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a b s t r a c t

The Information Bottleneck is an information theoretic framework that finds concise
representations for an ‘input’ random variable that are as relevant as possible for an
‘output’ random variable. This framework has been used successfully in various supervised
and unsupervised applications. However, its learning theoretic properties and justification
remained unclear as it differs from standard learning models in several crucial aspects,
primarily its explicit reliance on the joint input–output distribution. In practice, an
empirical plug-in estimate of the underlying distribution has been used, so far without
any finite sample performance guarantees. In this paper we present several formal results
that address these difficulties. We prove several finite sample bounds, which show that
the information bottleneck can provide concise representations with good generalization,
based on smaller sample sizes than needed to estimate the underlying distribution. The
bounds are non-uniformand adaptive to the complexity of the specificmodel chosen. Based
on these results, we also present a preliminary analysis on the possibility of analyzing
the information bottleneck method as a learning algorithm in the familiar performance-
complexity tradeoff framework. In addition, we formally describe the connection between
the information bottleneck and minimal sufficient statistics.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The Information Bottleneck (IB) method, introduced in [22], is an information-theoretic framework for extracting
relevant components of an ‘input’ random variable X , with respect to an ‘output’ random variable Y . This is performed
by finding a compressed, non-parametric and model-independent representation T of X , that is most informative about
Y . Formally speaking, the notion of compression is quantified by the mutual information between T and X , while the
informativeness is quantified by themutual information between T and Y . A scalar Lagrangemultiplier β smoothly controls
the tradeoff between these two quantities.
The method has proven to be useful for a number of important applications (see [23,8,20] and references therein),

but its learning theoretic justification has remained unclear, for two main reasons: (i) The method assumes that the joint
distribution of X and Y is known, and uses it explicitly. This stands in contrast to most finite-sample basedmachine learning
algorithms. In practice, the empirical co-occurrence distribution is used to calculate a plug-in estimate of the IB functional,
but without explicit regularization, finite-sample generalization bounds or error guarantees of any kind. Moreover, it was
not clear what is left to be learned if it is assumed that this distribution is known. (ii) IB is formally related to classical
information theoretic problems, such as Rate-Distortion theory and Coding with Side-Information. It is, however, unclear
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why maximizing mutual information about Y is useful for any ‘‘natural’’ learning theoretic model, and in particular how it
is related to classification error.
In this paper we provide rigorous answers to some of the above issues concerning the IB framework. We focus on a

learning theoretic analysis of this framework, where X and Y are assumed to be discrete, and the empirical distribution of
p(x, y) is used as a plug-in for the true distribution. We develop several finite sample bounds, and show that despite this
use of plug-in estimation, the IB framework can actually generalize quite well, with realistic sample sizes that can be much
smaller than the dimensionality of this joint distribution, provided thatwe are looking for a reasonably simple representation
T of our data. In fact, it is exactly the reliance of the framework on explicit manipulation of the joint distribution that allows
us to derive non-uniform bounds that are adaptive to the complexity of the specific model chosen. In addition, we present a
preliminary analysis regarding the question in which settings the information bottleneck can be seen as a standard learning
algorithm, trading off a risk-like term and a regularization term controlling the generalization. Finally, we discuss its utility
as a natural extension of the concept of minimal sufficient statistics for discrimination.
The paper is organized as follows. In Section 2, we formally present the information bottleneck framework and the

notation used in the paper. We then turn to analyze its finite sample behavior in Section 3. Section 4 discusses the
characteristics of the information bottleneck as a learning algorithm, while its relation to minimal sufficient statistics is
considered in Section 5. The proofs are presented in Section 6, and we finish with a discussion in Section 7.

2. The information bottleneck framework

In this section we explain and formally describe the basic information bottleneck (IB) framework. This framework has
several variants and extensions, both to multivariate variables and to continuous representations (see [19,4] for more
details), but these are not the focus of this paper.
The IB framework attempts to find a simple representation of one random variable X through an auxiliary variable T ,

which is relevant to another random variable Y . Let us first exemplify how the IB method can be used for both supervised
and unsupervised learning. Consider the area of text analysis. A typical unsupervised problem can be clustering documents
based on their word-statistics in order to discover similarities and relationships between them. In this case the X variable is
taken as the document identity (typically considered as ‘‘bags of words’’) and the Y as the words in the documents. In this
case, the T variable will be clusters of documents with similar word-statistics, based, for instance, on the ‘‘the two sample
problem’’ [13] similarity measure.
In a typical supervised application in this domain, X can denote the words while Y are topic-labels of the documents.

Here T are clusters of words that are (approximately) sufficient for document categorization [23]. In all the applications a
variable β allows us to smoothly move between a low resolution – highly compressed – solution, to a solution with higher
resolution andmore information about Y . This formof dimensionality reduction, a special case of the information bottleneck,
was introduced under the name of distributional clustering in [16], and has proven to be quite effective in analyzing high
dimensional data [2,9].
In this work, we assume that X and Y take values in the finite sets X and Y respectively, and use x and y respectively

to denote elements of these sets. The basic quantity that is utilized in the IB framework is Shannon’s mutual information
between random variables, which for discrete variables is formally defined as:

I(X; Y ) =
∑
x∈X

∑
y∈Y

p(x, y) log
(
p(x, y)
p(x)p(y)

)
.

Mutual information can be shown to be the unique measure of informativeness, up to a multiplicative constant, under
very mild assumptions (see [19], Section 1.2.3). The IB functional is built upon the relationship betweenminimal sufficiency
and information. It captures a tradeoff between minimality of the representation of X , achieved by minimizing I(X; T ), and
sufficiency of information on Y , achieved by constraining the value of I(Y ; T ). The auxiliary variable T is thus determined
by the minimization of the IB-Lagrangian

LIB[p(t|x)] = I(X; T )− βI(Y ; T ) (1)

with respect to the mapping p(t|x). T is subject to the Markov chain relation T − X − Y , and p(t|x) is subject to the obvious
normalization constraints. The tradeoff parameter β is a positive Lagrange multiplier associated with the constraint on
I(Y ; T ). Formally, T is defined over some space T , but the elements of this space are arbitrary — only the probabilistic
relationships between T and X, Y are relevant.
The solutions of this constrained optimization problem are characterized by the bottleneck equations,

p(t|x)=
p(t)
Z(β, x)

exp(−β DKL[p(y|x)‖p(y|t)])

p(t)=
∑
x∈X

p(t|x)p(x)

p(y|t)=
∑
x∈X

p(y|x)p(x|t),

(2)
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where DKL is the Kullback–Leibler divergence and Z(β, x) is a normalization function. These equations need to be satisfied
simultaneously, given p(x, y) and β . In [22] it is shown that alternating iterations of these equations converge – at least
locally – to a solution for any initial p(t|x), similar to the Arimoto-Blahut algorithm in information theory [5]. In [3] it is
shown that the set of achievable p(x, y, t) distributions form a strictly convex set in the (I(X; T ), I(Y ; T )) plane, bounded by
a smooth optimal function – the information curve – similar to the rate-distortion function in source coding. By increasing
the value of β one can move smoothly along this curve from the trivial, I(X; T ) = I(Y ; T ) = 0 solution at the origin, all
the way to the most complex solution where T captures all the relevant information from X and I(X; T ) = H(X), H(X)
denoting the entropy of X . In addition, as β is increased, I(Y ; T ) increases and T captures more information on Y . Due to
the data-processing inequality, I(Y ; T ) ≤ I(X; Y ), with equality only when T becomes an exact sufficient statistic for Y . The
tradeoff inherent in Eq. (1) forces us to find a simple representation T of X , which preserves only those aspects of X which
are informative, i.e. relevant, about Y .
It should be emphasized that despite superficial similarities, IB is not a hidden variablemodel. In suchmodels, we assume

that the joint distribution p(x, y) can be factorized using an auxiliary random variable T , forming a Markovian relation
X − T − Y . In IB, we make no generative assumption on the distribution, and the Markovian relation is T − X − Y . Namely,
T is a generic compression of X , and the information-curve is characterized by the joint distribution p(x, y) independently
of any modeling assumptions.
An important observation is that the effective cardinality of an optimal T is not fixed and depends onβ .Whenβ ≤ 1, even

a trivial T of cardinality 1 will optimize Eq. (1), since we always have I(Y ; T ) ≤ I(X; T ). On the other hand, as β increases,
more emphasis is put on informativeness with respect to Y , and the cardinality of T will increase, although the cardinality
of an optimal T need not exceed the cardinality of X , as proven in [10].
In order to optimize Eq. (1) we need to calculate the quantities I(X; T ) and I(Y ; T ) for any chosen T and β . Since T is

defined only via X , we need to know p(x, y) in order to calculate these two quantities. In most applications, however, p(x, y)
is unknown. Instead, we assume that we have an i.i.d sample of m instances drawn according to p(x, y), and we use this
sample to create a maximum-likelihood estimate of the distribution using p̂(x, y), the empirical distribution of the sample.
Following current practice, this empirical estimate is then plugged into the calculation of I(X; T ) and I(Y ; T ) instead of
the true joint distribution, and Eq. (1) is optimized using this plug-in estimate. In general, we use the ˆ symbol to denote
quantities calculated using p̂(x, y) instead of p(x, y). Thus, instead of calculating I(X; T ) and I(Y ; T ) precisely, we rely on the
empirical estimates Î(X; T ) and Î(Y ; T ) respectively. These quantities depend on p(t|x), which is known and chosen by us,
and the empirical distribution p̂(x, y). In this work, we investigate howmuch these empirical estimates can deviate from the
true values when we optimize for T — in other words, whether this plug-in practice is justified. Note that the sample sizem
is often smaller than the number of bins |X||Y|, and thus p̂(x, y) can be a very poor approximation to p(x, y). Nevertheless,
this is precisely the regime we are interested in for many applications, text categorization to name one.

3. Finite sample analysis

Webegin our analysis by focusing on the finite-sample behavior of the IB framework, and in particular on the relationship
between I(X; T ) and I(Y ; T ) that appear in Eq. (1) and their empirical estimates Î(X; T ) and Î(Y ; T ).
Our first result shows that for any fixed T defined as a randommapping of X via p(t|x), it is possible to determine the value

of the objective function Eq. (1) within reasonable accuracy based on a random sample. The proof is provided in Section 6.1.

Theorem 1. Let T be a fixed probabilistic function of X into an arbitrary finite target space, determined by a fixed and known
conditional probability distribution p(t|x). Let S be a sample of size m drawn from the joint probability distribution p(X, Y ). For
any confidence parameter δ ∈ (0, 1), it holds with a probability of at least 1− δ over the sample S that

|I(X; T )− Î(X; T )| ≤
(|T | log(m)+ log(|T |))

√
log(4/δ)

√
2m

+
|T | − 1
m

,

and that

|I(Y ; T )− Î(Y ; T )| ≤
(3|T | + 2) log(m)

√
log(4/δ)

√
2m

+
(|Y| + 1)(|T | + 1)− 4

m
.

Note that the theorem holds for any fixed T , not just ones which optimize Eq. (1). In particular, the theorem holds for any
T found by an IB algorithm, even if T is not a globally optimal solution.
The theorem shows that estimating the objective function for a certain solution T is much easier than estimating p(x, y).

Indeed, the bound does not depend on |X|, which might even be countably infinite. In addition, it depends on |Y| only as
a second-order factor, since |Y| is multiplied by 1/m rather than by 1/

√
m. The complexity of the bound is thus mainly

controlled by |T |. By constraining |T | to be small, or by setting β in Eq. (1) to be small enough so that the optimal T has low
cardinality, a tight bound can be achieved.
Theorem1provides uswith a bound on a certain pre-specified T , where the sampleS is not part of the process of selecting

T . The next theorem is a full generalization bound, determined by the sample when it is used as a training set by which T is
selected.
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In order to present the theorem compactly, we will use some extra notation. Let x1, . . . , x|X| be some fixed ordering of
the elements of X, and y1, . . . , y|Y| be an ordering of the elements of Y. We use the shorthand p(T = t|x) to denote the
vector (p(t|x1), . . . , p(t|x|X|)). In a similar manner, we denote the vector (Ĥ(T |y1), . . . , Ĥ(T |y|Y|)) by Ĥ(T |y)where Ĥ(T |yi)
is the entropy of p̂(T |yi). The vector (H(T |x1), . . . ,H(T |xX)) is denoted by H(T |x), where H(T |xi) is the entropy of p(T |xi).
Note that p(T |xi) is known as it defines T , and thus does not need to be estimated empirically.
For any real-valued vector a = (a1, . . . , an), we define the function V (a) as follows:

V (a) =

∥∥∥∥∥a− 1n
n∑
j=1

aj

∥∥∥∥∥
2

,

n∑
i=1

(
ai −

1
n

n∑
j=1

aj

)2
, (3)

where ‖·‖ signifies the standard Euclidean norm (here and in the rest of the paper). Note that 1nV (a) is simply the variance
of the elements of a. In addition, we define the real-valued function φ as follows:

φ(x) =


0 x = 0
x log(1/x) 0 < x ≤ 1/e
1/e x > 1/e.

(4)

Note that φ is a continuous, monotonically increasing and concave function.
Theorem 2. Let S be a sample of size m drawn from the joint probability distribution p(X, Y ). For any confidence parameter
δ ∈ (0, 1), it holds with a probability of at least 1− δ over the sample S that for all T , |I(X; T )− Î(X; T )| is upper bounded by√

C log(|Y|/δ) · V (H(T |x))
m

+

∑
t

φ

(√
C log(|Y|/δ) · V (p(T = t|x))

m

)
, (5)

and |I(Y ; T )− Î(Y ; T )| is upper bounded by√
C log(|Y|/δ) · V (Ĥ(T |y))

m
+ 2

∑
t

φ

(√
C log(|Y|/δ) · V (p(T = t|x))

m

)
, (6)

where V and φ are defined in Eqs. (3) and (4), and C is a small constant.
As in Theorem 1, this theorem holds for all T , not just those optimizing Eq. (1). Also, the bound enjoys the advantage of

not being uniform over a hypothesis class of possible T ’s, but rather depending directly on the T of interest. This is achieved
by avoiding standard uniform complexity tools (see the proof for further details).
Intuitively, these bounds tell us that the ‘smoother’ T is with respect to X , the tighter the bound. To see this, assume that

for any fixed t ∈ T , p(t|x) is more or less the same for any choice of x. By definition, this means that V (p(T = t|x)) is close
to zero. In a similar manner, if H(T |x) is more or less the same for any x, then V (H(T |x)) is close to zero, and so is V (Ĥ(T |y))
if Ĥ(T |y) is more or less the same for any y. In the extreme case, if T is independent of X , then p(t|x) = p(t), H(T |x) = H(T )
and Ĥ(T |y) = Ĥ(T ) for any choice of x, y, and the generalization bound becomes zero. This is not too surprising, since in
this case I(X; T ) = ˆI(X; T ) = 0 and I(Y ; T ) = Î(Y ; T ) = 0 regardless of p(x, y) or its empirical estimate p̂(x, y).
This theorem thus suggests that generalization becomes better as T becomes less statistically dependent on X , and so

provides a more compressed probabilistic representation of X . This is exactly in line with empirical findings [19], and with
the intuition that ‘simpler’ models should lead to better generalization.
A looser but simpler bound on Theorem 2 can be achieved by fixing the cardinality of T , and analyzing the bound with

worst-case assumptions on the statistical dependency between X and T . The proof is provided in Section 6.3.
Theorem 3. Under the conditions and notation of Theorem 2, we have that with a probability of at least 1− δ, for all T ,

|I(X; T )− Î(X; T )| ≤
1
2

√
C log(|Y|/δ)(

√
|T ||X| log(m)+

√
|X| log(|T |))+ 1

e |T |
√
m

and

|I(Y ; T )− Î(Y ; T )| ≤

√
C log(|Y|/δ)

(√
|T ||X| log(m)+ 1

2

√
|Y| log(|T |)

)
+
2
e |T |

√
m

,

where C is the same constant as in Theorem 2.
Even with this much looser bound, if |Y| is large and |T | � |Y| the bound can be quite small, even with sample sizes

which are in general insufficient to reasonably estimate the joint distribution p(x, y). One relevant setting is in unsupervised
learning, when Y models the feature space. Also, we remind that this theorem differs from Theorem 1, in that Theorem 1
assumes that T is fixed, and the random sample is used merely to validate the performance of this T , whereas Theorem 3
assumes the random sample is used to determine T as well as its performance concurrently.
In this section, we have shown that the quantities that make up the IB objective function can be estimated reliably from

a sample of a reasonable size, depending on the characteristics of T . In the next section we investigate the motivation for
using these quantities in the objective function in the first place.
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4. A learning theoretic perspective

The IB framework optimizes a trade-off between I(X; T ) and I(Y ; T ). In this section we provide a preliminary discussion
of the learning theoretic properties of this tradeoff, investigating when mutual information provides reasonable measures
for both learning complexity and accuracy.
In an unsupervised setting, such as clustering, it is rather easy to see how I(X; T ) and I(Y ; T ) control the complexity

and granularity of the clustering by trading between homogeneity and resolution of the clusters; this has been discussed
previously in the literature (such as [23,3]). Therefore, we will focus here mainly on the use of this framework in supervised
learning, where the objectives are more well defined.
Most supervised learning algorithms are based on a tradeoff between two quantities: a risk term, measuring the

performance of a hypothesis on the sample data, and a regularization term, which penalizes complex hypotheses and so
ensures reasonable generalization to unseen data. In the following we argue that under relevant settings it is reasonable to
consider I(Y ; T ) as a measure of risk and I(X; T ) as a regularization term that controls generalization.

4.1. I(Y ; T ) as a measure of performance

In this section we investigate the plausibility of I(Y ; T ) as a measure of performance or risk in a supervised learning
setting. We show that in those supervised learning settings where IB was demonstrated to be highly effective, such as
document categorization [21], there is a strong connection between the classification error and the mutual information
I(Y ; T ), especially when the categories are uniformly spread. The discussion here is a first step towards a full analysis of the
IB classification performance in a more general setting, which we leave for future work.
In a typical document classification task we model X as a random variable over the set of possible words, and Y as a

random variable over the set of document categories or classes. Each document is treated as an i.i.d. sample of words drawn
from p(x|y), in accordance with the bag of words representation, where y is the class of the document. Unlike the simple
supervised learning settings, where each example is described as a single data point, in this case each example (document)
to be labeled is described by a sample of points (words) of variable size (usually large) and we seek the most probable class
of the whole sample (document) collectively.
IB is used in this setting to find T , a compressed representation of the words in a document, which is as informative as

possible on the categories Y . The bottleneck equations Eq. (2) provide for each class y its conditional distribution on T , via
p̂(t|y) =

∑
x p(t|x)p̂(x|y).When a new document D = {x1, . . . , xn} of size n is to be classified, the empirical distribution of

T given D is p̃(t) =
∑n
i=1 p(t|xi)p̂(xi). Assuming that the document is sampled according to p(t|y) for some class y, the most

probable class y∗ can be selected using the maximum likelihood principle, namely y∗ = argminyDKL[p̃(t)‖p̂(t|y)].
We now show that Î(Y ; T ) is indeed a reasonable objective function whenever we wish to collectively label an entire set

of sampled instances.
Assume that the true class for document D is y1, with its word distribution sampled via p(t|y1). The probability αn of

misclassifying this sample as y2 for some y2 6= y1 via the likelihood test decreases exponentially with the sample size n. The
rate of exponential decrease is larger if the two distributions p(t|y1), p(t|y2) are more distinct. Formally, by Stein’s lemma
[5], if p̂(t|y1) = p(t|y1) and p̂(t|y2) = p(t|y2), then

lim
n→∞

1
n
log(αn) = DKL[p(t|y2)‖p(t|y1)]. (7)

When p̂(t|y1) and p̂(t|y2) deviate from the true conditional distributions, Stein’s Lemma still holds up to an
additive constant which depends on the amount of deviation, and the exponent is still controlled mainly by the term
DKL[p(t|y2)‖p(t|y1)]. In the following we will assume for simplicity that Eq. (7) holds exactly.
The overall probability of misclassifying a document when there are more than two possible classes is thus upper

bounded by∑
y6=y1

exp(−nDKL[p(t|y)‖p(t|y1)]). (8)

On the other hand, by the definition ofmutual information and the convexity of the Kullback–Leibler divergencewe have
that

I(Y ; T ) = EyDKL[p(t|y)‖p(t)] = EyDKL[p(t|y)‖Ey′p(t|y′)] (9)

≤ Ey,y′DKL[p(t|y)‖p(t|y′)],

Hence −nI(Y ; T ) is an upper bound on the expected value of the exponent in Eq. (7), assuming that y1 and y2 are picked
according to p(y). The relationship between Eq. (9) on the one hand, and Eqs. (7) and (8) on the other hand, is not direct.
Nonetheless, these equations indicate that if the examples to classify are represented by a large sample, as in the document
classification setting, higher values of I(Y ; T ) should correspond to a reduced probability of misclassification. For example,
if DKL[p(t|y)‖p(t|y1)] is equal for every y 6= y1, we have that Eq. (8) is upper bounded by

(n− 1) exp
(
− nI(Y ; T )/ (|Y| − 1)

)
,
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in which case the probability of misclassification is exponentially dominated by I(Y ; T ). This is the case when categories are
uniformly spread, which happens for many applications incidently or by design. In this case, when the bottleneck variable
T captures just a fraction α = I(Y ; T )/I(X; Y ) of the relevant information, the test (document) size should increase only by
a factor 1/α in order to achieve a similar bound on the classification error.

4.2. I(X; T ) as a regularization term

Recall that the goal of the IB framework is to find a simple representation of a random variable X , which is relevant to
another random variable Y . ‘Simple’ here is obtained by the compression term I(X; T ) in the IB objective function (Eq. (1)).
In this subsection we discuss the role of I(X; T ) from a learning theoretic perspective, in particular as a regularizer when
maximizing I(Y ; T ). Note that without regularization, I(Y ; T ) can be maximized by setting T = X . However, p(x|y) cannot
be estimated efficiently from a sample of a reasonable size; therefore the formal solution T = X cannot be used to perform
reliable classification.Moreover, in the context of unsupervised learning, setting T = X is generally ameaningless operation,
corresponding to singleton clusters.
The IB framework attempts to find a simple representation of one random variable X through an auxiliary variable T ,

which is relevant to another random variable Y . Let us first exemplify how the IB method can be used for both supervised
and unsupervised learning. Consider the area of text analysis. A typical unsupervised problem can be clustering documents
based on their word-statistics in order to discover similarities and relationships between them. In this case the X variable is
taken as the document identity (typically considered as ‘‘bags of words’’) and the Y as the words in the documents. In this
case, the T variable will be clusters of documents with similar word-statistics, based, for instance, on the ‘‘the two sample
problem’’ [13] similarity measure.
In a typical supervised application in this domain, X can denote the words while Y are topic-labels of the documents.

Here T are clusters of words that are (approximately) sufficient for document categorization [23]. In all the applications a
variable β allows us to smoothly move between a low resolution - highly compressed - solution, to a solution with higher
resolution andmore information about Y . This formof dimensionality reduction, a special case of the information bottleneck,
was introduced under the name of distributional clustering in [16], and has proven to be quite effective in analyzing high
dimensional data [2,9].
The bottleneck variable T must therefore be restricted to allow reasonable generalization in a supervised setting and to

generate a reasonable model in an unsupervised setting. In the IB framework I(X; T ) can be viewed as a penalty term that
restricts the complexity of T . A more formal justification for this is given in the following theorem, which is derived from
Theorem 2. The proof is provided in Section 6.4.
Theorem 4. For any probability distribution p(x, y), with a probability of at least 1 − δ over the draw of the sample of size m
from p(x, y), we have that for all T ,

|I(Y ; T )− Î(Y ; T )| ≤

√
C log(|Y|/δ)

m

(
C1 log(m)

√
|T |I(X; T )+ C2|T |3/4(I(X; T ))1/4 + C3 Î(X; T )

)
,

where C is the same constant as in Theorem 1, and C1, C2, C3 depend only on p(x) and p(y).
This bound is similar to learning theoretic generalization bounds, where I(Y ; T )measures the performance of the learned

‘hypothesis’ T , and the bound depends on I(X; T ) and Î(X; T ), which control the complexity of the hypothesis (we note that
I(X; T ) and Î(X; T ) are closely related by Theorem 3). This is not a fully empirical bound, as it depends on the unknown
quantity I(X; T ) and the marginal distributions of X, Y . The bound does however illustrate the relationship between the
generalization error, as embodied in the difference between I(Y ; T ) and Î(Y ; T ), and the mutual information I(X; T ). This
provides motivation for the use of I(X; T ) as a regularization term, beyond its obvious description length interpretation or
coding interpretation.

5. Relationship with sufficient statistics

A fundamental issue in statistics, pattern recognition, and machine learning is the notion of relevance. Finding the
relevant components of data is implicitly behind the problems of efficient data representation, feature selection and
dimension reduction for supervised learning, and is the essence of most unsupervised learning problems. One of the earliest
and more principled approaches to relevance was the concept of sufficient statistics for parametric distributions, introduced
by Fisher [7] as function(s) of a sample that capture all the information about the parameter(s). A sufficient statistic is defined
as follows:
Definition 5 (Sufficient Statistic). Let Y be a parameter indexing a family of probability distributions. Let X be random
variable drawn from a probability distribution determined by Y . Let T be a deterministic function of X . T is sufficient for Y if

∀x ∈ X, t ∈ T , y ∈ Y p(x|t, y) = p(x|t).
Throughout this sectionwe assume that it suffices that the equality holds almost everywherewith respect to the probability
of y and x.
In words, the sufficiency of T means that given the value of T , the distribution of X does not depend on the value of Y .
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In the parametric statistics setting, Y is a random variable that parameterizes a family of probability distributions, and X
is a data point drawn from p(x|y) where x ∈ X and y ∈ Y. For example, the family of probability distributions may be the
set of Bernoulli distributions with success probability p determined by y, with Y ⊆ [0, 1] and some prior distribution p(y).
In this case, for a given y, p(X = 1|y) = y, and p(X = 0|y) = 1− y.
Y and X may be high dimensional. For instance, Y may determine the mean and the variance of a normal distribution,

or fully parameterize a multinomial distribution. X may be a high dimensional data point. For any family of probability
distributions, we can consider a sample of m i.i.d data points, all drawn from the same distribution determined by a single
draw of Y . In the context of sufficient statistics, this is just a special case of a high dimensional X which is drawn from the
cross-product ofm identical probability distributions determined by the value of Y .
Just as X and Y may be high dimensional, so can T map X to a multidimensional space. If X denotes an i.i.d sample, the

number of dimensions in T may depend on the size of the samplem. Specifically, T = X is always sufficient for Y . To avoid
trivial sufficient statistics such as this, Lehmann and Scheffé [12] introduced the concept of a minimal sufficient statistic,
which denotes the coarsest sufficient partition of X , as follows:

Definition 6 (Minimal Sufficient Statistic). A sufficient statistic S is minimal if and only if for any sufficient statistic T , there
exists a deterministic function f such that S = f (T ) almost everywhere w.r.t X .

For instance, for an i.i.d sample of sizem of the Bernoulli distribution in the example above, T = X is trivially a sufficient
statistic, but the one-dimensional T = 1

m

∑
i xi where x = (x1, . . . xm) is also sufficient. It can be shown that the latter T

(and any one-to-one function of it) is a minimal sufficient statistic.
By the Pitman–Koopman–Darmois theorem [17], sufficient statistics whose dimension does not depend on the sample

size exist only for families of exponential form. This makes the original concept of sufficiency rather restricted.
Kullback and Leibler [11] related sufficiency to Shannon’s information theory, showing that sufficiency is equivalent to

preserving mutual information on the parameter, while minimal sufficient statistics minimize the mutual information with
the sample due to the data-processing inequality [5].
The IB framework allows us to naturally extend this concept of relevance to any joint distribution of X and Y , not

necessarily ones of exponential form, in a constructive computational manner. In this framework, built on Kullback’s
information theoretic characterization of sufficiency [11], one can find compact representations T of a sample X that
maximize mutual information about the parameter variable Y , corresponding to sufficiency for Y , and minimize I(X; T ),
corresponding to the minimality of the statistic. However, unlike the original concepts of sufficient statistic and minimal
sufficient statistic, the IB framework provides a soft tradeoff between these two objectives.
It can easily be seen that as β grows to infinity, if T is not restricted then I(Y ; T ) converges to I(X; Y ) and T converges

to a minimal sufficient statistic. The following theorem formalizes this insight. Similar formulations of this theorem can be
gleaned from [11] and [5]. The full proof is presented for completeness in Section 6.5.

Theorem 7. Let X be a sample drawn according to a distribution determined by the random variable Y . The set of solutions to

min
T

I(X; T ) s.t. I(Y ; T ) = max
T ′
I(Y ; T ′)

is exactly the set of minimal sufficient statistics for Y based on the sample X.

The IB framework thus provides a natural generalization of the concept of a sufficient statistic, where by setting β to
lower values, different degrees of approximate minimal sufficient statistics can be found, characterized by the fraction of
mutual information they maintain on the Y . Furthermore, such approximate minimal sufficient statistics exist for any joint
distribution p(X, Y ) in a continuous hierarchy that is fully captured by the set of optimal IB solutions for all values of β .
These solutions lie on the information curve of the distribution.

6. Proofs

6.1. Proof of Theorem 1

Let S be a sample of sizem, and let T be a probabilistic function of X into an arbitrary finite target space, defined by p(t|x)
for all x ∈ X and t ∈ T .
To prove the theorem, we bound the deviations of the information estimations from their expectation: |Î(X; T ) −

E(Î(X; T ))| and |Î(Y ; T )− E(Î(Y ; T ))|, and then use a bound on the expected bias of entropy estimation.
To bound the deviation of the information estimates, we use McDiarmid’s inequality [14], in a manner similar to [1]. For

this we must bound the change in value of each of the entropy estimates when a single instance in S is arbitrarily changed.
A useful and easily proven inequality in that regard is the following: for any natural m and for any a ∈ [0, 1 − 1/m] and
∆ ≤ 1/m,∣∣∣(a+∆) log(a+∆)− a log (a) ∣∣∣ ≤ log(m)

m
. (10)

With this inequality, a careful application of McDiarmid’s inequality leads to the following lemma.
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Lemma 8. For any δ1 > 0, with probability of at least 1− δ1 over the sample, we have that

|Î(X; T )− E[Î(X; T )] ≤
(|T | log(m)+ log(|T |))

√
log(2/δ1)

√
2m

. (11)

Similarly, with a probability of at least 1− δ2,

|Î(Y ; T )− E[Î(Y ; T )]| ≤
(3|T | + 2) log(m)

√
log(2/δ2)

√
2m

. (12)

Proof. We use the equality Î(X; T ) = Ĥ(T )− Ĥ(T |X). First, we bound the change caused by a single replacement in Ĥ(T ).
We have that

Ĥ(T ) = −
∑
t

(∑
x

p(t|x)p̂(x)

)
log

(∑
x

p(t|x)p̂(x)

)
.

If we change a single instance inS, then there exist two pairs (x, y) and (x′, y′) such that p̂(x, y) increases by 1/m, and p̂(x′, y′)
decreases by 1/m. Thismeans that p̂(x) and p̂(x′) also change by atmost 1/m, while all other values in the distribution remain
the same. Therefore, for each t ∈ T ,

∑
x p(t|x)p̂(x) changes by at most 1/m.

Based on this and Eq. (10), Ĥ(T ) changes by at most |T | log(m)/m. We now move to bound the change in Ĥ(T |X). We
have

Ĥ(T |X) =
∑
x

p̂(x)H(T |X = x).

H(T |X = x) is dependent only on p(t|x)which is known and does not depend on the sample. Changing a single instance in
S changes p̂(x) by at most 1/m for two values x. Since H(T |X = x) ≤ log(|T |), this implies that H(T |X) changes by at most
log(|T |)/m. Overall, Î(X; T ) = Ĥ(T ) − Ĥ(T |X) can change by at most (|T | log(m) + log(|T |))/m. Invoking McDiarmid’s
inequality gives us Eq. (11).
We now turn to Î(Y ; T ) and perform a similar analysis using the fact that Î(Y ; T ) = Ĥ(Y ) + Ĥ(T ) − Ĥ(Y , T ). First, for

Ĥ(Y ), we have that

Ĥ(Y ) = −
∑
y

p̂(y) log(p̂(y)).

Changing a single instance in S changes p̂(y) by at most 1/m for two values y, hence by Eq. (10), Ĥ(Y ) changes by at most
2 log(m)/m. For Ĥ(Y , T ), we have

Ĥ(Y , T ) = −
∑
t,y

p̂(t, y) log
(
p̂(t, y)

)
and

p̂(y, t) =
∑
x

p(t|x)p̂(x, y).

Since T−X−Y is aMarkov chain, changing a single instance in Smay change
∑
x p(t|x)p̂(x, y) by atmost 1/m for two values

y. Using Eq. (10), we have that Ĥ(Y , T ) can change by at most 2|T | log(m)/m. Finally, as we saw above, by replacing a single
instance Ĥ(T ) can change by atmost |T | log(m)/m. Overall, we have that Î(Y ; T ) can change by atmost (3|T |+2) log(m)/m.
Applying McDiarmid’s inequality, we get Eq. (12). �

Lemma 8 provides bounds on the deviation of the Î(X; T ), Î(Y ; T ) from their expected values. In order to relate these to
the true values of the mutual information I(X; T ) and I(Y ; T ), we use the following bias bound from [15].

Lemma 9 (Paninski, 2003). For a random variable X, with the plug-in estimate Ĥ(·) on its entropy, based on an i.i.d sample of
size m, we have that

|E[Ĥ(X)− H(X)]| ≤ log
(
1+
|X| − 1
m

)
≤
|X| − 1
m

.

From this lemma, the quantities |E[Ĥ(T ) − H(T )]|, |E[Ĥ(Y )− H(Y )]|, and |E[Ĥ(Y , T )− H(Y , T )]| are upper bounded
by (|T | − 1)/m, (|Y| − 1)/m and (|Y||T | − 1)/m respectively. Combining these with Eqs. (11) and (12), and setting
δ1 = δ2 = δ/2, we get the bounds in Theorem 1.
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6.2. Proof of Theorem 2

The idea of the proof is as follows. We bound the quantities |I(X; T )− Î(X; T )| and |I(Y ; T )− Î(Y ; T )|with deterministic
bounds that depend on the empirical distribution and on the true underlying distribution. These bounds are factorized, in the
sense that quantities that depend on the empirical sample are separated from quantities that depend on the characteristics
of T . Quantities of the first type can be bounded by concentration of measure theorems, while quantities of the second type
can be left dependent on the T we choose.
The deterministic bounds are summarized in the following lemma.

Lemma 10. The following two inequalities hold:

|I(X; T )− Î(X; T )| ≤
∑
t

∥∥p(x)− p̂(x)
∥∥ · φ (√V (p(T = t|x)))+ ∥∥p(x)− p̂(x)

∥∥ ·√V (H(T |x)), (13)

|I(Y ; T )− Î(Y ; T )| ≤
∑
t

∥∥p(x)− p̂(x)
∥∥ · φ (√V (p(T = t|x)))

+

∑
y

p(y)
∑
t

φ
(∥∥p̂(x|y)− p(x|y)

∥∥ ·√V (p(T = t|x)))
+
∥∥p(y)− p̂(y)

∥∥ ·√V (Ĥ(T |y)). (14)

Proof. Starting with |I(X; T )− Î(X; T )|, we use the fact that

|I(X; T )− Î(X; T )| ≤ |H(T |X)− Ĥ(T |X)| + |H(T )− Ĥ(T )|

and bound each of the summands on the right separately. For the first summand, since
∑
x p(x) =

∑
x p̂(x) = 1, we have

that for any scalar a,

|H(T |X)− Ĥ(T |X)| =

∣∣∣∣∣∑x (p(x)− p̂(x))H(T |x)
∣∣∣∣∣

=

∣∣∣∣∣∑x (p(x)− p̂(x))(H(T |x)− a)
∣∣∣∣∣

≤
∥∥p(x)− p̂(x)

∥∥ ‖H(T |x)− a‖ , (15)

where p and H stand for vectors indexed by the values of X , and we subtract a from all entries of the vector. Setting
a = 1

|X|

∑
x H(T |x)we get

|H(T |X)− Ĥ(T |X)| ≤
∥∥p(x)− p̂(x)

∥∥√V (H(T |x)), (16)

where V (·) is defined in Eq. (3).
We now turn to bound the second summand. For the rest of the proof, we use the following easily proven lemma.

Lemma 11. For any a, b ∈ [0, 1],

|a log(a)− b log(b)| ≤ φ(|a− b|),

where φ(·) is defined in Eq. (4).

From this lemma we have that

|H(T )− Ĥ(T )| =

∣∣∣∣∣∑t p(t) log(p(t))− p̂(t) log(p̂(t))
∣∣∣∣∣

≤

∑
t

φ(|p(t)− p̂(t)|)

=

∑
t

φ

(∣∣∣∣∣∑x p(t|x)(p(x)− p̂(x))
∣∣∣∣∣
)

≤

∑
t

φ
(∥∥p(x)− p̂(x)

∥∥√V (p(T = t|x))) , (17)

where the last inequality is derived as in Eq. (15), by setting a , 1
|X|

∑
x p(T = t|x).

From Eqs. (16) and (17) we get Eq. (13) in the lemma.
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Turning now to |I(Y ; T )− Î(Y ; T )|, we similarly use the inequality
|I(Y ; T )− Î(Y ; T )| ≤ |H(T |Y )− Ĥ(T |Y )| + |H(T )− Ĥ(T )|.

It remains to bound the first summand, as the second summand was already bounded above. We have

|H(T |Y )− Ĥ(T |Y )| =

∣∣∣∣∣∑y
(
p(y)H(T |y)− p̂(y)Ĥ(T |y)

)∣∣∣∣∣
≤

∣∣∣∣∣∑y p(y)
(
H(T |y)− Ĥ(T |y)

)∣∣∣∣∣+
∣∣∣∣∣∑y (p(y)− p̂(y))Ĥ(T |y)

∣∣∣∣∣ . (18)

For the first summand in this bound we have∣∣∣∣∣∑y p(y)
(
H(T |y)− Ĥ(T |y)

)∣∣∣∣∣ ≤
∣∣∣∣∣∑y p(y)

∑
t

(
p̂(t|y) log(p̂(t|y))− p(t|y) log(p(t|y))

)∣∣∣∣∣
≤

∑
y

p(y)
∑
t

φ
(∣∣p̂(t|y)− p(t|y)∣∣)

=

∑
y

p(y)
∑
t

φ

(∣∣∣∣∣∑x p(t|x) (p̂(x|y)− p(x|y))
∣∣∣∣∣
)

=

∑
y

p(y)
∑
t

φ
(∥∥p̂(x|y)− p(x|y)

∥∥√V (p(T = t|x))) ,
where the last inequality is again derived similarly to Eq. (15), by setting a , 1

X

∑
x p(t|x). For the second summand in

Eq. (18) we have∣∣∣∣∣∑y (p(y)− p̂(y))Ĥ(T |y)
∣∣∣∣∣ ≤ ∥∥p(y)− p̂(y)

∥∥ ·√V (Ĥ(T |y)).
Therefore,

|H(T |Y )− Ĥ(T |Y )| ≤
∑
y

p(y)
∑
t

φ
(∥∥p̂(x|y)− p(x|y)

∥∥ ·√V (p(T = t|x)))+ ∥∥p(y)− p̂(y)
∥∥ ·√V (Ĥ(T |y)). (19)

From Eqs. (17) and (19) we conclude Eq. (14) in the lemma. �
In order to transform the bounds in Eqs. (13) and (14) to bounds that do not depend on p(x), we can use concentration

of measure arguments on L2 norms of random vectors, such as the following one based on an argument in section 4.1 of [6]:
Let ρ be a distribution vector of arbitrary (possible countably infinite) cardinality, and let ρ̂ be an empirical estimation of ρ
based on a sample of sizem. Then with a probability of at least 1− δ over the samples,∥∥ρ − ρ̂∥∥ ≤ 2+√2 log(1/δ)√

m
. (20)

We apply this concentration bound to
∥∥p(x)− p̂(x)

∥∥, ∥∥p(y)− p̂(y)
∥∥, and to ∥∥p̂(x|y)− p(x|y)

∥∥ for any y in Eqs. (13) and
(14). To make sure the bounds hold simultaneously over these |Y| + 2 quantities, we replace δ in Eq. (20) by δ/(|Y| + 2).
Note that the union bound is taken with respect to the marginal distributions of p̂(x), p̂(y) and p̂(x|y), which do not depend
on the T chosen. Thus, the following bounds hold with a probability of 1− δ, for all T :

|I(X; T )− Î(X; T )| ≤ (2+
√
2 log ((|Y| + 2)/δ))

√
V (H(T |x))
m

+

∑
t

φ

(
(2+

√
2 log ((|Y| + 2)/δ))

√
V (p(T = t|x))

m

)
,

|I(Y ; T )− Î(Y ; T )| ≤ (2+
√
2 log ((|Y| + 2)/δ))

√
V (Ĥ(T |y))
m

+ 2
∑
t

φ

(
(2+

√
2 log ((|Y| + 2)/δ))

√
V (p(T = t|x))

m

)
.

To get the bounds in Theorem 2, we note that
2+

√
2 log ((|Y| + 2)/δ) ≤

√
C log(|Y|/δ)

where C is a small constant.
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6.3. Proof of Theorem 3

In this proof we apply worst-case assumptions on Theorem 2 to get a bound that does not depend on p(t|x) but only
on the cardinality of T . The variance of any random variable bounded in [0, 1] is at most 1/4. Since 1nV (p(T = t|x)) is the
variance of the vector p(T = t|x), we have that V (p(T = t|x)) ≤ |X|/4 for any p(t|x). Assume that

m ≥
C
4
log(|Y|/δ)|X|e2n2(δ), (21)

for C as in Theorem 2, then it follows that for any p(t|x),√
C log(|Y|/δ)V (p(T = t|x))

m
≤

√
C log(|Y|/δ)|X|

4m
≤ 1/e.

For readability, we define V , C log(|Y|/δ)V (p(T = t|x)). Therefore we have that∑
t

φ

(√
V

m

)
=

∑
t

(√
V

m
log

(√
m
V

))

≤

∑
t

√
V log(

√
m)+ 1/e
√
m

,

where the last inequality follows from
√

V log( 1√
V
) ≤ 1/e. Reintroducing the definition of V and rearranging, we have

∑
t

φ

(√
V

m

)
≤

√
C log(|Y|/δ) log(m)

(∑
t

√
V (p(T = t|x))

)
+
2
e |T |

2
√
m

. (22)

To bound
∑
t

√
V (p(T = t|x)), we note that∑

t

√
V (p(T = t|x)) ≤

∑
t

‖p(T = t|x)‖2 .

Finding an upper bound for the right-hand expression is equivalent to solving the following optimization problem

max
ai,j

∑
t

√∑
x

a2t,x

s.t. ∀x
∑
t

at,x = 1, ∀t, x at,x ≥ 0.

It is easily seen that in this problem we are maximizing a convex function over a compact convex set. It is well known
(e.g. [18]) that the maximal values in this case are achieved on vertices of the set. In other words, we can limit ourselves to
solutions {at,x} such that for any x, at,x = 1t=t∗x where t

∗
x is a function of x. Letting bt =

√
|{x : t∗x = t}|, we get the following

equivalent optimization problem:

max
bt

∑
t

bt

s.t.
∑
t

b2t = |X|, ∀t b
2
t ∈ Z+.

To upper bound this, we can relax the integer constraint, and get the following problem

max
b=(b1,...,b|T |)

‖b‖1

s.t. ‖b‖2 =
√
|X|, b ∈ R|T |,

whose optimal solution is of course
√
|X||T | by choosing bt =

√
|X|/|T | for all t . We can plug this bound back into Eq. (22)

to get that∑
t

φ

(√
C log(|Y|/δ)V (p(T = t|x))

m

)
≤

√
C log(|Y|/δ)|X||T | log(m)+ 2

e |T |

2
√
m

. (23)

To complete the proof, note that H(T |x) and Ĥ(T |y) are in [0, log(|T |)]. Therefore

V (H(T |x)) ≤
|X| log2(|T |)

4
, (24)
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and

V (Ĥ(T |y)) ≤
|Y| log2(|T |)

4
, (25)

Applying Eqs. (23)–(25) on the bounds in Theorem 2 generates the required result.
Finally, it is easy to show that the resulting bound is trivially true form not satisfying Eq. (21), and thus this bound it true

for anym.

6.4. Proof of Theorem 4

Throughout the proof we assume that our model T pertains only to values of X, Y actually observed in the sample, and
therefore w.l.o.g p(x), p(y) > 0 for any x ∈ X, y ∈ Y of interest.
To prove this theorem,wewill find anewupper bound for Eq. (6), using the samenotation as in Theorem2. As a shorthand,

we denote the two summands of Eq. (6) by S1 for the first summand and S2 for the second summand, so that we have

|I(Y ; T )− Î(Y ; T )| ≤ S1 + S2.

We start by bounding S2, first seeking an upper bound for
√
V (p(T = t|x)).

By definition of V (·) and using Bayes’ formula p(t|x) = p(x|t)p(t)
p(x) , we have that

√
V (p(T = t|x)) = p(t)

√√√√∑
x

(
p(x|t)
p(x)

−
1
|X|

∑
x′

p(x′|t)
p(x′)

)2
. (26)

Denoting 1 = (1, . . . , 1), we have by the triangle inequality that√√√√∑
x

(
p(x|t)
p(x)

−
1
|X|

∑
x′

p(x′|t)
p(x′)

)2
≤

∥∥∥∥p(x|t)p(x)
− 1

∥∥∥∥
2
+

√√√√∑
x

(
1−

1
|X|

∑
x′

p(x′|t)
p(x′)

)2

=

∥∥∥∥p(x|t)p(x)
− 1

∥∥∥∥
2
+

1
√
|X|

∣∣∣∣∣∑
x′

(
1−

p(x′|t)
p(x′)

)∣∣∣∣∣
=

∥∥∥∥p(x|t)p(x)
− 1

∥∥∥∥
2
+

1
√
|X|

∥∥∥∥p(x|t)p(x)
− 1

∥∥∥∥
1

≤

(
1+

1
√
|X|

)∥∥∥∥p(x|t)p(x)
− 1

∥∥∥∥
1

≤
2

minx p(x)
‖p(x|t)− p(x)‖1 . (27)

From an inequality linking KL-divergence and the L1 norm (lemma 12.6.1 in [5]), we have that

‖p(x|t)− p(x)‖1 ≤
√
2 log(2)DKL[p(x|t)‖p(x)].

Plugging this into Eq. (27) and using Eq. (26), we get the following bound:√
V (p(T = t|x)) ≤

2
√
2 log(2)

minx p(x)
p(t)

√
DKL[p(x|t)‖p(x)]. (28)

For notational convenience, let

g(m) =

√
C log(|Y|/δ)

m
·
2
√
2 log(2)

minx p(x)
,

and let dt = DKL[p(x|t)‖p(x)]. Then, using Eq. (28), we have

S2 ≤ 2
∑
t

φ(g(m)p(t)
√
dt). (29)

At this point, let us assume that given T , the sample sizem is large enough so that g(m)p(t)
√
dt ≤ 1/e for any t . We will

later see that this condition can be discarded. For suchm, we get by definition of φ(·) that

S2 ≤ 2
∑
t

g(m)p(t)
√
dt

(
log

(
1
g(m)

)
+ log

(
1

p(t)
√
dt

))
= 2g(m)

(
log

(
1
g(m)

)∑
t

p(t)
√
dt +

∑
t

pt
√
dt log

(
1

p(t)
√
dt

))
.
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It is easily verified that for any x > 0, x log(1/x) ≤
√
x. Using this fact and thinking of p(t)

√
dt as a vector indexed by t ,

we have

S2 ≤ 2g(m)
(
log

(
1
g(m)

)∥∥∥p(t)√dt∥∥∥
1
+

∥∥∥∥√p(t)√dt∥∥∥∥
1

)
.

We use the following two inequalities:∥∥∥p(t)√dt∥∥∥
1
≤
√
|T |

∥∥∥p(t)√dt∥∥∥
2
≤
√
|T |

∥∥∥√p(t)dt∥∥∥
2
,

and ∥∥∥∥√p(t)√dt∥∥∥∥
1
≤
√
|T |

∥∥∥∥√p(t)√dt∥∥∥∥
2

=
√
|T |

√∥∥∥p(t)√dt∥∥∥
1
≤ |T |3/4

√∥∥∥√p(t)dt∥∥∥
2
,

to have

S2 ≤ 2g(m)
(
log

(
1
g(m)

)√
|T |

∥∥∥√p(t)dt∥∥∥
2
+ |T |3/4

√∥∥∥√p(t)dt∥∥∥
2

)
.

Using the equality∥∥∥√p(t)dt∥∥∥
2
=

√
Et [DKL[p(x|t)‖p(x)]] =

√
I(X; T ),

we reach the following bound

S2 ≤ 2g(m)
(
log

(
1
g(m)

)√
|T |I(X; T )+ |T |3/4(I(X; T ))1/4

)
. (30)

By inserting the definition of g(m) back into the inequality, we get our final bound for S2,

S2 ≤

√
C log(|Y|/δ)

m

(
C1 log(m)

√
|T |I(X; T )+ C2|T |3/4(I(X; T ))1/4

)
(31)

with C1 and C2 as constants that depend only on minx p(x).

Turning now to S1, we have to bound
√
V (Ĥ(T |y)). By definition of V (·), and using the triangle inequality, we have√

V (Ĥ(T |y)) ≤
√∑

y

(Ĥ(T |y)− Ĥ(T ))2 +

√√√√∑
y

(
Ĥ(T )−

1
|Y|

∑
y′
Ĥ(T |y′)

)2
.

For the second summand we have√√√√∑
y

(
Ĥ(T )−

1
|Y|

∑
y′
Ĥ(T |y′)

)2
=
√
|Y|

∣∣∣∣∣Ĥ(T )− 1
|Y|

∑
y′
Ĥ(T |y′)

∣∣∣∣∣
=

1
√
|Y|

∣∣∣∣∣∑
y′
(Ĥ(T )− Ĥ(T |y′))

∣∣∣∣∣
=

1
√
|Y|

∥∥∥Ĥ(T )− Ĥ(T |y)
∥∥∥
1
,

where we think of Ĥ(T )− Ĥ(T |y) as a vector ranging over the values of y. Therefore, we have that√
V (Ĥ(T |y)) ≤

(
1+

1
√
|Y|

)∥∥∥Ĥ(T )− Ĥ(T |y)
∥∥∥
1
. (32)

It is known that Ĥ(T ) ≥ Ĥ(T |y) for any y, since conditioning cannot increase entropy. Therefore∥∥∥Ĥ(T )− Ĥ(T |y)∥∥∥
1
≤

∑
y

p(y)
miny p(y)

(
Ĥ(T )− Ĥ(T |y)

)
=

1
miny p(y)

(
Ĥ(T )−

∑
y

p(y)Ĥ(T |y)

)

=
1

miny p(y)
Î(Y ; T ) ≤

1
miny p(y)

Î(X; T ),
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where the last inequality follows from the data processing inequality. Substituting this into Eq. (32), and since |Y| ≥ 1, we
get √

V (Ĥ(T |y)) ≤
2

miny p(y)
Î(X; T ). (33)

Setting C3 = 2
miny p(y)

we thus have our bound for S1,

S1 ≤

√
C log(|Y|/δ)

m
C3 Î(X; T ).

Plugging Eqs. (31) and (33) into Eq. (6) gives us the bound in our theorem.
Lastly, recall thatwe derived this bound by assuming that g(m)p(t)

√
dt ≤ 1/e for any t .We now show that the bound can

be made trivial if this condition does not hold. If the condition does not hold, there exists a t such that g(m)p(t)
√
dt > 1/e.

Since √
I(X; T ) =

√∑
t

p(t)dt ≥ p(t)
√
dt

for any t , we get that
√
I(X; T ) ≥ 1

e·g(m) . Since |T | ≥ 1 and g(m) > 0, we get that our bound in Eq. (30) is at least

2g(m)
(
log

(
1
g(m)

)√
|T |I(X; T )+ |T |3/4(I(X; T ))1/4

)
≥ 2

√
|T |

(
log(1/g(m))

e
+ |T |1/4

√
g(m)
e

)
≥
√
|T | ≥ log(|T |).

Therefore if indeed g(m)p(t)
√
dt > 1/e for some t , then the bound in the theorem is trivially true, since I(Y ; T ), Î(Y ; T ) are

both within [0, log(|T |)]. Hence the bound in Theorem 4 holds for anym.

6.5. Proof of Theorem 7

Theorem 7 follows directly from the following two lemmas.
We denote by F (X) the set of probabilistic functions of X into an arbitrary target space, and by S(Y ) the set of sufficient

statistics for Y .

Lemma 12. Let T be a probabilistic function of X. Then T is a sufficient statistic for Y if and only if

I(Y ; T ) = max
T ′∈F (X)

I(Y ; T ′).

Proof. First, assume that T is a sufficient statistic for Y . For every T ′ which is a probabilistic function of X , we have the
Markov chain Y − X − T ′. Therefore, by the data processing inequality, I(Y ; X) ≥ I(Y ; T ′). In addition, X ∈ F (X). Therefore

I(Y ; X) = max
T ′∈F (X)

I(Y ; T ′).

Since T is a sufficient statistic, Y − T − X is also a Markov chain, hence I(Y ; X) ≤ I(Y ; T ). It follows that

I(Y ; T ) = I(Y ; X) = max
T ′∈F (X)

I(Y ; T ′).

This completes one direction of the claim. For the other direction, assume that

I(Y ; T ) = max
T ′∈F (X)

I(Y ; T ′).

Then I(Y ; T ) = I(Y ; X). Since Y − X − T is a Markov chain, it follows that Y and X are conditionally independent given T
(see [5], proof of Thm. 2.8.1), hence T is a sufficient statistic. �

Lemma 13. Let T be a sufficient statistic for Y . Then T is a minimal sufficient statistic for Y if and only if

I(X; T ) = min
T ′∈S(Y )

I(X; T ′). (34)

Proof. First, let T be a minimal sufficient statistic, and let T ′ be some sufficient statistic. By the definition of a minimal
sufficient statistic, there is a function f such that T = f (T ′). Therefore, X − T ′ − T is a Markov chain. Therefore,
I(X; T ) ≤ I(X; T ′). This holds for any sufficient statistic T ′, hence indeed Eq. (34) holds. This completes the first direction of
the proof.
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For the second direction, we show that if T is not minimal, then there exists a sufficient statistic V such that I(X; T ) >
I(X; V ), thus Eq. (34) does not hold. We will use the Fisher–Neyman factorization theorem [7] which states that T is a
sufficient statistic for Y if and only if there exist functions hT and gT such that

∀x, y p(x|y) = hT (x)gT (T (x), y). (35)

Since T is not minimal, there exists a sufficient statistic T ′ such that T is not a function of T ′. Define the equivalence
relation∼ by

t1 ∼ t2 ⇐⇒
gT (t1, y)
gT (t2, y)

is a constant function of Y ,

where gT is a function satisfying Eq. (35) with some hT . Let V : X→ T be a function such that

∀x, V (x) ∈ {t | t ∼ T (x)} .

V is thus a function of T . We use Fisher–Neyman’s theorem to show that V is a sufficient statistic: Define

hV (x) , hT (x)
gT (T (x), y)
gT (V (x), y)

gV (V (x), y) , gT (V (x), y).

Then

p(x|y) = hT (x)gT (T (x), y)

= hT (x)
gT (T (x), y)
gT (V (x), y)

gT (V (x), y)

= hV (x)gV (V (x), y).

Therefore V has a factorization; hence it is a sufficient statistic. It is left to show that I(X; T ) > I(X; V ). V is a function of T ′,
for let x1, x2 such that T ′(x1) = T ′(x2), then

gT (T (x1), y)
gT (T (x2), y)

=
p(x1|y)hT (x2)
p(x2|y)hT (x1)

=
hT ′(x1)gT ′(T ′(x1), y)hT (x2)
hT (x1)gT ′(T ′(x2), y)hT ′(x2)

=
hT ′(x1)hT (x2)
hT (x1)hT ′(x2)

.

Hence T (x1) ∼ T (x2), therefore V (x1) = V (x2) for any x1, x2 such that T ′(x1) = T ′(x2).
Since X − T − V is a Markov chain, we have

I(X; T ) = I(X; V )+ I(X; T | V )

≥ I(X; V )+ I(X; T | T ′, V )

= I(X; V )+ I(X; T | T ′).

Since T is a function of X but is not a function of T ′, we have that I(X; T | T ′) > 0. Therefore I(X; T ) > I(X; V ), hence Eq. (34)
does not hold. �

7. Discussion

In this paper we analyzed the information bottleneck framework from a learning theoretic perspective. This framework
has been used successfully for finding efficient relevant data representations in various applications, but this is its first
rigorous learning theoretic analysis. Despite the fact that the information bottleneck is all about manipulating the joint
input–output distribution, we show that it can generalize quite well based on plug-in empirical estimates, evenwith sample
sizes much smaller than needed for reliable estimation of the joint distribution. In fact, it is exactly the reliance on the joint
distribution that allows us to derive non-uniform and adaptive bounds.
Moreover, these bounds allow us to view the information bottleneck framework in the more familiar learning theoretic

setting of a performance-complexity tradeoff. In particular, we provided a preliminary analysis of the role of mutual
information as both a complexity regularization term and as a bound on the classification error for common supervised
applications, such as document classification. This is the first step in providing a theoretical justification for many
applications of interest, including a characterization of the learning scenarios for which this method is best suited. Finally,
we showed how this framework extends the classical statistical concept of minimal sufficient statistics.
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