5 can be tighter than both the norm-only and the

dimension-only upper bounds. But does the margin-adapted dimension characterize the true sample

complexity of the distribution, or is it just another upper bound? To answer this question, we first

need tools for deriving sample complexity lower bounds. Section4.1relates the smallest eigenvalue

of a Gram-matrix to a lower bound on sample complexity. In Section4.2the family of sub-Gaussian

product distributions is presented. We prove a sample-complexity lower bound for this family in

Section4.3.

4.1 A sample complexity lower bound with Gram-matrix eigenvalues

The ability to learn is closely related to the probability of a sample to be shattered, as evident in

Vapnik’s formulations of learnability as a function of theǫ-entropy [Vapnik, 1995]. It is well known

that the maximal size of a shattered set dictates a sample-complexity upper bound. We show that

for some hypothesis classes it also implies a lower bound in Theorem4.1below. The theorem states

that if a sample drawn from a data distribution is fat-shattered (see Def.1.9) with a reasonably high

probability, then MEM can fail to learn a good classifier for this distribution. We then relate the

fat-shattering of a sample to the minimal eigenvalue of its Gram matrix. Therefore, a lower bound

on the smallest eigenvalue of the Gram-matrix implies a lower-bound on the sample complexity.

We say that a set isγ-shattered at the originif it is γ-shattered whenr in Def. 1.9 is set to the zero

vector.

The following theorem shows that a high probability ofγ-shattering implies hardness of margin

learning. This holds not only for linear classifiers, but more generally for all symmetrichypothesis

classes. Given a domainX , we say that a hypothesis classH ⊆ R
X is symmetric if for allh ∈ H,

−h ∈ H as well. This clearly holds for the class of linear classifiersH.

36
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Theorem 4.1. LetX be some domain, and assume thatH ⊆ R
X is a symmetric hypothesis class.

LetD be a distribution overX × {±1}. If the probability of a sample of sizem drawn fromDm
X to

beγ-shattered at the origin is at leastη, thenm(ǫ, γ,D, η/2) ≥ ⌊m/2⌋ for all ǫ < 1/2− ℓ∗γ(D).

Proof. Let ǫ ≤ 1
2 − ℓ∗γ(D). We show a MEM algorithmA such that

ℓ0/1(Aγ , D, ⌊m/2⌋, η/2) ≥
1

2
> ℓ∗γ(D) + ǫ,

thus proving the desired lower bound onm(ǫ, γ,D, η/2).

Assume for simplicity thatm is even (otherwise replacem with m − 1). Consider two sets

S, S̃ ⊆ X × {±1}, each of sizem/2, such thatSX ∪ S̃X is γ-shattered at the origin. Then there

exists a hypothesish1 ∈ H such that the following holds:

• For allx ∈ SX ∪ S̃X , |h1(x)| ≥ γ.

• For all (x, y) ∈ S, sign(h1(x)) = y.

• For all (x, y) ∈ S̃, sign(h1(x)) = −y.

It follows that ℓγ(h1, S) = 0. In addition, leth2 = −h1. We haveh2 ∈ H due to the sym-

metry ofH. It follows that ℓγ(h2, S̃) = 0. In addition,h1 andh2 never predict the same label.

Thus ℓ0/1(h1, D) + ℓ0/1(h2, D) ≥ 1. It follows that for at least one ofi ∈ {1, 2}, we have

ℓ0/1(hi, D) ≥ 1
2 . Denote the set of hypotheses with a high zero-one loss by

H⊗ = {h ∈ H | ℓ0/1(h,D) ≥ 1

2
}.

We have just shown that ifSX ∪ S̃X is γ-shattered then at least one of the following holds: (1)

h1 ∈ H⊗ ∩ argminh∈H ℓγ(h, S) or (2)h2 ∈ H⊗ ∩ argminh∈H ℓγ(h, S̃).

Now, consider a MEM algorithmA such that whenever possible, it returns a hypothesis from

H⊗. Formally, given the input sampleS, if H⊗ ∩ argminh∈H ℓγ(h, S) 6= ∅, thenA(S) ∈ H⊗ ∩
argminh∈H ℓγ(h, S). It follows that

PS∼Dm/2 [ℓ0/1(A(S), D) ≥ 1
2 ] ≥ PS∼Dm/2 [H⊗ ∩ argmin

h∈H
ℓγ(h, S) 6= ∅]

=
1

2
(PS∼Dm/2 [H⊗ ∩ argmin

h∈H
ℓγ(h, S) 6= ∅] + PS̃∼Dm/2 [H⊗ ∩ argmin

h∈H
ℓγ(h, S̃) 6= ∅])

≥ 1

2
(PS,S̃∼Dm/2 [H⊗ ∩ argmin

h∈H
ℓγ(h, S) 6= ∅ OR H⊗ ∩ argmin

h∈H
ℓγ(h, S̃) 6= ∅])

≥ 1

2
PS,S̃∼Dm/2 [SX ∪ S̃X is γ-shattered at the origin].
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The last inequality follows from the argument above regardingh1 andh2. The last expression is

simply half the probability that a sample of sizem from DX is shattered. By assumption, this

probability is at leastη. Thus we conclude thatPS∼Dm/2 [ℓ0/1(A(S), D) ≥ 1
2 ] ≥ η/2. It follows

thatℓ0/1(Aγ , D,m/2, η/2) ≥ 1
2 .

As a side note, it is interesting to observe that Theorem4.1 does not hold in general for non-

symmetric hypothesis classes. For example, assume that the domain isX = [0, 1], and the hypoth-

esis class is the set of all functions that label a finite number of points in[0, 1] by +1 and the rest

by−1. Consider the distribution which is uniform over[0, 1] and labels all of the domain with−1.

For anym > 0 andγ ∈ (0, 1), a sample of sizem is γ-shattered at the origin with probability1.

However, any learning algorithm that returns a hypothesis from the hypothesis class will incur zero

error.

We now return to the case of homogeneous linear classifiers, and link high-probability fat-

shattering to properties of the distribution. First, we provide a sufficient condition for the fat-

shattering of a sample, based on the minimum eigenvalue of its Gram matrix. Theorem4.2 stated

below presents an equivalent and simpler characterization of fat-shattering for linear classifiers. We

use it to prove the sufficient condition in Cor.4.5.

Theorem 4.2. LetX ∈ R
m×d be the matrix of a set of sizem in R

d. The set isγ-shattered at the

origin if and only ifXXT is invertible and for ally ∈ {±1}m, yT (XXT )−1y ≤ γ−2.

To prove Theorem4.2we require two auxiliary lemmas. The first lemma, stated below, allows

substitutingγ-shattering with shattering with exactγ-margins, by showing that the two notions are

equivalent if the function class is convex.

Lemma 4.3. LetF ⊆ R
X be a class of functions, and assumeF is convex, that is

∀f1, f2 ∈ F , ∀λ ∈ [0, 1], λf1 + (1− λ)f2 ∈ F .

If S = {x1, . . . , xm} ⊆ X is γ-shattered byF with witnessr ∈ R
m, then for everyy ∈ {±1}m

there is anf ∈ F such that for alli ∈ [m], y[i](f(xi)− r[i]) = γ.

The proof of this lemma is provided in Section4.4.1. The second lemma allows converting

the representation of the Gram-matrix to a different feature space while keeping the separation

properties intact. For a matrixM, M+ denotes its pseudo-inverse.

Lemma 4.4. LetX ∈ R
m×d be a matrix such thatXXT is invertible, and letY ∈ R

m×k such that

XX
T = YY

T . Letr ∈ R
m be some real vector. If there exists a vectorw̃ ∈ R

k such thatYw̃ = r,

then there exists a vectorw ∈ R
d such thatXw = r and‖w‖ = ‖YT (YT )+w̃‖ ≤ ‖w̃‖.
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Proof. DenoteK = XX
T = YY

T . Let S = Y
T
K

−1
X and letw = S

T w̃. We haveXw = XS
T w̃ =

XX
T
K

−1
Yw̃ = Yw̃ = r. In addition,‖w‖ = wTw = w̃T

SS
T w̃. By definition ofS,

SS
T = Y

T
K

−1
XX

T
K

−1
Y = Y

T
K

−1
Y = Y

T (YYT )−1
Y = Y

T (YT )+.

DenoteO = Y
T (YT )+. O is an orthogonal projection matrix: by the properties of the pseudo-

inverse,O = O
T andO2 = O. Therefore‖w‖ = w̃T

SS
T w̃ = w̃T

Ow̃ = w̃T
OO

T w̃ = ‖Ow̃‖ ≤
‖w̃‖.

Proof of Theorem4.2. We prove the theorem for1-shattering. The case ofγ-shattering follows by

rescalingX appropriately. LetXXT = UΛUT be the SVD ofXXT , whereU is an orthogonal

matrix andΛ is a diagonal matrix. LetY = UΛ
1
2 . We haveXXT = YY

T . We show that the

specified conditions are sufficient and necessary for the shattering ofthe set.

Sufficient: If XX
T is invertible, thenΛ is invertible, thus so isY. For anyy ∈ {±1}m, Let

wy = Y
−1y. ThenYwy = y. By Lemma4.4, there exists a separatorw such thatXw = y and

‖w‖ ≤ ‖wy‖ =
√
yT (YYT )−1y =

√
yT (XXT )−1y ≤ 1.

Necessary: If XXT is not invertible then the vectors inS are linearly dependent, thusS cannot be

shattered using linear separators [see e.g.Vapnik, 1995]. The first condition is therefore necessary.

AssumeS is 1-shattered at the origin and show that the second condition necessarily holds. By

Lemma4.3, for all y ∈ {±1}m there exists awy ∈ B
d
1 such thatXwy = y. Thus by Lemma4.4

there exists ãwy such thatYw̃y = y and‖w̃y‖ ≤ ‖wy‖ ≤ 1. XX
T is invertible, thus so isY.

Thereforew̃y = Y
−1y. ThusyT (XXT )−1y = yT (YYT )−1y = ‖w̃y‖ ≤ 1.

Corollary 4.5. LetX ∈ R
m×d be the matrix of a set of sizem in R

d. If λmin(XX
T ) ≥ mγ2 then

the set isγ-shattered at the origin.

Proof. If λmin(XX
T ) ≥ mγ2 thenXXT is invertible andλmax((XX

T )−1) ≤ (mγ2)−1. For any

y ∈ {±1}m we have‖y‖ = √m and

yT (XXT )−1y ≤ ‖y‖2λmax((XX
T )−1) ≤ m(mγ2)−1 = γ−2.

By Theorem4.2the sample isγ-shattered at the origin.

Cor. 4.5 generalizes the requirement of linear independence for shattering with nomargin: A

set of vectors is shattered with no margin if the vectors are linearly independent, that is ifλmin > 0.

The corollary shows that forγ-fat-shattering, we can require insteadλmin ≥ mγ2. We can now
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conclude the following theorem, which states that if it is highly probable that thesmallest eigenvalue

of the sample Gram matrix is large, then MEM might fail to learn a good classifier for the given

distribution. Its proof is immediate by combining Theorem4.1. and Cor.4.5.

Theorem 4.6. LetD be a distribution overRd × {±1}. Letm > 0 and letX be the matrix of

a sample drawn fromDm
X . Let η = P[λmin(XX

T ) ≥ mγ2]. Then for all ǫ < 1/2 − ℓ∗γ(D),

m(ǫ, γ,D, η/2) ≥ ⌊m/2⌋.

Theorem4.6 generalizes the case of learning a linear separator without a margin: If a sample

of size2m is linearly independent with high probability, then there is no hope of usingm points to

predict the label of the other points. The theorem extends this observationto the case of learning

with a margin, by requiring a stronger condition than just linear independence of the points in the

sample.

Recall that our upper-bound on the sample complexity from Chapter3 is Õ(kγ). We now define

the family of sub-Gaussian product distributions, and show that for this familym the lower bound

that can be deduced from Theorem4.6 is also linear inkγ .

4.2 Sub-Gaussian distributions

In order to derive a lower bound on distribution-specific sample complexity interms of the co-

variance ofX ∼ DX , we must assume thatX is not too heavy-tailed. This is because for any

data distribution there exists another distribution which is almost identical and has the same sample

complexity, but has arbitrarily large covariance values. This can be achieved by mixing the orig-

inal distribution with a tiny probability for drawing a vector with a huge norm. We thus restrict

the discussion to multidimensional sub-Gaussian distributions. This ensures light tails of the dis-

tribution in all directions, while still allowing a rich family of distributions, as we presently see.

Sub-Gaussianity is defined for scalar random variables as follows.

Definition 4.7 (Sub-Gaussian random variables, see e.g.Buldygin and Kozachenko[1998]). A

random variableX ∈ R is sub-Gaussian with momentB, forB ≥ 0, if

∀t ∈ R, E[exp(tX)] ≤ exp(t2B2/2).

In this work we further say thatX is sub-Gaussian withrelative momentρ > 0 if X is sub-Gaussian

with momentρ
√
E[X2], i.e.

∀t ∈ R, E[exp(tX)] ≤ exp(t2ρ2E[X2]/2).
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Note that a sub-Gaussian variable with momentB and relative momentρ is also sub-Gaussian

with momentB′ and relative momentρ′ for anyB′ ≥ B andρ′ ≥ ρ.

The family of sub-Gaussian distributions is quite extensive: For instance, itincludes any

bounded, Gaussian, or Gaussian-mixture random variable with mean zero. Specifically, ifX is

a mean-zero Gaussian random variable,X ∼ N(0, σ2), thenX is sub-Gaussian with relative mo-

ment1 and the inequalities in the definition above hold with equality. As another example,if X is a

uniform random variable over{±b} for someb ≥ 0, thenX is sub-Gaussian with relative moment

1, since

E[exp(tX)] =
1

2
(exp(tb) + exp(−tb)) ≤ exp(t2b2/2) = exp(t2E[X2]/2). (4.1)

Let B ∈ R
d×d be a symmetric PSD matrix. A random vectorX ∈ R

d is asub-Gaussian random

vectorwith moment matrixB if for all u ∈ R
d, E[exp(〈u,X〉)] ≤ exp(〈Bu, u〉/2). The following

lemma provides a useful property of the norm of a sub-Gaussian randomvector. The proof is given

in Section4.4.2.

Lemma 4.8. LetX ∈ R
d be a sub-Gaussian random vector with moment matrixB. Then for all

t ∈ (0, 1
4λmax(B)

], E[exp(t‖X‖2)] ≤ exp(2t · trace(B)).

Our lower bound holds for the family of sub-Gaussian product distributions, defined as follows.

Definition 4.9 (Sub-Gaussian product distributions). A distributionDX overRd is a sub-Gaussian

product distributionwith momentB and relative momentρ if there exists some orthonormal basis

a1, . . . , ad ∈ R
d, such that forX ∼ DX , 〈ai, X〉 are independent sub-Gaussian random variables,

each with momentB and relative momentρ.

Note that a sub-Gaussian product distribution has mean zero, thus its covariance matrix is equal

to its uncentered covariance matrix. For any fixedρ ≥ 0, we denote byDsg
ρ the family of all sub-

Gaussian product distributions with relative momentρ, in arbitrary dimension. For instance, all

multivariate Gaussian distributions and all uniform distributions on the corners of a centered hyper-

rectangle are inDsg
1 . All uniform distributions over a full centered hyper-rectangle are inDsg

3/2. Note

that if ρ1 ≤ ρ2,Dsg
ρ1 ⊆ Dsg

ρ2 .

We provide a lower bound for all distributions inDsg
ρ . This lower bound is linear in the margin-

adapted dimension of the distribution, thus it matches the upper bound provided in Cor.3.5. The

constants in the lower bound depend only on the value ofρ, which we regard as a constant.
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4.3 A sample-complexity lower bound for sub-Gaussian product dis-

tributions

As shown in Section4.1, to obtain a sample complexity lower bound it suffices to have a lower

bound on the value of the smallest eigenvalue of a random Gram matrix. The distribution of the

smallest eigenvalue of a random Gram matrix has been investigated under various assumptions.

The cleanest results are in the asymptotic case where the sample size and the dimension approach

infinity, the ratio between them approaches a constant, and the coordinatesof each example are

identically distributed.

Theorem 4.10(Bai and Silverstein 2010, Theorem 5.11). Let {Xi}∞i=1 be a series of matrices of

sizesmi × di, whose entries are i.i.d. random variables with mean zero, varianceσ2 and finite

fourth moments. Iflimi→∞
mi
di

= β < 1, thenlimi→∞ λmin(
1
di
XiX

T
i ) = σ2(1−√β)2.

This asymptotic limit can be used to approximate an asymptotic lower bound onm(ǫ, γ,D), if

DX is a product distribution of i.i.d. random variables with mean zero, varianceσ2, and finite fourth

moment. LetX ∈ R
m×d be the matrix of a sample of sizem drawn fromDX . We can findm = m◦

such thatλm◦
(XXT ) ≈ γ2m◦, and use Theorem4.6to conclude thatm(ǫ, γ,D) ≥ m◦/2. If d and

m are large enough, we have by Theorem4.10that forX drawn fromDm
X :

λmin(XX
T ) ≈ dσ2(1−

√
m/d)2 = σ2(

√
d−√m)2.

Solving the equalityσ2(
√
d − √m◦)2 = m◦γ2 we getm◦ = d/(1 + γ/σ)2. The margin-adapted

dimension forDX is kγ ≈ d/(1 + γ2/σ2), thus 1
2kγ ≤ m◦ ≤ kγ . In this case, then, the sample

complexity lower bound is indeed the same order askγ , which controls also the upper bound in

Cor. 3.5. However, this is an asymptotic analysis, which holds for a highly limited set of distri-

butions. Moreover, since Theorem4.10holds asymptotically for each distribution separately, we

cannot use it to deduce a uniform finite-sample lower bound for families of distributions.

For our analysis we requirefinite-samplebounds for the smallest eigenvalue of a random Gram-

matrix. Rudelson and Vershynin[2009, 2008] provide such finite-sample lower bounds for distri-

butions which are products of identically distributed sub-Gaussians. In Theorem4.11 below we

provide a new and more general result, which holds for any sub-Gaussian product distribution. The

proof of Theorem4.11 is provided in Section4.4.3. Combining Theorem4.11with Theorem4.6

above we prove the lower bound, stated in Theorem4.12below.

Theorem 4.11. For anyρ > 0 andδ ∈ (0, 1) there areβ > 0 andC > 0 such that the following

holds. For anyDX ∈ Dsg
ρ with covariance matrixΣ ≤ I, and for anym ≤ β · trace(Σ)− C, if X

is them× d matrix of a sample drawn fromDm
X , thenP[λmin(XX

T ) ≥ m] ≥ δ.
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Theorem 4.12(Sample complexity lower bound for distributions inDsg
ρ ). For any ρ > 0 there

are constantsβ > 0, C ≥ 0 such that for anyD with DX ∈ Dsg
ρ , for anyγ > 0 and for any

ǫ < 1
2 − ℓ∗γ(D),m(ǫ, γ,D, 1/4) ≥ βkγ(DX)− C.

Proof. Assume w.l.o.g. that the orthonormal basisa1, . . . , ad of independent sub-Gaussian direc-

tions ofDX , defined in Def.4.9, is the natural basise1, . . . , ed. Defineλi = EX∼DX
[X[i]2], and

assume w.l.o.g.λ1 ≥ . . . ≥ λd > 0. Let X be them × d matrix of a sample drawn fromDm
X .

Fix δ ∈ (0, 1), and letβ andC be the constants forρ andδ in Theorem4.11. Throughout this

proof we abbreviatekγ , kγ(DX). Letm ≤ β(kγ − 1) − C. We would like to use Theorem4.11

to boundλmin(XX
T ) with high probability, so that Theorem4.6 can be applied to get the desired

lower bound. However, Theorem4.11holds only ifΣ ≤ I. Thus we split to two cases—one in

which the dimensionality controls the lower bound, and one in which the norm controls it. The split

is based on the value ofλkγ .

Case I Assumeλkγ ≥ γ2. Then∀i ∈ [kγ ], λi ≥ γ2. By our assumptions onDX , for all i ∈ [d]

the random variableX[i] is sub-Gaussian with relative momentρ. Consider the random variables

Z[i] = X[i]/
√
λi for i ∈ [kγ ]. Z[i] is also sub-Gaussian with relative momentρ, andE[Z[i]2] = 1.

Consider the product distribution ofZ[1], . . . , Z[kγ ], and letΣ′ be its covariance matrix. We have

Σ′ = Ikγ , and trace(Σ′) = kγ . Let Z be the matrix of a sample of sizem drawn from this

distribution. By Theorem4.11, P[λmin(ZZ
T ) ≥ m] ≥ δ, which is equivalent to

P[λmin(X · diag(1/λ1, . . . , 1/λkγ , 0, . . . , 0) · XT ) ≥ m] ≥ δ.

Since∀i ∈ [kγ ], λi ≥ γ2, we haveP[λmin(XX
T ) ≥ mγ2] ≥ δ.

Case II Assumeλkγ < γ2. Thenλi < γ2 for all i ∈ {kγ , . . . , d}. Consider the random variables

Z[i] = X[i]/γ for i ∈ {kγ , . . . , d}. Z[i] is sub-Gaussian with relative momentρ andE[Z[i]2] ≤ 1.

Consider the product distribution ofZ[kγ ], . . . , Z[d], and letΣ′ be its covariance matrix. We have

Σ′ < Id−kγ+1. By the minimality in Eq. (2.1) we also havetrace(Σ′) = 1
γ2

∑d
i=kγ

λi ≥ kγ − 1.

Let Z be the matrix of a sample of sizem drawn from this product distribution. By Theorem4.11,

P[λmin(ZZ
T ) ≥ m] ≥ δ. Equivalently,

P[λmin(X · diag(0, . . . , 0, 1/γ2, . . . , 1/γ2) · XT ) ≥ m] ≥ δ,

thereforeP[λmin(XX
T ) ≥ mγ2] ≥ δ.

In both casesP[λmin(XX
T ) ≥ mγ2] ≥ δ. This holds for anym ≤ β(kγ − 1) − C, thus by

Theorem4.6m(ǫ, γ,D, δ/2) ≥ ⌊(β(kγ − 1)− C)/2⌋ for ǫ < 1/2− ℓ∗γ(D). We finalize the proof
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by settingδ = 1
2 and adjustingβ andC.

4.4 Proofs

4.4.1 Proof of Lemma4.3

To prove Lemma4.3, we first prove the following lemma. Denote by conv(A) the convex hull of a

setA.

Lemma 4.13. Let γ > 0. For eachy ∈ {±1}m, selectry ∈ R
d such that for alli ∈ [m],

ry[i]y[i] ≥ γ. LetR = {ry ∈ R
m | y ∈ {±1}m}. Then{±γ}m ⊆ conv(R).

Proof. We will prove the claim by induction on the dimensionm.

Base case Form = 1, we haveR = {a, b} ⊆ R wherea ≤ −γ andb ≥ γ. Clearly, conv(R) =

[a, b], and±γ ∈ [a, b].

Inductive step Assume the lemma holds form−1. For a vectort ∈ R
m, denote bȳt its projection

(t[1], . . . , t[m−1]) onRm−1. Similarly, for a set of vectorsS ⊆ R
m, let S̄ = {s̄ | s ∈ S} ⊆ R

m−1.

DefineY+ = {±1}m−1 × {+1} andY− = {±1}m−1 × {−1}. Let R+ = {ry | y ∈ Y+}, and

similarly forR−. Then the induction hypothesis holds forR̄+ andR̄− with dimensionm− 1. Let

z ∈ {±γ}m. We wish to provez ∈ conv(R). From the induction hypothesis we havez̄ ∈ conv(R̄+)

and z̄ ∈ conv(R̄−). Thus, for ally ∈ {±1} there existαy, βy ≥ 0 such that
∑

y∈Y+
αy =

∑
y∈Y−

βy = 1, and

z̄ =
∑

y∈Y+

αy r̄y =
∑

y∈Y−

βy r̄y.

Let za =
∑

y∈Y+
αyry and zb =

∑
y∈Y−

βyry We have that∀y ∈ Y+, ry[m] ≥ γ, and∀y ∈
Y−, ry[m] ≤ −γ. Therefore,zb[m] ≤ −γ ≤ z[m] ≤ γ ≤ za[m]. In addition, z̄a = z̄b = z̄.

Selectλ ∈ [0, 1] such thatz[m] = λza[m] + (1 − λ)zb[m], thenz = λza + (1 − λ)zb. Since

za, zb ∈ conv(R), we havez ∈ conv(R).

Proof of Lemma4.3. Denote byf(S) the vector(f(x1), . . . , f(xm)). Recall thatr ∈ R
m is the

witness for the shattering ofS, and let

L = {f(S)− r | f ∈ F} ⊆ R
m.

SinceS is shattered, for anyy ∈ {±1}m there is anry ∈ L such that∀i ∈ [m], ry[i]y[i] ≥ γ. By

Lemma4.13, {±γ}m ⊆ conv(L). SinceF is convex,L is also convex. Therefore{±γ}m ⊆ L.
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4.4.2 Proof of Lemma4.8

Proof of Lemma4.8. It suffices to consider diagonal moment matrices: IfB is not diagonal, let

V ∈ R
d×d be an orthogonal matrix such thatVBVT is diagonal, and letY = VX. We have

E[exp(t‖Y ‖2)] = E[exp(t‖X‖2)] andtrace(VBVT ) = trace(B). In addition, for allu ∈ R
d,

E[exp(〈u, Y 〉)] = E[exp(〈VTu,X〉)] ≤

exp(
1

2
〈BVTu,VTu〉) = exp(

1

2
〈VBVTu, u〉).

ThereforeY is sub-Gaussian with the diagonal moment matrixVBV
T . Thus assume w.l.o.g. that

B = diag(λ1, . . . , λd) whereλ1 ≥ . . . ≥ λd ≥ 0.

We haveexp(t‖X‖2) =
∏

i∈[d] exp(tX[i]2). In addition, for anyt > 0 andx ∈ R, 2
√
Πt ·

exp(tx2) =
∫∞
−∞ exp(sx− s2

4t )ds. Therefore, for anyu ∈ R
d,

(2
√
Πt)d · E[exp(t‖X‖2)] = E



∏

i∈[d]

∫ ∞

−∞
exp(u[i]X[i]− u[i]2

4t
)du[i]




= E



∫ ∞

−∞
. . .

∫ ∞

−∞

∏

i∈[d]
exp(u[i]X[i]− u[i]2

4t
)du[i]




= E



∫ ∞

−∞
. . .

∫ ∞

−∞
exp(〈u,X〉 − ‖u‖

2

4t
)
∏

i∈[d]
du[i]




=

∫ ∞

−∞
. . .

∫ ∞

−∞
E[exp(〈u,X〉)] exp(−‖u‖

2

4t
)
∏

i∈[d]
du[i]

By the sub-Gaussianity ofX, the last expression is bounded by

≤
∫ ∞

−∞
. . .

∫ ∞

−∞
exp(

1

2
〈Bu, u〉 − ‖u‖

2

4t
)
∏

i∈[d]
du[i]

=

∫ ∞

−∞
. . .

∫ ∞

−∞

∏

i∈[d]
exp(

λiu[i]
2

2
− u[i]2

4t
)du[i]

=
∏

i∈[d]

∫ ∞

−∞
exp(u[i]2(

λi
2
− 1

4t
))du[i] = Πd/2

( ∏

i∈[d]
(
1

4t
− λi

2
)
)− 1

2 .

The last equality follows from the fact that for anya > 0,
∫∞
−∞ exp(−a · s2)ds =

√
Π/a, and from
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the assumptiont ≤ 1
4λ1

. We conclude that

E[exp(t‖X‖2)] ≤ (
∏

i∈[d]
(1− 2λit))

− 1
2 ≤ exp(2t ·

d∑

i=1

λi) = exp(2t · trace(B)),

where the second inequality holds since∀x ∈ [0, 1], (1− x/2)−1 ≤ exp(x).

4.4.3 Proof of Theorem4.11

In the proof of Theorem4.11we use the factλmin(XX
T ) = inf‖x‖2=1 ‖XTx‖2 and bound the right-

hand side via anǫ-net of the unit sphere inRm, denoted bySm−1 , {x ∈ R
m | ‖x‖2 = 1}. An

ǫ-net of the unit sphere is a setC ⊆ Sm−1 such that∀x ∈ Sm−1, ∃x′ ∈ C, ‖x − x′‖ ≤ ǫ. Denote

the minimal size of anǫ-net forSm−1 byNm(ǫ), and byCm(ǫ) a minimalǫ-net ofSm−1, so that

Cm(ǫ) ⊆ Sm−1 and|Cm(ǫ)| = Nm(ǫ). The proof of Theorem4.11requires several lemmas. First

we prove a concentration result for the norm of a matrix defined by sub-Gaussian variables. Then

we bound the probability that the squared norm of a vector is small.

Lemma 4.14. LetY be ad ×m matrix withm ≤ d, such thatYij are independent sub-Gaussian

variables with momentB. LetΣ be a diagonald × d PSD matrix such thatΣ ≤ I. Then for all

t ≥ 0 andǫ ∈ (0, 1),

P[‖
√
ΣY‖ ≥ t] ≤ Nm(ǫ) exp(

trace(Σ)

2
− t2(1− ǫ)2

4B2
).

Proof. We have‖
√
ΣY‖ ≤ maxx∈Cm(ǫ) ‖

√
ΣYx‖/(1− ǫ), see for instance inBennett et al.[1975].

Therefore,

P[‖
√
ΣY‖ ≥ t] ≤

∑

x∈Cm(ǫ)

P[‖
√
ΣYx‖ ≥ (1− ǫ)t]. (4.2)

Fix x ∈ Cm(ǫ). LetV =
√
ΣYx, and assumeΣ = diag(λ1, . . . , λd). Foru ∈ R

d,

E[exp(〈u, V 〉)] = E[exp(
∑

i∈[d]
ui
√
λi
∑

j∈[m]

Yijxj)] =
∏

j,i

E[exp(ui
√
λiYijxj)]

≤
∏

j,i

exp(u2iλiB
2x2j/2) = exp(

B2

2

∑

i∈[d]
u2iλi

∑

j∈[m]

x2j )

= exp(
B2

2

∑

i∈[d]
u2iλi) = exp(〈B2Σu, u〉/2).

ThusV is a sub-Gaussian vector with moment matrixB2Σ. Let s = 1/(4B2). SinceΣ ≤ I, we
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haves ≤ 1/(4B2maxi∈[d] λi). Therefore, by Lemma4.8,

E[exp(s‖V ‖2)] ≤ exp(2sB2 trace(Σ)).

By Chernoff’s method,P[‖V ‖2 ≥ z2] ≤ E[exp(s‖V ‖2)]/ exp(sz2). Thus

P[‖V ‖2 ≥ z2] ≤ exp(2sB2 trace(Σ)− sz2) = exp(
trace(Σ)

2
− z2

4B2
).

Setz = t(1− ǫ). Then for allx ∈ Sm−1

P[‖
√
ΣYx‖ ≥ t(1− ǫ)] = P[‖V ‖ ≥ t(1− ǫ)] ≤ exp(

trace(Σ)

2
− t2(1− ǫ)2

4B2
).

Therefore, by Eq. (4.2),

P[‖
√
ΣY‖ ≥ t] ≤ Nm(ǫ) exp(

trace(Σ)

2
− t2(1− ǫ)2

4B2
).

Lemma 4.15.LetY be ad×mmatrix withm ≤ d, such thatYij are independent centered random

variables with variance1 and fourth moments at mostB. LetΣ be a diagonald × d PSD matrix

such thatΣ ≤ I. There existα > 0 and η ∈ (0, 1) that depend only onB such that for any

x ∈ Sm−1

P[‖
√
ΣYx‖2 ≤ α · (trace(Σ)− 1)] ≤ ηtrace(Σ).

To prove Lemma4.15 we require Lemma4.16 [Rudelson and Vershynin, 2008, Lemma 2.2]

and Lemma4.17, which extends Lemma 2.6 in the same work.

Lemma 4.16. Let T1, . . . , Tn be independent non-negative random variables. Assume that there

are θ > 0 andµ ∈ (0, 1) such that for anyi, P[Ti ≤ θ] ≤ µ. There areα > 0 andη ∈ (0, 1) that

depend only onθ andµ such thatP[
∑n

i=1 Ti < αn] ≤ ηn.

Lemma 4.17. LetY be ad ×m matrix withm ≤ d, such that the columns ofY are i.i.d. random

vectors. Assume further thatYij are centered, and have a variance of1 and a fourth moment at most

B. LetΣ be a diagonald×d PSD matrix. Then for allx ∈ Sm−1, P[‖
√
ΣYx‖ ≤

√
trace(Σ)/2] ≤

1− 1/(196B).

Proof. Let x ∈ Sm−1, andTi = (
∑m

j=1Yijxj)
2. Let λ1, . . . , λd be the values on the diagonal of

Σ, and letTΣ = ‖
√
ΣYx‖2 =

∑d
i=1 λiTi. First, sinceE[Yij ] = 0 andE[Yij ] = 1 for all i, j, we
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have

E[Ti] =
∑

i∈[m]

x2jE[Y
2
ij ] = ‖x‖2 = 1.

ThereforeE[TΣ] = trace(Σ). Second, sinceYi1, . . . ,Yim are independent and centered, we have

[Ledoux and Talagrand, 1991, Lemma 6.3]

E[T 2
i ] = E[(

∑

j∈[m]

Yijxj)
4] ≤ 16Eσ[(

∑

j∈[m]

σjYijxj)
4],

where σ1, . . . , σm are independent uniform{±1} variables. Now, by Khinchine’s inequality

[Nazarov and Podkorytov, 2000],

Eσ[(
∑

j∈[m]

σjYijxj)
4] ≤ 3E[(

∑

j∈[m]

Y
2
ijx

2
j )

2] = 3
∑

j,k∈[m]

x2jx
2
kE[Y

2
ij ]E[Y

2
ik].

Now E[Y2
ij ]E[Y

2
ik] ≤

√
E[Y4

ij ]E[Y
4
ik] ≤ B. ThusE[T 2

i ] ≤ 48B
∑

j,k∈[m] x
2
jx

2
k = 48B‖x‖4 =

48B. Thus,

E[T 2
Σ] = E[(

d∑

i=1

λiTi)
2] =

d∑

i,j=1

λiλjE[TiTj ]

≤
d∑

i,j=1

λiλj

√
E[T 2

i ]E[T
2
j ] ≤ 48B(

d∑

i=1

λi)
2 = 48B · trace(Σ)2.

By the Paley-Zigmund inequality [Paley and Zygmund, 1932], for θ ∈ [0, 1]

P[TΣ ≥ θE[TΣ]] ≥ (1− θ)2E[TΣ]
2

E[T 2
Σ]
≥ (1− θ)2

48B
.

Therefore, settingθ = 1/2, we getP[TΣ ≤ trace(Σ)/2] ≤ 1− 1/(196B).

Proof of Lemma4.15. Let λ1, . . . , λd ∈ [0, 1] be the values on the diagonal ofΣ. Consider a par-

tition Z1, . . . , Zk of [d], and denoteLj =
∑

i∈Zj
λi. There exists such a partition such that for all

j ∈ [k], Lj ≤ 1, and for allj ∈ [k − 1], Lj >
1
2 . LetΣ[j] be the sub-matrix ofΣ that includes the

rows and columns whose indexes are inZj . LetY[j] be the sub-matrix ofY that includes the rows

in Zj . DenoteTj = ‖
√
Σ[j]Y[j]x‖2. Then

‖
√
ΣYx‖2 =

∑

j∈[k]

∑

i∈Zj

λi(
m∑

j=1

Yijxj)
2 =

∑

j∈[k]
Tj .
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We havetrace(Σ) =
∑d

i=1 λi ≥
∑

j∈[k−1] Lj ≥ 1
2(k − 1). In addition,Lj ≤ 1 for all

j ∈ [k]. Thustrace(Σ) ≤ k ≤ 2 trace(Σ) + 1. For all j ∈ [k − 1], Lj ≥ 1
2 , thus by Lemma4.17,

P[Tj ≤ 1/4] ≤ 1 − 1/(196B). Therefore, by Lemma4.16 there areα > 0 andη ∈ (0, 1) that

depend only onB such that

P[‖
√
ΣYx‖2 < α · (trace(Σ)− 1)] ≤ P[‖

√
ΣYx‖2 < α(k − 1)]

= P[
∑

j∈[k]
Tj < α(k − 1)] ≤ P[

∑

j∈[k−1]

Tj < α(k − 1)] ≤ ηk−1 ≤ η2 trace(Σ).

The lemma follows by substitutingη for η2.

Proof of Theorem4.11. We have

√
λmin(XXT ) = inf

x∈Sm−1
‖XTx‖ ≥ min

x∈Cm(ǫ)
‖XTx‖ − ǫ‖XT ‖. (4.3)

For brevity, denoteL = trace(Σ). AssumeL ≥ 2. Letm ≤ L ·min(1, (c −Kǫ)2) wherec,K, ǫ

are constants that will be set later such thatc−Kǫ > 0. By Eq. (4.3)

P[λmin(XX
T ) ≤ m] ≤ P[λmin(XX

T ) ≤ (c−Kǫ)2L]
≤ P[ min

x∈Cm(ǫ)
‖XTx‖ − ǫ‖XT ‖ ≤ (c−Kǫ)

√
L] (4.4)

≤ P[‖XT ‖ ≥ K
√
L] + P[ min

x∈Cm(ǫ)
‖XTx‖ ≤ c

√
L]. (4.5)

The last inequality holds since the inequality in line (4.4) implies at least one of the inequalities in

line (4.5). We will now upper-bound each of the terms in line (4.5). We assume w.l.o.g. thatΣ is not

singular (since zero rows and columns can be removed fromX without changingλmin(XX
T )). De-

fineY ,
√
Σ−1XT . Note thatYij are independent sub-Gaussian variables with (absolute) moment

ρ. To bound the first term in line (4.5), note that by Lemma4.14, for anyK > 0,

P[‖XT ‖ ≥ K
√
L] = P[‖

√
ΣY‖ ≥ K

√
L] ≤ Nm(

1

2
) exp(L(

1

2
− K2

16ρ2
)).

By Rudelson and Vershynin[2009], Proposition 2.1, for allǫ ∈ [0, 1], Nm(ǫ) ≤ 2m(1 + 2
ǫ )

m−1.

Therefore

P[‖XT ‖ ≥ K
√
L] ≤ 2m5m−1 exp(L(

1

2
− K2

16ρ2
)).
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LetK2 = 16ρ2(32 + ln(5) + ln(2/δ)). Recall that by assumptionm ≤ L, andL ≥ 2. Therefore

P[‖XT ‖ ≥ K
√
L] ≤ 2m5m−1 exp(−L(1 + ln(5) + ln(2/δ)))

≤ 2L5L−1 exp(−L(1 + ln(5) + ln(2/δ))).

SinceL ≥ 2, we have2L exp(−L) ≤ 1. Therefore

P[‖XT ‖ ≥ K
√
L] ≤ 2L exp(−L− ln(2/δ)) ≤ exp(− ln(2/δ)) =

δ

2
. (4.6)

To bound the second term in line (4.5), sinceYij are sub-Gaussian with momentρ, E[Y4
ij ] ≤

5ρ4 [Buldygin and Kozachenko, 1998, Lemma 1.4]. Thus, by Lemma4.15, there areα > 0 and

η ∈ (0, 1) that depend only onρ such that for allx ∈ Sm−1, P[‖
√
ΣYx‖2 ≤ α(L − 1)] ≤ ηL. Set

c =
√
α/2. SinceL ≥ 2, we havec

√
L ≤

√
α(L− 1). Thus

P[ min
x∈Cm(ǫ)

‖XTx‖ ≤ c
√
L] ≤

∑

x∈Cm(ǫ)

P[‖XTx‖ ≤ c
√
L]

≤
∑

x∈Cm(ǫ)

P[‖
√
ΣYx‖ ≤

√
α(L− 1)] ≤ Nm(ǫ)ηL.

Let ǫ = c/(2K), so thatc −Kǫ > 0. Let θ = min(12 ,
ln(1/η)

2 ln(1+2/ǫ)). SetL◦ such that∀L ≥ L◦,

L ≥ 2 ln(2/δ)+2 ln(L)
ln(1/η) . ForL ≥ L◦ andm ≤ θL ≤ L/2,

Nm(ǫ)ηL ≤ 2m(1 + 2/ǫ)m−1ηL

≤ L exp(L(θ ln(1 + 2/ǫ)− ln(1/η)))

= exp(ln(L) + L(θ ln(1 + 2/ǫ)− ln(1/η)/2)− L ln(1/η)/2)

≤ exp(L(θ ln(1 + 2/ǫ)− ln(1/η)/2) + ln(δ/2)) (4.7)

≤ exp(ln(δ/2)) =
δ

2
. (4.8)

Line (4.7) follows from L ≥ L◦, and line (4.8) follows from θ ln(1 + 2/ǫ) − ln(1/η)/2 ≤ 0.

Set β = min{(c − Kǫ)2, 1, θ}. Combining Eq. (4.5), Eq. (4.6) and Eq. (4.8) we have that if

L ≥ L̄ , max(L◦, 2), thenP[λmin(XX
T ) ≤ m] ≤ δ for allm ≤ βL. Specifically, this holds for all

L ≥ 0 and for allm ≤ β(L− L̄). LettingC = βL̄ and substitutingδ for 1− δ we get the statement

of the theorem.



Chapter 5

Discussion (Part I)

Cor.3.5and Theorem4.12together provide a tight characterization of the sample complexity of any

sub-Gaussian product distribution with a bounded relative moment. Formally,fix ρ > 0. For anyD

such thatDX ∈ Dsg
ρ , and for anyγ > 0 andǫ ∈ (0, 14 − ℓ∗γ(D))

Ω(kγ(DX)) ≤ m(ǫ, γ,D) ≤ Õ
(
kγ(DX)

ǫ2

)
. (5.1)

The upper bound holds uniformly for all distributions, and the constants in the lower bound depend

only onρ. This result shows that the true sample complexity of learning each of these distributions

with MEM is characterized by the margin-adapted dimension. An interesting conclusion can be

drawn as to the influence of the conditional distribution of labelsDY |X : Since Eq. (5.1) holds for

anyDY |X , the effect of the direction of the best separator on the sample complexity is bounded,

even for highly non-spherical distributions.

We note that the upper bound that we have proved involves logarithmic factors which might

not be necessary. There are upper bounds that depend on the marginalone and on the dimension

alone without logarithmic factors, as shown in Theorem1.7and Theorem1.20. On the other hand,

in our bound, which combines the two quantities, there is a logarithmic dependence which stems

from the margin component of the bound. It might be possible to tighten the bound and remove the

logarithmic dependence.

We can use Eq. (5.1) to easily characterize the sample complexity behavior for interesting dis-

tributions, and to compareL2 margin minimization to other learning methods, as we henceforth

demonstrate.

Gaps betweenL1 andL2 regularization in the presence of irrelevant features Ng [2004] con-

siders learning a single relevant feature in the presence of many irrelevant features, and compares
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usingL1 regularization andL2 regularization. When‖X‖∞ ≤ 1, upper bounds on learning with

L1 regularization guarantee a sample complexity ofO(ln(d)) for anL1-based learning rule [Zhang,

2002]. In order to compare this with the sample complexity ofL2 regularized learning and establish

a gap, one must use alower boundon theL2 sample complexity. The argument provided by Ng

actually assumes scale-invariance of the learning rule, and is therefore valid only for unregularized

linear learning. In contrast, using our results we can easily establish a lower bound ofΩ(d) for

many specific distributions with a bounded‖X‖∞ andY = sign(X[i]) for somei. For instance,

if each coordinate is a bounded independent sub-Gaussian random variable with a bounded relative

moment, we havek1 = ⌈d/2⌉ and Theorem4.12implies a lower bound ofΩ(d) on theL2 sample

complexity.

Gaps between generative and discriminative learning for a Gaussian mixture Consider two

classes, each drawn from a unit-variance spherical Gaussian inR
d with a large distance2v >> 1

between the class means, such thatd >> v4. ThenPD[X|Y = y] = N (yv · e1, Id), wheree1 is a

unit vector inRd. For anyv andd, we haveDX ∈ Dsg
1 . For large values ofv, we have extremely

low margin error atγ = v/2, and so we can hope to learn the classes by looking for a large-margin

separator. Indeed, we can calculatekγ = ⌈d/(1 + v2

4 )⌉, and conclude that the required sample

complexity isΘ̃(d/v2). Now consider a generative approach: fitting a spherical Gaussian model for

each class. This amounts to estimating each class center as the empirical average of the points in

the class, and classifying based on the nearest estimated class center. Itis possible to show that for

any constantǫ > 0, and for large enoughv andd, O(d/v4) samples are enough in order to ensure

an error ofǫ. This establishes a rather large gap ofΩ(v2) between the sample complexity of the

discriminative approach and that of the generative one.

5.1 On the limitations of the covariance matrix

We have shown matching upper and lower bounds for the sample complexity oflearning with MEM,

for any sub-Gaussian product distribution with a bounded relative moment.This shows that the

margin-adapted dimension fully characterizes the sample complexity of learningwith MEM for

such distributions. What properties of a distribution play a role for general distributions? In the

following theorem we show that these properties must include more than the covariance matrix of

the distribution, even when assuming sub-Gaussian tails and bounded relative moments.

Theorem 5.1. For any integerd > 1, there exist two distributionsD and P over Rd × {±1}
with identical covariance matrices, such that for anyǫ ∈ (0, 14), m(ǫ, 1, P, 14) ≥ Ω(d) while

m(ǫ, 1, D, δ) ≤ ⌈log2(1/δ)⌉. BothDX andPX are sub-Gaussian random vectors, with a rela-

tive moment of
√
2 in all directions.
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Proof. Let Da andDb be distributions overRd such thatDa is uniform over{±1}d andDb is

uniform over{±1} × {0}d−1. LetDX be a balanced mixture ofDa andDb. Let PX be uniform

over{±1} × { 1√
2
}d−1. For bothD andP , letP[Y = 〈e1, X〉] = 1. The covariance matrix ofDX

andPX is diag(1, 12 , . . . ,
1
2), thusk1(DX) = k1(PX) ≥ Ω(d).

By Eq. (4.1), PX , Da andDb are all sub-Gaussian product distribution with relative moment1,

thus also with moment
√
2 > 1. The projection ofDX along any directionu ∈ R

d is sub-Gaussian

with relative moment
√
2 as well, since

EX∼DX
[exp(〈u,X〉)] = 1

2
(EX∼Da [exp(〈u,X〉)] + EX∼Db [exp(〈u,X〉)])

=
1

2
(
∏

i∈[d]
(exp(ui) + exp(−ui))/2 + (exp(u1) + exp(−u1))/2)

≤ 1

2
(
∏

i∈[d]
exp(u2i /2) + exp(u21/2)) ≤ exp(‖u‖2/2) ≤ exp((‖u‖2 + u21)/2)

= exp(EX∼DX
[〈u,X〉2]).

For P we have by Theorem4.12 that for anyǫ ≤ 1
4 , m(ǫ, 1, P, 14) ≥ Ω(k1(PX)) ≥ Ω(d). In

contrast, any MEM algorithmA1 will output the correct separator forD whenever the sample has

at least one point drawn fromDb. This is because the separatore1 is the onlyw ∈ B
d
1 that classifies

this point with zero1-margin errors. Such a point exists in a sample of sizem with probability

1 − 2−m. Thereforeℓ0/1(A1, D,m, 1/2
m) = 0. It follows that for all ǫ > 0, m(ǫ, 1, D, δ) ≤

⌈log2(1/δ)⌉.

5.2 Summary

We have shown that the true sample complexity of large-margin learning of each of a rich family

of distributions is characterized by the margin-adapted dimension. Characterizing the true sample

complexity allows a better comparison between this learning approach and other algorithms, and

has many potential applications, such as semi-supervised learning and feature construction. The

challenge of characterizing the true sample complexity extends to any distribution and any learning

approach. Theorem5.1 shows that other properties but the covariance matrix must be taken into

account for general distributions. We believe that obtaining answers to these questions is of great

importance, both to learning theory and to learning applications.



Part II

Multiple-Instance Learning
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Chapter 6

Introduction (Part II)

In this part of the thesis we consider the learning problem termed Multiple-Instance Learning (MIL),

first introduced inDietterich et al.[1997]. MIL is a special type of a supervised classification prob-

lem. As in classical supervised classification, in MIL the learner receivesa sample of labeled

examples drawn i.i.d. from an arbitrary and unknown distribution, and its objective is to discover a

classification rule with a small expected error over the same distribution. In MIL additional struc-

ture is assumed, whereby the examples are received asbagsof instances, such that each bag is

composed of several instances. It is assumed that each instance has a true label, however the learner

only observes the labels of the bags. In classical MIL the label of a bag isthe Boolean OR of the la-

bels of the instances the bag contains. Various generalizations to MIL havebeen proposed [see e.g.

Raedt, 1998, Weidmann et al., 2003]. Here we consider both classical MIL and the more general

setting, where a function other than Boolean OR determines bag labels basedon instance labels.

This function is known to the learner a-priori. We term the more general setting generalized MIL.

It is possible, in principle, to view MIL as a regular supervised classification task, where a

bag is a single example, and the instances in a bag are merely part of its internal representation.

Such a view, however, means that one must analyze each specific MIL problem separately, and that

results and methods that apply to one MIL problem are not transferable to other MIL problems.

We propose instead a generic approach to the analysis of MIL, in which theproperties of a MIL

problem are analyzed as a function of the properties of the matching non-MIL problem. As we

show here, the connections between the MIL and the non-MIL propertiesare strong and useful.

The generic approach has the advantage that it automatically extends all knowledge and methods

that apply to non-MIL problems into knowledge and methods that apply to MIL,without requir-

ing specialized analysis for each specific MIL problem. Our results are thus applicable to diverse

hypothesis classes, relationships between bag labels and instance labels,and target losses. More-

over, the generic approach allows a better theoretical understanding ofthe relationship, in general,
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between regular learning and Multi-Instance Learning with the same hypothesis class.

The generic approach can also be helpful for the design of algorithms, since it allows deriving

generic methods and approaches that hold across different settings. For instance, as we show below,

a generic PAC-learning algorithm can be derived for a large class of MIL problems with different

hypothesis classes. Another application is a generic bag-construction mechanism which we describe

in Chapter9, and learning when bags have a manifold structure [Babenko et al., 2011]. As generic

analysis goes, it might be possible to improve upon it in some specific cases. Identifying these

cases and providing tighter analysis for them is an important topic for futurework. We do show

that in some important cases—most notably that of learning separating hyperplanes with classical

MIL—our analysis is tight up to constants.

MIL has been used in numerous applications. InDietterich et al.[1997] the drug design appli-

cation motivates this setting. In this application, the goal is to predict which molecules would bind

to a specific binding site. Each molecule has several possible conformations(shapes) it can take.

If at least one of the conformations binds to the binding site, then the molecule islabeled positive.

However, it is not possible to experimentally identify which conformation was the successful one.

Thus, a molecule can be thought of as a bag of conformations, where each conformation is an in-

stance in the bag representing the molecule. This application employs the hypothesis class of Axis

Parallel Rectangles (APRs), and has made APRs the hypothesis class of choice in several theoretical

works that we mention below. There are many other applications for MIL, including image clas-

sification [Maron and Ratan, 1998], web index page recommendation [Zhou et al., 2005] and text

categorization [Andrews, 2007].

Previous theoretical analysis of the computational aspects of MIL has been done in two main

settings. In the first setting, analyzed for instance inAuer et al.[1998], Blum and Kalai[1998],

Long and Tan[1998], it is assumed that all the instances are drawn i.i.d. from a single distribution

over instances, so that the instances in each bag are statistically independent. Under this indepen-

dence assumption, learning from an i.i.d. sample of bags is as easy as learning from an i.i.d. sample

of instances with one-sided label noise. This is stated in the following theorem.

Theorem 6.1(Blum and Kalai, 1998). If a hypothesis class is PAC-learnable in polynomial time

from one-sided random classification noise, then the same hypothesis class is PAC-learnable in

polynomial time in MIL under the independence assumption. The computational complexity of

learning is polynomial in the bag size and in the sample size.

The assumption of statistical independence of the instances in each bag is, however, very limit-

ing, as it is irrelevant to many applications.

In the second setting one assumes that bags are drawn from an arbitrarydistributionover bags,

so that the instances within a bag may be statistically dependent. This is clearly much more useful in
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practice, since bags usually describe a complex object with internal structure, thus it is implausible

to assume even approximate independence of instances in a bag. For the hypothesis class of APRs

and an arbitrary distribution over bags, it is shown inAuer et al.[1998] that if there exists a PAC-

learning algorithm for MIL with APRs, and this algorithm is polynomial in both the size of the

bag and the dimension of the Euclidean space, then it is possible to polynomially PAC-learn DNF

formulas, a problem which is solvable only ifRP = NP [Pitt and Valiant, 1986]. In addition, if

it is possible to improperly learn MIL with APRs (that is, to learn a classifier which is not itself an

APR), then it is possible to improperly learn DNF formulas, a problem which has not been solved

to this date for general distributions. This result implies that it is not possible toPAC-learn MIL on

APRs using an algorithm which is efficient in both the bag size and the problem’s dimensionality.

It does not, however, preclude the possibility of performing MIL efficiently in other cases.

In practice, numerous algorithms have been proposed for MIL, each focusing on a different

specialization of this problem. Almost none of these algorithms assume statistical independence of

instances in a bag. Moreover, some of the algorithms explicitly exploit presumeddependences be-

tween instances in a bag.Dietterich et al.[1997] propose several heuristic algorithms for finding an

APR that predicts the label of an instance and of a bag. Diverse Density [Maron and Lozano-Ṕerez,

1998] and EM-DD [Zhang and Goldman, 2001] employ assumptions on the structure of the bags of

instances. DPBoost [Andrews and Hofmann, 2003], mi-SVM and MI-SVM [Andrews et al., 2002],

and Multi-Instance Kernels [Gärtner et al., 2002] are approaches for learning MIL using margin-

based objectives. Some of these methods work quite well in practice. However, no generalization

guarantees have been provided for any of them.

In Chapters7 and8 we analyze MIL and generalized MIL in a general framework, independent

of a specific application, and provide results that hold for any underlyinghypothesis class. We

assume a fixed hypothesis class defined over instances. We then investigate the relationship between

learning with respect to this hypothesis class in the classical supervised learning setting with no

bags, and learning with respect to the same hypothesis class in MIL. We address sample complexity

in Chapter7 and computational feasibility in Chapter8.

Our sample complexity analysis shows that for binary hypotheses and thresholded real-valued

hypotheses, the distribution-free sample complexity for generalized MIL grows only logarithmi-

cally with the maximal bag size. We also provide poly-logarithmic sample complexity bounds for

the case of margin learning. It should be noted that many real-life applications admit large bag sizes,

rendering the dependence on the bag size of practical importance. For instance, in image classifi-

cation applications, the instances commonly correspond to small image patches.Thus a single bag

(an image) can contain hundreds of instances or more.

We further provide distribution-dependent sample complexity bounds for more general loss

functions. These bound are useful when only the average bag size is bounded. The results imply
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generalization bounds for previously proposed algorithms for MIL. Addressing the computational

feasibility of MIL, we provide a new learning algorithm with provable guarantees for a class of bag-

labeling functions that includes the Boolean OR, used in classical MIL, as aspecial case. Given

a non-MIL learning algorithm for the desired hypothesis class, which canhandle one-sided errors,

we improperly learn MIL with the same hypothesis class. The construction is simple to implement,

and provides a computationally efficient PAC-learning of MIL, with only a polynomial dependence

of the run time on the bag size. A preliminary version of the results in these chapters has been

published inSabato and Tishby[2009].

The analysis above considers the problem of learning to classify bags using a labeled sample of

bags, and do not attempt to learn to classify single instances using a labeled sample of bags. We

point out that it is not generally possible to find a low-error classification rule for instances based on

a bag sample. As a simple counter example, assume that the label of a bag is the Boolean OR of the

labels of its instances, and that every bag includes both a positive instanceand a negative instance.

In this case all bags are labeled as positive, and it is not possible to distinguish the two types of

instances by observing only bag labels.

In Chapter9 we show a setting in which MIL can be used to improve the sample complex-

ity of non-MIL learning, by constructing the artificial bags. We show how this paradigm can be

implemented effectively. The results in this chapter were first published inSabato et al.[2010b].

6.1 Notations and Definitions

Let X be the input space, also called the domain of instances. A bag is a finite ordered set of

instances fromX . Denote the set of allowed sizes for bags in a specific MIL problem byR ⊆ N.

For any setA we denoteA(R) , ∪n∈RAn. Thus the domain of bags with a size inR and instances

from X is X (R). A bag of sizen is denoted bȳx = (x[1], . . . , x[n]) where eachx[j] ∈ X is an

instance in the bag. We denote the number of instances inx̄ by |x̄|. For an unlabeled set of bags

S = {x̄i}i∈[m], we denote the set of instances in the bags ofS byS∪ , {xi[j] | i ∈ [m], j ∈ [|x̄i|]}.
Since this is a multi-set, any instance which repeats in several bags inS is represented the same

amount of time inS∪. For any univariate functionf : A → B, we may also use its extension to

a multivariate function from sequences of elements inA to sequences of elements inB, defined by

f(a[1], . . . , a[k]) = (f(a[1]), . . . , f(a[k])).

Let I ⊆ R be the range of hypotheses over instances or bags.H ⊆ IX is a hypothesis class

for instances. Every MIL problem is defined by a fixed bag-labeling function ψ : I(R) → I that

determines the bag labels given the instance labels. Formally, every instancehypothesish : X → I
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defines a bag hypothesis, denoted byh : X (R) → I and defined by

∀x̄ ∈ X (R), h(x̄) , ψ(h(x[1]), . . . , h(x[r])).

The hypothesis class for bags givenH andψ is denotedH , {h | h ∈ H}. Importantly, the identity

of ψ is known to the learner a-priori, thus eachψ defines a different generalized MIL problem. For

instance, in classical MIL,I = {±1} andψ is the Boolean OR.

We assume the labeled bags are drawn from a fixed distributionD overX (R) × {±1}, where

each pair drawn fromD constitutes a bag and its binary label. The MIL learner receives a labeled

sample of bags{(x̄1, y1), . . . , (x̄m, ym)} ⊆ X (R) × {±1} drawn fromDm, and returns a classifier

ĥ : X (R) → I. Its goal is to achieve a low lossℓ(ĥ, D).

Classes of Real-Valued bag-functions

In classical MIL the bag function is the Boolean OR over binary labels, thatis I = {±1} and

ψ = OR : {±1}(R) → {±1}. A natural extension of the Boolean OR to a function over reals is

themax function. We further consider two classes of bag functions over reals,each representing a

different generalization of themax function, which conserves a different subset of its properties.

The first class we consider is the class of bag-functions that extend monotone Boolean func-

tions. Monotone Boolean functions map Boolean vectors to{±1}, such that the map is monotone-

increasing in each of the inputs. The set of monotone Boolean functions is exactly the set of func-

tions that can be represented by some composition of AND and OR functions,thus it includes the

Boolean OR. The natural extension of monotone Boolean functions to realfunctions over real vec-

tors is achieved by replacing OR withmax and AND withmin. Formally, we define extensions of

monotone Boolean functions as follows.

Definition 6.2. A function fromR
n into R is an extension of ann-ary monotone Boolean function

if it belongs to the setMn defined inductively as follows, where the input to a function isz ∈ R
n:

(1) ∀j ∈ [n], z 7−→ z[j] ∈Mn;

(2) ∀k ∈ N
+, f1, . . . , fk ∈Mn =⇒ z 7−→ maxj∈[k]{fj(z)} ∈ Mn;

(3) ∀k ∈ N
+, f1, . . . , fk ∈Mn =⇒ z 7−→ minj∈[k]{fj(z)} ∈ Mn.

We say that a bag-functionψ : R(R) → R extends monotone Boolean functions if for alln ∈ R,

ψ|Rn ∈Mn.

The class of extensions to Boolean functions thus generalizes themax function in a natural way.

The second class of bag functions we consider generalizes themax function by noting that for

bounded inputs, themax function can be seen as a variant of the infinity-norm‖z‖∞ = max |z[i]|.
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Another natural bag-function over reals is the average function, defined asψ(z) = 1
n

∑
i∈[n] zi,

which can be seen as a variant of the1-norm ‖z‖1 =
∑

i∈[n] |z[i]|. More generally, we treat the

case where the hypotheses map intoI = [−1, 1], and consider the class of bag functions inspired

by ap-norm, defined as follows.

Definition 6.3. For p ∈ [1,∞), thep-norm bag functionψp : [−1,+1](R) → [−1,+1] is defined

by:

∀z ∈ R
n, ψp(z) ,

(
1

n

n∑

i=1

(z[i] + 1)p

)1/p

− 1.

For p =∞, Defineψ∞ ≡ limp→∞ ψp.

Since the inputs ofψp are in[−1,+1], we haveψp(z) ≡ n−1/p · ‖z + 1‖p − 1 wheren is the

length ofz. Note that the average function is simplyψ1, andψ∞ ≡ ‖z + 1‖∞ − 1 ≡ max. Other

values ofp fall between these two extremes: Due to thep-norm inequality, which states that for all

p ∈ [1,∞) andx ∈ R
n, 1

n‖x‖1 ≤ n−1/p‖x‖p ≤ ‖x‖∞, we have that for allz ∈ [−1,+1]n

average ≡ ψ1(z) ≤ ψp(z) ≤ ψ∞(z) ≡ max .

Many of our results hold when the scale of the output of the bag-function isrelated to the scale

of its inputs. Formally, we consider cases where the output of the bag-function does not change by

much unless its inputs change by much. This is formalized in the following definitionof a Lipschitz

bag function.

Definition 6.4. A bag functionψ : R(R) → R is c-Lipschitz with respect to the infinity normfor

c > 0 if

∀n ∈ R, ∀a,b ∈ R
n, |ψ(a)− ψ(b)| ≤ c‖a− b‖∞.

The average bag-function and themax bag functions are1-Lipschitz. Moreover, all extensions

of monotone Boolean functions are1-Lipschitz with respect to the infinity norm—this is easy to

verify by induction on Def.6.2. All p-norm bag functions are also1-Lipschitz, as the following

derivation shows:

|ψp(a)− ψp(b)| = n−1/p · | ‖a+ 1‖p − ‖b+ 1‖p| ≤ n−1/p · ‖a− b‖p ≤ ‖a− b‖∞.

Thus, our results for Lipschitz bag-functions hold in particular for the twobag-function classes we

have defined here, and in specifically for themax function.



Chapter 7

MIL with any Hypothesis Class

In this chapter we consider the complexity properties of hypothesis classesfor MIL. In Section7.1

the sample complexity of generalized MIL for binary hypotheses is analyzed. We provide a useful

lemma bounding covering numbers for MIL in Section7.2. In Section7.3 we analyze the sample

complexity of generalized MIL with real-valued functions for large-margin learning. Distribution-

dependent results for binary learning and real-valued learning basedon the average bag size are

presented in Section7.4.

7.1 Binary MIL

In this section we consider binary MIL. In binary MIL we letI = {±1}, thus we have a binary

instance hypothesis classH ⊆ {±1}X . We further let our loss be the zero-one loss, defined by

ℓ0/1(y, ŷ) = I[y 6= ŷ]. The distribution-free sample complexity of learning relative to a binary

hypothesis class with the zero-one loss is governed by the VC-dimension ofthe hypothesis class

[Vapnik and Chervonenkis, 1971]. Thus we bound the VC-dimension ofH as a function of the

maximal possible bag sizer = maxR, and of the VC-dimension ofH. We show that the VC-

dimension ofH is at most logarithmic inr, and at most linear in the VC-dimension ofH, for any

bag-labeling functionψ : {±1}(R) → {±1}. It follows that the sample complexity of MIL grows

only logarithmically with the size of the bag. Thus MIL is feasible even for quite large bags. In fact,

based on the results we show henceforth,Sabato et al.[2010a] have shown that MIL can sometimes

be used to accelerate even single-instance learning. We further providelower bounds that show

that the dependence of the upper bound onr and on the VC-dimension ofH is imperative, for

a large class of Boolean bag-labeling functions. We also show a matching lower bound for the

VC-dimension of classical MIL with separating hyperplanes.
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7.1.1 VC-Dimension Upper Bound

Our first theorem establishes a VC-Dimension upper bound for generalized MIL. To prove the

theorem we require the following useful lemma.

Lemma 7.1. For anyR ⊆ N and any bag functionψ : {±1}(R) → {±1}, and for any hypothesis

classH ⊆ {±1}X and a finite set of bagsS ⊆ X (R),

∣∣H|S
∣∣ ≤

∣∣H|S∪

∣∣.

Proof. Let h1, h2 ∈ H be bag hypotheses. There exist instance hypothesesg1, g2 ∈ H such that

gi = hi for i = 1, 2. Assume thath1|S 6= h2|S . We show thatg1|S∪ 6= g2|S∪ , thus proving the

lemma.

From the assumption it follows thatg1|S 6= g2|S . Thus there exists at least one bag

x ∈ S such thatg2(x) 6= g2(x). Denote its size byn. We haveψ(g1(x[1]), . . . , g1(x[n])) 6=
ψ(g2(x[1]), . . . , g2(x[n])). Hence there exists aj ∈ [n] such thatg1(x[j]) 6= g2(x[j]). By the

definition ofS∪, x[j] ∈ S∪. Thereforeg1|S∪ 6= g2|S∪ .

Theorem 7.2. Assume thatH is a hypothesis class with a finite VC-dimensiond. Let r ∈ N and

assume thatR ⊆ [r]. Let the bag-labeling functionψ : {±1}(R) → {±1} be some Boolean

function. Denote the VC-dimension ofH bydr. We have

dr ≤ max{16, 2d log(2er)}.

Proof. For a set of hypothesesJ , denote byJ |A the restriction of each of its members toA, so that

JA , {h|A | h ∈ J }. Sincedr is the VC-dimension ofH, there exists a set of bagsS ⊆ X (R)

of sizedr that is shattered byH, so that|H|S | = 2dr . By Lemma7.1 |H|S | ≤ |H|S∪ |, therefore

2dr ≤ |H|S∪ |. In addition,R ⊆ [r] implies|S∪| ≤ rdr. By applying Sauer’s lemma toH we get

2dr ≤ |H|S∪ | ≤
(
e|S∪|
d

)d

≤
(
erdr
d

)d

, (7.1)

Wheree is the base of the natural logarithm. It follows thatdr ≤ d(log(er)− log d) + d log dr. To

provide an explicit bound fordr, we boundd log dr by dividing to cases:

1. Eitherd log dr ≤ 1
2dr, thusdr ≤ 2d(log(er)− log d) ≤ 2d log(er),

2. or 1
2dr < d log dr. In this case,

(a) eitherdr ≤ 16,
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(b) or dr > 16. In this case
√
dr < dr/ log dr < 2d, thusd log dr = 2d log

√
dr ≤

2d log 2d. Substituting in the implicit bound we getdr ≤ d(log(er) − log d) +

2d log 2d ≤ 2d log(2er).

Combining the cases we havedr ≤ max{16, 2d log(2er)}.

7.1.2 VC-Dimension Lower Bounds

In this section we show lower bounds for the VC-dimension of binary MIL, indicating that the

dependence ond andr in Theorem7.2 is tight in two important settings.

We say that a bag-functionψ : {±1}(R) → {±1} is r-sensitiveif there exists a number

n ∈ R and a vectorc ∈ {±1}n such that for at leastr different numbersj1, . . . , jr ∈ [n],

ψ(c[1], . . . , c[ji], . . . , c[n]) 6= ψ(c[1], . . . ,−c[ji], . . . , c[n]). Many commonly used Boolean func-

tions, such as OR, AND, Parity, and all their variants that stem from negating some of the inputs,

arer-sensitive for everyr ∈ R. Our first lower bound shows ifψ is r-sensitive, the bound in Theo-

rem7.2cannot be improved without restricting the set of considered instance hypothesis classes.

Theorem 7.3. Assume that the bag functionψ : {±1}(R) → {±1} is r-sensitive for somer ∈ N.

For any naturald and any instance domainX with |X | ≥ rd⌊log(r)⌋, there exists a hypothesis

classH with a VC-dimension at mostd, such that the VC dimension ofH is at leastd⌊log(r)⌋.

Proof. Sinceψ is r-sensitive, there are a vectorc ∈ {±1}n and a setJ ⊆ n such that|J | = r and

∀j ∈ J, ψ(c[1], . . . , c[n]) 6= ψ(c[1], . . . ,−c[j], . . . , c[n]). Sinceψ maps all inputs to{±1}, it fol-

lows that∀j ∈ J, ψ(c[1], . . . ,−c[j], . . . , c[n]) = −ψ(c[1], . . . , c[n]). Denotea = ψ(c[1], . . . , c[n]).

Then we have

∀j ∈ J, y ∈ {±1}, ψ(c[1], . . . , c[j] · y, . . . , c[n]) = a · y. (7.2)

For simplicity of notation, we henceforth assume w.l.o.g. thatn = r andJ = [r].

Let S ⊆ X r be a set ofd⌊log(r)⌋ bags of sizer, such that all the instances in all the bags

are distinct elements ofX . Divide S into d mutually exclusive subsets, each with⌊log(r)⌋ bags.

Denote bagp in subsett by x̄(p,t). We define the hypothesis class

H , {h[k1, . . . , kd] | ∀i ∈ [d], ki ∈ [2⌊log(r)⌋]},

whereh[k1, . . . , kd] is defined as follows (see illustration in Table7.1): Forx ∈ X which is not an

instance of any bag inS, h[k1, . . . , kd] = −1. For x = x(p,t)[j], let b(p,n) be bit p in the binary
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representation of the numbern, and define

h[k1, . . . , kd](x(p,t)[j]) =




c[j] · a(2b(p,j−1) − 1) j = kt,

c[j] j 6= kt.

t p Instance labelh(x(p,t)[r]) Bag labelh(x̄i)

1 − − − + − − − − +
1 2 − − − + − − − − +

3 − − − − − − − − −
1 − − − − − − − + +

2 2 − − − − − − − + +
3 − − − − − − − + +

1 − − − − − − − − −
3 2 − + − − − − − − +

3 − − − − − − − − −

Table 7.1: An example of the hypothesesh = h[4, 8, 3], with ψ = OR (so thatc is the all−1
vector),r = 8, andd = 3. Each line represents a bag inS, each column represents an instance in
the bag.

We now show thatS is shattered byH, indicating that the VC-dimension ofH is at least|S| =
d⌊log(r)⌋. To complete the proof, we further show that the VC-dimension ofH is no more thand.

S is shattered byH: Let {y(p,t)}p∈⌊log(r)⌋,t∈[d] be some labeling over{±1} for the bags inS. For

eacht ∈ [d] let

kt , 1 +

⌊log(r)⌋∑

p=1

y(p,t) + 1

2
· 2p−1.

Then by Eq. (7.2), for all p ∈ [⌊log(r)⌋] andt ∈ [d],

h[k1, . . . , kd](x̄(p,t)) = ψ(c[1], . . . , c[kt] · a(2b(p,kt−1) − 1), . . . , c[r])

= a2(2b(p,kt−1) − 1) = 2b(p,kt−1) − 1 = y(p,t).

Thush[k1, . . . , kd] labelsS according to{y(p,t)}.

The VC-dimension ofH is no more thand: Let A ⊆ X of sized + 1. If there is an element

in A which is not an instance inS then this element is labeled−1 by all h ∈ H, thereforeA is

not shattered. Otherwise, all elements inA are instances in bags inS. Since there ared subsets

of S, there exist two elements inA which are instances of bags in the same subsett. Denote these
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instances byx(p1, t)[j1] andx(p2, t)[j2]. Consider all the possible labelings of the two elements

by hypotheses inH. If A is shattered, there must be four possible labelings for these elements.

However, by the definition ofh[k1, . . . , kd] it is easy to see that ifj1 = j2 = j then there are at

most two possible labelings by hypotheses inH, and ifj1 6= j2 then there are at most three possible

labelings. ThusA is not shattered byH, hence the VC-dimension ofH is no more thand.

Theorem7.6 below provides a lower bound for the VC-dimension of MIL for the important

case where the bag-function is the Boolean OR and the hypothesis class is the class of separating

hyperplanes inRn. It suffices to consider the classW of separators with a bounded norm, since

scaling does not change the labeling. Letr ∈ N. We denote the VC-dimension ofW(Rn) for

R = {r} andψ = OR by dr,n. We prove a lower bound fordr,n using two lemmas: Lemma7.4

provides a lower bound fordr,3, and Lemma7.5 links dr,n for smalln with dr,n for largen. The

resulting general lower bound, which holds forr = maxR, is then stated in Theorem7.6.

Lemma 7.4. Letdr,n be the VC-dimension ofW(Rn) as defined above. Thendr,3 ≥ ⌊log(2r)⌋.

Proof. DenoteL , ⌊log(2r)⌋. We will construct a setS of L bags of sizer that is shattered by

W(R3). The construction is illustrated in Figure7.1.

3

2

2

1

3

3

12

2

1
−1

+1

1
3

Figure 7.1: An illustration of the constructed shattered set, withr = 4 andL = log 4 + 1 = 3.
Each dot corresponds to an instance. The numbers next to the instancesdenote the bag to which an
instance belongs, and match the sequenceN defined in the proof. In this illustration bags1 and3
are labeled as positive by the bag-hypothesis represented by the solid line.

Let n = (n1, . . . , nK) be a sequence of indices from[L], created by concatenating all the

subsets of[L] in some arbitrary order, so thatK = L2L−1, and every index appears2L−1 ≤ r times

in n. Define a setA = {ak | k ∈ [K]} ⊆ R
3 whereak , (cos(2πk/K), sin(2πk/K), 1) ∈ R

3, so

thata1, . . . ,aK are equidistant on a unit circle on a plane embedded inR
3. Define the set of bags

S = {x̄1, . . . , x̄L} such that̄xi = (xi[1], . . . , xi[r]) where{xi[j] | j ∈ [r]} = {ak | nk = i}.
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We now show thatS is shattered byW(R3): Let (y1, . . . , yL) be some binary labeling ofL

bags, and letY = {i | yi = +1}. By the definition ofn, there existj1, j2 such thatY = {nk | j1 ≤
k ≤ j2}. Clearly, there exists a hyperplanew ∈ R

3 that separates the vectors{ak | j1 ≤ k ≤ j2}
from the rest of the vectors inA. Thussign(〈w〉ak) = +1 if and only if j1 ≤ k ≤ j2. It follows

thathw(x̄i) = +1 if and only if there is ak ∈ {j1, . . . , j2} such thatak is an instance in̄xi, that is

such thatnk = i. This condition holds if and only ifi ∈ Y , hencehw classifiesS according to the

given labeling. It follows thatS is shattered byW(R3), thereforedr,3 ≥ |S| = ⌊log(2r)⌋.

Lemma 7.5. Letk, n, r be natural number such thatk ≤ n. Thendr,n ≥ ⌊n/k⌋dr,k.

Proof. For a vectorx ∈ R
k and a numbert ∈ {0, . . . , ⌊n/k⌋} define the vectors(x, t) ,

(0, . . . , 0, x[1], . . . , x[k], 0, . . . , 0) ∈ R
n, wherex[1] is at coordinatekt + 1. Similarly, for a bag

x̄i = (xi[1], . . . ,xi[r]) ∈ (Rk)r, define the bags(x̄i, t) , (s(xi[1], t), . . . , s(xi[r], t)) ∈ (Rn)r.

LetSk = {x̄i}i∈[dr,k] ⊆ (Rk)r be a set of bags with instances inRk that is shattered byW(Rk).

DefineSn, a set of bags with instances inRn: Sn , {s(x̄i, t)]}i∈[dr,k],t∈[⌊n/k⌋] ⊆ (Rn)r. ThenSn is

shattered byW(Rn): Let{y(i,t)}i∈[dr,k],t∈[⌊n/k⌋] be some labeling forSn. Sk is shattered byW(Rk),

hence there are separatorsw1, . . . ,w⌊n/k⌋ ∈ R
k such that∀i ∈ [dr,k], t ∈ ⌊n/k⌋, hwt(x̄i) =

y(i,t).

Setw ,
∑⌊n/k⌋

t=0 s(wt, t). Then〈w〉s(x, t) = 〈wt〉x. Therefore

hw(s(x̄i, t)) = OR(sign(〈w〉s(xi[1], t)), . . . , sign(〈w〉s(xi[r], t)))

= OR(sign(〈wt〉xi[1]), . . . , sign(〈wt〉xi[r])) = hwt(x̄i) = y(i,t).

Sn is thus shattered, hencedr,n ≥ |Sn| = ⌊n/k⌋dr,k.

The desired theorem is an immediate consequence of the two lemmas above, by noting that

wheneverr ∈ R, the VC-dimension ofW(Rn) is at leastdr,n.

Theorem 7.6. LetW(Rn) be the class of separating hyperplanes inR
n as defined above. Assume

that the bag function isψ = OR and the set of allowed bag sizes isR. Let r = maxR. Then the

VC-dimension ofW(Rn) is at least⌊n/3⌋⌊log 2r⌋.

7.1.3 Pseudo dimension for thresholded functions

In this section we consider binary hypothesis classes that are generatedfrom real-valued functions

using thresholds. LetF ⊆ R
X be a set of real valued functions. The binary hypothesis class of

thresholded functions generated byF is TF = {(x, z) 7→ sign(f(x) − z) | f ∈ F}, wherex ∈ X
andz ∈ R. The sample complexity of learning withTF and the zero-one loss is governed by the

pseudo-dimension ofF , which is equal to the VC-dimension ofTF [Pollard, 1984]. In this section
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we consider a bag-labeling functionψ : R(R) → R, and bound the pseudo-dimension ofF , thus

providing an upper bound on the sample complexity of binary MIL withTF . The following bound

holds for bag-labeling functions that extend monotone Boolean functions,defined in Def.6.2.

Theorem 7.7. LetF ⊆ R
X be a function class with pseudo-dimensiond . LetR ⊆ [r], and assume

that ψ : R(R) → R extends monotone Boolean functions. Letdr be the pseudo-dimension ofF .

Then

dr ≤ max{16, 2d log(2er)}.

Proof. First, by Def.6.2, we have that for anyψ which extends monotone Boolean functions, any

n ∈ R and anyy ∈ R
n,

sign(ψ(y[1], . . . , y[n])− z) = sign(ψ(y[1]− z, . . . , y[n]− z))
= ψ(sign(y[1]− z, . . . , y[n]− z)). (7.3)

This can be seen by noting that each of the equalities holds for each of the operations allowed by

Mn for eachn, thus by induction they hold for all functions inMn and all combinations of them.

For a real-valued functionf let tf : X × R→ {±1} be defined bytf (y, z) = sign(f(y) − z).
We haveTF = {tf | f ∈ F}, andTF = {tf | f ∈ F}. In addition, for allf ∈ F , z ∈ R, n ∈ R
andx̄ ∈ X n, we have

tf (x̄, z) = sign(f(x̄)− z) = sign(ψ(f(x[1]), . . . , f(x[n]))− z)
= ψ(sign(f(x[1])− z, . . . , f(x[n])− z)) (7.4)

= ψ(tf (x[1], z), . . . , tf (x[n], z)) = tf (x̄, z),

where the equality on line (7.4) follows from Eq. (7.3). Therefore

TF = {tf | f ∈ F} = {tf | f ∈ F} = {h | h ∈ TF} = TF .

The VC-dimension ofTF is equal to the pseudo-dimension ofF , which isd. Thus, by Theorem7.2

and the equality above, the VC-dimension ofTF is bounded bymax{16, 2d log(2er)}. The proof is

completed by noting thatdr, the pseudo-dimension ofF , is exactly the VC-dimension ofTF .

This concludes our results for distribution-free sample complexity of BinaryMIL. In Section7.4

we provide sample complexity analysis for distribution-dependent binary MIL, as a function of the

average bag size.
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7.2 Covering Numbers bounds for MIL

Covering numbers are a useful measure of the complexity of a function class, since they allow

bounding the sample complexity of a class in various settings, based on uniform convergence guar-

antees [see e.g.Anthony and Bartlett, 1999]. In this section we provide a lemma that relates the

covering numbers of bag hypothesis classes with those of the underlying instance hypothesis class.

We will use this lemma in subsequent sections to derive sample complexity upper bounds for ad-

ditional settings of MIL. LetF ⊆ R
A be a set of real-valued functions over some domainA. A

γ-cover ofF with respect to a norm‖ · ‖◦ defined on functions is a set of functionsC ⊆ R
A such

that for anyf ∈ F there exists ag ∈ C such that‖f − g‖◦ ≤ γ. Thecovering numberfor given

γ > 0, F and◦, denoted byN (γ,F , ◦), is the size of the smallest suchγ-covering forF .

Let S ⊆ A be a finite set. We consider coverings with respect to theLp(S) norm forp ≥ 1,

defined by

‖f‖Lp(S) ,

(
1

|S|
∑

s∈S
|f(s)|p

)1/p

.

For p = ∞, L∞(S) is defined by‖f‖L∞(S) , maxs∈S |f(S)|. The covering number ofF for a

sample sizem with respect to theLp norm is

Nm(γ,F , p) , sup
S⊆A:|S|=m

N (γ,F , Lp(S)).

A small covering number for a function class implies faster uniform convergence rates, hence

smaller sample complexity for learning. The following lemma bounds the covering number of

bag hypothesis-classes whenever the bag function is Lipschitz with respect to the infinity norm

(see Def.6.4). Recall that all extensions of monotone Boolean functions (Def.6.2) and allp-norm

bag-functions (Def.6.3) are1-Lipschitz, thus the following lemma holds for them witha = 1.

Lemma 7.8. LetR ⊆ N and suppose the bag functionψ : R(R) → R is a-Lipschitz with respect to

the infinity norm, for somea > 0. LetS ⊆ X (R) be a finite set of bags, and letr be the average size

of a bag inS. For anyγ > 0, p ∈ [1,∞], and hypothesis classH ⊆ R
X ,

N (γ,H, Lp(S)) ≤ N (
γ

ar1/p
,H, Lp(S

∪)).

Proof. First, note that by the Lipschitz condition onψ, for any bagx̄ of sizen and hypotheses

h, g ∈ H,

|h(x̄)− g(x̄)| = |ψ(h(x[1]), . . . , h(x[n]))− ψ(g(x[1]), . . . , g(x[n]))| ≤ amax
x∈x̄
|h(x)− g(x)|.

(7.5)
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Let C be a minimalγ-cover ofH with respect to the norm defined byLp(S
∪), so that|C| =

N (γ,H, Lp(S
∪)). For everyh ∈ H there exists ag ∈ C such that‖h − g‖Lp(S∪) ≤ γ. Assume

p <∞. Then by Eq. (7.5)

‖h− g‖Lp(S) =

(
1

|S|
∑

x̄∈S
|h(x̄)− g(x̄)|p

)1/p

≤
(
ap

|S|
∑

x̄∈S
max
x∈x̄
|h(x)− g(x)|p

)1/p

≤
(
ap

|S|
∑

x̄∈S

∑

x∈x̄
|h(x)− g(x)|p

)1/p

=
a

|S|1/p

(
∑

x∈S∪

|h(x)− g(x)|p
)1/p

= a

( |S∪|
|S|

)1/p
(

1

|S∪|
∑

x∈S∪

|h(x)− g(x)|p
)1/p

= ar1/p‖h− g‖Lp(S∪) ≤ ar1/p · γ.

It follows thatC is a(ar1/pγ)-covering forH. Forp =∞ we have

‖h− g‖L∞(S) = max
x̄∈S
|h(x̄)− g(x̄)| ≤ amax

x̄∈S
max
x∈x̄
|h(x)− g(x)|

= amax
x∈S∪

|h(x)− g(x)| = a‖h− g‖L∞(S∪) ≤ aγ = a · r1/p · γ.

Thus in both cases,C is aar1/pγ-covering forH, and its size isN (γ,H, Lp(S
∪)). Thus

N (ar1/pγ,H, Lp(S
∪)) ≤ N (γ,H, Lp(S

∪)).

We get the statement of the lemma by substitutingγ with γ
ar1/p

.

As an immediate corollary, we have the following bound for covering numbersof a given sample

size.

Corollary 7.9. Let r ∈ N, and letR ⊆ [r]. Suppose the bag functionψ : R(R) → R is a-Lipschitz

with respect to the infinity norm for somea > 0. Let γ > 0, p ∈ [1,∞], andH ∈ R
X . For any

m ≥ 0,

Nm(γ,H, p) ≤ Nrm(
γ

a · r1/p ,H, p).

7.3 Margin Learning for MIL

Large-margin classification is a popular supervised learning approach,which has received atten-

tion also as a method for MIL. For instance, MI-SVM [Andrews et al., 2002] attempts to optimize

an adaptation of the soft-margin SVM objective [Cortes and Vapnik, 1995] to MIL, in which the
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margin of a bag is the maximal margin achieved by any of its instances. It has not been shown,

however, whether minimizing the objective function of MI-SVM, or other margin formulations for

MIL, allows learning with a reasonable sample size. We fill in this gap in Theorem 7.10 below,

which bounds theγ-fat-shattering dimension (see e.g.Anthony and Bartlett 1999) of MIL. The ob-

jective of MI-SVM amounts to replacing the hypothesis classH of separating hyperplanes with the

class of bag-hypothesesH where the bag function isψ = max. Sincemax is the real-valued exten-

sion of OR, this objective function is natural in our MIL formulation. The distribution-free sample

complexity of large-margin learning with the zero-one loss is proportional to the fat-shattering di-

mension [Alon et al., 1997]. Thus, we provide an upper bound on the fat-shattering dimension of

MIL as a function of the fat-shattering dimension of the underlying hypothesis class, and of the

maximal allowed bag size. The bound holds for any Lipschitz bag-function.Let γ > 0 be the

desired margin. For a hypothesis classH, denote itsγ-fat-shattering dimension byFat(γ,H)

Theorem 7.10.Let r ∈ N and assumeR ⊆ [r]. LetB, a > 0. LetH ⊆ [0, B]X be a real-valued

hypothesis class and assume that the bag functionψ : [0, B](R) → [0, aB] isa-lipschitz with respect

to the infinity norm. Then for allγ ∈ (0, aB]

Fat(γ,H) ≤ max

{
33, 24Fat(

γ

64a
,H) log2

(
6 · 2048 ·B2a2

γ2
· Fat( γ

64a
,H) · r

)}
. (7.6)

This theorem shows that for margin learning as well, the dependence of thebag size on the

sample complexity is poly-logarithmic. In the proof of the theorem we use Theorem 1.11 and

Theorem1.12, which link the covering number and the fat-shattering number. Theorem1.12deals

with the casem ≥ Fat(γ4 ,H). Here we consider allm ≥ 1, thus we slightly weaken the statement

of the theorem and use the following inequality, in which the fraction in the exponent is not divided

byFat(γ4 ,H):

Nm(γ, F,∞) < 2

(
4B2m

γ2

)Fat( γ
4
,F ) log(4eBm/γ)

. (7.7)

It is easy to check that this inequality follows from Theorem1.12for all m ≥ Fat(γ4 ,H) ≥ 1, and

from the trivial upper boundNm(γ,H,∞) ≤ (B/γ)m ≤ (B/γ)Fat(
γ
4
,H) for all m ≤ Fat(γ4 ,H).

Proof of Theorem7.10. From Theorem1.11and Lemma7.8 it follows that form ≥ Fat(16γ,H),

Fat(16γ,H) ≤ 8

log e
logNm(γ,H,∞) ≤ 6 logNrm(γ/a,H,∞). (7.8)
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By Eq. (7.7), for allm ≥ 1, if Fat(γ/4) ≥ 1 then

∀γ ≤ B

2e
, logNm(γ,H,∞) ≤ 1 + Fat(

γ

4
,H) log(4eBm

γ
) log

(
4B2m

γ2

)

≤ Fat(
γ

4
,H) log(8eBm

γ
) log

(
4B2m

γ2

)
(7.9)

≤ Fat(
γ

4
,H) log2(4B

2m

γ2
). (7.10)

The inequality in line (7.9) holds since we have added1 to the second factor, and the value of the

other factors is at least1. The last inequality follows since ifγ ≤ B
2e , we have8eB/γ ≤ 4B2/γ2.

Eq. (7.10) also holds ifFat(γ/4) < 1, since this impliesFat(γ/4) = 0 andNm(γ,H,∞) = 1.

Combining Eq. (7.8) and Eq. (7.10), we get that ifm ≥ Fat(16γ,H) then

∀γ ≤ aB

2e
, Fat(16γ,H) ≤ 6Fat(

γ

4a
,H) log2(4B

2a2rm

γ2
). (7.11)

Setm = ⌈Fat(16γ,H)⌉ ≤ Fat(16γ,H) + 1. If Fat(16γ,H) ≥ 1, we have thatm ≥ Fat(16γ,H)
and alsom ≤ 2Fat(16γ,H). Thus Eq. (7.11) holds, and

∀γ ≤ aB

2e
, Fat(16γ,H) ≤ 6Fat(

γ

4a
,H) log2(4B

2a2

γ2
· r · (Fat(16γ,H) + 1))

≤ 6Fat(
γ

4a
,H) log2(8B

2a2

γ2
· r · Fat(16γ,H)).

Now, it is easy to see that ifFat(16γ,H) < 1, this inequality also holds. Therefore it holds in

general. Substitutingγ with γ/16, we have that

∀γ ≤ 8aB

e
, Fat(γ,H) ≤ 6Fat(

γ

64a
,H) log2(2048B

2a2

γ2
· r · Fat(γ,H)). (7.12)

Note that the condition onγ holds, in particular, for allγ ≤ aB.

To derive the desired Eq. (7.6) from Eq. (7.12), letβ = 6Fat(γ/64a,H) andη = 2048B2a2/γ2.

DenoteF = Fat(γ,H). Then Eq. (7.12) can be restated asF ≤ β log2(ηrF ). It follows that√
F/ log(ηrF ) ≤ √β, Thus

√
F

log(ηrF )
log

( √
ηrF

log(ηrF )

)
≤
√
β log(

√
βηr).
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Therefore √
F

log(ηrF )
(log(ηrF )/2− log(log(ηrF ))) ≤

√
β log(βηr)/2,

hence

(1− 2 log(log(ηrF ))

log(ηrF )
)
√
F ≤

√
β log(βηr).

Now, it is easy to verify thatlog(log(x))/ log(x) ≤ 1
4 for all x ≥ 33 · 2048. AssumeF ≥ 33

andγ ≤ aB. Then

ηrF = 2048B2a2rF/γ2 ≥ 2048F ≥ 33 · 2048.

Thereforelog(log(ηrF ))/ log(ηrF ) ≤ 1
4 , which implies 1

2

√
F ≤ √β log(βηr). ThusF ≤

4β log2(βηr). Substituting the parameters with their values, we get the desired bound, stated in

Eq. (7.6).

7.4 Sample Complexity by Average Bag Size

The upper bounds we have shown so far provide distribution-free sample complexity bounds, which

depend only on the maximal possible bag size. In this section we show that even if the bag size is

unbounded, we can still have a sample complexity guarantee, if theaveragebag size for the input

distribution is bounded.

7.4.1 Binary MIL

Our first result complements the distribution-free sample complexity bounds that were provided

for binary MIL in Section7.1. The average (or expected) bag size under a distributionD over

X (R) × {±1} is E(X̄,Y )∼D[|X̄|]. Our sample complexity bound for binary MIL depends on the

average bag size and the VC dimension of the instance hypothesis class. Recall that the zero-one

loss is defined byℓ0/1(y, ŷ) = I[y 6= ŷ]. For a sample of labeled examplesS = {(xi, yi)}i∈[m], we

useSX to denote the examples ofS, that isSX = {xi}i∈[m].

Theorem 7.11. LetH ⊆ {±1}X be a binary hypothesis class with VC-dimensiond. LetR ⊆ N

and assume a bag functionψ : {±1}(R) → {±1}. Letr be the average bag size under distribution

D over labeled bags. Then

R(Hℓ0/1 , D) ≤ 17

√
d ln(4er)

m
.
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Proof. Let S be a labeled bag-sample of sizem. Dudley’s entropy integral [Dudley, 1967], pre-

sented in Section1.5.1states that

R(Hℓ0/1 , S) ≤
12√
m

∫ 1

0

√
lnN (γ,Hℓ0/1 , L2(S)) dγ.

If C is aγ-cover forH with respect to the normL2(SX), thenCℓ0/1 is aγ/2-cover forHℓ0/1

with respect to the normL2(S). This can be seen as follows: Lethℓ0/1 ∈ Hℓ0/1 for someh ∈ H.

Let f ∈ C such that‖f − h‖L2(SX) ≤ γ. We have

‖fℓ0/1 − hℓ0/1‖L2(S) =


 1

m

∑

(x,y)∈S
|fℓ0/1(x, y)− hℓ0/1(x, y)|2




1/2

=


 1

m

∑

(x,y)∈S
|ℓ0/1(y, f(x))− ℓ0/1(y, h(x))|2




1/2

=


 1

m

∑

x∈SX

(
1

2
|f(x)− h(x)|)2




1/2

=
1

2
‖f − h‖L2(SX) ≤ γ/2.

ThereforeCℓ0/1 is aγ/2-cover forL2(S). It follows that we can bound theγ-covering number of

Hℓ0/1 by:

N (γ,Hℓ0/1 , L2(S)) ≤ N (2γ,H, L2(SX)). (7.13)

Let r(S) be the average bag size in the sampleS, that isr(S) = |S∪|/|S|. By Lemma7.8,

N (γ,H, L2(SX)) ≤ N (γ/
√
r(S),H, L2(S

∪
X)). (7.14)

From Eq. (1.8), Eq. (7.13) and Eq. (7.14) we conclude that

R(Hℓ0/1 , S) ≤
12√
m

∫ 1

0

√
lnN (2γ/

√
r(S),H, L2(S∪

X)) dγ.

As presented in Eq. (1.1), It was shown inDudley[1978] that for anyH with VC-dimensiond, and

anyγ > 0,

lnN (γ,H, L2(S
∪
X)) ≤ 2d ln

(
4e

γ2

)
.
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Therefore

R(Hℓ0/1 , S) ≤
12√
m

∫ 1

0

√
2d ln

(
er(S)

γ2

)
dγ

≤ 17

√
d

m

(∫ 1

0

√
ln(er(S)) dγ +

∫ 1

0

√
ln(1/γ2) dγ

)

= 17

√
d(ln(er(S)) +

√
π/2)

m
≤ 17

√
d ln(4er(S))

m
.

The function
√
ln(x) is concave forx ≥ 1. Therefore we may take the expectation of both sides of

this inequality and apply Jensen’s inequality, to get

Rm(Hℓ0/1 , D) = ES∼Dm [R(Hℓ0/1 , S)] ≤ ES∼Dm

[
17

√
d ln(4er(S))

m

]

≤ 17

√
d ln(4e · ES∼Dm [r(S)])

m
= 17

√
d ln(4er)

m
.

We conclude that even when the bag size is not bounded, the sample complexity of binary MIL

with a specific distribution depends only logarithmically on the average bag sizein this distribution,

and linearly on the VC-dimension of the underlying instance hypothesis class.

7.4.2 Real-Valued Hypothesis Classes

In our second result we wish to bound the sample complexity of MIL when using other loss functions

that accept real valued predictions. This bound will depend on the average bag size, and on the

Rademacher complexity of the instance hypothesis class.

We consider the case where both the bag function and the loss function areLipschitz. For the

bag function, recall that all extensions of monotone Boolean functions are Lipschitz with respect

to the infinity norm. For the loss functionℓ : {±1} × R → R, we require that it is Lipschitz in

its second argument, i.e. that there is a constanta > 0 such that for ally ∈ {±1} andy1, y2 ∈
R, |ℓ(y, y1) − ℓ(y, y2)| ≤ a|y1 − y2|. This property is satisfied by many popular losses. For

instance, consider the hinge-lossℓhl(γ), defined in Section1.3. This loss is1/γ-Lipschitz in its

second argument.

The following lemma provides a bound on the empirical Rademacher complexity ofMIL, as a

function of the average bag size in the sample and of the behavior of the worst-case Rademacher

complexity over instances. We will subsequently use this bound to bound the average Rademacher
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complexity of MIL with respect to a distribution. We consider losses with the range[0, 1]. To avoid

degenerate cases, we consider only losses such that there exists at least one labeled bag(x̄, y) ⊆
X (R) × {±1} and hypothesesh, g ∈ H such thathℓ(x̄, y) = 0 andgℓ(x̄, y) = 1. We say that such

a loss has afull range.

Lemma 7.12. Let H ⊆ [0, B]X be a hypothesis class. LetR ⊆ N, and let the bag function

ψ : R
(R) → R be a1-Lipschitz with respect to the infinity norm. Assume a loss functionℓ :

{±1} × R → [0, 1], which isa2-Lipschitz in its second argument. Further assume thatℓ has a full

range. Suppose there is a continuous decreasing functionf : (0, 1]→ R such that

∀γ ∈ (0, 1], f(γ) ∈ N =⇒ Rsup
f(γ)(H) ≤ γ.

LetS be a labeled bag-sample of sizem, with an average bag sizer. Then for allǫ ∈ (0, 1],

R(Hℓ, S) ≤ 4ǫ+
10√
m

log

(
4ea21a

2
2B

2rm

ǫ2

)(
1 +

∫ 1

ǫ

√
f(

γ

4a1a2
) dγ

)
.

Proof. The refinement of Dudley’s entropy integral [Srebro et al., 2010, Lemma A.3], presented in

Section1.5.1, states that for allǫ ∈ (0, 1], for all real function classesF with range[0, 1] and for all

setsS,

R(F , S) ≤ 4ǫ+
10√
m

∫ 1

ǫ

√
lnN (γ,F , L2(S)) dγ.

Since the range ofℓ is [0, 1], this holds forF = Hℓ. In addition, for any setS, theL2(S) norm is

bounded from above by theL∞(S) norm. ThereforeN (γ,F , L2(S)) ≤ N (γ,F , L∞(S)). Thus,

by Eq. (1.9) we have

R(Hℓ, S) ≤ 4ǫ+
10√
m

∫ 1

ǫ

√
lnN (γ,Hℓ, L∞(S)) dγ. (7.15)

Now, leth, g ∈ H and considerhℓ, gℓ ∈ Hℓ. Sinceℓ is a2-Lipschitz, we have

‖hℓ − gℓ‖L∞(S) = max
i∈[m]

|hℓ(x̄i, yi)− gℓ(x̄i, yi)| = max
i∈[m]

|ℓ(yi, h(x̄i))− ℓ(yi, g(x̄i))|

≤ a2 max
i∈[m]

|h(x̄i)− g(x̄i)| = a2‖h− g‖L∞(SX).

It follows that if C ⊆ H is a γ/a2-cover forH thenCℓ ⊆ Hℓ is a γ-cover forHℓ. Therefore

N (γ,Hℓ, L∞(S)) ≤ N (γ/a2,H, L∞(SX)). By Lemma7.8,

N (γ/a2,H, L∞(SX)) ≤ N (γ/a1a2,H, L∞(S∪
X)) ≤ Nrm(γ/a1a2,H,∞).
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Combining this with Eq. (7.15) it follows that

R(Hℓ, S) ≤ 4ǫ+
10√
m

∫ 1

ǫ

√
Nrm(γ/a1a2,H,∞) dγ. (7.16)

Now, let γ ∈ (0, 1], and letγ◦ = sup{γ◦ ≤ γ | f(γ◦) ∈ N}. SinceRsup
f(γ◦)

(H) ≤ γ◦, by

Theorem1.16theγ◦-fat-shattering dimension ofH is at mostf(γ◦). It follows that

Fat(γ,H) ≤ Fat(γ◦,H) ≤ f(γ◦) ≤ 1 + f(γ).

The last inequality follows from the definition ofγ◦, sincef is continuous and decreasing. There-

fore, by Theorem1.12,

∀γ ≤ B, logNm(γ,H,∞) ≤ 1 + (f(
γ

4
) + 1) log(

4eBm

γ
) log

(
4B2m

γ2

)

≤ (f(
γ

4
) + 1) log(

4eBm

γ
) log

(
4eB2m

γ2

)
(7.17)

≤ (f(
γ

4
) + 1) log2(

4eB2m

γ2
). (7.18)

The inequality in line (7.17) holds since we have addedlog(e) ≥ 1 to the third factor, and the value

of the other factors is at least1. The last inequality follows sinceγ ≤ B.

We now show that the assumptionγ ≤ B does not restrict us: By the assumptions onℓ, there

areh, g ∈ H and a labeled bag(x̄, y) such thathℓ(x̄, y) = 1 andgℓ(x̄, y) = 0. Letn = |x̄|. By the

Lipschitz assumptions we have

1 = |hℓ(x̄, y)− gℓ(x̄, y)| = |ℓ(y, h(x̄))− ℓ(y, g(x̄))| ≤ a2|h(x̄)− g(x̄)|
= a2|ψ(h(x[1]), . . . , h(x[n]))− ψ(g(x[1]), . . . , g(x[n]))|
≤ a2a1max

j∈[n]
|h(x[j])− g(x[j])| ≤ a1a2B.

Thus1 ≤ a1a2B. It follows that for allγ ∈ (0, 1], γ/a1a2 ≤ B. Thus Eq. (7.18) can be combined
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with Eq. (7.16) to get that for allǫ ∈ (0, 1],

R(Hℓ, S) ≤ 4ǫ+
10√
m

∫ 1

ǫ

√(
f(

γ

4a1a2
) + 1

)
log2

(
4ea21a

2
2B

2rm

γ2

)
dγ

≤ 4ǫ+
10√
m

log

(
4ea21a

2
2B

2rm

ǫ2

)∫ 1

ǫ

√
f(

γ

4a1a2
) + 1 dγ

≤ 4ǫ+
10√
m

log

(
4ea21a

2
2B

2rm

ǫ2

)(
1 +

∫ 1

ǫ

√
f(

γ

4a1a2
) dγ

)
.

The last inequality follows from the fact that
√
a+ b ≤ √a +

√
b for non-negativea andb, and

from
∫ 1
ǫ 1 ≤ 1.

Based on Lemma7.12, we will now bound the average Rademacher complexity of MIL, as a

function of the worst-case Rademacher complexity over instances, and theexpected bag size. Since

the number of instances in a bag sample of a certain size is not fixed, but depends on the bag sizes in

the specific sample, we will need to consider the behavior ofRsup
m (H) for different values ofm. For

many learnable function classes, the Rademacher complexity is proportionalto 1√
m

, or to lnβ(m)√
m

for

some non-negativeβ. The following theorem bounds the average Rademacher complexity of MIL

in all these cases. The resulting bound indicates that here too there is a poly-logarithmic dependence

of the sample complexity on the average bag size. Following the proof we showan application of

the bound to a specific function class.

Theorem 7.13. Let H ⊆ [0, B]X be a hypothesis class. LetR ⊆ N, and let the bag function

ψ : R
(R) → R be a1-Lipschitz with respect to the infinity norm. Assume a loss functionℓ :

{±1} × R → [0, 1], which isa2-Lipschitz in its second argument. Further assume thatℓ has a full

range. Suppose that there areC, β,K ≥ 0 such that for allm ≥ K,

Rsup
m (H) ≤ C lnβ(m)√

m
.

Then there exists a numberN ≥ 0 that depends only onC, β andK such that for any distribution

D with average bag sizer, and for allm ≥ 1,

Rm(Hℓ, D) ≤
4 + 10 log(4ea21a

2
2B

2rm2)
(
N + a1a2

β+1C lnβ+1(16a21a
2
2m)

)

√
m

.

Proof. Let S be a labeled bag sample of sizem, and let r̃ be its average bag size. Denote

T (x) = C lnβ(x), and definef(γ) = 4T 2(1/γ2)
γ2 . We will show thatRsup

f(γ)(H) ≤ γ, thus al-

lowing the use of Lemma7.12. We haveRm ≤ T (m)/
√
m, thus it suffices to show that
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T (f(γ))/
√
f(γ) ≤ γ.

Let z(γ) =
√
f(γ)/T (f(γ)). We will now show thatz(γ)T (z2(γ)) ≥ 1

γT (1/γ
2). Since

the functionxT (x2) = Cx lnβ(x2) is monotonic increasing forx ≥ 1, we will conclude that

z(γ) ≥ 1/γ for all γ ≤ 1.

It is easy to see that for all values ofβ,C ≥ 0, there is a numbern ≥ 0 such that for allx ≥ n,

C2 ln2β(x) ≤ x1−2−1/β
.

For suchx we have

T (x/T 2(x)) = C lnβ(
x

C2 ln2β(x)
) = C(ln(x)− ln(C2 ln2β(x)))β

≥ C(ln(x)− (1− 2−1/β) ln(x)))β = C lnβ(x)/2 = T (x)/2. (7.19)

Let γ◦ > 0 such thatf(γ◦) = k = max{n,K}. Sincef(γ) is monotonic decreasing withγ, for all

γ ≤ γ◦, f(γ) ≥ k. Therefore, forγ ≤ γ◦,

z(γ)T (z2(γ)) =

√
f(γ)

T (f(γ))
T (

f(γ)

T 2(f(γ))
) ≥ 1

2

√
f(γ)

T (f(γ))
T (f(γ)) =

1

2

√
f(γ) = T (1/γ2)/γ.

The middle inequality follows from Eq. (7.19), and the last equality follows from the definition of

f(γ). We conclude thatz(γ) ≥ 1
γ . Therefore, for allγ ≤ γ◦,

Rsup
f(γ)(H) ≤

T (f(γ))√
f(γ)

= 1/z(γ) ≤ γ.

Definef̃ as follows:

f̃(γ) =




f(γ) γ ≤ γ◦
k γ > γ◦.

Forγ ≤ γ◦, clearlyRsup

f̃(γ)
(H) ≤ γ, and forγ > γ◦,

Rsup

f̃(γ)
(H) = Rsup

k (H) = Rsup
f(γ◦)

(H) ≤ γ◦ ≤ γ.
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Therefore for allγ ∈ (0, 1],Rsup

f̃(γ)
(H) ≤ γ. By Lemma7.12, for all ǫ ∈ (0, 1],

R(Hℓ, S) ≤ 4ǫ+
10√
m

log

(
4ea21a

2
2B

2r̃m

ǫ2

)(
1 +

∫ 1

ǫ

√
f̃(

γ

4a1a2
) dγ

)

= 4ǫ+
10√
m

log

(
4ea21a

2
2B

2r̃m

ǫ2

)(
1 +

∫ 1

4a1a2γ◦

√
k dγ +

∫ 4a1a2γ◦

ǫ

√
f(

γ

4a1a2
) dγ

)

≤ 4ǫ+
10√
m

log

(
4ea21a

2
2B

2r̃m

ǫ2

)(
1 +
√
k +

∫ 4a1a2γ◦

ǫ

√
f(

γ

4a1a2
) dγ

)
. (7.20)

DenoteN = 1 +
√
k. Now, if β > 0 we have

∫ 4a1a2γ◦

ǫ

√
f(

γ

4a1a2
) dγ ≤

∫ ∞

ǫ

√
f(

γ

4a1a2
) dγ = 2a1a2

∫ ∞

ǫ

T (16a21a
2
2/γ

2)

γ
dγ

= 2a1a2C

∫ ∞

ǫ

lnβ(16a21a
2
2/γ

2)

γ
dγ = 2a1a2C

[
− lnβ+1(

16a21a
2
2

γ2
)/(2(β + 1))

]∞

ǫ

=
a1a2C

β + 1

(
lnβ+1(

16a21a
2
2

ǫ2
)

)
.

The same inequality holds also forβ = 0, since in that case

∫ 4a1a2γ◦

ǫ

√
f(

γ

4a1a2
) dγ = 2a1a2

∫ 4a1a2γ◦

ǫ

T (16a21a
2
2/γ

2)

γ
dγ

= 2a1a2C

∫ 4a1a2γ◦

ǫ

1

γ
= 2a1a2C [ln(γ)]4a1a2γ◦ǫ = 2a1a2C ln(

4a1a2γ◦
ǫ

)

≤ 2a1a2C ln(
4a1a2
ǫ

) =
a1a2C

β + 1

(
lnβ+1(

16a21a
2
2

ǫ2
)

)
.

Therefore we can further bound Eq. (7.20) to get

R(Hℓ, S) ≤ 4ǫ+
10√
m

log

(
4ea21a

2
2B

2r̃m

ǫ2

)(
N +

a1a2C

β + 1
lnβ+1(

16a21a
2
2

ǫ2
)

)
.

Settingǫ = 1/
√
m we get

R(Hℓ, S) ≤
4 + 10 log(4ea21a

2
2B

2r̃m2)
(
N + a1a2C

β+1 lnβ+1(16a21a
2
2m)

)

√
m

.



CHAPTER 7. MIL WITH ANY HYPOTHESIS CLASS 80

Now, for a given sampleS denote its average bag size byr̃(S). We have

Rm(H, D) = ES∼Dm [R(Hℓ, S)]

≤ E



4 + 10 log(4ea21a

2
2B

2r̃(S)m2)
(
N + a1a2C

β+1 lnβ+1(16a21a
2
2m)

)

√
m




≤
4 + 10 log(4ea21a

2
2B

2rm2)
(
N + a1a2C

β+1 lnβ+1(16a21a
2
2m)

)

√
m

.

In the last inequality we used Jensen’s inequality and the fact thatES∼Dm [r̃(S)] = r. This is the

desired bound, hence the theorem is proven.

To demonstrate the implications of this theorem, consider the case of MIL with soft-margin

kernel SVM. Kernel SVM can operate in a general Hilbert spaceS, which we denote byT . The

domain of instances isX = {x ∈ T | ‖x‖ ≤ 1}, and the function class is the class of linear separa-

tors with a bounded normW(S). The loss is the hinge-lossℓhl(γ) defined in Section1.3, which is

1/γ-Lipschitz in the second argument. We have [Bartlett and Mendelson, 2002]

Rsup
m (Wℓhl(γ)) ≤

1

γ
√
m

=
ln0(m)

γ
√
m

.

Thus we can apply Theorem7.13with β = 0. Note thatW ⊆ [−1, 1]X , thus we can apply the

theorem withB = 2 by simply shifting the output of eachhw by 1 and adjusting the loss function

accordingly. By Theorem7.13there exists a numberN such that for any1-Lipschitz bag-function

ψ (such asmax) and for any distributionD over labeled bags with an average bag size ofr, we have

Rm(Hℓ, D) ≤ 4 + 10 log(16erm2/γ2) (N + (1/γ) · ln(16m/γ))√
m

.

We can use this result and apply Eq. (1.3) to get an upper bound on the loss of MIL with soft-margin

SVM.



Chapter 8

PAC-Learning for MIL

In the previous chapter we addressed the sample complexity of generalizedMIL, showing that it

grows only logarithmically with the bag size. We now turn to consider the computational aspect of

MIL, and specifically the relationship between computational feasibility of MILand computational

feasibility of the learning problem for the underlying instance hypothesis.

We consider real-valued hypothesis classesH ∈ [−1,+1]X , and provide a MIL algorithm

which uses a learning algorithm that operates on single instances as an oracle. We show that if

the oracle can minimize error with respect toH, and the bag-function satisfies certain boundedness

conditions, then the MIL algorithm is guaranteed to PAC-learnH. In particular, the guarantees

hold if the bag-function is Boolean OR ormax, as in classical MIL and its extension to real-valued

hypotheses.

Given an algorithmA that learnsH from single instances, we provide an algorithm called

MILearn that usesA to implement aweak learnerfor bags with respect toH. That is, for any

weighted sample of bags,MILearn returns a hypothesis fromH that has some success in labeling

the bag-sample correctly. This will allow the use ofMILearn as the building block in a Boosting

algorithm [Freund and Schapire, 1997], which will find a convex combination of hypotheses from

H that classifies unseen bags with high accuracy. Furthermore, ifA is efficient then the resulting

Boosting algorithm is also efficient, with a polynomial dependence on the maximalbag size.

We open with background on Boosting in Section8.1. We then describe the weak learner in and

analyze its properties in Section8.2. In Section8.3we provide guarantees on a Boosting algorithm

that uses our weak leaner, and conclude that the computational complexity of PAC-learning for MIL

can be bounded by the computational complexity of agnostic PAC-learning for single instances.

81
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8.1 Background: Boosting with Margin Guarantees

In this section we give some background on Boosting algorithms, which we willuse to derive an

efficient learning algorithm for MIL. Boosting methods [Freund and Schapire, 1997] are techniques

that allow enhancing the power of aweak learner—a learning algorithm that achieves error slightly

better than chance—to derive a classification rule that has low error on aninput sample. The idea is

to iteratively execute the weak learner on weighted versions of the input sample, and then to return

a convex combination of the classifiers that were emitted by the weak learner ineach round.

Let A be a domain of objects to classify, and letH : [−1,+1]A be the hypothesis class used

by the weak learner. A Boosting algorithm receives as input a labeled sample S = {(xi, yi)}mi=1 ⊆
A × {±1}, and iteratively feeds to the weak learner a reweighed version ofS. Denote them-

dimensional simplex by∆m = {w ∈ R
m | ∑i∈[m]wi = 1, ∀i ∈ [m], w[i] ≥ 0}. For a vector

w ∈ ∆m, Sw = {(w[i], xi, yi)}mi=1 is the sampleS reweighed byw. The Boosting algorithm runs

in k rounds. On roundt it sets a weight vectorwt ∈ ∆m, calls the weak learner with inputSwt ,

and receives a hypothesisht ∈ H as output from the weak learner. Afterk rounds, the Boosting

algorithm returns a classifierf◦ : A→ [−1,+1], which is a convex combination of the hypotheses

received from the weak learner:f◦ =
∑

t∈[k] αtht, whereα1, . . . , αk ≥ 0, and
∑

i∈[k] αi = 1.

The literature offers plenty of Boosting algorithms with desirable properties.For concreteness,

we use the algorithmAdaBoost ∗ [Rätsch and Warmuth, 2005], since it provides suitable guaran-

tees on themarginof its output classifier. For a labeled example(x, y), the quantityyf◦(x) is the

margin off◦ when classifyingx. If the margin is positive, thensign ◦ f◦ classifiesx correctly. The

margin of any functionf on a labeled sampleS = {(xi, yi)}mi=1 is defined as

M(f, S) = min
i∈[m]

yif(xi).

If M(f, S) is positive, then the entire sample is classified correctly bysign ◦ f .

If S is an i.i.d. sample drawn from a distribution onA×{±1}, then classification error off◦ on

the distribution can be bounded based onM(f◦, S) and the pseudo-dimensiond of the hypothesis

classH. The following bound [Schapire and Singer, 1999, Theorem 8] holds with probability1− δ
over the training samples, for anym ≥ d:

P[Y · f◦(X) ≤ 0] ≤ O



√
d ln2(m/d)/M2(f◦, S) + ln(1/δ)

m


 . (8.1)

In fact, inspection of the proof of this bound inSchapire and Singer[1999] reveals that the only

property of the hypothesis classH that is used to achieve this result is the following bound, due to
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Haussler and Long[1995], on the covering number of a hypothesis classH with pseudo-dimension

d:

∀γ ∈ (0, 1], Nm(γ,H,∞) ≤
(
em

γd

)d

. (8.2)

Thus, Eq. (8.1) holds whenever this covering bound holds—a fact that will be useful tous.

ForAdaBoost ∗, a guarantee on the size of the margin off◦ can be achieved if one can provide

a guarantee on theedgeof the hypotheses returned by the weak learner. The edge of a hypothesis

measures of how successful it is in classifying labeled examples. Leth : A → [−1,+1] be a

hypothesis and letD be a distribution overA× {±1}. The edge ofh with respect toD is

Γ(h,D) , E(X,Y )∼D[Y · h(X)].

For a weighted and labeled sampleS = {(wi, xi, yi)}i∈[m] ⊆ R+ ×A× {±1},

Γ(h, S) ,
∑

i∈[m]

wiyih(xi).

Note that ifh(x) is interpreted as the probability ofh to emit 1 for input x, then 1−Γ(h,D)
2 is the

expected misclassification error ofh onD. Thus, a positive edge implies a labeling success of more

than chance. ForAdaBoost ∗, a positive edge on each of the weighted samples fed to the weak

learner suffices to guarantee a positive margin of its output classifierf◦.

Theorem 8.1(Rätsch and Warmuth 2005). AssumeAdaBoost∗receives a labeled sampleS of size

m as input. Suppose thatAdaBoost∗ runs fork rounds and returns the classifierf◦. If for every

roundt ∈ [k], Γ(ht, Swt) ≥ ρ, thenM(f◦, S) ≥ ρ−
√
2 lnm/k.

We present a simple corollary, which we will use when analyzing Boosting for MIL. This corol-

lary shows thatAdaBoost ∗ can be used to transform a weak learner that approximates the best

edge of a weighted sample to a Boosting algorithm that approximates the best margin of a la-

beled sample. The proof of the corollary employs the following well known result, originally

by von Neumann[1928] and later extended [see e.g.Nash and Sofer, 1996]. For a hypothesis

classH, denote byco(H) the set of all convex combinations of hypotheses inH. We say that

H ⊆ [−1,+1]A is compact with respect to a sampleS = {(xi, yi)}i∈[m] ⊆ A× {±1} if the set of

vectors{(h(x1), . . . , h(xm)) | h ∈ H} is compact.

Theorem 8.2(The Strong Min-Max theorem). If H is compact with respect toS, then

min
w∈∆m

sup
h∈H

Γ(h, Sw) = sup
f∈co(H)

M(f, S).
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Corollary 8.3. Suppose thatAdaBoost∗ is executed with an input sampleS, and assume thatH

is compact with respect toS. Assumpe the weak learner used byAdaBoost∗ has the following

guarantee: For anyw ∈ ∆m, if the weak learner receivesSw as input, then with probability at

least1− δ it returns a hypothesish◦ such that

Γ(h◦, Sw) ≥ g(sup
h∈H

Γ(h, Sw)),

whereg : [−1,+1] → [−1,+1] is some fixed non-decreasing function. Then for any input sample

S, if AdaBoost∗ runsk rounds, it returns a convex combination of hypothesesf◦ =
∑

t∈[k] αtht,

such that with probability at least1− kδ

M(f◦, S) ≥ g( sup
f∈co(H)

M(f, S))−
√
2 lnm/k.

Proof. By Theorem8.2, minw∈∆m suph∈H Γ(h, Sw) = supf∈co(H)M(f, S). Thus, for any vector

of weightsw in the simplex,suph∈H Γ(h, Sw) ≥ supf∈co(H)M(f, S). It follows that in each

round, the weak learner that receivesSwt as input returns a hypothesisht such thatΓ(ht, Swt) ≥
g(suph∈H Γ(h, Swt)) ≥ g(supf∈co(H)M(f, S)). By Theorem8.1, it follows thatM(f◦, S) ≥
g(supf∈co(H)M(f, S))−

√
2 lnm/k.

8.2 The Weak Learner

In this section we will present our weak learner for MIL and provide guarantees for the edge it

achieves. Our guarantees depend on boundedness properties of thebag-functionψ, which we define

below. To motivate our definition of boundedness, consider thep-norm bag functions (see Def.6.3),

defined byψp(z) ,
(
1
n

∑n
i=1(z[i] + 1)p

)1/p − 1. Recall that this class of functions includes the

max function (ψ∞) and the average function (ψ1) as two extremes. AssumeR ⊆ [r] for some

r ∈ N. It is easy to verify that for any naturaln, any sequencez1, . . . , zn ∈ [−1,+1], and all

p ∈ [1,∞],
1

n

∑

i∈[n]
zi ≤ ψp(z1, . . . , zn) ≤

∑

i∈[n]
zi + n− 1.

SinceR ⊆ [r], it follows that for all(z1, . . . , zn) ∈ [−1,+1](R),

1

r

∑

i∈[n]
zi ≤ ψp(z1, . . . , zn) ≤

∑

i∈[n]
zi + r − 1. (8.3)
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We will show that in cases where the bag function is linearly bounded in the sum of its argu-

ments, as in Eq. (8.3), a single-instance learning algorithm can be used to learn MIL. Our weak

learner will be parameterized by the boundedness parameters of the bag-function, defined formally

as follows.

Definition 8.4. A function ψ : [−1,+1](R) → [−1,+1] is (a, b, c, d)-bounded if for all

(z1, . . . , zn) ∈ [−1,+1](R),

a
∑

i∈[n]
zi + b ≤ ψ(z1, . . . , zn) ≤ c

∑

i∈[n]
zi + d.

Thus, for allp ∈ [1,∞), ψp over bags of size at mostr is (1r , 0, 1, r − 1)-bounded.

Before listing the weak learnerMILearn, we introduce some notations.hpos denotes a special

bag-hypothesis that labels all bags as+1: ∀x ∈ X (R), hpos(x) = 1. We denoteH+ , H ∪
{hpos}. LetA be an algorithm that receives a labeled and weighted instance sample as input, and

returns a hypothesish ∈ H. The result of runningA with inputS is denotedA(S) ∈ H.

The algorithmMILearn, listed as Alg.1 below, accepts as input a bag sampleS and a bounded

bag-functionψ. It also has access to the algorithmA. We sometimes emphasize thatMILearn

uses a specific algorithmA as an oracle by writingMILearnA. MILearn constructs a sample of

instancesSI from the instances that make up the bags inS, labeling each instance inSI with the

label of the bag it came from. The weights of the instances depend on whether the bag they came

from was positive or negative, and on the boundedness properties ofψ. Having constructedSI ,

MILearn callsA with SI . It then decides whether to return the bag-hypothesis induced by applying

ψ toA(SI), or to simply returnhpos.

It is easy to see that the time complexity ofMILearn is bounded byO(f(N) +N), whereN is

the total number of instances in the bags ofS, andf(n) is an upper bound on the time complexity

of A when running on a sample of sizen. As we presently show, the output ofMILearn is a

bag-hypothesis inH+ whose edge onS depends on the best achievable edge forS.

The guarantees forMILearnA depend on the properties ofA. We define two properties that we

consider forA. The first property is that the edge of the hypothesisA returns is close to the best

possible one on the input sample.

Definition 8.5 (ǫ-optimal). An algorithmA that accepts a weighted and labeled sample of instances

in X and returns a hypothesis inH is ǫ-optimal if for all weighted samplesS ⊆ R+ × X × {±1}
with total weightW ,

Γ(A(S), S) ≥ sup
h∈H

Γ(h, S)− ǫW.

The second property is that the edge of the hypothesis thatA returns is close to the best possible
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Algorithm 1: MILearn
A

Assumptions:

• H ∈ [−1,+1]X

• AlgorithmA receives a weighted instance sample and returns a hypothesis inH.

Input :

• S , {(wi, x̄i, yi)}i∈[m] — a labeled and weighted sample of bags,

• ψ — an(a, b, c, d)-bounded bag-function.

Output : h◦ ∈ H+.

1 α(+1) ← a, α(−1) ← c.

2 SI ← {(αyi · wi, xi[j], yi)}i∈[m],j∈[r].

3 hI ← A(SI).
4 if Γ(hI , S) ≥ Γ(hpos, S) then

5 h◦ ← hI ,
6 else
7 h◦ ← hpos.

8 Returnh◦.

one on the input sample, but only compared to the edges that can be achieved by hypotheses that

label all the negative instances ofS with −1. For a hypothesis classH and a distributionD over

labeled examples, we denote the set of hypotheses inH that label all negative examples inD with

−1, by

Ω(H, D) = {h ∈ H | P(X,Y )∼D[h(X) = −1 | Y = −1] = 1}.

For a labeled sampleS, Ω(H, S) , Ω(H, US) whereUS is the uniform distribution over the exam-

ples inS.

Definition 8.6 (one-sided-ǫ-optimal). An algorithmA that accepts a weighted and labeled sample

of instances inX and returns a hypothesis inH is one-sided-ǫ-optimal if for all weighted samples

S ⊆ R+ ×X × {±1} with total weightW ,

Γ(A(S), S) ≥ sup
h∈Ω(H,S)

Γ(h, S)− ǫW.
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Clearly, any algorithm which isǫ-optimal is also one-sided-ǫ-optimal, thus the first requirement

fromA is stronger. In our results below we compare the edge achieved usingMILearn to the best

possible edge for the sampleS. Denote the best edge achievable forS by a hypothesis inH by

γ∗ , sup
h∈H

Γ(h, S).

We denote byγ∗+ the best edge that can be achieved by a hypothesis inΩ(H, S). Formally,

γ∗+ , sup
h∈Ω(H,S)

Γ(h, S).

Denote the weight of the positive bags in the input sampleS byW+ =
∑

i:yi=+1wi and the weight

of the negative bags byW− =
∑

i:yi=−1wi. We will henceforth assume without loss of generality

that the total weight of all bags in the input sample is1, that isW+ +W− = 1.

Note that for any(a, b, c, d)-boundedψ, if there exists any sequencez1, . . . , zn such that

ψ(z1, . . . , zn) = −1, then

a
∑

i∈[n]
zi + b ≤ −1 ≤ c

∑

i∈[n]
zi + d. (8.4)

This implies
−1− d
c

≤
∑

i∈[n]
zi ≤

−1− b
a

.

Rearranging, we getd− c
ab− c

a + 1 ≥ 0, with equality if Eq. (8.4) holds with equalities. The next

theorem provides a guarantee forMILearn that depends on the tightness of this inequality for the

given bag function. As evident from Theorem8.1, to guarantee a positive margin for the output of

AdaBoost ∗ when used withMILearn as the weak learner, we need to guarantee that the edge of

the hypothesis returned byMILearn is always positive. Since the best edge cannot be more than1,

we emphasize in the theorem below that the edge achieved byMILearn is positive at least when the

best edge is1 (and possibly also for smaller edges, depending on the parameters). We subsequently

show how these general guarantees translate to a specific result for themax function, and other bag

functions with the same boundedness properties.

Theorem 8.7. Let r ∈ N andR ⊆ [r]. Letψ : [−1,+1](R) → [−1,+1] be an(a, b, c, d)-bounded

bag-function such that0 < a ≤ c. Let ǫ ∈ [0, 1
rc), and assume thatd − c

ab − c
a + 1 = η. Denote

Z = c
a . Consider running the algorithmMILearnA with a weighted bag sampleS of total weight

1, and leth◦ be the hypothesis returned byMILearnA. Then
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1. IfA is ǫ-optimal then

Γ(h◦, S) ≥
Zγ∗ − Z + 1

Z −
η
2 (1 +

1
Z )− rcǫ

1 + (1− η
2 )(1− 1

Z )
.

Thus,Γ(h◦, S) > 0 whenever

γ∗ > 1− 1

Z2
+
η

2
(
1

Z
+

1

Z2
) +

rcǫ

Z
.

In particular, if η ≤ 2(1− rcǫ)/(Z + 1) andγ∗ = 1 thenΓ(h◦, S) > 0.

2. IfA is one-sided-ǫ-optimal, andψ(z1, . . . , zn) = −1 only if z1 = . . . = zn = −1, then

Γ(h◦, S) ≥
γ∗+ − η

2 (Z + 1)− rcǫZ
2Z − 1− η

2 (Z − 1)
.

Thus,Γ(h◦, S) > 0 whenever

γ∗+ >
η

2
(Z + 1) + rcǫZ.

In particular, if η ≤ 2(1− rcǫZ)/(Z + 1) andγ∗+ = 1 thenΓ(h◦, S) > 0.

The first step in the proof of the theorem, is to provide a guarantee for the edge achieved on

the bag sample by the hypothesis returned byA in step (3) of the algorithm. This is done in the

following lemma.

Lemma 8.8. Assumeψ : [−1,+1](R) → [−1,+1] is an (a, b, c, d)-bounded bag function with

0 < a ≤ c, and denoteZ = c
a . Consider running the algorithmMILearn with a weighted bag

sampleS of total weight1. LethI be the hypothesis returned by the oracleA in step (3) ofMILearn.

LetW be the total weight of the sampleSI created inMILearn, step (2). Then

1. IfA is ǫ-optimal,

Γ(hI , S) ≥ Zγ∗ + (
1

Z
− Z + (1− 1

Z
)(d− Zb))W+ + Zb− d− ǫW.

2. IfA is one-sided-ǫ-optimal, andψ(z1, . . . , zn) = −1 only if z1 = . . . = zn = −1, then

Γ(hI , S) ≥
1

Z
γ∗+ + (

1

Z
− Z + (1− 1

Z
)(d− Zb))W+ + Zb− d+ Z − 1

Z
− ǫW.

Proof. For allh ∈ H, and for allx̄ = (x1, . . . , xn) ∈ X (R) we haveh(x̄) = ψ(h(x1), . . . , h(xn)).



CHAPTER 8. PAC-LEARNING FOR MIL 89

Sinceψ is (a, b, c, d)-bounded, it follows that

a
∑

x∈x̄
h(x) + b ≤ h(x̄) ≤ c

∑

x∈x̄
h(x) + d. (8.5)

In addition, sincea andc are positive we also have

(h(x̄)− d)/c ≤
∑

x∈x̄
h(x) ≤ (h(x̄)− b)/a. (8.6)

Assume the input bag sample isS = {(wi, x̄i, yi)}i∈[m]. DenoteI+ = {i ∈ [m] | yi = +1} and

I− = {i ∈ [m] | yi = −1}. Leth ∈ H be a hypothesis. We have

Γ(h, S) =
∑

i∈I+
wih(x̄i)−

∑

i∈I−
wih(x̄i)

≥
∑

i∈I+
wi(a

∑

x∈x̄i

h(x) + b)−
∑

i∈I−
wi(c

∑

x∈x̄i

h(x) + d) (8.7)

=
∑

i∈I+
wia

∑

x∈x̄i

h(x)−
∑

i∈I−
wic

∑

x∈x̄i

h(x) +
∑

i∈I+
wib−

∑

i∈I−
wid. (8.8)

line (8.7) follows from Eq. (8.5). As evident by steps (1,2) of MILearn, In the sampleSI all

instances from positive bags have weightα(+1) = a, and all instances from negative bags have

weightα(−1) = c. Therefore

Γ(h, SI) =
∑

i∈[m]

∑

x∈x̄i

wiyiα(yi)h(x) =
∑

i∈I+
wia

∑

x∈x̄i

h(x)−
∑

i∈I−
wic

∑

x∈x̄i

h(x).

Combining this equality with Eq. (8.8) we get

Γ(h, S) ≥ Γ(h, SI) +
∑

i∈I+
wib−

∑

i∈I−
wid.

Since
∑

i∈I+ wi =W+ and
∑

i∈I− wi =W− = 1−W+, it follows that

Γ(h, S) ≥ Γ(h, SI) + bW+ − dW− = Γ(h, SI) + (b+ d)W+ − d. (8.9)
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Now, for any hypothesish we can conclude from Eq. (8.6) that

Γ(h, SI) =
∑

i∈I+
awi

∑

x∈x̄i

h(x)−
∑

i∈I−
cwi

∑

x∈x̄i

h(x)

≥
∑

i∈I+
awi(h(x̄i)− d)/c−

∑

i∈I−
cwi(h(x̄i)− b)/a

=
∑

i∈I+

a

c
wih(x̄i)−

∑

i∈I−

c

a
wih(x̄i)−

∑

i∈I+
adwi/c+

∑

i∈I−
cbwi/a

=
c

a
Γ(h, S) + (

a

c
− c

a
)
∑

i∈I+
wih(x̄i)−

ad

c
W+ +

cb

a
W−

=
c

a
Γ(h, S) + (

a

c
− c

a
)
∑

i∈I+
wih(x̄i)− (

ad

c
+
cb

a
)W+ +

cb

a
.

In the last equality we used the fact thatW− = 1−W+. SinceZ = c
a , it follows that

Γ(h, SI) ≥ ZΓ(h, S) + (
1

Z
− Z)

∑

i∈I+
wih(x̄i)− (

d

Z
+ Zb)W+ + Zb. (8.10)

We will now lower-bound the right-hand-side of Eq. (8.10). Note that 1Z − Z ≤ 0 sincec ≥ a.

Therefore we need an upper bound for
∑

i∈I+ wih(x̄i). We consider each of the two cases in the

statement of the lemma separately.

Case 1:A is ǫ-optimal We have
∑

i∈I+ wih(x̄i) ≤
∑

i∈I+ wi = W+. Therefore, by Eq. (8.10)

for anyh ∈ H

Γ(h, SI) ≥ ZΓ(h, S) + (
1

Z
− Z − d

Z
− Zb)W+ + Zb. (8.11)

For a naturaln, sethn∗ such thatΓ(h
n
∗ , S) ≥ γ∗ − 1

n . We have (see explanations below)

Γ(hI , S) ≥ Γ(hI , SI) + (b+ d)W+ − d (8.12)

≥ Γ(hn∗ , SI) + (b+ d)W+ − d− ǫW (8.13)

≥ ZΓ(hn∗ , S) + (
1

Z
− Z − d

Z
− Zb)W+ + Zb+ (b+ d)W+ − d− ǫW (8.14)

= ZΓ(h
n
∗ , S) + (

1

Z
− Z + (1− 1

Z
)(d− Zb))W+ + Zb− d− ǫW

≥ Z(γ∗ − 1

n
) + (

1

Z
− Z + (1− 1

Z
)(d− Zb))W+ + Zb− d− ǫW.

Eq. (8.12) is a restatement of Eq. (8.9). Eq. (8.13) follows from theǫ-optimality ofA. Eq. (8.14)
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follows from Eq. (8.11). By takingn→∞, this inequality proves case (1) of the lemma.

Case 2: A is one-sided-ǫ-optimal We have
∑

i∈I+ wih(x̄i) ≤
∑

i∈I+ wi = W+. Let h ∈
Ω(H, S). Then for alli ∈ I−, h(x̄i) = −1. Therefore

Γ(h, S) =
∑

i∈I+
wih(x̄i)−

∑

i∈I−
wih(x̄i)

=
∑

i∈I+
wih(x̄i) +

∑

i∈I−
wi

=
∑

i∈I+
wih(x̄i) +W−.

Therefore
∑

i∈I+ wih(x̄i) = Γ(h, S)−W− = Γ(h, S) +W+ − 1. Combining this with Eq. (8.10)

we get

Γ(h, SI) ≥ ZΓ(h, S) + (
1

Z
− Z)

∑

i∈I+
wih(x̄i)− (

d

Z
+ Zb)W+ + Zb

= ZΓ(h, S) + (
1

Z
− Z)(Γ(h, S) +W+ − 1)− (

d

Z
+ Zb)W+ + Zb.

=
1

Z
Γ(h, S) + (

1

Z
− Z − d

Z
− Zb)W+ + Zb− 1

Z
+ Z. (8.15)

For a naturaln, seth
n
+ ∈ Ω(H, S) such thatΓ(h

n
+, S) ≥ γ∗+ − 1

n . For all bagsi ∈ I−,

h
n
+(x̄i) = −1. Thusψ(hn+(xi[1]), . . . , h

n
+(xi[|x̄i])) = −1. By the assumption onψ in case (2) of

the lemma, this implies that for alli ∈ I−, j ∈ [|x̄i|], hn+(xi[j]) = −1. Thereforehn+ ∈ Ω(H, SI).
We have (see explanations below)

Γ(hI , S) ≥ Γ(hI , SI) + (b+ d)W+ − d (8.16)

≥ Γ(hn+, SI) + (b+ d)W+ − d− ǫW (8.17)

≥ 1

Z
Γ(h

n
+, S) + (

1

Z
− Z − d

Z
− Zb)W+ + Zb− 1

Z
+ Z + (b+ d)W+ − d− ǫW

(8.18)

=
1

Z
Γ(h

n
+, S) + (

1

Z
− Z + (1− 1

Z
)(d− Zb))W+ + Zb− d+ Z − 1

Z
− ǫW

≥ 1

Z
(γ∗+ −

1

n
) + (

1

Z
− Z + (1− 1

Z
)(d− Zb))W+ + Zb− d+ Z − 1

Z
− ǫW.

Eq. (8.16) is a restatement of Eq. (8.9). Eq. (8.17) follows from the one-sided-ǫ-optimality ofA
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and the fact thathn+ ∈ Ω(H, SI). Eq. (8.18) follows from Eq. (8.15). By consideringn → ∞, this

proves the second part of the lemma.

Proof of Theorem8.7. MILearn selects the hypothesis with the best edge onS betweenhI and

hpos. Therefore

Γ(h◦, S) = max(Γ(hpos, S),Γ(hI , S)).

We have

Γ(hpos, S) =
∑

i∈[m]

wiyihpos(x̄i) =
∑

i∈[m]

wiyi =W+ −W− = 2W+ − 1.

Thus

Γ(h◦, S) = max(2W+ − 1,Γ(hI , S)). (8.19)

We now lower-boundΓ(h◦, S) by boundingΓ(hI , S) separately for the two cases of the theorem.

LetW be the total weight ofSI . SinceR ⊆ [r], a ≤ c, and
∑

i∈[m]wi = 1, we have

W =
∑

i:yi=+1

∑

x∈x̄i

awi +
∑

i:yi=−1

∑

x∈x̄i

cwi ≤ rc
∑

i∈[m]

wi = rc (8.20)

Case 1:A is ǫ-optimal From Lemma8.8and Eq. (8.20) we have

Γ(hI , S) ≥ Zγ∗ + (
1

Z
− Z + (1− 1

Z
)(d− Zb))W+ + Zb− d− rcǫ

= Zγ∗ + (
1

Z
− Z + (1− 1

Z
)(Z − 1 + η))W+ − (Z − 1 + η)− rcǫ

= Zγ∗ + (η − 2)(1− 1

Z
)W+ + 1− η − Z − rcǫ.

The second line follows from the assumptiond − Zb − Z + 1 = η. Combining this with

Eq. (8.19) we get

Γ(h◦, S) ≥ max{2W+ − 1, Zγ∗ + (η − 2)(1− 1

Z
)W+ + 1− η − Z − rcǫ}.

The right-hand-side is minimal when the two expressions in the maximum are equal. This occurs

when

W+ =W◦ ,
Zγ∗ + 2− η − Z − rcǫ
2 + (2− η)(1− 1

Z )
.
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Therefore, for any value ofW+

Γ(h◦, S) ≥ 2W◦ − 1 =
Zγ∗ − Z + 1

Z −
η
2 (1 +

1
Z )− rcǫ

1 + (1− η
2 )(1− 1

Z )
.

Case 2:A is one-sided-ǫ-optimal From Lemma8.8and Eq. (8.20) we have

Γ(hI , S) ≥
1

Z
γ∗+ + (

1

Z
− Z + (1− 1

Z
)(d− Zb))W+ + Zb− d+ Z − 1

Z
− rcǫ

=
1

Z
γ∗+ + (

1

Z
− Z + (1− 1

Z
)(Z − 1 + η))W+ − (Z − 1 + η) + Z − 1

Z
− rcǫ

=
1

Z
γ∗+ + (η − 2)(1− 1

Z
)W+ + 1− η − 1

Z
− rcǫ.

The second line follows from the assumptiond−Zb = Z − 1 + η. Combining this with Eq. (8.19)

we get

Γ(h◦, S) ≥ max{2W+ − 1,
1

Z
γ∗+ + (η − 2)(1− 1

Z
)W+ + 1− η − 1

Z
− rcǫ}.

The right-hand-side is minimal when the two expressions in the maximum are equal. This occurs

when

W+ =W◦ ,
γ∗+ − 1 + (2− η − rcǫ)Z
2Z + (2− η)(Z − 1)

.

SubstitutingW+ for W◦ in the lower bound, we get

Γ(h◦, S) ≥ 2W◦ − 1 =
γ∗+ − η

2 (Z + 1)− rcǫZ
2Z − 1− η

2 (Z − 1)
.

Theorem8.7 is stated in general terms, as it holds for any boundedψ. In particular, ifψ is any

function between an average and amax, including any of thep-norm bag functionsψp defined in

Def. 6.3, we can simplify the result, as captured by the following corollary.

Corollary 8.9. LetH ⊆ [−1,+1]X . LetR ⊆ [r], and ǫ ∈ [0, 1r ). Assume a bag functionψ :

[−1,+1](R) → [−1,+1] such that for anyz1, . . . , zn ∈ [−1,+1],

1

n

∑

i∈[n]
zi ≤ ψ(z1, . . . , zn) ≤ max

i∈[n]
zi.

Leth◦ be the hypothesis returned byMILearnA. Then
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1. IfA is ǫ-optimal for someǫ ∈ [0, 1/r], then

Γ(h◦, S) ≥
r2γ∗ + 1− r2(1 + ǫ)

2r − 1
.

ThusΓ(h◦, S) > 0 wheneverγ∗ ≥ 1− 1
r2

+ ǫ
r . In particular, if γ∗ = 1 thenΓ(h◦, S) > 0.

2. IfA is one-sided-ǫ-optimal someǫ ∈ [0, 1/r2], then

Γ(h◦, S) ≥
γ∗+ − r2ǫ
2r − 1

.

ThusΓ(h◦, S) > 0 wheneverγ∗+ > r2ǫ. In particular, if γ∗+ = 1 thenΓ(h◦, S) > 0.

Proof. Let z1, . . . , zn ∈ [−1,+1]. We have

max
i∈[n]

zi ≤
∑

i∈[n]
zi − (n− 1)min(zi) ≤

∑

i∈[n]
zi + n− 1.

Therefore, by the assumption onψ, for anyn ∈ R

ψ(z1, . . . , zn) ≤
∑

i∈[n]
zi + n− 1 ≤

∑

i∈[n]
zi + r − 1.

In addition
1

r

∑

i∈[n]
zi ≤

1

n

∑

i∈[n]
zi ≤ ψ(z1, . . . , zn).

Thereforeψ is (1r , 0, 1, r− 1)-bounded. It follows thatZ = r in this case, andd−Zb−Z+1 = 0.

Claim (1) follows by applying case (1) of Theorem8.7with η = 0.

For claim (2) we apply case (2) of Theorem8.7. Thus we need to show that ifψ(z1, . . . , zn) =

−1 andz1, . . . , zn ∈ [−1,+1], thenz1 = . . . = zn = −1. We have that

−1 ≤ 1

n

∑

i∈[n]
zi ≤ ψ(z1, . . . , zn) ≤ −1.

Therefore1
n

∑
i∈[n] zi = −1. Since nozi can be smaller than−1, z1 = . . . = zn = −1. Thus case

(2) of Theorem8.7holds. We get our claim (2) directly by subsituting the boundedness parameters

of ψ in Theorem8.7case (2).
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8.3 From Single-Instance Learning to Multi-Instance Learning

In this section we combine the guarantees onMILearn with the guarantees onAdaBoost ∗, to

show that efficient agnostic PAC-learning of the underlying instance hypothesisH implies efficient

PAC-learning of MIL. For simplicity we formalize the results for the natural case where the bag

function isψ = max. Results for other bounded bag functions can be derived in a similar fashion.

First, we formally define the notions of agnostic and one-sided PAC-learning algorithms. We

then show that given an algorithm on instances that satisfies one of these definitions, we can con-

struct an algorithm for MIL which approximately maximizes the margin on an inputbag sample.

Specifically, if the input bag sample is realizable byH, then the MIL algorithm we propose will

find a convex combination of bag hypotheses that classifies the sample with zero error, and with

a positive margin. Combining this with the margin-based generalization guarantees mentioned in

Section8.1, we conclude that we have an efficient PAC-learner for MIL.

Definition 8.10 (Agnostic PAC-learner and one-sided PAC-learner). LetB(ǫ, δ, S) be an algorithm

that accepts as inputδ, ǫ ∈ (0, 1), and a labeled sampleS ∈ (X × {±1})m, and emits as output a

hypothesish ∈ H. B is anagnostic PAC-learnerforH with complexityc(ǫ, δ) if B runs for no more

than c(ǫ, δ) steps, and for any probability distributionD overX × {±1}, if S is an i.i.d. sample

fromD of sizec(ǫ, δ), then with probability at least1− δ overS and the randomization ofB,

Γ(B(ǫ, δ, S), D) ≥ sup
h∈H

Γ(h,D)− ǫ.

B is aone-sided PAC-learnerif under the same conditions, with probability at least1− δ

Γ(B(ǫ, δ, S), D) ≥ sup
h∈Ω(H,D)

Γ(h,D)− ǫ.

Given an agnostic PAC-learnerB for H and parametersǫ, δ ∈ (0, 1), the algorithmOB
ǫ,δ, listed

above as Alg.2, is anǫ-optimal algorithm with probability1−δ. Similarly, if B is a one-sided PAC-

learner, thenOB
ǫ,δ is a one-sided-ǫ-optimal algorithm with probability1 − δ. Our MIL algorithm

is then simplyAdaBoost ∗ with MILearn
OB

ǫ,δ as the (high probability) weak learner. It is easy to

see that this algorithm learns a convex combination of hypotheses fromH+. We also show below

that under certain conditions this convex combination induces a positive margin on the input bag

sample with high probability. Given this guaranteed margin, we bound the generalization error of

the learning algorithm via Eq. (8.1).

The computational complexity ofOB
ǫ,δ is polynomial inc(ǫ, δ) and in the instance-sample size

m. Therefore, the computational complexity ofMILearnO
B
ǫ,δ is polynomial inc(ǫ, δ) and inN ,

whereN is the total number of instances in the input bag sampleS.
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Algorithm 2: OB
ǫ,δ

Assumptions:

• ǫ, δ ∈ (0, 1).

• B receives a labeled instance sample as input and returns a hypothesis inH.

• AlgorithmB is a one-sided (or agnostic) PAC-learning algorithm with complexityc(ǫ, δ).

Input : A labeled and weighted instance sampleS = {(wi, xi, yi)}i∈[m] ⊆ R+ ×X × {±1}.
Output : A hypothesis inH

1 For all i ∈ [m], pi ← wi/
∑

i∈[m]wi.

2 For eacht ∈ [c(ǫ, δ)], independently draw a randomjt such thatjt = i with probabilitypi.
3 S̃ ← {(xjt , yjt)}t∈[c(ǫ,δ)].
4 h← B(S̃)
5 Returnh.

For1-Lipschitz bag functions which have desired boundedness properties,both the sample com-

plexity and the computational complexity of the proposed MIL algorithm are polynomial in the

maximal bag size and linear in the complexity of the underlying instance hypothesis class. This

is formally stated in the following theorem, for the case of a realizable distributionover labeled

bags. Note that in particular, the theorem holds for all thep-norm bag-functions, since they are

1-Lipschitz and satisfy the boundedness conditions.

Theorem 8.11. LetH ⊆ [−1,+1]X be a hypothesis class with pseudo-dimensiond. LetB be a

one-sided PAC-learner forH with complexityc(ǫ, δ). Letr ∈ N, and letR ⊆ [r]. Assume that the

bag functionψ : [−1,+1](R) → [−1,+1] is 1-Lipschitz with respect to the infinity norm, and that

for any(z1, . . . , zn) ∈ [−1,+1](R)

1

n

∑

i∈[n]
zi ≤ ψ(z1, . . . , zn) ≤ max

i∈[n]
zi.

Assume thatH is compact with respect to any sample of sizem. Let D be a distribution over

X (R) × {±1} which is realizable byH, that is there exists anh ∈ H such thatP(X̄,Y )∼D[h(X̄) =

Y ] = 1. Assumem ≥ 10d ln(er), and letǫ = 1
2r2

andk = 32(2r − 1)2 ln(m).

For all δ ∈ (0, 1), if AdaBoost∗ is executed fork rounds on a random sampleS ∼ Dm,

with MILearn
OB

ǫ,δ/2k as the weak learner, then with probability1 − δ, the classifierf◦ returned by
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AdaBoost∗ satisfies

PD[Y f(X̄) ≤ 0] ≤ O



√
dr2 ln(r) ln2(m) + ln(2/δ)

m


 . (8.21)

Proof. SinceB is a one-sided PAC-learning algorithm,OB
ǫ,δ/2k is one-sided-ǫ-optimal with proba-

bility at least1 − δ/2k. Therefore, by case (2) of Cor.8.9, if MILearnO
B

ǫ,δ/k receives a weighted

bag sampleSw, with probability1− δ/2k it returns a bag hypothesish◦ ∈ H+ such that

Γ(h◦, Sw) ≥
suph∈Ω(H,S) Γ(h, Sw)− r2ǫ

2r − 1
.

Thus, by Cor.8.3, if AdaBoost ∗ runs fork rounds then with probability1−δ/2 it returns a convex

combination of hypotheses fromH+ such that

M(f◦, S) ≥
supf∈co(Ω(H,S))M(f, S)− r2ǫ

2r − 1
−
√
2 lnm/k. (8.22)

Due to the realizability assumption forD, there is anh ∈ Ω(H, S) that classifies correctly the

bag sampleS. It follows that for any weightingw ∈ ∆m of S, Γ(h, Sw) = 1. It is easy to

verify that sinceH is compact with respect toS, then so isΩ(H, S). Thus, by Theorem8.2,

supf∈co(Ω(H,S))M(f, S) = minw suph∈Ω(H,S) Γ(h, Sw) = 1. Substitutingǫ andk with their val-

ues, settingsupf∈co(Ω(H,S))M(f, S) = 1 in Eq. (8.22) and simplifying, we get that with probability

1− δ/2
M(f◦, S) ≥

1

8r − 4
. (8.23)

We would now like to apply the generalization bound in Eq. (8.1), but for this we need to show

that Eq. (8.2) holds forH. We have the following bound on the covering numbers ofH, for all

γ ∈ (0, 1]:

Nm(γ,H,∞) ≤ Nrm(γ,H,∞) ≤
(
erm

γd

)d

.

The first inequality is due to Cor.7.9 and the fact thatψ is 1-Lipschitz, and the second inequality

is due toHaussler and Long[1995] and the pseudo-dimension ofH (see Eq. (8.2) above). This
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implies

Nm(γ,H,∞) ≤
(
erm

γd

)d

=

(
em

γd

)d

· ed ln(r) =
(

em

γ · 10d ln(er)

)d

· (10 ln(er))ded ln(r)

=

(
em

γ · 10d ln(er)

)d

· ed(ln(10 ln(er))+ln(r)).

Therefore, form ≥ 10d ln(er)

Nm(γ,H+,∞) ≤ 1 +Nm(γ,H,∞) ≤ 1 +

(
em

γ · 10d ln(er)

)d

· ed(ln(10 ln(er))+ln(r))

≤
(

em

γ · 10d ln(er)

)d

· ed(ln(10 ln(er))+ln(er)).

Now, ln(10 ln(er))+ ln(er) = ln(10)+ ln(ln(er))+ ln(er) ≤ ln(10)+2 ln(er) ≤ 3+2 ln(er) ≤
5 ln(er). Therefore,

Nm(γ,H+,∞) ≤
(

em

γ · 10d ln(er)

)d

· e5d ln(er) ≤
(

e2m

γ · 10d ln(er)

)5d ln(er)

≤
(

em

γ · 10d ln(er)

)10d ln(er)

.

Thus, form ≥ 10d ln(er), Eq. (8.2) holds forH+ when substitutingd with dr = 10d ln(er). This

means the generalization bound in Eq. (8.1) holds when substitutingd with dr as well. It follows

that with probability1− δ/2

P[Y f◦(X) ≤ 0] ≤ O



√
dr ln

2(m/dr)/M2(f◦, S) + ln(1/δ)

m


 .

Now, with probability1− δ/2, by Eq. (8.23) we haveM(f◦, S) ≥ 1/(8r− 4). Combining the two

inequalities and applying the union bound, we have that with probability1− δ

P[Y f◦(X) ≤ 0] ≤ O



√
dr(8r − 4)2 ln2(m/dr) + ln(2/δ)

m




≤ O



√

10d ln(er)(8r − 4)2 ln2(m) + ln(2/δ)

m


 .

Due to the O-notation we can simplify the right-hand side to get Eq. (8.21).
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Similar generalization results for Boosting can be derived for margin-learning as well, using

covering-numbers arguments as discussed inSchapire et al.[1998]. The theorem above leads to the

following conclusion.

Corollary 8.12. If there exists a one-sided PAC-learning algorithm forH with polynomial run-

time in 1
ǫ and 1

δ , then there exists a PAC-learning algorithm for classical MIL onH, which has

polynomial run-time inr,1ǫ and 1
δ .

Cor. 8.12is similar in structure to Theorem6.1: Both state that if the single-instance problem

is solvable with one-sided error, then the realizable MIL problem is solvable. Theorem6.1applies

only to bags with statistically independent instances, while Cor.8.12applies to bags drawn from an

arbitrary distribution. The assumption of Theorem6.1 is similarly weaker, as it only requires that

the single-instance PAC-learning algorithm handle random one-sided noise, while Cor.8.12requires

that the single-instance algorithm handle arbitrary one-sided noise. Of course, Cor.8.12does not

contradict the hardness result provided for APRs inAuer et al.[1998]. Indeed, this hardness result

states that if there exists a MIL algorithm ford-dimensional APRs which is polynomial in bothr

andd, thenRP = NP. Our result does not imply that such an algorithm exists, since there is no

known agnostic or one-sided PAC-learning algorithm for APRs which is polynomial ind.

We have shown a simple and general way, independent of hypothesis class, to create a PAC-

learning algorithm for classical MIL from a learning algorithm that runs onsingle instances. When-

ever an appropriate polynomial algorithm exists for the non-MIL learning problem, the resulting

MIL algorithm will also be polynomial inr. To illustrate, consider for instance the algorithm pro-

posed inShalev-Shwartz et al.[2010]. This algorithm is an agnostic PAC-learner of fuzzy kernel-

ized half-spaces with anL-Lipschitz transfer function, for some constantL > 0. Its time complexity

and sample-complexity are at most poly((Lǫ )
L · ln(1δ )). Since this complexity bound is polynomial

in 1/ǫ and in1/δ, Cor.8.12applies, and we can generate an algorithm for PAC-learning MIL with

complexity that depends directly on the complexity of this learner, and is polynomial in r, 1
ǫ and 1

δ .

More generally, using the construction we proposed here, any advancement in the development of

algorithms for agnostic or one-sided learning of any hypothesis class translates immediately to an al-

gorithm for PAC-learning MIL with the same hypothesis class, and with corresponding complexity

guarantees.



Chapter 9

Using MIL in a non-MIL Setting

Consider three applications from three different domains: In the first, you want to conduct market

research using online ads, to identify which products are attractive. Youcan put up ads featuring

products, but your only feedback is whether or not the ad was clicked.In the second application,

consider some chemical or biological problem where the goal is to learn to classify chemical sam-

ples based on the result of a chemical experiment. Each experiment is costly, but is possible to

conduct an experiment with numerous types of molecules at the same time, and toidentify only if

a reaction has occurred or not. In the third application, suppose the purpose is to learn a classifier

that identifies images with faces, using a large set of labeled images. To obtainthis labeled set, one

introduces a large set of images to human labelers, who indicate whether the image contains a face

or not. We would like to minimize the cost of the human work by reducing the labelingtime to a

minimum.

These examples come from different domains, but share a common feature: In all of them we

have access to practically unlimited data which we can present to a teacher (ahuman labeler, or

some experimental machinery for obtaining a label), but there is a high cost for each label obtained

from the teacher. In addition, it is possible to obtain from the teacher asingle labelfor a set of

examplesat essentially the same cost as a label for a single example. The single label indicates

only if there exists a positive example in the examined set: In the market research application, it is

possible to feature several products in one ad. In the chemical experiment task, it may be possible

to conduct one large experiment testing several different samples, instead of several experiments,

one for each sample. In the face recognition task, one can present testsubjects an array of images

instead of a single image (see Figure9.1) and ask them to indicate whether there is a face anywhere

in the array of images1. In these example application, the main cost of training is the number of

1There might be other possibilities, such as asking the labeler to click the exact location of the face in the array,
however this might produce a much slower labeling rate than if the labeler clicks only Yes or No buttons

100



CHAPTER 9. USING MIL IN A NON-MIL SETTING 101

labels, and not the total number of examples.

Figure 9.1: A person easily identifies whether there is a face in a bag of images. Left: Negative Label.
Right: Positive Label. Images from CALTECH101 [L. Fei-Fei and Perona., 2004].

We consider learning in the setting illustrated by the three example applications, and investigate

when it is worthwhile to present a teacher with sets of examples instead of individual examples in

this setting. In our model we assume that the cost of obtaining a label does not depend on the size

of the set for which the label was obtained, and that obtaining examples to present to the teacher

incurs no cost. Therefore, the cost of learning depends only on the number of obtained labels, and

the goal is to reduce this number as much as possible using sets of examples ofan optimal size.

In the proposed setting, the teacher labels sets of examples using a single label. This can be

thought of as a form of Multi-Instance Learning, in which the bags are created by the algorithm,

and not by the environment. Moreover, the goal is to learn to classify individual instances and not

whole bags. The bag-labeling function in this setting is the classical Boolean OR.

Intuitively, there is an inherent trade-off when obtaining one label for awhole bag: On the

one hand, this allows one label to provide information on a large number of examples. On the

other hand, this information can be ambiguous, since if the label is positive wedo not know which

examples in the bag are the positive ones. In this work we investigate this trade-off, and show that

it is possible to reduce the number of required labels by presenting bags ofexamples to the teacher

instead of individual examples. After describing the formal setting (Section9.1), we show, both

analytically and experimentally, that using bags can indeed improve performance considerably, for

a wide range of problem parameters. We show analytically (Section9.2) how to select the bag

sizepresented to the teacher for optimal performance. In addition, we propose (Section9.3) a

simple and practical algorithm along the lines ofFelzenszwalb et al.[2008] for finding a separating

hyperplane for individual examples from a training sample composed of labeled bags. Several

types of experiments were performed (Section9.4), on synthetic data sets and on real data sets.

The experiments demonstrate the success of the proposed approach foran even wider range of

parameters than guaranteed by the analysis.
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9.1 Problem Setting

Let X be the domain of examples, and letH ⊆ {±1}X be the hypothesis class. We assume

a realizable distributionD over labeled examples, and selectc ∈ H such thatP(X,Y )∼D[Y =

c(X)] = 1. The goal of the learner is to return a classifierh : X → {±1} such thatℓ0/1(h,D)

is small. The marginal ofD overX and the functionc determine the distributionD. Thus in the

sequel we identifyD with its marginal onX .

We assume that the learner has unlimited access to samples inX drawn according toD. We

consider the case where the main cost incurred in the learning procedureis that of obtaining labels

from the teacher, while the cost of presenting examples to the teacher is negligible. We assume that

one can ask the teacher to labelbagsof examples using a single label. The teacher’s label indicates

whether at least one of the examples in the bag is positive. Formally, we fix thebag-labeling function

ψ = OR ≡ max. For every baḡx presented to the teacher, the teacher returns a single binary label

c(x̄). We wish to get low error overindividual examples, using the smallest possible number of

labels. Note that unlike active learning, here the entire sample is generated inadvance, with no

feedback from the teacher. The following procedure is proposed:

1. Select a bag sizer and a sample sizemr;

2. Createmr bags of sizer from r ·mr examples drawn independently fromD;

3. Present the bags{x̄i}mr
i=1 to the teacher, and receivemr labels{yi}mr

i=1 such thatyi = c̄(x̄i).

4. Return the hypothesish◦ ∈ H such thath◦ minimizes the training error over bags:

h◦ = argmin
h∈H

mr∑

i=1

|h(x̄i)− yi|.

This procedure is a generalization of the classical empirical risk minimization (ERM) strategy,

where the learner finds the hypothesis with minimal training error: Forr = 1 this procedure is

exactly ERM over an i.i.d. sample drawn from the distributionD. For a generalr, we use an

i.i.d. sample drawn from the distributionDr. Importantly, regardless of the chosenr, our goal is to

minimizeℓ0/1(h◦, D), the error onindividual examplesdrawn fromD, and we will measure success

based on this goal.

We denote byα the probability of a single example having a positive label, i.e. the frequency of

positive examples inD. As we will see, the methods we describe are relevant whenα is substan-

tially smaller then half. That is, when positive examples are relatively rare. When the frequencyα

of positive examples is small, measuring the error becomes tricky: a hypothesis which labels ev-

erything as negative has errorα, but we typically want a hypothesis that better balances type I and
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type II errors. In our analysis we assume for simplicity that all the hypotheses inH have the same

probability for a positive label:

∀h ∈ H,P(X,Y )∼D[h(X) = 1] = P(X,Y )∼D[Y = 1] = α. (9.1)

That is, all hypothesis are calibrated by the known positive example rate. This assumption implies

that the probability of type I errors is identical to the probability of type II errors, and allows us

to use the overall error as a single objective even for very smallα. In particular, if the learner

balances type I and type II errors, or in the realizable case, if the learner seeks a zero empirical error

hypothesis, then the hypotheses chosen by the learner satisfies this condition at least approximately.

This assumption also implies that the true error ofh is in the range[0, 2α].

9.2 Theoretical Analysis

In this section we analyze the procedure described above, and show how it can reduce the required

number of labels. We start by analyzing the relationship between the bag size, the sample size, and

the resulting true error over individual examples, based on theoretical error bounds. We then use

these bounds to choose a bag sizer and study the reduction in sample size achieved by the proposed

procedure.

9.2.1 The Sample Complexity of Training on Bags

We will base our analysis on standard results, that bound the true error when using ERM on a

training sample with a given sample size. These bounds do not suffice by themselves, since they

refer to the true error over examples drawn from the same distribution as thetraining sample. In

our case, these results will bound the error overbagsdrawn fromDr, while we wish to bound the

true error overindividual examplesdrawn fromD. We thus start with the following theorem, which

provides the relationship between the true error on bags and the true error on individual examples.

Theorem 9.1. For anyh : X → {0, 1} such that Eq. (9.1) holds, we have

P[h(X̄) 6= c(X̄)] = καr (P[c(X) 6= h(X)]) (9.2)

whereκαr (ǫ) , 2((1− α)r − (1− α− ǫ/2)r).

Proof. Let X ∼ D be a random variable over individual examples andX̄ ∼ Dr be a random
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variable over bags. We have

P[h(X̄) 6= c(X̄)] = (9.3)

= P[h(X̄) = 0 ∧ c(X̄) = 1] + P[h(X̄) = 1 ∧ c(X̄) = 0]

= P[h(X̄) = 0]− P[h(X̄) = 0 ∧ c(X̄) = 0] + P[c(X̄) = 0]− P[c(X̄) = 0 ∧ h(X̄) = 0]

= P[h(X̄) = 0] + P[c(X̄) = 0]− 2P[c(X̄) = 0 ∧ h(X̄) = 0].

Since the instances in̄X are statistically independent we have

P[c(X̄) = 0] = (P[c(X) = 0])r = (1− α)r.

From Eq. (9.1) we also have

P[h(X̄) = 0] = P[c(X̄) = 0] = (1− α)r.

In addition,

P[c(X̄) = 0 ∧ h(X̄) = 0] = (P[c(X) = 0 ∧ h(X) = 0])r = (1− α− P[c(X) 6= h(X)]/2)r.

The last equality above follows from Eq. (9.1) via simple calculations. Using the three equations

above in Eq. (9.3), we get

P[h(X̄) 6= c(X̄)] = 2((1− α)r − (1− α− P[c(X) 6= h(X)]/2)r).

Eq. (9.2) follows from this equality by settingǫ = P[c(X) 6= h(X)].

To bound the true error on bags achieved byĥ, we invoke the VC-bound for the realizable case

[Vapnik and Chervonenkis, 1971], which states that with probability at least1− δ over a sample of

mr bags:

P[ĥ(X̄) 6= c(X̄)] ≤ 2
dr
mr

(log
2emr

dr
+ log

2

δ
) , VC-BOUND(mr, dr), (9.4)

wheredr denotes the VC-dimension ofH, the class of hypotheses over bags of sizer.

Combining Theorem9.1with Eq. (9.4), and taking the inverse ofκαr , yields the following learn-

ing bound for the proposed procedure:

Corollary 9.2. If Eq. (9.1) holds andc ∈ H, and the procedure described in Section9.1 is used,
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then with probability1− δ over the samples of bags,

P[ĥ(X) 6= c(X)] ≤ 2(1− α)− 2((1− α)r − VC-BOUND(mr, dr)/2)
1/r.

In order to understand the effect of using bags, it will be useful to study the relationship between

the bag size and the sample complexity, based on the bound in Corollary9.2 (Note that the sample

size is equal to the number of labels, which is the cost we wish to minimize). We will thus fix a

target error rate, and ask how the sample complexity for this error rate changes as a function of

the bag size. To this end, definẽmr(ǫ) as the number of bags of sizer required to obtain a bound

of ǫ on the true error of individual examples, based on Corollary9.2. This is an upper bound on

the sample complexity when using bags of sizer. In particular,m̃1(ǫ) is the “standard” VC-bound

sample complexity, when using a regular sample with individual examples. The following theorem

bounds the reduction in sample complexity when bags of sizer are used instead of a regular sample:

Theorem 9.3. Let d be the VC-dimension ofH, and letdr be the VC-dimension of the classH of

hypotheses over bags of sizer. We have:

m̃r(ǫ)

m̃1(ǫ)
≤ ǫ

καr (ǫ)
· dr
d
. (9.5)

Proof. Letmr = min{m̃1(ǫ)
ǫ

κα
r (ǫ)
· drd , m̃1(ǫ)}. We have

P[ĥ(X̄) 6= c(X̄)] ≤ VC-BOUND(mr, dr)

=
drm̃1(ǫ)

dmr
· 2 d

m̃1(ǫ)
(log

2emr

dr
+ log

2

δ
)

≤ drm̃1(ǫ)

dmr
VC-BOUND(m̃1(ǫ), d) =

drm̃1(ǫ) · ǫ
dmr

≤ καr (ǫ).

From Theorem9.1 it follows thatP[ĥ(X) 6= c(X)] ≤ ǫ. Therefore the minimal sample size to

achieveǫ using bags of sizer is no more thanmr, and Eq. (9.5) follows.

Examining Eq. (9.5), it is obvious thatdrd ≥ 1, since the hypotheses class over bags cannot have

a lower VC-dimension then the hypotheses class over individual examples.Therefore a reduction

in sample complexity will only be attained ifκαr (ǫ) > ǫ. That is, only if the error rate on bags is

higherthen the error rate on individual examples. This may seem counterintuitive—why would we

gain from using bags if it causes anincreasein the error rate? The key point is that we are interested

in the implied error rate on individual examples, and so we can allow ourselves a higher error rate

on bags, if it implies a lower error on individual examples. Note, however,that any reduction in

the sample complexity due toκαr (ǫ) > ǫ might be canceled if the VC-dimensiondr grows very fast
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with r. Fortunately, this is not the case, as the following theorem shows:

Theorem 9.4.

dr ≤ −
d

ln(2)
·W−1

(
− ln(2)

er

)
= O(d log r). (9.6)

WhereW−1 denotes the negative branch of the Lambert W function,x =W (x)eW (x).

Proof. We start with the following bound from Eq. (7.1) in the proof of Theorem7.2:

dr ≤ d(log2(erdr/d)).

We reorganize this bound to find an upper bound fordr:

dr ≤ d(log2(erdr/d)) ⇒
dr ln(2) ≤ d(ln(er/d) + ln(dr)) ⇒

dr ln(2)− d ln(dr) ≤ d ln(er/d) ⇒
d ln(dr)− dr ln(2) ≥ −d ln(er/d) ⇒

ln(dr)− ln(2)
d dr ≥ − ln(er/d) ⇒

dr exp(− ln(2)
d dr) ≤ d/er ⇒

− ln(2)
d dr exp(− ln(2)

d dr) ≤ − ln(2)/er.

Sincer ≥ 1, we have that−1
e ≤ − ln(2)/er ≤ 0. From the properties of the Lambert function we

have that for−1
e ≤ x ≤ 0, wew ≤ x⇒ w ≥W−1(x). Therefore

− ln(2)
d dr ≥W−1(− ln(2)/er) ⇒
dr ≤ − d

ln(2)W−1(− ln(2)/er).

Equipped with Theorems9.3and9.4, we can now study the optimal bag size and the reduction

in sample complexity it affords.

9.2.2 Choosing the Bag Size

We now turn to the question of how to choose a bag sizer so as to minimize the sample complexity

m̃r(ǫ). The two important parameters here are the positive example rateα and the desired error

guaranteeǫ. Intuitively, it can be speculated that a good size for a bag is such that thelabels on

bags are distributed more or less evenly, such that every label received from the teacher conveys a
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large amount of information to the learner. Thusr should be larger for smallerα. The bag sizer

should also grow asǫ is reduced, since larger bags imply a higher sensitivity to error. The following

analysis corroborates this intuition, and quantifies the dependence on bothǫ andα.

Following Theorem9.3, we would like to chooser such thatκαr (ǫ)/dr is maximal. However,

sinced ≤ dr ≤ O(d log r), i.e.dr grows relatively slowly withr, we ignore the exact value ofdr,

and define our choice for the bag size as the value ofr that maximizesκαr (ǫ):

r∗(α, ǫ) , argmax
r

καr (ǫ)

≡ argmax
r

[(1− α)r − (1− α− ǫ/2)r] .

We shall see that though this choice is not necessarily optimal, it provides a substantial reduction

in sample size. Numerical calculations show that using the upper bound fordr does not change the

resulting sample size significantly.

Differentiatingκαr (ǫ) we obtain a single maximum inr for all 0 < α < 0.5, 0 < ǫ < 2α:

r∗(α, ǫ) = ln

(
ln(1− α− ǫ/2)

ln(1− α)

)/
ln

(
1− α

1− α− ǫ/2

)
. (9.7)

As our preliminary intuition implied,r∗(α, ǫ) is monotonic decreasing inα and inǫ. We also

speculated that the labels on bags of an optimal size should be balanced. Defining r∗(α, 0) ,

limǫ→0+ r
∗(α, ǫ), we haver∗(α, 0) = −1/ ln(1− α) ≈ 1/α. For this value ofr∗, P[c(X̄) = 1] =

1−1/e and the expected number of positive examples in each bag is approximately one. Figure9.2

plotsP[c(X̄) = 1] as a function ofα. The gray area between the two boundaries corresponds to

different values ofǫ, in the range(0, 2α]. This plot shows that choosing the bag size to ber∗(α, ǫ)

results in an almost constant probability of obtaining positive labels, confirming our intuition.
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Figure 9.2: The probability for a positive bag.
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Figure 9.3:Sample size reduction factor. Anything below 1 implies a multiplicative reduction.

9.2.3 The Sample Size Reduction Factor

We can now ask whether our choice ofr∗ leads to a reduction in the sample size, and how large is this

reduction. Substituting Eq. (9.7) and Eq. (9.6) in Eq. (9.5), yields an upper bound oñmr∗(ǫ)/m̃1(ǫ),

the sample size reduction factor when using a bag of sizer∗. Forǫ→ 0 we have a simplified form:

Corollary 9.5.

lim
ǫ→0+

m̃r∗(α,ǫ)(ǫ)

m̃1(ǫ)
≤ (1− α) ln(1− α) ·W−1

(
ln(2) ln(1− α)/e

)
· e

ln(2)
.

The bound forǫ ∈ [0, 2α] is plotted in Figure9.3. Whenever the bound is smaller than 1, using

bags of sizer∗ results in a guaranteed sample size reduction. From the figure it can be seen that this

holds forα < 0.04. This result is only a worst case bound; The experiments described in Section9.4

show that in practice an even larger reduction is achieved, and that it is achieved for largerα as well.

9.3 Finding a Separating Hyperplane using Bags: ThePMIL Algo-

rithm

The analysis above provides bounds on the required sample size under the assumption that it is pos-

sible to find the hypothesis with the lowest training error on samples of bags ofan arbitrary size. We

now turn to show how one might find the correct hypothesis efficiently. Thisproblem is not trivial,

since it is not known which are the positive examples in a positive bag. Learning from bags with ar-

bitrary distribution is theoretically solvable in the almost realizable case [Sabato and Tishby, 2009],

however there is no algorithm that is guaranteed to work with the small sample size that our learning

bounds allow. Many heuristic algorithms have also been proposed for MIL[Andrews et al., 2002,



CHAPTER 9. USING MIL IN A NON-MIL SETTING 109

Andrews and Hofmann, 2003, Dietterich et al., 1997, Zhi-Hua Zhou, 2007, and others]. These algo-

rithms are typically quite involved, as they must deal with samples of bags with arbitrary dependence

between instances. Luckily, though the MIL problem is hard in general, our setting only employs

bags with statistically independent instances, which can be expected to be a much easier problem.

This case is also provably solvable [Blum and Kalai, 1998], but again only by using a large sample

size.

We proposePMIL (Table9.1), a simple iterative algorithm for finding a separating hyperplane

from samples of bags, following ideas fromFelzenszwalb et al.[2008]. PMIL executes the basic

perceptron algorithm several times on different input samples, using parametersT andL. Though

PMIL is a local-search algorithm for a non-convex objective and so might potentially find only a

local minimum, it was very successful in our experiments (see Section9.4), and has almost always

found the separating hyperplane with zero or close to zero mistakes. This indicates that it is prac-

tically feasible to reduce the number of required labels using bags of independent examples. We

defer the comparison ofPMIL to other possible heuristics to future work.
Table 9.1: ThePMIL algorithm

1. Initialize a separatorw randomly;

2. Repeat untilT time has passed, or untilw classifies the bags with zero training
error:

(a) For each baḡxk = (x1k, . . . , x
r
k), select a representative example from the bag

with indexik = argmaxi(w · xik),

(b) RunL epochs of the perceptron algorithm on the sample of individual exam-
ples{(xikk , yk)}mi=1.

9.4 Experiments

In this section we present the results of experiments done on several types of learning problems.

In the first batch of experiments, presented in Section9.4.1, the procedure is tested on a finite hy-

pothesis class, using an exhaustive search for the hypothesis with the lowest training error. This

allows us to inspect the learning curves of the trueĥ, without needing to worry about the possible

sub-optimality of thePMIL algorithm. Then, in Section9.4.2, we show that thePMIL algorithm is

indeed successful on both synthetic and real data sets. The experimentsdemonstrate a significant

sample size reduction that is even better than the one promised by the analysis.They further demon-

strate that using bags improves performance even when the simplifying assumption thatc ∈ H does

not hold. Moreover, it is shown that even using a small bag size yields a significant improvement.



CHAPTER 9. USING MIL IN A NON-MIL SETTING 110

9.4.1 Finite hypothesis class
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Figure 9.4:Experiments on a finite hypothesis class for two differentα. Plots show the error as a function
of the bag size, for several sample sizesm.

We start by examining the actual sample complexity behavior, with experiments ona finite

hypothesis class, where the hypothesis with lowest training error is foundusing exhaustive search.

We generated random examples from the domainX = {0, 1}1000, with each of the 1000 features

drawn independently with a positive example rate ofα, for various values ofα. The examples were

labeled with a hypothesis from the classH = {h1, . . . , h1000}, wherehi(x) is the value of thei’th

coordinate ofx. Each experiment reported was repeated either 100 or 1000 times. The plots show

the average true error that was achieved.

First, we wanted to check the effect of the proposed bagging strategy onthe output error on

individual examples: If we fix the sample size, is there an optimal bag sizer > 1 that achieves the

lowest error? How close is the empirical optimalr to ourr∗(α, ǫ)? Figure9.4 shows the average

true error of the learned hypothesis as a function of the bag size, for different sample sizes, and

for two values ofα. Even forα as large as0.2, using bags reduces the achieved error with a fixed

sample size. The dips in the plot lines indicate the existence of an optimal bag size, as predicted by

the theoretical analysis. The calculatedr∗(α, ǫ), indicated with the dashed line, is quite close to the

empirical optimum in both plots, and yields almost optimal performance.

To visualize the improvement in learning performance compared to regular supervised learning,

we plotted the learning curves for selected bag sizes. The plots in Figure9.6compare the achieved

error as a function of the sample size, for three bag sizes: one, two, andr∗(α, 0) (rounded). The left

and middle plots show results for two values ofα, with no label noise. We see a sharp improvement

in performance forr ∼ r∗(α, 0). The improvement is sharper for the smallerα. Note also, that even

a bag with only two examples delivers a much better result than when using no bags. This means

that a considerable improvement can be achieved even in an application thatallows only small bag

sizes.
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One of the assumptions in our theoretical analysis was thatc ∈ H. We now deviate from this

assumption by adding randomly flipping some of the labels creating a situation where the optimal

hypothesis has error0.017 = α/3. The right plot in Figure9.6shows that even when label noise is

high compared toα, bagging improves the achieved error rate considerably.

Finally, we show a striking comparison between the required sample size whenlearning with no

bags, to the required sample size when bags of optimal size are used. We have seen in the analysis

that the positive example rateα is a significant parameter affecting optimal bag size and expected

improvement when using bags. Asα decreases, labels on single examples become less balanced.

In regular learning, this means that more examples are required for effective learning. Since it is

less informative to compare absolute error for varyingα, Figure9.5 examines the effect ofα on

the outcomerecall (the fraction of positive examples which are identified by the output hypothesis;

Note that by Eq. (9.1), the precision is also controlled). When learning without bags (dashed lines),

the required sample size for a fixed recall value grows fast asα decreases. In contrast, when bags

of sizer∗(α, 0) are used (solid lines), the effect ofα disappears completely. Thus, the use of bags

almost eliminates the effects of unbalanced labels, by changing the bag size according toα.

9.4.2 Experiments UsingPMIL

Having investigated the sample complexity effects of the use of bags, we now turn to more realistic

experiments, whereH is the set of separating hyperplanes, andPMIL is used to find a separator.

In each setting we applied the procedure in Table9.1 several times, until a separator with perfect

classification on the sample of bags was found, or one second of runtime had passed. If a second

had passed, we selected the separator that produced the lowest numberof errors.L was set to 10.

The first set of experiments was on synthetic examples with no label noise, drawn uniformly

fromX = [0, 1]10. A positive label was a assigned to a fraction of sizeα of the cube. We performed

the experiments with different sample sizes, bag sizes, and values ofα. PMIL usually succeeded

0 0.1 0.2 0.3 0.4
0

50

100

150

200

250

re
qu

ire
d 

sa
m

pl
e 

si
ze

 

 

No bags, recall>0.9995

No bags, recall =0.8

r = r∗(α, 0), recall>0.9995

r = r∗(α, 0), recall =0.8

α

Figure 9.5:The sample size to achieve a fixed recall. Compare dashed lines (no bags) to solid lines (r = r∗).



CHAPTER 9. USING MIL IN A NON-MIL SETTING 112

10 15 20 25 30
0

0.05

0.1

0.15

0.2

0.25

sample size

av
er

ag
e 

er
ro

r

 

 

r=1
r=2
r=4

α = 0.2, 
no label noise

0 50 100
0

0.02

0.04

0.06

0.08

sample size

av
er

ag
e 

er
ro

r
 

 

r=1
r=2
r=19

α = 0.05, 
no label noise

0 50 100 150 200
0

0.02

0.04

0.06

0.08

0.1

sample size

av
er

ag
e 

er
ro

r

 

 

r=1
r=2
r=19

α = 0.05, 
label noise = 0.17

Figure 9.6:Learning curves for the finite hypothesis class, with different values ofα:
comparing no use of bags, bags of size 2, and bags of sizer∗(0, α). In the right plot,
some of the labels were randomly flipped.
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Figure 9.7: Learning synthetic data usingPMIL, For two differentα. The optimal bag size produces
a significant improvement overr = 1

in achieving zero or almost zero error on the training set. Even for a bag size of 19, the algorithm

usually finished with a negligible number of errors. Figure9.7compares the learning curves when

using bags and without the use of bags for two values ofα. Each dot in is the average of 1000

experiments. Here too the improvement in performance when using bags is clearly visible.

Next, we tested our learning procedure on real data sets, using samples of bags cre-

ated from the original labeled examples. The first data set is theStatlog (Shuttle) dataset

[Asuncion and Newman, 2007]. It was chosen due to the relative ease of classification using regular

supervised learning, which allowed us to investigate the results of using bags in multiple experi-

ments. To make the original multi-class problem into a binary classification problem, we selected

from the training set and from the test set only examples with class 1 and 5. Class 5 was mapped to

a positive label. Its occurrence in the data set isα = 0.067, thusr∗(α, 0) ∼ 14.5. The results are

plotted in Figure9.8. On the left is the error as a function of the bag size for different sample sizes,

showing that the lowest error is achieved, as expected, aroundr = 14. In the middle we compare

the learning curve between learning with no bags, with bags of size2, and withr = 14. Here too

even a bag size of2 provides a large improvement in the error.



CHAPTER 9. USING MIL IN A NON-MIL SETTING 113

0 10 20 30
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

bag Size

er
ro

r

 

 

m=20

m=30

m=60

m=100

m=200

m=800

0 200 400 600 800
0

0.01

0.02

0.03

0.04

sample size

er
ro

r

 

 

r=1
r=2
r=14

0 500 1000 1500 2000
0.02

0.03

0.04

0.05

0.06

0.07

0.08

Sample Size

E
rr

or

 

 

r=1
r=2
r=5

Figure 9.8:Left and Middle: Experiments on the Statlog data set (α = 0.067). Left: the error as a function
of the bag size. Each line is a sample size. Middle: Learning curves, comparing bag sizes of 1 (no bags), 2,
and 14. Right: Classifying images with faces (α = 0.1) – learning curves, comparing three bag sizes.

The second real data set we learned withPMIL was the Caltech101 image data set

[L. Fei-Fei and Perona., 2004], exemplified in Figure9.1. The positive class was theFaces easy

category. The negative class was all the categories except forFaces andBACKGROUND Google,

since they contain images of faces. We built a random training set of 3850 images and a random

holdout set of 500 images. In both sets the we set the fraction of faces toα = 0.1. We extracted

1000 features from the training images using k-means clustering on interestpoints detected as in

Mikolajczyk and Schmid[2004], with default parameters.PMIL was applied to the resulting feature

vectors with several bag sizes and sample sizes. Because of the defaultfeature extraction method-

ology and the relatively small number of examples of faces, the best errorrate that could be reached

using individual examples was quite high compared toα, and only small bag sizes could be tested.

Figure9.8 (Right) compares the learning curves forr = 1, r = 2 andr = 5, which are lower than

r∗(α, 0) ∼ 9.5. An interesting effect can be seen: When the sample size is small, it is better to use

bags of a smaller size. As the sample grows, larger bags become more beneficial.



Chapter 10

Discussion (Part II)

In this part of the thesis we have provided a new theoretical analysis for Multiple Instance Learning

with any underlying hypothesis class. We have shown that the dependence of the sample complexity

of generalized MIL on the number of instances in a bag is only poly-logarithmic,thus implying that

the statistical performance of MIL is only mildly sensitive to the size of the bag. The analysis

includes binary hypotheses, real-valued hypotheses, and margin learning, all of which are used in

practice in MIL applications. For classical MIL, where the bag-labeling function is the Boolean OR,

and for its natural extension tomax, we have presented a new learning algorithm, that classifies bags

by executing a learning algorithm designed for single instances. This algorithm provably PAC-learns

MIL. In both the sample complexity analysis and the computational analysis, we have shown tight

connections between classical supervised learning and Multiple InstanceLearning, which holds

regardless of the underlying hypothesis class.

Many interesting open problems remain for the generic analysis of MIL. In particular, our re-

sults hold under certain assumptions on the bag functions. An interesting open question is whether

these assumptions are necessary, or whether useful results can be achieved for other classes of bag

functions. Another interesting question is how additional structure within a bag, such as sparsity,

may affect the statistical and computational feasibility of MIL. These interesting problems are left

for future research.

We further studied a novel paradigm for learning from a labeled sample using a teacher that

can provide OR-labels, when the cost of obtaining labels from the teacheris high, while the cost of

presenting examples to the teacher is negligible. We demonstrated that a significant improvement

in the error can be achieved with a fixed amount of labels, by presenting to the teacher bags of

examples instead of individual examples. We have shown that the size of thebag that should be

used has an optimum and that an almost optimal bag size can be analytically found. ThePMIL

algorithm was proposed for finding a separating hyperplane with low training error from a sample
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of bags. Experiments on various types of data sets demonstrate that the proposed method and

learning algorithm work well in practice, and that the method can be used even if the exact problem

parameters are not known.
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