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Abstract. The Information Bottleneck is an information theoretic frame-
work that finds concise representations for an ‘input’ random variable
that are as relevant as possible for an ‘output’ random variable. This
framework has been used successfully in various supervised and unsu-
pervised applications. However, its learning theoretic properties and jus-
tification remained unclear as it differs from standard learning models in
several crucial aspects, primarily its explicit reliance on the joint input-
output distribution. In practice, an empirical plug-in estimate of the
underlying distribution has been used, so far without any finite sample
performance guarantees. In this paper we present several formal results
that address these difficulties. We prove several finite sample bounds,
which show that the information bottleneck can provide concise repre-
sentations with good generalization, based on smaller sample sizes than
needed to estimate the underlying distribution. The bounds are non-
uniform and adaptive to the complexity of the specific model chosen.
Based on these results, we also present a preliminary analysis on the
possibility of analyzing the information bottleneck method as a learning
algorithm in the familiar performance-complexity tradeoff framework. In
addition, we formally describe the connection between the information
bottleneck and minimal sufficient statistics.

1 Introduction

The Information Bottleneck (IB) method, introduced in [23], is an information-
theoretic framework for extracting relevant components of an ‘input’ random
variable X, with respect to an ‘output’ random variable Y . This is performed
by finding a compressed, non-parametric and model-independent representation
T of X, that is most informative about Y . Formally speaking, the notion of
compression is quantified by the mutual information between T and X, while
the informativeness is quantified by the mutual information between T and Y .
A scalar Lagrange multiplier β smoothly controls the tradeoff between these two
quantities.

The method has proven to be useful for a number of important applications
(see [24, 8, 21] and references therein), but its learning theoretic justification has



remained unclear, for two main reasons: (i) The method assumes that the joint
distribution of X and Y is known, and uses it explicitly. This stands in contrast
to most finite-sample based machine learning algorithms. In practice, the em-
pirical co-occurrence distribution is used to calculate a plug-in estimate of the
IB functional, but without explicit regularization, finite-sample generalization
bounds or error guarantees of any kind. Moreover, it was not clear what is left
to be learned if it is assumed that this distribution is known. (ii) IB is formally
related to classical information theoretic problems, such as Rate-Distortion the-
ory and Coding with Side-Information. It is, however, unclear why maximizing
mutual information about Y is useful for any “natural” learning theoretic model,
and in particular how it is related to classification error.

In this paper we provide rigorous answers to some of the above issues con-
cerning the IB framework. We focus on a learning theoretic analysis of this
framework, where X and Y are assumed to be discrete, and the empirical dis-
tribution of p(x, y) is used as a plug-in for the true distribution. We develop
several finite sample bounds, and show that despite this use of plug-in estima-
tion, the IB framework can actually generalize quite well, with realistic sample
sizes that can be much smaller than the dimensionality of this joint distribution,
provided that we are looking for a reasonably simple representation T of our
data. In fact, it is exactly the reliance of the framework on explicit manipulation
of the joint distribution that allows us to derive non-uniform bounds that are
adaptive to the complexity of the specific model chosen. In addition, we present
a preliminary analysis regarding the question in which settings the information
bottleneck can be seen as a standard learning algorithm, trading off a risk-like
term and a regularization term controlling the generalization. Finally, we discuss
its utility as a natural extension of the concept of minimal sufficient statistics
for discrimination.

The paper is organized as follows. In Sec. 2, we formally present the informa-
tion bottleneck framework and the notation used in the paper. We then turn to
analyze its finite sample behavior in Sec. 3. Sec. 4 discusses the characteristics
of the information bottleneck as a learning algorithm, while its relation to min-
imal sufficient statistics is considered in Sec. 5. Selected proofs are presented in
Sec. 6; Full proofs can be found in [19]. We finish with a discussion in Sec. 7.

2 The Information Bottleneck Framework

In this section we explain and formally describe the basic information bottleneck
(IB) framework. This framework has several variants and extensions, both to
multivariate variables and to continuous representations (see [20, 4] for more
details), but these are not the focus of this paper.

The IB framework attempts to find a simple representation of one random
variable X through an auxiliary variable T , which is relevant to another random
variable Y . Let us first exemplify how the IB method can be used for both
supervised and unsupervised learning. Consider the area of text analysis. A
typical unsupervised problem can be clustering documents based on their word-



statistics in order to discover similarities and relationships between them. In this
case the X variable is taken as the document identity (typically considered as
“bags of words”) and the Y as the words in the documents. In this case, the
T variable will be clusters of documents with similar word-statistics, based, for
instance, on the “the two sample problem” [13] similarity measure.

In a typical supervised application in this domain, X can denote the words
while Y are topic-labels of the documents. Here T are clusters of words that are
(approximately) sufficient for document categorization [24]. In all the applica-
tions a variable β allows us to smoothly move between a low resolution - highly
compressed - solution, to a solution with higher resolution and more information
about Y . This form of dimensionality reduction, a special case of the information
bottleneck, was introduced under the name of distributional clustering in [16],
and has proven to be quite effective in analyzing high dimensional data [2, 9].

In this work, we assume that X and Y take values in the finite sets X and
Y respectively, and use x and y respectively to denote elements of these sets.
The basic quantity that is utilized in the IB framework is Shannon’s mutual
information between random variables, which for discrete variables is formally
defined as:

I(X;Y ) =
∑
x∈X

∑
y∈Y

p(x, y) log
(

p(x, y)
p(x)p(y)

)
.

Mutual information is well known to be the unique measure of informative-
ness, up to a multiplicative constant, under very mild assumptions [5]. The IB
functional is built upon the relationship between minimal sufficiency and infor-
mation. It captures a tradeoff between minimality of the representation of X,
achieved by minimizing I(X;T ), and sufficiency of information on Y , achieved
by constraining the value of I(Y ;T ). The auxiliary variable T is thus determined
by the minimization of the IB-Lagrangian

LIB [p(t|x)] = I(X;T )− βI(Y ;T ) (1)

with respect to the mapping p(t|x). T is subject to the Markovian relation
T −X − Y , and p(t|x) is subject to the obvious normalization constraints. The
tradeoff parameter β is a positive Lagrange multiplier associated with the con-
straint on I(Y ;T ). Formally, T is defined over some space T , but the elements
of this space are arbitrary - only the probabilistic relationships between T and
X, Y are relevant.

The solutions of this constrained optimization problem are characterized by
the bottleneck equations,p(t|x) = p(t)

Z(β,x) exp(−β DKL[p(y|x)‖p(y|t)])
p(t) =

∑
x∈X p(t|x)p(x)

p(y|t) =
∑

x∈X p(y|x)p(x|t) ,

(2)

where DKL is the Kullback-Leibler divergence and Z(β, x) is a normalization
function. These equations need to be satisfied simultaneously, given p(x, y) and
β. In [23] it is shown that alternating iterations of these equations converge - at



least locally - to a solution for any initial p(t|x), similar to the Arimoto-Blahut
algorithm in information theory [5]. In [3] it is shown that the set of achievable
p(x, y, t) distributions form a strictly convex set in the (I(X;T ), I(Y ;T )) plane,
bounded by a smooth optimal function - the information curve - similar to the
rate-distortion function in source coding. By increasing the value of β one can
move smoothly along this curve from the trivial, I(X;T ) = I(Y ;T ) = 0 solution
at the origin, all the way to the most complex solution where T captures all the
relevant information from X and I(X;T ) = H(X), H(X) denoting the entropy
of X. In addition, as β is increased, I(Y ;T ) increases and T captures more in-
formation on Y . Due to the data-processing inequality, I(Y ;T ) ≤ I(X;Y ), with
equality only when T becomes an exact sufficient statistic for Y . The trade-
off inherent in Eq. (1) forces us to find a simple representation T of X, which
preserves only those aspects of X which are informative, i.e. relevant, about Y .

It should be emphasized that despite superficial similarities, IB is not a hid-
den variable model. In such models, we assume that the joint distribution p(x, y)
can be factorized using an auxiliary random variable T , forming a Markovian
relation X−T−Y . In IB, we make no generative assumption on the distribution,
and the Markovian relation is T −X −Y . Namely, T is a generic compression of
X, and the information-curve is characterized by the joint distribution p(x, y)
independently of any modeling assumptions.

An important observation is that the effective cardinality of an optimal T is
not fixed and depends on β. When β ≤ 1, even a trivial T of cardinality 1 will
optimize Eq. (1), since we always have I(Y ;T ) ≤ I(X;T ). On the other hand,
as β increases, more emphasis is put on informativeness with respect to Y , and
the cardinality of T will increase, although the cardinality of an optimal T need
not exceed the cardinality of X, as proven in [10].

In order to optimize Eq. (1) we need to calculate the quantities I(X;T ) and
I(Y ;T ) for any chosen T and β. Since T is defined only via X, we need to
know p(x, y) in order to calculate these two quantities. In most applications,
however, p(x, y) is unknown. Instead, we assume that we have an i.i.d sample
of m instances drawn according to p(x, y), and we use this sample to create
a maximum-likelihood estimate of the distribution using p̂(x, y), the empirical
distribution of the sample. Following current practice, this empirical estimate is
then plugged into the calculation of I(X;T ) and I(Y ;T ) instead of the true joint
distribution, and Eq. (1) is optimized using this plug-in estimate. In general,
we use the ˆ symbol to denote quantities calculated using p̂(x, y) instead of
p(x, y). Thus, instead of calculating I(X;T ) and I(Y ;T ) precisely, we rely on the
empirical estimates Î(X;T ) and Î(Y ;T ) respectively. In this work we investigate
how much these empirical estimates can deviate from the true values when we
optimize for T - in other words, whether this plug-in practice is justified. Note
that the sample size m is often smaller than the number of bins |X ||Y|, and thus
p̂(x, y) can be a very poor approximation to p(x, y). Nevertheless, this is precisely
the regime we are interested in for many applications, text categorization to name
one.



3 Finite Sample Analysis

We begin our analysis by focusing on the finite-sample behavior of the IB frame-
work, and in particular on the relationship between I(X;T ) and I(Y ;T ) that
appear in Eq. (1) and their empirical estimates Î(X;T ) and Î(Y ;T ).

Our first result shows that for any fixed T defined as a random mapping
of X via p(t|x), it is possible to determine the value of the objective function
Eq. (1) within reasonable accuracy based on a random sample. The proof outline
is provided in Sec. 6.1. The full proof can be found in [19].

Theorem 1. Let T be a given probabilistic function of X into an arbitrary finite
target space, determined by p(t|x), and let S be a sample of size m drawn from the
joint probability distribution p(X, Y ). For any confidence parameter δ ∈ (0, 1),
it holds with a probability of at least 1− δ over the sample S that

|I(X;T )− Î(X;T )| ≤
(|T | log(m) + log(|T |))

√
log(4/δ)√

2m
+
|T | − 1

m
,

and that

|I(Y ;T )− Î(Y ;T )| ≤
(3|T |+ 2) log(m)

√
log(4/δ)√

2m
+

(|Y|+ 1)(|T |+ 1)− 4
m

.

Note that the theorem holds for any fixed T , not just ones which optimize
Eq. (1). In particular, the theorem holds for any T found by an IB algorithm,
even if T is not a globally optimal solution.

The theorem shows that estimating the objective function for a certain so-
lution T is much easier than estimating p(x, y). Indeed, the bound does not
depend on |X |, which might even be countably infinite. In addition, it depends
on |Y| only as a second-order factor, since |Y| is multiplied by 1/m rather than
by 1/

√
m. The complexity of the bound is thus mainly controlled by |T |. By

constraining |T | to be small, or by setting β in Eq. (1) to be small enough so
that the optimal T has low cardinality, a tight bound can be achieved.

Thm. 1 provides us with a bound on a certain pre-specified T , where the
sample S is not part of the process of selecting T . The next theorem is a full
generalization bound, determined by the sample when it is used as a training
set by which T is selected.

For presenting the theorem compactly, we will use some extra notation. Let
x1, . . . , x|X | be some fixed ordering of the elements of X , and y1, . . . , y|Y| be an or-
dering of the elements of Y. We use the shorthand p(T = t|x) to denote the vector
(p(t|x1), . . . , p(t|x|X |)). Similarly, we denote the vector (Ĥ(T |y1), . . . , Ĥ(T |y|Y|))
by Ĥ(T |y) where Ĥ(T |yi) is the entropy of p̂(T |yi). Furthermore, the vector
(H(T |x1), . . . ,H(T |xX )) is denoted by H(T |x), where H(T |xi) is the entropy of
p(T |xi). Note that p(T |xi) is known as it defines T , and thus does not need to
be estimated empirically.



For any real-valued vector a = (a1, . . . , an), we define the function V (a) as
follows:

V (a) = ‖a− 1
n

n∑
j=1

aj‖2 ,
n∑

i=1

ai −
1
n

n∑
j=1

aj

2

. (3)

Note that 1
nV (a) is simply the variance of the elements of a. In addition, we

define the real-valued function φ as follows:

φ(x) =


0 x = 0
x log(1/x) 0 < x ≤ 1/e

1/e x > 1/e.

(4)

Note that φ is a continuous, monotonically increasing and concave function.

Theorem 2. Let S be a sample of size m drawn from the joint probability dis-
tribution p(X, Y ). For any confidence parameter δ ∈ (0, 1), it holds with a prob-
ability of at least 1− δ over the sample S that for all T , |I(X;T )− Î(X;T )| is
upper bounded by√

C log(|Y|/δ) · V (H(T |x))
m

+
∑

t

φ

(√
C log(|Y|/δ) · V (p(T = t|x))

m

)
, (5)

and |I(Y ;T )− Î(Y ;T )| is upper bounded by√
C log(|Y|/δ) · V (Ĥ(T |y))

m
+ 2

∑
t

φ

(√
C log(|Y|/δ) · V (p(T = t|x))

m

)
, (6)

where V and φ are defined in Eq. (3) and Eq. (4), and C is a small constant.

As in Thm. 1, this theorem holds for all T , not just those optimizing Eq. (1).
Also, the bound enjoys the advantage of not being uniform over a hypothesis
class of possible T ’s, but rather depending directly on the T of interest. This
is achieved by avoiding standard uniform complexity tools (see the proof for
further details).

Intuitively, these bounds tell us that the ‘smoother’ T is with respect to X,
the tighter the bound. To see this, assume that for any fixed t ∈ T , p(t|x) is more
or less the same for any choice of x. By definition, this means that V (p(T = t|x))
is close to zero. In a similar manner, if H(T |x) is more or less the same for any
x, then V (H(T |x)) is close to zero, and so is V (Ĥ(T |y)) if Ĥ(T |y) is more or
less the same for any y. In the extreme case, if T is independent of X, then
p(t|x) = p(t), H(T |x) = H(T ) and Ĥ(T |y) = Ĥ(T ) for any choice of x, y, and
the generalization bound becomes zero. This is not too surprising, since in this
case I(X;T ) = ˆI(X;T ) = 0 and I(Y ;T ) = Î(Y ;T ) = 0 regardless of p(x, y) or
its empirical estimate p̂(x, y).



This theorem thus suggests that generalization becomes better as T becomes
less statistically dependent on X, and so provides a more compressed probabilis-
tic representation of X. This is exactly in line with empirical findings [20], and
with the intuition that ‘simpler’ models should lead to better generalization.

A looser but simpler bound on Thm. 2 can be achieved by fixing the cardinal-
ity of T , and analyzing the bound with worst-case assumptions on the statistical
dependency between X and T . The proof, which is rather technical, is omitted
in this version and may be found in [19].

Theorem 3. Under the conditions and notation of Thm. 2, we have that with
a probability of at least 1− δ, for all T ,

|I(X;T )− Î(X;T )| ≤
1
2

√
C log(|Y|/δ)(

√
|T ||X | log(m)+|X | 12 log(|T |))+ 1

e |T |√
m

and

|I(Y ;T )− Î(Y ;T )| ≤

√
C log(|Y|/δ)

(√
|T ||X | log(m)+ 1

2 |Y|
1
2 log(|T |)

)
+ 2

e |T |√
m

,

where C is the same constant as in Thm. 1.

Even with this much looser bound, if |Y| is large and |T | � |Y| the bound
can be quite tight, even with sample sizes which are in general insufficient to
reasonably estimate the joint distribution p(x, y). One relevant setting is in un-
supervised learning, when Y models the feature space.

In this section, we have shown that the quantities that make up the IB
objective function can be estimated reliably from a sample of a reasonable size,
depending on the characteristics of T . In the next section we investigate the
motivation for using these quantities in the objective function in the first place.

4 A Learning Theoretic Perspective

The IB framework optimizes a trade-off between I(X;T ) and I(Y ;T ). In this
section we provide a preliminary discussion of the learning theoretic proper-
ties of this tradeoff, investigating when mutual information provides reasonable
measures for both learning complexity and accuracy.

In an unsupervised setting, such as clustering, it is rather easy to see how
I(X;T ) and I(Y ;T ) control the complexity and granularity of the clustering
by trading between homogeneity and resolution of the clusters; this has been
discussed previously in the literature (such as [24], [3]). Therefore, we will focus
here mainly on the use of this framework in supervised learning, where the
objectives are more well defined.

Most supervised learning algorithms are based on a tradeoff between two
quantities: a risk term, measuring the performance of a hypothesis on the sample
data, and a regularization term, which penalizes complex hypotheses and so
ensures reasonable generalization to unseen data. In the following we argue that
under relevant settings it is reasonable to consider I(Y ;T ) as a measure of risk
and I(X;T ) as a regularization term that controls generalization.



4.1 I(Y;T) as a Measure of Performance

In this section we investigate the plausibility of I(Y ;T ) as a measure of perfor-
mance or risk in a supervised learning setting. We show that in those supervised
learning settings where IB was demonstrated to be highly effective, such as doc-
ument categorization [22], there is a strong connection between the classification
error and the mutual information I(Y ;T ), especially when the categories are
uniformly spread. The discussion here is a first step towards a full analysis of
the IB classification performance in a more general setting, which we leave for
future work.

In a typical document classification task we model X as a random variable
over the set of possible words, and Y as a random variable over the set of
document categories or classes. Each document is treated as an i.i.d. sample of
words drawn from p(x|y), in accordance with the bag of words representation,
where y is the class of the document. Unlike the simple supervised learning
settings, where each example is described as a single data point, in this case each
example (document) to be labeled is described by a sample of points (words) of
variable size (usually large) and we seek the most probable class of the whole
sample (document) collectively.

IB is used in this setting to find T , a compressed representation of the words
in a document, which is as informative as possible on the categories Y . The
bottleneck equations Eq. (2) provide for each class y its conditional distribution
on T , via p̂(t|y) =

∑
x p(t|x)p̂(x|y). When a new document D = {x1, . . . , xn}

of size n is to be classified, the empirical distribution of T given D is p̃(t) =∑n
i=1 p(t|xi)p̂(xi). Assuming that the document is sampled according to p(t|y)

for some class y, the most probable class y∗ can be selected using the maximum
likelihood principle, namely y∗ = argminy DKL[p̃(t)‖p̂(t|y)].

We now show that Î(Y ;T ) is indeed a reasonable objective function whenever
we wish to collectively label an entire set of sampled instances.

Assume that the true class for document D is y1, with its word distrib-
ution sampled via p(t|y1). The probability αn of misclassifying this sample
as y2 for some y2 6= y1 via the likelihood test decreases exponentially with
the sample size n. The rate of exponential decrease is larger if the two dis-
tributions p(t|y1), p(t|y2) are more distinct. Formally, by Stein’s lemma [5], if
p̂(t|y1) = p(t|y1) and p̂(t|y2) = p(t|y2), then

lim
n→∞

1
n

log(αn) = DKL[p(t|y2)‖p(t|y1)]. (7)

When p̂(t|y1) and p̂(t|y2) deviate from the true conditional distributions, Stein’s
Lemma still holds up to an additive constant which depends on the amount of
deviation, and the exponent is still controlled mainly by DKL[p(t|y2)‖p(t|y1)]. In
the following we will assume for simplicity that Eq. (7) holds exactly.

The overall probability of misclassifying a document when there are more
than two possible classes is thus upper bounded by∑

y 6=y1

exp(−nDKL[p(t|y)‖p(t|y1)]). (8)



On the other hand, by the definition of mutual information and the convexity
of the Kullback-Leibler divergence we have that

I(Y ;T ) = EyDKL[p(t|y)‖p(t)] = EyDKL[p(t|y)‖Ey′p(t|y′)] (9)
≤ Ey,y′DKL[p(t|y)‖p(t|y′)],

Hence −nI(Y ;T ) is an upper bound on the expected value of the exponent in
Eq. (7), assuming that y1 and y2 are picked according to p(y). The relationship
between Eq. (9) on the one hand, and Eq. (7), Eq. (8) on the other hand, is not
direct. Nonetheless, these equations indicate that if the examples to classify are
represented by a large sample, as in the document classification setting, higher
values of I(Y ;T ) should correspond to a reduced probability of misclassification.
For example, if DKL[p(t|y)‖p(t|y1)] is equal for every y 6= y1, we have that Eq. (8)
is upper bounded by

(n− 1) exp
(
− nI(Y ;T )/ (|Y| − 1)

)
,

in which case the probability of misclassification is exponentially dominated by
I(Y ;T ). This is the case when categories are uniformly spread, which happens
for many applications incidently or by design. In this case, when the bottleneck
variable T captures just a fraction α = I(Y ;T )/I(X;Y ) of the relevant infor-
mation, the test (document) size should increase only by a factor 1/α in order
to achieve a similar bound on the classification error.

4.2 I(X;T) as a Regularization Term

In this subsection we discuss the role of I(X;T ), the compression term in IB, as a
regularizer when maximizing I(Y ;T ). Note that without regularization, I(Y ;T )
can be maximized by setting T = X. However, p(x|y) cannot be estimated
efficiently from a sample of a reasonable size; therefore the formal solution T =
X cannot be used to perform reliable classification. Moreover, in the context
of unsupervised learning, setting T = X is generally a meaningless operation,
corresponding to singleton clusters.

The bottleneck variable T must therefore be restricted to allow reasonable
generalization in a supervised setting and to generate a reasonable model in an
unsupervised setting. In the IB framework I(X;T ) can be viewed as a penalty
term that restricts the complexity of T . A more formal justification for this is
given in the following theorem, which is derived from Thm. 2. Since the proof is
quite technical, it is omitted in this version and may be found in [19].

Theorem 4. For any probability distribution p(x, y), with a probability of at
least 1− δ over the draw of the sample of size m from p(x, y), we have that for
all T ,

|I(Y ;T )− Î(Y ;T )| ≤
√

C log(|Y|/δ)
m

(
C1 log(m)

√
|T |I(X;T )

+ C2|T |3/4(I(X;T ))1/4 + C3Î(X;T )
)
,



where C is the same constant as in Thm. 1, and C1, C2, C3 depend only on p(x)
and p(y).

This bound is controlled by I(X;T ) and Î(X;T ), which are closely related as
Thm. 3 shows. This is not a fully empirical bound, as it depends on the unknown
quantity I(X;T ) and the marginal distributions of X, Y . The bound does how-
ever illustrate the relationship between the generalization error, as embodied in
the difference between I(Y ;T ) and Î(Y ;T ), and the mutual information I(X;T ).
This provides motivation for the use of I(X;T ) as a regularization term, beyond
its obvious description length interpretation or coding interpretation.

5 Relationship with Sufficient Statistics

A fundamental issue in statistics, pattern recognition, and machine learning
is the notion of relevance. Finding the relevant components of data is implic-
itly behind the problems of efficient data representation, feature selection and
dimension reduction for supervised learning, and is the essence of most unsuper-
vised learning problems. One of the earliest and more principled approaches to
relevance was the concept of sufficient statistics for parametric distributions, in-
troduced by Fisher [7] as function(s) of a sample that capture all the information
about the parameter(s). A sufficient statistic is defined as follows:

Definition 1 (Sufficient Statistic). Let Y be a parameter indexing a family
of probability distributions. Let X be random variable drawn from a probabil-
ity distribution determined by Y . Let T be a deterministic function of X. T is
sufficient for Y if

∀x ∈ X , t ∈ T , y ∈ Y p(x|t, y) = p(x|t).

Throughout this section we assume that it suffices that the equality holds almost
everywhere with respect to the probability of y and x.

In words, the sufficiency of T means that given the value of T , the distribution
of X does not depend on the value of Y .

In the parametric statistics setting, Y is a random variable that parameterizes
a family of probability distributions, and X is a data point drawn from p(x|y)
where x ∈ X and y ∈ Y. For example, the family of probability distributions
may be the set of Bernoulli distributions with success probability p determined
by y, with Y ⊆ [0, 1] and some prior distribution p(y). In this case, for a given
y, p(X = 1|y) = y, and p(X = 0|y) = 1− y.

Y and X may be high dimensional. For instance, Y may determine the mean
and the variance of a normal distribution, or fully parameterize a multinomial
distribution. X may be a high dimensional data point. For any family of prob-
ability distributions, we can consider a sample of m i.i.d data points, all drawn
from the same distribution determined by a single draw of Y . In the context of
sufficient statistics, this is just a special case of a high dimensional X which is



drawn from the cross-product of m identical probability distributions determined
by the value of Y .

Just as X and Y may be high dimensional, so can T map X to a multidi-
mensional space. If X denotes an i.i.d sample, the number of dimensions in T
may depend on the size of the sample m. Specifically, T = X is always sufficient
for Y . To avoid trivial sufficient statistics such as this, Lehmann and Scheffé
[12] introduced the concept of a minimal sufficient statistic, which denotes the
coarsest sufficient partition of X, as follows:

Definition 2 (Minimal Sufficient Statistic). A sufficient statistic S is min-
imal if and only if for any sufficient statistic T , there exists a deterministic
function f such that S = f(T ) almost everywhere w.r.t X.

For instance, for an i.i.d sample of size m of the Bernoulli distribution in the
example above, T = X is trivially a sufficient statistic, but the one-dimensional
T = 1

m

∑
i xi where x = (x1, . . . xm) is also sufficient. It can be shown that the

latter T (and any one-to-one function of it) is a minimal sufficient statistic.
By the Pitman-Koopman-Darmois theorem [17], sufficient statistics whose

dimension does not depend on the sample size exist only for families of expo-
nential form. This makes the original concept of sufficiency rather restricted.

Kullback and Leibler [11] related sufficiency to Shannon’s information theory,
showing that sufficiency is equivalent to preserving mutual information on the
parameter, while minimal sufficient statistics minimize the mutual information
with the sample due to the data-processing inequality [5].

The IB framework allows us to naturally extend this concept of relevance
to any joint distribution of X and Y , not necessarily ones of exponential form,
in a constructive computational manner. In this framework, built on Kullback’s
information theoretic characterization of sufficiency [11], one can find compact
representations T of a sample X that maximize mutual information about the
parameter variable Y , corresponding to sufficiency for Y , and minimize I(X;T ),
corresponding to the minimality of the statistic. However, unlike the original
concepts of sufficient statistic and minimal sufficient statistic, the IB framework
provides a soft tradeoff between these two objectives.

It can easily be seen that as β grows to infinity, if T is not restricted then
I(Y ;T ) converges to I(X;Y ) and T converges to a minimal sufficient statistic.
The following theorem formalizes this insight. Similar formulations of this theo-
rem can be gleaned from [11] and [5]. The full proof is presented for completeness
in [19].

Theorem 5. Let X be a sample drawn according to a distribution determined
by the random variable Y . The set of solutions to

min
T

I(X;T ) s.t. I(Y ;T ) = max
T ′

I(Y ;T ′)

is exactly the set of minimal sufficient statistics for Y based on the sample X.



The IB framework thus provides a natural generalization of the concept of a
sufficient statistic, where by setting β to lower values, different degrees of approx-
imate minimal sufficient statistics can be found, characterized by the fraction
of mutual information they maintain on the Y . Furthermore, such approximate
minimal sufficient statistics exist for any joint distribution p(X, Y ) in a contin-
uous hierarchy that is fully captured by the set of optimal IB solutions for all
values of β. These solutions lie on the information curve of the distribution.

6 Proofs

6.1 Proof of Thm. 1

Let S be a sample of size m, and let T be a probabilistic function of X into an
arbitrary finite target space, defined by p(t|x) for all x ∈ X and t ∈ T .

To prove the theorem, we bound the deviations of the information estimations
from their expectation: |Î(X;T )− E(Î(X;T ))| and |Î(Y ;T )− E(Î(Y ;T ))|, and
then use a bound on the expected bias of entropy estimation.

To bound the deviation of the information estimates, we use McDiarmid’s
inequality [14], in a manner similar to [1]. For this we must bound the change in
value of each of the entropy estimates when a single instance in S is arbitrarily
changed. A useful and easily proven inequality in that regard is the following:
for any natural m and for any a ∈ [0, 1− 1/m] and ∆ ≤ 1/m,∣∣∣(a + ∆) log(a + ∆)− a log (a)

∣∣∣ ≤ log(m)
m

. (10)

With this inequality, a careful application of McDiarmid’s inequality leads
to the following lemma. The proof of the lemma can be found in [19].

Lemma 1. For any δ1 > 0, with probability of at least 1 − δ1 over the sample,
we have that

|Î(X;T )− E[Î(X;T )] ≤
(|T | log(m) + log(|T |))

√
log(2/δ1)√

2m
. (11)

Similarly, with a probability of at least 1− δ2,

|Î(Y ;T )− E[Î(Y ;T )]| ≤
(3|T |+ 2) log(m)

√
log(2/δ2)√

2m
. (12)

Lemma 1 provides bounds on the deviation of the Î(X;T ), Î(Y ;T ) from
their expected values. In order to relate these to the true values of the mutual
information I(X;T ) and I(Y ;T ), we use the following bias bound from [15].

Lemma 2 (Paninski, 2003). For a random variable X, with the plug-in esti-
mate Ĥ(·) on its entropy, based on an i.i.d sample of size m, we have that

|E[Ĥ(X)−H(X)]| ≤ log
(

1 +
|X | − 1

m

)
≤ |X | − 1

m
.



From Lemma 2, we get that the quantities |E[H(T )−H(T )]|, |E[H(Y )−H(Y )]|,
and |E[H(Y, T )−H(Y, T )]| are upper bounded by (|T |− 1)/m, (|Y|− 1)/m and
(|Y||T | − 1)/m respectively. Combining these with Eq. (11) and Eq. (12), and
setting δ1 = δ2 = δ/2, we get the bounds in Thm. 1.

6.2 Proof of Thm. 2

The idea of the proof is as follows. We bound the quantities |I(X;T )− Î(X;T )|
and |I(Y ;T )− Î(Y ;T )| with deterministic bounds that depend on the empiri-
cal distribution and on the true underlying distribution. These bounds are fac-
torized, in the sense that quantities that depend on the empirical sample are
separated from quantities that depend on the characteristics of T . Quantities
of the first type can be bounded by concentration of measure theorems, while
quantities of the second type can be left dependent on the T we choose.

The deterministic bounds are summarized in the following lemma. The proof
of this lemma is purely technical, and may be found in [19].

Lemma 3. The following two inequalities hold:

|I(X;T )− Î(X;T )| ≤
∑

t

‖p(x)− p̂(x)‖ · φ
(√

V (p(T = t|x))
)

(13)

+ ‖p(x)− p̂(x)‖ ·
√

V (H(T |x)),

|I(Y ;T )− Î(Y ;T )| ≤
∑

t

‖p(x)− p̂(x)‖ · φ
(√

V (p(T = t|x))
)
) (14)

+
∑

y

p(y)
∑

t

φ
(
‖p̂(x|y)− p(x|y)‖ ·

√
V (p(T = t|x))

)
+ ‖p(y)− p̂(y)‖ ·

√
V (Ĥ(T |y)).

In order to transform the bounds in Eq. (13) and Eq. (14) to bounds that
do not depend on p(x), we can use concentration of measure arguments on L2

norms of random vectors, such as the following one based on an argument in
section 4.1 of [6]: Let ρ be a distribution vector of arbitrary (possible countably
infinite) cardinality, and let ρ̂ be an empirical estimation of ρ based on a sample
of size m. Then with a probability of at least 1− δ over the samples,

‖ρ− ρ̂‖2 ≤
2 +

√
2 log(1/δ)√

m
. (15)

We apply this concentration bound to ‖p(x)− p̂(x)‖, ‖p(y)− p̂(y)‖, and to
‖p̂(x|y)− p(x|y)‖ for any y in Eq. (13) and Eq. (14). To make sure the bounds
hold simultaneously over these |Y| + 2 quantities, we replace δ in Eq. (15) by
δ/(|Y| + 2). Note that the union bound is taken with respect to the marginal



distributions of p̂(x), p̂(y) and p̂(x|y), which do not depend on the T chosen.
Thus, the following bounds hold with a probability of 1− δ, for all T :

|I(X;T )− Î(X;T )| ≤ (2 +
√

2 log ((|Y|+ 2)/δ))

√
V (H(T |x))

m

+
∑

t

φ

(
(2 +

√
2 log ((|Y|+ 2)/δ))

√
V (p(T = t|x))

m

)
,

|I(Y ;T )− Î(Y ;T )| ≤ (2 +
√

2 log ((|Y|+ 2)/δ))

√
V (Ĥ(T |y))

m

+ 2
∑

t

φ

(
(2 +

√
2 log ((|Y|+ 2)/δ))

√
V (p(T = t|x))

m

)
.

To get the bounds in Thm. 2, we note that

2 +
√

2 log ((|Y|+ 2)/δ) ≤
√

C log(|Y|/δ)

where C is a small constant.
It is interesting to note that these bounds still hold in certain cases even if

X is infinite. Specifically, suppose that for all t ∈ T , p(t|x) is some constant ct

for all but a finite number of elements of X . If the definition of V (·) is replaced
with V (p(T = t|x)) =

∑
x(p(T = t|x) − ct)2, Then V (p(T = t|x)) is finite and

the proof above remains valid. Therefore, under these restrictive assumptions
the bound is valid and meaningful even though X is infinite.

7 Discussion

In this paper we analyzed the information bottleneck framework from a learn-
ing theoretic perspective. This framework has been used successfully for finding
efficient relevant data representations in various applications, but this is its first
rigorous learning theoretic analysis. Despite the fact that the information bot-
tleneck is all about manipulating the joint input-output distribution, we show
that it can generalize quite well based on plug-in empirical estimates, even with
sample sizes much smaller than needed for reliable estimation of the joint dis-
tribution. In fact, it is exactly the reliance on the joint distribution that allows
us to derive non-uniform and adaptive bounds.

Moreover, these bounds allow us to view the information bottleneck frame-
work in the more familiar learning theoretic setting of a performance-complexity
tradeoff. In particular, we provided a preliminary analysis of the role of mutual
information as both a complexity regularization term and as a bound on the
classification error for common supervised applications, such as document clas-
sification. This is the first step in providing a theoretical justification for many
applications of interest, including a characterization of the learning scenarios for
which this method is best suited. Finally, we showed how this framework extends
the classical statistical concept of minimal sufficient statistics.
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