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Abstract

In this paper, we introduce a framework for data-based ontology design, called Domain
Information System (DIS). A DIS contains both the representation of a domain, and a data
view. It offers a low coupling of these two components, through an operator that takes
a datum and gives its corresponding concept. The design of the ontology component of
a DIS is guided by the considered organised dataset. A DIS uses a graph and a Boolean
lattice to represent the domain knowledge, and a cylindric algebra to present a view for
organised datasets. We compare DIS to existing frameworks used to deal with domain
and data evolution, and we show how information evolution has minimal effects on the
framework.
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1 Introduction

One of the main challenges for organizations is the task of transforming the huge amount of data
they have stored into useful knowledge [25]. The transformation process is known as knowledge
engineering. In order to generate knowledge from data, organizations need to interpret the data within
a domain of application. A datum gets meaning once it is interpreted as a value of a certain attribute
within a domain. For example, “Jan 5, 2005” is a string, and it can be seen either as the date of
birth of a patient, or as the start date of employment. In the last two decades, the field of knowledge
engineering saw a rise in popularity, moving from data modeling and analysis to domain knowledge
representation [10]. An ontology is seen as a formal conceptualization of a domain [14], and it consists
of relatively generic concepts and relations (i.e., the domain knowledge) that can be shared and reused
by different applications [33].

In recent years, the field of ontologies seems to have focused on the use of Description Logic
(DL) to represent a domain knowledge [24]. A DL consists of a set of concepts, individuals, and
relations on them [1]. The set of concepts and roles (i.e., binary relations between concepts) are
called the Terminological Box (T-Box). The set of assertions about individuals, such as mereological
relations between a concept and the objects it abstracts, or relations between individuals, is called
the Assertional Box (A-Box). The set of role properties and operations on roles, such as inclusion,
equivalence, or composition of roles, is called the Rule Box (R-Box) [23]. As the A-Box size grows,
the need to separate the T-Box and the R-Box from the A-Box becomes more and more important if
systems are to be scalable [31].

In the literature, we find solutions to the challenge of decoupling the data from the conceptu-
alization of the domain, such as Ontology Based Data Access (OBDA) systems [16, 32, 41] and
DOGMA [18]. However, these approaches start from the premises that both the data source and the
ontology already exist, and that they have been built independently of each other. Therefore, both the
OBDA and DOGMA-based systems need to provide a mapping between the two parts. In doing so,
they introduce another challenge, in the form of inefficient matching of the model of the application
domain to the model of the data [41].

Building ontologies has generally been an ad-hoc process, as it does not follow a clear process.
Recent years have seen developments of methodological frameworks for ontology engineering, such
as Methontology [11], On-to-knowledge [35], DOGMA [18], and others [13, 19, 34, 37]. These
frameworks take an agile development approach, in which engineering activities are repeated and
refined over time. The conceptualisation of the domain of application is performed by domain experts
with the aid of tools; however it is not an automated process. In [39], the authors mention that “despite
the fact that big data research has gained rapid growth in recent years, there is a lack of grounded
theories and acceptable conceptual frameworks around big data theme that enable researchers and
organizations to capture the value of big data in a systematic manner.” In addition, the engineering
process to represent domain knowledge needs to be controlled, otherwise the resulting specification
might become inconsistent with the real world knowledge [29].

Within DL, there are numerous fragments, and associated reasoning engines, which are usually
optimised towards one of the three components. Some are optimised for reasoning on large T-Boxes,
others for reasoning on large A-Boxes, yet others for reasoning on large R-Boxes. This fragmentation
of the field of both logics and their corresponding languages brings another challenge. As an ontology
evolves beyond its original scope, its representation, and implicitly the reasoning engine related to
it, need to be changed as well. Consequently, there is need a for a domain representation formalism
that separates data from the domain knowledge, offers support for integrating data from heteroge-
neous sources, and provides a more standard reasoning engine through a language close to natural
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language [27].
We advance that the right approach to fill this gap is by providing a systematic, rigorous process

for knowledge engineering, and to employ the use of a modular structure for domain knowledge
representation. To avoid the challenges of mapping the data to existing ontologies, we propose a
bottom-up knowledge engineering framework that considers the data from the onset, and uses it to
guide the design of the domain representation. In this paper, we introduce a framework for data-based
ontology design, called the DIS [26]. The DIS formalism consists of three parts: a domain ontology,
a domain data view, and an operator that maps the two. The ontology consists of three components: a
Boolean lattice, corresponding to the schema of the data, a family of rooted graphs, and a monoid of
concepts. From the schema of the data, we build the core structure of the ontology, which is a Boolean
lattice. Other concepts and relations pertinent to the domain are added to enrich the ontology, through
the family of rooted graphs. The set of the non-lattice concepts is guided by the existence of other
datasets; therefore the entire ontology is guided by the data to be considered. With this approach there
is no need for expensive translations from the dataset to the ontology and vice-versa, as the atomic
concepts within the ontology correspond one-to-one to attributes in the dataset. In addition, the use
of cylindric algebra as a model for the data assumes an open-world approach, in which a missing data
may take any possible value of the attribute it represents.

The paper is organised as follows. In Section 2, we present basic elements of a first order many-
sorted language. In Section 3, we elaborate on the rationale for the DIS system, present the syntax
and semantics of its language, and offer an example to discuss the process of designing a DIS-based
system. In Section 5, we discuss existing challenges in the field of knowledge engineering, and show
how the proposed system solves some of them. Finally, in Section 6, we point to areas of future work.

2 (First Order) Many-sorted Language

The following definitions are taken from [36]. Let S be a non-empty enumerable set of sorts. A
signature Σ is given by the tuple Σ = 〈F ,R ,rF ,rR 〉, where F is a set of function symbols, R a set
of relation symbols, rF a mapping rF : Σ→ S∗×S, assigning the rank (u,s) to each f ∈ F , and rR a
mapping rR : Σ→ S+, assigning the arrity u to each R ∈ R . An S-ranked alphabet over Σ is given by
the set of function symbols and relation symbols.

Let u = s1 . . .sn, with si ∈ S. A function symbol f of rank (u,s) is interpreted as an operation taking
n arguments, where the i-th argument is of sort si, and yielding a result of sort s. A function symbol
of rank (e,s), where e is the empty string, is called a constant of sort s. A symbol R of arrity u is
interpreted as a set of n-tuples (i.e., a relation), where the i-th element of the tuple is of sort si.

In a many-sorted language, besides the symbols of the alphabet we can use the following symbols:
(i) parenthesis, (ii) operation symbols, such as the composition of relations, (iii) logical symbols
∧,∨, =⇒ ,∀,True, and False, and (iv) variables.

For each sort s ∈ S, we consider a countable set Xs of variables of sort s. Let X = {Xs}s∈S be the
S-indexed set of variables. Terms and formulae are defined inductively. A term is (i) any constant, (ii)
any variable v ∈ X , or (iii) f (t1, . . . , tn), where f is a function symbol of rank (u,s),u = s1 . . .sn, and
for all 1≤ i≤ n, ti is a term of sort si.

A (well-formed) formula is defined as follows: (i) the logical constants True,False are formulae;
(ii) for each relation symbol R of arrity u, where u = s1 . . .sn, and for all 1 ≤ i ≤ n, if ti is a term of
sort si, then R(t1, . . . , tn) is a formula; (iii) if φ,ψ are formulae, then φ ∧ ψ,φ ∨ ψ, and φ =⇒ ψ are
formulae; and (iv) if φ is a formulae, then ∀(x | x ∈ Xs : φ(x))1.

1Throughout this paper, we adopt the uniform linear notation provided by Gries and Schneider in [12]. The general form
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Given a Σ signature, a language (of type Σ) consists of the alphabet and a set of well formed
formulae defined recursively as above.

Given an S-ranked alphabet Σ, a many-sorted Σ-structure S is the pair 〈D,I〉, where D = {Ds}s∈S

is an S-indexed family of non-empty sets, and I is an interpretation function assigning functions and
relations to the functions symbols and relation symbols, respectively. Ds is called the carrier set of
sort s. The interpretation is as follows, for arrity u = s1 . . .sn: (i) each function symbol f of rank
(u,s) is interpreted as a function f I : Ds1 ×·· ·×Dsn → Ds; (ii) each constant k of sort s is interpreted
as an element kI ∈ Ds; and (iii) each relation symbol R of arrity u is interpreted as a relation RI ⊆
Ds1×·· ·×Dsn .

3 Domain Information Theory

In this section, we present the mathematical theory underlying the DIS. The organised dataset and
the domain of application are modelled as many-sorted mathematical constructions. One of the goals
in developing a new formalism for representing organised data and domain knowledge is to separate
the representation aspect from the reasoning aspect. In order to achieve this, we present a language
that can be used by experts to represent the domain knowledge and its link to existing organised data.
Next, we present an example of a DIS.

3.1 Domain Information System: Intuitive understanding

We are interested in generating knowledge from organised datasets and domain knowledge, thus we
start the construction of the DIS from the organised data. In our work, we focus on structured, organ-
ised data, represented either as a set of tuples of the same size, such as in a databse, or of different
sizes, such as in log files. Therefore, we consider the elements of data to be within a Cartesian space.
We believe this approach is well suited for the current state of data, as the existing unstructured data is
converted to a structured format by employing machine learning and deep learning methods [20, 30].

Usually, data is stored in different formats and is in a constant state of change. While relational
databases are currently the preferred method of data storage and offer great scalability, they have
some drawbacks. One is that relational datasets assume a closed-world2, in which only explicit data
is recognized [27]. Since its introduction in [6], Codd’s relational model of data has been accepted
as a clear and succinct model for relational databases. In [17], the authors show there exists a natural
embedding of a relational algebra into a diagonal-free cylindric set algebra. Moreover, data sets with
records of different lengths can be modelled by the same cylindric algebra. Thus, we use a diagonal
free cylindric algebra as our data view, formally described by A =

(
A,+,?,−,0A,1A,{cκ}κ∈U

)
. An

element a ∈ A is a tuple (or record) of an arbitrary length. Each attribute of the dataset is given as a
set of values, called a sort. The set of all sorts form the universe of A, denoted by the countable set
U = {S1, . . . ,Sn}. The elements of A are pieces of data, with the ? operator seen as a combination

of the notation is ?(x | R : P) where ? is the quantifier, x is the dummy or quantified variable, R is predicate representing the
range, and P is an expression representing the body of the quantification.

2Relational datasets are based on the Closed-world assumption (CWA). They can be interpreted in an Open-world as-
sumption (OWA) manner, by enriching the existing tuples with probabilistic detail elements [5]. The dataset itself is gov-
erned by the CWA principle, thus the absence of data is interpreted as negative data. E.g., in a dataset about personal
information, a record corresponding to a person “John” has no value for telephone number attribute. In a closed world, this
is interpreted as “John has no telephone”, while in an open world it is interpreted as “There is not enough information about
John’s telephone”.
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of data elements, similar to the join operator in relation algebra. With this understanding, the 0A is
equivalent to the absence of data.

To achieve the transformation from data to information and further to knowledge, we need to
give meaning to the data, specifically to its attributes or sorts. Thus we take the sorts of the dataset
and consider them in a specific context. We call this context the domain of application for the data,
and within it we capture the relevant concepts. We start by considering the sorts of the dataset to be
a subset of the concepts of the domain, then we ask domain experts to capture other concepts that
are related to the concepts originating from the dataset. In the literature, a concept is presented as a
composite entity with attributes [2, 4]. This approach works well for describing a domain, however it
poses a problem when existing data need to be linked to the domain representation. The main relation
within an organised dataset is given by the mereological partOf relation.

The link between the two components is given immediately: the atomic concepts in the core con-
struct of the ontology, which is its Boolean lattice, correspond one-to-one to the sorts of the universe
of A. The operator τ maps the data elements in A to their corresponding concept in the Boolean lattice.
In the following section, we give an overview of the formalism behind a DIS.

3.2 Domain Information System: Mathematical Overview

A rooted graph at t, Gt
i =

(
Ci,Ri, t

)
, is a connected directed graph of concepts with a unique sink

t ∈Ci. We call t the root of Gt
i , and define it as follows:

t ∈Ci is root of Gt
i ⇐⇒ ∀(k | k ∈Ci : k = t ∨ (k, t) ∈ Ri

+ ) (1)

Definition 3.1 (Domain Information System) Let C =
(
C,⊕,eC

)
be a commutative idempotent monoid.

Let L =
(
L,vC

)
be a Boolean lattice, with L⊆C, such that eC ∈ L. Let I be a finite set of indices, and

G = {Gt
i
def
=
(
Ci,Ri, t

)
}i∈I be a set of finite rooted graphs at t ∈ L∩Ci, Ci ⊆C, and Ri ⊆Ci×Ci.

A domain ontology is a mathematical structure Odef
=
(
C ,L ,G

)
. A domain data view is a diagonal-

free cylindric algebra A =
(
A,+,?,−,0A,1A,{cκ}κ∈L

)
. Let τ : A→ L be a function that maps the

elements of A to their corresponding concepts in the Boolean lattice of O.
A Domain Information System (DIS) is a structure D =

(
O,A ,τ

)
.

The operator ⊕ is called the composition operator, and, when restricted to the Boolean lattice, it
is the join operator. The relation vC is called the part of relation that we denote by partOf, and it is
defined as the natural order on the monoid C : k vC k′ def⇐⇒ k⊕ k′ = k′. A concept is called atomic if
it has no subparts, i.e.,: k is atomic def⇐⇒ ∀(k′ | k′ ∈ L : k′ vC k =⇒ k′ = k ∨ k′ = eC ).

The set of atomic concepts in the Boolean lattice L is denoted by AtL . In this context, L is
the free Boolean lattice generated over the set AtL ∪ {eC} by the composition operator ⊕. The set
of atomic concepts is finite, as it corresponds to the attributes in the dataset, and the composition
is idempotent (up to an isomorphism), thus the Boolean lattice L is finite. Within the lattice, the
composition operator⊕ allows the formation of new concepts by composing existing concepts. When
we write k def

= k1⊕ k2 we mean that “Concept k is given by the Cartesian construction of concepts
k1,k2”. Consequently, a concept k is a partOf another concept k′, if k is a Cartesian projection of k′.
For every κ,κ′ ∈ L, we denote by κ\κ′ the combination of all atomic concepts that are both partOf κ

and not partOf κ′, as follows:

κ\κ′ def
= ⊕(λ | λ ∈ AtL : λvC κ ∧ ¬(λvC κ

′))
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On the domain ontology, a relation Ri can be extended using the lattice structure, thus extending
the ontology. From a relation Ri we can infer other relations between elements of Ci and elements of
L.

Definition 3.2 (Extended relation) Let O =
(
C ,L ,G

)
be a domain ontology and let Gt

i =
(
Ci,Ri, t

)
∈

G be rooted graph, with t ∈ L its root. We call the lattice extension of Ri, the relation Ri
↑ = Ri∪R′i,

where R′i = {(k, t ′) | k ∈Ci ∧ t ′ ∈ L ∧ (k, t) ∈ Ri ∧ t vC t ′}.

On the data view,
(
A,+,?,−,0A,1A,{cκ}κ∈L

)
, we define an ordering relation ≤, as follows: a ≤

b def
= a+b = b. The cylindrification operators are indexed by the elements of the carrier set L of the

Boolean lattice of the domain ontology. When we cylindrify on a composite concept that is formed by
the Cartesian product of atomic concepts, the cylindrification is performed on all the atomic concepts
of the composite concept. Hence, the cylindrification operators are defined on any concept of the
Boolean lattice, as follows:

cκx def
= cκ1cκ2 . . .cκnx, where κ ∈C,κi ∈ AtL , and κ = ⊕

1≤i≤n
κi (2)

When we cylindrify an element a ∈ A on any index κ ∈ L, we might extend the structure of a with
the concept κ, as exemplified in Section 3.4. Since τ(cκ(a)) = κ⊕ τ(a), where a ∈ A and κ ∈ L, then
for the case where κvC τ(a), we get τ(cκ(a)) = τ(a).

On the elements a ∈ A we define a focusing operator, to obtain parts of a tuple, similar to the
projection operator in relation algebra. The focusing operator is defined using the cylindrification
operator, as described below. We adopt the notation a.κ for indicating the focusing of the tuple a ∈ A
on the dimension κ. If ¬(κ vC τ(a)), focusing a.κ will simply be the zero of A. For any a ∈ A and
κ ∈ L, the focusing of datum a on κ is defined as follows:

a.κ def
=

{
{b | b ∈ A : τ(b) = κ ∧ c(τ(a)\κ)a = c(τ(a)\κ)b}, if κvC τ(a)
0A, otherwise

3.3 Domain Information System: Syntax

So far, we have only captured structural information about the domain, information that can be rep-
resented using a graph-like construction. We would like to enrich this construction with algebraic
statements, such as axioms and equations, to obtain a full theory for representing domain knowledge
systems. For this purpose, we present the DIS formal language, as well as the axioms of the theory of
DIS.

The DIS is a three-sorted theory, with its alphabet based on the set S = {C,L,A} of sort. The
non-logical symbols of the alphabet are described below.

Definition 3.3 (DIS Signature) Let D =
(
O,A ,τ

)
be a Domain Information System. The signature

ΣDIS is given by the tuple ΣDIS = 〈F ,R ,rF ,rR 〉, where F = {⊕,⊗,∼,eC ,>L ,+,?,−,τ,cyl} is the set
of function symbols; R = {vC ,≤}∪{Ri}i∈I is the set of relation symbols; and rF ,rR are the arrity
mappings, defined as follows

rF (⊕) = (C.C,C) rF (⊗) = (L.L,L) rF (τ) = (A,L)

rF (+) = rF (?) = (A.A,A) rF (cyl) = (A.L,A) rR (vC) = (L,L)

rF (eC) = rF (>L) = (e,L) rF (∼) = (L,L) rR (Ri) = (C,C)

rF (0A) = rF (1A) = (e,A) rF (−) = (A,A) rR (≤) = (A,A)
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In addition, we define three countable sets of variables: (i) X C, the set of variables of sort C that
we denote by k,k1,k2, etc.; (ii) X L, the set of variables of sort L that we denote by κ,λ,κ1,κ2, etc.;
and (iii) X A, the set of variables of sort A that we denote by a,b,a1,a2, etc. Let X = {Xs}s∈S be
the S-indexed set, for S = {C,L,A}. The non-logical symbols of the DIS-based language are given
by the functions f ∈ F , relations R ∈ R , and variables in X . In addition to the S-ranked alphabet
ΣDIS described above, the language contains the following symbols: (i) parenthesis and brackets: “(”,
“)”, “[”, “]”; (ii) relational symbols, such as ;, the composition of relations; and (iii) logical symbols
∧,∨,¬, =⇒ ,∀,∃,True, and False.

The DIS-based Ontology expressions (terms and formulae) are built over this language, and are
built inductively as described in Section 2. For ease of reading, we denote cyl(κ,a) by cκ(a). The
theory of a DIS is the S-ranked alphabet Σ described above, together with the following axioms:

Let k,k1,k2 ∈C,κ,λ,∈ L, i ∈ I,Gt
i ∈ G , with Gt

i =
(
Ci,Ri, t

)
(A1)

(
C,⊕,eC

)
is a commutative idempotent monoid

(A2)
(
L,⊕,⊗,∼,eC ,>L

)
is a Boolean algebra

(A3) κ ∈ L =⇒ κ ∈C

(A4) κvC λ ⇐⇒ κ⊕λ = λ

(A5) k ∈Ci =⇒ k ∈C

(A6) (k1,k2) ∈ Ri =⇒ k1,k2 ∈Ci

(A7) (k1,k2) ∈ Ri =⇒ k1 6= k2)

(A8) t ∈ L ∧ ∀(k | k ∈Ci : k = t ∨ (k, t) ∈ Ri
+ )

(A9) (k1,k2) ∈ Ri =⇒ k2 = t ∨ (k2, t) ∈ R+
i

(A10) k ∈C =⇒ k ∈ L ∨ ∃(i ∈ I | Gt
i =
(
Ci,Ri, t

)
∈ G : k ∈Ci )

(A11)
(
A,+,1,−,0A,1A

)
is a Boolean algebra

(A12) a≤ b ⇐⇒ a+b = b

(A13) cκ(0) = 0

(A14) a≤ cκ(a)

(A15) cκ(a? cκ(b)) = cκ(a)? cκ(b)

(A16) cκ(cλ(a)) = cλ(cκ(a))

(A17) τ(0A) =>L

(A18) τ(1A) = eC

(A19) τ(a?b) = τ(a)⊕ τ(b)

Axiom (A1) describes the commutative idempotent monoid C . Axioms (A2)−(A4) describe the
Boolean lattice L , including the partial order vC . Axioms (A5)−(A10) describe the family of rooted
graphs G , as well as the boundary we set on C. Axioms (A11)−(A16) describe the cylindric algebra
A . Axioms (A17)−(A19) define the operator τ. Using the language of DIS and the operators de-
scribed in Section 3.2, domain experts can define additional concepts through axioms, as illustrated
in Section 3.4.

3.4 Domain Information System: Example

For this example we use a Wine dataset, described in Figure 1. The attributes of the dataset correspond
to the atomic concepts of the Boolean lattice L .

Let AtL = {Grape,Colour,Sugar,Body} be the set of atomic concepts. Note: eC ∈ L and >L =
Grape⊕Colour⊕Sugar⊕Body.

6



Grape Colour Sugar Body

Merlot Red Dry Medium
Pinot Grigio White Dry Light

Riesling White Semi-sweet Light
. . . . . . . . . . . .

Sorts

Figure 1: Wine dataset example

Within the Wine domain, there are a number of composite concepts available to the domain ex-
perts, as described below:

Taste ::= Sugar⊕Body

Style ::=Colour⊕Taste

Mouth f eel ::= Grape⊕Taste

Wine ::= Grape⊕Colour⊕Sugar⊕Body

Wine ::=>L

The elements of A are given as tuples from the dataset. For example, given the dataset in Figure 1,
the element a = 〈Riesling,White〉 has τ(a) = Grape⊕Colour. The cylindrification of a on the Body
dimension will extend the structure of a with the new dimension: cBody(a)= {〈Riesling,White,Light〉,〈Riesling,White,Medium〉}
and τ(cBody(a)) = τ(a)⊕Body. This corresponds to the open-world assumption. If the data does
not contain information on an attribute, we provide a method of replacing the missing data with
possible values corresponding to that attribute. The cylindrification of a on the Grape dimension
will not extend the structure of a. It will only extend the value of the attribute Grape with all the
possible values found in the dataset, while preserving the values of the remainder of the attributes:
cGrape(a) = {〈Merlot,White〉,〈PinotGrigio,White〉,〈Riesling,White〉}, with τ(cGrape(a)) = τ(a).

In Figure 2, we show a partial view of the GGrape
1 rooted graph, as the shaded area. The relation

Rgrows described by the graph GGrape
1 is depicted with dashed lines. The graph is defined as GGrape

1 =
〈C1,Rgrows,Grape〉, where C1 = {Grape,Estate,Person}.

A rooted graph can be further enriched by forming new relations, through the composition of ex-
isting relations. For example, consider the two relations shown in Figure 2, Rgrows and Rcontains, de-
picted with dashed and dotted lines, respectively. The domain expert describes that the Climate Zone
concept is linked to the Grape concept by defining a new relation, RpossiblyGrows, depicted with dotted-
dashed lines. The relation RpossiblyGrows is defined as follows:

(k1,k2) ∈ R+grows ∧ (k2,k3) ∈ Rcontains =⇒ (k1,k3) ∈ RpossiblyGrows

The set of concepts in the Wine DIS is C = L∪C1∪{Region,Climate Zone}.
In a DIS, we do not use rooted graphs to describe the isA relations. Instead, they are described

using specializations of the lattice concepts, such as Red-Wine or Light-body White Wine. These
concepts are defined through axioms using concepts of the domain ontology and values from the data

7



eC

Colour SugarGrape Body

Taste

Mouthfeel Style

Wine
vC

Person

Estate

Rgrows

Region Climate Zone
Rcontains

RpossiblyGrows

Figure 2: DIS Wine Ontology::Abstract Ontology

view, as follows:

Red-Wine = {a | τ(a) =Wine ∧ a.Colour = ‘Red’}
Light-body White Wine = {a | τ(a) =Wine ∧ a.Body = ‘Light’ ∧

a.Colour = ‘White’}

The job of the domain expert is to formally define the links to capture tacit knowledge. They
can do this by using extended relations. In Figure 3, we give a reasoning example in the Wine
DIS. The Boolean lattice shows a simplified view of the dataset presented in Figure 1, describing
the partOf relation. The relation Rgrows links concepts in the ontology, such as Estate, to the root
of the graph Grape. This relation can be extended to any concept in the lattice for which the Grape
is a partOf (i.e., any concept κ ∈ L s.t. Grape vC κ). As a result, the relation R

↑
grows links Estate

to Wine. By defining the concept WineProducer in terms of this extended relation, we can infer that
Estate isA WineProducer, as follows:

(Estate,Grape) ∈ RGrows (3)

GrapevC Wine (4)

WineProducer = {k | k ∈C ∧ (k,Wine) ∈ R
↑
grows } (5)

From (3) and (4), a DIS-based reasoning system infers

(Estate,Wine) ∈ R
↑
Grows (6)

From (5) and (6), it is immediate that

Estate ∈WineProducer (7)
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Grape

Wine

eC

...

Estate

WineProducer = {c | c ∈C ∧ c R↑grows Wine}

Rgrows

vC

R↑grows

∈

Figure 3: Wine Ontology::Wine Producer in DIS

HOLDIS

{pC}C

{pL}L

{ps}A

I

I

τ

Figure 4: Relationships between elements of DIS and their interpretation

4 Domain Information System: A Model

The DIS theory described in Section 3.3 is an abstract mathematical construction. In this section, we
describe a many-sorted structure based on classic logical theories and we show it is a model for the
DIS.

An overview of the DIS and its proposed model is shown in Figure 4. The intuition behind the
proposed interpretation is based on the fact that, in our work, the universe of discourse is given by a set
of records (tuples of values) in organised datasets. The tuples correspond to concepts in the domain,
and an attribute in the dataset represents a property of some concepts in the domain, interpreted as the
characteristic predicate of the attribute [12]. For reasons we have discussed in Section 3.2, we take
the attributes as primitive (atomic) concepts.

The separation of the data-based domain knowledge into a structural component (the Boolean lat-
tice) and a full-valued component (the diagonal-free cylindric algebra) enables us to take two different
approaches for interpretation. For the cylindric algebra we use the first order logic (FOL) interpre-
tation presented by Tarski [15], in which the cylindrification operator ranges over a countable set of
indices. An index κ is an attribute of the organised dataset, represented by a sort Sκ, or the set of
values for said attribute. Each sort is thus interpreted by a predicate considered from the extensional
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perspective. For the domain ontology we give a third order logic interpretation, in which concepts
are interpreted as predicates as well. However in this case we are only interested in the intensional
perspective of the predicates, which gives a domain-based meaning for the sorts and other concepts.

For instance, taking the example in Section 3.4, the Grape concept may be interpreted as The name
of a grape. We consider this to be the intensional interpretation, given by the predicate pGrape(x) = “x
is a grape name”. A possible extensional interpretation, guided by the existing dataset, of the Grape
concept may be given by the predicate qGrape(x) = “x ∈ {Merlot, Pinot Grigio, Riesling}”.

In the ontology component of the DIS, we represent relations on concepts, by giving the char-
acteristic predicate of the relation. In the model we present, the concepts are predicates, therefore
relation on concepts are interpreted as predicates on predicate, thus making our model a third order
logic model.

For the many-sorted Σ defined in Section 3.3, we now describe a many-sorted structure, S = 〈D, I〉,
where D = {DC,DL,DA}, with DC, DL, and DA each a set of predicates, DL ⊆DC. I is the interpretation
function that maps elements of S to elements of D, and the operators and relators of Σ to logical
symbols.

In the remainder of this section we will show that third order logic, a higher order extension of
FOL, is an appropriate interpretation for the DIS. Recall that the domain ontology is the mathematical
structure O =

(
C ,L ,G

)
, where C =

(
C,⊕,eC

)
is a commutative idempotent monoid, L =

(
L,vC

)
L⊆C

is a Boolean lattice, and G = {Gt
i}i∈I , a set of graphs rooted at t ∈ L.

4.1 Model for the concept structure C

As discussed in the previous sections, the concepts in the ontology are interpreted as predicates. They
are predicates that characterise the values within each of the sorts.

The interpretation of a concept k ∈C, denoted by I(k), is given by the characteristic predicate of
k, I(k) def⇐⇒ pk. The set of concepts C is interpreted as a set of predicates, denoted by I(C) = {k |
k ∈C : I(k)}.

The concepts combination operator, ⊕, is interpreted as the logical operator conjunction, denoted
by ∧, as follows:

∀k,k′ ∈C. I(k⊕ k′) def⇐⇒ I(k) ∧ I(k′) (8)

The set of concepts C is closed under the combination operator ⊕, and it is immediate that I(C) is
closed under ∧.

∀(k,k′ | k,k′ ∈C : (k⊕ k′) ∈C )

=⇒ 〈 Applying the interpretation function 〉
∀(k,k′ | k,k′ ∈C : I(k⊕ k′) ∈ I(C))

⇐⇒ 〈 Definition of the interpretation of ⊕ operator, (8) 〉
∀(k,k′ | k,k′ ∈C : (I(k) ∧ I(k′)) ∈ I(C))

=⇒ 〈 k ∈C =⇒ I(k) ∈ I(C) 〉
∀(k,k′ | I(k), I(k′) ∈ I(C) : (I(k) ∧ I(k′)) ∈ I(C))

⇐⇒ 〈 Bound for renaming I(k) = p, I(k′) = q 〉
∀(p,q | p,q ∈ I(C) : (p ∧ k′) ∈ I(C))
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The neutral element eC is interpreted as follows:

I(eC)
def⇐⇒ True (9)

It is immediate that I(C ) =
(
I(C), I(⊕), I(eC)

)
=
(
I(C),∧,True

)
is a commutative idempotent

monoid. The logical operator ∧ is associative, commutative, and idempotent, and True is the neutral
element for it.

The intuition behind this interpretation is that the more details we provide for the description of
a world, the more we restrict it. For instance, in the domain of wine, the world described by the
predicate pColour could include a variety of colours (including colour of wines or wine bottles). The
world described by the predicate pGrape ∧ pColour is restricted to a descriptor of wines (represented
by tuples with two values, Grape and Colour). With this interpretation, the world described by the
empty concept (the pseudo-concept eC ) is completely unrestricted, there are no details provided. The
predicate that characterises all the entities in the domain is the special element True.

4.2 Model for the Boolean lattice L

Intuitively, if the combination operator is interpreted as the logical operator conjunction, the relation
partOf is interpreted as follows:

∀k,k′ ∈C. I(k vC k′) def⇐⇒ (I(k′) =⇒ I(k)) (10)

For convenience and readability, we define the converse consequence operator as (p ⇐= q) def⇐⇒
(q =⇒ p).

Let L be the carrier set of the lattice L . On the set I(C), we fix the interpretation of L as the subset
I(L) def⇐⇒ {k | k ∈ L : I(k)}. On I(L), we interpret the set of atoms as I(AtL) = {k | k ∈ AtL : I(k)}.
The top and bottom concepts are interpreted as follows:

I(>L)
def⇐⇒

∧
(p ∈ I(AtL) |: p) (11)

I(⊥L)
def⇐⇒ I(eC) (12)

It is immediate that I(>L), I(⊥L) ∈ I(L).
Figure 5 shows the Boolean lattice built over the set of atomic concepts {Grape, Sugar, Body}.

On the right side, we show its interpretation, where p1, p2, p3 are the characteristic predicate for the
concepts Grape, Sugar, Body, respectively.

We need to show that the structure I(L) =
(
I(L), ⇐=

)
is a Boolean lattice. A Boolean lattice

is defined using the algebraic form, therefore we first give the algebraic lattice that is “isomorphic”
to I(L). The converse consequence operator ⇐= is defined using the two logical operators And (∧)
and Or (∨), as follows [7, Pg.28]:

(p ⇐= q) def⇐⇒ (p ∧ q = q) def⇐⇒ (p ∨ q = p) (13)

Therefore, the algebraic lattice L ′ =
(
I(L),∧,∨

)
is “isomorphic” to the relational lattice I(L) =(

I(L), ⇐=
)

[7]. We can show that L ′ forms a Boolean lattice. The two logical operators are associa-
tive and commutative, and they distribute over each other, I(⊥L) is the neutral element for ∨, I(>L)
is the neutral element for ∧. The absorption law holds and the negation unitary predicate stands for
complements. With this understanding, the interpretation of the Boolean lattice L , I(L), is a Boolean
lattice.
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eC

Grape Sugar Body

Taste

Wine

vC

True

p1 p2 p3

p1 ∧ p2 p1 ∧ p3 pTaste = p2 ∧ p3

pWine = p1 ∧ p2 ∧ p3

⇐=

Figure 5: Interpretation of the Boolean lattice

4.3 Model for the set of rooted graphs G

We fix a set of characteristic predicates to be disjoint from the interpretation I(C), and we denote
it by I(R ), where R is the set of relations as given in Section 3.3. The concepts are interpreted as
predicates that take terms as variables, while the relations are interpreted as predicates that take other
predicates as variables, therefore the two subsets are disjoint.

Given any relation R ∈ R , we interpret it3 as I(R) def⇐⇒ PR, where PR ∈ I(R ) is the characteristic
predicate of the set {(I(c1), I(c2)) | c1,c2 ∈C ∧ (c1,c2) ∈ Ri}.

The rooted graphs are based on the notion of root concept, which is defined using the transitive
closure of the graph relation. We interpret the root of the graph as a unique concept that is part of the
lattice and can be reached through a sequence of edges (represented by their characteristic predicate)
from any other concept (vertix) in the graph.

Let Gt
i ∈ G , i ∈ I,Gt

i =
(
Ci,Ri, t

)
,Ri ∈ R ,Ci = dom(Ri)⊆C, t ∈ L, pt = I(t), and PRi = I(Ri).

Since Gt
i ∈ G , we know that ∀(k | k ∈ C′ : k = t ∨ (k, t) ∈ Ri

+ ) 1. We need to show that the
axiom holds for the interpretation of Gt

i . We have two distinct cases:

1. k = t

2. (k, t) ∈ Ri
+

For the case k = t, it is immediate that I(k) = I(t) (by applying the interpretation function). For
the second case, (k, t) ∈ Ri

+ translates into a continuous “path” from k to t, more formally ∃(n | n≥
0 : ∃(ki | 1≤ i≤ n ∧ ki ∈Ci : (k,k1) ∈ Ri ∧ ·· · ∧ (kn, t) ∈ Ri )). Note that for n = 0,(k, t) ∈ Ri.

∃(n | n≥ 0 : ∃(ki | 1≤ i≤ n ∧ ki ∈Ci : (k,k1) ∈ R ∧ ·· · ∧ (kn, t) ∈ Ri ))

=⇒ 〈 Applying the interpretation function 〉
∃(n | n≥ 0 : ∃(I(ki) | 1≤ i≤ n∧ I(ki)∈ I(Ci) : (I(k), I(k1))∈PRi ∧ ·· · ∧ (I(kn), I(t))∈PRi ))

⇐⇒ 〈 Definition of transitive closure above 〉
(I(k), I(t)) ∈ P+

Ri

Therefore, the interpretation of an rooted graph Gt
i is given by the construction

(
I(Ci), I(Ri), I(t)

)
=(

I(Ci),PRi , pt
)

and it is an rooted graph itself.

3We adopt the usage of capital fonts for predicates that are the interpretation of relations.
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The set of rooted graphs is interpreted as I(G)
def⇐⇒ {I(Gti)}ti∈L.

With these definitions and notations, the I(O) =
(
I(C ), I(L), I(G)

)
is a model for the domain

ontology O =
(
C ,L ,G

)
.

4.4 Model for the domain data view A

In [15], the authors provide a FOL interpretation for a cylindric algebra, which we adopt in our work.
Recall the structure of a (diagonal-free) cylindric algebra is A =

(
A,+,?,−,0A,1A,{cκ}κ∈L

)
, where

the following axioms are satisfied for any x,y ∈ A, and any κ,λ ∈ L

(C1) the structure
(
A,+,?,−,0A,1A

)
is a Boolean algebra

(C2) cκ0 = 0

(C3) x≤ cκx

(C4) cκ(x · cκy) = cκx · cκy

(C5) cκcλx = cλcκx

Let U = {S1,S2, . . .} be the finite set of disjoint sorts, where |U |=| AtL |, and each attribute Si

corresponds directly to an atomic concept in AtL . For each sort Si ∈ U, we define its characteristic
predicate pSi , as follows:

pSi(v)
def⇐⇒ v ∈ Si (14)

The elements of A are interpreted as relations over the sorts of U, with each relation given by a
set of tuples (records) of values from the set of the attributes (or sorts) of the organised dataset. The
intuition behind this interpretation is that in the concrete world, we give the characteristic predicates
for the sorts strictly as their extension, i.e., the set of values for that sort found in the dataset. Unlike
the more abstract world of the ontology, we are not interested that much in what is the meaning of a
given attribute (sort), we only need its extension.

For simplicity, in what follows, we consider the elements of A to be sets of one tuple only. The
results below can be easily extend to the general case. Let a∈A be given as a= {〈vκ1 , . . . ,vκi , . . . ,vκn〉},
for some κi ∈ AtL ,1 ≤ i ≤ n4. It is immediate that τ(a) =⊕{κi}1≤i≤n. The interpretation of a ∈ A is
denoted by its characteristic predicate I(a) def⇐⇒ pa, such that

pa(vκ1 , . . . ,vκn) =⇒ ∧ (i | 1≤ i≤ n : pSκi
(vκi)) (15)

Remark: Axiom (15) is called the “integrity constraint” in classic relational algebra.
For instance, consider the dataset depicted in Figure 1, with four attributes, Grape, Colour, Sugar,

and Body. Each correspond to one sort in the domain data view, SGrape = {Merlot,PinotGrigio,Riesling},
SColour = {Red,White}, etc. Example of elements a,b ∈ A are a = 〈Merlot,Red,Dry,Medium〉 and
b = 〈Riesling,White〉, and they are interpreted as the corresponding characteristic predicate, pa, pb
respectively. Then,

τ(a) = Grape⊕Colour⊕Sugar⊕Body

τ(b) = Grape⊕Colour

pa(Merlot,Red,Dry,Medium) =⇒ pGrape(Merlot) ∧ pColour(Red) ∧
pSugar(Dry) ∧ pBody(Medium)

pb(Riesling,White) =⇒ pGrape(Riesling) ∧ pColour(White)

4We abuse the notation a = 〈...〉 when it is clear from the context that a is given by a set of exactly one tuple.
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The interpretation of A is denoted by I(A) def⇐⇒ Ǎ, where Ǎ = {I(a) | a ∈ A}.
The interpretation of the binary operator + is the logical operator or, ∨, that of the binary operator

? is the logical operator and, ∧, and that of the unary operator− is the logical negation, ¬, as follows.
Let a,b ∈ A:

I(a+b) def⇐⇒ I(a) ∨ I(b) (16)

I(a?b) def⇐⇒ I(a) ∧ I(b) (17)

I(−a) def⇐⇒ ¬I(a) (18)

I(0A)
def⇐⇒ False (19)

I(1A)
def⇐⇒ True (20)

The cylindrification operator cκ is indexed over concepts κ ∈ L. For simplicity, we assume that
the cylindrification operator cκa is applied on one dimension only, i.e., κ ∈ AtL . The results can be
easily extended to any compound concept.There are two distinct cases:

1. Index κ is not part of the structural composition of a, i.e., ¬(κvC τ(a))

2. Index κ is part of the structural composition of a, i.e., κvC τ(a)

For instance, consider the example above, with the two elements a,b ∈ A. Cylindrification of b on
dimension Sugar extends the structure of b and it is given by the following set of tuples:

cSugarb = {〈Riesling,White,Dry〉,〈Riesling,White,Semi-sweet〉}

Cylindrification of a on dimension Sugar does not change the structure of the relation, it only
extends its values, as follows:

cSugara = {〈Merlot,Red,Dry,Medium〉,〈Merlot,Red,Semi-sweet,Medium〉}

In the first case, the cylindrification operator executes a structural expansion, where the structure
of the resulting tuples is extended with the new concept κ. The resulting data element contains tuples
of the form 〈vκ1 , . . . ,vκn ,uκ〉, where uκ ∈ Sκ. In the second case, the cylindrification operator executes a
content expansion, where the structure of the resulting element remains unchanged. The resulting data
element contains tuples of the form 〈vκ1 , . . . ,uκ, . . . ,vκn〉, κ = κi and uκ ∈ Sκ. The value corresponding
to the dimension κi, on which the cylindrification operator is applied to, has been replaced by the
universal values of that dimension.

This intuition coincides with the open-world assumption: assuming a dimension κ for which an
element a∈ A shows no recorded value, the cylindrification operator will extend a with all the existing
values for the missing dimension κ.

The extension of I(a) is the set {〈vκ1 , . . . ,vκn〉 | pa(vκ1 , . . . ,vκn)}. For the two cases above, the
extension of the interpretation of the cylindrification operator I(cκa) is given by:

1. {〈vκ1 , . . . ,vκn ,uκ〉 | vκi ∈ Sκi ∧ uκ ∈ Sκ ∧ pa(vκ1 , . . . ,vκn)}

2. {〈vκ1 , . . . ,uκ, . . . ,vκn〉 | vκi ∈ Sκi ∧ uκ ∈ Sκ ∧ pa(vκ1 , . . . ,vκn)}
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As explained in [9], in order to obtain either of the two extensions, we add a “do not care” clause
to the argument we need, in our case the dimension κ. In doing so, the cylindrification of the relation
I(a) along the κ index corresponds to the predicate expressed as follows:

I(cκa) def⇐⇒ ∃(uκ | uκ ∈ Sκ : I(a)) (21)

It is immediate that Axiom (C1) holds.
I(
(
A,+,?,−,0A,1A

)
)=
(
I(A), I(+), I(?), I(−), I(0), I(1)

)
=
(
Ǎ,∨, ∧ ,¬,False,True

)
is a Boolean

algebra (∨ and ∧ are associative, commutative, distribute over each other, the absorption law holds,
False,True are their respective neutral elements, and ¬ stands for complements).

We can show that Axiom (C2) holds:

I(ck0A)

⇐⇒ 〈 Interpretation of the cylindrification operator (21) 〉
∃(uκ | uκ ∈ Sκ : I(0A))

⇐⇒ 〈 Interpretation of I(0A) (19) 〉
∃(uκ | uκ ∈ Sκ : False)

⇐⇒ 〈 ∃-False body 〉
False

⇐⇒ 〈 Interpretation of 0A (19) 〉
I(0A)

For Axiom (C3) we need the interpretation of the order relation ≤ on tuples of data. We know
that a≤ b ⇐⇒ a+b = b, and we show that

I(a≤ b) def⇐⇒ I(a) =⇒ I(b) (22)

I(a≤ b)
⇐⇒ 〈 Algebraic interpretation of ≤ 〉

I(a+b) = I(b)
⇐⇒ 〈 Interpretation of operator + (16) 〉

I(a) ∨ I(b) = I(b)
⇐⇒ 〈 Definition of implication operator (13) 〉

I(a) =⇒ I(b)

We can show that Axiom (C3) holds. Let x ∈ A,κ ∈U.

I(x≤ cκx)
⇐⇒ 〈 Interpretation of ≤ (22) 〉

I(x) =⇒ I(cκx)
⇐⇒ 〈 Interpretation of cylindrification operator (21) 〉

I(x) =⇒ ∃(uκ | uκ ∈ Sκ : I(x))
⇐⇒ 〈 ∃-Introduction axiom (P =⇒ ∃xP) 〉

True
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For Axiom (C4), we take x,y ∈ A,κ ∈U.

I(cκ(x? cκy))
⇐⇒ 〈 Interpretation of cκx operator (21) 〉
∃(uκ | uκ ∈ Sκ : I(x? cκy))

⇐⇒ 〈 Interpretation of ? operator (17) 〉
∃(uκ | uκ ∈ Sκ : I(x) ∧ I(cκy))

⇐⇒ 〈 Interpretation of cκy operator (21) 〉
∃(uκ | uκ ∈ Sκ : I(x) ∧ ∃(vk | vk ∈ Sκ : I(y)))

⇐⇒ 〈 Distributivity of ∧ over ∃ (vk is free in I(x)) 〉
∃(vk | vk ∈ κ : I(y)) ∧ ∃(uκ | uκ ∈ Sκ : I(x))

⇐⇒ 〈 Commutativity of ∧ 〉
∃(uκ | uκ ∈ Sκ : I(x)) ∧ ∃(vk | vk ∈ κ : I(y))

⇐⇒ 〈 Interpretation of cκx operator (21) 〉
I(cκx) ∧ I(cκy)

⇐⇒ 〈 Interpretation of ? operator (17) 〉
I(cκx? cκy)

Similarly, for Axiom (C5), we take x ∈ A, and κ,λ ∈U.

I(cκcλx)
⇐⇒ 〈 Interpretation of cylindrification operator, cκ (21) 〉
∃(uκ | uκ ∈ Sκ : I(cλx))

⇐⇒ 〈 Interpretation of cylindrification operator, cλ (21) 〉
∃(uκ | uκ ∈ Sκ : ∃(uλ | uλ ∈ Sλ : I(x)))

⇐⇒ 〈 Idempotency of ∧ 〉
∃(uκ | uκ ∈ Sκ : ∃(uλ | uλ ∈ Sλ : I(x) ∧ I(x)))

⇐⇒ 〈 Distributivity of ∧ over ∃ (uλ is free in I(x)) 〉
∃(uκ | uκ ∈ Sκ : I(x) ∧ ∃(uλ | uλ ∈ Sλ : I(x)))

⇐⇒ 〈 Distributivity of ∧ over ∃ (uκ is free in I(x)) 〉
∃(uλ | uλ ∈ Sλ : I(x)) ∧ ∃(uκ | uκ ∈ Sκ : I(x))

⇐⇒ 〈 Commutativity of ∧ 〉
∃(uκ | uκ ∈ Sκ : I(x)) ∧ ∃(uλ | uλ ∈ Sλ : I(x))

⇐⇒ 〈 Distributivity of ∧ over ∃ (uκ is free in I(x)) 〉
∃(uλ | uλ ∈ Sλ : I(x) ∧ ∃(uκ | uκ ∈ Sκ : I(x)))

⇐⇒ 〈 Distributivity of ∧ over ∃ (uκ is free in I(x)) 〉
∃(uλ | uλ ∈ Sλ : ∃(uκ | uκ ∈ Sκ : I(x) ∧ I(x)))

⇐⇒ 〈 Idempotency of ∧ 〉
∃(uλ | uλ ∈ Sλ : ∃(uκ | uκ ∈ Sκ : I(x)))

⇐⇒ 〈 Interpretation of cylindrification operator, cκ (21) 〉
∃(uλ | uλ ∈ Dλ : I(cκx))
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⇐⇒ 〈 Interpretation of cylindrification operator, cλ (21) 〉
I(cλcκx)

Therefore, Axioms (C4) and (C5) both hold.
With this interpretation, the mathematical structure I(A) =

(
I(A),∨,∧,¬,False,True, I(cκ)

)
is a

diagonal-free cylindric algebra.
With this understanding, all five axioms of a diagonal free cylindric algebra hold:

1. I(
(
A,+,?,−,0A,1A

)
) =

(
I(A),∨, ∧ ,¬,False,True

)
is a Boolean algebra

2. I(cκ0A) = I(0A)

3. I(x≤ cκx) = True

4. I(cκ(x? cκy)) = I(cκx? cκy)

5. I(cκcλx) = I(cλcκx)

Therefore, the mathematical structure I(A) =
(
I(A),∨,∧,¬,False,True, I(cκ)

)
is a diagonal-free

cylindric algebra.

5 Discussion

In this paper, we propose a formal process for representing the organised datasets, their domain of
application, and the relation between these two aspects.

In [8], the authors recognize that in the process of analysing data, a large amount of time is spent
on mapping the data to the semantic context. Considering the new characteristics of data (especially
volume, variety, and velocity), the current practice of building ontologies from scratch, with no regard
to the acquired and stored data, is no longer an acceptable approach. We need methodologies to
support the design of domain knowledge, while taking in account the existing organised data. With
the rise of the Semantic Web, work to extract knowledge from free text has been started. To the best
of our knowledge there has been little done to capture the domain knowledge starting from existing
structured data.

Existing knowledge representation formalisms [1, 38, 40] have one common property: if data is
considered, it is included within the representation of the ontology. Thus, as the data volume in-
creases, the ontology may become unmanageable. There is a clear need to separate the data from the
domain knowledge, with well-defined links between the two components. We have proposed a modu-
lar structure to represent the domain knowledge: the domain ontology captures the conceptualisation
of the considered domain, and the domain data view represent the data. The two components are
loosely coupled through the τ operator. The modularity of the DIS-based systems allows for various
interpretations of the same dataset in different contexts.

As discussed in Section 1, there already exists knowledge representation frameworks that decouple
the data from the domain of application. OBDA systems [16, 32] are built primarily to quickly adapt
to changes in the data, as well as to allow a seamless integration of different data source formats.
However, OBDA systems start from the premise that both the data source and an ontology already
exist, and they provide a mapping between the two parts. In doing so, the main challenge of the
OBDA systems is matching the model of the application domain (i.e., the ontology) to the model of
the data (i.e., its schema). In addition, the translation of user queries from the language of the ontology
to the language of the data source(s) poses efficiency challenges [41]. While the literature abounds
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with research on optimisation of the translation phase [3, 16, 22, 28, 32], no widely accepted solution
is currently available.

In DOGMA [18], a methodological framework for ontology engineering, an ontology is doubly-
articulated into a domain axiomatization (i.e., a set of concepts, relations, and axioms that describe
the domain) and an application axiomatization. The double-articulation ensures that the typically lo-
cal application axiomatization uses only concepts and relations already defined in the typically global
domain axiomatization. This approach implies that the ontology (i.e., domain axiomatization) is built
independently from the data model (i.e., application axiomatization). Thus, the challenge of the mis-
match between the model of the domain and the model of the data is still present in DOGMA-based
systems.

In our work, the DIS-based systems build the domain ontology from an existing dataset. This
structure enables the automated extraction of the ontology core as a Boolean lattice, built over the
partOf relation. The dataset attributes become atomic concepts, and other concepts and relations on
them are captured through the set of rooted graphs in the DIS, with the assistance of domain experts.
The mapping from the data view to the domain ontology is provided by process of designing the
ontology, through the τ operator.

Intuitively, as new knowledge is generated from large volumes of data, it will produce large vol-
umes of knowledge. Current formal information systems, such as Information Algebra [21], Concept
Algebra [40], and ECII [38] , offer a method for focusing or sharpening of information, which works
well with the closed-world assumption of databases. In the open-world we assume in the proposed
DIS, we provide a method for “expanding” the information, through the cylindrification operator. In
addition, through the focusing operator described in Section 3.2, a DIS-based system offers a focusing
method similar to that given in [21, 38, 40].

We advance that DIS-based systems offer a structure in which information evolution is mostly
limited to the component where the change occurs. In a DIS-based system, information evolution can
be initiated from three sources (1) domain, (2) data content, and (3) data structure. In the first case,
domain changes are captured at the ontology level, more precisely in the rooted graphs or the axioms
of the system. The data component remains consistent with the ontology, and it needs no updates,
as it is not affected by a domain change. In the second case, as the data structure is not affected, the
ontology structure remains unchanged, and therefore consistent with the changed data. In the third
case, any changes made to the attributes of the data view will initiate a change to the Boolean lattice.
The atomic concepts corresponding to the modified attributes need to be modified. However, the only
consistency check that needs to be performed is on the rooted graphs and axioms using the modified
Boolean lattice concepts. For example, if the data schema removes an attribute, its corresponding
atomic concept in the Boolean lattice must be be removed as well. The domain expert must update the
rooted graphs for which the root is the removed atomic concept or its super-parts, and the axioms that
involve the removed concept. Adding attributes in the data schema will not introduce inconsistencies
in the existing system. Therefore, in a DIS-based system, evolution of one component has no or
minimal impact on the other components of the system.

6 Conclusion and Future Work

In this paper, we introduce a framework for data-based ontology design, called DIS. The DIS is a
modular structure that makes effective use of classic mathematical structures to represent a domain
of application and the data view it is based on. The only coupling between the two components is
given through the τ operator. Due to the low coupling of the DIS components, information evolution
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has minimal impact on a DIS. We present a language that captures both the domain data view and the
domain representation in a unified manner. In addition, we describe the DIS theory and we show it
accepts a model.

The immediate next step is to build a user-friendly language to specify DIS-based systems. This
language needs to be close to natural language and hide all the mathematical details. Once this step
is completed, we will build a tool that automatically generates the Boolean lattice component of the
domain ontology from the schema of the existing organised dataset.

Our proposed structure handles one dataset only, linking it to the Boolean lattice. Another research
direction that stems from this approach is the ability to handle multiple datasets, effectively zooming
into the concepts in the domain ontology, by providing them structure. This could be achieved in two
ways. The first approach is to extend the DIS to handle a set of Boolean lattices. The rest of the
elements of the DIS, including the cylindric algebra that models the data already allows for multiple
datasets. The second approach is to change the construction of the domain ontology, by building a
massive Boolean lattice from all the attributes from all the datasets. Each approach should be explored
to determine what extension should be chosen.

By extending the proposed information system to enable multiple Boolean lattices, we provide
the concepts in the rooted graphs of the domain ontology with a more granular structure. This will
enable us to build an algorithm for translating existing ontologies into a DIS, by mapping concepts
from the source ontology to concepts in the destination domain ontology, and mapping attributes to
atomic concepts that are the foundation of multiple Boolean lattices. The other relations in the source
ontology will be mapped to rooted graphs in the destination domain ontology.
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