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Abstract. The Information Bottleneck is an information theoretic framework
that finds concise representations for an ‘input’ random variable thadsrele-
vant as possible for an ‘output’ random variable. This frameworkiess used
successfully in various supervised and unsupervised applicationgeudq its
learning theoretic properties and justification remained unclear as itgffiam
standard learning models in several crucial aspects, primarily its exglicihce

on the joint input-output distribution. In practice, an empirical plug-in edtma
of the underlying distribution has been used, so far without any finite lsamp
performance guarantees. In this paper we present severall fiasudts that ad-
dress these difficulties. We prove several finite sample bounds, whast that

the information bottleneck can provide concise representations with gaod g
eralization, based on smaller sample sizes than needed to estimate thg-under
ing distribution. The bounds are non-uniform and adaptive to the coritylefx

the specific model chosen. Based on these results, we also presefitranary
analysis on the possibility of analyzing the information bottleneck method as a
learning algorithm in the familiar performance-complexity tradeoff frewr.

In addition, we formally describe the connection between the informatittebo
neck and minimal sufficient statistics.

1 Introduction

The Information Bottleneck (IB) method, introduced in [2i8]an information-theoretic
framework for extracting relevant components of an ‘inpatidom variableX, with
respect to an ‘output’ random variab¥e This is performed by finding eompressed,
non-parametric and model-independent representdtioiX , that is mosinformative
aboutY. Formally speaking, the notion of compression is quantiigdthe mutual
information betweerl” and X, while the informativeness is quantified by the mutual
information betweerl” andY . A scalar Lagrange multiplies smoothly controls the
tradeoff between these two quantities.

The method has proven to be useful for a number of importaplicgtions (see
[23, 8, 20] and references therein), but its learning thiojestification has remained
unclear, for two main reasons: (i) The method assumes tleajotht distribution of
X andY is known, and uses it explicitly. This stands in contrast twshfinite-sample



based machine learning algorithms. In practice, the eggdico-occurrence distribution
is used to calculate a plug-in estimate of the IB functiobat, without explicit regu-
larization, finite-sample generalization bounds or ernaargntees of any kind. More-
over, it was not clear what is left to be learned if it is assdrit this distribution is
known. (ii) IB is formally related to classical informatigheoretic problems, such as
Rate-Distortion theory and Coding with Side-Informatittris, however, unclear why
maximizing mutual information about is useful for any “natural” learning theoretic
model, and in particular how it is related to classificatioroe

In this paper we provide rigorous answers to some of the alssues concerning
the IB framework. We focus on a learning theoretic analy$ihis framework, where
X andY are assumed to be discrete, and the empirical distribufip(ugy) is used as a
plug-in for the true distribution. We develop several firsiganple bounds, and show that
despite this use of plug-in estimation, the IB framework aatually generalize quite
well, with realistic sample sizes that can be much smalken the dimensionality of this
joint distribution, provided that we are looking for a reaablysimplerepresentatiof
of our data. In fact, it is exactly the reliance of the framekvon explicit manipulation
of the joint distribution that allows us to derive non-umifobounds that are adaptive
to the complexity of the specific model chosen. In additios, present a preliminary
analysis regarding the question in which settings the mé&dion bottleneck can be seen
as a standard learning algorithm, trading off a risk-likertend a regularization term
controlling the generalization. Finally, we discuss ittitytas a natural extension of the
concept of minimal sufficient statistics for discriminatio

The paper is organized as follows. In Sec. 2, we formally gmethe information
bottleneck framework and the notation used in the paper.hafke turn to analyze its
finite sample behavior in Sec. 3. Sec. 4 discusses the chestics of the information
bottleneck as a learning algorithm, while its relation tonimial sufficient statistics is
considered in Sec. 5. The proofs are presented in Sec. 6,affithish with a discussion
in Sec. 7.

2 The Information Bottleneck Framework

In this section we explain and formally describe the badiarmation bottleneck (IB)
framework. This framework has several variants and exbessiboth to multivariate
variables and to continuous representations (see [19r4hdoe details), but these are
not the focus of this paper.

The IB framework attempts to find a simple representationnef mndom variable
X through an auxiliary variabl&, which is relevant to another random variableLet
us first exemplify how the IB method can be used for both supedvand unsupervised
learning. Consider the area of text analysis. A typical pesvised problem can be
clustering documents based on their word-statistics irradiscover similarities and
relationships between them. In this caseheariable is taken as the document identity
(typically considered as “bags of words”) and thieas the words in the documents.
In this case, thg" variable will be clusters of documents with similar wordistics,
based, for instance, on the “the two sample problem” [13]laiity measure.



In a typical supervised application in this domakcan denote the words whiké
are topic-labels of the documents. H&rare clusters of words that are (approximately)
sufficient for document categorization [23]. In all the apalions a variable allows us
to smoothly move between a low resolution - highly compréssslution, to a solution
with higher resolution and more information abddt This form of dimensionality
reduction, a special case of the information bottlenecls iwaoduced under the name
of distributional clustering in [16], and has proven to beteeffective in analyzing
high dimensional data [2, 9].

In this work, we assume thaf andY take values in the finite sefs and)’ respec-
tively, and user andy respectively to denote elements of these sets. The basitityua
that is utilized in the IB framework is Shannon’s mutual imfation between random
variables, which for discrete variables is formally defiaesd

Zprylog( ((ﬂfay)>

TEX yeY z)p(y)

Mutual information is well known to be the unique measurenddimativeness, up
to a multiplicative constant, under very mild assumptidjsThe IB functional is built
upon the relationship between minimal sufficiency and imf@tion. It captures a trade-
off between minimality of the representation &f, achieved by minimizind (X; T,
and sufficiency of information of”, achieved by constraining the value &fY’; T').
The auxiliary variablél” is thus determined by the minimization of the IB-Lagrangian

Liplp(tlz)] = I(X;T) — BI(Y;T) 1)

with respect to the mappingt|z). T is subject to the Markovian relatich— X — Y,
andp(t|z) is subject to the obvious normalization constraints. Thdeoff parameter
G is a positive Lagrange multiplier associated with the c@istoni(Y; T). Formally,
T is defined over some spa@g but the elements of this space are arbitrary - only the
probabilistic relationships betwe@hand X, Y are relevant.

The solutions of this constrained optimization problem eharacterized by the
bottleneck equations

p(tz) = s exp(—B D [p(yl2)[p(y1t)))
p(t) =3 ,exn p(tlr)p(z) (2)
p(lt) = > sex P(yl2)p(alt)

where Ix_ is the Kullback-Leibler divergence a3, =) is a normalization function.
These equations need to be satisfied simultaneously, giwery) andg. In [22] it is
shown that alternating iterations of these equations ageve at least locally - to a
solution for any initialp(¢|z), similar to the Arimoto-Blahut algorithm in information
theory [5]. In [3] it is shown that the set of achievahler, y,t) distributions form a
strictly convex setin thél (X;T),1(Y;T)) plane, bounded by a smooth optimal func-
tion - the information curve similar to the rate-distortion function in source coding.
By increasing the value g# one can move smoothly along this curve from the trivial,
I(X;T) = I1(Y;T) = 0 solution at the origin, all the way to the most complex soluti



whereT captures all the relevant information frakhand(X;T) = H(X), H(X) de-
noting the entropy oK . In addition, as3 is increased] (Y'; T') increases and captures
more information ornY’. Due to the data-processing inequalifyY; T') < I(X;Y),
with equality only wheril" becomes an exact sufficient statistic ¥or The tradeoff in-
herentin Eq. (1) forces us to find a simple representdfiaf X, which preserves only
those aspects of which are informative, i.e. relevant, abadut

It should be emphasized that despite superficial simia;tiB isnot a hidden vari-
able model. In such models, we assume that the joint disioibp(x, y) can be factor-
ized using an auxiliary random variatilg forming a Markovian relatiokX —7'—Y". In
IB, we make no generative assumption on the distributiod,tha Markovian relation
isT — X — Y. Namely, T is a generic compression &f, and the information-curve is
characterized by the joint distributigr{z, y) independently of any modeling assump-
tions.

An important observation is that the effective cardinatifyan optimal7" is not
fixed and depends ofi. Wheng < 1, even a trivialT' of cardinality 1 will optimize
Eq. (1), since we always havéY; T') < I(X;T). On the other hand, a$increases,
more emphasis is put on informativeness with respedf tand the cardinality of”
will increase, although the cardinality of an optinfaiheed not exceed the cardinality
of X, as proven in [10].

In order to optimize Eq. (1) we need to calculate the quastit{X’; ") and(Y; T)
for any choserl” and 8. SinceT is defined only viaX, we need to know(z,y) in
order to calculate these two quantities. In most applicatilloweverp(z,y) is un-
known. Instead, we assume that we have an i.i.d sampie ioktances drawn accord-
ing to p(z, y), and we use this sample to create a maximume-likelihood estimf the
distribution usingp(z, y), the empirical distribution of the sample. Following cuntre
practice, this empirical estimate is then plugged into thkewdation of 7(X;7) and
I(Y; T) instead of the true joint distribution, and Eq. (1) is optied using this plug-in
estimate. In general, we use thesymbol to denote quantities calculated usifg, y)
instead ofp(z, y). Thus, instead of calculating X'; 7') andI(Y’; T') precisely, we rely
on the empirical estimate§ X;7) andI(Y;T) respectively. In this work we inves-
tigate how much these empirical estimates can deviate frentrtie values when we
optimize forT - in other words, whether this plug-in practice is justifidthte that the
sample sizen is often smaller than the number of bi#||Y|, and thugi(z, y) can be
a very poor approximation tp(x, y). Nevertheless, this is precisely the regime we are
interested in for many applications, text categorizatmndme one.

3 Finite Sample Analysis

We begin our analysis by focusing on the finite-sample beinafithe IB framework,
and in particular on the relationship betwd€X ; 7') and(Y'; T') that appear in Eq. (1)
and their empirical estimatd$X; 7") andI(Y; T).

Ouir first result shows that for arfixed 7" defined as a random mapping &f via
p(t|x), it is possible to determine the value of the objective fiorcEq. (1) within
reasonable accuracy based on a random sample. The proofideut in Sec. 6.1.



Theorem 1. LetT" be a given probabilistic function of into an arbitrary finite target
space, determined by(t|z), and letS be a sample of sizex drawn from the joint
probability distributionp(X,Y"). For any confidence parametér € (0, 1), it holds
with a probability of at least — ¢ over the samplé& that

([7]1og(m) +log(|7]))y10g(4/0) | |7| -1

I(X;T) — I(X;T)| < Nor -

and that

(3|71 +2)log(m) \log(4/0) | (IP[+D(T]+1) —4
vam m '

Note that the theorem holds for any fix&d not just ones which optimize Eq. (1).
In particular, the theorem holds for afiyfound by an IB algorithm, even if’ is not a
globally optimal solution.

The theorem shows that estimating the objective functioma fcertain solutio” is
much easier than estimatipgz, y). Indeed, the bound does not depend.&h, which
might even be countably infinite. In addition, it dependg¥honly as a second-order
factor, since|)| is multiplied by 1/m rather than byl /\/m. The complexity of the
bound is thus mainly controlled b |. By constraining7 | to be small, or by setting
0 in Eqg. (1) to be small enough so that the optiriahas low cardinality, a tight bound
can be achieved.

Thm. 1 provides us with a bound on a certain pre-specifiagthere the sampl§ is
not part of the process of selectifig The next theorem is a full generalization bound,
determined by the sample when it is used as a training set lshwhis selected.

In order to present the theorem compactly, we will use sonteaotation. Let
r1,...,2x be some fixed ordering of the elementsfandyy, ...,y be an or-
dering of the elements @p. We use the shorthand(7 = t|x) to denote the vector
(p(t|z1),. .., p(t|z ). Similarly, we denote the vectO (Ty1 ), . .., H(T|yy|)) by
H(T|y) whereH (T)y;) is the entropy op(T'|y;). The vecto H (T'|z1), . .., H(T |z x))
is denoted byH (T'|x), whereH (T'|z;) is the entropy op(T'|z;). Note thatp(T'|z;) is
known as it define§’, and thus does not need to be estimated empirically.

For any real-valued vecter = (ay,...,ay), we define the functio (a) as fol-
lows:

\I(Y;T) - I(Y;T)| <

j=1 i=1

2
1 n N n 1 n
V(a)—llanZ%IIQ_Z(ainJZl%) : (3)

Note thatlV (a) is simply the variance of the elementszofin addition, we define the
real-valued functiorp as follows:

0 =0
¢(x) = qxlog(l/z) 0<z<1/e (4)
1/e x> 1/e.

Note thate is a continuous, monotonically increasing and concavetfonc



Theorem 2. LetS be a sample of sizes drawn from the joint probability distribution
p(X,Y). For any confidence parametére (0, 1), it holds with a probability of at least
1 — 4 over the samplé& that for all T,

LT - FGT)) < \/cloguy/a% V(H(T]2)) ©
¥ <\/01og /S) Vi (T=t|x))) |

and
L T) - Fv T < \/ Clog(1/6): V(LT) ©

+22¢<\/Cl°g V/0): Vip <T=m—>>>7

whereV and ¢ are defined in Eq. (3) and Eq. (4), and C is a small constant.

As in Thm. 1, this theorem holds for &ll, not just those optimizing Eq. (1). Also,
the bound enjoys the advantage of not being uniform over athgsis class of possible
T's, but rather depending directly on the of interest. This is achieved by avoiding
standard uniform complexity tools (see the proof for furttietails).

Intuitively, these bounds tell us that the ‘smootHEiis with respect toX, the tighter
the bound. To see this, assume that for any fixedZ, p(t|x) is more or less the same
for any choice ofz. By definition, this means that(p(T" = t|x)) is close to zero. In
a similar manner, iff (T'|x) is more or less the same for amy thenV (H(T'|z)) is
close to zero, and so i§(H(T'|y)) if H(T|y) is more or less the same for apyIn
the extreme case, 1 is independent oX, thenp(t|z) = p(t), H(T|z) = H(T) and

H(T|y) = H(T) for any choice ofx, y, and the generalization bound becomes zero.
This is not too surprising, since in this caeX;T) = I(X; T)=0andI(V;T) =
I(Y;T) = 0 regardless of(xz, y) or its empirical estimatg(z, ).

This theorem thus suggests that generalization becomts lbsfl’ becomes less
statistically dependent o, and so provides a more compressed probabilistic repre-
sentation ofX . This is exactly in line with empirical findings [19], and Wwithe intuition
that ‘simpler’ models should lead to better generalization

A looser but simpler bound on Thm. 2 can be achieved by fixiegctrdinality of
T, and analyzing the bound with worst-case assumptions ost#tistical dependency
betweenX and7'. The proof is provided in Sec. 6.3

Theorem 3. Under the conditions and notation of Thm. 2, we have that wipinoba-
bility of at leastl — 4, for all T,

< 3/Clog([V]/8)(/T1[X[log(m) +X| > log(|T|)) + 1|7 |

[1(X;T) = [(X;T)] N




and

VCTog([V173) (v/TT T ®]og(m) + V| log(IT1) )+ 217

[I(Y;T)-I1(Y;T)| < Jm ,

whereC is the same constant as in Thm. 1.

Even with this much looser bound, [ is large and7| < || the bound can
be quite tight, even with sample sizes which are in geneglffitient to reasonably
estimate the joint distributiop(z, y). One relevant setting is in unsupervised learning,
whenY models the feature space.

In this section, we have shown that the quantities that mgkéhe IB objective
function can be estimated reliably from a sample of a redslersaze, depending on the
characteristics of . In the next section we investigate the motivation for udimgse
quantities in the objective function in the first place.

4 A Learning Theoretic Perspective

The IB framework optimizes a trade-off betweBX; 7') andI(Y; T'). In this section
we provide a preliminary discussion of the learning theomatoperties of this tradeoff,
investigating when mutual information provides reasoaabéasures for both learning
complexity and accuracy.

In an unsupervised setting, such as clustering, it is rahey to see houi(X;T)
andI(Y'; T) control the complexity and granularity of the clusteringtiading between
homogeneity and resolution of the clusters; this has bestudsed previously in the
literature (such as [23], [3]). Therefore, we will focus @éemainly on the use of this
framework in supervised learning, where the objectivesvaree well defined.

Most supervised learning algorithms are based on a trathetffeen two quanti-
ties: a risk term, measuring the performance of a hypottasithe sample data, and
a regularization term, which penalizes complex hypotheselsso ensures reasonable
generalization to unseen data. In the following we argueuhder relevant settings it
is reasonable to considé(Y’; T') as a measure of risk arld.X ; T') as a regularization
term that controls generalization.

4.1 1(Y;T) as a Measure of Performance

In this section we investigate the plausibility&fY"; T') as a measure of performance or
risk in a supervised learning setting. We show that in thopessised learning settings
where IB was demonstrated to be highly effective, such asideat categorization
[21], there is a strong connection between the classificaioor and the mutual infor-
mation(Y’; T), especially when the categories are uniformly spread. Térugsion
here is a first step towards a full analysis of the IB clasdificgperformance in a more
general setting, which we leave for future work.

In a typical document classification task we modlehs a random variable over the
set of possible words, arid as a random variable over the set of document categories



or classes. Each document is treated as an i.i.d. samplerdéwloeawn fromp(z|y), in
accordance with the bag of words representation, whésehe class of the document.
Unlike the simple supervised learning settings, where exelmple is described as a
single data point, in this case each example (document) tadeded is described by a
sample of points (words) of variable size (usually large) ae seek the most probable
class of the whole sample (documead)lectively

IB is used in this setting to find", a compressed representation of the words in
a document, which is as informative as possible on the ceg=yg. The bottleneck
equations Eg. (2) provide for each clasis conditional distribution ofl’, via

P(tly) = p(tl)p(zly).

When a new documer® = {x1,...,z,} of sizen is to be classified, the empirical
distribution of T given D is

pt) = Zp(ﬂl"i)ﬁ(ﬂ%)-

Assuming that the document is sampled accordingtfy) for some clasg, the most
probable clasg/* can be selected using the maximum likelihood principle, elgm
y* = argmin, Dy [p(2)[|p(t]y)].

We now show thaf (Y'; T) is indeed a reasonable objective function whenever we
wish to collectively label an entire set of sampled instance

Assume that the true class for documénis v, with its word distribution sampled
via p(t|y1). The probability«,, of misclassifying this sample ag for someys # y;
via the likelihood test decreases exponentially with thega sizen. The rate of ex-
ponential decrease is larger if the two distributigrisy, ), p(¢|y2) are more distinct.
Formally, by Stein’s lemma [5], ib(t|y1) = p(t|ly1) andp(t|y2) = p(t|y2), then

T = Tog(a) = Dy (]2 [p(t131)] ™

When p(t|ly;) and p(t|ly2) deviate from the true conditional distributions, Stein’s
Lemma still holds up to an additive constant which dependsemmount of deviation,
and the exponent is still controlled mainly by Op(t|y2)||p(t|y1)]. In the following we
will assume for simplicity that Eq. (7) holds exactly.

The overall probability of misclassifying a document whieere are more than two
possible classes is thus upper bounded by

3™ exp(—nD [p(tly) [p(tly)). (®)

y#£Y1
On the other hand, by the definition of mutual information &melconvexity of the
Kullback-Leibler divergence we have that
I(Y;T) = E, D [p(ty)[Ip(2)]
= Ey D [p(t|y)|[Ey p(tly")] 9)
< EyyDre [p(t[y) [P (tly")],



Hence—nI(Y;T) is an upper bound on the expected value of the exponent ir7lq. (
assuming thag; andy- are picked according to(y). The relationship between Eq. (9)
on the one hand, and Eq. (7), Eq. (8) on the other hand, is rexttdNonetheless, these
equations indicate that if the examples to classify areasgted by a large sample, as
in the document classification setting, higher value$(df; ") should correspond to a
reduced probability of misclassification. For example, i Dv(t|y)||p(t|y1)] is equal
for everyy # y1, we have that Eq. (8) is upper bounded by

(n—1)exp (—nI(Y;T)/(I¥ - 1)),

in which case the probability of misclassification is exputrely dominated byl (Y; 7).
This is the case when categories are uniformly spread, wiapipens for many appli-
cations incidently or by design. In this case, when the bo#tk variableél” captures
just a fractiona = I(Y;T)/I(X;Y) of the relevant information, the test (document)
size should increase only by a factbfa in order to achieve a similar bound on the
classification error.

4.2 1(X;T) as a Regularization Term

In this subsection we discuss the rolel¢o¥’; 7'), the compression term in IB, as a reg-
ularizer when maximizing (Y; 7). Note that without regularizatior,(Y; T') can be
maximized by setting” = X. However,p(xz|y) cannot be estimated efficiently from a
sample of areasonable size; therefore the formal soldtien X cannot be used to per-
form reliable classification. Moreover, in the context obupervised learning, setting
T = X is generally a meaningless operation, corresponding tpetion clusters.

The bottleneck variabl& must therefore be restricted to allow reasonable general-
ization in a supervised setting and to generate a reasonaiael in an unsupervised
setting. In the IB frameworl{(X; T') can be viewed as a penalty term that restricts the
complexity of ". A more formal justification for this is given in the followgrtheorem,
which is derived from Thm. 2. The proof is provided in Sec. 6.4

Theorem 4. For any probability distributiorp(z, y), with a probability of at least — ¢
over the draw of the sample of sizefrom p(z, y), we have that for all",

Clog(|Y]/9)

[1(V5T) = 1(V3T)| < b

(C110g(m) ITII(X:T)
+ oI TPAI(XGT) Y + (X3 T) )

where(' is the same constant as in Thm. 1, afid Cs, C3 depend only omp(x) and
p(y).

This bound is controlled by (X;7T) and I(X;T), which are closely related as
Thm. 3 shows. This is not a fully empirical bound, as it defgeowl the unknown quan-
tity 7(X; T') and the marginal distributions &, Y. The bound does however illustrate
the relationship between the generalization error, as dirdan the difference between
I(Y;T) andI(Y;T), and the mutual informatioli(X; T'). This provides motivation
for the use off (X; T') as a regularization term, beyond its obvious descriptiogtie
interpretation or coding interpretation.
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5 Relationship with Sufficient Statistics

A fundamental issue in statistics, pattern recognitiod,rachine learning is the notion
of relevance. Finding the relevant components of data i$idgitip behind the problems
of efficient data representation, feature selection andedgion reduction for super-
vised learning, and is the essence of most unsupervisaurnggsroblems. One of the
earliest and more principled approaches to relevance \eaticept ofufficient statis-
ticsfor parametric distributions, introduced by Fisher [7] asdtion(s) of a sample that
capture all the information about the parameter(spufficient statistids defined as
follows:

Definition 1 (Sufficient Statistic). Let Y be a parameter indexing a family of prob-
ability distributions. LetX be random variable drawn from a probability distribution
determined by. LetT be a deterministic function of . T' is sufficient forY” if

Vee X, teT,yeY plalt,y) =pzlt).

Throughout this section we assume that it suffices that thaliég holds almost every-
where with respect to the probability gfand .

In words, the sufficiency of' means that given the value ®f, the distribution of
X does not depend on the valuelof

In the parametric statistics settirlg,is a random variable that parameterizes a fam-
ily of probability distributions, andX is a data point drawn from(x|y) wherez € X
andy € ). For example, the family of probability distributions mag the set of
Bernoulli distributions with success probabilitydetermined byy, with ) C [0, 1]
and some prior distributiop(y). In this case, for a givep, p(X = 1lly) = y, and
p(X =0ly)=1-y.

Y and X may be high dimensional. For instandé may determine the mean and
the variance of a normal distribution, or fully parameter&multinomial distribution.
X may be a high dimensional data point. For any family of prdigtulistributions,
we can consider a sample of i.i.d data points, all drawn from the same distribution
determined by a single draw a&f. In the context of sufficient statistics, this is just
a special case of a high dimensiomalwhich is drawn from the cross-product of
identical probability distributions determined by theualbfY".

Just asX andY may be high dimensional, so cdhmap X to a multidimensional
space. IfX denotes an i.i.d sample, the number of dimensioris may depend on the
size of the samplen. Specifically, T’ = X is always sufficient foy”. To avoid trivial
sufficient statistics such as this, Lehmann and Séhdf2] introduced the concept of
a minimal sufficient statistic, which denotes the coarsefficgent partition of X, as
follows:

Definition 2 (Minimal Sufficient Statistic). A sufficient statisticS is minimal if and
only if for any sufficient statisti@’, there exists a deterministic functighsuch that
S = f(T') almost everywhere w.tX .

For instance, for an i.i.d sample of sizeof the Bernoulli distribution in the exam-
ple above]” = X istrivially a sufficient statistic, but the one-dimensibfia= - >°. z;
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wherex = (x4, ... x,,) is also sufficient. It can be shown that the laffefand any one-
to-one function of it) is a minimal sufficient statistic.

By the Pitman-Koopman-Darmois theorem [17], sufficientistias whose dimen-
sion does not depend on the sample size exist only for fasniifeexponential form.
This makes the original concept of sufficiency rather retd.

Kullback and Leibler [11] related sufficiency to Shannon®irmation theory, show-
ing that sufficiency is equivalent to preserving mutual infation on the parameter,
while minimal sufficient statistics minimize the mutual anfmation with the sample
due to the data-processing inequality [5].

The IB framework allows us to naturally extend this conceptetevance to any
joint distribution of X andY’, not necessarily ones of exponential form, in a construc-
tive computational manner. In this framework, built on Katk’s information theoretic
characterization of sufficiency [11], one can find compagtesentationg’ of a sample
X that maximize mutual information about the parameter Wéei#’, corresponding to
sufficiency forY’, and minimizel (X; T'), corresponding to the minimality of the statis-
tic. However, unlike the original concepts of sufficienttistic and minimal sufficient
statistic, the IB framework provides a soft tradeoff beta#eese two objectives.

It can easily be seen that @sgrows to infinity, if 7" is not restricted thed(Y; T')
converges td (X;Y’) andT converges to a minimal sufficient statistic. The following
theorem formalizes this insight. Similar formulations bisttheorem can be gleaned
from [11] and [5]. The full proof is presented for completsaén Sec. 6.5.

Theorem 5. Let X be a sample drawn according to a distribution determinedHzy t
random variableY". The set of solutions to

n%ip I(X;T) st I(Y;T)ZI%?;XI(Y;T/)

is exactly the set of minimal sufficient statistics Yobased on the sampl¥.

The IB framework thus provides a natural generalizationhef ¢concept of a suf-
ficient statistic, where by setting to lower values, different degrees of approximate
minimal sufficient statistics can be found, characterizedhe fraction of mutual in-
formation they maintain on th&. Furthermore, such approximate minimal sufficient
statistics exist for any joint distribution( X, Y') in a continuous hierarchy that is fully
captured by the set of optimal IB solutions for all valuegioThese solutions lie on the
information curve of the distribution.

6 Proofs

6.1 Proof of Thm. 1

LetS be a sample of sizex, and letT” be a probabilistic function ok into an arbitrary
finite target space, defined byt|x) for all x € X andt € 7.

To prove the theorem, we bound the deviations of the infapnastimations from
their expectationt/(X;T') — E(I(X;T))| and|I(Y;T) — E(I(Y;T))|, and then use
a bound on the expected bias of entropy estimation.
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To bound the deviation of the information estimates, we usBigrmid’s inequality
[14], in a manner similar to [1]. For this we must bound therdein value of each of
the entropy estimates when a single instancé is arbitrarily changed. A useful and
easily proven inequality in that regard is the followingr &my naturaln and for any

€10,1—1/m]andA < 1/m,

(a+ A)log(a + A) — alog (a) | < 1Ogn(lm) . (10)

With this inequality, a careful application of McDiarmidisequality leads to the
following lemma.

Lemma 1. For anyd; > 0, with probability of at least — §, over the sample, we have

that

Similarly, with a probability of at least — ¢,

BT + 2) log(m)+/log(2/05)
V2m '

Proof. We use the equality(X;T) = H(T) — H(T|X). First, we bound the change
caused by a single replacementdi{T"). We have that

=2 p(tle)p(a)) log(Y_ p(tle)p(«))

If we change a single instance ) then there exist two pairs;, y) and(z’,y’) such
thatp(x, y) increases byl /m, andp(z’,y’) decreases by/m. This means tha(z)
andp(z’) also change by at mosfm, while all other values in the distribution remain
the same. Therefore, for eatke 7, )" p(t|x)p(x) changes by at most/m.

Based on this and Eq. (10), we have th&tI") changes by at most| log(m)/m
We now move to bound the changeAH 7’| X ). We have

H(T|X) = pla)H(T|X = ).

x

\I[(Y;T)—E[I(Y;T)]| < (12)

H(T|X = x) is dependent only op(t|x) which is known and does not depend on
the sample. Changing a single instanceSirthangesi(x) by at mostl/m for two
valuesz. Since H(T|X = z) < log(|T]), this implies thatH (T'|X) changes by
at mostlog(|7|)/m. Overall, [(X;T) = H(T) — H(T|X) can change by at most
(|7[log(m) + log(|7))/m. Invoking McDiarmid's inequality gives us Eq. (11).

We now turn tci(Y T') and perform a similar analysis using the fact th@at; 7) =
H(Y)+ H(T) — H(Y,T). First, for H(Y'), we have that

Zp ) log (p
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Changing a single instance &échange%(y) by at mostl/m for two valuesy, hence
by Eqg. (10),H (Y') changes by at mo&tlog(m)/m. For H(Y,T), we have

and

Py t) = p(tle)p(e,y)

SinceT — X — Y is a Markov chain, changing a single instanceSirmay change
> . p(tlz)p(z,y) by at mostl/m for two valuesy. Using Eq. (10), we have that
H(Y,T) can change by at mo8{7 | log(m)/m. Finally, as we saw above, by replac-
ing a single instancél (T') can change by at mo&f | log(m)/m. Overall, we have that

I(Y;T) can change by at mo&t|7 | + 2) log(m)/m. Applying McDiarmid’s inequal-
ity, we get Eq. (12).

Lemma 1 provides bounds on the deviation of t&; T), I(Y;T) from their
expected values. In order to relate these to the true valut®anutual information
I(X;T)andI(Y;T), we use the following bias bound from [15].

Lemma 2 (Paninski, 2003)For a random variableX, with the plug-in estimaté{(~)
on its entropy, based on an i.i.d sample of sizewe have that

X1
< :

; X -1
- <
[E[H(X) — H(X)]| < log (1+ - -
From this lemma, we have that the quantitBg? (7')—H (T)]|, |[E[H(Y) — H(Y)]|,
and |[E[H(Y,T) — H(Y,T)]| are upper bounded b{y7| — 1)/m, (|]¥| — 1)/m and
(IVIIT| — 1)/m respectively. Combining these with Eq. (11) and Eq. (129 setting
01 = d3 = §/2, we get the bounds in Thm. 1.

6.2 Proof of Thm. 2
The idea of the proof is as follows. We bound the quantiti¢s; 7') — I(X;T)| and

|I(Y;T) — I(Y;T)| with deterministic bounds that depend on the empiricakitist
tion and on the true underlying distribution. These bourndsfactorized, in the sense
that quantities that depend on the empirical sample areaeplafrom quantities that
depend on the characteristicsf Quantities of the first type can be bounded by con-
centration of measure theorems, while quantities of thers#type can be left depen-
dent on thel’ we choose.

The deterministic bounds are summarized in the followimgre.

Lemma 3. The following two inequalities hold:

[I(X;T) - 1(X;T)| < Z||p($)*f>(x)||'¢( V<p<T:t|x>>) (13)

+ [[p(x) = (@)l - vV (H(T]2)),
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1T 1) < Y le@) - b o (VT =) (4)
+ 3 0) Y 6 (Ip(ely) — plaly)| - VVRT = 1))

+[Ip(y) = D) - \/V(H(Ty)).
Proof. Starting with|I(X;T) — I(X;T)|, we use the fact that
1(XGT) = 1(XGT)| < [H(TIX) — H(TIX)| + [H(T) — H(T)|

and bound each of the summands on the right separately. &firthsummand, since
> .p(x) =", p(x) =1, we have that for any scalar

[H(T|X) — (T X)| = \ CE H(T|z)

- | Xt H(T|z) - a)\ (15)

< Hp( ) = p(@)[[[[H(T]x) — af,

wherep andH stand for vectors indexed by the values)f and we subtract from
all entries of the vector. Setting= ﬁ >, H(T|z) we get

\H(TIX) 1 (TIX)\ (16)
< [lp(z )| VVH(T|x)),

WhereV/(+) is defined in Eq. (3).
We now turn to bound the second summand. For the rest of tied,pre use the
following easily proven lemma.

Lemma 4. For anya,b € [0, 1],

lalog(a) — blog(b)| < é(a —b),
whereg(-) is defined in Eq. (4).
From this lemma we have that

|H(T) — H(T)| = \ > (0 Log(p(1)) = p(8)0g(F(0)
<> oot

—Z¢<Z (t]) (p(= >—ﬁ<x>>>
<6 (VBT = t)p(x) — p)]) . (17)
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where the last inequality is derived as in Eq. (15), by sgtiirf - Ed Y. p(T = t|z).
From Eg. (16) and Eq. (17) we get Eq. (13) in the lemma.
Turning now to|I(Y;T) — I(Y; T)|, we similarly use the inequality
[I(Y;T) = I(Y;T)| < [H(T|Y) — H(T|Y)| + |H(T) - H(T)|.

It remains to bound the first summand, as the second summasdlveady bounded
above. We have

H(T|Y) - T|Y|—\Z( H(Tly) - ()MT\y))\
< ‘ZP ) (H(Tly) ~ H(Tl)) | +| Z AT q8)
For the first summand in this bound we have
]Zp ) (H(@ly) - A(Tly) |
< \Zp (B(tly) 1og(p(t]y)) — p(tly) log(p(tly)) |
<2l Z(b (tly) = p(tly)

—Zp Z( p(t|z) (p(zly) — (wly))>
—Zp )Y (IB(aly) - plaly)l - V(T = tz))).,

where the last inequality is again derived similarly to Bid)( by setting: £ % >, p(tlr).
For the second summand in Eq. (18) we have

\Z D A(TI)| < @) = By) | - /VE(T]y)).

Therefore,
|H(T|Y) - H(T|Y)| <
> o) Y ¢ (Ip(ly) — plely)l - V(T = t]z)))

+p(y) = B[ -/ V(EH(T|y)). (19)
From Eq. (17) and Eq. (19) we conclude Eq. (14) in the lemma.

In order to transform the bounds in Eq. (13) and Eq. (14) tadsuhat do not de-
pend omp(x), we can use concentration of measure argumenfs,arorms of random
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vectors, such as the following one based on an argumentiiosecl of [6]: Letp be
a distribution vector of arbitrary (possible countably mit&) cardinality, and lep be
an empirical estimation gf based on a sample of size Then with a probability of at
leastl — ¢ over the samples,

o= pll < 25YZB0L0), (20)

We apply this concentration bound tp(z) — p(2)||, |lp(y) — p(y)|, and to
Ib(z|y) — p(x|y)| for anyy in Eq. (13) and Eq. (14). To make sure the bounds hold
simultaneously over thes®| + 2 quantities, we replac&in Eq. (20) bys /(|| + 2).
Note that the union bound is taken with respect to the makgiis&ributions ofp(x),
p(y) andp(z|y), which do not depend on tHE chosen. Thus, the following bounds
hold with a probability ofl — 4, for all T":

106T) — X6 T)] < (24 2Tog (9] + 270y Lo 12)

+Z¢ ((2—1— V21og (V] +2)/9)) V(p(T:t|x))> 7

m

1) 1(v:T)| < (24 V2Tog (D] + 2)/9) L )

+2) 0 <(2+ V2log (V] +2)/9)) V(P(T;ﬂ@)> .

To get the bounds in Thm. 2, we note that

2+ /2log ((|Y[ +2)/0) < /Clog(|Y/9)

whereC' is a small constant.

It is interesting to note that these bounds still hold in @iertcases even it is
infinite. Specifically, suppose that for alk 7, p(t|«) is some constant; for all but a
finite number of elements o¥. If the definition of V() is replaced with

V(p(T = tle)) = > (p(T = tlx) — ¢,)*,

x

ThenV (p(T = t|x)) is finite and the proof above remains valid. Therefore, utitese
restrictive assumptions the bound is valid and meaningfehe¢hough?’ is infinite.
6.3 Proof of Thm. 3

In this proof we apply worst-case assumptions on Thm. 2 t@admiund that does not
depend omp(t|z) but only on the cardinality of". The variance of any random variable
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bounded in0, 1] is at mostl /4. Since-V (p(T" = t|z)) is the variance of the vector
p(T = t|x), we have thaV (p(T = t|x)) < |X|/4 for anyp(t|z). Assume that

C
m > - log(|Y/0)| X |e*n? (4), (21)
for C'as in Thm. 2, then it follows that for any(t|z),

DIV =), [CsDUDR ),
< DUOIM

m

For readability, we defin® = Clog(|Y|/6)V (p(T = t|x)). Therefore we have that

Ze{n) -2 (e (5))

< ; Wlog(\\/ﬁg) + 1/67

where the last inequality follows from@log(%}) < 1/e. Reintroducing the defini-
tion of V and rearranging, we have

>0 <\/Z> < (22)
v/ Clog(|Y[/0)log(m) (Z VV(p(T = t|$))) + 2|7
NG '
To bound) ~\/V(p(T = t[x)), we note that

D VVOIT =tz)) <Y Ip(T = t]z))|2.

Finding an upper bound for the right-hand expression isvadgit to solving the fol-
lowing optimization problem

2
max a
s.t. Vo Zam =1, Vi, a;e > 0.
t

It is easily seen that in this problem we are maximizing a earfunction over a
compact convex set. It is well known (e.g. [18]) that the maadi values in this case
are achieved on vertices of the set. In other words, we cait diorselves to solu-
tions {a; .} such that for anyr, a; , = 1= wheret; is a function ofz. Letting
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by = /{z : tz = t}|, we get the following equivalent optimization problem:
max b
st > b =X, Vt b €Zy
t

To upper bound this, we can relax the integer constraintganthe following problem

max b1
b=(b1,....bj7)

st ||bla = v/]X] , beRI7I,

whose optimal solution is of coursg|X'||7’| by choosing), = \/|X|/|7| for all t. We
can plug this bound back into Eq. (22) to get that

Clog(|V]/OHV (p(T = t|lz
Z:¢<¢ ywv>m@< |»)

_ VClog([Y]/8)|X[[T|log(m) + 2|7
< N :

To complete the proof, note thak(T'|z) andH (T)y) are in[0, log(|T|)]. Therefore

(23)

V(E(T)) < FHoEITD. (24)
and )
V() < PHE D, 25)

Applying Eq. (23), Eq. (24) and Eq. (25) on the bounds in ThigeBerates the required
result.

Finally, it is easy to show that the resulting bound is tliyvitrue for m not satisfy-
ing Eg. (21), and thus this bound it true for aimy

6.4 Proof of Thm. 4

Throughout the proof we assume that our magigbertains only to values ok, Y
actually observed in the sample, and therefore w.ld29, p(y) > 0 for anyz € X,
y € Y of interest.

To prove this theorem, we will find a new upper bound for Eq, (8)ng the same
notation as in Thm. 2. As a shorthand, We denote the two sumsnainEq. (6) byS;
for the first summand an8h, for the second summand, so that we have

I(ViT) = (Y3 T)| < Sy + Sa.

We start by bounding,, and as first step will seek an upper bound§ov (p(T = t|z)).
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By definition of V() and using Bayes’ formula(t|z) = %, we have that

V(p(T =tlz)) = (26)

”(”J?( BT

Denotingl = (1,...,1), we have by the triangle inequality that

JZ< o WS )

pxlt) pz

o) 1”2+J§< |2«|Z )

N Hp(x\t)
p(z)

(fﬂ\f) \t) B

(1 m)n -1l

& el = p@)l (27)

|2+\/|7‘Z

~ ming p(x

From an inequality linking< L-divergence and thé; norm (lemma 12.6.1 in [5]),
we have that

Ip(x[t) = p(x)lr < v/2log(2)Dxe [p(x[t)[|p(x)]-
Plugging this into Eq. (27) and using Eq. (26), we get theofeihg bound:
24/21og(2)
= < Vo .
VR =) < L= 0V P D lp(e)] (28)
For notational convenience, let

g(m) = \/Clog(|y|/5) 2y/210g(2)

m min, p(x)

and letd; = Dk, [p(z|t)||p(x)]. Then, using Eg. (28), we have

Sy <23 ¢(g(m)p(t)v/dy). (29)

At this point, let us assume that givéh m is large enough so thatm)p(t)v/d; <
1/e for anyt. We will later see that this condition can be discarded. Eohs, we get
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by definition of¢(-) that

S22 gmp(OVds (18 () + 1o (p<t>1¢d7 )
= 2g(m) <log (o) O

- Ymaon (i) )

It is easily verified that for any: > 0, zlog(1/z) < /x. Using this fact and
thinking of p(¢)+/d; as a vector indexed by we have

0. 290m) (106 (L ) IOV + VooVl ).

We use the following two inequalities:

lp()Vdells < VITTIpOVdell2 < VITTIVp(t)delle,

and
Vidi|ln < VT p(t)v/dill2
Ip(t)V/dells < [T\ [1V/p(#)dd2,
to have

S0 < 29(m) (10g (- ) VITIIV A0l
+ TP Ve il )

Using the equality

Ivp(t)dell2 = VEi [Dic [p(]t)|[p(2)]] = VI(X;T),

we reach the following bound

52 < 29(m)(10g o ) VITITGT) (30)
+ITPAIGT)).

By inserting the definition ofj(m) back into the inequality, we get our final bound for
521

w (€1 1og(m)/ITI(XT) (31)

Ol TP A (X T))1/4).



21

with C; andCs as constants that depend only@fin . p(x).

Turning now toS;, we have to bound/V (H(T|y)). By definition of V(-), and
using the triangle inequality, we have

V@) < \/Z (Tly) — H(T))

(e mzmy)

For the second summand we have

2
3 (ﬁm - ﬁ 3 ﬁ(TIy’)>

= VI
= | S - )
_ \/17||ﬂ(T) ~ H(T[y)]|1,

where we think ofI(T') — H(T'|y) as a vector ranging over the valuegjofThere-
fore, we have that

1 N A
T 1+ —— | |H(T) — H(T|y)|:. 32
V(H(Ty)) < <+m> (T) = H(Tly)| (32)

It is known thatH (T) > H(Ty) for anyy, since conditioning cannot increase
entropy. Therefore

(@) - B@ < Y PO () - a@)

y ()
= i (10~ St
1 N 1 .
= mI(Y,T) < mI(X;T),

where the last inequality follows from the data processieguality. Substituting this
into Eq. (32), and sincg/| > 1, we get

< —=_I(X;T). (33)
Yy
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SettingCs = we thus have our bound fat,

2
miny, p(y)

Sy < CsI(X;T).

Clog(|Y[/6)
m
Plugging Eq. (31) and Eq. (33) into Eq. (6) gives us the boaralir theorem.
Lastly, recall that we derived this bound by assuming tftat)p(t)\/d; < 1/e for
anyt. We now show that the bound can be made trivial if this coaditioes not hold.
If the condition does not hold, there exists such thaty(m)p(t)\/d; > 1/e. Since

VIX;T) Zp )dy > p(t)

for anyt, we get that, /'I(X;T) > ﬁ(m) Since|7| > 1 andg(m) > 0, we get that
our bound in Eqg. (30) is at least

29(0m)(10g (s ) TR + [T 1)) )

S 2 <1og<1/eg<m>> - /g<em> >
>

7| = log(|T1)
Therefore if indeedy(m)p(t)\/d, > 1/e for somet, then the bound in the theorem is

trivially true, sincel (Y;T'), I(Y; T) are both within0, log(|7|)]. Hence the bound in
Thm. 4 holds for anyn.

6.5 Proof of Thm. 5

Thm. 5 follows directly from the following two lemmas.
We denote byF(X) the set of probabilistic functions of into an arbitrary target
space, and by (Y) the set of sufficient statistics fof.

Lemma 5. LetT be a probabilistic function oK. ThenT' is a sufficient statistic fo¥”
if and only if
I(V;T)= max I(Y;T")
T'eF(X)
Proof. First, assume thdf is a sufficient statistic fob”". For everyT” which is a prob-
abilistic function of X, we have the Markov chaiii — X — T". Therefore, by the data
processing inequality,(Y; X) > I(Y;7"). In addition,X € F(X). Therefore
I(V;X)= max [I(Y;T).
T'eF(X)
SinceT is a sufficient statisticy” — 7" — X is also a Markov chain, hendgY’; X') <
I(Y;T). It follows that

I(Yy;T7)=1Y;X) = T’IEHJE}E(X) I(Y;T").



23

This completes one direction of the claim. For the otherdfiom, assume that

I(Y;T)= max I(Y;T).
T'eF(X)
ThenI(Y;T) = I(Y; X). SinceY — X — T'is a Markov chain, it follows that” and
X are conditionally independent givdn(see [5]), hencé" is a sufficient statistic.

Lemma 6. LetT" be a sufficient statistic for". ThenT is a minimal sufficient statistic
for Y if and only if
. /
I(X;T) = T/Ienél(ly) I(X;T". (34)

Proof. First, letT be a minimal sufficient statistic, and [Et be some sufficient statistic.
By the definition of a minimal sufficient statistic, there i$uaction f such thatl’ =
f(T"). Therefore,X — T" — T is a Markov chain. Thereford,(X;T) < I(X;T’).
This holds for any sufficient statisti£’, hence indeed Eq. (34) holds. This completes
the first direction of the proof.

For the second direction, we show that7ifis not minimal, then there exists a
sufficient statistid” such that
I(X;T) > I(X;V), thus Eq. (34) does not hold. We will use the Fisher-Neyman
factorization theorem [7] which states thais a sufficient statistic fo¥” if and only if
there exist functioné, andgr such that

Va,y plzly) = he(z)gr(T(x),y). (35)

SinceT is not minimal, there exists a sufficient statisfi¢ such thatZ" is not a
function of 7”. Define the equivalence relatienby

gr(ti,y)

t1 ~ty —
gr(t2,y)

is a constant function adf’,

wheregr is a function satisfying Eq. (35) with sonkg-. LetV : X — 7 be a function
such that
Ve, Viz)e{t|t~T(x)}.

V isthus a function of". We use Fisher-Neyman’s theorem to show hd a sufficient
statistic: Define

gr(T(z),y)

hv (1‘) £ hT(I) gT(V(x), y)

Then
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ThereforeV has a factorization; hence it is a sufficient statistic. lefs to show that
I(X;T) > I(X; V). Vis afunction ofT”, for let z;, x5 such thatl”’ (z1) = T"(x2),
then

gr(T(21),y) _ p(x1|y)hr(z2)
gr(T(x2),y)  plaz|y)hr(z1)
_ ho(@1)gr (1" (1), y) hr (22)
hr(z1)gr (T (1), y) e (22)
- hT/((L'l)hT(iL’g)
~ hy(z)hy (z2)
HenceT'(x;) ~ T(x2), thereforeV (z1) = V(x2) for anyxy, z2 such thatl’(z;) =
T (x2).
SinceX — T — V is a Markov chain, we have

I(X;T)=1(X;V)+ I(X;T|V)
>I(X;V)+I(X;T | T',V)
=I(X;V)+I(X;T|T").

sinceT is a function ofX but is not a function off”, we have thaf (X;7 | T") > 0.
Thereforel (X;T) > I(X; V), hence Eq. (34) does not hold.

7 Discussion

In this paper we analyzed the information bottleneck fraoréirom a learning theo-
retic perspective. This framework has been used succBsulfinding efficient rel-
evant data representations in various applications, lsiights first rigorous learning
theoretic analysis. Despite the fact that the informatiotiléneck is all about manipu-
lating the joint input-output distribution, we show that#n generalize quite well based
on plug-in empirical estimates, even with sample sizes namahller than needed for
reliable estimation of the joint distribution. In fact, & éxactly the reliance on the joint
distribution that allows us to derive non-uniform and adagpbounds.

Moreover, these bounds allow us to view the information lenéck framework
in the more familiar learning theoretic setting of a perfamoe-complexity tradeoff.
In particular, we provided a preliminary analysis of theerof mutual information as
both a complexity regularization term and as a bound on thssification error for
common supervised applications, such as document clasgfic This is the first step
in providing a theoretical justification for many applicats of interest, including a
characterization of the learning scenarios for which théthad is best suited. Finally,
we showed how this framework extends the classical stdistioncept of minimal
sufficient statistics.
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