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Abstract

In this thesis we study two important supervised learning settings: linear @assifith a margin,
and Multiple-Instance Learning, and provide novel results concethmgbility to learn in each of
these settings.

In supervised learning, the goal is to learn to classify objects into onevefaleclasses, using
only examples of objects, along with the class that they belong to (also ternieldbied. We focus
on binary supervised learning, in which each object should be classifeedne of two classes. As
an example, consider the task of predicting whether a patient will preséndiabetes, based on
the patient’s blood test results. In this example, one class representdatimnwill present with
diabetes and the other class represents patients who will not presentatittes. The learner is
given a set of examples, where each example is constituted of the blooddeks of a patient,
along with information on whether this patient has presented with diabetes.dMaderm this set
of examples théraining set or thetraining sample The training set is used by the learner to infer
aclassification rulewhich can be used to predict whether a new patient will present with tdisbe
based on this patient’s blood test results. The goal of the learner is todladsification rule which
is as accurate as possible in its predictions.

An important measure of the effectiveness of learning is how many labededmes are needed
in order to achieve a certain degree of classification accuracysdimmple complexitgf a learning
problem is the size of a training set required to guarantee a given agaurdhis problem. Equiva-
lently, it is the accuracy that can be guaranteed for the learner, gieesizé of the training sample.
We distinguish between the sample complexity, which is a statistical measure dffitwdty of
learning, and computational complexity, which measures the amount of computagjoired to
implement a learning strategy.

The “No free lunch” theorem for supervised learniigdlpert and Macready 997 shows that
no single supervised learning algorithm can provide a high-accurassifitation rule for all learn-
ing problems using the same sample size. In other words, the sample complesitpes¥ised
learning without additional assumptions is unbounded. It follows that ierdihave guarantees
on learning, we need to consider more restricted classes of learnirigmsb



Most commonly, we restrict the set of learning problems that we considarttoducing the
notion of ahypothesis classThis is a set of classification rules to which we wish to compare the
result of our learning algorithm. In a specific learning context, the hys@tutass can represent our
beliefs on the true nature of the classification rule for the problem. For ivestéfrwe believe that
diabetes can be identified via a boolean function using at most two valuesaiieat{s blood test
results, we can use the hypothesis class consisting only of such boolediofs. If our learning
problem can indeed be classified with maximum accuracy using one of tteficktson rules in
our hypothesis class, then we say that the problemeatizable In this case, we can hope that
our learning algorithm will achieve high accuracy, in absolute terms, whem@nough labeled
examples. If the problem is not realizable, then we say that we are mgiinesticsetting. In this
case, we hope that our learning algorithm will achieve a smkdtive accuracy. That is, we hope
that its classification accuracy will be close to that of the best classifierrihygothesis class.

The sample complexity of learning relative to a specific hypothesis clasgstrdepends on
its complexity Loosely speaking, the complexity of a class is related to the number of mapping
between objects and labels that it allows. There are several populatedgtypneasures for hy-
pothesis classes, which can be used to derive sample complexity guarantee

Usually, a sample complexity upper bound is derived for a specific hypigtlotass and for
a large class of distributions. For instance, the clasknefir classifiershas upper bounds that
depend on the dimension of the input data points, and other upper bowtdetiend on their
norm. Such upper bounds can be useful for understanding the posdpects of a learning rule.
But it is difficult to understand the deficiencies of a learning rule, or to Gmpetween different
rules, based on upper bounds alone. This is because it is possible ot@h the case, that the true
sample complexity for a given distribution is much lower than the bound.

Some sample complexity upper bounds are known to be tight or to have an ahatesting
lower bound. This means that there exists some distribution in the class ddwyetfee upper bound
that actually requires that many examples in order to learn with high accurbege results show
that there cannot be a better upper bound that holds for the entire tilisgibutions that the upper
bound covers. But they do not imply that the upper bound charactehigdésie sample complexity
for any specificdistribution in the class, except for the ones for which the upper boundiéeh
tight. For instance, in the case of linear classifiers, although the sampldesdtypipper bound
that depends on the norm is tight, if the distribution is supported by a low-dior&isub-space,
then the true number of examples required to reach high accuracy is mulkdbrsma

In the first part of this thesis, our goal is to identify a simple quantity, whichfisiation of the
distribution, thadoesprecisely characterize the sample complexity of learning this distribution un-
der a specific learning rule. We focus on the popular rule of MarginrBinimization (MEM), and
on the class of linear classifiers. We present a new quantity, termexlatggn-adapted dimension
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and use it to provide a tighter distribution-dependent upper bound, anatehing distribution-
dependent lower bound, for MEM algorithms for linear classifiers. Tpy@eubound is universal,
and the lower bound holds for a rich class of distributions.

The margin-adapted dimension refines both the dimension and the averagemihe data
distribution, and can be easily calculated from the covariance matrix and #ue ofi¢he distribu-
tion. Our tight characterization, and in particular the distribution-specifietd@und on the sample
complexity that we establish, can be used to compare large-mdrgieg@ularized) learning to other
learning rules. We provide two such examples: we use our lower bourigamusly establish a
sample complexity gap betwedn and L- regularization previously studied Mg [2004, and to
show a large gap between discriminative and generative learning orsai@aumixture distribution.

Our lower bound hinges on several new results:

e We show that for a convex hypothesis class, fat-shattering is equivtalesthattering with
exact margins.

e We link the fat-shattering of a set of vectors with the eigenvalues of therddpt matrix
(the Gram matrix) of the vectors in the set.

¢ We relate fat-shattering to hardness of learning using MEM.

¢ We provide a new lower bound for the smallest eigenvalue of a random @edrix generated
by sub-Gaussian variables, thus extending previous results in andlyaigdom matrices.

As mentioned above, complexity measures of hypothesis classes are typitaljyzed on a
case-by-case basis. For instance, the complexity of the class of linesifiels has been analyzed
as a function of parameters such as the dimension of the ambient space anaximal norm of
the separator. In the second part of this thesis, we consider the gséfaf ofMultiple Instance
Learning and propose a generic analysis for this setting, that holds across iiffargrd hypothesis
classes.

Multiple-Instance Learning (MIL), first introduced Dietterich et al[1997, is a special type
of a supervised classification problem. As in classical supervised atasgiifi, in MIL the learner
receives a sample of labeled examples drawn i.i.d. from an arbitrary &mdwn distribution, and
its objective is to discover a classification rule with a small expected classificatior over the
same distribution. In MIL additional structure is assumed, whereby the drarape received as
bagsof instances such that each bag is composed of several instances. It is assurheddha
instance has a true label, however the learner only observes the lalibts lzdgs. The label of
each bag is determined by the hidden labels of the instances in the bag, vifusatien which is
known a-priori. Classical works on MIL assume that the function is thed@wpOR. In this work
we consider a more general setting which allows other functions as well.
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MIL has been used in numerous applicationsDletterich et al[1997 the drug design applica-
tion motivates this setting. In this application, the goal is to predict which moleadakl bind to
a specific binding site. Each molecule has several possible conformatloayze§) it can take. If at
least one of the conformations binds to the binding site, then the molecule isdgiosligive. How-
ever, it is not possible to experimentally identify which conformation was theessful one. Thus,
a molecule can be thought of as a bag of conformations, where eaarmation is an instance in
the bag representing the molecule. This application employs the hypothesiotlasis Parallel
Rectangles (APRs), and has made APRs the hypothesis class of chagerial sheoretical works.
There are many other applications for MIL, including image classificaargn and Rataril99g,
web index page recommendatidthjpu et al, 2005 and text categorizatioryndrews 2007.

We propose a formal framework for generalized MIL, which allows aziatyany MIL problem
as a function of the underlying hypothesis class: This is the hypothessafléise possible map-
pings from single instances to labels. In addition, the analysis depends émtition determining
the bag labels based on the instance labels. We provide a generic anaydisuhds the com-
plexity of learning a MIL problem based on the complexity of learning the dyithg hypothesis
class.

The generic approach has the advantage that it automatically extendswilekige and meth-
ods that apply to non-MIL problems into knowledge and methods that applyltpviithout requir-
ing specialized analysis for each specific MIL problem. Our results aedhplicable to diverse
hypothesis classes and bag labeling functions. Moreover, the gepprizazh allows a better the-
oretical understanding of the relationship, in general, between regalaing and Multi-Instance
Learning with the same hypothesis class.

Our sample complexity analysis shows that for binary hypotheses antiolded real-valued
hypotheses, the distribution-free sample complexity for generalized MMugonly logarithmically
with the maximal bag size. We also provide poly-logarithmic sample complexity Isdonthe case
of margin learning. We further provide distribution-dependent sample exitybounds for more
general loss functions. These bound are useful when only thegavbesy size is bounded. The
results imply generalization bounds for previously proposed algorithmbifor Addressing the
computational feasibility of MIL, we provide a new learning algorithm with @ole guarantees
for a class of bag-labeling functions that includes the Boolean OR ascabkpase. Given a non-
MIL learning algorithm for the desired hypothesis class, which can haoniesided errors, we
improperly learn MIL with the same hypothesis class. The construction is simpigtement, and
provides a computationally efficient PAC-learner for MIL, with only a palymal dependence of
the run time on the bag size. We further show a setting in which MIL can betosetprove the
sample complexity of non-MIL learning, by constructing artificial bags. \\gppse an approach
for implementing this paradigm in practice.

viii



Contents

Abstract

Introduction

1.1 Notation. . . . . . . . e e e e e e
1.2 Binary SupervisedLearning . . . . . . . . . ..
1.3 CommonLossSFuNnctions . . . . . . . . . . . . i
1.4 Distribution-Free Sample Complexity . . . . . . . ... ... ... .. .. ...
1.5 Distribution Dependence and GeneralLosses . . . . . .. .. ... ......
1.6 LinearClassifiers. . . . . . . . . . e
1.7 Main Contributions. . . . . . . . . . e

Margin Learning

Introduction (Part 1)

2.1 RelatedWork. . . . . . . . e
2.2 Problem setting and definitions. . . . . . . ... ... L oL
2.3 The margin-adapteddimension . . . . . .. .. .. .. ... ...

A Distribution-Dependent Upper Bound

A Distribution-Dependent Lower Bound

4.1 A sample complexity lower bound with Gram-matrix eigenvalues . . . . . . .
4.2 Sub-Gaussiandistributions. . . . . ... L
4.3 A sample-complexity lower bound for sub-Gaussian product distritsition . . .
4.4 Proofs. . . . . . e

24

25
26
27
27

29

36
36
40
42



5 Discussion (Part I) 51

5.1 Onthe limitations of the covariancematrix . . . . . . ... ... ... ..... 52
52 Summary . . . .. 53
I Multiple-Instance Learning 54
6 Introduction (Part II) 55
6.1 Notations and Definitions. . . . . . . . . .. ... . ... e 58
7 MIL with any Hypothesis Class 61
7.1 Binary MIL . . . . . e 61
7.2 Covering Numbers boundsforMIL. . . . . .. ... ... ... ......... 68
7.3 MarginLearningforMIL. . . . . . . . . . ... .. .. e 69
7.4 Sample Complexity by Average Bag Size. . . . . .. . ... ... ... .... 72
8 PAC-Learning for MIL 81
8.1 Background: Boosting with Margin Guarantees . . . . . . .. .. ... .. .. 82
8.2 TheWeakLearner. . . . . . . . . . . . . 84
8.3 From Single-Instance Learning to Multi-Instance Learning . . . . . . ... .. 95
9 Using MIL in a non-MIL Setting 100
9.1 ProblemSetting . . . . . .. . .. e 102
9.2 Theoretical Analysis. . . . . . . . . . e e e 103
9.3 Finding a Separating Hyperplane using Bags: FRBL Algorithm . . . . . . .. 108
9.4 EXPeriments . . . . . . . . .. e e e 109
10 Discussion (Part Il) 114
Bibliography 116



Chapter 1

Introduction

In this thesis we study two important supervised learning settings: linear @dassiith a margin,
and Multiple-Instance Learning, and provide novel results concethimgbility to learn in each of
these settings. In this chapter we present background on supenaseihtg and describe our main
contributions.

In supervised learning, the goal is to learn to classify objects into onevefaeclasses, using
only examples of objects, along with the class that they belong to. We focbhimary supervised
learning, in which each object should be classified into one of two claAsesn example, consider
the task of predicting whether a patient will present with diabetes, basttegratient’s blood test
results. In this example, one class represents patients who will preserdiabites and the other
class represents patients who will not present with diabetes. The léagieen a set of examples,
where each example is constituted of the blood test results of a patient, altbnigfarmation on
whether this patient has presented with diabetes or not. We term this setropkes theraining
set or thetraining sample The training set is used by the learner to infetassification rulewhich
can be used to predict whether a new patient will present with diabet] ba this patient’s blood
test results. The goal of the learner is to find a classification rule whichasasate as possible in
its predictions.

An important measure of the effectiveness of learning is how many labededges are needed
in order to achieve a certain degree of classification accuracysdimple complexitgf a learning
problem is the size of a training set required to guarantee a given agaurdhis problem. Equiva-
lently, it is the accuracy that can be guaranteed for the learner, gieesiz of the training sample.
We distinguish between the sample complexity, which is a statistical measure dffitigty of
learning, and computational complexity, which measures the amount of computadjoired to
implement a learning strategy.

The “No free lunch” theorem for supervised learniMgdlpert and Macreadyl 997 shows that



CHAPTER 1. INTRODUCTION 2

no single supervised learning algorithm can provide a high-accurassifitation rule for all learn-
ing problems using the same sample size. In other words, the sample complesitpes¥ised
learning without additional assumptions is unbounded. It follows that ierdihave guarantees
on learning, we need to consider more restricted classes of learningmsb

Most commonly, we restrict the set of learning problems that we considarttoducing the
notion of ahypothesis classThis is a set of classification rules to which we wish to compare the
result of our learning algorithm. In a specific learning context, the hyp@tutass can represent our
beliefs on the true nature of the classification rule for the problem. For ivestéfrwe believe that
diabetes can be identified via a boolean function using at most two valuesaiieatfs blood test
results, we can use the hypothesis class consisting only of such boolediofs. If our learning
problem can indeed be classified with maximum accuracy using one of treficktson rules in
our hypothesis class, then we say that the problemreatizable In this case, we can hope that
our learning algorithm will achieve a small error, in absolute terms, wheengénough labeled
examples. If the problem is not realizable, then we say that we are mgthesticsetting. In this
case, we hope that our learning algorithm will achieve a srekdtive error. That is, we hope that
its classification accuracy will be close to that of the best classifier in quuthgsis class.

The sample complexity of learning relative to a specific hypothesis clasgstrdepends on
its complexity Loosely speaking, the complexity of a class is related to the number ofatiffer
mappings between objects and labels that it allows. In this chapter we psesenal useful com-
plexity measures for hypothesis classes, and the sample complexity geardnatecan be provided
for them.

We start with defining our notation in Sectidnl. We then formally define a binary learning
problem in Sectiori.2. We present some popular and useful measures of learning acouiSey-
tion 1.3, We then turn to present relevant sample complexity results for binary\ssipe learning.
The classical approach to sample complexity analysis of supervised lgasnilistribution-free
analysis. In this approach we are interested in sample-complexity guarami¢old regardless of
the distribution of the labeled objects. We discuss this type of analysis in SéctioWe present
tools fordistribution-dependergnalysis in Sectiof.5. We apply each of the tools to the commonly
used hypothesis class liafiear classifieran Sectionl.6. Finally, we present the main contributions
of this thesis in Sectiof.7.
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1.1 Notation

We denote the set of real numbersByand the set of natural numbers Ny We use the function
sign : R — {£1} where

1 x>0
sign(z) =9 -1 <0
0 z=0.
For any integem € N, we denote byin| the set{1,...,n}. For a real numbeg, we denote

[z]+ = max{0,z} and[z] = min([z]+,1). Let A andB be sets and lef : A — B be a function.
Let F' C B4 be a set of functions from to B. For a subseX C A, we denote the restriction gf
to X by f|x. The restriction of the set of functions to X is denoted byt x = {f|x | f € F'}.

For a functionf : R — R, we denote its first and second derivativesfbyand f” respectively.

Consider a probability distributio® over some domain. We denote the probability of a pred-
icatep according to a distributio® by Px..p[p(X)], althoughX ~ D might be omitted when it
is clear from context. Similarly x.p[f(X)] denotes the expected value&fX) according taD.

For a finite set4, we useA also to denote the uniform distribution over the element4 .of

Let d be an integer, and consider the Euclidean spi&beFor a vectorr € R?, we denote its
Euclidean norm byjz||. For a real matrixX € R%*", ||X|| stands for the Euclidean operator norm,
that is[|X|[| = sup,cgn,||z<1 [Xz||. We denote an origin-centered ball of radiugn a normed
spaceS, || - ||) by B,(S) = {zx € S| ||z|| < r}. ForS = R?, we writeB¢ = B,.(R9).

We sometimes represent sets of vector®fhusing matrices. We say that € R™*¢ is the
matrix of a set{z1,...,z,,} € R? if the rows in the matrix are exactly the vectors in the set.
For uniqueness, we assume the rowsXddre sorted according to an arbitrary fixed full order on
vectors inR?. For a PSD matrixX denote the largest eigenvalueXby .., (X) and the smallest
eigenvalue by, (X).

We useD-notation as follows: Whenever the expressiof) is used, it stands far'; +Cs - for
some constants’, Cy > 0. Similarly, Q(¢) stands foiC;, - £ — C4 for some constantsy, Co > 0.
O(¢) stands for¢ - p(In(¢)) + C for some polynomiap(-) and some constait > 0. We denote
universal constants by, c or C1, Cs etc. The values of these constants may change from statement
to statement or even from line to line. The notations are summarized in Table

1.2 Binary Supervised Learning

In binary supervised learning there are two possible classes, and tWwéongsedict which of these
classes matches given objects. The two classes are commonly nameakitive classand the
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Table 1.1: Summary of Notation

R The real numbers

N The natural numbers

sign(z) The sign ofz

[n] {1,...,n}

[x]+ max{0,z}

[] min([z]+, 1)

BA The functions fromA to B

fix The restriction off to X

Fix {fix|fer}

1 The first derivative of a function

i The second derivative of a function

P Probability

E Expectation

x|l The Euclidean norm of

X A matrix

I1X]| The Euclidean operator norm &f

B,.(S) {z eS|l <r}

B¢ B, (R%)

Amax (X) The largest eigenvalue &f

Amin (X) The smallest eigenvalue &f

0(&) Cy + Oy - £ for some constantS', Co > 0
Q(¢) Cs - £ — C; for some constants’;, Cy > 0
0(¢) ¢ - p(In(2)) + C for a polynomialp(-) andC' > 0
C,c,C1,Co,... Posivite constants (value may change between expressions)

negative classand are denoted biabels +1 and —1 respectively. We say that an object has a
particular label if it belongs to the class denoted by that labetla&sification rule or aclassifier
is a function from the domain of possible objects to the set of reals. We iatatpr sign of the
classifier’s output as its prediction on the object—whether it is in the posiliss or the negative
class. The magnitude of the output is sometimes interpreted as the confidlémeelassifier in its
prediction.

To measure the accuracy of a classifier, we use the notitmsgfmeasured by Bss function
A loss function is a measure of the discrepancy between possible true daldgh®ssible classifier
outputs. Formally, itis a functioA: {+1} x R — R,. When a classifier provides outpifor a
given object with true labey, it incurs loss/(y, §). An accurate classifier is one that incurs a low
classification loss.

The components of a binary supervised learning problem are a data damdie label set
{+£1}, a hypothesis clas® C R?, a distributionD over X x {#+1}, and a loss functiod. We
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assume tha®’ is equipped with ar-algebra, and consider only distributions that are measurable
with respect to thig-algebra. We denote b x the marginal distributiorD induces onX’, and by
Dy x the conditional distribution thab induces on{+1} given anX € X

Each element in the data domathrepresents an object to be classified. For instance, in the
diabetes example we can sét= R<, whered is the number of measurements in a blood test. Then
each element € X' is ad-coordinate vector representing a single patient, where each coordinate
holds the value of a single measurement in the patients’ blood test resultdisTititeution D here
is the probability of having a patient with measurements R? and conditiony € {+1}.

Given the loss functiofi, we denote the loss of a labeling functibrover the distributionD by

(h, D) = E(x,y)~pll(Y, h(X))].

Given the distributiorD, the best classification rule for a learning problem is well defined: Censid
the random paifX,Y) ~ D, so thatX € X andY € {£1}. The best possible classifier is Bayes’
optimal classifier: For a given € X, predicty € argmin g E[/(Y,y) | X = z].

The minimal loss that can be achieved by a classifier in the hypothesigitiass

¢*(H,D) = inf (h. D).

If ¢*(H, D) = 0 then the learning problem is realizable, otherwise it is agnostic. We Hnaihd
write simply £*(D) if ‘H is clear from context.

The training sample that the learning algorithm receives as input is a seteafimplesS =
{(z1,y1)s- -y (®m,ym)} C X x {£1}, wherem is the sample sizé. Given S, we denote the
set of its examples without their labels B = {z1,...,x,}. Crucially, we assume that each
pair (z;,y;) is drawn independently according 0. A learning algorithmis a (possibly non-
deterministic) functiond : US_, (X x {£1})™ — R?¥, that receives a training set, and returns a
function for classifying objects ii” into real values. We say that is doingproper learningof
if for any possible training sef, A(S) € H. The loss of a learning algorithm with input sample
is simply¢(A(S), D).

We analyze learning algorithms in the Probably Approximately Correct (Ff&hework
[Valiant, 1984: We bound the loss of the algorithm with a high probability over the randcawdr
of samples. The high-probability loss of an algorithhwith respect to samples of size, a distri-
bution D and a confidence parametee (0,1) is

UA, D,m,8) = inf{e > 0 | Pgopm[((A(S), D) > ¢ < 5.

1samples are in fact multisets, since a labeled example may repeat sievesaWe use the set notation for simplicity.
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In words, we say that with probability at ledst- § over samples of sizex drawn fromD™, A has
a loss of no more than

1.3 Common Loss Functions

As mention above, a loss functién {+1} x R — R measures the accuracy of a prediction given
the true label. Different loss functions represent different measifr@scuracy. In this section we
discuss several popular and useful loss functions, which will be tisedghout this work.

We interpret the sign of the classifier's output as its prediction for the lafttble input object,
where an output of zero is interpreted as “no prediction”. Thus, psriiae most natural loss
function is the one which penalizes the classifier by a constant amounewgretihe sign of its
output (that is, the classifier's prediction) is different from the truellabéhe object. This loss is
termed thezero-one lossand is defined by, (y,9) = I[yg < 0] (see Figurel.1). Itis easy to
see thaty,;(h, D) = P(xy)~plY # sign(h(X))], thus the average zero-one loss is simply the
probability that the classifier does not predict the correct label.

Co1(y,9)

——
Y

Figure 1.1: The zero-one loss fgr= 1.

The magnitude of the classifier’'s output can be interpreted as a meastgéanhfidence” in
the prediction. Thus, it makes sense to require that the predictor not otpyitdhe right label, but
do so with a high confidence. This is captured byrfagin loss Define a confidence valug> 0,
also termed thenargin, and penalize any prediction that is either incorrect, or correct but with a
confidence (also margin) of less than Formally, the margin-loss i, (y,y) = Ijyy < 7] (see
Figurel.2).

0y (y, )

vy

Figure 1.2: The margin loss fgr= 1 andy = 0.5.
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While the margin loss and the zero-one loss are very natural, they posblamrfor computa-
tionally efficient implementations, since it is NP-hard to minimize them on many usatufal hy-
pothesis classes, such as the class of linear classifiers that we des&gotionl.6[Hoffgen et al,
1999. Thus, in many casessurrogate losss used instead of these losses. A surrogate loss needs
to be computationally easy to optimize, while close in some sense to the loss is seplqummpular
choice is théhinge-lossdefined byly, ) (y, 7) = [L —yi/7]+ (see Figurel.3). This loss is convex,
which means that it can be minimized efficiently. It is an upper bound for the@ee loss, and if
there are no low-confidence predictions, it is also an upper bounddan#rgin-loss. Thus, if the
hinge-loss is small, then the zero-one loss and perhaps the margin lo$soasenall. The hinge-
loss can be considered as natural even without regarding it as gatafor another loss, since it
penalizes a classifier more if it is more “confident” in its wrong prediction.

Another useful property of the hinge-loss is that itipschitz In general, a functiorf from a
normed space to a normed space-lspschitz forc > 0 if || f(a) — f(b)| < ¢|la — b]| for anya, b
in the domain. For losses, we say that they atdpschitz if they arec-Lipschitz in their second
argument, with respect to the absoulte-value norm. Formally, a leskigschitz if

vy € {:l:]-}v a,b e€R, |£(y7 CL) - E(yv b)’ < C’a - b|

The hinge-loss with a margin parametes thusl /~-Lipschitz. This property implies that the value
of the loss is closely coupled with the value of the prediction. As a resultjicsdeple-complexity
analysis tools can be easily applied to this loss.

Ci (Y, 9)

y
Figure 1.3: The hinge-loss fgr= 1 andy = 0.5.

Finally, we also consider themp-loss defined fory > 0 by ramp, (y,9) = [1 — y3/7] (see
Figurel.4). The ramp-loss is equal to the hinge-loss, except that it is never mard thehus, a
classifier is penalized by a constant amount for wrong predictions, yaadgsaller amount for the
right prediction with a small confidence. As we shall see, the ramp-lossssfaluool for proving
sample complexity bounds, since it is upper-bounded by the margin lossvaadbdounded by the
zero-one loss. Furthermore, itigy-Lipschitz just like the hinge-loss.
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y

Figure 1.4: The ramp loss fgr= 1 andy = 0.5.

1.4 Distribution-Free Sample Complexity

In distribution-free analysis, we are interested in sample-complexity giegsthat hold regardless
of the distributionD. In other words, we are interested in the quantity

inf max ¢(A, D, m, ),
A D

where the infimum ord is taken over all learning algorithms, and the maximumioms taken
over all the distributions over the-algebra ofX x {£1}. The critical factor in determining the
distribution-free sample-complexity of a supervised learning problem isdimplexity of the hy-
pothesis clas${. Several complexity measures for hypothesis classes have beersgdpgach
providing a different type of guarantee.

1.4.1 The VC dimension

We first consider learning with respect to the zero-one loss. We maynassithout loss of gen-
erality thatH C {0, —1,+1}*, by considering the saign o H = {signo h | h € H}, since the
zero-one loss is affected only by the sign of the prediction. Howeverdhenon view, which we
adhere to here, consideks C {1}, by arbitrarily fixingsign(0) = 1.

For the zero-one loss, it can be shown that the quantity controlling the samplglexity of
the best learning algorithm fo C {il}X is the number of different labelings that induces
on finite sets from the domaify’. Intuitively, if there are less possible labelings, then the learner
can achieve a high accuracy with fewer training examples, since it nealistitiguish between
fewer possibilities. The number of labelings is measured bygtbeth functionof #, which is the
functionIly : N — N defined by

My (n) = max{|H x| | X € X,|X|=n}.

We would like to establish an upper bound for distribution-free binary rsiged learning, as
a function of the growth function. Ths can be shown viarégform convergencargument: For
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every individual hypothesigd € 7, its loss on a random sample converges fast to its loss on the
distribution as the sample size grows. The effective number of hypottiegesed to be considered
can be bounded by the growth function. Thus, a union bound can bietashow that with high
probability, all of the hypotheses simultaneoughgur a loss on the random sample that is close
to the loss they incur on the distribution. This means that a learning algorithnchwse the
hypothesis that is the most accurate on the sangpid is guaranteed that its loss on the distribution
will also be low. The principle of choosing the hypothesis that does betsteosample is known as
Empirical Risk Minimization (ERM)~ormally, we define an ERM algorithm as follows.

Definition 1.1 (ERM algorithm) A learning algorithmA is anERM algorithmfor hypothesis class
‘H and los¢/ if

VS C X x {£1}, A(S) € argmin/(h,S).
heH

We are now refdy to state the distribution-free upper bound based omawehgunction. This
result can be derived frominthony and Bartletf1999 (Theorem 4.3). The first results of this type
are due tovapnik and Chervonenkid971].

Theorem 1.2. There exists a universal constafitsuch that the following holds. Lét C {+1}"
be some hypothesis class. For any ERM algorithrfor £, ;, and for any distributionD,

C . ln( 41_[7.16(2m) )

m

EO/l(A7D7m7 5) _58/1(H7D) S \/

As it turns out, a single quantity suffices to characterize the growth functioth hence the
distribution-free sample complexity of binary supervised learning, up taitbgaic factors. This
guantity is thevVC-dimensiorof H [Vapnik and Chervonenkid97]. As we shall now show, the
VC-dimension can be used to provide both an upper bound and a lowed loouthe distribution-
free sample complexity of binary supervised learning. The VC-dimensianhgpothesis class is
defined using the notion @hattering

Definition 1.3 (Shattering) Let# C {+1}* be some hypothesis class. A 8{C X is shattered
by # if for every labeling ofX, denoted; : X — {+1}, there exists a hypothesisc # such that

For instance, suppose the domaihis [0, 1], and the hypothesis class is the set of functions
hia,) that mapla, b] to +1 and the rest of0, 1] to —1. Then any set of two different points in
[0, 1] is shattered, by choosing an appropriate interval for each possibléntai(gee Figurel.5,
top). However, no set of three points is shattered, since there is a latieingp functior, ;) can
generate (see Figufe5, bottom).
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Figure 1.5: Top: A set of two points is shattered. Bottom: A set of three pisimist shattered.

The VC-dimension is the largest size of a shattered set in the domain. Formally,

Definition 1.4 (VC-dimension) LetH C {il}X be some hypothesis class. TWe-dimensionof
H, denotedVC(H), is the size of the largest subsetBfthat is shattered b§.

It is easy to see that the existence of a shattered set ohsizglies thatlly (m) > 2" for
anym > n. Sauer's LemmaSauey 1972 Vapnik and Chervonenkid 971 shows that the VC-
dimension provides an upper bound to the growth function as well.

Lemma 1.5(Sauer’'s Lemma)Let X be a set of size, and letA be a set of functions fromX to
{+£1}. If the VC-dimension ofl is d, then|A| < 3¢ (7).

For anym > d, we have Chari et al, 1994

S (7)< ()"

=1
Thus, for any hypothesis clagswith VC-dimensiond and anyn > d,
2% < Ty (n) < (@YI
= 7‘[ — d *
The logarithm of the growth function is thus about the same as the VC-dimengioo logarithmic
factors. Therefore, we can conclude a sample-complexity upper hagind the VC-dimension.

The following formulation followsAnthony and Bartletf1999 (Theorem 4.2).

Theorem 1.6. There are universal constanfsandc such that the following holds. Lét C {+1}*
be some hypothesis class with VC-dimengiolfor any ERM algorithmA, and for any distribution
D, foranym > dandd € (0,1)

EO/I(A,D,WL(S)— S/I(H,D)S \/C(dln(zedm)_i_ln(g»

m
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Itis possible to get an improved upper bound using a method knowimedising The following
is based orAnthony and Bartletf1999, Theorem 4.10.

Theorem 1.7. There is a universal constaft such that the following holds. Lét C {+1}* be
some hypothesis class with VC-dimensioror any ERM algorithmA, and for any distribution
D, foranym > dandé € (0,1)

1
Fos(4, D, 5)— 34, D) < ST G)

Itis also possible to show a lower bound on the distribution-free sample crityfdased on the
VC-dimension. For a distribution-free lower bound, it suffices to showftiraany learning there
exists a distribution such that the algorithm would require many examples toitemzaurately.
Intuitively, if the distributionD is supported by a shattered set, then the label of any element in the
set provides no indication on the labels of the other elements. Based on thighdeollowing

theorem can be proved.

Theorem 1.8. There exist universal constantsC' > 0 such that For any learning algorithmd and
any integenmn, and for every hypothesis clagswith VC-dimensionl, there exists a distributio®
such that and for any < ¢,

C-d

gO/l(A7D7m75)_€8/1(H7D) > 7

This result has appeared in several places, includiagnik and Chervonenki§l974 and
Devroye and Lugodi1993. Here we follow the formulation ofinthony and Bartletf1999, theo-
rem5.2.

Considering Theorerh.7and Theoreni.8together, we conclude that ERM algorithms achieve
the best possible distribution-free sample complexity.

1.4.2 Covering Numbers

We have seen that if the VC-dimension is bounded, then the effective muhlwypotheses is
bounded, and thus a uniform convergence argument can be useavidepa sample complexity
guarantee. When the VC-dimension is not bounded, we cannot usemrgfmvergence in the
same way. In fact, Theorei8 shows that the same type of guarantee as in Thedrémoes not
exist in this case. Nonetheless, a guarantee can be provided, if wieerstightly less from the
learning algorithm.
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We will provide a guarantee on the zero-one loss of the learning algoréhative not to the best
achievable margin loss. This is in contrast with the last section, where thargea was relative
to the best achievable zero-one loss. This will imply a high classificatiorracyif it is possible
to classify the objects in the domain correctly amith high confidencesing the given hypothesis
class.

When comparing to the margin loss, we can use a uniform convergenoaemtas follows:
Instead of counting the number of different labelings induced by hygethia our hypothesis class,
we will “bundle together” classifiers that emit similar values, and count or@yntimber of classi-
fiers that are sufficiently far from each other. Whenever this numbenisdied, a guarantee relative
to the margin loss can be provided.

Formally, we count classifiers that are sufficiently far from each otkarguthe notion of a
covering numberLet (B, || - ||o) be a normed space. #coverof this space is a subsétC 5 such
that for anyx € B there exists @ € C such that|z — y||o < . The covering number for given
v > 0, B ando, denoted byV (v, B, o), is the size of the smallest sughcovering fors5.

We use covering numbers to measure the “effective size” of the hypettiass with respect to
a given setY C X. Thus, we consider normed spaces of functigfs|| - | 1, (x)), whereF C R¥
is a set of real-valued functions, and the natp{.X) for p > 1 is defined by

1/p
1 fllz, ) = (!)1(! Z !f(s)\p) .

seX

Forp = oo, Loo(X) is defined by f| . (x) = maxsex | f(X)|. The covering number oF for a
sample sizen with respect to the, norm is

Nin(v, Fop) = sup N (7, F, Ly(X)).
XCX:|X|=m
As we will see in the next section, a small covering number for a functiors ¢taplies faster
uniform convergence rates, hence a smaller sample complexity for learning
While the covering number can be much larger than the growth function, ldt@rebetween
the two quantities can be bounded. Bydley[197§, for anyH with VC-dimensiond, anyX C X,

and anyy > 0,

InN (v, H, Lz(X)) < 2dIn (ij) : (1.1)
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1.4.3 The Fat-shattering dimension

The covering number of a hypothesis class can be thought of as asetel#ive version of the
growth function. Just as the behavior of the growth function can becteized by the combinato-

rial notion of a VC-dimension, itis possible to characterize the behaviartdio covering numbers
using a scale-sensitive combinatorial notion termeddhshattering dimensigrirst introduced in
Kearns and Schapif@994. The fat-shattering dimension is defined using the scale-sensitive notion
of fat-shattering

Definition 1.9 (Fat-shattering) Let # C R?* be a hypothesis class, and let > 0. A set
{z1,...,2m} C X is y-shattered by # if there is a vectorr € R™ such that for every vector
y € {£1}™ there is anh € H such that

viem], ylil(h(zi) —rli]) = ~.

The fat-shattering dimension is the size of the largest set which is fat-dthtter

Definition 1.10 (Fat-shattering dimension)The ~-fat-shattering dimension of #, denoted
Fat(v, H), is the size of the largest subset®fthat isy-shattered byt.

The fat-shattering dimension is strongly related to the behavior of theovering numbers of
‘H. This can be seen in the following bounds. The first bound is fBamtlett et al [1997

Theorem 1.11. Let F' be a set of real-valued functions and 4et> 0. For m > Fat(16~, F),
eFat(lG'y,F)/B < Nm(’Y;F; OO)

The reverse bound, listed below, is duedisthony and Bartletf1999 (Theorem 12.8), follow-
ing Alon et al.[1993.

Theorem 1.12. Let F be a set of real-valued functions with range[ih B]. Lety > 0. Let
d =Fat(},F). Forallm > 1,

dlog(4eBm /~d
N (7, F,00) < 2 (41?;7%) ! " ).
We use the terrMargin Error Minimization(MEM) algorithms to refer to ERM algorithms that
minimize the margin loss. Using Theorehi2and a uniform convergence argument, it is possible
to derive a sample complexity guarantee for MEM algorithms as a function datkehattering
dimension. This is stated in the following theorem, basedigtmony and Bartletf1999 (Theorem

13.4).
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Theorem 1.13. There are universal constan€s ¢ > 0 such that the following holds. Let > 0.
Let# C R* be some hypothesis class witht(y/8,H) = d > 1. Then for any integer and
5 € (0,1), and for any distributionD, for any margin-error minimization algorithma for #,

Coy1(A, Dym, 8) — €(H, D) < \/C(dln(cgf)ln(c ) + (%)

m

1.4.4 The Pseudo-dimension

By taking the marginy to zero, we can get a guarantee for the zero-one loss relative to the bes
zero-one Iosﬁg/l, sincely;; = lim,0 ¢y. The~-shattering dimension o C RY fory — 0is
termed thegpseudo-dimensiofPollard 1984 of #. This dimension is equal to the VC-dimension
of the classl’y = {(z, z) — sign(h(z) — z) | h € H}, wherez € X andz € R. Alternatively, the

pseudo-dimension can be defined directly on the ctass follows.

Definition 1.14 (Pseudo-shattering).et # C R* be a class of real-valued functions. A set
{z1,...,2n} C X is pseudo-shattered by # if there is a vectorr € R™ such that for every
y € {£1}" there is anh € H such that

Vi € [m], sign(h(x;) — ri]) = yli].

Definition 1.15 (Pseudo-dimension)Let H C {il}X be some hypothesis class. Tpseudo-
dimensionof H is the size of the largest subsettfthat is pseudo-shattered By.

The sample complexity guarantees of TheoredBhold also withd standing for the pseudo-
dimension andg/1 instead off,.

The L, covering number of a function class can be bounded using the pseudosiimes
follows [see e.gBartlett 2006 Theorem 3.1]: There are constariis and C> such that if the

pseudo-dimension ¢ C [0, 1]* is d, then

~2

)\ ¢
N (v, H,Ly(S)) < Cy (7 > - (1.2)

1.5 Distribution Dependence and General Losses

In the previous section we showed distribution-free sample-complexitydsonhen the target loss
is the zero-one loss. Can we bound the sample complexity required to aaHmwvdoss for other

target losses? Furthermore, is it possible to get better upper bounddistréution-free bounds,
based on the properties of the specific distribution in our learning problem?
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These two questions can be answered in the affirmative, using the t&@d#macher com-
plexity [Bartlett and Mendelsqr2003. Let us start with necessary definitions. L&tbe some
domain. Theempirical Rademacher complexity a class of functions® C R with respect to a
setS = {Zi}ie[m] CZis

1
RF.S) = Bellzmy 3 it Gl

whereo = (o1,...,0,) are m independent uniform{+1}-valued variables. Theverage
Rademacher complexitf F with respect to a distributio® over Z and a sample size is

R (F,D) = Es.pm[R(F,S)].

Assume a hypothesis clags C R and a loss functioi : {+1} x R — R. For a hypothesis
h € H, we introduce the functioh, : X x {+1} — R, defined byh,(z,y) = £(y, h(x)). We
further define the function clagg, = {h | h € H} C RY*{F1}

As shown inBartlett and Mendelsof2004, Rademacher complexities can be used to derive
sample complexity bounds for general bounded losses: Assume thantiee o&?, is in [0, 1].
For anyd € (0, 1), with probability of1 — § over the draw of sampleS C X x {+1} of sizem
according toD, everyh € H satisfies

U(h,D) <{l(h,S)+ 2R (He, D) + M (1.3)

m

This distribution-dependerguarantee can be used, for instance, to bound the loss of an ERM al-
gorithm A for ‘H and/, relative to the best loss (#, D), as follows. From Eq.1(.3) we have that
with probability 1 — 6/2 over the sampleS of sizem,
81n(2/6

U(A(S), D) < L(A(S),S) + 2R (He, D) + n?(n/) (1.4)
Seth* € H suchthat(h*, D) = ¢*(H, D).? SinceAis an ERM algorithm{(A(S), S) < £(h*,S).
Now, by Hoeffding’s inequality, since the range#f is in [0, 1], with probability at least — §/2

In(2/4)

* < *. D —.

2If no element ir{ achieves the infimur* (%, D), a similar yet more arduous argument can be carried out by setting
h* suchthat(h*, D) < £*(H, D) + ¢, for anye > 0.
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Therefore we conclude that

(A, D, m, 8) < €*(H, D) + 2Ron (Hy, D) + 14“;1(2/5) (1.5)

To get distribution-free results with general losses, one can uswdhs-case Rademacher
complexity defined as follows for any integet:

RoP(F) = sup R(F,S).
sczm
Thus, the upper bounds shown above can be turned into distributierbfrends by replacing
R (He, D) with R5.P (Hy).
A closely related complexity measure, termed @aussian complexitycan be defined analo-
gously to the Rademacher complexity. The empirical Gaussian complexity is

G(F,5) =~ Ellswp 3 sif (zio )l

fer 1€[m)

Wheres = (si,...,s,) are independent standard normal variables. SimilgklyF, D) is the
expectation ofG(F, S) over samples of size:.. The Gaussian complexity and the Rademacher
complexity are related as follow3¢mczak-Jaegermanh989: There are constants C > 0 such
that for all function classe& and distributiongD,

¢ Ron(F,D) < G(F, D) < C - In(m)Rom(F, D). (1.6)

1.5.1 Relationships with other complexity measures

The Rademacher complexity can be related to the other complexity measuresavddiined in
previous sections. In this section we survey some useful relationships.

First, the Rademacher complexity can be bounded by the VC-dimension asvsfollo
[Bartlett and Mendelsqr2003. For any distributionD over X x {£1},

Ron(Hey D) < O ( VC(’H)> |

m
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It is also easy to see, by considering the upper bound in E8 &nd the lower bound in Theo-
rem1.8, that there exists a distributiaf such that

VC(H)
'Rm(’H[O/l,D)ZO< - > .
For classes of real-valued functions, the Rademacher complexity casubddx as a function
of the fat-shattering dimension of the class, but this depends on the entisgitweof the fat-
shattering dimension as a function-pfMendelson2002. For the other direction, the worst-case
Rademacher complexity can be tied to the fat-shattering dimension via the folloygunly [See e.g.

Mendelson2002 Theorem 4.11].

Theorem 1.16.Letm > 1 andy > 0. If R;,P(F) < v then they-fat-shattering dimension of is
at mostm.

The Rademacher complexity is strongly related totheovering number of the function class.
First, we have an upper bound for tlhg covering number based on the Rademacher complexity.
Sudakov’s minoration theorens@dakov 1971and see alstedoux and TalagrandL991]) states
that there exists a constafit> 0 such that for any; > 0

WA (5, F. La(S)) < f’;”g%f, 9). (1.7)

Due to Eq. (.6), this implies a bound on the Rademacher complexity as well.

To bound for the Rademacher complexity from above using covering mgmbee needs to
consider the behavior of the covering number as a functiof. oA classical result is Dudley’s
entropy integral Dudley, 1967, which states that

R(F,S) < \}% /OOO VInN (v, F, Lo(S)) dry. (1.8)

If the integral is unbounded, the following refinement can be uSeeljro et a].201Q Lemma A.3]:
For alle € (0, 1], for all real function classe with range[0, 1] and for all sets5,

R(F,S) <4 +1O/1\/1 N7, F,Ly(S)) d (1.9)
) > a6 m . n Y,/ L2 - .

Lastly, instead of an integral, one can bound the Rademacher complexitysatgpa finite sum as
follows [Mendelson2002 Lemma 3.7]: Lek; = 27°. Then

VmR(RAMP,, S) < C Z ei_l\/ln/\/(ei, RAMP,, Lo(S)) + 2eny/m. (1.10)

1€[N]



CHAPTER 1. INTRODUCTION 18

1.6 Linear Classifiers

When defining a learning problem, the hypothesis class should reprmseptior knowledge or
beliefs about what classifiers might be good predictors in this problem.idmty, the learning
algorithm can enjoy a hypothesis class of low complexity while keeping thddsest (7, D) low
as well, thus a small sample will suffice to achieve a good prediction accuracy

While this prior knowledge can be specific to a problem, it turns out that soipetlesis
classes can be used very successfully on a vast range of problamarticular, a common and
successful approach is to set the data domain totb& R¢ for some integewl, so that each
object is represented by a vectore R?, and to learn a predictor relative to the hypothesis class
of linear classifiers A linear classifier is the functioh,,, for some vectorw € R?, defined by
hw(z) = (w, x). The label predicted by such a classifiesijg o h,, () = sign({w, z)). The use of
linear classifiers has proved very useful in practice, and is at theo€papular learning algorithms
such as the PerceptroR$senblatt1 959 and Support Vector Machines (SVME¢ser et al.1992
Cortes and Vapnikl995 Vapnik, 1995.

It should be noted that the class of linear classifiers is sometimes definedbigtst A,, () =
(w,z) — bforw € R? andb € R. However, the two formulations are practically equivalent, since
any biased classifier can be turned into an unbiased classifier by aduittgeadimensionl + 1
and settinge[d + 1] = 1 for all the objects in the domain. We will adhere to the formulation of
linear classifiers without a bias, also ternteinogeneous linear classifiers

In this work we focus on homogeneous linear classifiers that can balbby vectors in the
unit ball. For a normed spacg denoteW(S) = {hy | w € S, ||lw| < 1}. We write simplyW
whens is clear from context. There are well-known bounds for the complexity tefrngpothesis
classes of this form. First, the VC-dimension and the pseudo-dimension éar lolassifiers in
Euclidean space can be calculated exadydley, 1978 Pollard 1984.

Theorem 1.17.The VC-dimension af(R?) is exactlyd.
Theorem 1.18. The pseudo-dimension & (R?) is exactlyd.

By Theoreml.7, this implies that a bounded relative zero-one loss can be achieved l3Mn E
using a sample of siz@(d/e?). Now, suppose the dimensidiis very large. In that case, the sample
complexity guarantees based on the VC-dimension might be meaninglesss lbtithat by using
a margin formulation, it is possible to get guarantees that are indepenfdéng dimensionality
of the space. Thus, we can use even an infinite-dimensional spateadrsf a Euclidean space
R?, consider a real-valuedilbert space This is a vector spac& with an associated real-valued
inner product(-,-) : X x X — R. The norm on the Hilbert space is defined|py| = /(x, z).
Linear classifiers can be defined on Hilbert spaces similarly to their definiti®{, using the inner
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product of the Hilbert space. The dimension of a Hilbert space can ber ditlite or infinite. A
real-valued finite-dimensional Hilbert space with dimensios isomorphic to the Euclidean space
R?. A Hilbert space with a countable dimension is termeskparableHilbert space. We have the
following bound on the fat-shattering dimension of linear classifiers in a Higace, originally
from Gurvits[1997.

Theorem 1.19.Let S be a separable Hilbert space. L& > 0 such thatY C Bg(S). Then the
~-fat-shattering dimension o/(S) is at most’j—;.

Thus, we can conclude from Theordni 3that a bounded zero-one loss (relative tothmargin
loss) can be achieved by a MEM algorithm, using a sample of GizZ8%/v2¢%). For Lipschitz
losses, such as the hinge-loss and the ramp-loss, a sample complexitythauddpends on the
average squared norm of the data can be derived using Rademanimexities, as the following
result showsBartlett and Mendelsqr2003.

Theorem 1.20.Let S be a separable Hilbert space. Lébe ac-Lipschitz loss function. Then for
any distributionD overS x {£1}, R,,,(W(S)¢, D) < %, where the expectation is over
the marginal ofD on S.

This theorem, combined with Eql.6), allows deriving sample complexity upper bounds for
learning algorithms that minimize the hinge-loss or the ramp-loss. Considahgrsinge-loss—
this is the loss that is minimized in soft-margin SVKdrtes and Vapnikl9995. Since the hinge-
loss with marginy is 1/~-Lipschitz, we get a Rademacher complexity upper boun gﬂ‘i—@
This implies that a sample size 6f(E[||z||?]/7?) suffices to achieve a small relative hinge-loss,
compared to the best achievable hinge-loss. This can be done usingMalg&ithm for the
hinge-loss, such as soft-margin SVM. Since the hinge-loss is an uppedlom the zero-one loss,
this implies a guarantee also on the zero-one loss of the classifier emitted tyath#ne, although
this guarantee is with respect to the best achievable hinge-loss.

For the ramp-loss, an even stronger result can be derived. Theloasis alsal /y-Lipschitz,
thus it has the same Rademacher complexity upper bou % By Eq. (L.3), it follows
that a sample size @(EE[||z||?]/~?) suffices so that all linear classifiers in the unit ball have their
ramp-loss on the distribution not much larger than their ramp-loss on the sahmgleamp-loss is
lower-bounded by the zero-one loss and upper-bounded by the niasgify,. Therefore, we can
conclude that a sample size O{EE|[||z|?]/+?) suffices so that all linear classifiers in the unit ball
have their zero-one loss on the distribution not much larger thanhmiargin loss on the sample.
It follows that a MEM algorithm will also require only that many examples to aehelow zero-
one loss relative to the best margin loss. The following lower bound shavdhis guarantee is
tight.
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Theorem 1.21.There are constants, ¢ such that the following holds. Létbe a separable Hilbert
space of infinite dimension. L&t > 0. For any learning algorithmA and any integern, there is a
distribution D overBp(S) x {1} such that for any < ¢,

; C . B2
o1 (A, D, m. 6) — £;,(W(S), D) > \/V—m

Proof. Assume to the contrary that there exists an algorithsuch that for all distribution® over
BB(S) X {j:l},
C - B2

Eo/l(A,D,m,(S) - K;(W(S),D) < ﬂme .

Let x; = B -e; € Bp(S) wheree; is thei'th vector in an orthonormal basis f&. The set
X =A{x1,...,zp}, forn = L%J, is vy-shattered byV(S), since for any labeling,...,y, €
{£1}", we can setv = £ >, y;e;, and we get that for all € [n], y;(w,z;) = ~. In addition,
|w|| = £+/n < 1, henceh,, € W(S). It follows that for any distributionD with support in

X x{+1}, we havels (W(S), D) < £,,(W(S), D). Thus we have

. C - B? C-(n+1)
60/1(A7D’m75)_Eo/l(W(S),D) < \ES m .

But the setX is shattered byign o H, thus the VC-dimension of x is n. Therefore, by Theo-
rem 1.8, there exists a universal constantsuch that no algorithm can satisfy this inequality. We
have thus reached a contradiction. O

Thus we can conclude the following: The distribution-free sample-complexitgarning ho-
mogeneous linear classifiers in the unit ball is proportional,tand can be achieved by an ERM
for the zero-one loss. The distribution-free sample-complexity with régpabe margin loss is
proportional tomin(d, 5—22), and can be achieved by an MEM algorithm. Thus, in high or infinite
dimensions, the sample-complexity of binary classification might be prohibitinde the sample
complexity of margin learning can be reasonable.

In this work we do not specifically address Hilbert spaces, and worgdiavenience with linear
separators ifR%. However, our results are not specific to Euclidean spaces, andahdyeceasily
adapted to general separable Hilbert spaces.
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1.7 Main Contributions

As we have shown in the previous sections, many complexity measures allmdibg the sample
complexity of various hypothesis classes and algorithms. These complexigurasare usually
used to provide upper-bounds for the sample complexity of a specifidiinggie class. These upper
bounds typically hold for a large class of distributions. For instance,idenBomogeneous linear
classifiers in the unit ball, in the Euclidean spa&®€ As shown in Sectiori.6, the distribution-
free sample complexity of learning with this class, for any data distribution,ogqutional tod.

In addition, the sample complexity upper bound of large-margin classificatiprofgortional to
B? /42, whereB? is the average squared norm of the dataaigithe size of the margin.

Such upper bounds can be useful for understanding the positieetasyf a learning rule. But
it is difficult to understand the deficiencies of a learning rule, or to comipetrgeen different rules,
based on upper bounds alone. This is because it is possible, and idhaftease, that the true
sample complexity for a given data distribution is much lower than the bound.

As we have shown above, some sample complexity upper bounds are knbderigit or to
have an almost-matching lower bound. For instance, the VC-dimension lowedlin Theoreni.8
shows that there exists a distribution in the class covered by the VC-dimamsan bound, for
which this bound is tight. This holds in particular for linear classifiers in the halit The lower
bound for margin learning of linear classifiers, in Theor&rl, shows a similar result for the
margin-based upper bound.

These results show that there cannot be a better upper bound thafdrdlds same class of
distributions that the upper bound covers. But they do not imply that therdpund characterizes
the true sample complexity for arppecificdistribution in the class, except for the ones for which
the upper bound is indeed tight. For instance, although the sample-complppi®y bound of
O(B? /~?) for margin-learning is tight, Theorefn6and Theorem..17imply that if the distribution
is supported by a low-dimensional sub-space, then the true numbermopksarequired to reach a
low error is much smaller.

In the first part of this thesis, our goal is to identify a simple quantity, whichfisnation of
the distribution, thatloesprecisely characterize the sample complexity of learning this distribu-
tion under a specific learning rule. We focus on the popular rule of Md&giar Minimization
(MEM), defined in Sectiori..4.3 and on the class of homogeneous linear classifiers. We present
a new quantity, termed thmargin-adapted dimensigmand use it to provide a tighter distribution-
dependent upper bound, and a matching distribution-dependent lowed bfor MEM algorithms
for linear classifiers. The upper bound is universal, and the lowendbolds for a rich class of
distributions.

The margin-adapted dimension, which we denotekbyfor a margin ofv, refines both the
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dimension and the average norm of the data distribution, and can be edwiljated from the co-
variance matrix and the mean of the distribution. We provide a sample-complepgr bbound
showing tha@(%) examples suffice in order to learn any distribution with a margin-adapted di-
mension ofk,. We then show that for a rich family of ‘light tailed’ distributions, g the numbkr o
samples required for learning by minimizing the margin error is also lowerdmibyQ (k. ).

Our lower bound hinges on several new results:

e We relate fat-shattering to hardness of learning using MEM.

e We show that for a convex hypothesis class, fat-shattering is equivalesimattering with
exact margins.

e We link the fat-shattering of a set of vectors with the eigenvalues of therdoipt matrix
(the Gram matrix) of the vectors in the set.

e We provide a new lower bound for the smallest eigenvalue of a random Gatrix gener-
ated by sub-Gaussian variables. This bound extends previous resafttalysis of random
matrices.

Some of the results in this part have appearefidbato et al.l20104.

As mentioned above, complexity measures of hypothesis classes are typitaljyzed on a
case-by-case basis. For instance, the complexity of the class of linesifiels has been analyzed
as a function of parameters such as the dimension of the ambient space anaximal norm of
the separator. In the second part of this thesis, we consider the gs#tfay ofMultiple Instance
Learning and propose a generic analysis for this setting, that holds across fiffargrd hypothesis
classes.

Multiple-Instance Learning (MIL), first introduced Dietterich et al[1997, is a special type
of a supervised classification problem. As in classical supervised otasisifi, in MIL the learner
receives a sample of labeled examples drawn i.i.d. from an arbitrary &mdwn distribution, and
its objective is to discover a classification rule with a small expected classificatior over the
same distribution. In MIL additional structure is assumed, whereby the drarape received as
bagsof instances such that each bag is composed of several instances. It is assurheddha
instance has a true label, however the learner only observes the laltleéshags, which is is de-
termined by the hidden labels of the instances via some function which is kngpwara Classical
works on MIL assume that the function is the Boolean OR. In this work wsidena more general
setting which allows other functions as well.

We propose a formal framework for generalized MIL, which allows ariatyany MIL problem
as a function of the underlying hypothesis class: : This is the hypothessalahe possible map-
pings from single instances to labels. In addition, the analysis depends &mtttion determining
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the bag labels based on the instance labels. We provide a generic anaiybisuhds the complex-
ity of learning a MIL problem based on the complexity of learning the undeglitypothesis class.
Our main contributions are:

e Bounding the sample complexity of MIL as a function of the complexity of the tyitheg
hypothesis class. We provide bounds for the following complexity measures

— VC-dimension

Pseudo-dimension

Covering numbers

Fat-shattering dimension

Rademacher complexity

e Ageneric learning algorithm, which operates by using a regular supdreiaming algorithm
for the underlying hypothesis class as an oracle. The algorithm is commatifitiefficient if
the oracle is an efficient learner in the agnostic setting.

e We present and analyze a setting in which MIL can be used to improve théeseompplexity
of non-MIL learning, by constructing artificial bags.

Some of these results have appearefiabato and Tishbj2009, Sabato et a[20104.

To make this dissertation coherent and due to the lack of space, some o$eayate work was
omitted from this thesis. For example, | have worked on the generalization albilitg Information
Bottleneck method$hamir et al.201Q 200§, on multiclass learnabilitypaniely et al, 2011 and
on active learningGonen et a].2011.
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Chapter 2

Introduction (Part I)

In this part we pursue a tight characterization of the sample complexity afifegpa classifier
under a particular data distribution, and using a particular learning rulecifg@ally, we treat the
case where the data domain¥s= R?, and the hypothesis class is the homogeneous classifiers in
the unit ball,# = W(R?). We obtain a tight distribution-specific characterization of the sample
complexity of large-margin learning.

Denote bym(e,~, D) the number of examples required to achieve an excess error of no more
thane relative to the best possiblemargin error for a specific distributioP, using a MEM algo-
rithm. Our main result shows that for a rich family of ‘light-tailed’ distributions,

Q(k-(D)) < m(e, 7, D) < O (""L@D )) :
The upper bound is in fact universal and holds for any distributiorigwhe lower bound holds for
a family of distributions that we define below.

As can be seen in this bound, we do not tightly characterize the dependétice sample
complexity on the desired error [as done e.g.Steinwart and Scove2007, thus our bounds are
not tight for asymptotically small error levels. Our results are most signifitdimne desired error
level is a constant well below chance but bounded away from zeris. i§n contrast to classical
statistical asymptotics that are also typically tight, but are valid only for verylsmaAs was
recently shown by.iang and Srebro 201@he sample complexity for very smallin the classical
statistical asymptotic regime) depends on quantities that can be very difier@rthose that control
the sample complexity for moderate error rates, which are more relevamgfdrine learning.

Our tight characterization, and in particular the distribution-specific lowand on the sample
complexity that we establish, can be used to compare large-mdrgieg@ularized) learning to other
learning rules. We provide two such examples: we use our lower bourigamusly establish a

25
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sample complexity gap betwedn and L, regularization previously studied Mg [2004, and to
show a large gap between discriminative and generative learning orsai@aumixture distribution.

We start by discussing related work in Sectibd. We then present the problem setting and
notation in Sectior?.2. We introduce the margin-adapted dimension in Sec?i@ The sample-
complexity upper bound is proved in ChapferChapter4 is dedicated to the proof of the lower
bound. In Chapteb we give examples of implications, and also show that any non-trivial sample-
complexity lower bound for more general distributions must employ propesthess than the co-
variance matrix of the distribution.

2.1 Related Work

Most work on “sample complexity lower bounds” is directed at proving timatew some set of as-
sumptions, there exists a data distribution for which one needs at leastian cermber of examples
to learn with required error and confidence [for instaAoés and Lugosil998 Ehrenfeucht et a|.
1988 Gentile and Helmbold1999g. This type of a lower bound does not, however, indicate much
on the sample complexity of other distributions under the same set of assumptions

For distribution-specific lower bounds, the classical analysis of VapMafgijik, 1995 Theorem
16.6] provides not only sufficient but also necessary conditions ttearnability of a hypothesis
class with respect to a specific distribution. The essential condition is thatdtree entropy of the
hypothesis class with respect to the distribution be sub-linear in the limit of aniténéample size.

In some sense, this criterion can be seen as providing a “lower boundaoralality for a specific
distribution. However, we are interested in finite-sample convergencg &id would like those
to depend on simple properties of the distribution. The asymptotic argumenkgadun Vapnik’s
general learnability claim do not lend themselves easily to such analysis.

Benedek and Itdi199] show that if the distribution is known to the learner, a specific hypoth-
esis class is learnable if and only if there is a firieover of this hypothesis class with respect to
the distribution. Ben-David et al[200g consider a similar setting, and prove sample complexity
lower bounds for learning with any data distribution, for some binary hygsisiclasses on the real
line. Vayatis and AzencoftL999 provide distribution-specific sample complexity upper bounds for
hypothesis classes with a limited VC-dimension, as a function of how balaneddg/tlotheses are
with respect to the considered distributions. These bounds are nottigttitdistributions, thus they
also do not fully characterize the distribution-specific sample complegifyamanis and Mannor
[2007 provide lower bounds for the margin error of separating hyperplanagsearly log-concave
distributions. These bounds are related to the fact that such distributiorat datisfy large-margin
separation. In contrast, our bounds hold for all distributions, includitgsdhat can be separated
with zero margin error.
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2.2 Problem setting and definitions

In this chapter we consider the domaih= R¢, and the function class of linear separators with a
unit norm,H = W(R?). We write simplyw to denote the functioh,, = (w, x) for somew € R¢.
Our goal is to bound the zero-one lo4s,. We consider MEM algorithms relative to the margin
loss/., for somey > 0. We denote such an algorithm for a margimdfy .A,. For a distributionD
overX x {£1}, we denote byD x the marginal distribution oD on X.

The distribution-specific sample complexity for MEM algorithms is defined asvistio

Definition 2.1 (Distribution-specific sample complexityffor v > 0, ¢, € [0, 1], and a distribution
D, thedistribution-specific sample complexitgenoted byn (e, v, D, ¢), is the minimal sample size
such that for any MEM algorithmd, and for anym > m(e,~, D, 9),

toy1(Ay, Dym, 8) — £5(H, D) < .

Note that while we are considering a specific distribution, we requireathgtossible MEM
algorithms do well on this distribution. This is because we are interested in thé stiategy in
general, and thus we study the guarantees that can be providedlesgastithe specific MEM
implementation.

In the rest of the chapter we write simply(D) and omit the fixed terrfi{. We also sometimes
omit 6 and write simplym(e,~y, D), indicating that) is assumed to be some fixed small constant.

2.3 The margin-adapted dimension

The sample complexity of MEM for linear classifiers with unit norm can be uppended in terms
of the average norm relative to the mardifi| X||?]/~2, or alternatively in terms of the dimension-
ality d (see Sectior..6). Although both of these bounds are tight in the worst-case sense, i ., the
are the best bounds that rely only on the norm or only on the dimensionajigctvely, neither is
tight in a distribution-specific sense: If the average norm is unbountidd the dimension is small,
then there can be an arbitrarily large gap between the true distributiomdaiamtesample complexity
and the bound that depends on the average norm. If the converse thaltis, the dimension is
arbitrarily large while the average-norm is bounded, then the dimensionalitydhis loose.
Seeking a tight distribution-specific analysis, one simple approach to tigheer thounds is
to consider their minimum, which is proportional tein(d, E[|| X ||?]/~?). Trivially, this is an
upper bound on the sample complexity as well. However, this simple combinatitsoisa tight:
Consider a distribution in which there are a few directions with very high neeigbut the combined
variance in all other directions is small (see Figar#). We will show that in such situations the
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Figure 2.1: lllustrating covariance matrix ellipsoids. left: norm bound is tight; faiddimension
bound is tight; right: neither bound is tight.

sample complexity is characterized not by the minimum of dimension and normy it Isum of
the number of high-variance dimensions and the average squared nibreroiier directions. This
behavior is captured by theargin-adapted dimensioriWe define it using the following property
of a distribution.

Definition 2.2. Letb > 0 and letk be a positive integer. A distributioP x overR? is (b, k)-limited
if there exists a sub-spadé C RY of dimensiond — k such thatEy..p, [||Oy - X||?] < b, where
Oy is an orthogonal projection ontd'.

Definition 2.3 (margin-adapted dimensianYhemargin-adapted dimensiaf a distributionD x,
denoted by, (Dx), is the minimuni such that the distribution i&y%k, k)-limited.

We sometimes drop the argumentgfwhen it is clear from context. It is easy to see that for any
distributionD x overR?, k. (Dx) < min(d, E[||X||?]/+?). Moreover,k., can be much smaller than
this minimum. For example, consider a random vedfoe R!%°! with mean zero and statistically
independent coordinates, such that the variance of the first codini@00, and the variance in
each remaining coordinate(s001. We havek; = 1 butd = E[|| X||?] = 1001.

k(Dx) can be calculated from the uncentered covariance matixp, [X X7 as follows:
Let A1 > X9 > --- Ay > 0 be the eigenvalues of this matrix. Then

d

ky=min{k| > X <~°k}. (2.1)
i=k+1

A quantity similar to this definition ok. was studied previously iBousque{2007. The eigenval-

ues of theempiricalcovariance matrix were used to provide sample complexity bounds, for aestan

in Scholkopf et al.[1999. However k., generates a different type of bound, since it is defined based

on the eigenvalues of the distribution and not of the sample. We will see el finite samples,

the latter can be quite different from the former.
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A Distribution-Dependent Upper Bound

In this chapter we prove an upper bound on the sample complexity of leaniihgMEM. To
do that, we will use the ramp-losamp,, which was defined in Sectioh.3. We show uniform
convergence of the training error and test error with respect to this Tdss ramp-loss is lower-
bounded by the zero-one loss and upper-bounded by the margin hass.tfie uniform convergence
result will allow us to bound the true zero-one loss of MEM as a function @bist margin error
on the distribution. We denote

RAMP, = Hyamp, = {(2,y) = ramp. (w, z,y) | w € B{}.

We will show uniform convergence ov&ampP, by bounding the Rademacher complexity of
this class as a function of the data distribution. We will botyl(RAMP.,, D) on any(B?, k)-
limited distribution, by restating the functions RAMP,, as sums of two functions, each selected
from a function class with bounded complexity. The first function class wilbbunded because
of the norm bound on the subspade and the second function class will have a bounded pseudo-
dimension. However, the second function class will depend on the chbibe dirst function in
the sum. Therefore, we require the following lemma, which allows combiningroay numbers of
different function classes. We use the notion ¢fausdorff distanceketween two set§;, G, C X,
defined as\; (G1,G2) = sup,, cg, infg,eq, 191 — 920

Lemma 3.1. Let (X, || - ||) be a normed space. L&k C X be aset, and le§ : X — 2% be a
mapping from objects iR’ to sets of objects ik’. Assume tha§ is c-Lipschitz with respect to the
Hausdorff distance on sets, that is

Vi, f2 € X,Au(G(f1),6(f2) < cllfs = fallo

29
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LetFg={f+g|f€F,geG(f)} Then

N(n, Fg,0) <N(n/(2+c),F,o)- JﬁggN(n/(2 +¢),G(f);0).

Proof. For any setA C X, denote byC4 a minimaln-covering for A with respect to| - ||, SO
that |C4| = N(n,A,0). Let f + g € Fg suchthatf € F,g € G(f). Thereis af € Cr

such that]| f — f|lo < n. In addition, by the Lipschitz assumption there i§ & G(f) such that
lg — dllo < cllf = fllo < en. Lastly, there is & Cgj) Such that|g — g/l < n. Therefore

1f+9=(F+ Do < If = Fllo+ g = llo + 17 = dllo < (2+e)n.

Thusthesef{f +g | f € Cr,g € Cg)} isa(2+ c)n cover of Fg. The size of this cover is at most
ICr| - supser [Co(p) < N(n, F,o0) - suprer N(n,G(f), o). 0

The following lemma shows a useful class of mappings that are Lipschitz vdgiece to the
Hausdorff distance as required by Lemfa.

Lemma 3.2. Let f : X — R be a function and leZ C R be a function class over some domain
X. LetG : RY — 2B™ pe the function defined by

G(f) £{z = [f(@) +2(@)] - f(2) | 2 € Z}. 3.1)
Theng is 1-Lipschitz with respect to the Hausdorff distance.
Proof. For a functionf : X — R and az € Z, define the functiori7[f, z] by

VeeX, G[fz)(x)=[f(z)+z2)] - f(z).

Let f1, fo € RY be two functions, and lef; = G[f1,2] € G(f1) for somew, € V. Then, since
G[fQ, Z] S g(fQ), we haveinf926g(f2) ||91 — 92||L2(S) < ||G[f1, Z] — G[fg, ZH’ Now, forallxz € R,

Glf1,2)(x) = Gf2, 2)(@)] = [[f1(2) + 2(2)] — fi(z) — [fo(2) + 2(2)] + fa(2)]
< [fi(z) = fo(2)].

Thus

IG[f1,2] = Glf2, 2]l (s) = Ex~s(Glf1, 2](X) = Glfa, 2](X))?
<Ex~s(f1(X) = f2(X)? = |1 = fallZ,s)-
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It follows thatinf,,cg (s, [l91 — 92llLo(s) < IIf1 — fallLo(s)- This holds for anyy; € G(f1), thus
Ap(G(f1),6(f2) < |lfi = follLy(s)- O

We will also require the following lemma, which uses the pseudo-dimensionuwfcion class
to bound the pseudo-dimension of a different class that is derivedifrom

Lemma 3.3. Let f : X — R be a function and leZ C R¥ be a function class over some domain
X. LetG(f) be defined as in Eq3(1). Then the pseudo-dimensiondxff) is at most the pseudo-
dimension ofZ.

Proof. Let k be the pseudo-dimension@f f), and let{z1, ..., z;} C X be a set which is pseudo-
shattered by (f). We show that the same set is pseudo-shattered bg well, thus proving the
lemma. Sinceg(f) is pseudo-shattered, there exists a veetar R* such that for ally € {+1}*
there exists @, € G(f) such thavi € [m],sign(g,(z;) —r[i]) = y[i]. Therefore forally € {£1}*
there exists a, € Z such that

Vi € [k],sign([f (z:) + zy(i)] — f(2:) — r[i]) = yld].
By considering the casgi] = 1, we have
0 < [f(@:) + zy(xa)] — flas) —rli] < 1= flai) —rli].
By considering the casgi] = —1, we have
0> [f (@) + zy(x0)] — f(zs) = rli] > —f(xs) —rli].
Therefored < f(z;) + r[i] < 1. Now, lety € {+1}* and consider any e [k]. If y[i] = 1 then
[f (i) + 2y ()] — f(@s) —r[i] >0

It follows that
[f(@i) + 2y (z)] > f(z3) +r[i] >0,

thus
f(@i) + 2y (i) > f(2i) + r[i].

In other wordssign(zy(x;) — r[i]) = 1 = y[i]. If y[i] = —1 then

[f (i) + 2y (z:)] = f(zs) —7[i] < 0.
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It follows that
[f (@) + 2y (2)] < flzi) +rli] <1,

thus

f@i) + 2y (i) < f(2i) + r[i].
in other wordssign(z, (z;) — r[i]) = —1 = y[i]. We conclude tha¥ shatterz1,...,z;} as well,
using the same vectere R*. Thus the pseudo-dimension Bfis at leastk. O

The bound on the Rademacher complexityraivp,, is provided in the following theorem. We
then state a corollary that uses Theorémto derive a sample-complexity upper bound for MEM
that depends only oh,.

Theorem 3.4. Let D be a distribution oveR? x {£1}, and assum@®y is (B2, k)-limited. Then

Ok + B2/%) In(m)

R(RAMP,, D) < \/

Proof. In this proof all absolute constants are assumed to be positive and areddyC or C;
for some integet. Their values may change from line to line or even within the same line.

Consider the distributio® which results from drawingX,Y) ~ D and emitting(Y - X, 1).

It too is (B2, k)-limited, andR(RAMP.,, D) = R(RAMP., D). Therefore, we assume without loss
of generality that for al( X, Y) drawn fromD, Y = 1. Accordingly, we henceforth omit the
argument fromramp. (w, z,y) and write simplyramp,_ (w, z) £ ramp. (w, z,1).

Let Oy be an orthogonal projection onto a sub-spaceof dimensiond — k such that
Ex~py[[|Ov - X|? < B2 LetV be the complementary sub-spacétoLetS = {z1,...,z,} C
R4, and denoteéB(S) = \/Ex~s[||Ov - X||?]. For a functionf : R — R, the Ly(S) norm of f is
1£1lzacs) = VEx~s[F(X)2].

We will bound the Rademacher complexity ®imp by first bounding the covering number
of RAMP., with respect toL(.S), and then using Eq1(10. To boundN\ (n, RAMP,, Ly(S)) for
n > 0, note thatramp, (w, z) = [1 — (w,z)/y] = 1 — [{w,x)/v]. Since shifting by a constant
and negating do not change the covering number of a function #é&3s,RAMP,, L2 (.5)) is equal
to the covering number dfz — [(w, z)/7] | w € B¢}. Moreover, let

RAMP’7 ={z— [(wg + wp, z) /7] | wa € IB%il NV,wy € V}.

Then{z — [(w,z)/] | w € B{} C rRAMP., thus it suffices to bound the covering number of
RAMP’W. To do that, we show thatAMPg satisfies the assumptions of Lemfa for the the space

(RE [ [l ags))-
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Let F = {z — (wa,z)/7 | we € BINV}. LetG : RE" — 2% be the mapping defined by

G(f) = A{z = [f(@) + (wp, 2) /7] = f(=) | wp € V}.

Clearly,Fg = {f+g| [ € F,g € G(f)} = RAMP.,. Furthermore, by Lemma2, G is 1-Lipschitz
as required by Lemma 1 Thus, by Lemm&.1

N(777 RAMP{WLQ(S)) < N(U/?’,}—a LQ(S)) ’ SUPN(’?/37g(f)vL2(S))- (3.2)

feF

We now proceed to bound the two covering numbers on the right hand Bid&, consider
N(n/3,G(f),L2(S)). By Lemma3.3 the pseudo-dimension ¢f(f) is the same as the pseduo-
dimension of{z +— (w,z)/vy | w € V}, which is exactlyk, the dimension o¥/. Therefore, by
Eq. (1.2,

Co
N/3.9(6). Lo(9)) < Gy (n) . 33)

Second, conside¥ (n/3, F, L2(S)). By Sudakov’s minoration, stated in Eq..{) for anyn > 0
Cm ,
InN(n, F, Ly(5)) < ?g (F,S).

The right-hand side can be bounded as follows:

py.m.g(}",S):V-Es[?ug):]Zsif(xi)H: s| sup Zsle
€5 =1

weBdﬂV

HZSZ@V%H <\IE stz@vwz\! Z [Ovail|* = vVmB(S).

Thereforeln N (n, F, L2(S)) < C’ (S) . Substituting this and Eq3(3) for the right-hand side in
Eg. (3.2 and adjusting constants we get

C.
In N (17, RAMP,, La(S)) < In N (1, RAMP,, L3(S)) < Cy (1 + kln(—2) + —522),
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To finalize the proof, we plug this inequality into EG..{0 to get

B2(5)

VmR(RAMP,, S) < C E €i—14/ 1+ kIn(C2/€;) + — 5 t2envm
e
1€[N] ¢

<y (Z €1 <1-|— \/kln(CQ/ei)—f- B (g)>) —}-QEN\/T;

2
2¢2
1€[N] T

=C (Z 27 4 VE S 27 (G2 + B:q)) o N+

1E€[N] 1€[N] 1E[N]

<C (1 +VE+ B(Si : N> + 27N+ /m.

In the last inequality we used the fact tha} i2~*1 < 4. SettingV = In(2m) we get

\/% <1 Vi 4 B n(m) 17n(2m)) .

Taking expectation over both sides, and noting jd(5)] < \/E[B2(S)] < B, we get

R(RAMP,, S) <

R(RAMP,, S) (1+Vk+ Blnfm)) < \/O(k: + B?1n(2m)/~?)

< ¢
—/m m
OJ

Corollary 3.5 (Sample complexity upper bound)et D be a distribution oveR? x {£1}. Then

m(e,, D) < O (’“W(DX)> |

€2

Proof. Let.4 be a MEM algorithm, and let* € argminweﬁiz ¢y(w, D). By Eq. (L.4), with proba-
bility 1 —§/2

ramp,, (A, (S), D) < ramp, (A (S), S) + 2R (RAMP,, D) + églnfj/d).

Seth* € H such that, (h*, D) = £ (H, D). We have

ramp. (A, (S), 5) < £,(A,(S), S) < £(h*, ).

The first inequality follows since the ramp loss is upper bounded by the mlaggn The second
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inequality follows since4 is a MEM algorithm. Now, by Hoeffding's inequality, since the range of
ramp,, is in [0, 1], with probability at least — §,/2

. . In(2/9)
< D .
6, (h*,8) < b5(h*, D)+ =~
It follows that with probabilityl — §
141n(2/6
ramp, (A, (S), D) < £(H, D) + 2Ry (RAMP,, D) + r;il/) (3.4)

By definition of k., (Dx), Dx is (v?k, k. )-limited. Therefore, by Theore®.4,

O(ky(Dx)) In(m)

Rm(RAMP,, D) < \/

In addition,/y/; < ramp.,. Combining these with Eq3(4) we conclude that

Coy1(Ay, D,m, 6) < (M, D) + \/O(k'y(DX) lnfgz) +1n(1/9))

Bounding the second right-hand term gywe conclude that(e, v, D) < O(k, /¢?). O



Chapter 4

A Distribution-Dependent Lower Bound

The new upper bound presented in C8r5 can be tighter than both the norm-only and the
dimension-only upper bounds. But does the margin-adapted dimensi@ttdreze the true sample
complexity of the distribution, or is it just another upper bound? To ansvieqtiestion, we first
need tools for deriving sample complexity lower bounds. Sectidnelates the smallest eigenvalue
of a Gram-matrix to a lower bound on sample complexity. In Secti@the family of sub-Gaussian
product distributions is presented. We prove a sample-complexity lowerdoimu this family in
Section4.3.

4.1 A sample complexity lower bound with Gram-matrix eigenvalues

The ability to learn is closely related to the probability of a sample to be shattesexbjdent in
Vapnik’s formulations of learnability as a function of te@ntropy Mapnik, 1999. It is well known
that the maximal size of a shattered set dictates a sample-complexity uppekr. Marshow that
for some hypothesis classes it also implies a lower bound in Thebrebelow. The theorem states
that if a sample drawn from a data distribution is fat-shattered (se€l@fvith a reasonably high
probability, then MEM can fail to learn a good classifier for this distributiore ¥hen relate the
fat-shattering of a sample to the minimal eigenvalue of its Gram matrix. Therefdéoever bound
on the smallest eigenvalue of the Gram-matrix implies a lower-bound on the saompfdexity.
We say that a set ig-shattered at the origiif it is ~-shattered when in Def. 1.9is set to the zero
vector.

The following theorem shows that a high probabilityye$hattering implies hardness of margin
learning. This holds not only for linear classifiers, but more generatlaffsymmetrichypothesis
classes. Given a domaiti, we say that a hypothesis clagsC R* is symmetric if for allh € H,
—h € H as well. This clearly holds for the class of linear classifikts

36
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Theorem 4.1. Let X be some domain, and assume thatc R* is a symmetric hypothesis class.
Let D be a distribution overt’ x {£1}. If the probability of a sample of size drawn fromD} to
be~-shattered at the origin is at leagt thenm(e,y, D,n/2) > |m/2] forall e < 1/2 — £3(D).

Proof. Lete < § — £%(D). We show a MEM algorithrd such that

> 0

'y(D)+€>

N |

boy1(Ay, D, |m/2],n/2) >

thus proving the desired lower bound orie, v, D, n/2).

Assume for simplicity thain is even (otherwise replace with m — 1). Consider two sets
S, S C X x {£1}, each of sizen/2, such thatSx U Sx is v-shattered at the origin. Then there
exists a hypothesis; € H such that the following holds:

e Forallz € Sx USx, |hi(z)] > 7.
e Forall(z,y) € S,sign(hi(z)) = y.
e Forall(z,y) € S, sign(hy(x)) = —y.

It follows that ¢, (hi,S) = 0. In addition, leth, = —h;. We havehy, € H due to the sym-
metry of . It follows that&,(hg,g) = 0. In addition,h; andho never predict the same label.
Thus 4y, (h1, D) + £y/1(h2, D) > 1. It follows that for at least one of € {1,2}, we have

los1(hiy, D) > % Denote the set of hypotheses with a high zero-one loss by

He ={h € H |y (h,D) > -}

| =

We have just shown that iy U Sx is y-shattered then at least one of the following holds: (1)
h1 € Hg Nargminggy, £ (h, S) or (2) hy € He N argming,cqy £, (R, S).

Now, consider a MEM algorithrd such that whenever possible, it returns a hypothesis from
M. Formally, given the input sampl®, if Hg N argmingcq ¢4 (R, S) # 0, then A(S) € Hg N
argming,cq £, (h, S). It follows that

Pgpm2[loy1(A(S), D) = 5] > Py pm2[He N argmin £y (h, 5) 7 0]
€

1 -
= 5( sopm/2[He Nargmin by (h, S) # 0] + P pm/2[He Nargmin £, (h, S) # 0])
heH heH

1 -

> —(Pg g pms2[He Nargminl, (h,S) # 0 OR Hg Nargminly(h, S) # 0])
2" > heH heM

%IP’S Gopm/2[Sx U Sx is y-shattered at the origin

v
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The last inequality follows from the argument above regarding@ndhs. The last expression is
simply half the probability that a sample of size from Dy is shattered. By assumption, this
probability is at least). Thus we conclude thdtg_ ;m/[(o/1(A(S), D) > 1] > n/2. It follows
thatfy 1 (A, D, m/2,n/2) > 3. O

As a side note, it is interesting to observe that Theodeirdoes not hold in general for non-
symmetric hypothesis classes. For example, assume that the doraaia i, 1], and the hypoth-
esis class is the set of all functions that label a finite number of poirjts if by +1 and the rest
by —1. Consider the distribution which is uniform ovig; 1] and labels all of the domain with 1.
For anym > 0 andvy € (0,1), a sample of sizen is v-shattered at the origin with probability
However, any learning algorithm that returns a hypothesis from thethgpis class will incur zero
error.

We now return to the case of homogeneous linear classifiers, and linkphoglability fat-
shattering to properties of the distribution. First, we provide a sufficiendition for the fat-
shattering of a sample, based on the minimum eigenvalue of its Gram matrix.efédr stated
below presents an equivalent and simpler characterization of fat-shgther linear classifiers. We
use it to prove the sufficient condition in Cdr5.

Theorem 4.2. LetX € R™*4 be the matrix of a set of size in R?. The set isy-shattered at the
origin if and only ifXX” is invertible and for ally € {£1}™, y7 (XXT) =1y < ~72.

To prove Theoremd.2 we require two auxiliary lemmas. The first lemma, stated below, allows
substitutingy-shattering with shattering with exagtmargins, by showing that the two notions are
equivalent if the function class is convex.

Lemma 4.3. Let F C R¥ be a class of functions, and assurfés convex, that is
Vfl,fQEJ:,V)\E[O,l], /\f1+(1—/\)f2€]:.

If S ={z1,...,z,n} C X is~y-shattered byF with witnessr € R™, then for every € {£1}™
there is anf € F such that for alli € [m], y[i](f(x;) — r[i]) = 7.

The proof of this lemma is provided in Sectidm4.1. The second lemma allows converting
the representation of the Gram-matrix to a different feature space whifngethe separation
properties intact. For a matriXl, M* denotes its pseudo-inverse.

Lemma 4.4. LetX € R™*4 he a matrix such thaxX” is invertible, and lefY € R™** such that
XXT = YYZ. Letr € R™ be some real vector. If there exists a vecioe R* such thatYw = r,
then there exists a vectar € R? such thatXw = r and |jw|| = [|[YT (Y")* || < [J@].
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Proof. DenoteK = XX? = YY7. LetS = Y/K~1X and letw = STw. We haveXw = XSTw =
XXTK=1Y®w = Yw = . In addition,||w|| = wTw = @TSSTw. By definition of S,

SST = YTRIXXTKY = YTK'Y = Y2 (YYT) -ty = Y7 (v?)™ .

DenoteQ® = Y7 (YT)*. O is an orthogonal projection matrix: by the properties of the pseudo-
inverse,0 = O and0? = Q. Therefore||w| = w'SSTw = @' Ow = W' O0Tw = ||Ow|| <
[w]- O

Proof of Theorem!.2. We prove the theorem far-shattering. The case etshattering follows by
rescalingX appropriately. LetXX” = UAU” be the SVD ofXX”, whereU is an orthogonal
matrix andA is a diagonal matrix. Let’ = UA2. We haveXX? = YYZ. We show that the
specified conditions are sufficient and necessary for the shatterthg sét.

Sufficient: If XX is invertible, thenA is invertible, thus so i§. For anyy € {£1}™, Let
wy = Y~ 'y. ThenYw, = y. By Lemmad.4, there exists a separatersuch thatkw = y and
[w]| < Jlwyll = VyT (YY) "1y = /yT (XXT)~1y < 1.

Necessary: If XX is not invertible then the vectors Bare linearly dependent, thigscannot be
shattered using linear separators [see\dagnik, 1995. The first condition is therefore necessary.
AssumeS is 1-shattered at the origin and show that the second condition necessdd$y Ry
Lemmad4.3, for all y € {£1}™ there exists av, € B¢ such thatw, = y. Thus by Lemmat.4
there exists av, such thatYw, = y and|jw,|| < |lw,| < 1. XXT is invertible, thus so i¥.
Thereforew, = Y~ ly. Thusy? (XXT) 1y = yT(YYT) "1y = ||lw,| < 1. O

Corollary 4.5. LetX € R™*? pe the matrix of a set of size in R, If A, (XXT) > m~y? then
the set isy-shattered at the origin.

Proof. If Apin (XXT) > m~? thenXXT is invertible and\ . ((XX7)~1) < (my?)~L. For any
y € {£1}" we have||y|| = v/m and

y (XXT) Ty < [yl Amax (XXT) 71 < m(mry®) ™ =472
By Theoremd.2the sample ig-shattered at the origin. O

Cor. 4.5 generalizes the requirement of linear independence for shattering withargin: A
set of vectors is shattered with no margin if the vectors are linearly indepéntiat is ifA,;, > 0.
The corollary shows that foy-fat-shattering, we can require insteag, > m~?. We can now
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conclude the following theorem, which states that if it is highly probable thatrttadlest eigenvalue
of the sample Gram matrix is large, then MEM might fail to learn a good classdiethé given
distribution. Its proof is immediate by combining Theorédri. and Cor4.5.

Theorem 4.6. Let D be a distribution oveiR? x {+1}. Letm > 0 and letX be the matrix of
a sample drawn fromD'Z. Letn = P[Apin(XXT) > m~?]. Then for alle < 1/2 — (D),
m(e,y, D,n/2) = [m/2].

Theorem4.6 generalizes the case of learning a linear separator without a marginathples
of size2m is linearly independent with high probability, then there is no hope of usinmpints to
predict the label of the other points. The theorem extends this obsertatiba case of learning
with a margin, by requiring a stronger condition than just linear indepermdehthe points in the
sample.

Recall that our upper-bound on the sample complexity from Chspa{f)(kv). We now define
the family of sub-Gaussian product distributions, and show that for thidyfa the lower bound
that can be deduced from Theorénis also linear irk..

4.2 Sub-Gaussian distributions

In order to derive a lower bound on distribution-specific sample complexitgrims of the co-
variance ofX ~ Dy, we must assume thaf is not too heavy-tailed. This is because for any
data distribution there exists another distribution which is almost identical anthbaame sample
complexity, but has arbitrarily large covariance values. This can be\ahi®y mixing the orig-
inal distribution with a tiny probability for drawing a vector with a huge norm. Weasthestrict
the discussion to multidimensional sub-Gaussian distributions. This ensuregalig of the dis-
tribution in all directions, while still allowing a rich family of distributions, as we segtly see.
Sub-Gaussianity is defined for scalar random variables as follows.

Definition 4.7 (Sub-Gaussian random variables, see eBgildygin and Kozachenk§199g). A
random variableX € R is sub-Gaussian with mome#, for B > 0, if

Vt € R, Elexp(tX)] < exp(t*B%/2).

In this work we further say thaX is sub-Gaussian withrelative momenp > 0 if X is sub-Gaussian

with momenp+/E[X?], i.e.

Vt € R, Elexp(tX)] < exp(t?p’E[X?]/2).



CHAPTER 4. A DISTRIBUTION-DEPENDENT LOWER BOUND 41

Note that a sub-Gaussian variable with momBrand relative momen is also sub-Gaussian
with momentB’ and relative moment’ for any B’ > B andp’ > p.

The family of sub-Gaussian distributions is quite extensive: For instandaclitddes any
bounded, Gaussian, or Gaussian-mixture random variable with mean 3pszifically, if X is
a mean-zero Gaussian random variab{e,~ N (0, 02), thenX is sub-Gaussian with relative mo-
mentl and the inequalities in the definition above hold with equality. As another exaihplds a
uniform random variable overtb} for someb > 0, thenX is sub-Gaussian with relative moment
1, since

Elexp(tX)] = %(exp(tb) + exp(—tb)) < exp(t?b*/2) = exp(t*E[X?]/2). (4.1)

Let B € R¥*? be a symmetric PSD matrix. A random veci®re R? is asub-Gaussian random
vectorwith moment matrixB if for all u € R?, E[exp((u, X))] < exp((Bu, u)/2). The following
lemma provides a useful property of the norm of a sub-Gaussian ramelctior. The proof is given
in Section4.4.2

Lemma 4.8. Let X € R% be a sub-Gaussian random vector with moment méa&rixd hen for all

t e (0, M], Elexp(t]| X||?)] < exp(2t - trace(B)).

Our lower bound holds for the family of sub-Gaussian product distribgtidefined as follows.

Definition 4.9 (Sub-Gaussian product distributiong) distribution D x overR? is asub-Gaussian
product distributiorwith momentB and relative momen if there exists some orthonormal basis
ai,...,aq € R? such that forX ~ Dy, (a;, X') are independent sub-Gaussian random variables,
each with momenB and relative momen.

Note that a sub-Gaussian product distribution has mean zero, thus iteaoaeamatrix is equal
to its uncentered covariance matrix. For any fixed 0, we denote b)D,S)g the family of all sub-
Gaussian product distributions with relative momgnin arbitrary dimension. For instance, all
multivariate Gaussian distributions and all uniform distributions on the cewfe centered hyper-
rectangle are i3, All uniform distributions over a full centered hyper-rectangle ar@iﬁz. Note
that if p1 < po2, 'D/S,? - 'D/S)g

We provide a lower bound for all distributions T°. This lower bound is linear in the margin-
adapted dimension of the distribution, thus it matches the upper bound ptamid@®or.3.5. The
constants in the lower bound depend only on the valye wfich we regard as a constant.
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4.3 A sample-complexity lower bound for sub-Gaussian product dis-
tributions

As shown in Sectior.1, to obtain a sample complexity lower bound it suffices to have a lower
bound on the value of the smallest eigenvalue of a random Gram matrix. iStnéuwtion of the
smallest eigenvalue of a random Gram matrix has been investigated umaersvassumptions.
The cleanest results are in the asymptotic case where the sample size amdethgiah approach
infinity, the ratio between them approaches a constant, and the coordifiagash example are
identically distributed.

Theorem 4.10(Bai and Silverstein 2010Theorem 5.11) Let {X;}>°, be a series of matrices of
sizesm; x d;, whose entries are i.i.d. random variables with mean zero, variarfcand finite
fourth moments. lfim; o %t = § < 1, thenlim; Amin(diiXiXiT) =o%(1 —/B)>

This asymptotic limit can be used to approximate an asymptotic lower bound any, D), if
Dx is a product distribution of i.i.d. random variables with mean zero, variahcand finite fourth
moment. LefX € R™*¢ be the matrix of a sample of size drawn fromDy. We can findm = m,
such that\,,,, (XX”) =~ v2m,, and use Theorer.6to conclude thatn(e, v, D) > m./2. If d and
m are large enough, we have by TheorérmOthat forX drawn fromD'y:

Amin(XXT) &~ do?(1 — /m/d)? = o?(Vd — v/m)>2.

Solving the equalityr?(vd — /mo)? = moy? we getm, = d/(1 + ~v/o)%. The margin-adapted
dimension forDy is k, ~ d/(1 + ~?/c?), thusik, < m, < k. In this case, then, the sample
complexity lower bound is indeed the same ordekaswhich controls also the upper bound in
Cor. 3.5. However, this is an asymptotic analysis, which holds for a highly limited setstfi-d
butions. Moreover, since Theorefnl0 holds asymptotically for each distribution separately, we
cannot use it to deduce a uniform finite-sample lower bound for familiegstflaltions.

For our analysis we requifaite-sampléoounds for the smallest eigenvalue of a random Gram-
matrix. Rudelson and Vershynif2009 200§ provide such finite-sample lower bounds for distri-
butions which are products of identically distributed sub-Gaussians. ¢orém4.11 below we
provide a new and more general result, which holds for any sub-Gays®duct distribution. The
proof of Theoremd.11is provided in Sectiord.4.3 Combining Theoremd.11 with Theorem4.6
above we prove the lower bound, stated in Theo#deh2 below.

Theorem 4.11.For anyp > 0 andé € (0, 1) there are > 0 andC' > 0 such that the following
holds. For anyDx € D3?with covariance matrix. < I, and for anym < 3 - trace(X) — C, if X
is them x d matrix of a sample drawn from’g, thenP[Amin(XXT) >m] > 0.
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Theorem 4.12(Sample complexity lower bound for distributions ﬂﬁg) For any p > 0 there
are constantg? > 0,C > 0 such that for anyD with Dx € ng, for any~y > 0 and for any
e <3 — (D), m(e,v,D,1/4) > Bky(Dx) — C.

Proof. Assume w.l.0.g. that the orthonormal basis. .., a,; of independent sub-Gaussian direc-
tions of Dx, defined in Def4.9, is the natural basie, . .., eq. Define); = Ex.p, [X[i]?], and
assume w.l.o.gA; > ... > A\; > 0. LetX be them x d matrix of a sample drawn fron'g.
Fix 6 € (0,1), and letg andC be the constants fgy andd in Theorem4.11 Throughout this
proof we abbreviaté., = k., (Dx). Letm < 3(k, — 1) — C. We would like to use Theorerm 11

to bound i, (XXT) with high probability, so that Theorem6 can be applied to get the desired
lower bound. However, Theorerhl11holds only ifX < I. Thus we split to two cases—one in
which the dimensionality controls the lower bound, and one in which the nontnate it. The split

is based on the value o .

Case | Assume), > +2. ThenVi € [k,],\; > 7. By our assumptions oy, for all i € [d]
the random variablé&[i] is sub-Gaussian with relative moment Consider the random variables
Z[i) = X[i]/v/\i fori € [k,]. Z[i] is also sub-Gaussian with relative momgnandE[Z[i]?] = 1.
Consider the product distribution &f[1], ..., Z[k,], and let¥’ be its covariance matrix. We have
¥ = I, andtrace(¥’) = k,. LetZ be the matrix of a sample of size drawn from this
distribution. By Theorem.11, P[Anin(ZZ") > m] > 6, which is equivalent to

PAmin (X - diag(1/A1, ..., 1/A,0,...,0) - XT) > m] > 6.
SinceYi € [k,], A\i > 72, we haveP[ Ay (XXT) > m~?] > 4.

Casell Assume),, < 2. Then); < ~?foralli € {k,,...,d}. Consider the random variables
Z[i) = X[i]/~ fori € {k,...,d}. Z[i] is sub-Gaussian with relative momenandE[Z[i]*] < 1.
Consider the product distribution &f(%,], . .., Z[d], and let¥’ be its covariance matrix. We have
' < Iy g,+1. By the minimality in Eq. 2.1) we also haverace(Y') = & Zf:kw N >k — 1.
Let Z be the matrix of a sample of size drawn from this product distribution. By Theorefril],

PAmin(ZZ") > m] > 6. Equivalently,
PAmin (X - diag0,...,0,1/9%,...,1/4%) - XT) > m] > 4,

thereforeP [\ pin ((XXT) > m~?] > 6.
In both case®[Amin(XXT) > m~?] > §. This holds for anyn < B(k, — 1) — C, thus by
Theoremd.6m(e,v, D,0/2) > [(B(ky — 1) — C)/2] for e < 1/2 — £3(D). We finalize the proof
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by settingd = £ and adjustingg andC. O

4.4 Proofs

4.4.1 Proofof Lemma4.3

To prove Lemmat.3 we first prove the following lemma. Denote by céry the convex hull of a
setA.

Lemma 4.13. Lety > 0. For eachy € {&1}™, selectr, € R? such that for alli € [m],
rylily[i] > v. LetR = {r, e R™ | y € {£1}"}. Then{x~}™ C con(R).

Proof. We will prove the claim by induction on the dimension

Base case Form = 1, we haveR = {a,b} C R wherea < —v andb > . Clearly, conyR) =
[a, b], and+7y € [a, b].

Inductive step Assume the lemma holds fet —1. For a vectot € R™, denote by its projection
(t[1],...,t[m—1]) onR™~L. Similarly, for a set of vector§ C R™, letS = {5 | s € S} C R™ L.
DefineY, = {+1}" ' x {+1} andY_ = {£1}™ ! x {~1}. LetR; = {r, | y € Y, }, and
similarly for R_. Then the induction hypothesis holds &, and R_ with dimensionmn — 1. Let
z € {+y}™. We wish to prove: € conV R). From the induction hypothesis we have convR.)
andz € con(R_). Thus, for ally € {£1} there exista,, 3, > 0 such that}"

Zyeyi By =1, and
Z QyTy = Z ByTy.

(S yeY_

yevy Yy =

Let zo = 3 ey, ayry @ndz, = >° oy Byry We have that'y € Y., ry[m] > v, andVy €
Y_,ry[m] < —~. Therefore,zy[m] < —vy < z[m] < v < z,[m]. In addition, z, = z, = Z.
SelectA € [0,1] such thatz[m] = Azg[m] + (1 — X)z[m], thenz = Az, + (1 — )z, Since
Za, 2p € CONV(R), we havez € conv(R). O

Proof of Lemmat.3. Denote byf(S) the vector(f(z1),..., f(z,)). Recall that € R™ is the
witness for the shattering of, and let

L={f(S)—-r|feF}CR™

SinceS is shattered, for any € {£1}" there is anr, € L such thatvi € [m],r,[i]y[i] > ~. By
Lemmad.13 {£~}™ C conVL). SinceF is convex,L is also convex. Therefofety}™ C L. O
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4.4.2 Proof of Lemma4.8

Proof of Lemmat.8. It suffices to consider diagonal moment matricesBIfs not diagonal, let
V € R%? pe an orthogonal matrix such th&BV” is diagonal, and let” = VX. We have
E[exp(t[|Y]|?)] = E[exp(t| X||?)] andtrace(VBVT) = trace(B). In addition, for allu € R,

Elexp((u,Y))] = Elexp((Vu, X))] <
1
exp(§<BVTu,VTu>) = exp( (VIBSVTU u)).
ThereforeY is sub-Gaussian with the diagonal moment ma¥i&V?’. Thus assume w.l.0.g. that
B = diagA1, ..., Ag) Wwhereh; > ... > \; > 0.

We haveexp(t|| X ||?) = Hze[d] exp(tX[i]?). In addition, for anyt > 0 andz € R, 2v/1I¢ -
exp(tz?) = [*_exp(sz — 5 )ds. Therefore, for any € RY,

eI Eletl ) =% | ] | ewtuiixi -3 >dum]
=FE / / H exp(u z[u! )du[z]]
=E / / exp({u, X) Hu||2 H du| ]

i€(d]

/ / Elexp({u, X))] exp(— H ”2 Hdu

i€[d]

By the sub-Gaussianity of, the last expression is bounded by

> S ulf?
< /_OO . ../_Ooexp(2<IBu,u> — Tt) H duli]

i€(d]
/ / H exp(2 Z[Lt] )duli]
) ,1% / ooexP(uW(A{ - %»dum - Hdﬂ(g}(; S A

The last equality follows from the fact that for aay> 0, f exp(—a-s?)ds = \/I1/a, and from
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the assumption < 4;—. We conclude that

d

Elexp(t[| X |*)] < (H (1- 2/\it))*% < exp(2t- Z Ai) = exp(2t - trace(B)),

i€[d] i=1

where the second inequality holds sintec [0, 1], (1 — 2/2)~! < exp(z). O

4.4.3 Proof of Theorem4.11

In the proof of Theorem.11we use the facky, (XX”) = inf,,—; [ X' z||* and bound the right-
hand side via ar-net of the unit sphere iR, denoted byS™~! £ {x ¢ R™ | ||z|2 = 1}. An
e-net of the unit sphere is a s€tC S™ ! such thatvz € S™~ 1,32’ € C, ||x — 2’| < e. Denote
the minimal size of ar-net 1‘orSm—1 by Ny, (€), and byC,, (e) a minimale-net of ™1, so that
Cm(e) € S™ 1 and|C,,(€)| = Nyn(€). The proof of Theorerd.11requires several lemmas. First
we prove a concentration result for the norm of a matrix defined by sus$§ian variables. Then
we bound the probability that the squared norm of a vector is small.

Lemma 4.14. LetY be ad x m matrix withm < d, such thatY;; are independent sub-Gaussian
variables with momenB. LetX be a diagonald x d PSD matrix such that < I. Then for all
t > 0ande € (0,1),

trace(X)  t2(1 — ¢)?

PIVEY| > f] < Nn(e) exp( — ),

Proof. We havel|vEY|| < max,cc,, (o) [VEYz||/(1—¢), see for instance iBennett et al[1975.
Therefore,

PIVEY| >4 < ) PVEYz| > (1-e)]. (4.2)

2E€Cm (€)
Fix z € Cp(€). LetV = v/ Yz, and assum& = diag )1, ..., \g). Foru € R,

Elexp({(u, Elexp( Z iV Z Yijz;)] = HE[exp(uiﬁiYijxj)]

i€[d] Jst

<Hexpu \iB?x 2/2 ) = exp(— ZUQ)\ Z

Jyi Ze[d] JE[m]

2
= exp(- 32 ubh) = exp((B’Su,u)/2).
i€[d]

ThusV is a sub-Gaussian vector with moment matBx>. Lets = 1/(4B?). SinceX < I, we
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haves < 1/(4B? max;c(q) ;). Therefore, by Lemma.g,
Elexp(s]|V]|?)] < exp(2sB? trace(X)).

By Chernoff’s methodP[||V||? > 2%] < E[exp(s||V||?)]/ exp(sz?). Thus

trace(X) 22 )
2 4B2%"

P[||[V]|? > 2?] < exp(2sB? trace(X) — 52?) = exp(

Setz = t(1 — ¢). Then for allz € S !

race 2(1—¢)?
P(IVEYal = t(1 - e)] = P[IV]| = (1 — )] < exp( 2(2) - (zllBQ 5

Therefore, by Eq.4.2),

race 2 — € 2
BIIVEY]| > ] < Ny(e) exp( ) LUy

O]

Lemma 4.15. LetY be ad x m matrix withm < d, such thatY;; are independent centered random
variables with variancd and fourth moments at most. Let> be a diagonall x d PSD matrix
such thaty < I. There exise > 0 andn € (0,1) that depend only orB such that for any
resgmt

P[|VEYz|? < a - (trace(D) — 1)] < prace®),

To prove Lemmaid.15we require Lemmat.16 [Rudelson and Vershynir2008 Lemma 2.2]
and Lemmat.17, which extends Lemma 2.6 in the same work.

Lemma 4.16. Let T3, ..., T, be independent non-negative random variables. Assume that there
ared > 0andy € (0,1) such that for any, P[T; < 6] < u. There aren > 0 andn € (0,1) that
depend only o andy such thatP[}"" | T; < an] < n™.

Lemma 4.17. LetY be ad x m matrix withm < d, such that the columns &f are i.i.d. random
vectors. Assume further thit; are centered, and have a variancelaind a fourth moment at most
B. LetX be a diagonatl x d PSD matrix. Then for alt € S™~ !, P[||[VEYz|| < y/trace(X)/2] <
1—1/(196B).

Proof. Letz € S™ 1, andT; = O3y Yijzj)% LetA,..., \s be the values on the diagonal of
¥, and letTy = ||[VEYz|> = 2% | A\ T;. First, sinceE[Y;;] = 0 andE[Y;;] = 1 for all i, j, we
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have
E[T) = ) «3E[Y}] = ||=[* = 1.
1€[m]
ThereforeE[Tx| = trace(X). Second, sinc&,,...,Y,,, are independent and centered, we have

[Ledoux and Talagrand 991, Lemma 6.3]

Z YlJ‘T] ] < 16E,[( Z UjYijxj)4]a

J€m] JE€m]

where oy, ..., 0, are independent uniforj+1} variables. Now, by Khinchine’s inequality
[Nazarov and Podkorytge00(d,

(D o ¥ix)* <BE[( D Yia?) =3 Z o2 E[YZ|E[YZ].

j€[m] j€lm] j.kelm

Now E[YZ]E[YZ] < ,/E[YLIE[Y}] < B. ThusE[T?] < 48B Y. |xixy = 48B|lz|* =

48B. Thus,

j,kE[m

d d

E[TE] = E[(>_NT)? = D MNELT]

i=1 ij=1
d d
< Y AN /E[TAE[T?] < 48B() ~ \i)® = 48B - trace(%)?.
1=1

By the Paley-Zigmund inequalitfPpley and Zygmundl933, for 6 € [0, 1]

E[Tx]* _ (1-96)°

P[Ty, > 0E[Tx]] > (1 — 6)* > :

Therefore, setting = 1/2, we getP[Tx, < trace(X)/2] <1 -—1/(196B). O
Proof of Lemmat.15 Let A, ..., \; € [0, 1] be the values on the diagonal Bf Consider a par-

tition Z1, ..., Z;, of [d], and denotd.; = Ziezj Ai. There exists such a partition such that for all
j €[k],L; <1,andforallj € [k — 1], L; > 3. LetX[j] be the sub-matrix of that includes the
rows and columns whose indexes areZin Let Y[j] be the sub-matrix ot that includes the rows

in Z;. DenoteT; = ||\/X[j]Y[j]z||?. Then

IVEYz[? = > 3 MO Yya)? =) 15

jelkliez;  j=1 jelk]
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We havetrace(3) = Y0, A > Yicp gLy > 3(k — 1). In addition, Z; < 1 for all
j € [k]. Thustrace(X) < k < 2trace(X) + 1. Forallj € [k — 1], L; > 1, thus by Lemmat.17,
P[T; < 1/4] <1 —1/(196B). Therefore, by Lemma.16there arex > 0 andn € (0,1) that
depend only orB such that

P[[VEYz|? < a - (trace(E) — 1)] < P[|VEYz|? < a(k — 1)]

= P[Z T; < a(k — 1)] < [P[ Z T; < a(k _ 1)] < nk’—l < nZtrace(E).
JE(K] jelk—1]

The lemma follows by substitutingfor n?. O

Proof of Theorendt.11. We have

Amin(XXT) = inf  [|XTz|| > min [|XTz|| — €||XT]. (4.3)
zesSm-1 2ECm (€)

m

For brevity, denotd. = trace(X). AssumeL > 2. Letm < L - min(1, (c — Ke)?) wherec, K, ¢
are constants that will be set later such that Ke > 0. By Eq. 4.3

PAmin(XXT) < m] < PApin (XXT) < (¢ — Ke)?L]

< P[ mn% | 1XTz| — €| XT|| < (¢ — Ke)VI] (4.4)
< P[IXT|| > KVL] + P min( | 1XTz| < VL. (4.5)
xelm(€

The last inequality holds since the inequality in lided) implies at least one of the inequalities in
line (4.5). We will now upper-bound each of the terms in lide). We assume w.|.0.g. thatis not
singular (since zero rows and columns can be removed Kamithout changing\ i, (XX7)). De-
fineY £ v2-1X”. Note thatY;; are independent sub-Gaussian variables with (absolute) moment
p. To bound the first term in linel(5), note that by Lemma4.14, for any K > 0,
T 1 1 K2
P! 2 KVI] = PVEY] 2 KVI) £ M) exp(L(5 = 765))-
By Rudelson and Vershynif2009, Proposition 2.1, for alk € [0,1], NV, () < 2m(1 + 2)m™~1.
Therefore
1 K2

T m—1
PlIX"|| > KVL] < 2m5 exp(L(5 — ng))-
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Let K? = 16p?(3 + In(5) + In(2/4)). Recall that by assumption < L, andL > 2. Therefore

P[|X7|| > KVL] < 2m5™ ' exp(—L(1 + In(5) + In(2/4)))
< 2L5" L exp(—L(1 + In(5) + In(2/4))).

SinceL > 2, we have2L exp(—L) < 1. Therefore

PIIXT| > KVI) < 2Lexp(~L ~ In(2/5)) < exp(~ In(2/5)) = 5. (4.6)

To bound the second term in liné.f), sinceY;; are sub-Gaussian with momqmtE[ij] <
5p* [Buldygin and Kozachenkdl 998 Lemma 1.4]. Thus, by Lemmé 15 there arex > 0 and
n € (0,1) that depend only op such that for alk: € ™1, P[||[vVEYz|? < a(L — 1)] < nF. Set
¢ = \/a/2. SinceL > 2, we haveeV'L < \/a(L — 1). Thus

P[ min |[X"z|| <eVI]< > P[IXTz| < eVI]

2E€Cm (€) el (e)

< 3 PIVEYe| < ValZ - 1)] < Npu(en™.

2E€Cm (€)

Lete = ¢/(2K), so thatc — Ke > 0. Let§ = min(3, %). SetL, such that/L > L.,
L > 2eCOEL) Forl, > L, andm < 0L < L/2,
No(e)n®™ < 2m(1 +2/e)"n*
< Lexp(L(0In(1+2/¢) —In(1/n)))
=exp(In(L) + L(01In(1 4+ 2/¢) —In(1/n)/2) — L1n(1/n)/2)
<exp(L(fIn(l+2/¢) —In(1/n)/2) +In(5/2)) (4.7)
)

< exp(In(4/2)) = 5.

(4.8)

Line (4.7) follows from L > L., and line ¢.9) follows from §1n(1 + 2/¢) — In(1/n)/2 < 0.
Set3 = min{(c — Ke)?,1,0}. Combining Eq. 4.5, Eq. ¢.6) and Eq. 4.8) we have that if
L > L 2 max(Lo, 2), thenP[ A (XXT) < m] < § forall m < BL. Specifically, this holds for all
L > 0andforallm < (L — L). LettingC = 3L and substituting for 1 — § we get the statement
of the theorem. O



Chapter 5

Discussion (Part 1)

Cor.3.5and Theorerd.12together provide a tight characterization of the sample complexity of any
sub-Gaussian product distribution with a bounded relative moment. Forfiivaly> 0. For anyD
such thatDy € D} and for anyy > 0 ande € (0, § — £3(D))

Q(ky(Dy)) < m(e,7, D) < O (’“”(5 X)> . (5.1)

The upper bound holds uniformly for all distributions, and the constantsitotker bound depend
only onp. This result shows that the true sample complexity of learning each of tistgbwtions
with MEM is characterized by the margin-adapted dimension. An interestingusion can be
drawn as to the influence of the conditional distribution of lalig{s x: Since Eg. $.1) holds for
any Dy |x, the effect of the direction of the best separator on the sample complexigurgibd,
even for highly non-spherical distributions.

We note that the upper bound that we have proved involves logarithmiagastich might
not be necessary. There are upper bounds that depend on the alarggrand on the dimension
alone without logarithmic factors, as shown in Theoremand Theoremi..2Q On the other hand,
in our bound, which combines the two quantities, there is a logarithmic depemadrich stems
from the margin component of the bound. It might be possible to tighten thedkanohremove the
logarithmic dependence.

We can use Eq5(1) to easily characterize the sample complexity behavior for interesting dis-
tributions, and to comparé, margin minimization to other learning methods, as we henceforth
demonstrate.

Gaps betweenl; and L, regularization in the presence of irrelevant features Ng [2004 con-
siders learning a single relevant feature in the presence of many imefeaures, and compares
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using L, regularization and., regularization. Whef| X ||, < 1, upper bounds on learning with
L, regularization guarantee a sample complexit@)¢fi(d)) for an L;-based learning ruleZhang
2003. In order to compare this with the sample complexityefregularized learning and establish
a gap, one must uselewer boundon the L, sample complexity. The argument provided by Ng
actually assumes scale-invariance of the learning rule, and is therela®wuly for unregularized
linear learning. In contrast, using our results we can easily establish a bmwead of(2(d) for
many specific distributions with a boundéd’||, andY = sign(X[i]) for some:. For instance,

if each coordinate is a bounded independent sub-Gaussian randable/avith a bounded relative
moment, we havé; = [d/2] and Theoremt.12implies a lower bound of2(d) on theL, sample
complexity.

Gaps between generative and discriminative learning for a Gaussian ixture Consider two
classes, each drawn from a unit-variance spherical Gaussi&hwith a large distancév >> 1
between the class means, such that> v. ThenPp[X|Y = y] = N(yv - e1, I3), Wheree; is a
unit vector inR¢. For anyv andd, we haveDy € D} For large values of, we have extremely
low margin error aty = v/2, and so we can hope to learn the classes by looking for a large-margin
separator. Indeed, we can calculate = [d/(1 + %)L and conclude that the required sample
complexity is(:)(d/fz)?). Now consider a generative approach: fitting a spherical Gaussiael fiood
each class. This amounts to estimating each class center as the empiricgé aidiae points in
the class, and classifying based on the nearest estimated class cesigosHible to show that for
any constant > 0, and for large enough andd, O(d/v*) samples are enough in order to ensure
an error ofe. This establishes a rather large gapgtff?) between the sample complexity of the
discriminative approach and that of the generative one.

5.1 On the limitations of the covariance matrix

We have shown matching upper and lower bounds for the sample complebagyrioing with MEM,
for any sub-Gaussian product distribution with a bounded relative monTdnis shows that the
margin-adapted dimension fully characterizes the sample complexity of leanmingMEM for
such distributions. What properties of a distribution play a role for gémkstibutions? In the
following theorem we show that these properties must include more thanhdaiae matrix of
the distribution, even when assuming sub-Gaussian tails and boundeekreiatnents.

Theorem 5.1. For any integerd > 1, there exist two distribution®) and P over R% x {41}
with identical covariance matrices, such that for aaye (0, 1), m(e,1, P, 1) > Q(d) while
m(e,1,D,0) < [logy(1/9)]. Both Dx and Px are sub-Gaussian random vectors, with a rela-
tive moment of/2 in all directions.
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Proof. Let D, and D, be distributions oveiR? such thatD, is uniform over{+1}¢ and D, is
uniform over{41} x {0}4~1. Let Dx be a balanced mixture db, and D;. Let Px be uniform
over {1} x {%}dfl. For bothD and P, letP[Y = (e1, X)] = 1. The covariance matrix ab x
andPy isdiag1, 3,..., 3), thusk; (Dx) = ki (Px) > Q(d).

By Eq. @.1), Px, D, and D, are all sub-Gaussian product distribution with relative moment
thus also with momeny2 > 1. The projection ofDx along any direction. € R¢ is sub-Gaussian

with relative moment/2 as well, since

Ex~px[exp((u, X))] = %(Evam [exp({u, X)) + Expelexp((u, X))])

_ %( TT (exp(us) + exp(—u:)) /2 + (exp(ur) + exp(—u1))/2)

i€[d]
< %(H exp(u; /2) + exp(ui/2)) < exp([Ju]|?/2) < exp(([Jul]® + uf)/2)
i€[d]

= exp(Ex~py [(u, X)?]).

For P we have by Theorent.12that for anye < 1, m(e, 1, P, 1) > Q(ki(Px)) > Q(d). In
contrast, any MEM algorithrod; will output the correct separator f@ whenever the sample has
at least one point drawn fro,. This is because the separatgiis the onlyw € B¢ that classifies
this point with zerol-margin errors. Such a point exists in a sample of sizevith probability

1 —27™. Thereforely/, (A1, D,m,1/2™) = 0. It follows that for alle > 0, m(e, 1, D,d) <

[logy(1/6)1. =

5.2 Summary

We have shown that the true sample complexity of large-margin learning bfagacrich family
of distributions is characterized by the margin-adapted dimension. Chézagjehe true sample
complexity allows a better comparison between this learning approach andatgbathms, and
has many potential applications, such as semi-supervised learning amck feanstruction. The
challenge of characterizing the true sample complexity extends to any distnilauntibany learning
approach. Theorerd.1 shows that other properties but the covariance matrix must be taken
account for general distributions. We believe that obtaining answeres$e tfpuestions is of great
importance, both to learning theory and to learning applications.

into
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Chapter 6

Introduction (Part Il)

In this part of the thesis we consider the learning problem termed Multipterios Learning (MIL),
first introduced irDietterich et al[1997. MIL is a special type of a supervised classification prob-
lem. As in classical supervised classification, in MIL the learner receaveample of labeled
examples drawn i.i.d. from an arbitrary and unknown distribution, and itctibgels to discover a
classification rule with a small expected error over the same distribution. lLnalidiitional struc-
ture is assumed, whereby the examples are receivd@sof instances such that each bag is
composed of several instances. It is assumed that each instanceuakbédt, however the learner
only observes the labels of the bags. In classical MIL the label of a lthg Boolean OR of the la-
bels of the instances the bag contains. Various generalizations to MILbeaveproposed [see e.qg.
Raedf 1998 Weidmann et a).2003. Here we consider both classical MIL and the more general
setting, where a function other than Boolean OR determines bag labels dragestance labels.
This function is known to the learner a-priori. We term the more general ggtineralized MIL

It is possible, in principle, to view MIL as a regular supervised classifinatiésk, where a
bag is a single example, and the instances in a bag are merely part of itslinégmesgentation.
Such a view, however, means that one must analyze each specific Milepr separately, and that
results and methods that apply to one MIL problem are not transferablineéo BIIL problems.
We propose instead a generic approach to the analysis of MIL, in whicprtpeerties of a MIL
problem are analyzed as a function of the properties of the matching nbrpidblem. As we
show here, the connections between the MIL and the non-MIL propextestrong and useful.
The generic approach has the advantage that it automatically extendewlekge and methods
that apply to non-MIL problems into knowledge and methods that apply to Mithout requir-
ing specialized analysis for each specific MIL problem. Our results aseahplicable to diverse
hypothesis classes, relationships between bag labels and instancedaleksrget losses. More-
over, the generic approach allows a better theoretical understandihg @lationship, in general,
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between regular learning and Multi-Instance Learning with the same hygisttiass.

The generic approach can also be helpful for the design of algorithintg, i allows deriving
generic methods and approaches that hold across different settorgsstance, as we show below,
a generic PAC-learning algorithm can be derived for a large class bfpvtiblems with different
hypothesis classes. Another application is a generic bag-constructitimsm which we describe
in Chapter, and learning when bags have a manifold structBegbnko et a.201]. As generic
analysis goes, it might be possible to improve upon it in some specific cagestifying these
cases and providing tighter analysis for them is an important topic for futork. We do show
that in some important cases—most notably that of learning separatingolgmes with classical
MIL—our analysis is tight up to constants.

MIL has been used in numerous applicationsDigtterich et al[1997 the drug design appli-
cation motivates this setting. In this application, the goal is to predict which mekwaould bind
to a specific binding site. Each molecule has several possible conformédltayses) it can take.
If at least one of the conformations binds to the binding site, then the moledalecied positive.
However, it is not possible to experimentally identify which conformation wassticcessful one.
Thus, a molecule can be thought of as a bag of conformations, whereeaformation is an in-
stance in the bag representing the molecule. This application employs the ésipatlass of Axis
Parallel Rectangles (APRs), and has made APRs the hypothesis clhs&efia several theoretical
works that we mention below. There are many other applications for Mlllydimty image clas-
sification Maron and Ratanl99g, web index page recommendatiafihou et al, 2009 and text
categorizationAndrews 2007.

Previous theoretical analysis of the computational aspects of MIL hasdm® in two main
settings. In the first setting, analyzed for instanc&irer et al.[1999, Blum and Kalai[199g,
Long and Tar{199§, it is assumed that all the instances are drawn i.i.d. from a single distribution
over instances, so that the instances in each bag are statistically indeppdddder this indepen-
dence assumption, learning from an i.i.d. sample of bags is as easy asgdesniran i.i.d. sample
of instances with one-sided label noise. This is stated in the following theorem.

Theorem 6.1(Blum and Kalaj 1998. If a hypothesis class is PAC-learnable in polynomial time
from one-sided random classification noise, then the same hypothessi<IBAC-learnable in
polynomial time in MIL under the independence assumption. The commabtomplexity of
learning is polynomial in the bag size and in the sample size.

The assumption of statistical independence of the instances in each bageseh, very limit-
ing, as itis irrelevant to many applications.

In the second setting one assumes that bags are drawn from an anthigtebytionover bags
so that the instances within a bag may be statistically dependent. This is cleaHymuoe useful in
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practice, since bags usually describe a complex object with internal seutius it is implausible
to assume even approximate independence of instances in a bag. Fopaligelsis class of APRs
and an arbitrary distribution over bags, it is showrAmer et al.[199§ that if there exists a PAC-
learning algorithm for MIL with APRs, and this algorithm is polynomial in both tiee f the
bag and the dimension of the Euclidean space, then it is possible to polynori@iieBrn DNF
formulas, a problem which is solvable only&P = NP [Pitt and Valiant 1984. In addition, if
it is possible to improperly learn MIL with APRs (that is, to learn a classifier tvigmot itself an
APR), then it is possible to improperly learn DNF formulas, a problem whishniod been solved
to this date for general distributions. This result implies that it is not possili#@Ilearn MIL on
APRs using an algorithm which is efficient in both the bag size and the prabimensionality.
It does not, however, preclude the possibility of performing MIL effidiem other cases.

In practice, numerous algorithms have been proposed for MIL, eamfsifty on a different
specialization of this problem. Almost none of these algorithms assume statistiepkimdence of
instances in a bag. Moreover, some of the algorithms explicitly exploit presdameehdences be-
tween instances in a baBietterich et al[1997 propose several heuristic algorithms for finding an
APR that predicts the label of an instance and of a bag. Diverse DeNgiph and Lozano-&ez
1998 and EM-DD [Zzhang and Goldmar2001 employ assumptions on the structure of the bags of
instances. DPBoosAhdrews and Hofmanr2003, mi-SVM and MI-SVM [Andrews et al.2003,
and Multi-Instance Kernelsdartner et al. 2003 are approaches for learning MIL using margin-
based objectives. Some of these methods work quite well in practice. [dowavgeneralization
guarantees have been provided for any of them.

In Chapters’ and8 we analyze MIL and generalized MIL in a general framework, indepand
of a specific application, and provide results that hold for any underlgiympthesis class. We
assume a fixed hypothesis class defined over instances. We then irtedbigalationship between
learning with respect to this hypothesis class in the classical supervigethtgaetting with no
bags, and learning with respect to the same hypothesis class in MIL. \Wesaddmple complexity
in Chapter7 and computational feasibility in Chaptér

Our sample complexity analysis shows that for binary hypotheses anthdhded real-valued
hypotheses, the distribution-free sample complexity for generalized Milvgionly logarithmi-
cally with the maximal bag size. We also provide poly-logarithmic sample complexitpdsofor
the case of margin learning. It should be noted that many real-life applisa@imit large bag sizes,
rendering the dependence on the bag size of practical importance. skamda, in image classifi-
cation applications, the instances commonly correspond to small image pakblussa single bag
(an image) can contain hundreds of instances or more.

We further provide distribution-dependent sample complexity bounds foe mgeneral loss
functions. These bound are useful when only the average bag sipernsiéd. The results imply
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generalization bounds for previously proposed algorithms for MIL. radsing the computational
feasibility of MIL, we provide a new learning algorithm with provable guaeas for a class of bag-
labeling functions that includes the Boolean OR, used in classical MIL,speeaial case. Given
a non-MIL learning algorithm for the desired hypothesis class, whictheawlle one-sided errors,
we improperly learn MIL with the same hypothesis class. The construction idestmpnplement,
and provides a computationally efficient PAC-learning of MIL, with only &pomial dependence
of the run time on the bag size. A preliminary version of the results in thesaeshdpas been
published inSabato and Tishbj2009.

The analysis above considers the problem of learning to classify bagpaigbeled sample of
bags, and do not attempt to learn to classify single instances using a labsipte 0f bags. We
point out that it is not generally possible to find a low-error classificatitefior instances based on
a bag sample. As a simple counter example, assume that the label of a bagoslienBOR of the
labels of its instances, and that every bag includes both a positive ingtad@negative instance.
In this case all bags are labeled as positive, and it is not possible to distintpe two types of
instances by observing only bag labels.

In Chapter9 we show a setting in which MIL can be used to improve the sample complex-
ity of non-MIL learning, by constructing the artificial bags. We show hois traradigm can be
implemented effectively. The results in this chapter were first publish&alrato et al[20104.

6.1 Notations and Definitions

Let X be the input space, also called the domain of instances. A bag is a finitedrsketr of
instances fron’. Denote the set of allowed sizes for bags in a specific MIL problem® iy N.
For any set4 we denoted(® £ U, . A™. Thus the domain of bags with a sizeltand instances
from X is X(®). A bag of sizen is denoted by = (z[1],...,z[n]) where each[j] € X is an
instance in the bag. We denote the number of instancesoy |x|. For an unlabeled set of bags
S = {Xi}icpm), We denote the set of instances in the bags by SV £ {;[j] | i € [m], j € [|x]}-
Since this is a multi-set, any instance which repeats in several bagssimepresented the same
amount of time inSY. For any univariate functiorf : A — B, we may also use its extension to
a multivariate function from sequences of elementd ito sequences of elementsit) defined by
f(alll,...,alk)) = (f(all])..... f(alk]).

Let I C R be the range of hypotheses over instances or bags. I is a hypothesis class
for instances. Every MIL problem is defined by a fixed bag-labelingtion ¢ : 1) — I that
determines the bag labels given the instance labels. Formally, every inkigratbesish : X — T
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defines a bag hypothesis, denotedhby X () — I and defined by
vxe XB () 2 (h(z[1]),. .., h(z]r])).

The hypothesis class for bags givirandy is denotedd = {h | h € H}. Importantly, the identity
of ¢ is known to the learner a-priori, thus eagtdefines a different generalized MIL problem. For
instance, in classical MIL] = {£1} andv is the Boolean OR.

We assume the labeled bags are drawn from a fixed distribitioner X (%) x {41}, where
each pair drawn fronD constitutes a bag and its binary label. The MIL learner receives a labeled
sample of bag$(x1,v1), . - -, (Xm, ym)} C X x {£1} drawn fromD™, and returns a classifier
h: x(®) — I Its goal is to achieve a low log$h, D).

Classes of Real-Valued bag-functions

In classical MIL the bag function is the Boolean OR over binary labels, ithat= {+1} and
1 = OR : {il}(R) — {£1}. A natural extension of the Boolean OR to a function over reals is
themax function. We further consider two classes of bag functions over reats) representing a
different generalization of theiax function, which conserves a different subset of its properties.
The first class we consider is the class of bag-functions that extendtomenBoolean func-
tions. Monotone Boolean functions map Boolean vectorsttd}, such that the map is monotone-
increasing in each of the inputs. The set of monotone Boolean functioragtyethe set of func-
tions that can be represented by some composition of AND and OR fundiimssit includes the
Boolean OR. The natural extension of monotone Boolean functions téurezlons over real vec-
tors is achieved by replacing OR withax and AND withmin. Formally, we define extensions of
monotone Boolean functions as follows.

Definition 6.2. A function fromR™ into R is an extension of an-ary monotone Boolean function
if it belongs to the seM,, defined inductively as follows, where the input to a functian4sR":

(D)Vj €], zw 2[j] € My;
(2)Vk eNT, fi,..., fr € My = 2= max;c{fi(z)} € My;
(3)Vk€N+, fi,. .., kGMn:ZHminje[k]{fj(Z)}GMn.

We say that a bag-function : R(Y) — R extends monotone Boolean functions if forrale R,
wﬂR” €EM,.

The class of extensions to Boolean functions thus generalizesdkéunction in a natural way.
The second class of bag functions we consider generalizesdkdunction by noting that for
bounded inputs, thmax function can be seen as a variant of the infinity-ndufl. = max |z[i]|.



CHAPTER 6. INTRODUCTION (PART I1) 60

Another natural bag-function over reals is the average function, etbfisy)(z) = %Zie[n]
which can be seen as a variant of theorm ||z|[; = 3, [2[i]|. More generally, we treat the
case where the hypotheses map ifte [—1, 1], and consider the class of bag functions inspired

by ap-norm, defined as follows.

Zis

Definition 6.3. For p € [1,00), thep-norm bag function), : [~1,+1]) — [~1,+1] is defined
by:

n

1/p
Vz € R", 1,(z) 2 <; > (ali] + 1)P> —1.

=1

For p = oo, Defineys, = limy, o0 V).

Since the inputs of, are in[—1,41], we havey,(z) = n~'/? - ||z + 1||, — 1 wheren is the
length ofz. Note that the average function is simply, andy», = ||z + 1| — 1 = max. Other
values ofp fall between these two extremes: Due to theorm inequality, which states that for all
p € [1,00) andx € R, 1|x||; < n~1/?||x]|, < ||x||, We have that for at € [-1, +1]"

average = 11(z) < ¢¥p(z) < ¢Yo(z) = max.

Many of our results hold when the scale of the output of the bag-functigelated to the scale
of its inputs. Formally, we consider cases where the output of the bagidardoes not change by
much unless its inputs change by much. This is formalized in the following defimifiariLipschitz
bag function.

Definition 6.4. A bag functiony : R(Y — R is ¢-Lipschitz with respect to the infinity norror
c>0if
Vn € R,Va,b € R", |¢(a) — 1 (b)| < cl[a — b|oo-

The average bag-function and thex bag functions aré-Lipschitz. Moreover, all extensions
of monotone Boolean functions atelipschitz with respect to the infinity norm—this is easy to
verify by induction on Def6.2. All p-norm bag functions are alsibLipschitz, as the following
derivation shows:

[p(@) = ¢p(b)| =07 [fla+ 1], = [Ib+ Lf|,| < n ™7~ a = bl|, < [la = b]lw.

Thus, our results for Lipschitz bag-functions hold in particular for the bhag-function classes we
have defined here, and in specifically for thex function.



Chapter 7

MIL with any Hypothesis Class

In this chapter we consider the complexity properties of hypothesis clasdedl. In Section7.1
the sample complexity of generalized MIL for binary hypotheses is analy&edorovide a useful
lemma bounding covering numbers for MIL in Sectidr. In Section7.3 we analyze the sample
complexity of generalized MIL with real-valued functions for large-margarméng. Distribution-
dependent results for binary learning and real-valued learning lzasélte average bag size are
presented in Section4.

7.1 Binary MIL

In this section we consider binary MIL. In binary MIL we |ét= {£1}, thus we have a binary
instance hypothesis clags C {il}X. We further let our loss be the zero-one loss, defined by
lo1(y,9) = Iy # y]. The distribution-free sample complexity of learning relative to a binary
hypothesis class with the zero-one loss is governed by the VC-dimensibe bf/pothesis class
[Vapnik and Chervonenkig971. Thus we bound the VC-dimension @f as a function of the
maximal possible bag size = max R, and of the VC-dimension cf. We show that the VC-
dimension off{ is at most logarithmic i, and at most linear in the VC-dimension&f for any
bag-labeling function) : {+1}) — {£1}. It follows that the sample complexity of MIL grows
only logarithmically with the size of the bag. Thus MIL is feasible even for quigddags. In fact,
based on the results we show hencefddiihato et a[.20104 have shown that MIL can sometimes
be used to accelerate even single-instance learning. We further ptowide bounds that show
that the dependence of the upper boundrand on the VC-dimension of{ is imperative, for

a large class of Boolean bag-labeling functions. We also show a matchimyg tmund for the
VC-dimension of classical MIL with separating hyperplanes.

61
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7.1.1 VC-Dimension Upper Bound

Our first theorem establishes a VC-Dimension upper bound for gerega\iiL. To prove the
theorem we require the following useful lemma.

Lemma 7.1. For any R C N and any bag functionp : {il}(R) — {+1}, and for any hypothesis
class# C {+1}* and a finite set of bags C X,

His| < |Hysul.

Proof. Let hy, hy € H be bag hypotheses. There exist instance hypothgses € H such that
g; = hi fori = 1,2. Assume that, g # ha|s. We show thay|su # g2|su, thus proving the
lemma.

From the assumption it follows that; s # g5 Thus there exists at least one bag
x € S such thatgy(x) # go(x). Denote its size by.. We havey(gi(x[1]),...,g1(x[n])) #
¥(g2(z[1]), ..., g92(z[n])). Hence there exists 4 € [n]| such thatg; (x[j]) # g2(x[j]). By the
definition of S¥, z[j] € S“. Thereforey,|su # g2|su. O

Theorem 7.2. Assume that{ is a hypothesis class with a finite VC-dimensibrLetr € N and
assume thaR® C [r]. Let the bag-labeling functiomw : {+£1}) — {+1} be some Boolean
function. Denote the VC-dimension#fby d,.. We have

d, < max{16,2dlog(2er)}.

Proof. For a set of hypothesgs, denote by7 | 4 the restriction of each of its membersAgso that
Ja 2 {la | h € J}. Sinced, is the VC-dimension of, there exists a set of bags C x(#)
of sized, that is shattered b§{, so that|7s| = 2. By Lemma7.1|Hg| < |Hsu], therefore
24 < |H gu|. In addition,R C [r] implies|S“| < rd,. By applying Sauer's lemma & we get

el SU\ ¢ erd, \ ¢
2 <ol < (1) < (UF) (1)

Wheree is the base of the natural logarithm. It follows thiat< d(log(er) — log d) + dlogd,.. To
provide an explicit bound fad,., we boundd log d, by dividing to cases:

1. Eitherdlogd, < 1d,, thusd, < 2d(log(er) — logd) < 2dlog(er),
2. orid, < dlogd,. In this case,

(a) eitherd, < 16,
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(b) ord, > 16. In this caseyd, < d,/logd, < 2d, thusdlogd, = 2dlog+\/d, <
2dlog2d. Substituting in the implicit bound we get. < d(log(er) — logd) +
2dlog 2d < 2dlog(2er).

Combining the cases we haig < max{16, 2d log(2er)}. O

7.1.2 VC-Dimension Lower Bounds

In this section we show lower bounds for the VC-dimension of binary Midjdating that the
dependence oi andr in Theorem?.2is tight in two important settings.

We say that a bag-function : {+1}® — {+1} is r-sensitiveif there exists a number
n € R and a vectorc € {+1}" such that for at least different numbersji, ..., . € [n],
P(e[l],...,clgil, ... cn]) # ¥(l],...,—cljil, ..., c[n]). Many commonly used Boolean func-
tions, such as OR, AND, Parity, and all their variants that stem from negatime of the inputs,
arer-sensitive for every € R. Our first lower bound shows i is r-sensitive, the bound in Theo-
rem7.2cannot be improved without restricting the set of considered instanaghggis classes.

Theorem 7.3. Assume that the bag functian: {+1}) — {+1} is r-sensitive for some € N.
For any naturald and any instance domaif’ with |X| > rd|log(r) ]|, there exists a hypothesis
class# with a VC-dimension at most such that the VC dimension &fis at leastd|log(r)|.

Proof. Sincey is r-sensitive, there are a vectore {+1}" and a set/ C n such that.J| = r and
Vi e J(c[l],... cn]) # Y(c[l],...,—c[j],...,c[n]). Sincey» maps all inputs td+1}, it fol-
lows thatvj € J, ¥ (c[1],...,—c[j],...,c[n]) = —=¥(c[1],...,c[n]). Denoten = ¥ (c[1],...,c[n]).
Then we have

Vi e Jyye{£l}, W(cl],...,cljl - y,...,cn]) =a-y. (7.2)

For simplicity of notation, we henceforth assume w.l.0.g. that » and.J = [r].

Let S C X" be a set ofl|log(r)| bags of sizer, such that all the instances in all the bags
are distinct elements ot’. Divide S into d mutually exclusive subsets, each witlog(r) | bags.
Denote bag in subset by %, ). We define the hypothesis class

H = {h[ky,... kq) | Vi€ [d],k; € [QUOg(T)J]}7

wherehlky, ..., kq| is defined as follows (see illustration in Tablel): Forz € X which is not an
instance of any bag i8, h[k1, ..., ks] = —1. Forz = x(,[j], letb, ) be bitp in the binary
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representation of the numberand define

ks kal (@ i]) = {Cm a(2bgyn 1) 5=k

clj] J # k.
t|p Instance labeh(z(,, 1 [r]) Bag labelh(x;)
- - - + — — — - +
12— - - + - — — - +
3| - — - - - - _ _ —
i[- - = = = - - + +
202 - - — — — — — + +
3|- - - - - - — + +
1] - — — — - — - —
312|- + - - — - - - +
3| - — - - - - _ _ —

Table 7.1: An example of the hypotheses= h[4,8, 3], with ¢» = OR (so thatc is the all -1
vector),r = 8, andd = 3. Each line represents a bagdh each column represents an instance in
the bag.

We now show tha¥ is shattered by, indicating that the VC-dimension 6{ is at leas{S| =
d|log(r)]|. To complete the proof, we further show that the VC-dimensioH @6 no more thanl.

Sis shattered byH: Let {Ym.) Ipellog(r)] te(d) PE SOME labeling overt1} for the bags inS. For

eacht € [d] let
[log( 7")J
)+ 1
kt 294 Z p,t —1‘

Then by Eq. 7.2, for all p € [|log(r)]|] andt € [d],
Alkv - kal (Repy) = W(L]; - elke] - a2 g1y — 1) clr])
= a*(2(pp—1) — 1) = 2b(pk—1) = 1 = Y(p)-

Thushlky, ..., kg] labelsS according tofy, ) }-

The VC-dimension of # is no more thand: Let A C X of sized + 1. If there is an element
in A which is not an instance i then this element is labeledl by all h € H, thereforeA is

not shattered. Otherwise, all elementsdrare instances in bags $. Since there ard subsets
of S, there exist two elements id which are instances of bags in the same subsBenote these
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instances byc(pi,t)[j1] andz(p2,t)[j2]. Consider all the possible labelings of the two elements
by hypotheses irt{. If A is shattered, there must be four possible labelings for these elements.
However, by the definition ok|k, ..., k4] it is easy to see that if, = jo = j then there are at
most two possible labelings by hypotheseg{inand if j; # j, then there are at most three possible
labelings. ThusA is not shattered b, hence the VC-dimension @{ is no more thanl. O

Theorem?7.6 below provides a lower bound for the VC-dimension of MIL for the important
case where the bag-function is the Boolean OR and the hypothesis clasiagh of separating
hyperplanes irR™. It suffices to consider the cla3¥ of separators with a bounded norm, since
scaling does not change the labeling. kee N. We denote the VC-dimension & (R") for
R = {r} andy = OR by d, ,. We prove a lower bound faf, ,, using two lemmas: Lemma.4
provides a lower bound faf, 3, and Lemmar.5links d,.,, for smalln with d,.,, for largen. The

resulting general lower bound, which holds for max R, is then stated in Theorem6.

Lemma 7.4. Letd,,, be the VC-dimension #/(R") as defined above. Thefh; > |log(2r)].

Proof. DenoteL = [log(2r)]. We will construct a seb of L bags of size- that is shattered by
W(R3). The construction is illustrated in Figurel

1

Figure 7.1: An illustration of the constructed shattered set, with 4 and L = log4 + 1 = 3.
Each dot corresponds to an instance. The numbers next to the instiamoes the bag to which an
instance belongs, and match the sequeMagefined in the proof. In this illustration bagsand3
are labeled as positive by the bag-hypothesis represented by the salid line

Letn = (n1,...,nk) be a sequence of indices frop], created by concatenating all the
subsets ofL] in some arbitrary order, so that = L2, and every index appea2$—! < r times
in n. Define asetl = {a;, | k € [K]} C R3 whereay, £ (cos(27k/K),sin(27k/K),1) € R3, so
thatay,...,ax are equidistant on a unit circle on a plane embeddeRfinDefine the set of bags
S ={x1,...,x5} such that; = (z;[1], ..., z;[r]) where{xz;[j] | j € [r]} = {ak | nx = i}.
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We now show thatS is shattered byV(R?): Let (yi,...,yr) be some binary labeling of
bags, and leY” = {i | y; = +1}. By the definition ofn, there exisy, jo such tha” = {n; | j; <
k < jo}. Clearly, there exists a hyperplame € R? that separates the vectdrsy | j1 < k < jo}
from the rest of the vectors iA. Thussign((w)a;) = +1 if and only if j; < k < jo. It follows
thathw (%;) = +1 if and only if there is & € {ji, ..., 2} such thaty, is an instance ix;, that is
such thaty, = 7. This condition holds if and only if € Y, henceh,, classifiesS according to the
given labeling. It follows that is shattered byV(R?), therefored, 3 > |S| = [log(2r)]. O

Lemma 7.5. Letk, n, r be natural number such that< n. Thend,.,, > |n/k|d, .

Proof. For a vectorx € R* and a numbet € {0,...,|n/k|} define the vectos(x,t) =
0,...,0,z[1],...,z[k],0,...,0) € R", wherez[1] is at coordinaté:t + 1. Similarly, for a bag
%; = (x3[1],...,xi[r]) € (RF)", define the bag(x;,t) = (s(x;[1],1), ..., s(xi[r],t)) € (R™)".
Let Sy = {Xi}ic(a,,) € (R)" be a set of bags with instancesif that is shattered bV (R).
Defines,,, a set of bags with instancesi¥: S,, = {s(Xi, )] i, ) eefn/r)) S (R™)". ThensS,, is
shattered bYV(R"): Let{y(i }ic(d, ] te[|n/k)) PE SOMeE labeling fas,,. Sy is shattered byV(RF),
hence there are separatavs, ..., w, ;| € R¥ such thatvi € [d,;],t € [n/k|, hw, (%) =

Y(it)-
Setw £ }Z{]’“J s(wy, t). Then(w)s(x,t) = (w;)x. Therefore

hw(s(x;,t)) = OR(sign({(w)s(x;[1], 1)), . .., sign({w)s(x;[r], t)))
= OR(sign((w¢)x;[1]), .. ., sign((we)x4[r])) = hw, (Xi) = Y(ip)-

Sy, is thus shattered, hende,, > |S,,| = [n/k|d, . O

The desired theorem is an immediate consequence of the two lemmas abowinigytimat

whenever- € R, the VC-dimension oiV(R") is at leastd, ,,.

Theorem 7.6. LetW(RR™) be the class of separating hyperplaneif as defined above. Assume
that the bag function i$y = OR and the set of allowed bag sizes/ts Letr = max R. Then the

VC-dimension ofV(R") is at least|n/3] [log 2r|.

7.1.3 Pseudo dimension for thresholded functions

In this section we consider binary hypothesis classes that are gengaatedkal-valued functions
using thresholds. LeF C R* be a set of real valued functions. The binary hypothesis class of
thresholded functions generated Byis Tr = {(x, z) — sign(f(z) — z) | f € F}, wherex € X
andz € R. The sample complexity of learning witfi- and the zero-one loss is governed by the
pseudo-dimension oF, which is equal to the VC-dimension @ [Pollard 1984. In this section



CHAPTER 7. MIL WITH ANY HYPOTHESIS CLASS 67

we consider a bag-labeling functiah: R — R, and bound the pseudo-dimension®f thus
providing an upper bound on the sample complexity of binary MIL With The following bound
holds for bag-labeling functions that extend monotone Boolean functigfianed in Def6.2.

Theorem 7.7.Let F C R* be a function class with pseudo-dimensibnLet R C [r], and assume
thaty : R — R extends monotone Boolean functions. debe the pseudo-dimension &t
Then

d, < max{16,2dlog(2er)}.

Proof. First, by Def.6.2, we have that for any which extends monotone Boolean functions, any
n € Rand anyy € R",

=)

sign(¢(y[1], ..., y[n]) — 2) = sign(P(y[1l] — 2,...,y[n] — 2))
= (sign(y[l] — z,...,y[n] — 2)). (7.3)

This can be seen by noting that each of the equalities holds for each gb¢hations allowed by
M, for eachn, thus by induction they hold for all functions i#1,, and all combinations of them.

For a real-valued functioffi lett; : X x R — {£1} be defined by ;(y, z) = sign(f(y) — 2).
We haveTr = {t; | f € F}, andTx = {t5 | f € F}. In addition, forallf € 7,z € R,n € R
andx € X", we have

t7(%, 2) = sign(f(x) — z) = sign(¥(f (z[1]), ..., f(z[n])) — 2)
= (sign(f(z[1]) = z,..., f(z[n]) — 2)) (7.4)
= ¢(tf(x[1]’ Z)’ s ,tf(l‘[n], Z)) = tf(i’ Z),

where the equality on line/(4) follows from Eq. (7.3). Therefore
Tr={t;|feFt={t;| fe Fy={h|heTr} =Tr.

The VC-dimension of ' is equal to the pseudo-dimension®f which isd. Thus, by Theoreni.2
and the equality above, the VC-dimensiorigfis bounded bynax{16, 2d log(2er)}. The proofis
completed by noting that,, the pseudo-dimension &, is exactly the VC-dimension arz O

This concludes our results for distribution-free sample complexity of BiNHLy In Section7.4
we provide sample complexity analysis for distribution-dependent binaky &H a function of the
average bag size.
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7.2 Covering Numbers bounds for MIL

Covering numbers are a useful measure of the complexity of a functiog, dase they allow
bounding the sample complexity of a class in various settings, based onnaiéowergence guar-
antees [see e.ginthony and Bartle{t1999. In this section we provide a lemma that relates the
covering numbers of bag hypothesis classes with those of the underlgitag@e hypothesis class.
We will use this lemma in subsequent sections to derive sample complexity uppedsfor ad-
ditional settings of MIL. LetF C R4 be a set of real-valued functions over some dominA
~y-cover of F with respect to a nornj - ||, defined on functions is a set of functioisC R“ such
that for anyf € F there exists @ € C such that|f — g||c < . The covering numbefor given
v > 0, F ando, denoted by\V (v, F, o), is the size of the smallest sughcovering forF.

Let S C A be a finite set. We consider coverings with respect tolthie5) norm forp > 1,
defined by

1 1/p
1fllL,cs) = (|S|Z\f(s)]p> .

seS

Forp = oo, Loo(S) is defined byj| f|| . (s) £ maxges |f(S)|. The covering number oF for a
sample sizen with respect to the, norm is

N(v, Fop) 2 sup N (v, F, Lyp(9)).
SCA:|S|=m
A small covering number for a function class implies faster uniform comrerg rates, hence
smaller sample complexity for learning. The following lemma bounds the coverngper of
bag hypothesis-classes whenever the bag function is Lipschitz withctegpthe infinity norm
(see Def6.4). Recall that all extensions of monotone Boolean functions (B&f.and allp-norm
bag-functions (Def6.3) arel-Lipschitz, thus the following lemma holds for them with= 1.

Lemma 7.8. Let R C N and suppose the bag functign: RY) — R is a-Lipschitz with respect to
the infinity norm, for some > 0. LetS C X be a finite set of bags, and lebe the average size
of abag inS. For anyy > 0, p € [1, o], and hypothesis clags C RY,

N, H, Ly(9)) < N( H, Lp(S7)).

0
arl/p’
Proof. First, note that by the Lipschitz condition af for any bagx of sizen and hypotheses

h’g€H1

[h(x) = g(®)| = [$(h(=[1]), .., h(a[n])) = D(g(1]), .., g(x[n]))] < amax|h(z) — g(x)|
(7.5)
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Let C be a minimaly-cover of % with respect to the norm defined k,(S"), so that|C| =
N(v,H, Ly(SY)). For everyh € H there exists @ € C such that|h — g|[;,(sv) < 7. Assume
p < oo. Then by Eq. 7.5

1/p » 1/p
17 =llL,s) (HHEZW ) s(“ I%gmm»—amp>

xeS |S| xeS
1/p a 1/p
( > Ihx) > =W<Z\h($)—g($)’p>
xeS TEX reSY

1SV 1/p 1/p
=) (1 2
zeSY

= arl/th — g||Lp(SU) < arl/p <Y
It follows thatC is a(ar!/P~)-covering forH. Forp = oo we have
7= Gl Loy = max |h(x) = 9(%)| < amaxmax |h(z) - g(z)|
= amax [h(x) — g(x)| = allh — gll . (s0) S ay =a-r'/P 7.

rzeSY

Thus in both cases, is aar!/Py-covering forH, and its size isV'(vy, H, L,(S")). Thus
N (art/Py, H, Ly(SY)) < N (7, H, Ly(SY)).

We get the statement of the lemma by substitutingith O

1/10

As an immediate corollary, we have the following bound for covering nunifergiven sample
size.

Corollary 7.9. Letr € N, and letR C [r]. Suppose the bag functian: R() — R is a-Lipschitz
with respect to the infinity norm for sonae> 0. Lety > 0,p € [1,00], andH € R*. For any
m >0,

Non(v,H,p) < Nrm(ﬁyﬂ,p)-

7.3 Margin Learning for MIL

Large-margin classification is a popular supervised learning appredtbh has received atten-
tion also as a method for MIL. For instance, MI-SVMrdrews et al.2007 attempts to optimize
an adaptation of the soft-margin SVM objectivedrtes and Vapnik1993 to MIL, in which the
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margin of a bag is the maximal margin achieved by any of its instances. It hdseo shown,
however, whether minimizing the objective function of MI-SVM, or other nrafgrmulations for
MIL, allows learning with a reasonable sample size. We fill in this gap in Tmearé.0 below,
which bounds the-fat-shattering dimension (see eAnthony and Bartlett 199%f MIL. The ob-
jective of MI-SVM amounts to replacing the hypothesis clasef separating hyperplanes with the
class of bag-hypothes@swhere the bag function i$ = max. Sincemax is the real-valued exten-
sion of OR, this objective function is natural in our MIL formulation. The dlgttion-free sample
complexity of large-margin learning with the zero-one loss is proportionalgdatishattering di-
mension Alon et al, 1997. Thus, we provide an upper bound on the fat-shattering dimension of
MIL as a function of the fat-shattering dimension of the underlying hypaheass, and of the
maximal allowed bag size. The bound holds for any Lipschitz bag-functieat.y > 0 be the
desired margin. For a hypothesis cldésdenote itsy-fat-shattering dimension byat (v, H)

Theorem 7.10.Letr € N and assumé? C [r]. LetB,a > 0. LetH C [0, B]* be a real-valued
hypothesis class and assume that the bag funetiofo, B](®) — [0, aB] is a-lipschitz with respect
to the infinity norm. Then for alf € (0, aB]

Fat(vy, H) < max {33, 24Fat(617a’ H) log? <6204j23%2 . Fat(mla,H) . r) } . (7.6)

This theorem shows that for margin learning as well, the dependence bhthsize on the
sample complexity is poly-logarithmic. In the proof of the theorem we use Enedrll and
Theoreml.12 which link the covering number and the fat-shattering number. Thearéfdeals
with the casen > Fat(%, H). Here we consider ath > 1, thus we slightly weaken the statement
of the theorem and use the following inequality, in which the fraction in the meapiois not divided
by Fat(F,H):

(7.7)

4Bzm> Fat(F,F)log(4eBm/~)
2

N (7, Fy00) < 2 <
5

It is easy to check that this inequality follows from Theorgr2for all m > Fat($,H) > 1, and
from the trivial upper boundV;,, (v, H, 00) < (B/y)™ < (B/~)T'& for all m < Fat(Z, H).

Proof of Theoren?.10. From Theoreni.11and Lemma/.8it follows that form > Fat(16~, H),

— 8

Fat(16v,H) < onc log N (v, H, o0) < 6log Nom (v/a, H, 00). (7.8)
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By Eq. (7.7), for allm > 1, if Fat(y/4) > 1 then

B 4eB 4B2
Vy < %7 logNm(’y,H,oo) <1+ Fat(%er) log( e,ym)log ( 2m>

Y
vy 8eBm <4BQm>
< Fat(—,H)lo lo 7.9
(4 H) log( S ) log " (7.9)
¥ 5 4B*m
< Fat(z,’}-[)log ( 2 ) (7.10)

The inequality in line 7.9) holds since we have addédo the second factor, and the value of the
other factors is at leadt The last inequality follows since if < £, we haveseB/y < 4B2/2.
Eq. (7.10 also holds ifFat(y/4) < 1, since this implieFat(y/4) = 0 andN,,, (v, H,00) = 1.
Combining Eq. 7.8 and Eq. {.10, we get that ifm > Fat(16+, H) then

B — 4B%a?
Yy < “2—6 Fat(16y, H) < 6Fat(%,7—[) 10g2($). (7.11)

Setm = [Fat(167, H)] < Fat(167y, H) + 1. If Fat(16+, H) > 1, we have thatn > Fat(16v, H)
and alsan < 2Fat(16+,H). Thus Eqg. {.11) holds, and

4B2 2
Vy <

B _ _
‘;7, Fat(167, ) < 6Fat(4 ,H) log?( 7+ (Fat(167, ) + 1))
832a2 —

p~ - - Fat(16v, H)).

< 6Fat(%,7—[)log2(

Now, it is easy to see that ifat(16,H) < 1, this inequality also holds. Therefore it holds in
general. Substituting with v/16, we have that
8aB 2048 B%a? —
Yy < “T Fat(v, H) < 6Fat(67 ) log (T“ -7+ Fat(v, H)). (7.12)

Note that the condition of holds, in particular, for aly < aB.

To derive the desired Eq7 (6) from Eq. (7.12), let 3 = 6Fat(y/64a, H) andn = 2048B2a? /2.
Denote F = Fat(y, ). Then Eq. (.12 can be restated a8 < Blog?(nrF). It follows that
VF/log(nrF) < /B, Thus

() 2P

og(nrF)
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Therefore

|| Og T]T}

Now, it is easy to verify thalog(log())/log(z) < 1 for all z > 33 - 2048. AssumeF > 33
andy < aB. Then
nrF = 2048 B%a®rF/v? > 2048F > 33 - 2048.

Thereforelog(log(nrF))/log(nrF) < 1, which impliesivF < /Blog(Bnr). ThusF <
4B31og?(Bnr). Substituting the parameters with their values, we get the desired bound, istate
Eq. (7.6). O

7.4 Sample Complexity by Average Bag Size

The upper bounds we have shown so far provide distribution-freelsaromplexity bounds, which
depend only on the maximal possible bag size. In this section we show thmaif ¢ve bag size is
unbounded, we can still have a sample complexity guarantee, #bgebag size for the input
distribution is bounded.

7.4.1 Binary MIL

Our first result complements the distribution-free sample complexity bountisvidra provided
for binary MIL in Section7.1. The average (or expected) bag size under a distribufioover
XB) x {41} is Ex yyp[IX[]. Our sample complexity bound for binary MIL depends on the
average bag size and the VC dimension of the instance hypothesis clasdl tRat the zero-one
loss is defined by, (v, 9) = I[y # g]. For a sample of labeled exampl&s= {(x;, yi) }icm), We
useSx to denote the examples 6f that isSy = {xi}ie[m].

Theorem 7.11.Let# C {+1}" be a hinary hypothesis class with VC-dimensibri_et R C N
and assume a bag functian: {+1}¥) — {41}. Letr be the average bag size under distribution
D over labeled bags. Then

dIn(4er)

R(ﬁ€0/17D) S 17 T
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Proof. Let S be a labeled bag-sample of size Dudley’s entropy integralQudley, 1967, pre-
sented in Sectiofi.5.1states that

_z
—Vvm Jy

If C is a~-cover forH with respect to the norniy (Sx ), thenCeo/1 is a~y/2-cover forﬁgo/1
with respect to the norni»(S). This can be seen as follows: Lt € Hy,, for someh € H.
Let f € C suchthat|f — A1) < 7. We have

R(Hsy ., S) VN (. s, . Lo(S)) .

1/2
1
[ feo)n = Ptg ) lLa(s) = o Z | foo ) (2,y) — hfo/l(xvy)2>

(z,y)€S

1/2
- % Z Eo/l(y,f(w))50/1(%71(35))2)

(z,y)eS

1/2
- % Z (%!f(:c) - h(a:))Q) = %Hf — Bl Ly(sy) < /2

TESx

ThereforeCy, , is av/2-cover forLy(S). It follows that we can bound the-covering number of
H, ), bY:
N(f%HZO/l)LQ(S)) SN(277H7L2(SX)) (713)

Letr(S) be the average bag size in the samp)¢hat isr(S) = |SY|/|S|. By Lemma7.8,

N (v, H, La(Sx)) < N(v/V/r(S), H, L2(S%)).- (7.14)

From Eqg. (.8), Eq. (7.13 and Eq. .14 we conclude that

1
R(Flry1o8) < <= [\ (2y/y/rlS). 1. () v

As presented in Eq1(1), It was shown irDudley[1979 that for anyH with VC-dimensiond, and
any~y > 0,

InN(y,H, L2(S%)) < 2d1n (;f) .
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Therefore

— I er(S
R(’Hgo/l,S)S\/rn/o 2dln( ’52)) dry
1 1
< 17\/5 </0 VIn(er(S)) d’y+/0 VIn(1/42) dfy)
. \/ d(ln(er(SQL VAR fdn(er(S))

m

The function,/In(z) is concave forr > 1. Therefore we may take the expectation of both sides of
this inequality and apply Jensen’s inequality, to get

H v dln(4er(S
Rm(He)1» D) = Espm [R(Heg 1, S)] < Espm [17 (m())]
< 17 [20e Esnpn [B)) _ g, [dller)
m m

O]

We conclude that even when the bag size is not bounded, the sample cityrgfi&inary MIL
with a specific distribution depends only logarithmically on the average bagngizis distribution,
and linearly on the VC-dimension of the underlying instance hypothesis class

7.4.2 Real-Valued Hypothesis Classes

In our second result we wish to bound the sample complexity of MIL wheryushrer loss functions
that accept real valued predictions. This bound will depend on theg@dyag size, and on the
Rademacher complexity of the instance hypothesis class.

We consider the case where both the bag function and the loss functiaipachitz. For the
bag function, recall that all extensions of monotone Boolean functian&ipschitz with respect
to the infinity norm. For the loss functioh: {1} x R — R, we require that it is Lipschitz in
its second argument, i.e. that there is a constant 0 such that for ally € {+1} andy;,y2 €
R, [l(y,y1) — U(y,y2)| < aly1 — y2|. This property is satisfied by many popular losses. For
instance, consider the hinge-lo&g.,), defined in Sectiori.3. This loss isl/+-Lipschitz in its
second argument.

The following lemma provides a bound on the empirical Rademacher complexXitiLofas a
function of the average bag size in the sample and of the behavior of tist-game Rademacher
complexity over instances. We will subsequently use this bound to bounde¢hage Rademacher
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complexity of MIL with respect to a distribution. We consider losses with thge#h 1]. To avoid
degenerate cases, we consider only losses such that there existt ahieéabeled bagk, y) C
X () » {+1} and hypothesek, g € H such thath,(x, y) = 0 andg,(x,y) = 1. We say that such
a loss has &ll range

Lemma 7.12. Let H C [0, B]* be a hypothesis class. Lét C N, and let the bag function
¢ : R — R be a;-Lipschitz with respect to the infinity norm. Assume a loss fundtion
{£1} x R — [0, 1], which isas-Lipschitz in its second argument. Further assume thaas a full
range. Suppose there is a continuous decreasing fungtiof®), 1] — R such that

Vye (0,1, f(v)eN= R} (H) <~

Let.S be a labeled bag-sample of size with an average bag size Then for alle € (0, 1],

— 10 dea?aiB*rm ! ¥
<4 —1 s 1 dy ).
RO, ) < de+ oy (A5 (14 [ [r )

Proof. The refinement of Dudley’s entropy integr&rgbro et al.2010 Lemma A.3], presented in
Sectionl.5.], states that for at € (0, 1], for all real function classe® with range|0, 1] and for all
setsS,

1
R(F,S) < e + \}% / VNG F L2(8)) d.

Since the range dfis [0, 1], this holds for7 = #,. In addition, for any sef, the Ly(.S) norm is
bounded from above by the,,(S) norm. ThereforeV (v, F, La2(S)) < N(v,F, Loo(S)). Thus,
by Eq. (L.9) we have

R(He, S) < de + / \/ln/\f (7, Hey Loo(S)) dry. (7.15)
Now, leth, g € H and considehy, g, € H,. Since/ is as-Lipschitz, we have

1he = Goll oo (s) = max |he(%i, yi) — Go(Xiy i) = max 10(yi, h(%i)) — €(ys, §(Xi))]

< a9 f?ﬁﬁ’h(&) 9(x5)| = G2HE_§HLOO(Sx)'

It follows that if C C H is a~/ao-cover forH thenC, C H, is a~-cover forH,. Therefore
N (v, He, Loo(S)) < N(fy/ag,’}-[,Loo(SX)). By Lemma’.§,

N(v/az2, 1, Loo(Sx)) < N(v/ara2, 1, Leo(Sk)) < Nom(v/ara2,H, 00).
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Combining this with Eqg.{.159 it follows that

_ 10 (!
R(e ) < de-+ / VN Jaras, 1, 00) dr. (7.16)

Now, lety € (0,1], and lety, = sup{yo < 7 | f(7) € N}. SinceR}" \(H) < 7., by
Theoreml.16the~,-fat-shattering dimension G{ is at mostf(~,). It follows that

Fat(y,H) < Fat(vo, H) < f(70) <14 f(7).

The last inequality follows from the definition ef,, sincef is continuous and decreasing. There-
fore, by Theorem..12

4eB 4B?
vy < B, logNin(3, H,00) < 1+ (£(7) + 1) log 67m>1og( ,Yzm)

2
< (f(%) + 1)1og(4€]jm)1og (4652””‘) (7.17)

4€B 2

< (f(Z) +1) log?( Uy (7.18)

The inequality in line {.17) holds since we have addés(e) > 1 to the third factor, and the value
of the other factors is at least The last inequality follows since < B.

We now show that the assumption< B does not restrict us: By the assumptionsépthere
areh, g € H and a labeled bagk, y) such thati, (X, y) = 1 andg,(X,y) = 0. Letn = |x|. By the
Lipschitz assumptions we have

1= [he(%,y) = g0(%, )| = [y, h(%)) — Uy, 5(%))| < az|h(x) — G(x)]
= az¢(h(z1]),. .., h(z[n])) — ¢ (g(2[1]), ..., g(x[n]))|
< aza1 %%\h(ﬂcb]) 9(x[j])] < arazB.

Thus1 < ajazB. It follows that for ally € (0, 1], v/a1a2 < B. Thus Eqg. {.18 can be combined
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with Eq. (7.16) to get that for alk € (0, 1],

4 2B2
R(Hy, S <4e+/ \/ +1) 10g2< catas ’"m) dry
4@1&2
10 dea?aiB*rm !
<de4+ —1 f / v S +1d
s aer Vm 0g< ) . 4a1a2) 7

10 dea’a BQTm 1
<4e+ —1 Iz 1 /
S e \/m 8 < > < + 4a1a2

The last inequality follows from the fact thata + b < /a + v/b for non-negative: andb, and
from f: 1<1. O

Based on Lemma&.12 we will now bound the average Rademacher complexity of MIL, as a
function of the worst-case Rademacher complexity over instances, aegtbeted bag size. Since
the number of instances in a bag sample of a certain size is not fixed, latdepn the bag sizes in
the specific sample, we will need to consider the behavi@;df (%) for different values ofn. For
many learnable function classes, the Rademacher complexity is propotueﬁal, orto \} ™) for
some non-negativ8. The following theorem bounds the average Rademacher complexity of MIL
in all these cases. The resulting bound indicates that here too there islaganighmic dependence
of the sample complexity on the average bag size. Following the proof we ah@application of
the bound to a specific function class.

Theorem 7.13.Let H C [0, B]* be a hypothesis class. L& C N, and let the bag function
¥ : R — R be a;-Lipschitz with respect to the infinity norm. Assume a loss fundtion
{£1} x R — [0, 1], which isas-Lipschitz in its second argument. Further assume thzds a full
range. Suppose that there at& 5, K > 0 such that for allm > K,

C'1n®(m)

N
Then there exists a numbaf > 0 that depends only o€, 5 and K such that for any distribution
D with average bag size, and for allm > 1,

R’ (H) <

4 + 10log(4eata3 B%rm?) (N + %C’lnﬁﬂ(lﬁa%a%m))
vm '

Proof. Let S be a labeled bag sample of size, and let7 be its average bag size. Denote

T(x) = C'ln”(z), and definef(y) = A/ we will show thatR3™P. (H) < ~, thus al-
Cln? d definef 4T7 P

lowing the use of Lemm&.12 We haveR,, < T(m)/4/m, thus it suffices to show that

Rm(ﬁfa D) <
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M/ F <.

Let = /I(M/T(f(~)). We will now show thatz(y)T(z*(y)) > 3T(1/4*). Since
the functlonxT( D = Cz ln (xQ) is monotonic increasing for > 1, we will conclude that
z(y) > 1/yforally < 1.

It is easy to see that for all values 8fC > 0, there is a numbet > 0 such that for alke > n,

C? I (z) < —2e

For suchz we have

T(z/T?(z)) = C'ln?( ) = C(In(z) — In(C?In?*8(z)))?

C2 In% (z)
> C(In(z) — (1 — 278 In(x)))? = CIn(2)/2 = T(x)/2. (7.19)

Letv, > 0 such thatf(vy,) = k = max{n, K'}. Sincef(v) is monotonic decreasing with, for all
v <7, f(v) > k. Therefore, fory < ~s,

() f) o1 F 1 - ,
e L wgen) 2 20 ) = 3 VI0) =T

The middle inequality follows from Eq.7(19, and the last equality follows from the definition of
(7). We conclude that(v) > 1. Therefore, for ally < .,

2(NT () = T(7 ) >

w37y < T
RIE) (M) € — 222 = 1/2(0) <.

Define f as follows:

Fory < 7., cIearIij;z:) (H) < v, and fory > s,

RZ2 (M) =RP(H) =Ry \(H) <70 <.
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Therefore for ally € (0, 1], Rj;‘zz) (H) <. By Lemma7.12 for all ¢ € (0,1],

_ 10 dea?a?B%rm
R(Hy, S) < 4 lo 172 1 / )d
(Fe,8) < e+ -tog (AT (14 [ 7 )

10 4 2B2 4a1a2o
=de+ —1o ( 6“1“2 Tm) <1+ fd7+/ >
\/> 4aiazvyo 4a1a2

1 4 2B2 4a1a2o
< g+ 2 1og ea1a2 Y (1 f+/ ) dy (7.20)
v/ m 4@1&2

DenoteN = 1 + v/k. Now, if 3 > 0 we have

4a1a2o T(1 2.2/.2
/ v [ [ i = 2may [ TGN
4a1a2 4a1a2 Y

> 1n”(16 16 a3
= 2a1a20/ n(‘f;“?/” dy = 2a1a5C [— 1n6+1(%)/(2(ﬂ + 1))]
_ aiazC lnﬂ‘*'l(l&ﬁa%) ‘

B+1 €2

o0

€

The same inequality holds also f8r= 0, since in that case

daiazvo darazvo (16
/ / )dy = 2a1a2 T( alaz/’Y )
4a1a2

4a1a2%
= 2a1a2C'/ = = 2a1a2C [In(y )]4'““2% = 2a1a2C In(
Y

4 1
< 20020 Tn(=2) = aéaff (WW 62“%) |

4al a2%o

)

€

Therefore we can further bound E@.Z0 to get

— 10 dea?a2B%*rm aiasC 16a2a3
<4 1 172 N InfHH(—12) ) .
R(He, S) < 6+\/ﬁ og( = ) ( + — 511 ( 2 )

Settinge = 1//m we get

4 + 10log(4ea?a3 B*rm?) (N + ‘“ﬂa%lc lnﬁ“(l()’a%a%m))

R(ﬁg,S) < \/TTL
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Now, for a given samplé denote its average bag sizefy5). We have

Rn(H, D) = Eg.pm[R(Hy, S)]
4 4+ 101log(4ea?al B*7(S)m?) (N + (“ﬁ“TQIC ln5+1(16a%a§m)>

<E

< NG
4 + 10log(4eata3 B%rm?) (N + aé“%lc lnﬁH(IGa%a%m))
< .
i \/m
In the last inequality we used Jensen’s inequality and the factthap [7(S)] = r. This is the
desired bound, hence the theorem is proven. O

To demonstrate the implications of this theorem, consider the case of MIL withreogin
kernel SVM. Kernel SVM can operate in a general Hilbert spSicevhich we denote byf. The
domain of instances i = {x € 7 | ||z|| < 1}, and the function class is the class of linear separa-
tors with a bounded noriV/(S). The loss is the hinge-logs () defined in Sectior.3, which is
1/~-Lipschitz in the second argument. We haBaftlett and Mendelsqr2002

- In°(m)
wWmoyvm

Thus we can apply Theorem13with 3 = 0. Note that\y C [—1,1]%, thus we can apply the
theorem withB = 2 by simply shifting the output of each,, by 1 and adjusting the loss function
accordingly. By Theoreni.13there exists a numbéy such that for anyt-Lipschitz bag-function
1 (such asnax) and for any distributiorD over labeled bags with an average bag size @fe have

R:T]llp(WZhl(fy)) <

4+ 10log(16erm?/+2) (N + (1/7) - In(16m/7))
vm

We can use this result and apply Ef.3) to get an upper bound on the loss of MIL with soft-margin
SVM.

Rm(g& D) S



Chapter 8

PAC-Learning for MIL

In the previous chapter we addressed the sample complexity of genensllizegdhowing that it

grows only logarithmically with the bag size. We now turn to consider the compuogtaspect of
MIL, and specifically the relationship between computational feasibility of &hd computational
feasibility of the learning problem for the underlying instance hypothesis.

We consider real-valued hypothesis clasgesc [—1,+1]%, and provide a MIL algorithm
which uses a learning algorithm that operates on single instances ascéa diée show that if
the oracle can minimize error with respectio and the bag-function satisfies certain boundedness
conditions, then the MIL algorithm is guaranteed to PAC-leatn In particular, the guarantees
hold if the bag-function is Boolean OR arax, as in classical MIL and its extension to real-valued
hypotheses.

Given an algorithmA that learns# from single instances, we provide an algorithm called
MILearn that usesA to implement awveak learnerfor bags with respect t@{. That is, for any
weighted sample of bagdILearn returns a hypothesis frof that has some success in labeling
the bag-sample correctly. This will allow the useMifL.earn as the building block in a Boosting
algorithm [Freund and Schapir&997, which will find a convex combination of hypotheses from
H that classifies unseen bags with high accuracy. Furthermarkijsfefficient then the resulting
Boosting algorithm is also efficient, with a polynomial dependence on the makegeadize.

We open with background on Boosting in Sectibf. We then describe the weak learner in and
analyze its properties in Secti@?. In Section8.3we provide guarantees on a Boosting algorithm
that uses our weak leaner, and conclude that the computational compfRRZdearning for MIL
can be bounded by the computational complexity of agnostic PAC-learnirginigle instances.

81
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8.1 Background: Boosting with Margin Guarantees

In this section we give some background on Boosting algorithms, which weuseélito derive an
efficient learning algorithm for MIL. Boosting methodsreund and Schapir&997 are techniques
that allow enhancing the power oireak learner—a learning algorithm that achieves error slightly
better than chance—to derive a classification rule that has low error impainsample. The idea is
to iteratively execute the weak learner on weighted versions of the inpuydleaand then to return
a convex combination of the classifiers that were emitted by the weak learachround.

Let A be a domain of objects to classify, and gt: [—1,+1]“ be the hypothesis class used
by the weak learner. A Boosting algorithm receives as input a labelede&mp {(z;, v;)}i"y C
A x {£1}, and iteratively feeds to the weak learner a reweighed versios\. oDenote them-
dimensional simplex b\, = {w € R™ | >, w; = 1,Vi € [m],w[i] > 0}. For a vector
w € Ay, Sw = {(w[i], z;, y:) }1, is the sampleS reweighed byw. The Boosting algorithm runs
in k£ rounds. On round it sets a weight vectow; € A,,, calls the weak learner with inpuy,,
and receives a hypothesis € H as output from the weak learner. Afterrounds, the Boosting
algorithm returns a classifigt, : A — [—1, +1], which is a convex combination of the hypotheses
received from the weak learnef; = Zte[k] azhy, whereayq, ..., a; > 0, andzie[k] o; = 1.

The literature offers plenty of Boosting algorithms with desirable properfiesconcreteness,
we use the algorithmAdaBoost * [Ratsch and Warmutt2009, since it provides suitable guaran-
tees on themargin of its output classifier. For a labeled examfiley), the quantityy f,(z) is the
margin of f, when classifyinge. If the margin is positive, thesign o f, classifiesr correctly. The
margin of any functiory on a labeled sampl€ = {(z;, v;)};", is defined as

M(f,5) = min yif (z:).
If M(f,S) is positive, then the entire sample is classified correctlyify o f.

If S'is ani.i.d. sample drawn from a distribution dnx {41}, then classification error gf, on
the distribution can be bounded basedMiif,, S) and the pseudo-dimensiahof the hypothesis
classH. The following bound $chapire and Singet999 Theorem 8] holds with probability — &
over the training samples, for amy > d:

Py ) < 0] < O (\/d1n2(m/d)/M2(fo,s>+1n(1/5))_ -

m

In fact, inspection of the proof of this bound Bchapire and Singdd999 reveals that the only
property of the hypothesis clags that is used to achieve this result is the following bound, due to
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Haussler and Lonff1999, on the covering number of a hypothesis classvith pseudo-dimension
d:
em d

Vy € (0,1], Np(v,H,00) < <'yd> ) (8.2)

Thus, Eqg. 8.1) holds whenever this covering bound holds—a fact that will be usefusto
For AdaBoost *, a guarantee on the size of the margirfotan be achieved if one can provide

a guarantee on thedgeof the hypotheses returned by the weak learner. The edge of a hgothe
measures of how successful it is in classifying labeled examples.h Led — [—1,+1] be a
hypothesis and leb be a distribution oveA x {£+1}. The edge of. with respect taD is

L(h,D) £ E(x,y).plY - h(X)].
For a weighted and labeled sample= {(w;, zi, ¥;) }icpm) € Ry x A x {£1},

L(h,S) £ > wiyih(x;).

i€[m]

Note that if h(x) is interpreted as the probability éfto emit1 for input z, then 2=IU-2) is the

expected misclassification errorfoon D. Thus, a positive edge implies a labeling success of more
than chance. FoAdaBoost *, a positive edge on each of the weighted samples fed to the weak
learner suffices to guarantee a positive margin of its output clasgifier

Theorem 8.1(Ratsch and Warmuth 20D5AssumeéddaBoost *receives a labeled sampfeof size
m as input. Suppose th&daBoost * runs for k rounds and returns the classifigs. If for every

roundt € [k], I'(ht, Sw,) > p, thenM (f,,S) > p— /2Ilnm/k.

We present a simple corollary, which we will use when analyzing Boostiniifb. This corol-
lary shows thathdaBoost * can be used to transform a weak learner that approximates the best
edge of a weighted sample to a Boosting algorithm that approximates the begh roba la-
beled sample. The proof of the corollary employs the following well knowsultge originally
by von Neumann1928 and later extended [see e.jash and Soferl994. For a hypothesis
classH, denote byco(H) the set of all convex combinations of hypotheseddin We say that
H C [-1,+1])* is compact with respect to a samfle= {(xi, yi) biepm) © A x {£1} if the set of
vectors{(h(z1),...,h(xy)) | h € H} is compact.

Theorem 8.2(The Strong Min-Max theorem)if H is compact with respect 6, then

min sup I'(h, Sw) = sup M(f,S).
WEAm heH feco(H)
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Corollary 8.3. Suppose thaddaBoost * is executed with an input sampfe and assume that!
is compact with respect t§. Assumpe the weak learner usedAdaBoost * has the following
guarantee: For anyw € A,,, if the weak learner receiveS,, as input, then with probability at
leastl — ¢ it returns a hypothesia, such that

L(ho, Sw) > g(sup I'(h, Sw)),
heH

whereg : [-1,+1] — [—1,+1] is some fixed non-decreasing function. Then for any input sample
S, if AdaBoost * runsk rounds, it returns a convex combination of hypotheges Zte[k] azhy,
such that with probability at least — kd

M(anS)ZQ( sup M(f,S))— 21nm/k:

f€Eco(H)
Proof. By TheoremB.2, minyea,, supep I'(h, Sw) = supfECO M(f,S). Thus, for any vector
of weightsw in the simplex,sup,c I'(h, Sw) > Supfecom (f, S). It follows that in each

round, the weak learner that receivgg, as input returns a hypothesh§ such thaf'(h¢, Sw,)
g(suppep U'(hy Sw,)) = g(SuPfeco(ry M (f,S)). By Theorem8.1, it follows that M (fo, S)

g(squeco (fv )) Y, 21nm/k‘

VARV

8.2 The Weak Learner

In this section we will present our weak learner for MIL and providergaotees for the edge it
achieves. Our guarantees depend on boundedness propertiebagtfumctiony), which we define
below. To motivate our definition of boundedness, consideptherm bag functions (see Dé&.3),
defined byy,(z) £ (237 | (2[i] + 1)1")1/” — 1. Recall that this class of functions includes the

n =1

max function @) and the average function/() as two extremes. Assum@ C [r] for some

r € N. Itis easy to verify that for any natural, any sequence;,...,z, € [-1,+1], and all
p € [1, 0],
—Zzlglbpzl,... )gZzi—l—n—l.
i€[n] i€[n]
SinceR C [r], it follows that for all (21, . . ., z,) € [—1, +1](),
fZZZ<¢p21,..., D)<Y z+r—L (8.3)

i€[n] i€[n]
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We will show that in cases where the bag function is linearly bounded in tineo$iits argu-
ments, as in Eq.8(3), a single-instance learning algorithm can be used to learn MIL. Our weak
learner will be parameterized by the boundedness parameters of tlierfzdign, defined formally
as follows.

Definition 8.4. A functionvy : [-1,+1]® — [-1,+1] is (a,b,c,d)-boundedif for all
(21,...,2n) € [-1,+1](B),

aZzi—l—bSd}(zl,...,zn)ScZzi—i—d.

i€[n] i€[n]

Thus, for allp € [1, o), 9, over bags of size at mostis (%, 0,1,r — 1)-bounded.

Before listing the weak learn@ILearn, we introduce some notationh,,.s denotes a special
bag-hypothesis that labels all bags-at Vo € X hy(x) = 1. We denoteH, 2 H U
{h,.s}. Let A be an algorithm that receives a labeled and weighted instance sample agirpu
returns a hypothesis € 7. The result of runningd with input.S is denotedA(.S) € H.

The algorithmMILearn, listed as Alg.1 below, accepts as input a bag samgland a bounded
bag-functiony. It also has access to the algorithith We sometimes emphasize thétLearn
uses a specific algorithmd as an oracle by writinglILearn”. MILearn constructs a sample of
instancesS; from the instances that make up the bags$jriabeling each instance ifi; with the
label of the bag it came from. The weights of the instances depend on wiieghieag they came
from was positive or negative, and on the boundedness propertigs biaving constructed,
MILearn calls. A with S;. It then decides whether to return the bag-hypothesis induced by agplyin
1 to A(St), or to simply returrhyes.

It is easy to see that the time complexityMifLearn is bounded by (f(N) + N), whereN is
the total number of instances in the bagsSefand f(n) is an upper bound on the time complexity
of A when running on a sample of size As we presently show, the output BfLearn is a
bag-hypothesis ift{ ;. whose edge o depends on the best achievable edgestor

The guarantees fotILearn” depend on the properties df. We define two properties that we
consider forA. The first property is that the edge of the hypothesiseturns is close to the best
possible one on the input sample.

Definition 8.5 (e-optimal). An algorithm.4 that accepts a weighted and labeled sample of instances
in X and returns a hypothesis i is e-optimalif for all weighted samples C R, x X x {£1}
with total weightiV/,

I'(A(S),S) > sup'(h, S) — eW.
heH

The second property is that the edge of the hypothesisAaturns is close to the best possible
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Algorithm 1: MILearn#
Assumptions

o Hel-1,+1)%

e Algorithm A receives a weighted instance sample and returns a hypothésis in
Input:
o S = {(w, %, Yi) }ie[m) — @ labeled and weighted sample of bags,
e ¢y —an(a,b, c,d)-bounded bag-function.
Output: h, € H,.
1 oqy) &= @, () <= C.
2 St < {(ay, - wi, i[5}, yi) Yielm),jepp -

3 hy A(S[)

if T(hz,S) > T(hpes, S) then
‘ ho <— E],

else

| ho < hypos.

~N o O B

8 Returnhs.

one on the input sample, but only compared to the edges that can be ddhyekigpotheses that
label all the negative instances 8fwith —1. For a hypothesis clagg and a distributionD over
labeled examples, we denote the set of hypothesgstimat label all negative examples in with
—1, by

QH,D)={heH|Pxy)plMX)=-1]Y =~1] =1}

For a labeled sampl§, Q(H, S) £ Q(H, Us) whereUs is the uniform distribution over the exam-

plesinsS.

Definition 8.6 (one-sided=optimal) An algorithm.4 that accepts a weighted and labeled sample
of instances int’ and returns a hypothesis iH is one-sided=optimalif for all weighted samples
S C Ry x X x {1} with total weightiV/,

I'(A(S),S) > sup I'(h,S)— el
heQ(H,S)
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Clearly, any algorithm which is-optimal is also one-sided-optimal, thus the first requirement
from A is stronger. In our results below we compare the edge achieved NEirgrn to the best
possible edge for the sampe Denote the best edge achievable $dny a hypothesis ifH by

7v* £ sup I'(h, S).
heH

We denote by’ the best edge that can be achieved by a hypothesigfh S). Formally,

vi 2 sup I'(h0S).
heQ(#H,S)

Denote the weight of the positive bags in the input sanspby W, = Zi:yizﬂ w; and the weight
of the negative bags by = Zi:yi:_l w;. We will henceforth assume without loss of generality
that the total weight of all bags in the input samplé,ishatisW, + W_ = 1.
Note that for any(a, b, ¢, d)-boundedy, if there exists any sequencs,...,z, such that
W(z1,...,2,) = —1, then
aZzi+b§—1§cZzi+d. (8.4)
1€[n] i€[n]

This implies

1-d 1—b
< - < .
¢ —%:}Zz— “

Rearranging, we get— <b — < + 1 > 0, with equality if Eq. §.4) holds with equalities. The next
theorem provides a guarantee ftiiLearn that depends on the tightness of this inequality for the
given bag function. As evident from Theoredrl, to guarantee a positive margin for the output of
AdaBoost * when used withiILearn as the weak learner, we need to guarantee that the edge of
the hypothesis returned D Learn is always positive. Since the best edge cannot be morelthan
we emphasize in the theorem below that the edge achieviiilsarn is positive at least when the
best edge i (and possibly also for smaller edges, depending on the parametersjibéémsently
show how these general guarantees translate to a specific result fosttifanction, and other bag
functions with the same boundedness properties.

Theorem 8.7. Letr € NandR C [r]. Lets : [-1,+1]®) — [~1,+1] be an(a, b, ¢, d)-bounded
bag-function such thai < a < ¢. Lete € [0, Flc)’ and assume that — gb — g + 1 = 7. Denote
Z = <. Consider running the algorithmILearn# with a weighted bag sampl€ of total weight
1, and leth, be the hypothesis returned MyLearn*. Then
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1. If Aise-optimal then

Thus,I'(ho, S) > 0 whenever

1 n, 1 1 rce
1o
i 7z )T

In particular, if n < 2(1 — rce)/(Z + 1) andy* = 1 thenI'(ho, S) > 0.

2. If Alis one-sided=optimal, andi(z1,...,2,) = —lonlyifz; = ... = z, = —1, then

Vi —HZ+1)—rceZ
I'(ho, S) >
(he, ) 27 —1— L(Z 1)

Thus,I'(he, S) > 0 whenever

Vo> g(Z +1) + reeZ.

In particular, if n < 2(1 — reeZ)/(Z + 1) and~% = 1 thenI'(ho, S) > 0.

The first step in the proof of the theorem, is to provide a guarantee fordipe &chieved on

the bag sample by the hypothesis returnedbin step @) of the algorithm. This is done in the
following lemma.

Lemma 8.8. Assumey : [—1,+1]) — [~1,+1] is an (a, b, ¢, d)-bounded bag function with
0 < a < ¢, and denoteZ = <. Consider running the algorithMILearn with a weighted bag
sampleS of total weightl. Leth; be the hypothesis returned by the oradlén step @) of MILearn.
LetW be the total weight of the samptg created inMILearn, step ). Then

1. If Aise-optimal,

_ 1 1
(1, S) 2 27" + (5 = Z+ (1= )(d = Zb)Wy + Zb—d — cW.

2. If Ais one-sided=optimal, andi(z1,...,2,) = —lonlyifz; = ... = z, = —1, then
I'(hr,S) > L +(l—Z+(1—l)(d—Zb))W +Zb—d+Z—l— w.

Proof. For allh € #H, and for allx = (x1,...,z,) € X5 we haveh(x) = ¢ (h(z1),. .., h(z,)).
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Sincey is (a, b, ¢, d)-bounded, it follows that

ad h(z)+b<h(x)<cd h(x) (8.5)

TEX TEX

In addition, since: andc are positive we also have

(h( d)/c < Z h(zx —b)/a. (8.6)

TEX

Assume the input bag sampleSs= {(w;, X, yi) }ic[m)- Denotely = {i € [m] | y; = +1} and
I_ = {ie[m]|y;=—1}. Leth € H be a hypothesis. We have

I'(h,S) = Z w;h(X;) Z w;h(X;)

iely iel_
Z Z h(z - Z w;(c Z h(z) + d) (8.7)
TEX; el TEX;
= Z wia Z h(x Z wjc Z h(z) + Z wib — Z wid. (8.8)
i€l TEX; el TEX; iely el

line (8.7) follows from Eqg. 8.5. As evident by stepsl(2) of MILearn, In the sampleS; all
instances from positive bags have weiglft-1) = a, and all instances from negative bags have
weighta(—1) = ¢. Therefore

T'(h,Sp) = Z > wiay)h(@) =Y wia Y h(z) = Y wic > h(x)

m] TEX; el TEX; i€l TEX;

Combining this equality with Eq8(8) we get

L(h,S) =T (h,Sr)+ > wib— > wd.

iely il

Since)_;c;, wi =Wyandy ., w; =W_ =1—W,, it follows that

I'(h,S) >T(h,S;) + bWy — dW_ =T(h, S;) + (b+ d)W, — d. (8.9)
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Now, for any hypothesigé we can conclude from Eq8(6) that

L'(h,Sr) = ZawZZh chiZh(w‘)

iely TEX; el TEX;
> Z aw;(h(%;) —d)/c — Z cw;(h(%;) — b)/a
iely iel_
a —,_ ¢ —,_
= Eu;ih(xl) — Z awzh(xl) — Z adw; /¢ + Z chw; /a
i€l el i€l el
_ d b
=P8+ (L - ¢ Zw, 1—a—W++CW_
a ’LEI+
c_ — — ad cb cb
=-I'(h,5) + ih(X;) — WL+ —.
a ( ’ 2;: wih — + a ) ++ a
i€l

In the last equality we used the fact thét. = 1 — W,.. SinceZ = ¢, it follows that

T(h,S1) > Z0(h,S) + (7 — 2) Y wih(%i) d 5 T Z)Wy + Zb. (8.10)

i€l

We will now lower-bound the right-hand-side of E&.10. Note that% — 7 < 0 sincec > a.
Therefore we need an upper bound for..;, w;h(%X;). We consider each of the two cases in the
statement of the lemma separately.

Case 1: Ais e-optimal  We have}_, ., wih(%;) < > ier, wi = Wy. Therefore, by Eq.§.10)
foranyh € H

— 1
D(h, S1) > Z0(5,5) + (5 — 7 - % _ ZWW. + Zb. (8.11)

For a naturah, seth” such thaf'(%;, S) > v* — 1. We have (see explanations below)

L(hr,S) > T(hr, S1) + (b+d)W4 —d (8.12)
>T(h,Sp) + (b+d)Wy —d — eW (8.13)
o — 1
zZr(h*,S)+(E—Z—%—Zb)W++Zb+(b+d)W+—d—eW (8.14)
o 1 1
= Z0(hi, )+ (5 = Z+ (1= ) (d = Zb)Wy + Zb—d — W
1 1 1
> i - - — —)(d— —d— eW.
> 27" = )4 (5 = Z4 (L= )(d = Z0))Wy + Zb— d — €W,

Eqg. .12 is a restatement of Eq8(9). Eq. 8.13 follows from thee-optimality of A. Eq. 8.14)
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follows from Eq. 8.11). By takingn — oo, this inequality proves case (1) of the lemma.

Case 2: A is one-sidede-optimal We have}_,.; wih(X;) < Y, wi = Wi. Leth €
Q(H,S). Thenforalli € I_, h(x;) = —1. Therefore

r'(h,S) = Z w;h(X;) Z wih(X;)

icly iel_

= Z wiﬁ(ii) + Z W;

icly icl_

1€y

Therefore),; wih(X;) = I'(h,S) = W- = I'(h,S) + W, — 1. Combining this with Eq.§.10
we get

I'(h,Sr) > ZT(h,S) + ——Z Zwl (%;) d+Zb)W++Zb
Z€I+
— 1 — = d
=Z7ZI(h,S) + (Z Z)T(h,S)+ Wy —1) — (E + Zb)Wy + Zb.
1 - — 1 d 1
=_T ——-Z-—=--Z Zb— —+ Z. 1
Z (h,S)+(Z 7 bW, + Zb 7+ (8.15)

For a naturaln, seth!, € Q(#,S) such thatl'(},S) > v* — 1. For all bagsi € I_,
ﬂ(ii) = —1. Thusy)(h% (2;[1]), ..., A7 (z]|%s])) = —1. By the assumption ot in case (2) of
the lemma, this implies that for a]le I_,j € [|x]], kit (x4[j]) = —1. Thereforeh!! € Q(H, Sr).
We have (see explanations below)

U(hr,S) >T(hr,Sr) + (b+d)W4 —d (8.16)
>T(W", S) + (b+d)Wy —d— W (8.17)
1 1 d 1
>~ (R, 5) + (G2~ ZOWi+2Zb= -+ Z+(b+dWy —d—cW

(8.18)

—lr(ﬁ" §)+(l—Z+(1——)(d Zb)\W + Zb — dv7- X _w
— 7z e Z Z + z €
1 1 1 1
> (4~ = - - - = -
> (- )+ (5 -2+ Z)(d ZY)Wy+ Zb—d+ 2 —  —€W.

Eq. 8.16 is a restatement of Eq8(9). Eqg. 8.17) follows from the one-sided-optimality of A



CHAPTER 8. PAC-LEARNING FOR MIL 92

and the fact thak’} € Q(H, Sr). Eq. 8.19 follows from Eq. 8.19. By considering: — oo, this
proves the second part of the lemma. O

Proof of Theoren8.7. MILearn selects the hypothesis with the best edgeSobetweenh; and
h.s. Therefore

['(ho, S) = max(T'(hpes, S),L(h1, S)).
We have
F(hP057§) = Z wiyihpos()_(i) — Z w;Y; = W+ —W_ = 2W+ — 1.
i€[m] i€[m)]

Thus
['(ho, S) = max(2W, — 1,T'(hy, S)). (8.19)

We now lower-bound’(h., S) by boundingl'(h;, S) separately for the two cases of the theorem.
Let W be the total weight ob;. SinceR C [r],a < ¢, andzie[m} w; = 1, we have

W = Z Zawi—i— Z chigcmwi:rc (8.20)

1y, =+1TEX; iy =—1TEX; i€[m)]
Case 1: A ise-optimal From LemmaB.8and Eg. 8.20 we have

o 1 1
[(hr,8) 2 27"+ (; = Z+ (1= )(d — Zb)Wy + Zb—d — ree

1 1
:ZV*—I-(E—Z—i-(l—g)(Z—1—|—77))W+—(Z—1+17)—rce

1
:Z7*+(1772)(17Z)W++17777277“ce.

The second line follows from the assumptign- Zb — Z + 1 = n. Combining this with
Eqg. 8.19 we get

_ 1
I'(ho, S) > max{2Wy — 1, Zv* 4+ (n —2)(1 — E)W+ +1—n—2Z —rce}.

The right-hand-side is minimal when the two expressions in the maximum aré ddpis occurs

when
A LYV +2—n—Z —rce

2+2-m1-7%)

W+ :WO
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Therefore, for any value df/’,.

_ Iy —Z4+ L 11+ 2%) -
F(hO,S)Z2WQ—1: ! +Z 772( +IZ) =
I+(1-3)(1-)

Case 2: A is one-sidede-optimal From LemmaB.8and Eq. 8.20 we have

- 1 1 1 1
r > 4 (= — 1—=)(d— W - -
(hI,S)_ny++(Z Z+( Z)(d Zb)Wi+Zb—d+Z - e
1 1 1 1
= A4 (=—Z+(1-=2)Z-1 W —(Z-1 /A
ny++(Z + ( Z)( + )Wy —( +n)+ 7 e

1 1 1
— A N1 = =YWt 1—n——= —ree.
Zv++(n )( Z) +Hl=n— - —rce

The second line follows from the assumptior Zb = Z — 1 4+ n. Combining this with Eq.§.19
we get

_ 1 1 1
'(ho, S) > max{2W — 1, Z’yi +(n-2)(1- E)WJr +1—n— 7 ree}.

The right-hand-side is minimal when the two expressions in the maximum aré ddpis occurs

when C 14 Y
Yy — — 1 —Trce
W, =W, 2
+ 27 +(2-n)(Z—1)

SubstitutingiV;. for I, in the lower bound, we get

= Vi —HZ+1)—rceZ
I'(ho,S) > 2W, — 1 =
(ho, 5) 2 2. 27 —1-3(Z —1)

O]

Theorem3.7is stated in general terms, as it holds for any boundeth particular, ify) is any
function between an average anhax, including any of theo-norm bag functions),, defined in
Def. 6.3, we can simplify the result, as captured by the following corollary.

Corollary 8.9. LetH C [-1,+1]*. LetR C [r], ande € [0,1). Assume a bag function :
[—1,+1]#) — [—1, +1] such that for any,, ..., z, € [—1,+1],

1
— Z zi <P(z1,- .., 2n) < max z.
n il i€[n]

Leth, be the hypothesis returned B§Learn. Then
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1. If Ais e-optimal for some € [0,1/r], then

Y T —r2(14€)
T'(he,S) > .
(ho, 5) 2r—1

ThusI'(h., S) > 0 whenevern* > 1 — 2% + £, In particular, if v* = 1 thenT'(ho, S) > 0
2. If Ais one-sided-optimal some < [0, 1/7?], then
7'26

Vi—

g M
L(he, 5) = 2r — 1

ThusI'(he, S) > 0 whenevery; > rZe. In particular, if v = 1 thenI'(ho, S) > 0.

Proof. Letz,..., 2z, € [-1,+1]. We have

max z; < z n—l mmz zi +n—1.
SRR IR e
’L n%e|n

Therefore, by the assumption gn for anyn € R

P(215.--520) < Zzi+n_1§ Zzi-f—T—l.

1€[n] i€[n]

In addition

%Z%S%Z%Slﬁ(zlw-azn)-

Thereforey is (%7 0,1,r —1)-bounded. It follows thaZ = r in this case, and — Zb— Z +1 = 0.
Claim (1) follows by applying case (1) of Theoredr with n = 0.

For claim (2) we apply case (2) of Theoreéhy. Thus we need to show thatif(zy, ..., z,) =
—landzy,...,z, € [-1,+1], thenz; = ... = 2z, = —1. We have that

Therefor(.L Zze[n z; = —1. Since noz; can be smaller thanl, z; = ... = 2z, = —1. Thus case
(2) of TheorenB.7 holds. We get our claim (2) directly by subsituting the boundedness pteesme
of ¢ in TheoremB.7 case (2). O
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8.3 From Single-Instance Learning to Multi-Instance Learning

In this section we combine the guaranteesMabearn with the guarantees cAdaBoost *, to
show that efficient agnostic PAC-learning of the underlying instancethgsisH implies efficient
PAC-learning of MIL. For simplicity we formalize the results for the naturaecahere the bag
function isyy = max. Results for other bounded bag functions can be derived in a simildofash

First, we formally define the notions of agnostic and one-sided PAC-lgpaigorithms. We
then show that given an algorithm on instances that satisfies one of thi@siéi@hs, we can con-
struct an algorithm for MIL which approximately maximizes the margin on an ibpgtsample.
Specifically, if the input bag sample is realizable Hy then the MIL algorithm we propose will
find a convex combination of bag hypotheses that classifies the sample vatlerzer, and with
a positive margin. Combining this with the margin-based generalization guasamientioned in
Section8.1, we conclude that we have an efficient PAC-learner for MIL.

Definition 8.10 (Agnostic PAC-learner and one-sided PAC-learn&gt B(e, 4, S) be an algorithm
that accepts as input e € (0, 1), and a labeled samplé € (X x {£1})™, and emits as output a
hypothesis € H. B is anagnostic PAC-learndor ‘H with complexity:(e, §) if 5 runs for no more
than c(e, 0) steps, and for any probability distributioP over X x {£1}, if S is an i.i.d. sample
from D of sizec(e, 0), then with probability at least — 6 over S and the randomization ds,

I'(B(e,9,S5),D) > sup I'(h, D) — €.
heH

B is aone-sided PAC-learnérunder the same conditions, with probability at least §

I'(B(e,9,5),D) > sup TI'(h,D)—e.
heQU(H,D)

Given an agnostic PAC-learngrfor H and parameters 6 € (0, 1), the algorithm(’)55, listed
above as Alg2, is ane-optimal algorithm with probability — 6. Similarly, if B is a one-sided PAC-
learner, therOﬁ% is a one-sided-optimal algorithm with probabilityl — §. Our MIL algorithm
is then simplyAdaBoost * with MILearn®<s as the (high probability) weak learner. It is easy to
see that this algorithm learns a convex combination of hypotheses#Hrom\e also show below
that under certain conditions this convex combination induces a positivanm@arghe input bag
sample with high probability. Given this guaranteed margin, we bound theajzagion error of
the learning algorithm via Eq8(1).

The computational complexity @55 is polynomial inc(e, §) and in the instance-sample size
m. Therefore, the computational complexity 10fLearn®cs is polynomial inc(e,0) and in N,
whereN is the total number of instances in the input bag sansple
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Algorithm 2: OB,
Assumptions
e ¢,0¢€(0,1).

e B receives a labeled instance sample as input and returns a hypothsis in
e Algorithm B is a one-sided (or agnostic) PAC-learning algorithm with complexity?).

Input: A labeled and weighted instance samfle= {(w;, i, yi) }icjm) € Ry x & x {£1}.
Output: A hypothesis infH

1 Foralli € [m], pi <= wi/ 3 icpm wi-

2 For eacht € [c(¢, 0)], independently draw a randofpsuch thatj; = ¢ with probability p;.

35« {({jt,yjt)}te[c(eﬁ)]'

4 h <« B(S5)
5 Returnh.

For 1-Lipschitz bag functions which have desired boundedness propdéigsthe sample com-
plexity and the computational complexity of the proposed MIL algorithm arenmohial in the
maximal bag size and linear in the complexity of the underlying instance hyp®ttlass. This
is formally stated in the following theorem, for the case of a realizable distributien labeled
bags. Note that in particular, the theorem holds for allh#orm bag-functions, since they are
1-Lipschitz and satisfy the boundedness conditions.

Theorem 8.11.LetH C [-1,+1]* be a hypothesis class with pseudo-dimensior.et B be a
one-sided PAC-learner fok with complexityc(e, ). Letr € N, and letR C [r]. Assume that the
bag functiony : [—1,+1]%) — [—1,+1] is 1-Lipschitz with respect to the infinity norm, and that
forany(zy,...,z,) € [-1,+1](®

1 Z zi <P(z1,. .., 2n) < max z.
n P 1€[n]

Assume tha#{ is compact with respect to any sample of size Let D be a distribution over
X(B) x {41} which is realizable by{, that is there exists ah € # such thatP x y.p[h(X) =
Y] =1. Assumen > 10dIn(er), and lete = 5% andk = 32(2r — 1)? In(m).

Forall 6 € (0,1), if AdaBoost * is executed fok rounds on a random samplg¢ ~ D™,
with MILearnofﬁ/% as the weak learner, then with probability— ¢, the classifierf, returned by
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AdaBoost * satisfies

oY £(X) < 0] <O (\/dr2 In(r) In?(m) +1n(2/6)) . (8.21)

m

Proof. SinceB is a one-sided PAC-learning algorith(ﬁfé/% is one-sided=optimal with proba-

bility at leastl — §/2k. Therefore, by case (2) of Cd.9, if MILearnogé/’c receives a weighted
bag sample5,,, with probability1 — 6/2k it returns a bag hypothesis € #H, such that

SUPp 07, 9) I'(h, Sw) — 7€
2r — 1

(ho, Sw) >

Thus, by Cor8.3, if AdaBoost * runs fork rounds then with probability —§ /2 it returns a convex
combination of hypotheses frofd such that

SUD reoorim.sn M (f, S —r2e
M(f.,8) > —15 (Q(”’;”_l( ) — /2lnm/k. (8.22)

Due to the realizability assumption fdp, there is anh € Q(H, S) that classifies correctly the
bag sampleS. It follows that for any weightingw € A, of S, I'(h,Sw) = 1. Itis easy to
verify that since?{ is compact with respect t8, then so isQ2(#,S). Thus, by Theorens.2,
SUD reo((,s)) M (f,S) = miny sup, .o o) I'(h, Sw) = 1. Substitutinge andk with their val-
ues, settingupfecom(g’s)) M(f,S) = 1inEqg. 8.22 and simplifying, we get that with probability
1—6/2

M(fo, 5) > 87«1_ . (8.23)

We would now like to apply the generalization bound in Ej1), but for this we need to show
that Eq. 8.2) holds forH. We have the following bound on the covering numbersg{offor all
v € (0,1]:

d
Nl H.50) < N0 < (5]

The first inequality is due to Cor..9 and the fact that) is 1-Lipschitz, and the second inequality
is due toHaussler and Lon§1993 and the pseudo-dimension &f (see Eqg. §.2) above). This
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implies

d d d
erm _[em dln(r) _ em d dlIn(r)
H. o) < = . = .
/\/m(h ,00) < <7!) ( l) e ( 10dIn(e )> (101n(er))%e

d
_ em . ed(ln(lOln(er))—f—ln(T))'
v - 10d In(er)

Therefore, form > 10d In(er)
em ‘ (In(101In(er))+In(r))
e <1 2y <1 . ,d(In(101In(er))+In(r
Nm<77H+7OO> = +Nm(7’,H’OO) s b (7-10dln(er)> ¢

d
< em . ed(ln(lOln(er))—Hn(er)).
— \\v-10d1n(er)

Now, In(101n(er)) +1n(er) = In(10) + In(In(er)) + In(er) < In(10) +21n(er) < 3+ 21n(er) <
51n(er). Therefore,

_ em ¢ 5d1n(er) e’m e
< e . nler < -
Nin (7, Hy, 00) < <7 ; 10dln(er)> € - <fy . 10d1n(67‘))

10d In(er)
em
<7 . 10dln(er)> '

Thus, form > 10dIn(er), Eq. 8.2 holds forH_; when substitutingl with d,, = 10d In(er). This
means the generalization bound in Eg.1f holds when substituting with d,. as well. It follows
that with probabilityl — §/2

P[Y fo(X) < 0] <O (\/dr In*(m/d,)/M?(fs,5) + 1n(1/5)) |

IN

m

Now, with probabilityl — 6 /2, by Eqg. 8.23 we haveM (f,,S) > 1/(8r — 4). Combining the two
inequalities and applying the union bound, we have that with probability)

P[Y f,(X) < 0] <O (\/dr(Sr — 4)21n%*(m/d,) +ln(2/5))

m

m

<0 (\/10dln(er)(8r — 4)21n%(m) +ln(2/5)) '

Due to the O-notation we can simplify the right-hand side to get £4.1).
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O

Similar generalization results for Boosting can be derived for margindteguas well, using
covering-numbers arguments as discussegtimapire et a[.1994. The theorem above leads to the
following conclusion.

Corollary 8.12. If there exists a one-sided PAC-learning algorithm f@érwith polynomial run-
time in% and % then there exists a PAC-learning algorithm for classical MIL #nwhich has
polynomial run-time in-, and .

Cor. 8.12is similar in structure to Theoref 1: Both state that if the single-instance problem
is solvable with one-sided error, then the realizable MIL problem is solvallleoremt.1 applies
only to bags with statistically independent instances, while &a2applies to bags drawn from an
arbitrary distribution. The assumption of Theorém is similarly weaker, as it only requires that
the single-instance PAC-learning algorithm handle random one-sidesl mdide Cor.8.12requires
that the single-instance algorithm handle arbitrary one-sided noise. UBga&;aCor8.12 does not
contradict the hardness result provided for APRAuer et al.[199]. Indeed, this hardness result
states that if there exists a MIL algorithm férdimensional APRs which is polynomial in both
andd, thenRP = N'P. Our result does not imply that such an algorithm exists, since there is no
known agnostic or one-sided PAC-learning algorithm for APRs which ligypmonial in d.

We have shown a simple and general way, independent of hypothesss tecreate a PAC-
learning algorithm for classical MIL from a learning algorithm that runsimigle instances. When-
ever an appropriate polynomial algorithm exists for the non-MIL learniredplem, the resulting
MIL algorithm will also be polynomial in-. To illustrate, consider for instance the algorithm pro-
posed inShalev-Shwartz et aJ201(. This algorithm is an agnostic PAC-learner of fuzzy kernel-
ized half-spaces with ab-Lipschitz transfer function, for some constdnt> 0. Its time complexity
and sample-complexity are at most p(c(l%)L . ln(%)). Since this complexity bound is polynomial
in1/eandinl/é, Cor.8.12applies, and we can generate an algorithm for PAC-learning MIL with
complexity that depends directly on the complexity of this learner, and is paliahan r, % and%.
More generally, using the construction we proposed here, any aeiveamt in the development of
algorithms for agnostic or one-sided learning of any hypothesis clastatasimmediately to an al-
gorithm for PAC-learning MIL with the same hypothesis class, and with spmeding complexity
guarantees.



Chapter 9

Using MIL in a non-MIL Setting

Consider three applications from three different domains: In the firstant to conduct market
research using online ads, to identify which products are attractive.caowput up ads featuring
products, but your only feedback is whether or not the ad was clickethe second application,
consider some chemical or biological problem where the goal is to learngsifgfl@hemical sam-
ples based on the result of a chemical experiment. Each experiment is tostly possible to
conduct an experiment with numerous types of molecules at the same time, idedttfy only if

a reaction has occurred or not. In the third application, suppose thesmirpto learn a classifier
that identifies images with faces, using a large set of labeled images. To titdmbeled set, one
introduces a large set of images to human labelers, who indicate whether tiedorgains a face
or not. We would like to minimize the cost of the human work by reducing the labélimgto a
minimum.

These examples come from different domains, but share a common felatateof them we
have access to practically unlimited data which we can present to a teadiaméan labeler, or
some experimental machinery for obtaining a label), but there is a higharaesa¢h label obtained
from the teacher. In addition, it is possible to obtain from the teactsngle labelfor a set of
examplesat essentially the same cost as a label for a single example. The single @ibatés
only if there exists a positive example in the examined set: In the market cesmaplication, it is
possible to feature several products in one ad. In the chemical expetims&nit may be possible
to conduct one large experiment testing several different samplesadnsteseveral experiments,
one for each sample. In the face recognition task, one can presestibgstts an array of images

instead of a single image (see Fig@ré) and ask them to indicate whether there is a face anywhere
in the array of imagés In these example application, the main cost of training is the number of

There might be other possibilities, such as asking the labeler to click the lexation of the face in the array,
however this might produce a much slower labeling rate than if the label&s didy Yes or No buttons

100
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labels, and not the total number of examples.

Figure 9.1: A person easily identifies whether there is a face in a bag afjgs. Left: Negative Label.
Right: Positive Label. Images from CALTECH10ML [Fei-Fei and Perona2004.

We consider learning in the setting illustrated by the three example applicatimhisnva@stigate
when it is worthwhile to present a teacher with sets of examples instead widingi examples in
this setting. In our model we assume that the cost of obtaining a label dbdspend on the size
of the set for which the label was obtained, and that obtaining examplegderyrto the teacher
incurs no cost. Therefore, the cost of learning depends only on théerof obtained labels, and
the goal is to reduce this number as much as possible using sets of exarmgiesptimal size.

In the proposed setting, the teacher labels sets of examples using a simgleThls can be
thought of as a form of Multi-Instance Learning, in which the bags agated by the algorithm,
and not by the environment. Moreover, the goal is to learn to classifyithdiVinstances and not
whole bags. The bag-labeling function in this setting is the classical BoolBan O

Intuitively, there is an inherent trade-off when obtaining one label farhale bag: On the
one hand, this allows one label to provide information on a large numberasfigles. On the
other hand, this information can be ambiguous, since if the label is positig®wet know which
examples in the bag are the positive ones. In this work we investigate thisdifaded show that
it is possible to reduce the number of required labels by presenting bagamiples to the teacher
instead of individual examples. After describing the formal setting (Se&ity) we show, both
analytically and experimentally, that using bags can indeed improve perioexc@nsiderably, for
a wide range of problem parameters. We show analytically (Seétignhow to select the bag
sizepresented to the teacher for optimal performance. In addition, we pFqi8etion9.3) a
simple and practical algorithm along the linegr@izenszwalb et a]2009 for finding a separating
hyperplane for individual examples from a training sample composed efddlbags. Several
types of experiments were performed (Sectto#), on synthetic data sets and on real data sets.
The experiments demonstrate the success of the proposed approachédeen wider range of
parameters than guaranteed by the analysis.
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9.1 Problem Setting

Let X be the domain of examples, and Ht C {il}X be the hypothesis class. We assume
a realizable distributiorD over labeled examples, and selece # such thatPx yy.p[Y =
c(X)] = 1. The goal of the learner is to return a classifier X — {+1} such that/y,, (h, D)

is small. The marginal o over X and the functior: determine the distributio®. Thus in the
sequel we identifyD with its marginal onX.

We assume that the learner has unlimited access to samplésliawn according t@. We
consider the case where the main cost incurred in the learning prodedbeg of obtaining labels
from the teacher, while the cost of presenting examples to the teachetigiliegWe assume that
one can ask the teacher to labalgsof examples using a single label. The teacher’s label indicates
whether at least one of the examples in the bag is positive. Formally, we fiathibeling function
1» = OR = max. For every bag presented to the teacher, the teacher returns a single binary label
¢(x). We wish to get low error oveindividual examplesusing the smallest possible number of
labels. Note that unlike active learning, here the entire sample is generaaeldance, with no
feedback from the teacher. The following procedure is proposed:

1. Select a bag sizeand a sample sizex,;
2. Createn, bags of size from r - m,. examples drawn independently frabn
3. Present the bad; };; to the teacher, and receive. labels{y;}" such that;; = ¢(x;).

4. Return the hypothesis, € H such that, minimizes the training error over bags:

My
ho = argmin Z |h(X;) — yil-
hen

This procedure is a generalization of the classical empirical risk minimizati®&M{Estrategy,
where the learner finds the hypothesis with minimal training error: r=er1 this procedure is
exactly ERM over an i.i.d. sample drawn from the distributibn For a general, we use an
i.i.d. sample drawn from the distributian”. Importantly, regardless of the choserour goal is to
minimizeéo/l(ho, D), the error orindividual exampledrawn fromD, and we will measure success
based on this goal.

We denote by the probability of a single example having a positive label, i.e. the frequency o
positive examples iD. As we will see, the methods we describe are relevant whiensubstan-
tially smaller then half. That is, when positive examples are relatively ratenithe frequency
of positive examples is small, measuring the error becomes tricky: a hypothleish labels ev-
erything as negative has errar but we typically want a hypothesis that better balances type | and
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type Il errors. In our analysis we assume for simplicity that all the hypethasH have the same
probability for a positive label:

That is, all hypothesis are calibrated by the known positive example rate.assumption implies
that the probability of type | errors is identical to the probability of type lbesr and allows us
to use the overall error as a single objective even for very smalln particular, if the learner
balances type | and type Il errors, or in the realizable case, if the lesgpks a zero empirical error
hypothesis, then the hypotheses chosen by the learner satisfies thimoatdeast approximately.
This assumption also implies that the true erroh @ in the rang€0, 2.

9.2 Theoretical Analysis

In this section we analyze the procedure described above, and skwitvdan reduce the required
number of labels. We start by analyzing the relationship between the bagh&zample size, and

the resulting true error over individual examples, based on theoretical mounds. We then use
these bounds to choose a bag sizmd study the reduction in sample size achieved by the proposed
procedure.

9.2.1 The Sample Complexity of Training on Bags

We will base our analysis on standard results, that bound the true enem wsing ERM on a
training sample with a given sample size. These bounds do not suffice ingehes, since they
refer to the true error over examples drawn from the same distribution dsatheng sample. In
our case, these results will bound the error dvagsdrawn fromD”, while we wish to bound the
true error oveindividual exampledgrawn fromD. We thus start with the following theorem, which
provides the relationship between the true error on bags and the trueriraividual examples.

Theorem 9.1. For anyh : X — {0, 1} such that Eq.$.1) holds, we have
PA(X) # e(X)] = £7(Ple(X) # h(X)]) (9.2)

wherex%(e) = 2((1 — )" — (1 — a —€/2)").

Proof. Let X ~ D be a random variable over individual examples &d~ D" be a random
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variable over bags. We have

In addition,

Ple(X) = 0 AR(X) = 0] = (Ple(X) = 0 A h(X) = 0])" = (1 — a — Ple(X) £ h(X)]/2)".

The last equality above follows from E.() via simple calculations. Using the three equations
above in Eq.9.3), we get

PIA(X) #e(X)] =2((1 - a)" = (1 — a = Ple(X) # h(X)]/2)").
Eq. 0.2 follows from this equality by setting = P[c(X) # h(X)]. O

To bound the true error on bags achieved%yve invoke the VC-bound for the realizable case
[Vapnik and Chervonenkid 977, which states that with probability at lealst- 6 over a sample of
m,. bags:

d 2em,

PIA(X) £ (X)) < 2T (log 2+ 1og %) 2 yC-BOUND(m, dy), (9.4)

whered, denotes the VC-dimension &, the class of hypotheses over bags of size
Combining Theorem.1with Eq. 9.4), and taking the inverse af*, yields the following learn-
ing bound for the proposed procedure:

Corollary 9.2. If Eg. (9.1) holds andc € H, and the procedure described in Sectidn is used,
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then with probabilityl — § over the samples of bags,
P[A(X) # ¢(X)] < 2(1 —a) — 2((1 — )" — VC-BOUND(m,., d,.) /2)/".

In order to understand the effect of using bags, it will be useful toythuel relationship between
the bag size and the sample complexity, based on the bound in Cof@lbAijote that the sample
size is equal to the number of labels, which is the cost we wish to minimize). We wdlfth a
target error rate, and ask how the sample complexity for this error rategebaas a function of
the bag size. To this end, define.(¢) as the number of bags of sizaequired to obtain a bound
of € on the true error of individual examples, based on Corolfay This is an upper bound on
the sample complexity when using bags of sizén particular,m, (¢) is the “standard” VC-bound
sample complexity, when using a regular sample with individual examples.ollbeiing theorem
bounds the reduction in sample complexity when bags ofisize used instead of a regular sample:

Theorem 9.3. Let d be the VC-dimension 6{, and letd, be the VC-dimension of the cla&sof
hypotheses over bags of sizé/\e have:

) = ro(e)

my(€) e d
o (9.5)

Proof. Letm, = min{i(e) =75 - %71 (e)}. We have

K& (e

P[h(X) # &X)] < vC-BOUND(m,, d,)
_ d,m(€) d 2em, 2

) 1 log —
dm, ml(e)( 08 d, +log 5)
drml (6) - drml(e) "€ a
< - = — < .
S “am, VC-BOUND(1 (€), d) p—— Ky (€)

~

From Theoren®.1 it follows that P[h(X) # ¢(X)] < e. Therefore the minimal sample size to
achiever using bags of size is no more thann,., and Eq. 9.5) follows. O

Examining Eq. 9.5), it is obvious that% > 1, since the hypotheses class over bags cannot have
a lower VC-dimension then the hypotheses class over individual examfiesefore a reduction
in sample complexity will only be attained i (¢) > e. That is, only if the error rate on bags is
higherthen the error rate on individual examples. This may seem counterintuitivg~would we
gain from using bags if it causes artreasean the error rate? The key point is that we are interested
in the implied error rate on individual examples, and so we can allow oussaltsgher error rate
on bags, if it implies a lower error on individual examples. Note, howdbat, any reduction in
the sample complexity due td(¢) > e might be canceled if the VC-dimensian grows very fast
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with r. Fortunately, this is not the case, as the following theorem shows:

Theorem 9.4.

d
drg—m'w_l( e(f)) O(dlog ). (9.6)

WherelV_; denotes the negative branch of the Lambert W functioa, W ()" (®).

Proof. We start with the following bound from Eq7 (1) in the proof of Theoren7.2:
d, < d(logy(erd,/d)).

We reorganize this bound to find an upper bounddfor

< d(logy(erd,/d)) =
d, In(2 ) d(In(er/d) + In(d,.)) =
dyIn(2) — dIn(d,) < dln(er/d) =
dln(d,) — d, In(2) > —dlIn(er/d) =
In(d,) — 224, > —In(er/d) =
d, exp(flnc(lz) dy) <d/er =
méz) d, eXp(—lnéz) d.) < —1In(2)/er
Sincer > 1, we have that—1 —In(2)/er < 0. From the properties of the Lambert function we
have that for-1 < 2 <0, wew <x = w >W_q(z). Therefore
D@, > W (~In(2)/er) =

d, <_WW 1(—1In(2)/er).

O]

Equipped with Theorem8.3and9.4, we can now study the optimal bag size and the reduction
in sample complexity it affords.

9.2.2 Choosing the Bag Size

We now turn to the question of how to choose a bag sige as to minimize the sample complexity
m,(e). The two important parameters here are the positive examplevratel the desired error
guarantee. Intuitively, it can be speculated that a good size for a bag is such thédtikts on
bags are distributed more or less evenly, such that every label rddeive the teacher conveys a
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large amount of information to the learner. Thushould be larger for smaller. The bag size
should also grow asis reduced, since larger bags imply a higher sensitivity to error. The filtpw
analysis corroborates this intuition, and quantifies the dependence oadadl.

Following Theoren®.3, we would like to choose such that<®(¢)/d, is maximal. However,
sinced < d, < O(dlogr), i.e.d, grows relatively slowly with-, we ignore the exact value df,
and define our choice for the bag size as the valuetbét maximizes:$ (¢):

(v, €) £ argmax k2 ()
T

=argmax[(1 —a)" — (1 —a—€/2)"].
T
We shall see that though this choice is not necessarily optimal, it providesstastial reduction
in sample size. Numerical calculations show that using the upper boudd flmes not change the
resulting sample size significantly.
Differentiatingx< (¢) we obtain a single maximum infor all 0 < oo < 0.5,0 < € < 20

r*(a,€) = In (ln(in_la__ae/ 2 ) /n <1 — /2> (9.7)

As our preliminary intuition impliedr*(a, €) is monotonic decreasing im and ine. We also
speculated that the labels on bags of an optimal size should be balancédinge(«,0) =
lim,_,o+ 7*(c, €), we haver*(a,0) = —1/In(1 — a) ~ 1/a. For this value of*, P[¢(X) = 1] =
1 —1/e and the expected number of positive examples in each bag is approximatelyigare9.2
plotsP[¢(X) = 1] as a function ofx. The gray area between the two boundaries corresponds to
different values ot, in the rang€0, 2a]. This plot shows that choosing the bag size to-bey, ¢)
results in an almost constant probability of obtaining positive labels, confiroun intuition.

1.0p

— r*(a,0)
— 7r"(a,2a)

S S R S SR
0.0 0.1 0.2 0.3 0.4 0.5
«

Figure 9.2: The probability for a positive bag.
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Figure 9.3:Sample size reduction factor. Anything below 1 implies atiplitative reduction.

9.2.3 The Sample Size Reduction Factor

We can now ask whether our choicerdéfleads to a reduction in the sample size, and how large is this
reduction. Substituting Eq9(7) and Eqg. ©.6) in Eq. .5), yields an upper bound on,.« (¢) /m1 (¢),
the sample size reduction factor when using a bag ofisiz€ore — 0 we have a simplified form:

Corollary 9.5.

lim M <(1-a)ln(l —a) W_1(In(2)In(l — a)/e) -

e—0T ml(e)

e

In(2)

The bound fok € [0, 2¢] is plotted in Figured.3. Whenever the bound is smaller than 1, using
bags of size* results in a guaranteed sample size reduction. From the figure it canrbhaethis
holds fora: < 0.04. This result is only a worst case bound; The experiments describedtiose.4
show that in practice an even larger reduction is achieved, and that fitiessad for largery as well.

9.3 Finding a Separating Hyperplane using Bags: Thdé°M L Algo-
rithm

The analysis above provides bounds on the required sample size uadsstimption that it is pos-
sible to find the hypothesis with the lowest training error on samples of bagsarbitrary size. We
now turn to show how one might find the correct hypothesis efficiently. pitiblem is not trivial,
since it is not known which are the positive examples in a positive bagnlrepfrom bags with ar-
bitrary distribution is theoretically solvable in the almost realizable c&abdto and Tishhy009,
however there is no algorithm that is guaranteed to work with the small sameliaizour learning
bounds allow. Many heuristic algorithms have also been proposed fof Afitlrews et al.2002
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Andrews and Hofmanr2003 Dietterich et al.1997, Zhi-Hua Zhoy 2007, and others]. These algo-
rithms are typically quite involved, as they must deal with samples of bags witheaiptdependence
between instances. Luckily, though the MIL problem is hard in generalsetting only employs
bags with statistically independent instances, which can be expected to behasasier problem.
This case is also provably solvabBl{im and Kalaj 1998, but again only by using a large sample
size.

We proposé”’MIL (Table9.1), a simple iterative algorithm for finding a separating hyperplane
from samples of bags, following ideas fraRelzenszwalb et a[2009. PMIL executes the basic
perceptron algorithm several times on different input samples, usirgneders’ and L. Though
PMIL is a local-search algorithm for a non-convex objective and so might paitgrfind only a
local minimum, it was very successful in our experiments (see Segétidnand has almost always
found the separating hyperplane with zero or close to zero mistakes. @igates that it is prac-
tically feasible to reduce the number of required labels using bags of indepeexamples. We

defer the comparison &MIL to other possible heuristics to future work.
Table 9.1: Thé®MIL algorithm

1. Initialize a separatap randomly;

2. Repeat untill’ time has passed, or untit classifies the bags with zero training
error:

(a) Foreachbag; = (:13,16, e ,x};)‘, select a representative example from the bag
with indexiy, = argmax;(w - z7),
(b) RunL epochs of the perceptron algorithm on the sample of individual exam-
ples{(zy, yr) HiLs-

9.4 Experiments

In this section we present the results of experiments done on severaldj/fEarning problems.
In the first batch of experiments, presented in Seclignl, the procedure is tested on a finite hy-
pothesis class, using an exhaustive search for the hypothesis with tbst lwaining error. This
allows us to inspect the learning curves of the thuevithout needing to worry about the possible
sub-optimality of thePMIL algorithm. Then, in Sectiofi.4.2 we show that th®MIL algorithm is
indeed successful on both synthetic and real data sets. The experteamastrate a significant
sample size reduction that is even better than the one promised by the aridigsisurther demon-
strate that using bags improves performance even when the simplifyingjpisso thatc € H does
not hold. Moreover, it is shown that even using a small bag size yields disagm improvement.
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9.4.1 Finite hypothesis class
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0.15 0.04f —~—m=15 |
S 5 —-—m=19
o o 0.03f ——m=23
L 01 g “-or(a,€)
IS IS
o o© 0.02f
s @
0.05¢
0.01¢
% _ % 10 20 30
Bag size Bag size

Figure 9.4:Experiments on a finite hypothesis class for two differenPlots show the error as a function
of the bag size, for several sample sizes
We start by examining the actual sample complexity behavior, with experimerasfioite

hypothesis class, where the hypothesis with lowest training error is fasind exhaustive search.
We generated random examples from the dordair= {0,1}19°°, with each of the 1000 features
drawn independently with a positive example ratevpfor various values ofi. The examples were
labeled with a hypothesis from the clads= {h1, ..., hiooo}, Whereh;(z) is the value of the'th
coordinate ofr. Each experiment reported was repeated either 100 or 1000 times. Theshubov
the average true error that was achieved.

First, we wanted to check the effect of the proposed bagging stratetjyeooutput error on
individual examples: If we fix the sample size, is there an optimal bag-sizd that achieves the
lowest error? How close is the empirical optimaio ourr*(a, €)? Figure9.4 shows the average
true error of the learned hypothesis as a function of the bag size, feratif sample sizes, and
for two values ofa. Even fora as large a$.2, using bags reduces the achieved error with a fixed
sample size. The dips in the plot lines indicate the existence of an optimal bagsizedicted by
the theoretical analysis. The calculatédq, ), indicated with the dashed line, is quite close to the
empirical optimum in both plots, and yields almost optimal performance.

To visualize the improvement in learning performance compared to regylenssed learning,
we plotted the learning curves for selected bag sizes. The plots in Fdgucempare the achieved
error as a function of the sample size, for three bag sizes: one, two} éad) (rounded). The left
and middle plots show results for two values@fwith no label noise. We see a sharp improvement
in performance for ~ r*(«, 0). The improvement is sharper for the smaltleiNote also, that even
a bag with only two examples delivers a much better result than when usinggso Bhis means
that a considerable improvement can be achieved even in an applicatiatiahat only small bag
sizes.
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One of the assumptions in our theoretical analysis wasdlaf{. We now deviate from this
assumption by adding randomly flipping some of the labels creating a situatiae wigeoptimal
hypothesis has errox017 = «/3. The right plot in Figure.6 shows that even when label noise is
high compared ter, bagging improves the achieved error rate considerably.

Finally, we show a striking comparison between the required sample sizel@draing with no
bags, to the required sample size when bags of optimal size are usedv&\eclea in the analysis
that the positive example rateis a significant parameter affecting optimal bag size and expected
improvement when using bags. Asdecreases, labels on single examples become less balanced.
In regular learning, this means that more examples are required fotiedfémarning. Since it is
less informative to compare absolute error for varying-igure 9.5 examines the effect at on
the outcomeecall (the fraction of positive examples which are identified by the output hygithe
Note that by Eq.4.1), the precision is also controlled). When learning without bags (dashes)in
the required sample size for a fixed recall value grows fast dscreases. In contrast, when bags
of sizer*(«,0) are used (solid lines), the effect afdisappears completely. Thus, the use of bags
almost eliminates the effects of unbalanced labels, by changing the bagsizdiag too.

9.4.2 Experiments UsingPM L

Having investigated the sample complexity effects of the use of bags, we nototmore realistic
experiments, wher@{ is the set of separating hyperplanes, &MIL is used to find a separator.
In each setting we applied the procedure in Tableseveral times, until a separator with perfect
classification on the sample of bags was found, or one second of runtiineaksaed. If a second
had passed, we selected the separator that produced the lowest wdfietvers. L was set to 10.
The first set of experiments was on synthetic examples with no label noen diniformly
from X = [0, 1]*°. A positive label was a assigned to a fraction of sizef the cube. We performed
the experiments with different sample sizes, bag sizes, and valuesR¥IL usually succeeded

250
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Figure 9.5:The sample size to achieve a fixed recall. Compare dashedtindbags) to solid lines (= r*).
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Figure 9.6:Learning curves for the finite hypothesis class, with défgrvalues ofy:
comparing no use of bags, bags of size 2, and bags of-§{#e«). In the right plot,
some of the labels were randomly flipped.
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Figure 9.7: Learning synthetic data usiANIIL, For two differenty. The optimal bag size produces
a significant improvement over= 1

in achieving zero or almost zero error on the training set. Even for aibag&19, the algorithm
usually finished with a negligible number of errors. Fig@récompares the learning curves when
using bags and without the use of bags for two valuea.oEach dot in is the average of 1000
experiments. Here too the improvement in performance when using bagariy eisible.

Next, we tested our learning procedure on real data sets, using sanfplesg® cre-
ated from the original labeled examples. The first data set isStatlog (Shuttle) dataset
[Asuncion and Newmar2007. It was chosen due to the relative ease of classification using regular
supervised learning, which allowed us to investigate the results of usirgibagultiple experi-
ments. To make the original multi-class problem into a binary classification pnolle selected
from the training set and from the test set only examples with class 1 and$s &was mapped to
a positive label. Its occurrence in the data set is 0.067, thusr*(«, 0) ~ 14.5. The results are
plotted in Figured.8. On the left is the error as a function of the bag size for different sangss,s
showing that the lowest error is achieved, as expected, around4. In the middle we compare
the learning curve between learning with no bags, with bags of2iaad withr = 14. Here too
even a bag size &f provides a large improvement in the error.
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Figure 9.8:Left and Middle: Experiments on the Statlog data set{ 0.067). Left: the error as a function
of the bag size. Each line is a sample size. Middle: Learninges, comparing bag sizes of 1 (no bags), 2,
and 14. Right: Classifying images with faces=£ 0.1) — learning curves, comparing three bag sizes.

The second real data set we learned WRMIL was the Caltech101 image data set
[L. Fei-Fei and Perona2004, exemplified in Figure9.1. The positive class was theaces_easy
category. The negative class was all the categories excepades andBACKGROUND _Google,
since they contain images of faces. We built a random training set of 38%®srend a random
holdout set of 500 images. In both sets the we set the fraction of faces=t@).1. We extracted
1000 features from the training images using k-means clustering on inperiess detected as in
Mikolajczyk and Schmid2004, with default parameter$MIL was applied to the resulting feature
vectors with several bag sizes and sample sizes. Because of the tdawié extraction method-
ology and the relatively small number of examples of faces, the bestrateathat could be reached
using individual examples was quite high compared tand only small bag sizes could be tested.
Figure9.8 (Right) compares the learning curves fox= 1, r = 2 andr = 5, which are lower than
r*(a,0) ~ 9.5. An interesting effect can be seen: When the sample size is small, it is bets to u
bags of a smaller size. As the sample grows, larger bags become moreibénefi



Chapter 10

Discussion (Part 11)

In this part of the thesis we have provided a new theoretical analysisutiipgié Instance Learning
with any underlying hypothesis class. We have shown that the dependethe sample complexity
of generalized MIL on the number of instances in a bag is only poly-logarititimis,implying that
the statistical performance of MIL is only mildly sensitive to the size of the bale dnalysis
includes binary hypotheses, real-valued hypotheses, and margimtgash of which are used in
practice in MIL applications. For classical MIL, where the bag-labelimgfion is the Boolean OR,
and for its natural extension toax, we have presented a new learning algorithm, that classifies bags
by executing a learning algorithm designed for single instances. Thisthlggrovably PAC-learns
MIL. In both the sample complexity analysis and the computational analysisaweedhown tight
connections between classical supervised learning and Multiple Instaaaing, which holds
regardless of the underlying hypothesis class.

Many interesting open problems remain for the generic analysis of MiLattiqular, our re-
sults hold under certain assumptions on the bag functions. An interestingjapstion is whether
these assumptions are necessary, or whether useful results caridveddor other classes of bag
functions. Another interesting question is how additional structure withinga fazch as sparsity,
may affect the statistical and computational feasibility of MIL. These interggtinblems are left
for future research.

We further studied a novel paradigm for learning from a labeled samptg asteacher that
can provide OR-labels, when the cost of obtaining labels from the te&chigih, while the cost of
presenting examples to the teacher is negligible. We demonstrated that a aignifiprovement
in the error can be achieved with a fixed amount of labels, by presenting ttedéicher bags of
examples instead of individual examples. We have shown that the size baghthat should be
used has an optimum and that an almost optimal bag size can be analytically fohaPMIL
algorithm was proposed for finding a separating hyperplane with low taeiror from a sample

114
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of bags. Experiments on various types of data sets demonstrate that pgusgnomethod and
learning algorithm work well in practice, and that the method can be usedfabe exact problem
parameters are not known.
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