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Abstract

Sampled-data (SD) supervisory control theory [42, 43, 29] focuses on imple-
menting timed discrete-event system (TDES) supervisors as SD controllers, and
addresses the implementation and concurrency issues involved. The SD approach
requires that as soon as a prohibitable event is eligible in the closed-loop system,
it must be forced by explicitly disabling the tick event.

As multiple modular supervisors are usually in control of the same prohibitable
event, designers typically do not find it easy and straightforward to satisfy this
property at every state of the closed-loop system while designing their TDES
supervisors by hand. This is believed to be one of the primary reasons for limited
adoption of the SD supervisory control methodology.

In this report, we present an approach to automate the tick disablement/event
forcing mechanism in the SD supervisory control framework. Specifically, we intro-
duce a new synchronization operator, called the SD synchronous product. Our SD
synchronous product operator is capable of automatically disabling a tick event
in the closed-loop system, if both tick and a prohibitable event is possible in the
plant model and enabled by all supervisors.

Based on this synchronization operator, we formulate and describe our SD syn-
chronous product setting. We redefine the existing TDES and SD definitions to
utilize our synchronization operator and setting. We establish and prove equiva-
lence between our SD synchronous product setting and the existing SD supervisory
control setting.

Then, we present controllability and nonblocking verification results for our SD
synchronous product setting. Specifically, we formally prove that if a theoretical
TDES designed in our setting is controllable, nonblocking and satisfies our specified
properties, then the implemented system also exhibits correct behaviour and abides
by the control laws. After that, we give our tweaked predicate-based algorithms for



verifying various TDES and SD properties in our setting. We have implemented
these algorithms in a DES research tool, DESpot [14].

Finally, we present the example of a Flexible Manufacturing System to show
that our approach simplifies the design logic of modular supervisors and reduces
their state size. This results in improving the ease of manually designing SD
controllable supervisors and reducing the verification time of the overall TDES
system. This should increase the adoption of the SD supervisory control method-
ology in particular, and formal methods in general, in the industry by simplifying
the formal design and verification process of control systems.

Keywords: discrete-event systems, timed discrete-event systems, sampled-data
supervisory control, tick disablement, event forcing
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1 Introduction

Discrete Event Systems (DES) are dynamic systems that encompass processes that are discrete
in time and state space, often asynchronous, and typically non-deterministic. These systems
evolve by changing state in accordance with the instantaneous occurrence of physical events.
DES are quite common in industry and include a variety of man-made systems namely man-
ufacturing systems, computer and communication networks, transport and logistic systems,
and traffic control systems. These applications generally require some degree of control and
coordination to ensure the orderly flow of events according to the given specifications and/or
to prevent the occurrence of undesired chains of events.

To solve the control problem of DES and extend the control theory concepts of continuous
systems to DES, [46, 34] introduced Supervisory Control Theory (SCT). This theoretical ap-
proach is based on automata theory and formal language models [22]. SCT provides algorithms
and methods for the analysis and control of DES.

In SCT, a supervisor is introduced to alter the unrestricted behaviour of the plant DES
using feedback control as per the desired specifications. SCT partitions the set of events into
controllable and uncontrollable, the former being amenable to disablement by a supervisor.
In SCT, a system is desired to have two properties, controllability (undesired actions do not
occur) and nonblocking (no deadlock or livelock).

A timed DES (TDES) model adds timing information to an untimed DES in order to deal
with temporal specifications. The TDES modelling framework, proposed in [5, 7], extends the
untimed DES by introducing a new tick event. The tick event represents the passage of one
time unit and corresponds to the tick of a global clock to which the system is assumed to be
synchronized.

In TDES, non-tick controllable events are referred to as prohibitable events. It also intro-
duces a new class of non-tick events called forcible events that can preempt the occurrence of
a tick event. In order to force an event, the standard method used in TDES framework is to
“explicitly disable” the tick event while designing TDES supervisors by hand.

The ultimate goal of designing a theoretical TDES supervisor is to generate its corre-
sponding controller implementation. To the best of our knowledge, the first generic formal
implementation approach applicable to a wide variety of TDES is the sampled-data (SD) super-
visory control theory [42, 43, 29], although several adhoc approaches (discussed in Section 1.1)
existed before. We use the SD methodology as the basis of our work.

The goal of the work presented in this report is to reduce the design complexity and size
of TDES supervisors that are manually designed in the SD supervisory control framework,
and ease the process of modelling and verification of these SD controllable supervisors. These
goals are achieved by bridging the gap between theoretical TDES supervisors and physical
controllers by making them behave in a similar way with respect to forcing of events. Our
strategy to do this is to adopt the controller’s way of event forcing and apply it to the theo-
retical TDES setting of SD supervisory control.

We propose an approach to automate the tick disablement/event forcing mechanism in
TDES by devising a new synchronization operator, called the SD synchronous product. The
SD synchronous product operator, represented as “||SD”, is intended to be used to combine
the plant and supervisor models to construct closed-loop system in the SD framework. Our
synchronization operator is smart enough to automatically disable the tick event, if a forcible
event is eligible in the plant and enabled by all supervisors. As a result, software designers
no longer need to explicitly incorporate this logic while designing their SD controllable TDES
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supervisors by hand. This should increase the adoption of SD supervisory control theory in
particular, and formal methods in general, in the industry by simplifying the formal design
and verification process of control systems.

We formally verify our approach with respect to the desired properties of controllability
and nonblocking. In order to do this, we first establish equivalence between the existing SD
supervisory control setting and our proposed SD synchronous product setting. We then utilize
this equivalence to reprove all existing results of the SD supervisory control setting for our
SD synchronous product setting. Specifically, we show that if a theoretical TDES system
designed in our SD synchronous product setting is controllable, nonblocking and abide by the
specified control laws, then the physically implemented system retains these properties, and
the generated SD controller behaves as expected with respect to control action, event forcing
and nonblocking.

In this report, we first introduce our SD synchronous product operator, discuss its relevant
properties, and describe the proposed SD synchronous product setting. Then, we adapt the
existing TDES and SD properties to make them compatible with the proposed synchronization
operator and setting. After that, we establish and formally prove equivalence between our SD
synchronous product setting and the existing SD supervisory control setting. This is followed
by formally proving the controllability, nonblocking and desired SD supervisory control results
for the proposed setting. Finally, we demonstrate the design complexity and supervisor state
size reduction as well as the ease of modelling and verifying SD controllable TDES supervisors
in our SD synchronous product setting with the help of an example.

In the remainder of this section, we report several adhoc approaches for implementing DES
and TDES supervisors, followed by a discussion of why we have chosen the SD supervisory
control methodology as the basis of our work. We then explain the research problem that
we have addressed in this report, along with our proposed solution by presenting a small
independent chunk from our complete illustrative example. We close this section by giving an
outline of the rest of the sections that are present in this report.

1.1 Why SD Supervisory Control?

Although theoretical aspects of SCT have received substantial attention in academia, the
implementation of DES supervisors is still an open issue [40, 48]. This is because of the
discrepancy between the abstract SCT supervisors and resulting control realization [15]. Due
to the clear interpretation gap between the roles a supervisor is assumed to play within the
SCT modelling framework and the roles a controller has to play in the real-world control
systems, the implementation of DES supervisors is not a straightforward task [47].

In order to facilitate the implementation of asynchronous, event-driven, theoretical super-
visor on a synchronous, signal-based programmable logic controller (PLC) [4], several untimed
approaches and algorithms have been developed. These include [1, 27, 25, 13, 18, 11, 41, 20,
26, 24, 16, 40, 33, 23, 35].

Unlike untimed DES, only a few studies have focused on the supervisor’s implementation
for time-sensitive systems due to the added complexity of incorporating time in the DES
modelling and control. Some significant timed implementation approaches presented in the
literature include [6, 39, 17, 38, 37].

A detailed analysis of the existing untimed and timed approaches reveals that these imple-
mentation solutions are application-specific, and cannot be generalized and applied to other
DES. Most of them are limited to PLC implementation, which further restricts the applicabil-
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ity of the presented methodologies. Moreover, these approaches do not guarantee a controllable
and nonblocking implementation, even if designers make sure that theoretical models satisfy
these properties. Also, they address implementation issues on an adhoc basis while paying
little or no attention to concurrency issues.

To the best of our knowledge, SD supervisory control methodology, presented in [42, 43,
29], is the first generic formal implementation approach that addresses the implementation,
concurrency and timing issues in a well-defined way. The SD approach proposes to implement
TDES supervisors as SD controllers, a good example of which is a Moore synchronous Finite
State Machine (FSM) [8].

This approach provides sufficient conditions to guarantee that if a theoretical TDES is
controllable, nonblocking, and satisfies these properties, then the physical system will also
exhibit correct behaviour, i.e. the implementation will be controllable, nonblocking and abide
by the specified control laws. It ensures this by: 1) identifying a set of existing TDES prop-
erties, and introducing the new property of SD controllability (Definition 3.7) that deals with
concurrency and timing issues, 2) establishing a formal representation of TDES supervisors
as SD controllers, and 3) providing a formal translation method to convert TDES supervisors
into Moore FSM, which can either be implemented on a PLC, in hardware using digital logic,
or as a computer program.

Due to these distinctive characteristics of the SD supervisory control theory and its ap-
plicability to a variety of TDES applications, we are using this approach as the foundation of
our work.

1.2 Motivating Problem

In the TDES framework, the standard method used by software designers to force an event at
a given state of the system is to “explicitly disable” the tick event at the corresponding state
of the TDES supervisor. This has the effect of removing the now impossible behaviour that
tick could occur before the forcible event, as the forced event is guaranteed to occur before
the tick.

In the SD supervisory control theory, all prohibitable events are treated as forcible events
(Section 3.3). The SD controllability property (Definition 3.7) requires that a prohibitable
event be forced in the same clock period (before tick) in which it is enabled, and must remain
disabled otherwise. Specifically, the forward implication (⇒) of Point ii enforces this check
to make sure that at a given state, if tick and a prohibitable event is possible in the plant
model, and prohibitable event is enabled by the TDES supervisor, then the supervisor must
explicitly disable tick in order to force the prohibitable event.

Failure to satisfy this property correctly can have serious consequences. For instance,
consider the following two scenarios:

1. At a given state, both tick and a prohibitable event is possible in the plant and enabled
by all modular TDES supervisors. This is highly undesirable as the SD controller would
not know whether to let tick occur or force a prohibitable event at this state. This would
make the translation of TDES supervisors into SD controllers ambiguous.

2. A prohibitable event is enabled by a modular supervisor and supervisor has also disabled
the tick event which was possible in the plant model. However, if one of the other modular
supervisors has disabled this prohibitable event or the event is not currently possible in
the plant, our system will become uncontrollable (Definition 2.22).
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In order to avoid these unwanted outcomes, it is important that all plant components and
modular supervisors must coordinate and agree on the enablement/disablement of tick and
prohibitable events. For this purpose, the designer has to manually keep track of two things:
1) when is the tick event possible in the plant, and 2) when any prohibitable event is possible
in the plant and is not disabled by any of the modular supervisors. In this case, the designer
must explicitly disable tick event in the supervisor model to force the prohibitable event.

Clearly, keeping track of this information manually, and at the same time guarantee that
Point ii (⇒) of SD controllability property is always satisfied at every state of the closed-
loop system is not a trivial and trouble-free task. This is further complicated by the fact
that multiple modular supervisors are usually in control of the same prohibitable event. This
is believed to be one of the primary reasons for limited adoption of SD supervisory control
methodology, as typically designers do not find it convenient to manually satisfy Point ii (⇒)
of SD controllability property, especially while developing modular solutions.

Moreover, this logic of disabling tick in the presence of an enabled prohibitable event
also needs to be explicitly specified in the design of various TDES supervisors so that modular
supervisors have sufficient knowledge of the plant’s behaviour as well as each other’s behaviour,
in order to work together appropriately. In order to make the TDES models aware of each
other’s behaviour with respect to the tick event and common prohibitable events, designers
usually rely on two methods: 1) duplicate the logic of one TDES model in the other model(s),
or 2) add expansion events, i.e. non-physical/virtual events that are added solely to aid in
communication between modular supervisors. Five such events, prefixed by “no”, are discussed
in Section 10.1.

Besides making the TDES modelling process demanding and laborious for designers, these
methods also increase the design complexity and size of TDES supervisors, hence the overall
SD system. We briefly present an example for the first technique of duplicating logic and its
associated complexities below. Please see Section 10.3 for a comprehensive discussion on both
techniques.

1.2.1 Illustrative Example

In Section 10, we will discuss the TDES example of a Flexible Manufacturing System (FMS)
from [42, 43] to apply our approach and discuss our results. Here, we briefly present one part
of this example to concretely illustrate the afore-mentioned issues, and then demonstrate how
our proposed approach addresses them (Section 1.3.1).

The FMS, shown in Figure 1, consists of two conveyor belts (Con2 and Con3)1, four
machines (Robot, Lathe, PM and AM), and five buffers (B2, B4, B6, B7 and B8)1. Each
buffer has the capacity to hold a single part and it is desired that buffers never overflow (try
to put a part in the buffer when it already has one) or underflow (try to remove a part from the
buffer when it is empty). Please note that the behaviour of buffers is treated as specifications,
and need to be implemented as TDES supervisors. In Figure 1, event names preceded by ‘!’
represent uncontrollable events, and those without ‘!’ are prohibitable events.

In the FMS, once a new part enters the system via Con2 (pt_ent_sys), it goes to buffer
B2 (pt_ent_B2). The Robot is responsible for taking parts from buffer B2 (R_from_B2) and
pass them on to buffer B4 (R_to_B4) for further processing by Lathe. After processing, the
part returns to buffer B4, from which Robot moves it either to buffer B6 (R_to_B6) or B7
(R_to_B7). Please see Section 10.1 for a more in-depth explanation of this system.

1This example is taken from a larger example, which is why the part labels are not contiguous.
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Figure 1: An Overview of Flexible Manufacturing System
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Figure 2: TDES Plant Robot

In order to manage and force the prohibitable event R_from_B2 as per the given specifica-
tions, TDES plant model Robot (Figure 2), and modular TDES supervisors, B2 (Figure 3)
and TakeB2 (Figure 4), are designed in the existing SD supervisory control setting [43].
Please note that in the complete FMS example (Section 10), R_from_B2 is under the control
of four modular supervisors. To keep our example simple, here we are discussing only two of
them that are tightly coupled to one another. To understand the graphical representation and
notation of a TDES automaton, please see Section 2.3.
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Figure 3: TDES Supervisor B2
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Figure 4: TDES Supervisor TakeB2

Supervisor TakeB2 is primarily responsible for forcing R_from_B2. In order to keep the
system timed controllable (Definition 2.22), it is important to make sure that TakeB2 does
not disable tick and try to force R_from_B2 when it is not possible in Robot or disabled
by supervisor B2 . Therefore, TakeB2 must take into account the behaviour of these models
before it attempts to force R_from_B2.

By looking at supervisor B2 , we note that it enables R_from_B2 after the part has
reached buffer B2 (pt_ent_B2). This means that TakeB2 needs to keep track of the part’s
progress. Once the part has reached buffer B2, only then TakeB2 should disable tick and
force R_from_B2, as this is the time when the prohibitable event will be enabled by supervisor
B2 and possible in Robot.

Now that we have manually figured out the “right time” for forcing R_from_B2, this logic
needs to be incorporated in the design of supervisor TakeB2 . This is done by adding the
event pt_ent_B2 to its event set, and duplicating the related behaviour of B2 in TakeB2 , i.e.
by replicating the event sequence “pt_ent_B2− tick ” from supervisor B2 to TakeB2 . Only
after knowing about the occurrence of this sequence of events, TakeB2 forces R_from_B2
by disabling tick at state 2, thus making sure that system does not become uncontrollable
while it is trying to force R_from_B2.

It is notable that uncontrollable event pt_ent_B2 gets added to TakeB2 as part of ex-
plicitly specifying this forcing logic, and now TakeB2 is also in charge of allowing/disallowing
this event to occur in the system. In this case, designers need to effectively handle two more
things. First, they must make sure that TakeB2 should always allow pt_ent_B2 to happen,
when needed. In other words, TakeB2 must never block pt_ent_B2 when it is possible in
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the plant model, otherwise the system will become uncontrollable. Second, designers must
design TakeB2 in such a way that pt_ent_B2 interleaves properly with the other events of
TakeB2 , (i.e. R_to_B6 and R_to_B7), in order to prevent the violation of other desired
SD properties and overall system specifications.

It is obvious that duplicating the behaviour of supervisor B2 and specifying all this addi-
tional logic in relation to pt_ent_B2 not only make the design of TakeB2 more complicated,
but also add more states to TakeB2 , thus increasing its state size. It is easy to see that
this trend will continue to grow rapidly when system has several prohibitable events that are
under the control of multiple modular supervisors (as evident in Section 10). Not to mention
the extra effort and time that designers need to invest to manually figure out the logic and
right time for forcing every single prohibitable event of the system, deal with the related com-
plications, and then explicitly specify all this logic in the design of various modular TDES
supervisors.

Clearly, an easier way is needed to determine and specify the logic of forcing prohibitable
events. This method should simplify the TDES modelling process as well as the actual design
of modular TDES supervisors in the SD supervisory control theory.

1.3 Proposed Solution

In the example discussed above, additional design logic and extra design effort is required
because we need to make sure that system remains timed controllable, while we are trying
to manually satisfy Point ii (⇒) of SD controllability by explicitly disabling tick and forcing
the enabled prohibitable event. This makes us think that if “manual” disablement of tick
event somehow gets eliminated, then we should be able to “automatically” satisfy Point ii
(⇒) without having to worry about potentially disabling tick at the wrong time and making
the system uncontrollable. Keeping this in view, we propose an approach to “automate” the
tick disablement/event forcing mechanism to “automatically” satisfy the property checked by
Point ii (⇒) of SD controllability in the SD supervisory control framework.

Our approach is inspired by the event forcing mechanism of physical controllers. In fact,
we adopt the controllers’ way of event forcing and apply it to the theoretical TDES setting.
Controllers indicate the forcing of an event not by disabling the tick , but by enabling the event.
If a controller wants an event to occur, it simply enables it. As soon as all the controllers that
control this event enable it, the event occurs. In this case, none of the controllers is explicitly
responsible for forcing the event.

This is exactly what our approach does in the SD supervisory control framework. Using our
approach, if designers want to force a prohibitable event, they simply enable it in the modular
supervisor without explicitly disabling the tick . As soon as the prohibitable event is enabled by
all concerned supervisors and possible in the plant, tick “automatically” gets disabled to force
the prohibitable event, thus automatically satisfying the property enforced by Point ii (⇒) of
SD controllability. In this way, our approach essentially liberates the designers from manually
keeping track of the enablement/disablement of tick and prohibitable events in various plant
and supervisor models, and instead makes the forcing decision implicit.

In order to “automatically” disable tick in the presence of an eligible prohibitable event,
we change the way we construct closed-loop system in the SD supervisory control framework.
Specifically, we devise a new synchronization operator, named the SD synchronous product
(||SD), to form the closed-loop system. While synchronizing plant and supervisor models,
our SD synchronous product operator checks to see that at a given state, whether tick and a
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prohibitable event are both possible in the plant and enabled by all modular supervisors. If so,
our synchronization operator disables tick event at the corresponding state of the closed-loop
system without relying on any of the supervisor models to explicitly do this action.

This means that in the presence of our SD synchronous product operator, event forcing
logic does not need to be explicitly specified in any of the supervisor models. As none of
the modular supervisors is responsible for deciding when to force a prohibitable event, they
no longer need to keep track of each others’ behaviour. In other words, just like controllers,
TDES supervisors are only concerned about their own behaviour in our approach. They simply
enable the prohibitable event when they want it to occur.

In this way, by automating the tick disablement/event forcing mechanism in theoretical
TDES setting, our approach aims at simplifying the design logic and modelling process of
TDES supervisors, hence the overall system in the SD supervisory control framework. Also,
it bridges the gap between theoretical TDES supervisors and physical controllers by making
the event forcing mechanism of supervisors match with that of controllers. This makes the
SD supervisory control methodology more accessible to software and hardware designers and
practitioners.

1.3.1 Illustrative Example

Now we will redesign the TDES supervisor TakeB2 (Figure 4) from the FMS example (intro-
duced in Section 1.2.1) by taking into consideration the automatic tick disablement mechanism
of our SD synchronous product operator. Figure 5 shows the TDES supervisor TakeB2 that
we have designed by applying our approach. Please note that although we are using the
same name for our redesigned TDES supervisor, we have written it in a different text style
(bold, instead of bold italics) to clearly distinguish it from the original supervisor of the SD
supervisory control framework.

In our approach, none of the modular supervisors has to be responsible for explicitly
forcing the prohibitable event. This implies that TakeB2 can simply enable the prohibitable
event R_from_B2 without explicitly deciding when to force it. That is why, we have enabled
both tick and prohibitable event R_from_B2 at state 0 of TakeB2, leaving it up to the SD
synchronous product operator to automatically disable tick and make the forcing decision for
us when R_from_B2 is possible in TDES plant model Robot (Figure 2) and enabled by
TDES supervisors B2 (Figure 3) and TakeB2.

Since TakeB2 has not explicitly disabled the tick event, there is no concern of making
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tick

tick

!R_to_B7
!R_to_B6

tick

0

1

2

Figure 5: TDES Supervisor TakeB2
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the system potentially uncontrollable by disabling tick at the wrong time. Also, the synchro-
nization logic of our SD synchronous product operator guarantees that the property checked
by Point ii (⇒) of SD controllability will always be satisfied at every state of the closed-loop
system.

As TakeB2 is not explicitly disabling tick while enabling R_from_B2, this implies that it
neither needs to have knowledge about the behaviour of other TDES models, nor does it have
to keep track of the part’s progress. Therefore, supervisor TakeB2 does not need to duplicate
the design logic of supervisor B2 . In fact, there is no need to include the uncontrollable event
pt_ent_B2 in supervisor TakeB2 at all. As a result, all concerns and issues that designers
had to deal with after including pt_ent_B2 in supervisor TakeB2 automatically vanish by
using our approach.

In this way, the 8-state supervisor TakeB2 designed in the original SD supervisory con-
trol framework gets reduced to the 3-state supervisor TakeB2 in the presence of our SD
synchronous product operator. Also, it is evident that our approach has greatly simplified the
design logic of TakeB2 as compared to its corresponding supervisor TakeB2 , thus improving
the ease of designing SD controllable TDES supervisors by hand.

1.4 Structure of the Report

The rest of this report is organized as follows.
Section 2 introduces the area of DES and TDES by describing the basic concepts and

terminology used throughout this report. Section 3 provides an overview of the sampled-data
(SD) supervisory control theory [42, 43, 29] on which our work is based upon. This section
covers all the essential aspects of the SD methodology needed in the following sections.

In Section 4, we present a novel mechanism for constructing closed-loop systems in the
SD supervisory control framework. This section introduces our SD synchronous product (||SD)
synchronization operator, provides the adapted TDES and SD definitions, and describes our
SD synchronous product setting (“||SD setting,” from now on) in detail.

Our next task is to establish equivalence between the SD supervisory control setting (or
“SD setting,” for short) and our ||SD setting. We discuss and formally prove this equivalence
between the two settings in Sections 5−7.

In Section 8, we present the controllability and nonblocking verification results for our
||SD setting. We formally prove that if a theoretical system designed in our ||SD setting is con-
trollable, nonblocking and satisfies the required properties, then the physically implemented
system will also have these properties, and the system abides by the specified control laws.
Section 9 presents the predicate-based algorithms that we have adapted from [42] to verify
various TDES and SD properties in our ||SD setting. We have implemented these algorithms
as part of a DES research tool, DESpot [14].

In Section 10, we discuss the example of a Flexible Manufacturing System (FMS) to
demonstrate the application and utilization of our SD synchronous product operator and our
||SD setting. This section also presents the verification results of the FMS example in our
||SD setting. Section 11 finishes off this report by stating our conclusions and discussing the
future work.

In the appendices, we have included some content for the sake of completeness of this
report. Appendix A gives miscellaneous definitions that are used in the fundamental DES
concepts described in Section 2. Appendix B primarily presents some predicate-based algo-
rithms from [42]. We are reusing these unmodified algorithms of the SD setting to verify some
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properties in our ||SD setting.

2 Preliminaries

This section presents a summary of the fundamental Discrete-Event System (DES) and Timed
DES (TDES) terminology and concepts that we will use in this report. Details can be found
in [45].

2.1 Linguistic Preliminaries

This section introduces key language concepts that are required to understand the terminology
given in the following sections.

2.1.1 Strings

Let Σ be a finite set of distinct symbols (events). We refer to Σ as an alphabet e.g. Σ =
{α, β, γ, σ}. A string s over Σ is a finite sequence of events of the form s = σ1σ2 . . . σn, where
σi ∈ Σ and 0 ≤ i ≤ n. A string with no events is called an empty string, denoted as ε, where
ε /∈ Σ.

Let Σ+ be the set of non-empty, finite sequences of events over Σ. We define Σ∗ to be
the set of all finite sequences of events over Σ, including the empty string ε. Thus, we have
Σ∗ := Σ+ ∪ {ε}. Given a string s = σ1σ2 . . . σn, |s| = n is the length of s. The empty string ε
has a length of zero, i.e. |ε| = 0.

Definition 2.1. Let s, t ∈ Σ∗, where s = α1α2 . . . αm and t = β1β2 . . . βn. The operation of
catenation of strings s and t, cat : Σ∗ × Σ∗ → Σ∗, is defined as:

cat(ε, s) = cat(s, ε) = s s ∈ Σ∗

cat(s, t) = st = α1α2 . . . αmβ1β2 . . . βn s, t ∈ Σ+

As |s| = m and |t| = n, the length of catenated string is |cat(s, t)| = |s|+ |t| = m+ n.

Definition 2.2. For some s, t ∈ Σ∗, we say that t is a prefix of s, written as t ≤ s, if
(∃u ∈ Σ∗) s = tu.

By definition, a string s ∈ Σ∗ is a prefix of itself, since s ≤ s. Also, we have that ε is a
prefix of all strings, since (∀s ∈ Σ∗) ε ≤ s.

2.1.2 Languages

Languages are used to represent system behaviour. A language is defined as a set of strings.
Formally, a language L over Σ is any subset of Σ∗, i.e. L ⊆ Σ∗.

Definition 2.3. The prefix closure of language L ⊆ Σ∗ is the language L, defined as L :=
{t ∈ Σ∗ | t ≤ s for some s ∈ L}.

This definition says that L consists of all prefixes of strings of L. By definition, a language
L is a subset of the prefix closure of itself, i.e. L ⊆ L. A language L is said to be prefix-closed
if L = L.

Let Pwr(Σ) denote the set of all possible subsets of Σ. For σ ∈ Σ, we will use the notation
Σ∗.σ to represent the set of all strings sσ for some s ∈ Σ∗.
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Definition 2.4. For language L ⊆ Σ∗ and string s ∈ Σ∗, the eligibility operator EligL : Σ∗ →
Pwr(Σ) is defined as EligL(s) := {σ ∈ Σ | sσ ∈ L}.

In simple words, the eligibility operator returns a set of events σ ∈ Σ that can follow string
s to create a string sσ ∈ L.

2.1.3 Nerode Equivalence Relation

Definition 2.5. The nerode equivalence relation2 on Σ∗ with respect to L, i.e. Σ∗ mod L, is
defined as (∀s, t ∈ Σ∗) s ≡L t or s ≡ t (mod L) iff (∀u ∈ Σ∗) su ∈ L iff tu ∈ L.

This definition states that two strings s and t are nerode equivalent with respect to L if
and only if they can be extended by any string u ∈ Σ∗ such that either both strings are in L
or neither string is in L.

2.2 Discrete Event Systems

Supervisory control theory (SCT) [46, 34] provides a formal framework for the analysis and
control of discrete-event systems (DES). SCT is automaton-based and models DES as the
generator of a formal language. The uncontrolled behaviour of the system of interest, modelled
by an automaton, is referred to as the plant DES. The desired behaviour of the controlled plant
is that its generated language be contained in a specification language. To achieve this desired
behaviour as per the given specifications, a supervisor DES, modelled by an automaton, is
introduced. Supervisor DES alters unrestricted behaviour of the plant DES within prescribed
limits by operating synchronously with it and using a feedback control mechanism.

This section presents the formal DES representation and fundamental concepts related to
DES.

2.2.1 Generator

Definition 2.6. A DES is formally represented as a generator which is defined as a 5-tuple:
G = (Q,Σ, δ, qo, Qm)

where Q is the state set, Σ is the event set, δ : Q × Σ → Q is the partial transition function,
qo ∈ Q is the initial state, and Qm ⊆ Q is the set of marked states.

The event set Σ of DES G can be partitioned into the set of controllable events (Σc) and
uncontrollable events (Σu), i.e. Σ = Σc ∪̇ Σu, where ∪̇ represents disjoint union of the two
sets, Σc and Σu. Controllable events can be enabled or disabled by a supervisor, and can
occur only when a supervisor enables them. On the other hand, uncontrollable events are not
under the control of the supervisor. These events are assumed to be always enabled. Once
the plant DES reaches a state where an uncontrollable event is possible, this event cannot be
prevented from occurrence.

Each transition in δ is a 3-tuple (or triple) of the form (q, σ, q′), where δ(q, σ) = q′ such
that q, q′ ∈ Q and σ ∈ Σ. We refer to q as the exit (source) state and q′ as the entrance
(destination) state.

2See Definition A.1 of equivalence relation in Appendix A.
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The notation δ(q, σ)! means the transition is defined at state q ∈ Q for event σ ∈ Σ. We
extend δ to δ : Q× Σ∗ → Q in the natural way as:

δ(q, ε) = q for q ∈ Q
δ(q, sσ) = δ(δ(q, s), σ) for q ∈ Q, s ∈ Σ∗ and σ ∈ Σ, as long as q′ := δ(q, s)! and δ(q′, σ)!

For the following definitions, let DES G = (Q,Σ, δ, qo, Qm).

Definition 2.7. A state q ∈ Q is reachable in G if (∃s ∈ Σ∗) δ(qo, s)! & δ(qo, s) = q.

This definition states that a state q is reachable if, starting from the initial state qo, there
exists a string s ∈ Σ∗ that can take us to state q.

Definition 2.8. The reachable state subset Qr of G is defined as:
Qr := {q ∈ Q | (∃s ∈ Σ∗) δ(qo, s) = q}

Definition 2.9. A DES G is reachable if all of its states are reachable, i.e. Qr = Q.

Definition 2.10. A DES G is said to be deterministic if it has a single initial state, and for
each q ∈ Q, and each σ ∈ Σ, there is at most one σ transition leaving q.

Note: In this report, we always assume that a DES is reachable, deterministic and has a finite
state space and a finite event set.

Definition 2.11. The closed behaviour of G is defined as L(G) := {s ∈ Σ∗ | δ(qo, s)!}.
In simple words, we say that L(G) represents all possible sequences of events that could

occur in the system. Clearly, ε ∈ L(G) as long as Q 6= ∅.

Definition 2.12. The marked behaviour of G is defined as:
Lm(G) := {s ∈ Σ∗ | δ(qo, s)! & δ(qo, s) ∈ Qm}

The marked behaviour of G is interpreted as representing the set of all strings in Σ∗ that
start at qo and end at a state in Qm. Marked behaviour represents “completed” tasks carried
out by the system that G is intended to model. Clearly, Lm(G) ⊆ L(G).

Definition 2.13. A DES G is said to be nonblocking if Lm(G) = L(G).

This definition says that any string that can be generated by G is a prefix of (i.e. can
always be extended to) a marked string of G. In other words, every string in L(G) can be
extended to a completed task in Lm(G).

Definition 2.14. For DES G, let λ be an equivalence relation3 on Q such that (∀q, q′ ∈ Q)
q ≡ q′ (mod λ) if and only if:

1. (∀s ∈ Σ∗) δ(q, s)!⇔ δ(q′, s)!

2. (∀s ∈ Σ∗) δ(q, s)! & δ(q, s) ∈ Qm ⇔ δ(q′, s)! & δ(q′, s) ∈ Qm
This definition means that for states q and q′ such that q ≡ q′ (mod λ), they have the

same future with respect to the closed behaviour L(G) and marked behaviour Lm(G). Based
on this, for string s ∈ L(G), a state q = δ(qo, s) represents all strings in Σ∗ that are nerode
equivalent to s mod L(G) and mod Lm(G).

The λ-equivalence relation allows us to reduce a reachable generator to a minimal state
version that represents the same closed and marked behaviour.

Definition 2.15. A DES G is said to be minimal if (∀q, q′ ∈ Q) q ≡ q′ (mod λ)⇔ q = q′.
3See Definition A.1 of equivalence relation in Appendix A.
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This definition states that for all states q, q′ ∈ Q, q is equivalent to q′ (mod λ) if and only
if q and q′ are the same state. In other words, G is minimal if it does not have two distinct
states q and q′ in Q that are λ-equivalent.

2.2.2 DES Synchronization

From the designer’s point of view, it is often easier to model the system as several smaller
DES components, rather than designing the whole system as a single, more complex DES all
at once. These multiple DES components are synchronized together using a synchronization
operator to construct the complete system. The commonly used synchronization operators
include the synchronous product, the product4, and the meet5 operator. Before defining the
synchronous product operator formally, first we will introduce the natural projection operator
and its inverse.

Natural Projection Let Li ⊆ Σ∗i , for i = 1, 2. Let Σ = Σ1 ∪ Σ2.

Definition 2.16. The natural projection Pi of Σ∗ onto Σ∗i , i.e. Pi : Σ∗ → Σ∗i , is defined as:
Pi(ε) = ε

Pi(σ) =

{
ε if σ /∈ Σi

σ if σ ∈ Σi

Pi(sσ) = Pi(s)Pi(σ) for s ∈ Σ∗, σ ∈ Σ

This definition says that the action of Pi on a string s is to erase all occurrences of σ /∈ Σi,
that are in s.

Definition 2.17. Let P−1
i : Pwr(Σ∗i )→ Pwr(Σ∗) be the inverse image function of Pi, namely

for L ⊆ Σ∗i , we have P−1
i (L) := {s ∈ Σ∗ |Pi(s) ∈ L}.

Synchronous Product First, we will define the synchronous product of two languages L1

and L2 in terms of natural projection.

Definition 2.18. Let Li ⊆ Σ∗i , for i = 1, 2. The synchronous product L1 ||L2 ⊆ Σ∗ is defined
as L1 ||L2 := P−1

1 (L1) ∩ P−1
2 (L2).

Thus, s ∈ L1 ||L2 if and only if P1(s) ∈ L1 and P2(s) ∈ L2.

Now, we will define the synchronous product of two DES G1 and G2.

Definition 2.19. Let Gi = (Qi,Σi, δi, qo,i, Qm,i), for i = 1, 2. The synchronous product of
the two DES, represented as G = G1 ||G2, is defined as:

G := (Q1 ×Q2,Σ1 ∪ Σ2, δ, (qo,1, qo,2), Qm,1 ×Qm,2)

where δ((q1, q2), σ) is only defined and equals:
(q′1, q

′
2) if σ ∈ (Σ1 ∩ Σ2), δ1(q1, σ) = q′1, δ2(q2, σ) = q′2 or

(q′1, q2) if σ ∈ Σ1 − Σ2, δ1(q1, σ) = q′1 or
(q1, q

′
2) if σ ∈ Σ2 − Σ1, δ2(q2, σ) = q′2

Let L(G1) and L(G2) be the closed behaviour, and Lm(G1) and Lm(G2) be the marked
behaviour of G1 and G2 respectively. Synchronizing G1 and G2 using the synchronous product

4See Definition A.2 of product operator in Appendix A.
5See Definition A.3 of meet operator in Appendix A.

13



operator will generate the closed and marked behaviour of the resultant DES G = G1 ||G2 as
L(G) = L(G1) ||L(G2) and Lm(G) = Lm(G1) ||Lm(G2) respectively.

It follows from Definition 2.18 that:
L(G) = P−1

1 (L(G1)) ∩ P−1
2 (L(G2)) and Lm(G) = P−1

1 (Lm(G1)) ∩ P−1
2 (Lm(G2))

If both G1 and G2 are defined over the same alphabet Σ, i.e. Σ = Σ1 = Σ2, then:
L(G) = L(G1) ∩ L(G2) and Lm(G) = Lm(G1) ∩ Lm(G2)

However, if G1 and G2 are not defined over the same alphabet Σ, we can simply add
selfloops6 to each DES for the missing events at every state to extend them over the same
event set Σ, without any loss of generality.

It is important to note here that if Σ = Σ1 = Σ2, then synchronizing G1 and G2 using the
synchronous product, product and meet operator will generate the same closed and marked
language of the resultant DES G. In this case, we have:

L(G) = L(G1 ||G2) = L(G1 ×G2) = L(meet(G1,G2)) = L(G1) ∩ L(G2)

Lm(G) = Lm(G1 ||G2) = Lm(G1 ×G2) = Lm(meet(G1,G2)) = Lm(G1) ∩ Lm(G2)

Note: In this report, we assume that we have m > 1 plant DES components, G1,G2, . . . ,
Gm, and that they are always combined using the synchronous product operator to obtain
the composite plant DES G, i.e. G = G1 || G2 || . . . || Gm. Likewise, we have n > 1
modular supervisor DES, S1,S2, . . . ,Sn, and they are always assumed to be combined using
the synchronous product to construct the supervisor DES S, i.e. S = S1 ||S2 || . . . ||Sn. We also
assume that both G and S are always defined over the same event set Σ, either by modelling
the system in this way or by explicitly adding selfloops later on, unless stated otherwise.

2.2.3 Controllability

Let DES G = (Q,Σ, δ, qo, Qm) be a plant and DES S = (X,Σ, ξ, xo, Xm) be a supervisor. As
per Definition 2.6, Σ = Σc ∪̇ Σu.

In order to construct the closed-loop system, we synchronize plant G and supervisor S
using a synchronization operator. The behaviour of G under the control of S is referred to as
the closed-loop behaviour of the system.

Definition 2.20. Supervisor S is controllable with respect to plant G if:
(∀s ∈ L(S) ∩ L(G)) (∀σ ∈ Σu) sσ ∈ L(G)⇒ sσ ∈ L(S)

This definition can be restated in terms of the eligibility operator as follows:
(∀s ∈ L(S) ∩ L(G))EligL(G)(s) ∩ Σu ⊆ EligL(S)(s)

This definition states that for all legal strings s that are possible in the closed-loop system,
an uncontrollable event must be allowed by S if it is possible in G after s.

Note: In this report, as we will be focusing on timed DES models (introduced in the next
section), we will refer to this definition explicitly as the “untimed controllability” definition.

2.3 Timed DES

Timed DES (TDES), introduced by [5, 7], is a discrete-time model that extends untimed DES
theory by adding a new event called the tick (τ) event. The tick event represents the passage

6See Definition A.4 of selfloop operation in Appendix A.
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Figure 6: An Example TDES Automaton

of one time unit, and corresponds to the tick of a global clock that the system is assumed to
be synchronized with. Thus, the event set of a TDES contains the tick event as well as other
non-tick events called activity events (Σact).

Definition 2.21. A TDES automaton G is formally represented as a 5-tuple:
G = (Q,Σ, δ, qo, Qm)

where Q is the state set, Σ = Σact ∪̇ {τ} is the event set, the partial function δ : Q× Σ → Q
is the transition function, qo ∈ Q is the initial state, and Qm ⊆ Q is the set of marked states.
We extend δ to δ : Q× Σ∗ → Q in the natural way.

TDES contain forcible events (Σfor) and prohibitable events (Σhib). Forcible events rep-
resent a class of non-tick events which are guaranteed to occur before the next clock tick ,
when required. Hence, they can be relied upon to preempt the tick event, when needed. The
method used by a TDES supervisor to indicate that an event σ ∈ Σfor should be forced at a
given state, is to disable tick at this state. This has the effect of removing the now impossible
behaviour that tick could occur before σ. Prohibitable events are non-tick events that can be
enabled or disabled by a supervisor.

Like a DES generator (Definition 2.6), the event set Σ of a TDES automaton can be
partitioned into the set of controllable events (Σc) and uncontrollable events (Σu), i.e. Σ =
Σc ∪̇ Σu. The set of controllable events in TDES theory is Σc = Σhib ∪̇ {τ}, where Σhib ⊆ Σact.
The set of uncontrollable events is Σu = Σ− Σc = Σact − Σhib.

Let us consider a TDES G = (Q,Σ, δ, qo, Qm) with the following tuple information:
State set: Q = {q0, q1}
Event set: Σ = {e1, e2, tick}, where Σc = {e1, tick},Σu = {e2},Σact = {e1, e2} and

Σhib = {e1}
Transition function: δ = {(q0, e1, q1), (q1, e2, q1), (q1, tick, q0)}
Initial state: qo = q0
Set of marked states: Qm = {q0}
This TDES G is represented graphically in Figure 6. The states of G, q0 and q1, are

equated with the nodes (circles) of the graph. Transitions are represented by arrows. Arrows
are labelled by events, e1, e2 and tick , in Σ. The event name e2 in italics and preceded by
“!”, indicates that the event is uncontrollable. The initial state q0 is represented by a double
circle, whereas a filled circle shows that q0 is also a marked state.

Note: In this report, we will use the above-mentioned graphical notation to represent our
TDES models.

Since TDES framework is an extension of the DES theory, therefore all DES concepts and
properties presented in the previous sections remain valid and applicable to TDES theory. In
the following sections, we introduce/restate only those definitions that are specific to TDES
framework.
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2.3.1 Controllability and Supervision

Let TDES G = (Q,Σ, δ, qo, Qm) be a plant and TDES S = (X,Σ, ξ, xo, Xm) be a supervisor.

Definition 2.22. TDES supervisor S is timed controllable with respect to TDES plant G if
(∀s ∈ L(S) ∩ L(G)),

EligL(S)(s) ⊇
{
EligL(G)(s) ∩ (Σu ∪ {τ}) if EligL(S)∩L(G)(s) ∩ Σfor = ∅

EligL(G)(s) ∩ Σu if EligL(S)∩L(G)(s) ∩ Σfor 6= ∅
This definition states that supervisor S must accept an uncontrollable event if it is possible

in the plant G after a legal string s. In addition, S must enable a tick event if it is possible
in G, unless there exists an eligible forcible event in the system to preempt the tick .

Note: In this report, as we will only be dealing with TDES models, therefore we will drop
the word “timed”, and will refer to this property as “S is controllable with respect to G” for
simplicity.

Definition 2.23. A TDES supervisory control for G is any map V : L(G) → Pwr(Σ) such
that (∀s ∈ L(G)),

V (s) ⊇
{

Σu ∪ ({τ} ∩ EligL(G)(s)) if V (s) ∩ EligL(G)(s) ∩ Σfor = ∅
Σu if V (s) ∩ EligL(G)(s) ∩ Σfor 6= ∅

In the following definitions, we write V/G to denote the pair (G, V ), i.e. to represent G
under the supervision of V .

Definition 2.24. The closed behaviour of V/G is the language L(V/G) ⊆ L(G) defined
inductively as follows:

i. ε ∈ L(V/G)

ii. If s ∈ L(V/G), σ ∈ V (s), and sσ ∈ L(G) then sσ ∈ L(V/G)

iii. No other strings belong to L(V/G)

L(V/G) is prefix-closed, nonempty, and in the range {ε} ⊆ L(V/G) ⊆ L(G).

Definition 2.25. The marked behaviour of V/G, Lm(V/G), is defined as:
Lm(V/G) := L(V/G) ∩ Lm(G)

Definition 2.26. V is said to be nonblocking for G if Lm(V/G) = L(V/G).

2.3.2 Control Equivalent Supervisors

Let G = (Q,ΣG, δ, qo, Qm) be a TDES plant. Let S1 = (X1,Σ1, ξ1, xo,1, Xm,1) and S2 =
(X2,Σ2, ξ2, xo,2, Xm,2) be two TDES supervisors.

Definition 2.27. Supervisors S1 and S2 are considered to be control equivalent for a given
plant G, if they produce the same closed-loop behaviour.

As this definition specifically focuses on the “closed-loop behaviour”, two points are notable
and worth elaborating.

1. This definition does not make any assumptions about how the two closed-loop systems
are constructed, i.e. it is independent of the synchronization operators that are used to
form the two closed-loop systems. The two supervisors S1 and S2 may be combined with
G using the same synchronization operator, e.g. synchronous product, or two different
synchronization operators, e.g. S1 is combined with G using synchronous product, and
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Figure 7: An Example to Illustrate Various TDES Properties

S2 is combined with G using the sampled-data synchronous product operator (introduced
in Section 4.1). As long as the closed-loop behaviour of the two systems is the same, the
definition remains applicable and valid, and the choice of synchronization operator(s) is not
important. This will allow us to compare the action of two supervisors that are combined
with the same plant, but using different operators to construct the closed-loop systems.

2. The definition is given with respect to the closed-loop behaviour of the two systems, i.e. the
closed and marked languages, and not in terms of the actual closed-loop system automata.
This is because a TDES representation of the two closed-loop systems having the same
closed-loop behaviour might not be exactly the same due to different state labels. They
might not even be identical up to state relabelling as one TDES could be in its minimal
form and the other one could be a non-minimal version. However, irrespective of their
minimal or non-minimal representation, their closed and marked languages will still be
same.

Based on the above discussion, we can restate the definition of two supervisors being
control equivalent for a given plant model (Definition 2.27).

Definition 2.28. Let Gcl,1 be the closed-loop system that is constructed by synchronizing
S1 and G, and let Gcl,2 be the closed-loop system that is formed by combining S2 and
G. Then S1 and S2 are said to be control equivalent for G if L(Gcl,1) = L(Gcl,2) and
Lm(Gcl,1) = Lm(Gcl,2).

2.3.3 TDES Properties

Let TDES G = (Q,Σ, δ, qo, Qm) be a plant and TDES S = (X,Σ, ξ, xo, Xm) be a supervisor.
We will use an example TDES plant G (Figure 7a) and TDES supervisor S (Figure 7b)

shown in Figure 7 to illustrate various TDES properties.
First, we want to impose a technical condition on our TDES to exclude the physically unre-

alistic possibility that a tick transition might be preempted indefinitely by repeated execution
of an activity loop within a fixed unit time interval.

Definition 2.29. TDES G is said to have an activity-loop if (∃q ∈ Q) (∃s ∈ Σ+
act) δ(q, s) = q.

In Figure 7a, G has activity loops of “e1-e2-e3-e1” and “e4-e2-e3-e4” that could preempt
the tick event from occurring for an indefinite amount of time. Likewise, tick event in S can
be preempted indefinitely by repeated execution of “e1-e2-e3-e1” activity loop, as shown in
Figure 7b. To rule this out, we require that a TDES must be activity-loop-free.

Definition 2.30. TDES G is activity-loop-free (ALF) if (∀q ∈ Qr) (∀s ∈ Σ+
act) δ(q, s) 6= q.

Please note that this definition is given in terms of only the reachable states, since un-
reachable states do not contribute to the closed and marked behaviour of a TDES.

One simple way to make our G and S of Figure 7 ALF is by adding a tick transition after
transition ‘e3’. This ALF version of G and S is shown in Figure 8.
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Figure 9: An Example Illustrating Non-Selfloop ALF Property

Practically, it is not always possible to make supervisors ALF, as they typically have
selfloops of activity events. However, these selflooped events are sometimes not possible in
the plant model, thus making the closed-loop system ALF. Therefore, in the sampled-data
supervisory control theory [42, 29], the authors desire that their supervisors should preferably
satisfy a less restrictive condition of being non-selfloop ALF.

Definition 2.31. Let S be a TDES, and let S′ be S with all activity event selfloops removed.
S is non-selfloop ALF if S′ is ALF.

This definition states that if we remove all activity event selfloops from a non-selfloop ALF
TDES S, then it must become ALF.

A non-selfloop ALF TDES S is shown in Figure 9a. If we remove the selfloop of activity
event e3 at state x2, the TDES becomes ALF, as shown in Figure 9b.

The following defintion is taken from [44]. Only plant TDES are required to satisfy this
property.

Definition 2.32. TDES G has proper time behaviour if (∀q ∈ Qr) (∃σ ∈ Σu ∪ {τ}) δ(q, σ)!.

It says that at each reachable state, either an uncontrollable event or a tick event must be
possible. This ensures that a TDES can never express that a prohibitable event must occur
before the next tick , since a supervisor could disable that prohibitable event, thus “stopping
the clock”. This is neither desirable nor realistic.

TDES plant G shown in Figure 7a does not have proper time behaviour. The reason is
that at state q1, neither an uncontrollable event nor tick event is possible. The only event
possible at state q1 is the prohibitable event e2.

Usually, controllable events are often part of the supervisor’s implementation. This means
that supervisors can make these events to occur at any time, even when the plant model
says they can’t. In order to prevent the violation of the plant model, the property of plant
completeness was defined with respect to controllable events by [3]. It has been adapted to
use only prohibitable events for the sampled-data supervisory control theory [29], which is the
basis of our work.

Definition 2.33. A TDES plant G is complete for TDES supervisor S if:
(∀s ∈ L(S) ∩ L(G)) (∀σ ∈ Σhib) sσ ∈ L(S)⇒ sσ ∈ L(G)
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This definition states that for every state in G, if a prohibitable event σ is enabled by
S, it must be possible in G. This condition can be seen as dual to the definition of S being
controllable with respect to G (Definition 2.22).

In Figure 7, S enables prohibitable event e4 at state x2. However, event e4 is not possible
in G at state q2, thus violating the property of plant completeness.

3 Sampled-Data Supervisory Control

Sampled-Data (SD) supervisory control theory [42, 43, 29] focuses on the implementation of
TDES supervisors as SD controllers. It establishes sufficient conditions to ensure that if a
theoretical TDES is controllable, nonblocking, and satisfies these properties, then the physical
implementation will also have these properties and exhibit correct behaviour as specified by
the control laws.

In this section, we will only focus on those aspects of the SD methodology that are required
to follow our work presented in the following sections. To gain a thorough understanding of
the SD supervisory control theory, please refer to [42, 43, 29].

It is worth clarifying here that in the SD supervisory control setting (or “SD setting,”
for short) described in [42], the closed-loop system is constructed by combining the TDES
plant G = (Q,Σ, δ, qo, Qm) and the TDES supervisor S = (X,Σ, ξ, xo, Xm) using the meet
operator, i.e. meet(G,S), and all theoretical proofs and results are given in terms of the
meet. However, in [43, 29], the product operator is used to form the closed-loop system,
expressed as G× S, and discuss all verification results.

As noted in Section 2.2.2, if G and S are both defined over the same event set, then
meet(G,S), G×S, and G ||S will produce the same closed and marked behaviours, and can
thus be used interchangeably. To keep things simple and consistent throughout this report, we
will use the synchronous product operator to discuss the SD supervisory control framework.
In this case, we assume that S and G are defined over the same event set. We will thus
define the closed-loop system to be S ||G. The system’s closed behaviour is thus defined as
L(S ||G) = L(S) ∩ L(G), and its marked behaviour as Lm(S ||G) = Lm(S) ∩ Lm(G).

3.1 SD Controllers

A sampled-data (SD) controller is driven by a global periodic clock whose clock edge is as-
sociated with the tick (τ) event of the TDES. It views the system as a series of inputs and
outputs that can take the values of True and False only. On the rising edge of the clock, it
samples its inputs, changes its state based on the inputs and current state, and updates its
outputs based on the new state it has transitioned to.

To use an SD controller to manage a given system, an input is associated with each non-
tick event, called an activity event, and an output with each non-tick controllable event, called
a prohibitable event. The occurrence of an event is indicated by its input going true during a
given clock period. A prohibitable event is considered enabled when its corresponding output
has been set true by the controller, disabled otherwise. If a prohibitable event is enabled at
a given state, the controller will always make sure it happens before the next clock edge. For
example, in a digital logic implementation, the output set to true is usually taken to mean
that the event has occurred.

An SD controller samples inputs, changes state and updates outputs only on a clock edge.
This has the following implications: 1) An SD controller knows nothing about the occurrence
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Figure 10: An Example for Event Sampling (Reprinted from [42])

of events in a given sampling period (clock period) until the next clock edge. 2) On the
next clock edge, the only information it receives is which events have occurred in a given
sampling period. 3) Neither does it know anything about the order the events occurred in,
nor the number of times an event has occurred in a given sampling period. 4) An SD controller
updates the enablement and forcing information on the clock edge and then keeps it unchanged
for the entire clock period.

Figure 10 shows an example of event sampling with respect to an SD controller. The left
figure shows that Event1 and Event2 occurred in the 2nd sampling period. However, an SD
controller will know nothing about the occurrence of these events until the next clock edge,
i.e. 3rd rising edge of the clock. On the next clock edge, the only information it receives is
that Event1 and Event2 occurred in the sampling period that has just ended, without any
information about the order or frequency of occurrence of these events (right figure). This
means that an SD controller will not know about the exact string that actually happened in
the last sampling period, and cannot differentiate between strings such as “Event1-Event2-τ”,
“Event2-Event1-τ”, “Event1-Event2-Event1-τ” or “Event2-Event2-Event1-τ”.

3.2 Concurrency and Timing Issues

Timed DES theory assumes that: 1) events occur in an interleaving fashion (we can always
determine the event ordering), 2) we know immediately when events occur, and 3) enablement
and forcing occur immediately (i.e. no communication delay).

Because these assumptions are not true in general for SD controllers, several concurrency
and timing issues arise when representing TDES supervisors as deterministic SD controllers.
For example, if multiple forcible events are enabled in a single clock period (i.e. there is a
choice), how does the controller decide which events to generate/force in the current clock
period, and in which order to force the events? Likewise, if an event is enabled for multiple
clock periods (say 3 clock periods), how does the controller decide when to force it and in
which clock period (force it in the 1st, 2nd or 3rd clock period)? Also, if an SD controller is
forcing multiple events (say e1 and e2) in the same clock period, these events may only actually
occur in a specific order (say “e1-e2” only) even though the TDES model says they can occur
in multiple orderings (say “e2-e1” as well). This could even vary from one implementation to
the other.

These issues have ramifications with respect to controllability, plant model correctness, and
the SD controller’s ability to determine which state the TDES currently is in. They could make
the controller implementation block, uncontrollable, or violate the specified control laws, even
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though our original TDES is nonblocking and controllable. Also, these issues are important
for the unambiguous translation of TDES supervisors into SD controllers and to obtain a
deterministic controller.

These issues are primarily addressed in the SD supervisory control framework by intro-
ducing the property of SD controllability (Section 3.5).

3.3 SD Assumptions

The SD approach makes the following assumptions that must be met by the system designer
while developing the TDES models.

1. The set of prohibitable events is exactly equal to the set of forcible events, i.e. Σfor = Σhib.
2. A prohibitable event is forced in the same sampling period in which it is enabled. It is

only allowed to occur once per clock period.
3. When an event is forced in a given sampling period, no assumptions are made about

exactly when the event will occur during that clock period. This is because timing may
vary depending upon the controller’s implementation.

4. The SD controllers will be implemented centrally with a common clock such that they
all are synchronized, i.e. they all sample inputs and update outputs at the same time.
Moreover, the controllers generate all prohibitable events, so that there is no issue of
communication delay with respect to event enablement/disablement.

5. An event is assumed to have “occurred” when its input goes true. If this happens so close to
the clock edge that it shows up in the next sampling period, then it “occurs” immediately
after the clock edge. The system designer should reflect this in the plant model.

6. The length of an input pulse should be appropriate to be detected and interpreted correctly
by the controller. It should not be so short that it could be missed by the controller (i.e.
occurs between two clock edges). It should also not be so long that the controller sees and
interprets it as an event occurring multiple times in different clock periods, when the event
actually occurred only once in the current clock period.

Assumptions 1, 4, 5 are not very restrictive and essentially represent modelling issues.
Assumptions 4, 5 partially deal with timing and communication delay issues.

Note: As we build our work on the SD supervisory control theory, these assumptions apply
to our study as well.

3.4 SD Preliminaries

Let TDES G = (Q,Σ, δ, qo, Qm) be a plant and TDES S = (X,Σ, ξ, xo, Xm) be a supervisor.
An SD controller samples inputs and changes state on the clock edge, which is associated

with the tick event of the TDES. This means an SD controller can only observe strings ending
with a tick . Additionally, it can also see the empty string (ε) that represents the initial state
of the system which is always known. Such strings are referred to as sampled strings.

Definition 3.1. The set of sampled strings, Lsamp, is defined as Lsamp = Σ∗ . τ ∪ {ε}.
Sampled strings represent observable points in the system. If the controller is implementing

TDES supervisor S, states reached from the initial state by sampled strings represent states
in S that are at least partially observable. These states are referred to as sampled states.
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Figure 11: An Example Illustrating CS Deterministic Supervisor Property

Definition 3.2. For supervisor S, the set of sampled states, Xsamp, is defined as:
Xsamp = {x ∈ X | (∃s ∈ L(S) ∩ Lsamp)x = ξ(xo, s)}

An SD controller changes state after each clock edge (tick). Its next state is determined
by all the strings that can occur containing a single tick event at the end, since the last tick
event. Such strings are referred to as concurrent strings.

Definition 3.3. The set of concurrent strings, Lconc, is defined as Lconc = Σ∗act . τ ⊂ Lsamp.
Two concurrent strings containing the same events but in different order/number are in-

distinguishable to an SD controller. An occurrence operator is defined to capture this un-
certainity. The occurrence operator takes a string and returns the set of events (occurrence
image) that make up the string.

Definition 3.4. For s ∈ Σ∗, the occurrence operator, Occu : Σ∗ → Pwr(Σ), is defined as:
Occu(s) := {σ ∈ Σ | s ∈ Σ∗.σ.Σ∗}

If two concurrent strings with the same occurrence image are possible at a given sampled
state and they lead to two different states in S, this will make the translation of S into an SD
controller ambiguous and the translated SD controller non-deterministic. To circumvent this
undesirable situation, TDES supervisors are required to be concurrent string deterministic.

Definition 3.5. A TDES supervisor S is concurrent string (CS) deterministic, if:
(∀s ∈ L(S) ∩ Lsamp) (∀s′, s′′ ∈ Lconc) [ss′, ss′′ ∈ L(S) ∧Occu(s′) = Occu(s′′)]⇒

[ss′ ≡L(S) ss
′′ ∧ ss′ ≡Lm(S) ss

′′ ∧ ξ(xo, ss′) = ξ(xo, ss
′′)]

A supervisor S failing the CS deterministic property is shown in Figure 11a. In S, two
concurrent strings, “e1-e2-τ” and “e2-e1-τ”, leave the initial state x0. Despite having the same
occurrence image of {e1, e2, τ}, they go to two different sampled states, x3 and x6. In this
case, we note that S fails Definition 3.5 because it is not minimal. For example, states x3
and x6 are λ-equivalent (Definition 2.14) and can be combined together. This is also true for
states x2 and x5. After combining these λ-equivalent states, the resulting minimal TDES S′

is shown in Figure 11b. Please note that we cannot merge two or more states to obtain a CS
deterministic supervisor if they are not λ-equivalent.

One of the assumptions (Point 2 of Section 3.3) says that the controllers allow prohibitable
events to occur only once per sampling period. This must be reflected in the TDES plant model
and is captured by the following property.

Definition 3.6. For TDES plant G and TDES supervisor S, G is said to have S-singular
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prohibitable behaviour if:
(∀s ∈ L(S) ∩ L(G) ∩ Lsamp) (∀s′ ∈ Σ∗act) ss

′ ∈ L(S) ∩ L(G)⇒
(∀σ ∈ Occu(s′) ∩ Σhib)σ /∈ EligL(G)(ss

′)

An example failing the property of S-singular prohibitable behaviour is shown in Figure 12.
Plant G (Figure 12a) does not have S-singular prohibitable behaviour with respect to super-
visor S (Figure 12b). This is because the prohibitable event e1 is possible twice in the given
sampling period in G, at state q0 and q2, and this event is also allowed by S.

3.5 SD Controllability

Let TDES G = (Q,Σ, δ, qo, Qm) be a plant and TDES S = (X,Σ, ξ, xo, Xm) be a supervisor.
Assume a theoretical system with the following properties: 1) TDES G and S have finite

state spaces and finite event sets, 2) G has proper time behaviour and is complete for S, 3) S is
controllable with respect to G, 4) S is CS deterministic, and 5) S ||G is ALF and nonblocking.
Even if TDES satisfy the above-mentioned properties, the actual system behaviour under the
control of the corresponding SD controller could block, violate the control laws, or exhibit
behaviour not contained in G. To address these issues and handle the problems discussed in
Section 3.2, the property of SD controllability is introduced.

Definition 3.7. TDES supervisor S is SD controllable with respect to TDES plant G if,
∀s ∈ L(S) ∩ L(G), the following statements are satisfied:

i) EligL(G)(s) ∩ Σu ⊆ EligL(S)(s)

ii) If τ ∈ EligL(G)(s), then τ ∈ EligL(S)(s)⇔ EligL(S)∩L(G)(s) ∩ Σhib = ∅

iii) If s ∈ Lsamp then

1) (∀s′ ∈ Σ∗act) [ss′ ∈ L(S) ∩ L(G)]⇒
[EligL(S)∩L(G)(ss

′) ∪Occu(s′)] ∩ Σhib = EligL(S)∩L(G)(s) ∩ Σhib

2) (∀s′, s′′ ∈ Lconc) [ss′, ss′′ ∈ L(S) ∩ L(G) ∧Occu(s′) = Occu(s′′)]⇒
ss′ ≡L(S)∩L(G) ss

′′ ∧ ss′ ≡Lm(S)∩Lm(G) ss
′′

iv) Lm(S) ∩ Lm(G) ⊆ Lsamp

We now give a brief explanation for each of these points.
Point i: This is the standard untimed controllability property (Definition 2.20).
Point ii: In the reverse direction (⇐), it says that a tick event cannot be disabled unless
there exists an eligible prohibitable event to preempt the tick . Together with Point i, this
implies standard timed controllability (Definition 2.22), since Σfor = Σhib in the SD setting.
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Figure 13: An Example Failing SD Controllability Point ii (⇒)

The forward direction (⇒) states that if a prohibitable event is enabled, tick must be
disabled. This captures the notion that a prohibitable event is enabled only when it needs
to be forced, otherwise it must remain disabled. This removes the ambiguity about which
sampling period an enabled prohibitable event should be forced in, by making enabling and
forcing essentially one and the same. This not only makes the conversion of TDES supervisors
into SD controllers simple and straightforward, but also ensures that TDES behaviour is closer
to the implementation by removing forcing options that are not actually used in the physical
system.

For plant G (Figure 13a), supervisor Sup1 (Figure 13b) does not satisfy Point ii (⇒) as
both tick and prohibitable event e1 are enabled at states x1 and x2. This creates uncertainty
about when event e1 should be forced (at state x1, x2 or x3) and makes the translation of
TDES supervisors into SD controllers ambiguous. However, supervisor Sup2 (Figure 13c)
satisfies this property and removes the ambiguous and unused behaviour by allowing tick to
occur at state x1 and forcing prohibitable event e1 at state x2.
Point iii: For a sampled string s, the following two sub points must be satisfied.

Point iii.1: This point expresses that when a prohibitable event is possible in a clock
period, it must be possible immediately after the tick and stay possible for the period until
it occurs. This captures two ideas: 1) The enablement information of an SD controller is
constant for the entire clock period. 2) When a controller forces a prohibitable event, the
event must occur before the next tick, but we don’t know when. So the event must be possible
in the plant for the entire clock period till it occurs and must be able to interleave with the
other events occurring in the same clock period. Point iii.1 bridges the gap between TDES
supervisors and SD controllers by restricting the way the TDES supervisors change their
enablement information and makes it consistent with the SD controllers. This property also
emphasizes that if two prohibitable events should occur in a specific order, they must be forced
in separate clock periods.

Point iii.2: This point states that if two concurrent strings with the same occurrence
image are possible after a given sampled string, they must have the same future with respect
to the system’s closed behaviour (i.e. same control action must be taken now and in the future
for both strings), and with respect to its marked behaviour (i.e. the strings are interchangeable
with respect to reaching future marked states).
Point iv: All marked strings in the closed-loop system must be sampled strings.

It is worth noting that Point iii and Point iv apply to both G and S.
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3.6 Formal Model of SD Controller

In the SD supervisory control framework, an SD controller is modelled as a Moore synchronous
Finite State Machine (FSM) [8]. A Moore FSM is a Moore state machine that changes state
only on the rising or falling edge of the clock. It chooses its next state based on its current
state and inputs. Its outputs are determined by its current state only.

Before giving the formal definition of an SD controller, first we need to introduce some
notation.

The inputs and outputs of an SD controller are represented as boolean vectors. A boolean
vector is a vector whose individual elements can only be assigned the values of True (1) or
False (0). These vectors of information change periodically with respect to some clock.

Let k ∈ {0, 1, 2, . . .}. For any vector v = [v1, v2, . . . , vn] ∈ V or any of its element vj where
j ∈ {1, . . . , n}, “v(k)” and “vj(k)” is used to denote the value of v and vj at time k. “At
time k′′ means that k clock ticks have gone by since the starting reference point, k = 0. For
k = 0, v(0) represents the initial or starting value of v. k = 0 represents the time when an SD
controller has just been turned on or reset. As index k takes on new values, vector v defines
a sequence with respect to the clock ticks, which are defined to be {v(k) | k = 0, 1, 2 . . .}, and
is denoted as {v(k)}. A ‘clock tick’ corresponds to the occurrence of a tick event of a TDES.

Definition 3.8. An SD controller C is defined as a 6-tuple, C = (I, Z,Q,Ω,Φ,qres), where:

• I is the set of possible boolean vectors that the inputs of the controller can take on. Each
vector i = [i0, i1, . . . , iv−1] ∈ I has v input variables. Each element of I corresponds
to a unique activity event in the system. When an element is set to 1, this means the
corresponding event has occurred at least once in the previous clock period, otherwise it
is set to 0. Each input vector i(k′) ∈ {i(k)} is sampled at the occurrence of a tick event,
except for k = 0 which occurs when the controller is turned on.

• Z is the set of possible boolean vectors that the outputs of the controller can take on. Each
vector z = [z0, z1, . . . , zr−1] ∈ Z has r output variables. Each element of Z corresponds
to a unique prohibitable event in the system. When an element is set to 1, this means
the corresponding event is enabled and the controller should make the event occur before
the next clock tick, where 0 means it is disabled. Each output vector z(k′) ∈ {z(k)}
is generated at the occurrence of a tick event, except for k = 0 which occurs when the
controller is turned on.

• Q is the set of possible boolean vectors that the states of the controller can take on. Each
vector q = [q0, q1, . . . , ql−1] ∈ Q has l state variables. Starting at k = 1, each state
q(k′) ∈ {q(k)} changes to next state q(k′ + 1) ∈ {q(k)} at the occurrence of a tick event.

• Ω : Q × I → Q is the next-state function. It takes the current state q(k) ∈ Q and an
input vector i(k + 1) ∈ I, and returns the next state q(k + 1) ∈ Q such that q(k + 1) =
Ω(q(k), i(k + 1)).

• Φ : Q → Z is the state-to-output map. For state q ∈ Q, the output z ∈ Z at this state is
defined as z = Φ(q).

• qres ∈ Q is the initial (reset) state for when the controller starts operating or is reset.
Thus we have q(0) = qres.

Starting at time k = 0, a specific run of the controller would give a specific sequence of
inputs {i(k)}. This sequence, combined with qres and Ω, will uniquely define the current
sequence of states, {q(k)}. In turn, {q(k)} and Φ will uniquely define the current sequence
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of outputs, {z(k)}. To distinguish between two vector sequences, different variables will be
used, e.g. {i(k)} and {i(k′)}.

3.7 TDES to FSM Translation

In this section, we introduce the TDES to FSM translation method from [43]. We focus on the
aspects that are required to comprehend our work presented in the following sections. Please
refer to [42, 43] for an in-depth discussion of the complete translation method.

The TDES-FSM translation starts with a CS deterministic supervisor S = (X,Σ, ξ, xo,
Xm). By using the information for S, it constructs the corresponding SD controller C =
(I, Z,Q,Ω,Φ,qres).

In order to do the translation, each item in the controller’s tuple (i.e. I, Z,Ω, etc.) needs
to be defined in terms of TDES S. To do this, the authors have defined several translation
functions. These functions capture the next state behaviour and enablement information from
S, associate events with elements of input and output vectors, and associate sampled states
of S with states of the controller. They also map event subsets of input or output vectors,
as well as define the controller’s next state logic (Ω) and state-to-output map (Φ) in terms of
supervisor S.

3.7.1 Translation Functions

Let TDES G = (Y,Σ, δ, yo, Ym) be a plant and TDES S = (X,Σ, ξ, xo, Xm) be a supervisor.
Let Σact ⊂ Σ be the set of all activity events, and Σhib ⊆ Σact be the set of all prohibitable
events. Let Xsamp ⊆ X be the set of sampled states of S. Let C = (I, Z,Q,Ω,Φ,qres) be the
controller implementation of a CS deterministic supervisor S.

A formal TDES to FSM translation method has been developed by defining several trans-
lation functions. These translation functions can be used to take the components of S, and
define the components of C. Below, we only list down those functions that we need to prove
our equivalence of the SD controllers presented in Section 7.

TDES Mapping Functions The following two functions express the SD behaviour of a
TDES.

Definition 3.9. Let S be a CS deterministic TDES. For x ∈ Xsamp and Σ′ ⊆ Σact, the partial
function of next sampling state function, ∆ : Xsamp × Pwr(Σact)→ Xsamp, is defined as:

∆(x,Σ′) :=

{
ξ(x, s) if (∃s ∈ Lconc) ξ(x, s)! & Occu(s) ∩ Σact = Σ′

undefined otherwise
The next sampling state function represents how a TDES will move from one sampled

state to the next via concurrent strings.

Definition 3.10. Let TDES supervisor S be SD controllable with respect to TDES plant
G. For x ∈ Xsamp, the prohibited action function, ζ : Xsamp → Pwr(Σhib), is defined as
ζ(x) := {σ ∈ Σhib | ξ(x, σ)!}.

This function defines the control action that will take place at a given sampled state x,
i.e. it captures the prohibitable events that are enabled at x.

Event Mapping Functions For the following event mapping functions, let ΣS ⊆ Σ be the
event set of a CS deterministic supervisor S.
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Definition 3.11. Let bijective map7 γg : Σact → {0, . . . , |Σact| − 1} be the canonical event
mapping function such that (∀σ1, σ2 ∈ Σact)σ1 = σ2 ⇔ γg(σ1) = γg(σ2).

Definition 3.12. The input event mapping function for C is a bijective map γ : ΣS ∩Σact →
{0, 1, . . . , v − 1}, where v = |ΣS ∩ Σact|. It is defined such that:

(∀σ1, σ2 ∈ ΣS ∩ Σact) γg(σ1) < γg(σ2)⇒ γ(σ1) < γ(σ2)

Definition 3.13. The output event mapping function for C is a bijective map η : ΣS∩Σhib →
{0, 1, . . . , r − 1}, where r = |ΣS ∩ Σhib|. It is defined such that:

(∀σ1, σ2 ∈ ΣS ∩ Σhib) γg(σ1) < γg(σ2)⇒ η(σ1) < η(σ2)

Controller Functions For the following definitions, let C be the corresponding controller
for CS determinisitic supervisor S.

Definition 3.14. Let Σact ⊂ Σ be the set of global activity events. Let ig be a single input
vector that the system sees, i.e. it is globally available. ig = [ig,0, ig,1, . . . , ig,vg−1] is required
to be defined over Σact, where vg = |Σact|. That is, for any event σ ∈ Σact, there is an
element in ig that corresponds to σ and only σ. We call {ig(k)} a canonical input sequence,
and ig ∈ {ig(k)} a canonical input vector8.

Definition 3.15. For CS deterministic supervisor S, let Λ : Xsamp → Q be an arbitrary
injective map, where Xsamp ⊆ X. Λ is a state mapping function for C if, for all x ∈ Xsamp,
Λ(x) returns a vector of state variables q = [q0, q1, . . . , ql−1] such that:

(∀x1, x2 ∈ Xsamp) Λ(x1) = Λ(x2)⇔ x1 = x2

The initial state is also a sampled state, and is mapped to be Λ(xo) = qres = q(0).

Definition 3.16. Let γ be the input event mapping function for C. A bijective map of input
set mapping function for C, ΓI : Pwr(Σact)→ I, is defined as follows. For arbitrary ΣI ⊆ Σact,
we have ΓI(ΣI) = [i0, i1, . . . , iv−1] such that for j = 0, 1, . . . , v − 1,

ij :=

{
1 if (∃σ ∈ ΣI) γ(σ) = j
0 otherwise

Definition 3.17. Let η be the output event mapping function for C. A bijective map of
output set mapping function for C, ΓZ : Pwr(Σhib) → Z, is defined as follows. For arbitrary
ΣZ ⊆ Σhib, we have ΓZ(ΣZ) = [z0, z1, . . . , zr−1] such that for j = 0, 1, . . . , r − 1,

zj :=

{
1 if (∃σ ∈ ΣZ) η(σ) = j
0 otherwise

Definition 3.18. Let ∆ be the next sampling state function for S, and let Xsamp ⊆ X. For
state q ∈ Q and arbitrary input i ∈ I, the next state function Ω is defined as:

Ω(q, i) :=

{
Λ(∆(x,Γ−1

I (i))) if (∃x ∈ Xsamp) q = Λ(x) & ∆(x,Γ−1
I (i))!

arbitrary otherwise

Definition 3.19. Let ζ be the prohibited action function for S. For state q ∈ Q, the state-
to-output map Φ is defined as:

Φ(q) :=

{
ΓZ(ζ(x)) if (∃x ∈ Xsamp) q = Λ(x)

ΓZ(∅) otherwise
7See Definition A.5 of bijective function in Appendix A.
8The use of “canonical” here refers to the size and ordering of the inputs, not to the actual values of the

input sequence or a given vector.
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Figure 14: An Example of TDES to FSM Translation Method (Reprinted from [42])

3.7.2 Translation Method

This section defines the TDES to FSM translation method from [42, 43], and provides a simple
example.

To translate a TDES supervisor S = (X,Σ, ξ, xo, Xm) into an SD controller C = (I, Z,Q,
Ω,Φ,qres), S must be CS deterministic to ensure that the resulting SD controller is determin-
istic. This translation method will not work otherwise. In practice, S should preferably be
non-selfloop ALF as well. However, this is just a design aid, and not a hard requirement.

In order to construct an SD controller C, the values for each member of its tuple need to
be defined. To define I, Z and Q, the authors define the size of each vector, as each element
will represent a distinct σ ∈ Σact, σ ∈ Σhib, or state x ∈ Xsamp respectively. For each i ∈ I,
its size is defined as v = |Σact|. For each z ∈ Z, its size is defined as r = |Σhib|.

To define the size of Q, the size of each q ∈ Q needs to be large enough to encode a unique
value for each x ∈ Xsamp ⊆ X. If each state contains l elements, 2 unique values can be
expressed. Thus, l is selected such that 2l−1 < |Xsamp| ≤ 2l.

The mapping functions (given in the previous section) are then used to associate event
subsets and sampled states to specific values in I (map ΓI), Z (map ΓZ) and Q (map Λ). The
initial/reset state is immediately set to qres = Λ(xo).

Next, Definition 3.18 is used to define the controller’s next state function, Ω. It is notable
that if the input vector does not represent a concurrent string accepted by S, the next state
(and thus the resulting logic) is defined arbitrary.

Finally, Definition 3.19 is used to define the controller’s state-to-output map, Φ. Please
note that if state q does not represent a sampled state (i.e. |Xsamp| < 2l, and thus have unused
states), then all of its outputs are set to False (0).

Informally, the translation process begins by taking the sampled states of S as the states
of C. The initial state of S would be the initial (reset) state of C. Next step is to determine
which concurrent strings are possible from a given sampled state. The occurrence image of
these concurrent strings would then define the next-state conditions, and the state will be
changed accordingly.

As an example, consider the CS deterministic supervisor S and its corresponding translated
FSM shown in Figure 14. The sampled states of S (Figure 14a), x0 (initial state), x4 and x6,
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are equated to three states in the FSM (Figure 14b), qres = x0 = [0, 0], x4 = [0, 1] and x6 =
[1, 0]. We assume the ordering I = [e1, e2, w1, w2, u1, u2], and Z = [e1, e2, w1, w2]. As only
two prohibitable events, e1 and e2, are possible at state x0 in S, only these outputs are set to
1 at state [0, 0] in the FSM. Similarly, all outputs are set to 0 at state [0, 1], and only w1 and
w2 outputs are set to 1 at state [1, 0].

Examining state x0, we see that the only concurrent strings leaving it are “e1-e2-τ” and
“e2-e1-τ”. They have the same occurrence image and both strings take us to the same next
state x4 in S. Thus, our next-state condition is that only when e1 and e2 have occurred, we
go to state [0, 1] in the FSM. Next-state conditions for other sampled states are determined
in the similar fashion.

As ξ of S is a partial function and Ω of C is a total function, a DEF (default) transition
usually needs to be added to the translated FSM. DEF is a shorthand notation to cover input
combinations that are not explicitly specified, i.e. it matches all the remaining unspecified
input combinations.

3.8 Supervisory Control

The concept of supervisory control V (Definition 2.23) is originally defined in terms of the set
of forcible events, Σfor. Since Σfor = Σhib in the SD setting, this definition has been expressed
with respect to the set of prohibitable events as follows.

Definition 3.20. A TDES supervisory control for G = (Y,Σ, δ, yo, Ym) is a map V : L(G)→
Pwr(Σ), such that (∀s ∈ L(G)),

V (s) ⊇
{

Σu ∪ ({τ} ∩ EligL(G)(s)) if V (s) ∩ EligL(G)(s) ∩ Σhib = ∅
Σu if V (s) ∩ EligL(G)(s) ∩ Σhib 6= ∅

Note: In this report, as we will only be dealing with TDES models, therefore we will drop the
word “TDES”, and will often refer to this property as “V is a supervisory control for G”.

Definition 3.21. For TDES G = (Y,Σ, δ, yo, Ym), the concurrent behaviour of G is defined
to be a map CBG : L(G) ∩ Lsamp → Pwr(Lconc)9, such that for s ∈ L(G) ∩ Lsamp,

CBG(s) := {s′ ∈ Lconc | ss′ ∈ L(G)}
It says that the possible concurrent behaviour for G after sampled string s, is the set of

concurrent strings that can extend s to a string in the closed behaviour of G.
Since an SD controller only changes state when a tick occurs, it is difficult to relate

its control action directly to strings. Therefore, a corresponding supervisory control V is
constructed to express the enablement information that controller C would provide to plant
G. Precisely, it captures two ideas: 1) Enablement information changes immediately after a
tick event and then stays constant till the next tick . 2) As soon as a prohibitable event is
enabled, the controller will force the event to occur before the next tick .

Algorithm 1 constructs supervisory control V (Proposition 3.3 (page 33) shows that V is in-
deed a TDES supervisory control) by keeping track of how controller C = (I, Z,Q,Ω,Φ,qres)
changes state in response to strings generated by plant G = (Y,Σ, δ, yo, Ym). A brief descrip-
tion of the algorithm, and variables used in the algorithm follows.

• Pend ⊆ Lsamp × Q: Set of pending string-state pairs, (s,q), to be analyzed, where s is
a sampled string in L(G), and q ∈ Q is the corresponding state in C reached by input
9This map is different from the map of Definition 4.1 given in [29] due to error in the original definition.
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Algorithm 1 Obtaining V from Controller C, Acting on Plant G

1: for all s ∈ L(G) do
2: V (s)← Σu ∪ {τ}
3: end for
4: Pend ← {(ε,qres)}
5: while Pend 6= ∅ do
6: (s,q)← a member from Pend
7: Pend← Pend− {(s,q)}
8: z← Φ(q)
9: ΣV ← Γ−1

Z (z)
10: if ΣV 6= ∅ then
11: V (s)← (V (s) ∪ ΣV )− {τ}
12: end if
13: for all s′ ← σ1σ2 . . . σj ∈ CBG(s) do // σj = τ by definition
14: if (Occu(s′) ∩ Σhib ⊆ ΣV ) ∧ (ss′ ∈ L(S)) then
15: Σtemp ← ΣV

16: i← ΓI(Occu(s′)− {τ})
17: q′ ← Ω(q, i)
18: Pend← Pend ∪ {(ss′,q′)}
19: if j > 1 then
20: for i← 1 to j − 1 do
21: Σtemp ← Σtemp − σi
22: if Σtemp 6= ∅ then
23: V (sσ1σ2 . . . σi)← (V (sσ1σ2 . . . σi) ∪ ΣV )− {τ}
24: else
25: V (sσ1σ2 . . . σi)← (V (sσ1σ2 . . . σi) ∪ ΣV )
26: end if
27: end for
28: end if
29: end if
30: end for
31: end while
32: return V

sequences that would match the concurrent strings that make up s. If s = ε, then q = qres.

• ΣV : Set of prohibitable events enabled by V (s) for current sampled string s that is being
processed.

• Σtemp: Copy of ΣV that is made while processing a concurrent string that extends sampled
string s that is currently being processed. It keeps track of the prohibitable events in ΣV

that have not yet occurred in substrings of the concurrent strings that extend s in L(G).

For all strings s ∈ L(G), the algorithm starts by adding all uncontrollable events (Σu) and
tick (τ) event to V (s) from lines 1-3. This is done to satisfy Definition 3.20 of supervisory
control V .

As controller always starts operating at its reset state, (ε,qres) is the 1st string-state pair
that is added to Pend at line 4. All string-state pairs that get added to Pend during the
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execution of the algorithm are extracted and analyzed one by one in the while-loop running
from lines 5-31.

At lines 6-7, the next string-state pair to be analyzed, (s,q), is extracted and removed
from Pend. At line 8, for current state q of C, the output vector z is obtained by applying
the state-to-output map Φ (Definition 3.19). At line 9, z is used to construct ΣV using the
inverse of output set mapping function ΓZ (Definition 3.17). ΣV now contains the set of all
prohibitable events enabled by C at state q.

Lines 10-12 process V (s). If any prohibitable event is enabled at state q (line 10), the
enablement information ΣV is added to V (s) for current sampled string s (line 11). Also,
since a prohibitable event is enabled and needs to be forced, tick (added at line 2) gets
removed from V (s) to satisfy Point ii (⇒) of the SD controllability definition (Definition 3.7).

Lines 13-30 loops through all possible concurrent strings s′ that extend s in L(G) (s′ =
σ1σ2 . . . σj ∈ CBG(s)). However, at line 14, those concurrent strings whose occurrence
images contain prohibitable events that have been disabled by C at state q (not in ΣV ) are
ignored. Line 14 also disregards concurrent strings that do not represent a valid behaviour
by extending s in L(S), thus restricting the valid strings to L(S) ∩ L(G). As these illegal
strings represent behaviour that will not actually happen in the closed-loop system, they are
left at their default enablement information (line 2).

Line 15 copies ΣV to Σtemp. Using the occurrence image of concurrent string s′, line 16
computes input vector i by applying input set mapping function ΓI (Definition 3.16). At line
17, the next-state function Ω (Definition 3.18) is used to compute the next state q′ of C that
is reached from q by i. This new string-state pair (ss′,q′) also needs to be analyzed, so it is
added to Pend at line 18.

Line 19 checks to see if s′ contains any activity events (for j = |s′|, if j > 1). If so, each
substring σ1σ2 . . . σi, where i < j, is analyzed from lines 20-27.

Line 21 potentially removes one prohibitable event from Σtemp. If Σtemp contains more
prohibitable events that have not yet occurred (line 22), then tick is removed from V (sσ1σ2 . . .
σi) to force the remaining enabled prohibitable events in the current sampling period (line
23). Otherwise, tick event is not removed from V (sσ1σ2 . . . σi) (line 25). Moreover, in both
cases, ΣV is added to V (sσ1σ2 . . . σi), since the enablement information of C remains constant
until the next tick .

It is worth clarifying that this algorithm abstractly describes how map V is related to C.
As L(G) may not be finite, there might be infinite number of string-state pairs to analyze, and
the algorithm may never terminate. In [42], the authors have proven that map V constructed
from C using this algorithm is well defined.

Definition 3.22. For plant G, and CS deterministic supervisor S that is SD controllable
for G, let C be the SD controller that is constructed from S using the translation method
described in Section 3.7, and let V be the map that is constructed from C using Algorithm 1.
The marked behaviour of V/G is defined as Lm(V/G) := L(V/G) ∩ Lm(S) ∩ Lm(G).

Definition 3.23. V is said to be nonblocking for G if Lm(V/G) = L(V/G).

3.9 Verification Results

Comprehensive theoretical proofs and results for verifying the control action of an SD controller
and comparing it to that of the TDES supervisor from which it was converted are presented
in [42, 29]. In this section, we only outline some significant conclusions, and restate those
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theorems/propositions that we will refer to in our work presented in the subsequent sections.
For TDES plant G, TDES supervisor S and an SD controller C, the system is required to

satisfy the following properties: 1) G and S have finite state spaces and finite event sets, 2) G
has proper time behaviour, 3) G is complete for S, 4) G has S-singular prohibitable behaviour,
5) S ||G is ALF, 6) S is SD controllable with respect to G, 7) S is CS deterministic, and 8) C
is an SD controller translated from S as described in Section 3.7. Given that these conditions
are met, the following results have been proven for the SD supervisory control methodology.

3.9.1 SD Controller as a Supervisory Control

To compare the control action of S and C, a supervisory control V is constructed using
Algorithm 1. It is demonstrated in [42] that V is indeed a map that expresses the enablement
and forcing behaviour of C.

Proposition 3.1 given below is taken from [29]. Although the control action of C could be
quite different than that of S, this proposition proves that if any string is not accepted by S,
it will also be rejected by C, i.e. if a certain path is not possible in the theoretical model, it
can never occur in the implemented system, thus preventing the physical system to behave in
an undesirable and unexpected way.

Proposition 3.1. [29] For plant G and supervisor S, let S be CS deterministic and SD
controllable for G, and let G be complete for S, and have S-singular prohibitable behaviour.
Let C be the SD controller that is constructed from S.
(∀s ∈ L(S) ∩ L(G) ∩ Lsamp) (∀s′ ∈ CBG(s))
If s takes C to state q and ss′ 6∈ L(S) then C will reject s′.

3.9.2 Controllability

Using Proposition 3.2, Theorem 3.1 given below proves that the closed-loop behaviour of G
under the control of C (represented as L(V/G)) is same as the closed-loop behaviour of S
and G. This is despite the fact that S can change its enablement and forcing information at
any time, as opposed to C that is restricted to do so only on the clock edge and then it must
keep it constant during the entire clock period. This shows that SD controllers can be used
to implement TDES supervisors and obtain the expected closed-loop behaviour, at least with
respect to the required enablement and forcing actions of the controller.

Proposition 3.2. [29] For CS deterministic supervisor S = (X,Σ, ξ, xo, Xm), let C = (I, Z,Q,
Ω,Φ,qres) be the SD controller that is constructed from S.
(∀s ∈ L(S) ∩ Lsamp)
String s will take C to state q = Λ(ξ(xo, s)) with outputs σ ∈ Σq = EligL(S) ∩ Σhib set to
true.

Theorem 3.1. [29] For plant G = (Y,Σ, δ, yo, Ym) and CS deterministic supervisor S =
(X,Σ, ξ, xo, Xm) that is SD controllable for G, let both TDES have finite state spaces, let G
be complete for S, have proper time and S-singular prohibitable behaviour, let S ||G be ALF,
let C = (I, Z,Q,Ω,Φ,qres) be the SD controller that is constructed from S, and let V be the
map that is constructed from C using Algorithm 1. Then, L(V/G) = L(S) ∩ L(G).

By proving the following proposition, it has been demonstrated that map V is indeed a
TDES supervisory control for G.
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Proposition 3.3. [29] For plant G = (Y,Σ, δ, yo, Ym) and CS deterministic supervisor S =
(X,Σ, ξ, xo, Xm) that is SD controllable for G, let both TDES have finite state spaces, let G
be complete for S, have proper time and S-singular prohibitable behaviour, let S ||G be ALF,
let C = (I, Z,Q,Ω,Φ,qres) be the SD controller that is constructed from S, and let V be
the map that is constructed from C using Algorithm 1. Then map V is a TDES supervisory
control for G.

3.9.3 Event Generation

Theorem 3.2 has been proven in [29] to show that C cannot generate a prohibitable event
when G won’t accept it. This result guarantees that illegal transitions won’t occur, thus
preventing the system from violating control laws. It also means that G will accurately reflect
the system’s behaviour when controlled by C.

Theorem 3.2. [29] For plant G = (Y,Σ, δ, yo, Ym) and CS deterministic supervisor S =
(X,Σ, ξ, xo, Xm) that is SD controllable for G, let both TDES have finite state spaces, let G
be complete for S, have proper time and S-singular prohibitable behaviour, let S ||G be ALF,
let C = (I, Z,Q,Ω,Φ,qres) be the SD controller that is constructed from S, and let V be the
map that is constructed from C using Algorithm 1.
(∀s ∈ L(V/G) ∩ Lsamp) (∀s′ ∈ Σ∗act) (∀σ ∈ Σhib)
If ss′ ∈ L(V/G) and σ then physically occurs after ss′ and before any other events can occur,
then ss′σ ∈ L(G).

3.9.4 Nonblocking

Before discussing the nonblocking verification results, the following concept has been intro-
duced in the SD setting.

Definition 3.24. Let G = (Y,Σ, δ, yo, Ym) be a TDES plant, and let V and V ′ be supervisory
controls for G. V ′ is said to be concurrent supervisory control equivalent (CSCE) to V if:

1. (∀s ∈ L(G))V ′(s) ⊆ V (s)

2. (∀s ∈ L(V ′/G) ∩ Lsamp) (∀s′ ∈ Lconc) ss′ ∈ L(V/G)⇒
(∃s′′ ∈ Lconc) ss′′ ∈ L(V ′/G) ∧Occu(s′) = Occu(s′′)

Point 1 requires that each event allowed by V ′(s) is also allowed by V (s). This is to ensure
that L(V ′/G) does not include any unwanted behaviour. Point 2 requires that if V ′/G accepts
a sampled string s, and V/G accepts a concurrent string s′ after s, then V ′/G must accept a
concurrent string s′′ that has the same occurrence image as s′.

In the SD setting, the following theorem has been proven to show that G under the
control of C is nonblocking if and only if S ||G is nonblocking. This is true even if only a
single concurrent string, out of multiple possible concurrent strings with the same occurrence
image possible in the TDES model at a given sampled state, is actually possible in the physical
system. The SD approach has been proven to be robust with respect to such variations and
nonblocking.

Theorem 3.3. [29] For plant G = (Y,Σ, δ, yo, Ym) and CS deterministic supervisor S =
(X,Σ, ξ, xo, Xm) that is SD controllable for G, let both TDES have finite state spaces, let G
be complete for S, have proper time and S-singular prohibitable behaviour, let S ||G be ALF,
let C = (I, Z,Q,Ω,Φ,qres) be the SD controller that is constructed from S, and let V be the
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map that is constructed from C using Algorithm 1. Let V ′ be a supervisory control for G. If
V is nonblocking for G and V ′ is CSCE to V , then V ′ is also nonblocking for G.

4 Sampled-Data Synchronous Product

In this section, we present a novel mechanism for constructing closed-loop system in the SD
supervisory control framework. Specifically, we devise a new synchronization operator, called
the sampled-data (SD) synchronous product, to combine TDES plant G and TDES supervisor
S to form the closed-loop system. After defining our SD synchronous product operator, we
discuss and prove the relevant fundamental properties of this synchronization operator. This
is followed by a description of our SD synchronous product setting.

As we are proposing a new way of constructing the closed-loop system, existing properties
of the SD supervisory control theory need to be adapted to work with our new synchroniza-
tion operator. The rest of this section focuses on adapting these properties to make them
compatible with our SD synchronous product setting. Finally, this section finishes off with
some useful results about the activity-loop-free property (Definition 2.30) with respect to our
SD synchronous product setting.

4.1 SD Synchronous Product Operator

In this section, we define our new synchronization operator, called the sampled-data (SD)
synchronous product, represented as ||SD, to combine two TDES models. This operator is
specifically designed to synchronize TDES plant G and TDES supervisor S in order to con-
struct a closed-loop system in the SD supervisory control framework, and to address the issues
discussed in Section 1.2.

The SD synchronous product operator is basically an intelligent and powerful version of
the standard synchronous product operator. It is smart enough to automatically disable a
tick event in the closed-loop system, if both tick and prohibitable events are possible in G
and enabled by S.

This implies that in the presence of the SD synchronous product operator, while designing
the system, designers no longer need to keep track of the enablement/disable-ment of tick
event and prohibitable events, and incorporate this logic of explicit tick disablement manually
in various modular TDES supervisors. This also means that while verifying the system model,
the property of SD controllability Point ii (⇒) no longer needs to be explicitly checked, as
the SD synchronous product operator guarantees that this property will always be satisfied
at every state of the closed-loop system (we elaborate this point later in Section 4.5).

Definition 4.1. Let TDES Gi = (Qi,Σi, δi, qo,i, Qm,i), for i = 1, 2. The sampled-data (SD)
synchronous product of two TDES, represented as G = G1 ||SD G2, is defined as:

G := (Q1 ×Q2,Σ1 ∪ Σ2, δ, (qo,1, qo,2), Qm,1 ×Qm,2)

where δ((q1, q2), σ), for (q1, q2) ∈ Q1 ×Q2 and σ ∈ Σ1 ∪ Σ2, is only defined and equals:

i) (q′1, q
′
2) if σ ∈ (Σ1 ∩ Σ2) ∧ δ1(q1, σ) = q′1 ∧ δ2(q2, σ) = q′2 ∧

[(σ 6= τ) ∨ ((σ = τ) ∧ (∀σ′ ∈ Σhib)¬ δ((q1, q2), σ′)!)]

ii) (q′1, q2) if σ ∈ (Σ1 − Σ2) ∧ δ1(q1, σ) = q′1

iii) (q1, q
′
2) if σ ∈ (Σ2 − Σ1) ∧ δ2(q2, σ) = q′2
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Note: From now on, we will refer to this synchronization operator by interchangeably using
its name “SD synchronous product” and its symbol “||SD” (to be concise).

We will now explain the logic used by the SD synchronous product operator to construct
the transition function δ, as this is the only element where the logic of the SD synchronous
product differs from the standard synchronous product operator.

The ||SD operator constructs the transition function δ of G based on the component tran-
sition functions, δ1 of G1 and δ2 of G2. As δ1 and δ2 are partial functions, the transition
function δ constructed by ||SD is a partial function as well.

The ||SD operator states three rules to define δ. For every state (q1, q2) of G and each
σ ∈ Σ1 ∪ Σ2, these rules are used to determine: (I) If σ transition would be defined at state
(q1, q2) in G? (II) If so, what would be the destination state that σ would take G to? These
three rules defined by ||SD to construct δ are elaborated next.

i) Point i applies to events that G1 and G2 have in common. This point makes a distinction
between the tick and non-tick (activity) events, and specifies two different rules for defining
the tick and activity event transitions in G.
a) σ 6= τ

For an activity event σ, a transition will be defined at a state in G if it is defined at the
corresponding states in both G1 and G2. This means that G1 and G2 act together to
cooperatively determine and agree on the definition of σ transition, and its corresponding
destination state in G. This is essentially the same logic that synchronous product uses
to determine its transitions.

It is important to clarify here that the ||SD operator is not capable of adding any non-
tick transition to δ if it does not exist in either δ1 or δ2 or both. Likewise, ||SD cannot
remove a non-tick transition from δ if it is defined in both δ1 and δ2.

b) σ = τ

This is the case where the logic of ||SD operator differs from the standard synchronous
product, i.e. the case of figuring out the definition of tick transitions in G. This point
says that a tick transition will be defined at a state in G if the following conditions are
satisfied:

I) tick transition is defined at the corresponding states in both G1 and G2.
II) No prohibitable event is possible at the current state in G.

Point I signifies that ||SD will not define a tick transition in G if it is blocked by either
G1 or G2 or both. This means that our synchronization operator is not capable of adding
any tick transition to δ on its own. It will ‘potentially’ add a tick transition to δ only if it
exists in both δ1 and δ2.

However, Point II imposes an important condition, which if not satisfied, then ||SD

operator is capable of deciding “not” to add a tick transition to δ, even if is defined in both
δ1 and δ2. In this case, ||SD is smart enough to automatically “disable” a tick event if a
prohibitable event is currently possible in G.

This means that if tick is defined in G1 and G2, ||SD will not immediately add this
tick transition to G. First, it will figure out whether or not any prohibitable event σ′ is
currently possible in G. To determine this, ||SD evaluates the transitions for all prohibitable
events one by one at the current state in G. Depending upon whether σ′ is in (Σ1 ∩ Σ2),
(Σ1 − Σ2), or (Σ2 − Σ1), the ||SD operator will recursively make use of Points i (σ 6= τ), ii
or iii respectively to figure out if σ′ is defined at the corresponding states in both G1 and
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G2.
If any prohibitable event transition is possible at the current state in G, Point II

fails, and ||SD will “not” add tick transition to G. In this way, the ||SD operator disables
the tick event to automatically satisfy Point ii (⇒) of the SD controllability definition
(Definition 3.7) at every state of G. On the other hand, if none of the prohibitable events
is currently possible in G, Point II is satisfied, and ||SD will define a tick transition in G,
given that tick is currently possible in both G1 and G2.

Please note that since the ||SD operator only deals with TDES models, tick event will
certainly be present in both G1 and G2. Thus, ||SD will always use this point (and never
Point i (σ 6= τ), Point ii or Point iii) to determine the definition of tick transition and its
corresponding next state in G.

Points ii and iii are applicable to events that are present in the event set of only one
TDES, G1 or G2, respectively. These points of the SD synchronous product’s definition
are identical to the synchronous product’s definition.

ii) If an event σ is only in the event set of G1, then ||SD will use Point ii to determine the
definition and next state of σ transition in G. At a given state, σ will be allowed to occur
in G if it is possible at the corresponding state in G1. As G2 does not care about σ, it
can neither prevent σ from occurring in G, nor it will change its state as a result of this
σ transition.

iii) Point iii applies to an event σ that is present only in the event set of G2. This point
says that σ transition will be defined at a state in G if it is possible at the corresponding
state in G2. G1 is not related to σ in any way, therefore it cannot block σ transition in
G. Also, the occurrence of σ transition will not have any affect on G1’s current state.

Example Figure 15 shows an example of the ||SD operator, and compares its synchronization
mechanism to that of the synchronous product operator. In the example, we have two TDES,
G1 (Figure 15a) and G2 (Figure 15b), that are defined over the same event set Σ, such that
Σ = {e1, e2, τ}, Σhib = {e1} and Σu = {e2}. At the initial state, q0 of G1 and x0 of G2,
both tick and prohibitable event e1 are defined.

If we construct G′ = G1 ||G2, the synchronous product operator enables both tick and
prohibitable event e1 at the initial state of G′, as shown in Figure 15c.

Figure 15d illustrates the result of synchronizing G1 and G2 using the ||SD operator. For
G = G1 ||SD G2, we note that tick transition is not defined at the initial state s0, although it
is defined at the initial states of G1 and G2. The reason is that both G1 and G2 have enabled
prohibitable event e1 at their initial states. Therefore, the ||SD operator enables prohibitable
event e1 at the initial state of G and disables the tick event, as desired to satisfy Point ii (⇒)
of the SD controllability property.

We also note that this is the only difference between G′ and G, indicating that the rest of
the synchronization mechanism of the ||SD operator is essentially the same as the synchronous
product.

4.2 Properties of SD Synchronous Product Operator

In this section, we discuss and prove some fundamental properties of our SD synchronous
product operator. We will start by showing that when we synchronize two TDES automata
using the ||SD operator, this will result in the generation of a model that is also a TDES
automaton.
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Figure 15: An Example of SD Synchronous Product Operator

For any synchronization operator, the two key properties of interest are commutativity
and associativity. We will also examine our ||SD operator with respect to these properties.
Precisely, we demonstrate that the ||SD operator is commutative, but not associative. These
results will later help us in defining our strategy of constructing the closed-loop system using
the ||SD operator in our setting, described in Section 4.3.

4.2.1 SD Synchronous Product Defines a TDES

As we have defined a new synchronization operator to combine two TDES automata, it is
important to show that the resultant model is also a TDES automaton with all of its elements
being well defined. We formally prove this in the following proposition. As the SD synchronous
product operator is an adapted version of the standard synchronous product, we will base our
argument on the fact that the model generated by the synchronous product operator has these
properties.

Proposition 4.1. Let G1 = (Q1,Σ1, δ1, qo,1, Qm,1) and G2 = (Q2,Σ2, δ2, qo,2, Qm,2) be two
TDES. The SD synchronous product of G1 and G2, represented as G1 ||SD G2, defines a
TDES automaton.

Proof. The SD synchronous product defines G = G1 ||SD G2 as a quintuple:
G := (Q1 ×Q2,Σ1 ∪ Σ2, δ, (qo,1, qo,2), Qm,1 ×Qm,2)

By Definition 2.21, a TDES automaton is formally represented as a quintuple (Q,Σ, δ, qo, Qm).
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In order to prove that G is a TDES automaton, it is sufficient to show that G’s tuple is
comprised of the five standard elements of a TDES automaton’s tuple.
By looking at Definition 4.1 of the ||SD operator, it is obvious that the tuple elements of
Q,Σ, qo and Qm are defined by the ||SD operator in exactly the same way as the synchronous
product. Clearly these elements of G are well defined, as we know that the synchronous
product operator is well defined.
Below, we analyze the transition function δ to show that δ defined by ||SD is well defined. We
will base our argument on the fact that the transition function defined by the synchronous
product is well defined.
In order to show that δ is well defined, we need to show that δ unambiguously determines:
(I) if σ ∈ (Σ1 ∪ Σ2) transition would be defined at state (q1, q2) ∈ Q1 ×Q2 in G? (II) what
would be the destination state for each σ transition that would be defined in G?

I) By looking at the definition of δ in the SD synchronous product’s definition, we note that
Point ii and Point iii are identical to the synchronous product’s transition function. As
the synchronous product’s transition function is well defined, we deduce that Point ii and
Point iii construct δ in a well defined way.
The only rule that makes δ different from the synchronous product’s transition function is
Point i. Therefore, it is sufficient to show that Point i constructs δ in a well defined way.
Depending upon whether an event σ is a tick or a non-tick (activity) event, Point i specifies
two different rules for determining whether or not σ transition would be defined at state
(q1, q2) in G. Thus, we have two cases: (a) σ 6= τ, and (b) σ = τ.
In order to show that Point i constructs δ in a well defined, we need to show that δ is
constructed in a well defined way in both cases.

Case a) σ 6= τ

For an activity event σ, it is decided whether or not δ((q1, q2), σ)! in G, by evaluating
whether or not δ1(q1, σ)! and δ2(q2, σ)!.
This is the same logic that is used by the synchronous product’s transition function to
figure out its transitions for shared events while synchronizing two TDES models.
As the transition function of synchronous product is well defined, we conclude that for
each σ 6= τ, δ is well defined in the way it decides whether or not δ((q1, q2), σ)! in G.
Case (a) complete.

Case b) σ = τ

In order to decide whether or not δ((q1, q2), τ)! in G, it is evaluated whether or not:
(1) δ1(q1, τ)!, (2) δ2(q2, τ)!, and (3) (∀σ′ ∈ Σhib) δ((q1, q2), σ′)!.
The process of determining if δ1(q1, τ)! in G1 and δ2(q2, τ)! in G2 is straightforward and
will always give a unique result without any ambiguity, since δ1 and δ2 are individually
well defined.
In order to figure out whether or not, for all σ′ ∈ Σhib, δ((q1, q2), σ′)!, it is examined whether
or not for each individual σ′, δ((q1, q2), σ′)!.
For individual σ′, depending upon whether σ′ ∈ (Σ1∩Σ2), σ′ ∈ (Σ1−Σ2) or σ′ ∈ (Σ2−Σ1),
Point i (σ 6= τ), Point ii or Point iii will respectively be used to determine whether or not
δ1(q1, σ

′)! and/or δ2(q2, σ
′)!. Since we have already shown that Point i (σ 6= τ), Point ii

and Point iii construct δ in a well defined way, we infer that for each individual σ′ ∈ Σhib,
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the process of determining whether or not δ((q1, q2), σ′)! is well defined.
This implies that the overall process of determining whether or not, for all σ′ ∈ Σhib,
δ((q1, q2), σ′)! will always give a unique result without any ambiguity.
Hence, we conclude that the overall decision process of δ to determine whether or not
δ((q1, q2), τ)! in G is well defined.
Case (b) complete.

By Cases (a) and (b), we conclude that Point i constructs δ in a well defined way.
As Points (i-iii) of ||SD construct δ in a well defined way, hence we conclude that δ is well
defined in the way it determines if σ transition would be defined at state (q1, q2) in G.
Part (I) complete.

II) By looking at the definition of δ in ||SD, we note that δ uses the same strategy as the
synchronous product’s transition function to determine the destination state of each σ
transition that would be defined in G. Since the transition function of synchronous product
is well defined, we deduce that δ is also well defined in this perspective.
Part (II) complete.

By Parts (I) and (II), we conclude that the transition function δ, defined by ||SD, is well
defined.
We have thus shown that G’s quintuple defined by ||SD comprises of five standard elements of
a TDES automaton’s tuple and all these elements are well defined.
Hence, we conclude that G1 ||SD G2 defines a TDES automaton.

4.2.2 Commutative Property

The SD synchronous product operator is commutative up to isomorphism, i.e. G1 ||SD G2

and G2 ||SD G1 will give us the same resultant TDES automaton up to relabelling of state
components in the composed states. More formally, TDES G and G′ are isomorphic up
to state relabelling if we can define a bijective function10 that maps G to G′. Our next
proposition formally proves this concept and property.

Proposition 4.2. Let G1 = (Q1,Σ1, δ1, qo,1, Qm,1) and G2 = (Q2,Σ2, δ2, qo,2, Qm,2) be two
TDES. The SD synchronous product of G1 and G2 is commutative up to isomorphism.

Proof. Let G be a TDES constructed as G = G1 ||SD G2, and let G′ be a TDES constructed
as G′ = G2 ||SD G1.
The SD synchronous product operator defines G and G′ as follows:
G := (Q1 ×Q2,Σ1 ∪ Σ2, δ, (qo,1, qo,2), Qm,1 ×Qm,2)

G′ := (Q2 ×Q1,Σ2 ∪ Σ1, δ
′, (qo,2, qo,1), Qm,2 ×Qm,1)

First, we note that ||SD defines the event sets of G and G′ as Σ1∪Σ2 and Σ2∪Σ1 respectively.
The commutative property for set union says the order of sets in which we do the union
operation does not change the result. This means taking the union of sets Σ1 and Σ2 in either
order will give the same resulting set, i.e. Σ = Σ1 ∪ Σ2 = Σ2 ∪ Σ1.
This implies that both G and G′ are defined over the same event set Σ. Therefore, the
quintuples of TDES automata G and G′ can be restated as follows:

10See Definition A.5 of bijective function in Appendix A.
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G := (Q1 ×Q2,Σ, δ, (qo,1, qo,2), Qm,1 ×Qm,2)

G′ := (Q2 ×Q1,Σ, δ
′, (qo,2, qo,1), Qm,2 ×Qm,1)

In order to show that the SD synchronous product of G1 and G2 is commutative up to
isomorphism, it is sufficient to show that G and G′ are isomorphic up to state relabelling.
By definition, G and G′ are said to be isomorphic by states if there exists an isomorphic
function, iso, that maps G to G′ while preserving all automata-theoretic structure of G and
G′, as defined by ||SD, up to relabelling of states.
We will show this first by defining a function iso, and proving that iso is indeed an isomorphic
map. Then we will show that iso maps G to G′ while preserving all automata-theoretic
structure of G and G′ up to state relabelling.
First, we will define and construct our function iso.
We define iso as: iso : G→ G′

Our goal is to define iso so we achieve the following result:
iso((Q1 ×Q2,Σ, δ, (qo,1, qo,2), Qm,1 ×Qm,2))=(Q2 ×Q1,Σ, δ

′, (qo,2, qo,1), Qm,2 ×Qm,1)

To construct our function iso, we define two functions: (i) isoQ, and (ii) idΣ.

i) isoQ : Q1 ×Q2 → Q2 ×Q1 : (q1, q2) 7→ (q2, q1)

The function isoQ is defined to map the state set of G to the state set of G′. Specifically,
it takes a given state of G and maps it to its corresponding state in G′ by swapping the
elements of G’s state tuple.

(∀(q1, q2) ∈ Q1 ×Q2) isoQ ((q1, q2)) = (q2, q1)

Clearly, isoQ is bijective as Q1 ×Q2 and Q2 ×Q1 are the same size, and:
(∀(q2, q1) ∈ Q2 ×Q1) iso−1

Q ((q2, q1)) = (q1, q2)

ii) idΣ : Σ→ Σ : σ 7→ σ

idΣ is defined as an identity function on Σ. Since both G and G′ are defined over the
same event set Σ, this function maps the event set of G to the event set of G′ by mapping
event σ to itself.

(∀σ ∈ Σ) idΣ (σ) = σ

Clearly, idΣ is bijective as it is an identity function.

Using these two functions, we can map each element of G’s quintuple to its corresponding
element in G′’s quintuple, as elaborated next.
We first note that for function f : x→ y, we can define for A ⊆ X, f(A) = {f(x) |x ∈ A}.
1) State Set

We will use isoQ(Q1 ×Q2) = {isoQ((q1, q2)) | (q1, q2) ∈ Q1 ×Q2}.
As isoQ is bijective, isoQ(Q1 ×Q2) = Q2 ×Q1.

2) Event Set
We will use idΣ(Σ) = {idΣ(σ) |σ ∈ Σ}. Clearly, idΣ(Σ) = Σ.

3) Transition Function
In order to clearly argue about the preservation of transitions of G and G′ later in the
proof, we will express our transitions as a 3-tuple. The transitions are represented as a
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triple of the form (q, σ, q′) ⊆ Q×Σ×Q, where δ(q, σ) = q′. As such, δ ⊆ (Q1×Q2)×Σ×
(Q1 ×Q2) and δ′ ⊆ (Q2 ×Q1)× Σ× (Q2 ×Q1).
To convert δ, we will use:
isoQ × idΣ × isoQ(δ)={isoQ × idΣ × isoQ(((q1, q2), σ, (q′1, q

′
2)))|((q1, q2), σ, (q′1, q

′
2)) ∈ δ}

We will still need to show that this produces δ′. As isoQ and idΣ are bijective functions,
their cross product will also be bijective. As G1 and G2 are arbitrary TDES, showing
that the above produces δ′, is thus sufficient to prove the inverse function applied to δ′ will
produce δ.

4) Initial State
We will use isoQ ((qo,1, qo,2)) = (qo,2, qo,1).
Clearly, this is a bijective process as iso−1

Q ((qo,2, qo,1)) = (qo,1, qo,2).

5) Set of Marked States
We will use isoQ (Qm,1 ×Qm,2) = {isoQ((q1, q2)) | (q1, q2) ∈ Qm,1 ×Qm,2}.
As isoQ is bijective, isoQ (Qm,1 ×Qm,2) = Qm,2 ×Qm,1.

To map G to G′, we combine the above mappings, and we can express our function iso as
follows: iso ((Q1 ×Q2,Σ, δ, (qo,1, qo,2), Qm,1 ×Qm,2)) =

(isoQ(Q1 ×Q2), idΣ(Σ), isoQ × idΣ × isoQ(δ), isoQ(qo,1, qo,2), isoQ(Qm,1 ×Qm,2)) =

(Q2 ×Q1,Σ, isoQ × idΣ × isoQ(δ), (qo,2, qo,1), Qm,2 ×Qm,1)

From the above discussion, it is clear that except for δ, every part of the conversion correctly
maps each remaining component of G onto the corresponding component of G′, and in a
bijective manner, i.e. applying the mapping in reverse will map these components of G′ to
the corresponding components of G.
Now all that remains is to show that isoQ × idΣ × isoQ(δ) = δ′.
The ||SD operator defines the transition function δ of G and δ′ of G′ as follows:
δ((q1, q2), σ) is only defined and equals:

i) (q′1, q
′
2) if σ ∈ (Σ1 ∩ Σ2) ∧ δ1(q1, σ) = q′1 ∧ δ2(q2, σ) = q′2 ∧

[(σ 6= τ) ∨ ((σ = τ) ∧ (∀σ′ ∈ Σhib)¬ δ((q1, q2), σ′)!)]

ii) (q′1, q2) if σ ∈ (Σ1 − Σ2) ∧ δ1(q1, σ) = q′1

iii) (q1, q
′
2) if σ ∈ (Σ2 − Σ1) ∧ δ2(q2, σ) = q′2

δ′((q2, q1), σ) is only defined and equals:

i) (q′2, q
′
1) if σ ∈ (Σ2 ∩ Σ1) ∧ δ1(q1, σ) = q′1 ∧ δ2(q2, σ) = q′2 ∧

[(σ 6= τ) ∨ ((σ = τ) ∧ (∀σ′ ∈ Σhib)¬ δ′((q2, q1), σ′)!)]

ii) (q2, q
′
1) if σ ∈ (Σ1 − Σ2) ∧ δ1(q1, σ) = q′1

iii) (q′2, q1) if σ ∈ (Σ2 − Σ1) ∧ δ2(q2, σ) = q′2

By examining and comparing the definitions of δ and δ′, we note that the rules specified by δ
and δ′ are logically identical, i.e. they specify the same logic, in terms of δ1 of G1 and δ2 of
G2, to make decisions about defining transitions and determining next states.
The only difference is the way δ and δ′ label the exit and entrance states of their transitions
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while specifying their rules. Precisely, if we swap the elements in exit and entrance states’
tuples in the rules defined by δ, we essentially get the corresponding rules defined by δ′. This
means the definitions of δ and δ′ are identical up to reordering of elements in the tuples of
their exit and entrance states respectively.
This implies that G and G′, constructed by ||SD, essentially have the same set of defined
transitions, up to relabelling of their exit and entrance states respectively.
Our isomorphic function iso uses isoQ and idΣ to map the transition triples defined in G to
their corresponding transition triples in G′ as follows.

(isoQ ((q1, q2)), idΣ (σ), isoQ ((q′1, q
′
2))) = ((q2, q1), σ, (q′2, q

′
1)),

where (q1, q2), (q′1, q
′
2) ∈ Q1 ×Q2 and σ ∈ Σ

It is noticeable that isoQ maps the exit and entrance states of a given transition in G to
the respective exit and entrance states of its corresponding transition in G′ by swapping the
elements individually in exit and entrance states’ tuples.
Since G and G′ are defined over the same event set Σ, idΣ preserves the identity of an event
σ ∈ Σ by mapping σ of G to σ of G′.
This makes it evident that iso maps the transition triple of G to its corresponding transition
triple in G′ by relabelling the exit and entrance states, and preserving the identity of the event,
i.e. if σ transition takes G from state (q1, q2) to (q′1, q

′
2), iso maps it to its corresponding σ

transition that takes G′ from state (q2, q1) to (q′2, q
′
1).

As G starts at (qo,1, qo,2) and G′ at isoQ(qo,1, qo,2) = (qo,2, qo,1), then for any σ ∈ Σ such that
δ((qo,1, qo,2), σ) = (q′1, q

′
2), it will also be true that δ′((qo,2, qo,1), σ) = (q′2, q

′
1) = isoQ((q′1, q

′
2)).

This means that all transitions leaving the initial state of G will have a matching isomorphic
transition leaving the initial state of G′. It is easy to see that all states reached from the
initial state of G will have an isomorphic state reached from the initial state of G′.
Following this to the logical conclusion, any state reachable in G will have an isomorphic
state reachable in G′. Also, at each reachable state (q1, q2) in G, the set of transitions leaving
(q1, q2) will be isomorphic to the set of transitions leaving state (q2, q1) in G′.
Hence, we conclude that iso preserves the structure of the transition function of G and
G′ up to relabelling of exit and entrance states in the defined transitions. In other words,
isoQ × idΣ × isoQ(δ) = δ′.
We have thus shown that by using two bijective functions, isoQ and idΣ, our isomorphic
function iso maps each individual element of G’s quintuple to its corresponding element in
G′’s quintuple while preserving its original structure, as defined by ||SD, up to relabelling of
states. Hence, we conclude that iso preserves all automata-theoretic structure of G and G′

up to state relabelling.
In this way, by constructing our desired isomorphic function, iso, we have shown that G and
G′ are isomorphic up to state relabelling.
Hence, we conclude that the SD synchronous product of G1 and G2 is commutative up to
isomorphism.

4.2.3 Non-Associative Property

The SD synchronous product operator is inherently non-associative, i.e. the order of synchro-
nizing three or more TDES automata using ||SD is important and might make a difference in
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Figure 16: SD Synchronous Product Operator is Non-Associative

the resultant TDES. In other words, if we have three TDES automata, G1,G2 and G3, then
in general (G1 ||SD G2) ||SD G3 6= G1 ||SD (G2 ||SD G3). Below, we demonstrate it with the
help of an example.

Figure 16 illustrates the non-associative nature of the ||SD operator using three TDES
automata, G1 (Figure 16a), G2 (Figure 16b) and G3 (Figure 16c). All TDES are defined over
the same event set Σ, such that Σ = {e1, e2, τ} and Σhib = {e1, e2}.

First, let us discuss the synchronization mechanism of ||SD for constructing TDES G as
G = (G1 ||SD G2) ||SD G3. Figure 16d shows the result of synchronizing G1 and G2 using
||SD. As two prohibitable events, e1 and e2, are enabled at the initial states of G1 and G2,
||SD disables tick event at the initial state of G1 ||SD G2. Thus, the only events possible at the
initial state of G1 ||SD G2 are e1 and e2.

In order to construct G, we synchronize G1 ||SD G2 with G3 using ||SD. We see in Figure 16e
that no events are possible at the initial state of G. This is because prohibitable events e1 and
e2 that are possible at the initial state of G1 ||SD G2 have been blocked by G3 at its initial
state. Likewise, tick event is possible in G3 but not in G1 ||SD G2. This is because the tick
event, that was originally possible in both G1 and G2, has already been disabled by ||SD while
constructing G1 ||SD G2.

Now we will change the order of synchronizing our three TDES, and construct TDES G′

as G′ = G1 ||SD (G2 ||SD G3). At the initial state, prohibitable events e1 and e2 are possible
in G2 but not in G3. Thus, ||SD does not enable these events at the initial state of G2 ||SD G3.
As tick is possible in both G2 and G3, and no prohibitable event is possible in G2 ||SD G3,
||SD defines a tick transition at the initial state of G2 ||SD G3, as shown in Figure 16f.

To construct G′, we now synchronize G1 with G2 ||SD G3 using ||SD. G1 enables pro-
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hibitable events e1 and e2 at its initial state, but since these events are not possible in
G2 ||SD G3, ||SD does not add their transitions at the initial state of G′. Given that tick
is possible in both G1 and G2 ||SD G3, and no prohibitable event is currently possible in G′,
||SD enables tick at the initial state of G′, as shown in Figure 16g.

By comparing our G and G′, we note that G 6= G′. This example clearly demonstrates
that the order of synchronizing three TDES using ||SD does matter, and we might get different
resultant TDES. Hence, we deduce that the ||SD operator is inherently non-associative.

4.3 SD Synchronous Product Setting

In our SD synchronous product setting (or “||SD setting,” for short), we will use the SD syn-
chronous product operator to combine our TDES plant G and TDES supervisor S. Hence,
our closed-loop system is S ||SD G. Due to the commutative property of the ||SD operator, we
can synchronize G and S in either order, i.e. G ||SD S = S ||SD G.

Note: For consistency, we will always write our closed-loop system as S ||SD G.

In our ||SD setting, we also assume that both G and S are defined over the same event set.
In case where G and S are not defined over the same alphabet, we can simply add selfloops
to each TDES for the missing events at every state to extend them over the same event set,
without any loss of generality.

In the real world, software designers typically design G and S in a modular fashion, rather
than as monolithic models. In this case, we assume that these modular plant and supervisor
models will be independently synchronized using the standard synchronous product operator
to obtain G and S respectively. For m > 1 plant components, G1,G2, . . . ,Gm, our G will be
obtained as G = G1 ||G2 || . . . ||Gm. Similarly, for n > 1 modular supervisors, S1,S2, . . . ,Sn,
our S will be constructed as S = S1 ||S2 || . . . ||Sn.

There are two reasons for not using the ||SD operator to combine individual plant and
supervisor components to construct G and S respectively. The primary reason is the non-
associative nature of the ||SD operator due to which the order of combining various plant (or
supervisor) components becomes important, and different synchronization order will poten-
tially give us a different G (or S). Moreover, it might also cause our closed-loop system to
block, as no events remain possible in TDES G (Figure 16e) of the example discussed in
Section 4.2.3.

Secondly, applying the ||SD operator either to plant or supervisor models individually does
not look practical and reasonable. The key characteristic of ||SD is to automatically disable a
tick event in the resultant model in cases where source models agree on the enablement of one
or more prohibitable events. Strictly speaking, there is no concept of enablement/disablement
of tick event and forcing of prohibitable events solely with respect to either plant or supervisor.
Plant model just represents the behaviour of the physical system without any restrictions and
constraints. A supervisor is designed to impose control action on the plant model by operat-
ing synchronously with it. Hence, it is not justifiable to combine either plant or supervisor
components independently using ||SD, and let only one model decide about the disablement of
tick event without having any knowledge of the other model’s behaviour.

Considering the non-associative property of the ||SD operator, it is also evident that once
we have formed the closed-loop system using ||SD, we cannot add any new plant or supervisor
component directly to S ||SD G. This might give us unexpected and problematic results. After
constructing S ||SD G, if we want to add more plant or supervisor models, we need to form
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our closed-loop system again. We should first reconstruct our G and S separately using the
synchronous product, and then combine G and S to obtain our closed-loop system S ||SD G.

However, one possible way to use the ||SD operator to combine plant and supervisor com-
ponents is to synchronize all system models in parallel. In this case, instead of constructing
G, S, and S ||SD G sequentially, we will synchronize m plant components and n modular
supervisors using ||SD all at once to construct our closed-loop system. Hence, our closed-loop
system will be G1 ||SD G2 ||SD . . . ||SD Gm ||SD S1 ||SD S2 ||SD . . . ||SD Sn. In this way, the
non-associative nature of the ||SD operator can be circumvented.

4.4 SD Properties with SD Synchronous Product

TDES and SD properties discussed in the SD setting (Section 3) assume that the closed-loop
system is formed by combining TDES plant G and TDES supervisor S using the synchronous
product. In our ||SD setting, as we have devised a new way of constructing the closed-loop
system, these properties need to be adapted with respect to our SD synchronous product
operator. In this section, we redefine the TDES and SD properties to match with our ||SD

setting.
We would like to clarify here that the definitions presented in the following sections are

conceptually similar (but not identical) to the ones given in the SD setting. For this reason,
we will use the same name followed by “with SD synchronous product” to define the adapted
version of these properties for our ||SD setting. As a shorthand, we will simply write “〈property
name〉 with ||SD”.

For the following definitions, let TDES G = (Q,Σ, δ, qo, Qm) be a plant and TDES S =
(X,Σ, ξ, xo, Xm) be a supervisor. Please note that both G and S are defined over the same
event set Σ.

4.4.1 Plant Completeness with ||SD

Definition 4.2. A TDES plant G is complete with ||SD for TDES supervisor S if:
(∀s ∈ L(S ||SD G)) (∀σ ∈ Σhib) sσ ∈ L(S)⇒ sσ ∈ L(G)

In the ||SD setting, it says that for all strings s that are possible in S ||SD G, if a prohibitable
event σ is enabled by S after s, then it must be possible in G as well.

4.4.2 S-Singular Prohibitable Behaviour with ||SD

Definition 4.3. For TDES plant G and TDES supervisor S, we say that G has S-singular
prohibitable behaviour with ||SD if:

(∀s ∈ L(S ||SD G) ∩ Lsamp) (∀s′ ∈ Σ∗act) ss
′ ∈ L(S ||SD G)⇒

(∀σ ∈ Occu(s′) ∩ Σhib) σ /∈ EligL(G)(ss
′)

In the ||SD setting, this definition states that for a given sampling period, if a prohibitable
event σ has already occurred in S ||SD G, then σ must not be possible in G again in the same
sampling period.

4.4.3 Timed Controllability with ||SD

As we are building our work on the SD supervisory control, where Σfor = Σhib, we will adapt
and discuss the timed controllability property (Definition 2.22) in terms of prohibitable events
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only.
In the SD setting, the closed-loop system is formed by combining plant and supervisor

TDES using the synchronous product. In this case, a supervisor is solely in charge of en-
abling/disabling a tick event and forcing prohibitable events in the closed-loop system. The
correct behaviour of the supervisor with respect to these decisions is ensured by checking the
timed controllability property.

In our ||SD setting, we are constructing the closed-loop system using ||SD. Our ||SD operator
is also capable of disabling a tick event, once a prohibitable event is possible in the plant and
enabled by the supervisor. Thus in our setting, in addition to checking that supervisor is
enabling/disabling tick at the right time, we also need to make sure that the ||SD operator
does not disable a tick event when it is not supposed to, i.e. the ||SD operator must not disable
a tick event when it is possible in the plant and enabled by the supervisor, and no prohibitable
events are currently possible in S ||SD G. Otherwise, our system will become uncontrollable.
We capture this notion in the following timed controllability property adapted for our ||SD

setting.

Definition 4.4. TDES supervisor S is timed controllable with ||SD with respect to TDES plant
G if for all s ∈ L(S ||SD G),

EligL(S ||SD G)(s) ⊇
{
EligL(G)(s) ∩ (Σu ∪ {τ}) if EligL(S ||SD G)(s) ∩ Σhib = ∅

EligL(G)(s) ∩ Σu if EligL(S ||SD G)(s) ∩ Σhib 6= ∅
It states that all uncontrollable events that are currently possible in G must be allowed to

occur in the closed-loop system, S ||SD G. In addition, tick event must be enabled in S ||SD G
if it is possible in G, unless there exists an eligible prohibitable event in S ||SD G to preempt it.
This property makes sure that neither S nor the ||SD operator can disable a tick event, if it is
possible in G and no prohibitable events are currently eligible to be forced in the closed-loop
system to preempt tick .

Note: As our ||SD setting is specific to TDES, we will drop the word “timed”, and will simply
refer to this property as “S is controllable with ||SD with respect to G”.

It is notable that the untimed controllability property (Definition 2.20) is part of the
standard timed controllability definition (Definition 2.22). Since we have adapted the timed
controllability definition for our ||SD setting, the untimed controllability property automatically
gets redefined as part of it. Below, we explicitly state the untimed controllability with ||SD

property.

Definition 4.5. TDES supervisor S is untimed controllable with ||SD with respect to TDES
plant G if (∀s ∈ L(S ||SD G))EligL(G)(s) ∩ Σu ⊆ EligL(S ||SD G)(s).

4.5 SD Controllability with SD Synchronous Product

This section provides a detailed explanation of how we have adapted the property of SD
controllability (Definition 3.7) defined in the SD setting into the property of SD controllability
with SD synchronous product (SD controllability with ||SD, as a shorthand) for our ||SD setting.

In the SD setting, the closed-loop system is constructed by synchronizing G and S using
the synchronous product, along with the assumption that both G and S are defined over
the same event set. Therefore, the authors have defined the SD controllability property with
respect to the closed language L(S) ∩ L(G), and marked language Lm(S) ∩ Lm(G).
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As the synchronization mechanism of the ||SD operator is different than the synchronous
product, the closed and marked languages generated in the ||SD setting will potentially be
different than the ones assumed in the SD setting. Keeping this in view, we need to modify
the SD controllability definition with respect to the closed and marked languages to make it
suitable for our ||SD setting. Specifically, we have replaced its L(S) ∩ L(G) with our closed
language L(S ||SD G), and its Lm(S) ∩ Lm(G) with our marked language Lm(S ||SD G) to
make it work for our ||SD setting.

Below, we give a formal definition of the SD controllability with ||SD property. This
is followed by a description of how we logically adapted the individual points of the SD
controllability definition to define our SD controllability with ||SD property.

Definition 4.6. TDES supervisor S = (X,Σ, ξ, xo, Xm) is SD controllable with ||SD with
respect to TDES plant G = (Q,Σ, δ, qo, Qm) if, ∀s ∈ L(S ||SD G), the following statements are
satisfied:

i) EligL(S ||SD G)(s) ⊇
{
EligL(G)(s) ∩ (Σu ∪ {τ}) if EligL(S ||SD G)(s) ∩ Σhib = ∅

EligL(G)(s) ∩ Σu if EligL(S ||SD G)(s) ∩ Σhib 6= ∅

ii) If s ∈ Lsamp then

1) (∀s′ ∈ Σ∗act) [ss′ ∈ L(S ||SD G)]⇒
[EligL(S ||SD G)(ss

′) ∪Occu(s′)] ∩ Σhib = EligL(S ||SD G)(s) ∩ Σhib

2) (∀s′, s′′ ∈ Lconc) [ss′, ss′′ ∈ L(S ||SD G) ∧Occu(s′) = Occu(s′′)]⇒
ss′ ≡L(S ||SD G) ss

′′ ∧ ss′ ≡Lm(S ||SD G) ss
′′

iii) Lm(S ||SD G) ⊆ Lsamp
Point i: It says that S is controllable with ||SD with respect to G (Definition 4.4).

Now we will discuss how this point logically corresponds to Point i and Point ii of the SD
controllability definition. Point i of the SD controllability definition is the standard untimed
controllability property. Together with Point ii reverse direction (⇐), it becomes the timed
controllability property (Definition 2.22) of the SD setting. As we have adapted the timed
controllability definition for our ||SD setting, we will use our timed controllability with ||SD

property instead. In this way, Point i of our SD controllability with ||SD definition is logically
equivalent to Point i and Point ii (⇐) of the SD controllability definition.

In the forward direction (⇒), Point ii of the SD controllability definition states that if
a prohibitable event is enabled in the closed-loop system, then tick must be disabled. It is
noteworthy that this condition is essentially in agreement with the synchronization mecha-
nism of our ||SD operator. In simple words, this is exactly what our ||SD operator does while
synchronizing G and S, i.e. if a prohibitable event is enabled in the closed-loop system, our
||SD operator automatically disables tick event in the closed-loop system, even if it is possible
in both G and S.

This implies that our ||SD operator guarantees that any closed-loop system constructed as
S ||SD G will always satisfy the condition imposed by Point ii (⇒) of the SD controllability
definition. In our ||SD setting, as we construct our closed-loop system as S ||SD G, this means
that we do not need to explicitly check this condition, as it will always be satisfied by the
||SD operator while synchronizing G and S. As a result, we eliminate this explicit condition
from our SD controllability with ||SD definition. In fact, ensuring the automatic satisfaction
of this condition and removing this explicit check is the primary purpose of introducing the
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||SD operator and our ||SD setting.
In this way, Points i and ii of the SD controllability definition get simplified, and are

represented only by Point i in our SD controllability with ||SD definition.
Point ii: As a result of the simplification discussed above, Point iii of the SD controllability
definition becomes Point ii of the SD controllability with ||SD definition. These two points are
logically identical except for the way they assume their closed-loop systems to be constructed,
which are different for the two settings, SD and ||SD.
Point iii: Point iii of the SD controllability with ||SD definition corresponds to Point iv of the
SD controllability definition. These two points essentially represent the same logic. The only
difference is their way of representing the marked behaviours, as per the SD and ||SD setting.

Since Point ii and Point iii of the SD controllability with ||SD definition are logically
identical to Points iii and iv of the SD controllability definition respectively, we have not
reexamined these points here. Please refer to Definition 3.7 of SD controllability to see a
logical explanation of these points.

4.6 ALF Modularity and SD Synchronous Product

In this section, we present and discuss some important results for the ALF property with
respect to our SD synchronous product operator in the ||SD setting.

In our ||SD setting, we wish our closed-loop system S ||SD G to be ALF to rule out the
possibility of having the physically unrealistic behaviour that activity events can preempt tick
for an indefinite amount of time. Instead of first constructing the closed-loop system and then
checking its ALF property, it would be much easier and economical if we could find a way to
determine whether our closed-loop system is ALF or not before actually constructing it.

One possible way to do this is to apply the ALF check individually on S and G before
synchronizing them to construct the closed-loop system. The following proposition formally
proves that if S or G is ALF, then our closed-loop system constructed as S ||SD G is guaranteed
to be ALF.

Proposition 4.3. Let TDES G = (Q,Σ, δ, qo, Qm) be a plant and TDES S = (X,Σ, ξ, xo, Xm)
be a supervisor. If either S or G is ALF, then the closed-loop system S = (Y,Σ, η, yo, Ym)
constructed as S = S ||SD G is ALF.

Proof. Assume: S = S ||SD G and that either S or G is ALF. By Definition 2.30 of the ALF
property, this implies:

[(∀s ∈ Σ+
act) (∀x ∈ Xr) ξ(x, s) 6= x] ∨ [(∀s ∈ Σ+

act) (∀q ∈ Qr) δ(q, s) 6= q] (1)

Must show: S is ALF
By the ALF definition, it is sufficient to show: (∀y ∈ Yr) (∀s ∈ Σ+

act) η(y, s) 6= y, where Yr ⊆ Y
is the set of reachable states in S.
We will use proof by contradiction to show that S is ALF.
Assume S is not ALF, i.e. there exists an activity loop in S. By Definition 2.29 of activity
loop, this implies: (∃y ∈ Yr) (∃s′ ∈ Σ+

act) η(y, s′) = y (2)
Let y ∈ Yr, and let s′ ∈ Σ+

act such that η(y, s′) = y. (3)
As S = S ||SD G by (1), by the definition of state set Y in the ||SD operator (Definition 4.1),
we have: y = (x, q), such that x ∈ X and q ∈ Q. (4)
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Also, by the definition of Y in ||SD, we know that y is a reachable state in S, only if x is a
reachable state in S and q is a reachable state in G, i.e. x ∈ Xr ∧ q ∈ Qr.
By (3), we have: η(y, s′) = y

⇒ η((x, q), s′) = (x, q) by (4)

As S and G are defined over the same event set Σ, by Point i of the ||SD definition, we have
that a transition will be defined at a state in S, only if it is defined at the corresponding states
in both S and G.
Since we have that transition for string s′ is defined at state y = (x, q) in S, this implies that
s′ transition is defined at state x in S and state q in G.
⇒ ξ(x, s′) = x ∧ δ(q, s′) = q by Point i of ||SD definition
These transitions indicate that both S and G are not ALF. This contradicts our assumption
of (1) that either S or G is ALF.
Thus, we deduce that our assumption of (2) is false, and S is ALF.
⇒ (∀y ∈ Yr) (∀s ∈ Σ+

act) η(y, s) 6= y

Hence, we conclude that if either S or G is ALF, then S = S ||SD G is ALF.

As S and G are typically designed modularly by designers, our S and G will most likely
be constructed as S = S1 ||S2 || . . . ||Sm and G = G1 ||G2 || . . . ||Gn, where m,n > 1. Here,
it is worthwhile to mention a proposition from [42] that presents an easy and modular way
of obtaining an ALF TDES. The following proposition states that if each individual TDES is
ALF, then their synchronous product is ALF. This proposition is useful in our ||SD setting as
we can make our S or G ALF just by making sure that each individual plant or supervisor
component is ALF, even if these components are defined over different event sets.

Proposition 4.4. [42] For TDES G1 = (Q1,Σ1, δ1, qo,1, Qm,1) and G2 = (Q2,Σ2, δ2, qo,2, Qm,2),
if G1 and G2 are each ALF, then their synchronous product G = G1 ||G2 is ALF.

In the presence of Proposition 4.3 and Proposition 4.4, it is evident that if we want to
construct an ALF closed-loop system in our ||SD setting, we simply need to design ALF plant
or supervisor components. This is because individual ALF plant or supervisor components
ensure that when we synchronize them using synchronous product, our S or G will be ALF
(Proposition 4.4). This in turn guarantees that our closed-loop system constructed as S ||SD G
will be ALF (Proposition 4.3). In this way, we can verify the ALF property of our closed-loop
system before actually constructing S ||SD G, or even before constructing composite S and G.

For our closed-loop system S ||SD G, we are also interested in making sure that our system
does not try to “stop the clock”, i.e. it should never reach a state where tick events are
not possible anymore, as this behaviour is undesirable and physically unrealistic. Therefore,
we want to guarantee that after a finite number of activity events, our system should always
reach a state where the tick event is possible. In the following proposition, we present sufficient
conditions to ensure this behaviour. This proposition is inspired by Proposition 6.6 taken from
[29].

Proposition 4.5. Let TDES G = (Q,Σ, δ, qo, Qm) be a plant and TDES S = (X,Σ, ξ, xo, Xm)
be a supervisor, and let S = (Y,Σ, η, yo, Ym) be the closed-loop system constructed as
S = S ||SD G. If both G and S have finite state spaces, G has proper time behaviour, S
is timed controllable with ||SD for G, and S is ALF, then (∀y ∈ Yr) (∃s ∈ Σ∗act) η(y, sτ)!.

Proof. Assume initial conditions, and let y ∈ Yr.
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Must show: (∃s ∈ Σ∗act) η(y, sτ)!

As both G and S have finite, non-empty state spaces (as they both contain an initial state),
it follows from the definition of state set Y in the ||SD operator (Definition 4.1) that the
closed-loop system S = S ||SD G has a finite, non-empty state space.
Let n = |Yr|.
By our initial assumption, we have that S is ALF. This implies that starting at state y in
S, the system can do at most n − 1 activity event transitions before it has visited all n
reachable states. At this point, there must be no more activity event transitions possible in
S. Otherwise, the system would have to visit a state twice, thus creating an activity loop and
failing the ALF definition.
This idea can be formally expressed as follows:

(∃s ∈ Σ∗act) |s| ≤ n− 1 ∧ (∃y′ ∈ Yr) η(y, s) = y′ ∧ (∀σ ∈ Σact) ¬ η(y′, σ)! (1)

Now we will present our argument to show that tick transition is defined at state y′ in S.
By (1), we have that no activity events are possible at state y′ in S. As Σu ⊆ Σact, this means
that no uncontrollable events are possible at y′ in S.
By our initial assumption, we have that S is timed controllable with ||SD for G. This implies
that no uncontrollable events are defined at the corresponding state in G, as S would not
have restricted them, and there are none possible in S.
Lets refer to this state of G as q′ ∈ Q.
As G has proper time behaviour, this implies that tick is defined at state q′ in G.
By (1), we have that no activity events are possible at state y′ in S. As Σhib ⊆ Σact, this
means no prohibitable events are enabled at y′ in S.
We have that tick event is defined at state q′ in G and no prohibitable event is eligible at
state y′ to preempt the tick in S. As S is timed controllable with ||SD for G, this implies that
neither S nor the ||SD operator can disable the tick event at this point in time. Thus, the tick
event must be enabled at state y′ in S.
Thus, we have: η(y′, τ)!

⇒ η(η(y, s), τ)! by (1)
⇒ η(y, sτ)! by definition of transition function
Hence, we conclude (∀y ∈ Yr) (∃s ∈ Σ∗act) η(y, sτ)!.

5 Equivalence of SD and SD Synchronous Product Setting

Now that we have described our SD synchronous product setting in detail, our next target is
to establish equivalence between the SD setting (Section 3) and our ||SD setting (Section 4).
This section serves as the first stepping stone to achieve this goal.

We begin this section by presenting a discussion on why this equivalence between the
two settings is needed, how it will be established, and how it will pave the way for proving
controllability, nonblocking and all SD verification results in our ||SD setting (Section 8). After
this discussion, we state some assumptions that apply to our complete study. This is followed
by our language equivalence results, where we establish and formally prove equivalence between
the closed and marked languages of the SD and ||SD setting. Utilizing these results, we then
demonstrate the equivalence between various SD properties in the two settings.
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5.1 Establishing Equivalence

In this section, we present a detailed discussion on establishing equivalence between the SD
and ||SD settings. First, we explain why we opted for establishing equivalence between the two
settings. After that, we provide a complete road map to establish our desired equivalence by
presenting a comprehensive description of how did we plan to prove this equivalence and make
use of it while performing our controllability and nonblocking verification in the ||SD setting.

5.1.1 Why Equivalence is Needed?

In our ||SD setting, we have presented a novel way of constructing the closed loop system by
synchronizing TDES plant G and TDES supervisor S using the ||SD operator. By doing this,
we have essentially changed the way of obtaining closed and marked languages for the system.
Since our ||SD operator generates a new system language that, in most cases, will not be the
same as the language generated by synchronous product in the SD setting, the controllability
and nonblocking verification results of the SD setting do not remain valid in our ||SD setting.
This means that we need to reprove all verification results of the SD setting for our ||SD setting.

There are two possible ways to perform controllability and nonblocking verification in
our ||SD setting: 1) prove all SD results from scratch, or 2) establish some kind of logical
equivalence between the SD and ||SD setting, so that the results that have already been proven
in the SD setting remain applicable to our ||SD setting as well. This will allow us to reuse
and base our results on some of the existing results from the SD setting while performing the
controllability and nonblocking verification in our ||SD setting.

Hypothetically, we could follow the first approach and prove all SD results in our ||SD setting
from scratch. But the issue with this approach is that there is no closed and obvious form of the
closed and marked language that is generated by synchronizing G and S using the ||SD operator,
i.e. L(S ||SD G) and Lm(S ||SD G). By this we mean that, apparently, we cannot easily express
these languages in terms of the natural projection or its equivalent, as has been done for the
synchronous product. For plant G and an arbitrary supervisor S that are defined over the
same event set Σ, we know that L(S ||G) = L(S) ∩ L(G) and Lm(S ||G) = Lm(S) ∩ Lm(G).
However, in most cases, we do not expect to have this kind of equality for our ||SD operator, i.e.
L(S ||SD G) 6= L(S)∩L(G) and Lm(S ||SD G) 6= Lm(S)∩Lm(G). This is due to the automatic
tick disablement mechanism of the ||SD operator that is not present in the synchronous product
operator.

In the absence of such a closed and clear cut form for L(S ||SD G) and Lm(S ||SD G),
working with these languages and proving all SD verification results from scratch in the ||SD

setting does not look like a straightforward and trouble-free task. Due to these reasons, we opt
for the second approach of establishing logical equivalence between the SD and ||SD setting,
and then utilize this equivalence to perform our controllability and nonblocking verification in
the ||SD setting.

5.1.2 How to Establish Equivalence?

Note: In this discussion, in fact in the rest of this report, we need to talk about two supervisors,
one from the SD setting and the other from our ||SD setting. Since these two supervisors
will most likely be different (as they may satisfy different properties of the two settings),
therefore, in order to avoid any ambiguity, we will use two different symbols to refer to them.
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The supervisor of the SD setting will be stated as S (S maps and refers to S of Section 3),
whereas the supervisor of our ||SD setting will be referred to as S.

In the SD setting, since TDES plant G and TDES supervisor S are assumed to be combined
with the synchronous product, therefore all verification results have been proven using the
closed language L(S)∩L(G) and marked language Lm(S)∩Lm(G). The authors have assumed
that S is an arbitrary supervisor that satisfies certain SD properties, independently and when
combined with G to form the closed-loop system, S ||G. This supervisor S is then used to
generate its corresponding controller implementation in the SD setting using the translation
method described in Section 3.7. Therefore, in order to make the SD results valid in our
||SD setting and derive our results based on these existing results, we need to satisfy all these
conditions and prove equivalence at all levels, i.e. 1) prove language equivalence, 2) satisfy all
properties that have been considered as preconditions for concluding the controllability and
nonblocking verification results, and 3) prove controller’s equivalence.

To establish the required logical equivalence, first and foremost, we need to establish lan-
guage equivalence between the two settings. Since the closed and marked languages generated
in the SD and ||SD settings are L(S) ∩ L(G) and L(S ||SD G), and Lm(S) ∩ Lm(G) and
Lm(S ||SD G) respectively, we can potentially establish language equivalence between the two
settings if we could somehow prove that L(S ||SD G) = L(S) ∩ L(G) and Lm(S ||SD G) =
Lm(S) ∩ Lm(G). To do this, we need to find an appropriate and concrete definition for su-
pervisor S of the SD setting, that is not only guaranteed to exist, but should be based on or
somehow related to our S ||SD G to achieve the above-mentioned equivalence.

An intriguing idea is what if we define S = S ||SD G? Can we establish our desired
language equivalence between the two settings with this definition of S? Can we demonstrate
that S satisfies all the properties as required by existing verification results of the SD setting?
Can we prove that the controller implementation of S will be according to the requirements
of the SD setting? If we can prove these things, then we can certainly define S = S ||SD G to
prove the desired equivalence, and make use of the existing SD results while verifying our ||SD

setting.
This is exactly the approach that we adopt for proving equivalence between the two set-

tings. We start by establishing language equivalence between the two settings and proving that
if S = S ||SD G, then both settings have the same closed and marked behaviours. Specifically,
we prove that L(S ||SD G) = L(S)∩L(G) and Lm(S ||SD G) = Lm(S)∩Lm(G) (Section 5.3).

Then, we focus on satisfying the preconditions (various SD properties) of the SD verifica-
tion results. Specifically, we demonstrate that if certain SD properties are satisfied in the ||SD

setting with respect to our supervisor S, this implies that their corresponding SD properties
are guaranteed to be satisfied with respect to supervisor S = S ||SD G in the SD setting (Sec-
tion 5.4). We also show how to process S to satisfy some other properties that are required
in the SD setting but may not be directly satisfied as S = S ||SD G (Section 6).

Finally, we prove that the SD controller that is obtained by translating S in our ||SD setting
is output equivalent to the controller that is generated by supervisor S of the SD setting with
respect to valid input strings, i.e. strings that are possible in the two closed-loop behaviours
(Section 7). In other words, controller implementation of the two supervisors, S and S, will
exhibit exactly the same control behaviour with respect to TDES plant G.

Once we have this formal equivalence between the two settings in place, we will success-
fully satisfy all the assumptions and preconditions that have been identified for proving all
verification results in the SD setting. Since we have fulfilled all the prerequisites, we can
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rightly conclude the SD verification results. In this way, the existing SD results become valid
in the ||SD setting and we can easily reuse them to build our controllability and nonblocking
verification results of the ||SD setting (Section 8).

Before closing this section, it is also important to clearly state the relationship that we have
established between the two settings to do our formal theoretical verification. The basic idea
is that in the ||SD setting, supervisor S is expected to be manually designed by the designers
for plant G, and is required to satisfy certain SD properties with ||SD, defined in Section 4.
It is worth-mentioning here that while designing S, designers do not need to manually take
care of the tricky condition imposed by Point ii (⇒) of the SD controllability definition, as
required in the SD setting. This S should then be synchronized with G using our ||SD operator
to construct S ||SD G.

Instead of using this S ||SD G as our closed-loop system for theoretical verification of the
||SD setting, we treat this S ||SD G as the “supervisor” of the SD setting, i.e. S = S ||SD G. We
will be able to do this because of our equivalence results, since these results ensure that S is
guaranteed to satisfy all properties that a supervisor of the SD setting is required to satisfy.
It is noteworthy that S is also guaranteed to automatically satisfy Point ii (⇒) of the SD
controllability definition with respect to G because of the synchronization mechanism of our
||SD operator that is used to construct S = S ||SD G.

This S is then assumed to be synchronized with G using the synchronous product to
construct the closed-loop system S || G, with closed language L(S) ∩ L(G) and marked
language Lm(S)∩Lm(G), as done in the existing SD setting. All the existing SD verification
results then follow immediately, as they have been proven using the same closed and marked
languages in the SD setting.

We would like to clarify that software and hardware practitioners do not actually need
to construct supervisor S or closed-loop system S ||G of the SD setting in practice. Also,
they are not required to physically implement S as their controller. This additional step is
only considered and discussed here with respect to theoretical verification of our ||SD setting.
Practically, designers and practitioners only need to design supervisor S with the desired
SD properties of the ||SD setting. This supervisor can then be translated to generate its
corresponding controller implementation using the translation method described in Section 3.7.

In this way, our ||SD setting inherently liberates the designers from manually designing
the potentially intricate supervisor of the SD setting that must satisfy all SD conditions,
especially the stringent SD controllability Point ii (⇒). Using our approach, they should now
be able to design a much simpler and less complicated supervisor S of the ||SD setting that,
when combined with G using the ||SD operator, is equivalent in its closed-loop behaviour,
control action and controller implementation to the one required by the SD setting. In other
words, by introducing the concrete definition of S = S ||SD G, we essentially provide a way
to automatically generate a TDES S that qualifies as the supervisor of the SD setting by
satisfying all the required properties and conditions.

5.2 Implicit Assumptions

In this section, we list down our implicit assumptions that hold true for our ||SD setting. Since
these assumptions apply to our complete study, we are stating them together at one place,
and will not repeat them in any of the upcoming sections.

1. For TDES plant G and TDES supervisor S of the ||SD setting, we assume that both G
and S are always defined over the same event set. However, in the case where G and S
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are not defined over the same alphabet, we can simply add selfloops to each TDES for
the missing events at every state to extend them over the same event set, without any
loss of generality. If we assume otherwise in any particular section of this report, we will
explicitly state that.

2. Let TDES S be constructed by synchronizing plant G and supervisor S using the SD
synchronous product operator, i.e. S = S ||SD G. Since both G and S are defined over the
same event set, by definition of the ||SD operator, the resultant TDES S will also have the
same event set as G and S.

3. As G and S are defined over the same event set, by Definition 2.19 of the synchronous
product, we have that L(S ||G) = L(S)∩L(G) and Lm(S ||G) = Lm(S)∩Lm(G). In the
rest of this report, we might interchangeably use these two representations of synchronous
product without explicit explanation.

4. In the SD supervisory control theory, it has been assumed that the set of prohibitable
events (Σhib) is exactly equal to the set of forcible events (Σfor), i.e. Σfor = Σhib. Since
we are using this methodology as the basis of our work, this assumption holds true for our
study as well.

5. All TDES discussed in this report are assumed to be reachable and deterministic with a
finite state space and a finite event set.

5.3 Equivalence of Languages

In this section, we present our desired language equivalence results for the SD and ||SD setting.
Specifically, we formally prove that the closed and marked languages generated in the two
settings are equivalent.

Let TDES G = (Q,Σ, δ, qo, Qm) be a plant and TDES S = (X,Σ, ξ, xo, Xm) be a supervi-
sor. Let S = (Y,Σ, η, yo, Ym) be a TDES constructed as S = S ||SD G.

We start by proving two propositions that will help us in showing our main language
equivalence result. The basic idea of these two propositions has been taken from Definition 4.1
of our SD synchronous product operator.

By looking at the synchronization mechanism of the ||SD operator, we note that ||SD ‘po-
tentially’ adds a transition to S = S ||SD G, only if that transition is defined in both S and
G. It does not add any transition to S that is not defined in either S or G. This implies that
the strings defined in L(S) are going to be a subset of the strings that are defined in both
L(S) and L(G). The proposition given below uses proof by induction to formally prove this
notion.

Proposition 5.1. Let TDES G = (Q,Σ, δ, qo, Qm) be a plant and TDES S = (X,Σ, ξ, xo, Xm)
be a supervisor. Let TDES S = S ||SD G = (Y,Σ, η, yo, Ym), then: (i) L(S) ⊆ L(S), and
(ii) L(S) ⊆ L(G).

Proof. We will prove these two points together.
Assume: S = S ||SD G (1)
Must show: L(S) ⊆ L(S) and L(S) ⊆ L(G)

Sufficient to show: L(S) ⊆ L(S) ∩ L(G)

Let s ∈ L(S). Must show this implies: s ∈ L(S) ∩ L(G)

We will use induction on the length of s to show: s ∈ L(S) ∩ L(G)
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Base Case: s = ε

As S contains an initial state xo, and G contains an initial state qo, it follows that ε ∈ L(S)
and ε ∈ L(G).
⇒ ε ∈ L(S) ∩ L(G)

Base case complete.
Inductive Step: For some k ≥ 0, we assume:
• s = σ1 . . . σk ∈ L(S) ∩ L(S) ∩ L(G) (2)
• sσk+1 ∈ L(S) (3)

We will now show this implies: sσk+1 ∈ L(S) ∩ L(G)

By (2), we have: s ∈ L(S)

⇒ η(yo, s)! by definition of L(S) (4)
We have S = S ||SD G by (1). The ||SD operator defines the initial state of S as an ordered
pair of the initial states of S and G.
⇒ η((xo, qo), s)! by definition of yo in ||SD definition (5)
As S and G are defined over the same event set Σ, by Point i of the ||SD operator’s definition,
we have that a transition will be defined at a state in S, only if it is defined at corresponding
states in both S and G. Also, we know that ||SD operator is defined in such a way that it may
remove a tick transition from S under certain conditions, even though that tick transition is
possible in both S and G, but it cannot add any tick or non-tick transition to S that is not
defined in either S or G.
Since, by (4), we have that string s is defined at state yo in S, by (5) this implies that s is
defined at state xo in S and state qo in G.
⇒ ξ(xo, s)! ∧ δ(qo, s)! by Point i of ||SD definition (6)
By (3), we have: sσk+1 ∈ L(S)

⇒ η(yo, sσk+1)! by definition of L(S)

⇒ η(η(yo, s), σk+1)! by (4) and definition of transition function
⇒ η(η((xo, qo), s), σk+1)! by (5)
As σk+1 transition is defined in S, by Point i of ||SD definition, this implies that σk+1 transition
is defined at corresponding states in both S and G.
⇒ ξ(ξ(xo, s), σk+1)! ∧ δ(δ(qo, s), σk+1)! by (6) and Point i of ||SD definition
⇒ ξ(xo, sσk+1)! ∧ δ(qo, sσk+1)! by definition of transition function
⇒ sσk+1 ∈ L(S) ∧ sσk+1 ∈ L(G) by definition of L(S) and L(G)

⇒ sσk+1 ∈ L(S) ∩ L(G)

Inductive step complete.
By our base case and inductive step, we have shown that for some arbitrary string s ∈ L(S)
implies s ∈ L(S) ∩ L(G). Thus, we have shown that L(S) ⊆ L(S) ∩ L(G).
Hence, we conclude: (i) L(S) ⊆ L(S), and (ii) L(S) ⊆ L(G).

In the next proposition, we prove same idea with respect to marked languages of S, G and
S = S ||SD G. Specifically, we show that the marked strings that make up Lm(S) is a subset of
the marked strings that are defined in both Lm(S) and Lm(G). This proof is partially based
on the result of our previous proposition.
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Proposition 5.2. Let TDES G = (Q,Σ, δ, qo, Qm) be a plant and TDES S = (X,Σ, ξ, xo, Xm)
be a supervisor. Let TDES S = S ||SD G = (Y,Σ, η, yo, Ym), then: (i) Lm(S) ⊆ Lm(S), and
(ii) Lm(S) ⊆ Lm(G).

Proof. We will prove these two points together.
Assume: S = S ||SD G. Sufficient to show: Lm(S) ⊆ Lm(S) ∩ Lm(G)

Let s ∈ Lm(S). Must show this implies: s ∈ Lm(S) ∩ Lm(G)

We have: s ∈ Lm(S)

⇒ η(yo, s)! ∧ η(yo, s) ∈ Ym by definition of Lm(S)

⇒ s ∈ L(S) ∧ η(yo, s) ∈ Ym by definition of L(S) (1)
As S = S ||SD G, thus by Proposition 5.1, we have: L(S) ⊆ L(S) and L(S) ⊆ L(G)

⇒ s ∈ L(S) ∧ s ∈ L(G) by Proposition 5.1 (2)
The ||SD operator defines the initial state of S as an ordered pair of the initial states of S and
G, and the set of marked states of S as cross product of the set of marked states of S and G.
By (1), we have: η(yo, s) ∈ Ym
⇒ η((xo, qo), s) ∈ Xm ×Qm by (2) and definition of yo and Ym in ||SD definition
⇒ ξ(xo, s) ∈ Xm ∧ δ(qo, s) ∈ Qm by Point i and definition of Ym in ||SD definition
⇒ s ∈ Lm(S) ∩ Lm(G)

Hence, we conclude: (i) Lm(S) ⊆ Lm(S), and (ii) Lm(S) ⊆ Lm(G).

Based on the above two propositions, we now present our main result of proving language
equivalence between the SD and our ||SD setting. In the following proposition, we prove that
the closed and marked languages generated by synchronizing TDES supervisor S and TDES
plant G using ||SD operator in the ||SD setting are the same as the closed and marked languages
obtained by combining TDES supervisor S = S ||SD G and TDES plant G using synchronous
product operator in the SD setting.

Proposition 5.3. Let TDES G = (Q,Σ, δ, qo, Qm) be a plant and TDES S = (X,Σ, ξ, xo, Xm)
be a supervisor. Let TDES S = S ||SD G = (Y,Σ, η, yo, Ym), then: (i) L(S) = L(S) ∩ L(G),
and (ii) Lm(S) = Lm(S) ∩ Lm(G).

Proof. Assume: S = S ||SD G

i) Show: L(S) = L(S) ∩ L(G)

Sufficient to show: (1) L(S) ⊆ L(S) ∩ L(G), and (2) L(S) ∩ L(G) ⊆ L(S).

1) Show: L(S) ⊆ L(S) ∩ L(G)

Let s ∈ L(S). Must show this implies: s ∈ L(S) ∩ L(G) (1)
As s ∈ L(S) by (1), sufficient to show: s ∈ L(G)

As S = S ||SD G, thus by Proposition 5.1, we have: L(S) ⊆ L(S) ∩ L(G)

⇒ s ∈ L(G) by (1) and Proposition 5.1

We thus conclude that L(S) ⊆ L(S) ∩ L(G).

2) Show: L(S) ∩ L(G) ⊆ L(S)

This follows automatically from the definition of set intersection.
By Parts (1) and (2), we conclude that L(S) = L(S) ∩ L(G).
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ii) Show: Lm(S) = Lm(S) ∩ Lm(G)

Proof is identical to Part (i) up to relabelling closed languages L(S), L(G) and L(S) to
marked languages Lm(S), Lm(G) and Lm(S) respectively, and replacing Proposition 5.1
with Proposition 5.2 in Part (1).

By our assumptions, we know that S = S ||SD G, L(S ||G) = L(S) ∩ L(G), and Lm(S ||
G) = Lm(S) ∩ Lm(G). This means that Proposition 5.3 can be stated in multiple ways.
Below we derive a corollary based on our main language equivalence result. We will then refer
to the various points of this corollary to directly cite the result in the required form in the
upcoming proofs.

Corollary 5.1. Let TDES G = (Q,Σ, δ, qo, Qm) be a plant and TDES S = (X,Σ, ξ, xo, Xm)
be a supervisor. Let TDES S = S ||SD G = (Y,Σ, η, yo, Ym), then:
i) L(S) = L(S ||G) ii) Lm(S) = Lm(S ||G)

iii) L(S ||SD G) = L(S ||G) iv) Lm(S ||SD G) = Lm(S ||G)

v) L(S ||SD G) = L(S) ∩ L(G) vi) Lm(S ||SD G) = Lm(S) ∩ Lm(G)

Proof. Assume: S = S ||SD G

i) Show: L(S) = L(S ||G)

As both S and G are defined over Σ, we thus have: L(S ||G) = L(S) ∩ L(G)

The result follows automatically from Proposition 5.3.

ii) Show: Lm(S) = Lm(S ||G)

Proof is identical to Part (i) up to relabelling closed languages L(S), L(G) and L(S) to
marked languages Lm(S), Lm(G) and Lm(S) respectively.

iii) Show: L(S ||SD G) = L(S ||G)

As S = S ||SD G, the result follows immediately from Part (i).

iv) Show: Lm(S ||SD G) = Lm(S ||G)

As S = S ||SD G, the result follows immediately from Part (ii).

v) Show: L(S ||SD G) = L(S) ∩ L(G)

As S = S ||SD G, the result follows immediately from Proposition 5.3(i).

vi) Show: Lm(S ||SD G) = Lm(S) ∩ Lm(G)

As S = S ||SD G, the result follows immediately from Proposition 5.3(ii).

5.4 Equivalence of SD Properties

In this section, we prove equivalence between the two versions of various properties that are
defined in the SD and ||SD setting.

In our ||SD setting, we expect TDES supervisor S to be manually designed by software
designers, and is required to satisfy certain properties. By introducing the ||SD setting, we are
devising a way to automatically construct the supervisor of the SD setting as S = S ||SD G.
This means we must also provide a way to automatically satisfy various properties that the
supervisor of the SD setting is required to satisfy. This is discussed in the following subsections.
Specifically, in these subsections, we formally prove that if S satisfies certain properties with
respect to TDES plant G in our ||SD setting, this implies that TDES supervisor S = S ||SD G
is guaranteed to satisfy the corresponding SD properties with respect to G in the SD setting.
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5.4.1 Plant Completeness

In the SD setting, it is required that plant TDES should be complete for the supervisor TDES.
In the following proposition, we prove that if plant G is complete with ||SD for supervisor S in
our ||SD setting, then this is sufficient to ensure that G is complete for supervisor S = S ||SD G
in the SD setting.

Proposition 5.4. Let TDES G = (Q,Σ, δ, qo, Qm) be a plant, TDES S = (X,Σ, ξ, xo, Xm)
be a supervisor, and TDES S = S ||SD G = (Y,Σ, η, yo, Ym) be a supervisor. If G is complete
with ||SD for S, then G is complete for S.

Proof. Assume: S = S ||SD G, and G is complete with ||SD for S (1)
To show that G is complete for S, it is sufficient to show:

(∀s ∈ L(S) ∩ L(G)) (∀σ ∈ Σhib) sσ ∈ L(S)⇒ sσ ∈ L(G)

Let s ∈ L(S) ∩ L(G) and let σ ∈ Σhib. Assume: sσ ∈ L(S) (2)
Must show this implies: sσ ∈ L(G)

By (2), we have: s ∈ L(S) ∩ L(G)

⇒ s ∈ L(S ||SD G) by (1) and Corollary 5.1(v) (3)
As S = S ||SD G by (1), thus by Proposition 5.1, we have: L(S) ⊆ L(S)

⇒ sσ ∈ L(S) by (2) and Proposition 5.1 (4)
⇒ sσ ∈ L(G) by (1-4)
Hence, we conclude that G is complete for S.

5.4.2 S-Singular Prohibitable Behaviour

One of the assumptions made in the SD setting is that controllers allow prohibitable events
to occur only once per sampling period. This should be reflected in the plant model as
well. Hence, plant G is required to satisfy S-singular prohibitable behaviour with respect to
supervisor S in the SD setting. The following proposition proves that if G has S-singular
prohibitable behaviour with ||SD with respect to supervisor S in the ||SD setting, then G is
guaranteed to have S-singular prohibitable behaviour with respect to supervisor S = S ||SD G
in the SD setting.

Proposition 5.5. Let TDES G = (Q,Σ, δ, qo, Qm) be a plant, TDES S = (X,Σ, ξ, xo, Xm) be
a supervisor, and TDES S = S ||SD G = (Y,Σ, η, yo, Ym) be a supervisor. If G has S-singular
prohibitable behaviour with ||SD, then G has S-singular prohibitable behaviour.

Proof. Assume: S = S ||SD G, and G has S-singular prohibitable behaviour with ||SD

(1)
To show that G has S-singular prohibitable behaviour, it is sufficient to show:

(∀s ∈ L(S) ∩ L(G) ∩ Lsamp) (∀s′ ∈ Σ∗act) ss
′ ∈ L(S) ∩ L(G)⇒

(∀σ ∈ Occu(s′) ∩ Σhib) σ /∈ EligL(G)(ss
′)

Let s ∈ L(S) ∩ L(G) ∩ Lsamp, and let s′ ∈ Σ∗act. Assume: ss′ ∈ L(S) ∩ L(G) (2)
Let σ ∈ Occu(s′) ∩ Σhib. Must show: σ /∈ EligL(G)(ss

′) (3)
By (2), we have: s ∈ L(S) ∩ L(G) ∩ Lsamp
⇒ s ∈ L(S ||SD G) ∩ Lsamp by (1) and Corollary 5.1(v) (4)
By (2), we have: ss′ ∈ L(S) ∩ L(G)
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⇒ ss′ ∈ L(S ||SD G) by (1) and Corollary 5.1(v) (5)
⇒ σ /∈ EligL(G)(ss

′) by (1-5)
Hence, we conclude that G has S-singular prohibitable behaviour.

5.4.3 Timed Controllability

In the SD setting, supervisor TDES is assumed to be timed controllable with respect to plant
TDES. The following proposition proves that while designing supervisor S of the ||SD setting,
if designers make sure that S is timed controllable with ||SD with respect to plant G, this
guarantees that supervisor S = S ||SD G is timed controllable with respect to G in the SD
setting.

Proposition 5.6. Let TDES G = (Q,Σ, δ, qo, Qm) be a plant, TDES S = (X,Σ, ξ, xo, Xm)
be a supervisor, TDES S = S ||SD G = (Y,Σ, η, yo, Ym) be a supervisor, and let Σfor = Σhib.
If S is timed controllable with ||SD for G, then S is timed controllable for G.

Proof. Let S = S ||SD G, and Σfor = Σhib. (1)
Assume: S is timed controllable with ||SD for G (Definition 4.4) (2)
Must show: S is timed controllable for G

Substituting (1) in Definition 2.22 of timed controllability, it is sufficient to show:
(∀s ∈ L(S) ∩ L(G))

EligL(S ||SD G)(s) ⊇
{
EligL(G)(s) ∩ (Σu ∪ {τ}) if EligL(S)∩L(G)(s) ∩ Σhib = ∅

EligL(G)(s) ∩ Σu if EligL(S)∩L(G)(s) ∩ Σhib 6= ∅
(3)

Let s ∈ L(S) ∩ L(G).
⇒ s ∈ L(S ||SD G) by (1) and Corollary 5.1(v) (4)
As S = S ||SD G by (1), applying Corollary 5.1(v) on the R.H.S of (3), we get:

EligL(S ||SD G)(s) ⊇
{
EligL(G)(s) ∩ (Σu ∪ {τ}) if EligL(S ||SD G)(s) ∩ Σhib = ∅

EligL(G)(s) ∩ Σu if EligL(S ||SD G)(s) ∩ Σhib 6= ∅
(5)

By (4) and (5), we thus have s ∈ L(S ||SD G) and:

EligL(S ||SD G)(s) ⊇
{
EligL(G)(s) ∩ (Σu ∪ {τ}) if EligL(S ||SD G)(s) ∩ Σhib = ∅

EligL(G)(s) ∩ Σu if EligL(S ||SD G)(s) ∩ Σhib 6= ∅
This is true by our assumption of (2), as s is an arbitrary string.
Hence, we conclude that S is timed controllable for G.

5.4.4 SD Controllability

One of the most important assumptions made by the authors while proving controllability
and nonblocking verification results in the SD setting is that the supervisor TDES is SD
controllable with respect to the plant TDES. The proposition given below provides sufficient
conditions to automatically satisfy this property in the SD setting. It proves that in the ||SD

setting, if designers create a supervisor S that is SD controllable with ||SD with respect to
plant G, then supervisor S = S ||SD G is guaranteed to be SD controllable with respect to G
in the SD setting.

59



Proposition 5.7. Let TDES G = (Q,Σ, δ, qo, Qm) be a plant, TDES S = (X,Σ, ξ, xo, Xm)
be a supervisor, TDES S = S ||SD G = (Y,Σ, η, yo, Ym) be a supervisor, and let Σfor = Σhib.
If S is SD controllable with ||SD for G, then S is SD controllable for G.

Proof. Let S = S ||SD G, and Σfor = Σhib (1)
Assume: S is SD controllable with ||SD for G (Definition 4.6) (2)
Must show S is SD controllable for G. By Definition 3.7 of SD controllability, it is sufficient
to show the following:
(∀s ∈ L(S) ∩ L(G))

i) EligL(G)(s) ∩ Σu ⊆ EligL(S)(s)

ii) If τ ∈ EligL(G)(s), then τ ∈ EligL(S)(s)⇔ EligL(S)∩L(G)(s) ∩ Σhib = ∅

iii) If s ∈ Lsamp then

1) (∀s′ ∈ Σ∗act) [ss′ ∈ L(S) ∩ L(G)]⇒
[EligL(S)∩L(G)(ss

′) ∪Occu(s′)] ∩ Σhib = EligL(S)∩L(G)(s) ∩ Σhib

2) (∀s′, s′′ ∈ Lconc) [ss′, ss′′ ∈ L(S) ∩ L(G) ∧Occu(s′) = Occu(s′′)]⇒
ss′ ≡L(S)∩L(G) ss

′′ ∧ ss′ ≡Lm(S)∩Lm(G) ss
′′

iv) Lm(S) ∩ Lm(G) ⊆ Lsamp
Let s ∈ L(S) ∩ L(G).
⇒ s ∈ L(S ||SD G) by (1) and Corollary 5.1(v) (3)
Now we will analyze the four points of the SD controllability definition individually.

i) To show Point i, we need to show: EligL(G)(s) ∩ Σu ⊆ EligL(S)(s)

This concept can be restated as: EligL(S)(s) ⊇ EligL(G)(s) ∩ Σu (4)
In the next step, we will combine this with Part(a) of Point ii, and show this matches
Point i of Definition 4.6, and is thus satisfied by (2).

ii) Point ii of the SD controllability definition represents an “if and only if” statement. We
will analyze it in two parts.
If τ ∈ EligL(G)(s) then:

a) Reverse implication (⇐): τ ∈ EligL(S)(s)⇐ EligL(S)∩L(G)(s) ∩ Σhib = ∅
b) Forward implication (⇒): τ ∈ EligL(S)(s)⇒ EligL(S)∩L(G)(s) ∩ Σhib = ∅
Part a) The reverse implication can be restated as:

EligL(S)(s) ⊇ EligL(G)(s) ∩ {τ} if EligL(S)∩L(G)(s) ∩ Σhib = ∅ (5)

Combining (4) and (5), we get:

EligL(S)(s) ⊇
{
EligL(G)(s) ∩ (Σu ∪ {τ}) if EligL(S)∩L(G)(s) ∩ Σhib = ∅

EligL(G)(s) ∩ Σu if EligL(S)∩L(G)(s) ∩ Σhib 6= ∅

Applying (1) on the L.H.S., and (1) and Corollary 5.1(v) on the R.H.S, we get:

EligL(S ||SD G)(s) ⊇
{
EligL(G)(s) ∩ (Σu ∪ {τ}) if EligL(S ||SD G)(s) ∩ Σhib = ∅

EligL(G)(s) ∩ Σu if EligL(S ||SD G)(s) ∩ Σhib 6= ∅
(6)

As this now matches Point i of Definition 4.6, it is satisfied by (2).
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Part b) The forward implication says that if tick is possible in L(S) ∩ L(G), then no
prohibitable events are possible after string s in L(S) ∩ L(G).
From (3), we have: s ∈ L(S) ∩ L(G) and s ∈ L(S ||SD G)

We now need to show: τ ∈ EligL(S)(s)⇒ EligL(S)∩L(G)(s) ∩ Σhib = ∅
Assume: τ ∈ EligL(S)(s)

⇒ τ ∈ EligL(S ||SD G)(s) as S = S ||SD G by (1) (7)
We now need to show this implies: EligL(S)∩L(G)(s) ∩ Σhib = ∅
By (1) and Corollary 5.1(v), it is sufficient to show: EligL(S ||SD G)(s) ∩ Σhib = ∅
As we have τ ∈ EligL(S ||SD G)(s) by (7), this follows automatically from Point i of Defini-
tion 4.1 of the ||SD operator. (8)
Combining with Point i and Part(a) of Point ii, we now have satisfied both Points i and ii
of the SD controllability definition.

iii) From Corollary 5.1(v,vi), we have:
L(S ||SD G) = L(S) ∩ L(G) and Lm(S ||SD G) = Lm(S) ∩ Lm(G)

We can thus rewrite Point iii of Definition 3.7 using these identities as follows:
If s ∈ Lsamp then (9)

1) (∀s′ ∈ Σ∗act) [ss′ ∈ L(S ||SD G)]⇒
[EligL(S ||SD G)(ss

′) ∪Occu(s′)] ∩ Σhib = EligL(S ||SD G)(s) ∩ Σhib
(10)

2) (∀s′, s′′ ∈ Lconc) [ss′, ss′′ ∈ L(S ||SD G) ∧Occu(s′) = Occu(s′′)]⇒
ss′ ≡L(S ||SD G) ss

′′ ∧ ss′ ≡Lm(S ||SD G) ss
′′ (11)

As this now exactly matches Point ii of Definition 4.6, it is satisfied by (2).

iv) From Corollary 5.1(vi), we have: Lm(S ||SD G) = Lm(S) ∩ Lm(G)

We can thus rewrite Point iv of Definition 3.7 as: Lm(S ||SD G) ⊆ Lsamp (12)
As this now exactly matches Point iii of Definition 4.6, it is satisfied by (2).

Combining (3), (6) and (8-12), we have shown that Points (i-iv) of the SD controllability
definition are satisfied for S and G, as required.
Hence, we conclude that S is SD controllable for G.

5.4.5 ALF

In order to show our equivalence result with respect to the ALF property, we will make use
of one of the propositions from [42]. Proposition 5.8 stated below says that the synchronous
product of two TDES will be ALF, if one TDES is ALF, and the ALF TDES contains all
events in the event set of the other TDES.

Proposition 5.8. [42] Let G1 = (Q1,Σ1, δ1, qo,1, Qm,1) and G2 = (Q2,Σ2,
δ2, qo,2, Qm,2) be two TDES. If G1 is ALF and Σ1 ⊇ Σ2, then G1 ||G2 is also ALF.

In the SD setting, one of the preconditions of the controllability and nonblocking ver-
ification results is that the closed-loop system constructed by synchronizing the plant and
supervisor models using the synchronous product is ALF. In order to automatically satisfy
this condition of the SD setting, we require that the closed-loop system constructed as S ||SD G
in the ||SD setting must be ALF. This is because if S = S ||SD G is ALF, then the closed loop
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system constructed as S ||G in the SD setting is guaranteed to be ALF by Proposition 5.8
(as both S and G are defined over the same event set (Section 5.2)). Please note that in
Section 4.6, we have already presented an easy and modular way of making S ||SD G ALF.

6 Equivalence using Minimal Automaton

In this section, we present some more results with respect to establishing equivalence between
the SD and our ||SD setting. The primary focus of this section is on describing the approach
that we have formulated to process TDES S = S ||SD G (if required) and ensure that S
satisfies the property of concurrent string (CS) deterministic supervisors, as required by the
supervisor of the SD setting.

This section begins with a discussion on why supervisor S needs to be CS deterministic,
and the significance of minimizing S. Then, we present our algorithms to obtain the minimal
version of S from its non-minimal TDES automaton. After that, we identify sufficient condi-
tions and formally prove that minimized S is guaranteed to be CS deterministic. Finally, we
finish this section off by revisiting and re-evaluating our equivalence results presented in the
previous section to make sure that they remain valid with the minimal version of S as well.

6.1 Why Minimal Automaton is Needed?

The SD supervisory control methodology (Section 3) presents a formal translation method
to translate a TDES supervisor into an SD controller. This translation process requires that
the TDES supervisor must be CS deterministic (Definition 3.5). Otherwise, this conversion
technique is not guaranteed to work. Since we are defining a concrete way to automatically
construct TDES S = S ||SD G that we intend to use as the supervisor of the SD setting, we
need S to be CS deterministic.

We also want to make S CS deterministic because in the SD setting, the developed trans-
lation method is used to convert the CS deterministic TDES supervisor into an SD controller
(in fact, the controller would otherwise be non-deterministic). This CS deterministic supervi-
sor and its corresponding SD controller have then been used in the SD setting as the basis to
conclude various SD controllability and nonblocking verification results. As we want to make
these existing SD verification results valid in our ||SD setting, and use them to derive and
conclude our controllability and nonblocking verification results of the ||SD setting, we must
make sure that all preconditions of the SD verification results are satisfied.

Moreover, one of the goals of defining our ||SD setting is to enable the software and hardware
practitioners to design and implement our TDES supervisor S instead of the potentially more
complex supervisor of the SD setting. In order to be able to do that, we need to show that the
SD controller generated by translating S in our ||SD setting is output equivalent (Definition 7.2)
to the SD controller that is obtained by converting S in the SD setting (this is demonstrated
in Section 7). To theoretically prove this equivalence, we assume and require that the two
supervisors S and S have been translated into their corresponding SD controllers. For this
reason, both supervisors must be CS deterministic, as their translation into SD controllers is
not possible otherwise.

In our ||SD setting, since we want practitioners to design and implement our TDES super-
visor S, therefore we require them to design S in such a way that it must satisfy the property
of CS deterministic supervisor. However, making S CS deterministic does not guarantee that
S = S ||SD G will be CS deterministic. This is owing to the fact that in order to construct S,
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S needs to be synchronized with TDES plant G using ||SD operator, and neither G nor the
||SD operator guarantees to preserve the property of CS deterministic supervisor in any way.
This means if S = S ||SD G is not CS deterministic, then we need to somehow process S to
make it CS deterministic.

Our approach of making S CS deterministic relies on generating its minimal version. As
we are proposing a strategy of obtaining a CS deterministic version of S, it is also important to
show that S will indeed become CS deterministic after applying our state space minimization
algorithms (presented in the next section), and satisfying some other conditions. We formally
prove this in Section 6.3.1.

In summary, if S = S ||SD G is CS deterministic in its original form, we can directly use
it as the supervisor of the SD setting and generate its corresponding SD controller. However,
if S = S ||SD G is not CS deterministic in its current form, then S must be minimized using
our state space minimization algorithms to make it CS deterministic, and essentially make it
work within our setting for use in our proofs. In practice, we would never need to actually
minimize S, as once we have proven equivalence, we would just implement S.

6.2 Obtaining a Minimal Automaton

In this section, we present our approach to minimize a given TDES automaton, i.e. obtain an
equivalent TDES automaton that has as few states as possible as any automaton accepting
the same closed and marked languages. This minimal TDES automaton is unique for the
given language up to relabelling of states.

Let G = (Q,Σ, δ, qo, Qm) be a TDES automaton. Without any loss of generality, we
assume that G is a reachable automaton. We will describe our approach of obtaining the
minimal version of TDES automaton G in two steps: 1) identify distinct λ-equivalent states
of G, and 2) construct minimal TDES automaton G′. We elaborate these two steps and
present their corresponding algorithms in the following two subsections. Please note that
these algorithms are generic (not specific to our S) and can be used to generate the minimal
version of any given TDES automaton.

6.2.1 Identify Distinct λ−Equivalent States

Our Algorithm 2 identifies distinct λ-equivalent states of a generator G (where δ is a partial
function). The algorithm begins by unflagging all state pairs at Step 0. We have added
this step just to ensure the accuracy of our results. Our approach to find all possible sets of
λ-equivalent states of G, is by flagging state pairs that are not λ-equivalent at Steps 1-4.
It is notable that as the relation λ is symmetric, for states q1, q2 ∈ Q, if we flag state pair
(q1, q2), we must also flag pair (q2, q1).

At Step 1, we flag every state pair such that one state of the pair is marked and the other
state is unmarked, as marked and unmarked states are not λ-equivalent. Step 2 is performed
for every remaining unflagged state pair (q1, q2) ∈ Q × Q. At Step 2.1, we look for some
event σ ∈ Σ, such that σ is defined at exactly one state of the state pair, i.e. either at q1 or
q2. If such σ exists, we flag state pairs (q1, q2) and (q2, q1) (Step 2.1.1). This is because q1

and q2 are not λ-equivalent, as they have different sets of σ transitions leaving them.
At Step 3, we initialize our boolean variable flagging to True. Step 4 is repeated as

long as flagging is True, i.e. there is a possibility to flag more state pairs. At Step 4.1, we
set flagging to False by assuming that no more state pairs could be flagged in the current
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Algorithm 2 Identify Distinct λ-Equivalent States of Generator G

Step 0: For every pair (q1, q2) ∈ Q×Q, unflag (q1, q2).
Step 1: For every pair (q1, q2) ∈ Q × Q, if (q1 ∈ Qm ∧ q2 /∈ Qm) ∨ (q1 /∈ Qm ∧ q2 ∈ Qm),

then:
Step 1.1: Flag (q1, q2), (q2, q1).

Step 2: For every pair (q1, q2) ∈ Q×Q not flagged at Step 1:
Step 2.1: For some σ ∈ Σ, if (δ(q1, σ)! ∧ ¬δ(q2, σ)!) ∨ (¬δ(q1, σ)! ∧ δ(q2, σ)!), then:

Step 2.1.1: Flag (q1, q2), (q2, q1).
Step 3: Set flagging := True.
Step 4: While (flagging):

Step 4.1: Set flagging := False.
Step 4.2: For every pair (q1, q2) ∈ Q×Q not flagged at Steps 1 and 2:

Step 4.2.1: For some σ ∈ Σ such that δ(q1, σ)! ∧ δ(q2, σ)!, if (δ(q1, σ), δ(q2, σ))
is flagged, then:

Step 4.2.1.1: Flag (q1, q2), (q2, q1).
Step 4.2.1.2: Set flagging := True.

Step 5: Add all unflagged, non-singular pairs (no pairs (q, q) ∈ Q×Q) to list L.
Step 6: Set k := 0.
Step 7: While L 6= ∅:

Step 7.1: Set k := k + 1.
Step 7.2: Take a pair (q1, q2) from L. Create a new set Ek and add both states q1 and

q2 of the pair to Ek. Remove all occurrences of the pair (q1, q2) and (q2, q1)
from L.

Step 7.3: For every pair (q′1, q
′
2) in L, if the pair has exactly one state in common with Ek,

then add the uncommon state of the pair to Ek. Remove all occurrences of
of the pair (q′1, q

′
2) and (q′2, q

′
1) from L. Then, repeat this step until no pair in L

has exactly one state in common with Ek.

iteration. However, if we are able to flag more state pairs, then we set flagging to True again
(Step 4.2.1.2) to repeat Step 4 one more time. This is because there is a possibility that
flagging might propagate from the recently flagged state pairs to some unflagged state pair(s)
in the next iteration. However, if we do not flag any state pairs in the current iteration of
Step 4, flagging remains False, and while loop of Step 4 terminates.

Step 4.2 is performed for every unflagged state pair (q1, q2) ∈ Q×Q. At Step 4.2.1, we
check to see if there is some event σ, such that σ is defined at both q1 and q2, and σ leads them
to a state pair that is flagged. If so, we flag (q1, q2) and (q2, q1) (Step 4.2.1.1). The reason
is that σ takes q1 and q2 to some destination states that are not λ-equivalent. Once Step 4
finishes, the flagging process is complete and the state pairs that are not flagged correspond
to states that are λ-equivalent.

At Step 5, we create a list L, and add all non-singular (a state pair with distinct states)
unflagged state pairs to L. This means that if a state is only λ-equivalent to itself, then
(q, q) ∈ Q × Q will not be added to L. Only unflagged state pairs (q1, q2) ∈ Q × Q, with
q1 6= q2, will be added to L. At Step 6, we initialize our counter variable k to 0, and
increment it by 1 (Step 7.1) every time we construct a new set of λ-equivalent states, Ek.

At Step 7, we use the list L to form disjoint sets of λ-equivalent states in such a way that
each state is exactly in one set, all states in the same set are λ-equivalent, and no two states
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from different sets are λ-equivalent. These sets will thus contain at least two (and possibly
more) distinct λ-equivalent states that need to be combined. We use the transitive property
(i.e. if x ≡ y and y ≡ z, then x ≡ z) of the λ-equivalence relation to form these sets. Step 7
is repeated until L becomes empty.

At Step 7.2, we create a new set Ek by removing one state pair (q1, q2) from L, and
adding both states of the pair to Ek. As these two states of the pair are λ-equivalent, they
must be in the same set. We then remove all occurrences of (q1, q2) and (q2, q1) from L. This
ensures that each state pair is added to only one set exactly once, and guarantees that all sets
of λ-equivalent states are disjoint.

At Step 7.3, we check to see if there exists a state pair (q′1, q
′
2) in L that has exactly one

state in common with Ek. If yes, this means the common state is λ-equivalent to all other
states of Ek. As two states of the pair are λ-equivalent, this step adds the uncommon state of
the pair to Ek as well. This ensures that all states in the same set are λ-equivalent. As both
states of this pair have now been added to the appropriate set, we remove all occurrences of
(q′1, q

′
2) and (q′2, q

′
1) from L. This step is repeated until there does not exist any state pair in

L that has exactly one state in common with Ek. It is notable that if no state of the pair is
in common with Ek, then the states of the pair are not λ-equivalent to the states of Ek. In
this case, they must not be added to Ek, as only λ-equivalent states must be in the same set.

After Step 7.3 is complete for set Ek, there is no state pair in L that has one or more
states in common with Ek. For other state pairs that are in L but not λ-equivalent to the
states of Ek, we repeat Step 7 and create new sets, as needed.

Upon completion, Algorithm 2 creates one or more disjoint sets of λ-equivalent states of
the input TDES automaton G, if G was not minimal. However, if G was already in its
minimal form, our algorithm will flag all state pairs at Steps 1-4, as no two distinct states of
G are λ-equivalent. In this case, there will be no non-singular (i.e. no pairs (q, q) ∈ Q × Q)
unflagged pairs to be added to list L at Step 5. As L is empty, Step 7 is not executed and
no sets of λ-equivalent states will be formed by the algorithm.

6.2.2 Construct a Minimal Automaton

A TDES automaton is said to be minimal (Definition 2.15) if it does not have two distinct
states that are λ-equivalent. This means in order to obtain a minimal version of a non-minimal
TDES, all distinct λ-equivalent states of the non-minimal automaton should be merged and
replaced by a single “aggregate” state. This process is called state aggregation [12]. For
example, if the non-minimal TDES automaton G has n > 1 distinct λ-equivalent states
q1, . . . , qn ∈ Q, these n states should be replaced by a single aggregate state, say q, in the
minimal TDES automaton, such that q behaves like q1, . . . , qn. There can be one or more
groups of distinct λ-equivalent states in the non-minimal automaton. The minimal automaton
will have an aggregate state corresponding to each one of these groups.

Let TDES automaton G′ = (Q′,Σ, δ′, q′o, Q
′
m) be the minimum-state version of the non-

minimal TDES automaton G. Here, the state space Q′ represents the smallest set of states
after combining all states within each group of distinct λ-equivalent states of G. Σ is the event
set of G′ and is same as the event set of G. δ′ is the resulting transition function, q′o ∈ Q′ is
the initial state, and Q′m ⊆ Q′ is the set of marked states of the minimal automaton G′. To
clearly argue about the transitions of G and G′, we will express transitions as a 3-tuple (as
described in Section 2.2.1).

By utilizing the disjoint sets of distinct λ-equivalent states of G identified by Algorithm
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Algorithm 3 Construct Minimal TDES Automaton G′ from G

Step 1: G′ := G, such that Q′ := Q,Σ := Σ, δ′ := δ, q′o := qo, Q
′
m := Qm.

Step 2: For every set Ek of distinct λ-equivalent states of G:
Step 2.1: For all q ∈ Ek, remove q from Q′.
Step 2.2: Add q′ to Q′, such that q′ /∈ Q and q′ /∈ Q′.
Step 2.3: If qo ∈ Ek, then q′o := q′.
Step 2.4: If (Ek ∩Qm 6= ∅), then:

Step 2.4.1: For all q′′ ∈ Ek, remove q′′ from Q′m.
Step 2.4.2: Add q′ to Q′m.

Step 2.5: For every transition (q1, σ, q2) ∈ δ′:
Step 2.5.1: If q1 ∈ Ek, then replace q1 with q′ in the transition triple in δ′.
Step 2.5.2: If q2 ∈ Ek, then replace q2 with q′ in the transition triple in δ′.

2, Algorithm 3 presents steps for the iterative construction of minimal automaton G′. The
algorithm begins by copying the non-minimal automaton G to G′. Step 1 copies the state
set Q to Q′, event set Σ to Σ, transition function δ to δ′, initial state qo to q′o, and the set of
final states Qm to Q′m. At Step 2, we iteratively update the automaton structure of G′ to
make it minimal. This step is repeated for each set of λ-equivalent states Ek, where 1 ≤ k ≤ t
and t ≥ 1 is the total number of sets of distinct λ-equivalent states formed by Algorithm 2.

Steps 2.1 and 2.2 merge all λ-equivalent states of set Ek and replace them with a single
aggregate state in G′. In other words, we remove all distinct λ-equivalent states of Ek from
Q′ and add one state, q′, corresponding to Ek in Q′. It is important to make sure that the
state label q′ does not already exist in Q or Q′. At Step 2.3, we check to see if Ek contains
the initial state of G. If so, we make q′ the initial state of G′. The set of marked states of
G′ should include all aggregate states that correspond to sets that contain the marked states
of G. At Step 2.4, we determine if Ek contains any marked state. If so, all the λ-equivalent
states of Ek are removed from Q′m and replaced by the corresponding aggregate state q′.

At Step 2.5, we perform relabelling of λ-equivalent states of Ek in the transitions of δ′.
This is required because all the distinct λ-equivalent states of set Ek have been replaced by
a single aggregate state in G′. Therefore, all the transitions, copied from δ to δ′ at Step 1,
that have these λ-equivalent states as their exit and/or entrance states should now have the
corresponding aggregate state q′ as their exit and/or entrance states respectively in δ′.

It is important to clarify here that Step 2.5 does not add or remove any transitions from
δ′. It just relabels the exit and/or entrance states of transitions in δ′ by replacing the state
labels of λ-equivalent states with their corresponding aggregate state labels. In other words,
we can say that δ′ is essentially δ, with the distinct λ-equivalent states of G being replaced
by their corresponding aggregate states in G′. In this way, every iteration of Step 2 updates
the automaton structure of G′ to make it minimal.

It is noteworthy that Algorithm 3 does not make any changes to states that are identified
by Algorithm 2 as not being λ-equivalent. At Step 1, Algorithm 3 copies the entire automaton
structure of G to G′. Thus, these non-λ-equivalent states and their transitions are a part of
G′ and remain unchanged throughout the execution of Step 2, as they do not belong to
any set Ek. Therefore, the automaton structure of G′ with respect to these non-λ-equivalent
states is the same as G.

Once Algorithm 3 completes its execution, G′ will have as few states as any automaton
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accepting the same closed and marked language as G. In other words, G′ now represents the
minimal version of G.

6.3 SD Properties with Minimal Automata

In this section, we discuss our equivalence results for all SD properties with respect to replacing
S = S ||SD G with a minimal version of S, referred to as min(S) (i.e. the result of applying
Algorithms 2 and 3 to TDES S). We would need to do this if S is not CS deterministic in its
current form, and would use min(S) to address this (Section 6.3.1). If we make this change,
we will need to re-evaluate our previous equivalence results from Section 5 with respect to
min(S), and present new results for the property of CS deterministic supervisors withmin(S).

In order to assess our previous results with respect to replacing S by min(S), we first note
that our equivalence results of the SD and ||SD setting for language equivalence (Section 5.3),
plant completeness (Section 5.4.1), S-singular prohibitable behaviour (Section 5.4.2), timed
controllability (Section 5.4.3) and SD controllability (Section 5.4.4) are all proved in terms
of the closed and/or marked languages of the involved TDES, and not the actual automaton
structure. As the state space minimization Algorithms 2 and 3 produce minimal automaton
with the same closed and marked languages as the original, i.e. L(min(S)) = L(S) and
Lm(min(S)) = Lm(S), it thus follows that the results from Sections 5.3 and 5.4.1-5.4.4
remain valid if we replace S by min(S). As a result, we do not need to adapt or reprove these
results.

The only definition that is given in terms of the states of TDES automaton is the definition
of ALF (Definition 2.30). Since we intend to minimize S by merging various groups of distinct
λ-equivalent states, the state space of min(S) will be different than the non-minimal S. This
implies that while talking about min(S), we can no longer argue in terms of the states and
state tuples of S. Hence, we will revisit our ALF equivalence results (discussed in Section 5.4.5)
later in this section to make them work with min(S). However, we will first describe our new
CS deterministic result with respect to S and min(S).

6.3.1 CS Deterministic Supervisors

Our ultimate goal of generating the minimal version of S = S ||SD G is to make it CS
deterministic, if it is not already. However, minimizing S alone does not guarantee that
min(S) will always be CS deterministic. We also need to make sure that our TDES supervisor
S is SD controllable with ||SD for TDES plant G to guarantee thatmin(S) is CS deterministic.
This is proved in our next proposition (Proposition 6.2). In order to prove our desired result,
we will use Proposition 6.1 from [45]. This proposition says that for a given TDES G, two
strings s and s′ are nerode equivalent with respect to L(G) and Lm(G) if and only if both of
these strings start from the initial state and take us to states that are λ-equivalent.

Proposition 6.1. [45] For a generator G = (Y,Σ, η, yo, Ym), we have (∀s, s′ ∈ Σ∗) η(yo, s) ≡
η(yo, s

′) (mod λ)⇔ s ≡L(G) s
′ ∧ s ≡Lm(G) s

′.

Proposition 6.2. Let TDES G = (Q,Σ, δ, qo, Qm) be a plant and TDES S = (X,Σ, ξ, xo, Xm)
be a supervisor. Let TDES S = min(S ||SD G) = (Y,Σ, η, yo, Ym) be a supervisor, where
min(S ||SD G) is constructed using Algorithms 2 and 3. If S is SD controllable with ||SD for
G, then S is CS deterministic.

Proof. Assume initial conditions.
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Must show: S is CS deterministic. By Definition 3.5, it is sufficient to show:
(∀s ∈ L(S) ∩ Lsamp) (∀s′, s′′ ∈ Lconc) [ss′, ss′′ ∈ L(S) ∧Occu(s′) = Occu(s′′)]⇒

[ss′ ≡L(S) ss
′′ ∧ ss′ ≡Lm(S) ss

′′ ∧ η(yo, ss
′) = η(yo, ss

′′)]

We have S = min(S ||SD G), and thus L(S) = L(S ||SD G) and Lm(S) = Lm(S ||SD G).
(1)

Let s ∈ L(S) ∩ Lsamp, and let s′, s′′ ∈ Lconc. (2)
By (1), this implies: s ∈ L(S ||SD G) ∩ Lsamp (3)
Assume: ss′, ss′′ ∈ L(S) and Occu(s′) = Occu(s′′) (4)
By (1), this implies: ss′, ss′′ ∈ L(S ||SD G) (5)
Must show this implies: ss′ ≡L(S) ss

′′ ∧ ss′ ≡Lm(S) ss
′′ ∧ η(yo, ss

′) = η(yo, ss
′′)

We have that S is SD controllable with ||SD for G. By (2-5), we note that all assumptions of
Point ii.2 of the SD controllability with ||SD definition are satisfied.
⇒ ss′ ≡L(S ||SD G) ss

′′ ∧ ss′ ≡Lm(S ||SD G) ss
′′

⇒ ss′ ≡L(S) ss
′′ ∧ ss′ ≡Lm(S) ss

′′ by (1) (6)
⇒ η(yo, ss

′) ≡ η(yo, ss
′′) (mod λ) by Proposition 6.1

⇒ η(yo, ss
′) = η(yo, ss

′′) by Definition 2.15 of minimal S (7)
By (6) and (7), we have thus shown that S is CS deterministic.

The above proposition tells us that as long as S is SD controllable with ||SD for G, S =
min(S ||SD G) will be CS deterministic. We note that if S ||SD G is already minimal, then
Algorithms 2 and 3 will not make any changes, and S ||SD G = min(S ||SD G). This implies
that S ||SD G will be CS deterministic in this case. However, if S ||SD G is not minimal, then
we just take S = min(S ||SD G), and we have a CS deterministic supervisor in both cases.

As discussed in Section 5.1, we intend to base our controllability and nonblocking verifi-
cation results of the ||SD setting on some of the existing results of the SD setting. To do this,
we will need to construct an SD controller from S, a prerequisite of which is that S must be
CS deterministic. We now know that this will require considering S = S ||SD G if S ||SD G is
minimal, or S = min(S ||SD G) is S ||SD G is not minimal.

It is worth noting that in either case, both S ||SD G and min(S ||SD G) will have the
same closed and marked languages, i.e. L(S ||SD G) = L(min(S ||SD G)) and Lm(S ||SD G) =
Lm(min(S ||SD G)). This in turn means that all equivalence results that are solely related to
the closed and marked languages remain applicable to both S ||SD G and min(S ||SD G).

However, whether we use S = S ||SD G or S = min(S ||SD G) will affect our argument
about defining the states of S in terms of the states of S and G. Precisely, if S = S ||SD G,
then state y ∈ Y of S will be a cross product of the states x ∈ X of S and q ∈ Q of G, i.e.
y = (x, q). But this might not be true if we minimize the automaton S ||SD G and use it as
our S, i.e. S = min(S ||SD G). Therefore, in our future proofs, whenever we want to argue in
terms of the states of S, we will consider two ways of constructing S separately.

6.3.2 ALF

In order to keep our ALF result of Section 5.4.5 valid for S = min(S ||SD G), we need to show
that the ALF property is preserved by the TDES minimization process. Before we prove this,
we first give three utility propositions. Their goal is to allow us to convert key information
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(information about λ-equivalent states and their successors, converting transition in G′ to
transition in G, and translating state reachability) from G′ = min(G) to equivalent results
about G. This will be key in removing redundancies from later proofs to make them more
compact and easier to read.

Please note that for a non-minimal TDES G, Algorithm 2 will create t ≥ 1 distinct sets
of λ-equivalent states (Definition 2.14) of G. For each such set Ek (1 ≤ k ≤ t), Algorithm
3 will replace all instances of state q ∈ Ek from G′. Each instance would be replaced by a
unique aggregate state q′, such that q′ /∈ Q and q′ /∈ Q′ (before the replacement). As each
Ek is associated with a unique state q′ by this replacement, we will refer to Ek as Eq′ in the
following propositions to make it clear that the λ-equivalent states in Eq′ were replaced by q′

when Algorithm 3 was executed and G′ was constructed.

Proposition 6.3. Let G = (Q,Σ, δ, qo, Qm) be a non-minimal TDES and G′ = min(G) =
(Q′,Σ, δ′, q′o, Q

′
m) be the TDES constructed using Algorithms 2 and 3. Then:

i) (∀qa, qb ∈ Q) qa ≡ qb (mod λ)⇒ (∀s ∈ Σ∗) δ(qa, s)!⇒ δ(qa, s) ≡ δ(qb, s) (mod λ)

ii) (∀q′, q′′ ∈ Q′) (∀s ∈ Σ∗) δ′(q′, s) = q′′ ⇒ (∃ qa, qb ∈ Q) δ(qa, s) = qb ∧ (qa = q′ ∨ qa ∈ Eq′)
∧ (qb = q′′ ∨ qb ∈ Eq′′)

iii) (∀qa, qb ∈ Q) (∀s ∈ Σ∗) δ(qa, s) = qb ⇒ (∃q′, q′′ ∈ Q′) δ′(q′, s) = q′′ ∧ (q′ = qa ∨ qa ∈
Eq′) ∧ (q′′ = qb ∨ qb ∈ Eq′′)

Proof. Assume initial conditions.
i) Show: (∀qa, qb ∈ Q) qa ≡ qb (mod λ)⇒ (∀s ∈ Σ∗) δ(qa, s)!⇒ δ(qa, s) ≡ δ(qb, s)(mod λ)

Let qa, qb ∈ Q. Assume: qa ≡ qb (mod λ) (1)
Let s ∈ Σ∗. Assume: δ(qa, s)!
⇒ δ(qb, s)! by (1)
By Definition 2.14, it is sufficient to show Parts (1) and (2) below.
Part 1) Show: (∀s′ ∈ Σ∗) δ(δ(qa, s), s

′)!⇔ δ(δ(qb, s), s
′)!

By definition of δ, it is sufficient to show: (∀s′ ∈ Σ∗) δ(qa, ss
′)!⇔ δ(qb, ss

′)!

This follows automatically from (1), Point 1 of the λ-equivalence definition, and the fact
that s, s′ ∈ Σ∗ implies ss′ ∈ Σ∗.

Part 2) Show: (∀s′ ∈ Σ∗) δ(δ(qa, s), s
′)! ∧ δ(δ(qa, s), s

′) ∈ Qm ⇔ δ(δ(qb, s), s
′)! ∧

δ(δ(qb, s), s
′) ∈ Qm

By definition of δ, it is sufficient to show:
(∀s′ ∈ Σ∗) δ(qa, ss

′)! ∧ δ(qa, ss′) ∈ Qm ⇔ δ(qb, ss
′)! ∧ δ(qb, ss′) ∈ Qm

This follows automatically from (1), Point 2 of the λ-equivalence definition, and the fact
that s, s′ ∈ Σ∗ implies ss′ ∈ Σ∗.
By Parts (1) and (2), we have proven Part (i).

ii) Show: (∀q′, q′′ ∈ Q′) (∀s ∈ Σ∗) δ′(q′, s) = q′′ ⇒ (∃ qa, qb ∈ Q) δ(qa, s) = qb ∧ (qa = q′ ∨
qa ∈ Eq′) ∧ (qb = q′′ ∨ qb ∈ Eq′′)
Let q′, q′′ ∈ Q′ and s ∈ Σ∗. Assume: δ′(q′, s) = q′′ (2)
To be consistent with Algorithm 3, we will treat δ ⊆ Q × Σ × Q as a relation, where
(q1, σ, q2) ∈ δ if and only if δ(q1, σ) = q2. Similarly, we will treat δ′ ⊆ Q′ × Σ×Q′, where
(q′1, σ, q

′
2) ∈ δ′ if and only if δ′(q′1, σ) = q′2.
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As s ∈ Σ∗, we have two cases: (1) s = ε, or (2) s ∈ Σ+.
Case 1) s = ε

As δ′(q′, s) = q′′ by (2), this implies q′ = q′′. (3)
We now have two cases: (a) q′ ∈ Q, or (b) q′ /∈ Q.
Case 1.a) q′ ∈ Q
We can then take qa = qb = q′ = q′′, and we immediately have δ(qa, ε) = δ(qa, s) = qa = qb.
Case 1.b) q′ /∈ Q
⇒ ∃qa ∈ Eq′ , as Eq′ is not empty by Algorithm 2.
We thus have qa ∈ Q (by Algorithms 2 and 3), and can set qb = qa, and we have δ(qa, ε) =
δ(qa, s) = qa = qb.
As q′ = q′′ by (3), we have Eq′ = Eq′′ , thus qb ∈ Eq′′ as qa = qb and qa ∈ Eq′ .
By Cases (1.a) and (1.b), we have proven the desired condition for Case (1) (s = ε).

Case 2) s ∈ Σ+

Let n = |s| ≥ 1.
⇒ (∃σ1, σ2, . . . , σn ∈ Σ) s = σ1σ2 . . . σn

As δ′(q′, s) = q′′ by (2), and δ′ ⊆ Q′ × Σ × Q′, we can conclude there exists states
q′1, q

′
2, . . . , q

′
n+1 ∈ Q′ such that they form the following sequence of transitions in δ′:

(q′1, σ1, q
′
2), (q′2, σ2, q

′
3), . . . , (q′n, σn, q

′
n+1),where q′1 = q′ and q′n+1 = q′′ (4)

By Algorithm 3, there exists states q1, q2, . . . , qn, qn+1 ∈ Q, and that δ ⊆ Q × Σ × Q
contains the corresponding sequence of transitions:

(q1, σ1, q2), (q2, σ2, q3), . . . , (qn, σn, qn+1),

where for 1 ≤ i ≤ n+ 1, qi = q′i or qi ∈ Eq′i
(5)

We thus have: δ(q1, s) = qn+1

We can thus take qa = q, and qb = qn+1, and we have δ(qa, s) = qb, qa = q′ or qa ∈ Eq′ ,
and qb = q′′ or qb ∈ Eq′′ by (4) and (5).
Case (2) complete.

By Cases (1) and (2), we have constructed suitable qa, qb ∈ Q with properties:
δ(qa, s) = qb ∧ (qa = q′ ∨ qa ∈ Eq′) ∧ (qb = q′′ ∨ qb ∈ Eq′′)

Part (ii) complete.

iii) Show: (∀qa, qb ∈ Q) (∀s ∈ Σ∗) δ(qa, s) = qb ⇒ (∃q′, q′′ ∈ Q′) δ′(q′, s) = q′′ ∧ (q′ = qa ∨ qa ∈
Eq′) ∧ (q′′ = qb ∨ qb ∈ Eq′′)
Let qa, qb ∈ Q and s ∈ Σ∗. Assume: δ(qa, s) = qb (6)
As s ∈ Σ∗, we have two cases: (1) s = ε, or (2) s ∈ Σ+.
Case 1) s = ε

As δ(qa, s) = qb by (6), this implies: qa = qb (7)
We now have two cases: (a) qa ∈ Q′, or (b) qa /∈ Q′.
Case 1.a) qa ∈ Q′

We can thus take q′ = q′′ = qa = qb, and we immediately have δ′(q′, ε) = q′ = q′′.
Case 1.b) qa /∈ Q′

By Algorithms 2 and 3, this implies: (∃q′ ∈ Q′) qa ∈ Eq′ (8)
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As qa = qb by (7), we also set q′′ = q′, and we have q′′ ∈ Q′ with qb ∈ Eq′′ .
As q′ ∈ Q′ by (8), we have δ′(q′, ε) = q′ = q′′.

By Cases (1.a) and (1.b), we have proven the desired condition for Case (1) (s = ε).

Case 2) s ∈ Σ+

Let n = |s| ≥ 1.
⇒ (∃σ1, σ2, . . . , σn ∈ Σ) s = σ1σ2 . . . σn

As δ(qa, s) = qb by (6), and δ ⊆ Q × Σ × Q, we can conclude there exists states
q1, q2, . . . , qn+1 ∈ Q such that they form the following sequence of transitions in δ:

(q1, σ1, q2), (q2, σ2, q3), . . . , (qn, σn, qn+1),where q1 = qa and qn+1 = qb (9)
By Algorithm 3, there exists states q′1, q′2, . . . , q′n, q′n+1 ∈ Q′, and that δ′ ⊆ Q′ × Σ × Q′
contains the corresponding sequence of transitions:

(q′1, σ1, q
′
2), (q′2, σ2, q

′
3), . . . , (q′n, σn, q

′
n+1),

where for 1 ≤ i ≤ n+ 1, q′i = qi or qi ∈ Eq′i
(10)

We thus have: δ′(q′1, s) = q′n+1

We can thus take q′ = q′1, and q′′ = q′n+1, and by (9) and (10) we have:
(q′, q′′ ∈ Q′) ∧ (δ′(q′, s) = q′′) ∧ (q′ = qa ∨ qa ∈ Eq′) ∧ (q′′ = qb ∨ qb ∈ Eq′′)

Case (2) complete.
By Cases (1) and (2), we have constructed suitable q′, q′′ ∈ Q′ with the desired properties.
Part (iii) complete.

By Parts (i)-(iii), we conclude that Points (i-iii) of the proposition are satisfied.

Proposition 6.4. Let G = (Q,Σ, δ, qo, Qm) be a non-minimal TDES and G′ = min(G) =
(Q′,Σ, δ′, q′o, Q

′
m) be the TDES constructed using Algorithms 2 and 3. Then for q′, q′′ ∈ Q′

and s ∈ Σ∗ such that δ′(q′, s) = q′′, the following properties hold:
i) q′, q′′ ∈ Q ⇒ δ(q′, s) = q′′ ii) q′, q′′ /∈ Q ⇒ (∀q1 ∈ Eq′) (∃q2 ∈ Eq′′) δ(q1, s) = q2

iii) [q′ /∈ Q ∧ q′′ ∈ Q]⇒ (∀q ∈ Eq′) δ(q, s) = q′′

iv) [q′ ∈ Q ∧ q′′ /∈ Q]⇒ (∃q ∈ Eq′′) δ(q′, s) = q

Proof. Assume initial conditions.
Let q′, q′′ ∈ Q′, and s ∈ Σ∗. Assume: δ′(q′, s) = q′′

By Proposition 6.3(ii), we can conclude:
(∃qa, qb ∈ Q) δ(qa, s) = qb ∧ (qa = q′ ∨ qa ∈ Eq′) ∧ (qb = q′′ ∨ qb ∈ Eq′′) (1)

We will now show that Points (i-iv) are satisfied.
i) Show: q′, q′′ ∈ Q⇒ δ(q′, s) = q′′

Assume: q′, q′′ ∈ Q
It thus follows by Algorithm 3 that both q′ and q′′ are λ-equivalent only to themselves,
and we can thus conclude by (1) that qa = q′ and qb = q′′.
⇒ δ(q′, s) = q′′ by (1)
Part (i) complete.

ii) Show: q′, q′′ /∈ Q⇒ (∀q1 ∈ Eq′) (∃q2 ∈ Eq′′) δ(q1, s) = q2

Assume: q′, q′′ /∈ Q (2)
By (1), we have: (qa = q′ ∨ qa ∈ Eq′) ∧ (qb = q′′ ∨ qb ∈ Eq′′)
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⇒ qa ∈ Eq′ and qb ∈ Eq′′ by (2) and Algorithm 3
Let q1 ∈ Eq′ .
As δ(qa, s) = qb by (1), and qa ∈ Eq′ , it follows that δ(q1, s)!.
By Proposition 6.3(i), we have: δ(qa, s) ≡ δ(q1, s) (mod λ)
⇒ δ(q1, s) ∈ Eq′′ as qb ∈ Eq′′
We can thus take q2 = δ(q1, s), and we have q1 ∈ Eq′ , q2 ∈ Eq′′ , and δ(q1, s) = q2, as
required.
Part (ii) complete.

iii) Show: [q′ /∈ Q ∧ q′′ ∈ Q]⇒ (∀q ∈ Eq′) δ(q, s) = q′′

Assume: q′ /∈ Q ∧ q′′ ∈ Q (3)
By (1) and Algorithm 3, we can conclude: qa ∈ Eq′ and qb = q′′

⇒ δ(qa, s) = q′′ by (1) (4)
Let q ∈ Eq′ .
As δ(qa, s) = q′′ and qa ∈ Eq′ , it follows that δ(q, s)!.
By Proposition 6.3(i), we have: δ(qa, s) ≡ δ(q, s) (mod λ)
As q′′ ∈ Q by (3), it follows by Algorithm 3 that q′′ is only λ-equivalent to itself.
⇒ δ(q, s) = q′′ by (4)
We thus have q ∈ Eq′ and δ(q, s) = q′′, as required.
Part (iii) complete.

iv) Show: [q′ ∈ Q ∧ q′′ /∈ Q]⇒ (∃q ∈ Eq′′) δ(q′, s) = q

Assume: q′ ∈ Q ∧ q′′ /∈ Q
By (1) and Algorithm 3, we can conclude: qa = q′, qb ∈ Eq′′ and δ(q′, s) = qb

We can thus take q = qb, and we have q ∈ Eq′′ with δ(q′, s) = q, as required.
Part (iv) complete.

By Parts (i)-(iv), we conclude that Points (i-iv) of the proposition are satisfied.

Proposition 6.5. Let G = (Q,Σ, δ, qo, Qm) be a non-minimal TDES and G′ = min(G) =
(Q′,Σ, δ′, q′o, Q

′
m) be the TDES constructed using Algorithms 2 and 3. Then for q′ ∈ Q′r, the

following properties hold: (i) q′ ∈ Q⇒ q′ ∈ Qr, and (ii) q′ /∈ Q⇒ (∃q ∈ Eq′) q ∈ Qr.
Proof. Let q′ ∈ Q′r and assume initial conditions.
As q′ ∈ Q′r, we have: (∃s ∈ Σ∗) δ′(q′o, s) = q′

i) Show: q′ ∈ Q⇒ q′ ∈ Qr
Assume: q′ ∈ Q (1)
We have two cases: (1) q′o ∈ Q, or (2) q′o /∈ Q.
Case 1) q′o ∈ Q
⇒ q′o, q

′ ∈ Q by (1)
By Proposition 6.4(i), we have: δ(q′o, s) = q′ (2)
As q′o ∈ Q, we have: q′o = qo by Steps 1 and 2.3 of Algorithm 3
⇒ δ(qo, s) = q′ by (2)
⇒ q′ ∈ Qr

72



Case 2) q′o /∈ Q
⇒ q′o /∈ Q and q′ ∈ Q by (1)
By Proposition 6.4(iii), we have: (∀q ∈ Eq′o) δ(q, s) = q′

As qo ∈ Eq′o by Algorithm 3, we thus have: δ(qo, s) = q′

⇒ q′ ∈ Qr
By Cases (1) and (2), we have q′ ∈ Qr, as required.
Part (i) complete.

ii) Show: q′ /∈ Q⇒ (∃q ∈ Eq′) q ∈ Qr
Assume: q′ /∈ Q (3)
We have two cases: (1) q′o ∈ Q, or (2) q′o /∈ Q.
Case 1) q′o ∈ Q
⇒ q′o ∈ Q and q′ /∈ Q by (3)
By Proposition 6.4(iv), we have: (∃q ∈ Eq′) δ(q′o, s) = q (4)
As q′o ∈ Q, we have: q′o = qo by Steps 1 and 2.3 of Algorithm 3
⇒ δ(qo, s) = q by (4)
⇒ q ∈ Qr
Case 2) q′o /∈ Q
⇒ q′o, q

′ /∈ Q by (3)
By Proposition 6.4(ii), we have: (∀q1 ∈ Eq′o) (∃q ∈ Eq′) δ(q1, s) = q

As qo ∈ Eq′o by Algorithm 3, we thus have: δ(qo, s) = q

⇒ q ∈ Qr
By Cases (1) and (2), we have constructed q ∈ Eq′ with q ∈ Qr.
Part (ii) complete.

By Parts (i) and (ii), we conclude that Points (i-ii) of the proposition are satisfied.

Now we will present our main ALF result. The theorem given below proves that if a non-
minimal TDES having a finite state space is ALF, then the minimal version of this TDES will
also be ALF. This will allow us to use our ALF result of Section 5.4.5 whether S = S ||SD G
or S = min(S ||SD G).

Theorem 6.1. Let G = (Q,Σ, δ, qo, Qm) be a TDES with finite state space. Let TDES
G′ = min(G) = (Q′,Σ, δ′, q′o, Q

′
m) be the minimal version of G that is constructed using

Algorithms 2 and 3. If G is ALF, then G′ is ALF.

Proof. Assume initial conditions.
Assume G is ALF and has a finite state space. (1)
If G is minimal, then G = G′, and it follows immediately that G′ is ALF.
We now consider the case that G is non-minimal.
To show that G′ is ALF, it is sufficient to show: (∀q′ ∈ Q′r)(∀s ∈ Σ+

act) δ
′(q′, s) 6= q′

We will use proof by contradiction to show our desired result.
Assume G′ is not ALF.
⇒ (∃q′ ∈ Q′r) (∃s ∈ Σ+

act) δ
′(q′, s) = q′ (2)
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We will now show this implies G is not ALF, contradicting (1).
To do this, we will need to construct q ∈ Qr and s′ ∈ Σ+

act such that δ(q, s′) = q.
We have two cases: (i) q′ ∈ Q, or (ii) q′ /∈ Q.
Case i) q′ ∈ Q
As δ′(q′, s) = q′ by (2), we apply Proposition 6.4(i) and conclude: δ(q′, s) = q′

As q′ ∈ Q′r by (2), and q′ ∈ Q, we apply Proposition 6.5(i) and conclude: q′ ∈ Qr
We thus take q = q′, s′ = s, and we have q ∈ Qr, s′ ∈ Σ+

act by (2), and δ(q, s′) = q, thus
contradicting G being ALF.

Case ii) q′ /∈ Q
As δ′(q′, s) = q′ by (2), we apply Proposition 6.4(ii) and conclude:

(∀q1 ∈ Eq′) (∃q2 ∈ Eq′) δ(q1, s) = q2 (3)
As q′ ∈ Q′r by (2), we apply Proposition 6.5(ii) and conclude: (∃q1 ∈ Eq′) q1 ∈ Qr (4)
Applying this to (3), we have: (∃q2 ∈ Eq′) δ(q1, s) = q2

As q2 ∈ Eq′ , we could apply (3) to q2 and so on to create a chain of transitions.
Let n = |Eq′ |. As Eq′ ⊆ Q by Algorithm 2 and the fact that Q is finite by (1), we have n <∞.

(5)
Starting with q1, we could apply (3) repeatedly n times and construct a chain of tran-
sitions in δ as: q1

s−→ q2
s−→ · · · s−→ qn

s−→ qn+1, where for 1 ≤ i ≤ n + 1, qi ∈ Eq′ .
(6)

As q1 ∈ Qr by (4), it follows that each qi ∈ Qr. (7)
We note that as n < ∞ by (5), after the nth transition (q1 → qn), it is possible that each qi
was a distinct state in Eq′ , but the transition δ(qn, s) = qn+1 must then involve a duplicate
state. (8)
This means states q1, . . . , qn+1 must contain two duplicate states.
Let 1 ≤ i < n+ 1 be the index for the first duplicate state, and let 1 < j ≤ n+ 1 be the index
for the second occurrence of this state (i.e. qi = qj). (9)
Let k = j − i. This is the number of transitions separating the two states (i.e. for q2 and q1,
2-1=1).
We then take q = qi and s′ = s . . . s. We thus have q ∈ Qr by (7), s′ ∈ Σ+

act as s ∈ Σ+
act by

(2), and δ(q, s′) = q by (6), (8) and (9), which contradicts G being ALF.
By Cases (i) and (ii), we have proven that G is not ALF, which contradicts (1).
As our assumption that G′ is not ALF caused a contradiction, we thus conclude that G′ is
ALF.

In the SD setting, one of the preconditions of the SD controllability and nonblocking
verification results is that the closed-loop system formed by synchronizing TDES plant and
supervisor models using the synchronous product will not “stop the clock”. In [29], this has
been proven using the following proposition.

Proposition 6.6. [29] If TDES plant G = (Q,Σ, δ, qo, Qm) and TDES supervisor S =
(X,Σ, ξ, xo, Xm) both have finite state spaces, G has proper time behaviour, S || G =
(Y,Σ, η, yo, Ym) is ALF, and S is timed controllable for G, then (∀y ∈ Yr) (∃s ∈ Σ∗act) η(y, sτ)!.

74



Since we wish to make our S eligible to be used as the supervisor of the SD setting, we
need to show that this result is satisfied by our S as well. As there are two possible ways to
construct S, i.e. S = S ||SD G or S = min(S ||SD G), below we show this result with respect
to both cases.

Proposition 6.7. Let TDES G = (Q,Σ, δ, qo, Qm) be a plant, TDES S = (X,Σ, ξ, xo, Xm)
be a supervisor, and TDES S = S ||SD G be a supervisor. Let TDES S ′ = min(S) =
(X ′,Σ, ξ′, x′o, X

′
m) be constructed using Algorithms 2 and 3. Let the closed-loop system be

S ′ || G = (Y,Σ, η, yo, Ym). If both G and S have finite state spaces, G has proper time
behaviour, S is timed controllable with ||SD for G, and S is ALF, then:

(∀y ∈ Yr) (∃s ∈ Σ∗act) η(y, sτ)!

Proof. Assume initial conditions.
To obtain our desired result, we will show that the assumptions of Proposition 6.6 are satisfied.
It is notable that if S = S ||SD G is already minimal, then S = S ′. Thus, we need to prove
conditions for both S and S ′.
First, we have that G has finite state space and proper time behaviour. (1)
Next, we have that both G and S have finite state spaces.
⇒ S has a finite state space (2)
⇒ S ′ = min(S) has a finite state space by Algorithms 2 and 3 (3)
By our initial assumptions, S is timed controllable with ||SD for G.
⇒ S is timed controllable for G by Proposition 5.6 (4)
As state space minimization does not change the automaton’s closed behaviour, we have
L(S ′) = L(S). As timed controllability is a language based property, this implies that S ′ is
timed controllable for G. (5)
We have that S = S ||SD G is ALF.
⇒ S ||G is ALF by Proposition 5.8 (6)
We now have two cases: (i) S is minimal, or (ii) S is non-minimal.
Case i) S is minimal
This means S = S ′ = min(S) as Algorithms 2 and 3 will make no changes. We can thus use
properties for S.
By (1), (2), (4) and (6), all assumptions of Proposition 6.6 are satisfied.
Case ii) S is non-minimal
This means S 6= S ′ = min(S), so we must use the results for S ′.
As S is ALF, we can conclude by Theorem 6.1 that S ′ is ALF.
⇒ S ′ ||G is ALF by Proposition 5.8 (7)
By (1), (3), (5) and (7), all assumptions of Proposition 6.6 are satisfied.

By Cases (i) and (ii), we can apply Proposition 6.6 and conclude:
(∀y ∈ Yr) (∃s ∈ Σ∗act) η(y, sτ)!

7 Equivalence of SD Controllers

In this section, we present our final set of results with respect to establishing equivalence
between the SD and our ||SD setting. Specifically, this section proves the output equivalence
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between the two SD controllers that are generated by translating CS deterministic TDES
supervisors S and S of the ||SD and SD settings respectively. In other words, we will show
that the two SD controllers generate the same sequence of outputs in response to a given valid
(possible according to system model) sequence of inputs.

We begin this section by stating some preliminary definitions that we have defined for our
||SD setting. Then, we present our supporting propositions that will help us in proving our
final result that the two SD controllers translated from S and S produce the same output
information for the same valid input sequence with respect to the closed-loop behaviour.

Please note that the functions and notation used in this section have already been intro-
duced in Section 3. We will provide a brief introduction, but recommend the reader to refresh
the details (specifically Sections 3.6 and 3.7) before reading this section.

7.1 Preliminary Definitions

In this section, we present some definitions that we have adapted from [42] to define the
concepts related to SD controllers in our ||SD setting.

One of the goals of devising the ||SD setting is to liberate the software and hardware
practitioners from designing and implementing a potentially intricate supervisor in the SD
setting. Rather, we want them to design and implement a much simpler TDES supervisor S
in the ||SD setting. In order to do that, it is important to show that the SD controller generated
by translating CS deterministic supervisor S in our ||SD setting is output equivalent to the SD
controller that is obtained by translating CS deterministic supervisor S (possibly min(S))
of the SD setting. In other words, we wish to prove that whether practitioners physically
implement S or S, they are going to achieve the same physical control action with respect to
a given TDES plant G. This result will also be essential for the proofs of Section 8 so we can
use the SD controller for S and apply it for proofs using S.

It is important to clarify that we do not require the two SD controllers to be identical. We
only wish to demonstrate that they produce the same enablement and forcing information for
a given plant G for valid input sequences.

First, we provide a definition for valid input sequences with respect to the closed-loop
behaviour. It is worth-mentioning that the definition given below is generic with respect to
forming the closed-loop system, Gcl. By this we mean that our definition is independent of the
operator that is used to form Gcl. Gcl could be constructed by synchronizing TDES plant and
supervisor models using the ||SD operator, the synchronous product, the meet or the product
operator. For this definition, we are only interested in the language obtained as a result of
combining the plant and supervisor models, i.e. L(Gcl). Our goal is to ensure that whichever
operator we use to obtain L(Gcl), our definition will remain applicable and valid.

Definition 7.1. For TDES plant G = (Q,ΣG, δ, qo, Qm) and CS deterministic TDES super-
visor S = (X,ΣS, ξ, xo, Xm), let Gcl = (Y,Σ, η, yo, Ym) be the closed-loop system constructed
by synchronizing S and G. For system event set Σ, with canonical event mapping function
γg, global input vector ig, and activity event set Σact, a canonical input sequence {ig(k)} is
said to be input valid for L(Gcl), if:

(∀k ∈ {1, 2, . . .}) (∃ s1, s2, . . . , sk ∈ Lconc) [s1s2 . . . sk ∈ L(Gcl)] ∧
[(∀n ∈ {1, 2, . . . , k}) (∀σ ∈ Σact) ig,γg(σ) (n) = 1 iff σ ∈ Occu(sn)]

In the above definition, γg is a bijective map that associates each σ ∈ Σact with a unique
element of input vector ig = [ig,0, ig,1, . . . , ig,v−1] (v = |Σact|), {ig(k)} = {ig(1), ig(2), . . .} is a
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sequence of input vectors taken at different sampling instances, ig,γg(σ) (n) is element ig,γg(σ)

(the element γg associate with σ) of the nth vector in sequence {ig(k)}, and σ ∈ Occu(sn)
means the string sn contains event σ. For more information, see Sections 3.4, 3.6 and 3.7.

Essentially, in this definition, we require the input sequence {ig(k)} to correspond to a
sequence of concurrent strings that our closed-loop system Gcl will accept. This is necessary
as the TDES supervisor to SD controller translation method (Section 3.7) only dictates outputs
for these inputs and leaves the outputs for other inputs unspecified. This means controllers
could differ for input sequences that are not possible in the system.

Before we proceed to our next definition, please note that in our ||SD setting, we construct
our closed-loop system as S ||SD G, whereas the SD setting constructs the closed-loop system
as S ||G. Because of our language equivalence results (Section 5.3), we know that both closed-
loop systems have the same closed and marked languages. This implies that input sequences
that represent valid input strings in the behaviour of the two closed-loop systems will be the
same.

In order to prove our controller equivalence results, we wish to prove that two SD con-
trollers, C1 and C2, are output equivalent with respect to the closed-loop behaviour for plant
G and supervisors S1 and S2, where C1 is constructed from S1 and C2 is constructed from S2.
For this definition, we are assuming that the two closed-loop systems, represented by TDES
Gcl,1 and Gcl,2, have the same closed languages, i.e. L(Gcl,1) = L(Gcl,2). Before we present
our formal definition, three points are notable and worth elaborating.

1. This definition is independent of the synchronization operators that are used to form the
closed-loop systems. As long as the closed-loop behaviour of the two systems is the same,
the definition remains applicable and valid, and the choice of synchronization operator(s)
is trivial.

2. This definition is stated with respect to the closed-loop behaviour of the two systems, and
not in terms of the actual system automata. This is because the TDES representation of
the two closed-loop systems might not be exactly the same due to different state labels or
if one TDES is non-minimal, despite them having the same closed behaviour.

3. As the closed behaviour of the two closed-loop systems is the same, i.e. L(Gcl,1) = L(Gcl,2),
using either L(Gcl,1) or L(Gcl,2) will not make any difference because we are eventually
referring to the same language. However, to be clear and avoid any ambiguity, instead of
using either one of these two labels, we will refer to this language using a more generic
label L(Gcl), without any loss of generality.

Definition 7.2. For TDES plant G = (Y,ΣG, δ, yo, Ym), let Sj = (Xj ,Σj , ξj , xo,j , Xm,j),
(j = 1, 2) be two CS deterministic TDES supervisors. Let Gcl,j be the closed-loop system
formed by synchronizing G and Sj . Let S1 and S2 be control equivalent for G, i.e. L(Gcl) =
L(Gcl,1) = L(Gcl,2). For system event set Σ, with canonical event mapping function γg, and
activity event set Σact, let Cj = (Ij , Zj , Qj ,Ωj ,Φj ,qres,j) be the SD controller constructed
from Sj . Let rj be the number of output variables for a vector in Zj , and ηj be the output
event mapping function for Cj . C1 and C2 are said to be output equivalent with respect to
the closed-loop behaviour L(Gcl) if, for any canonical input sequence {ig(k)} that is input
valid for L(Gcl) and induced output zj(k

′) = [zj,0(k′), zj,1(k′), . . . , zj,rj−1(k′)] ∈ Zj at time
k′ = {0, 1, 2, . . .}, the following conditions are satisfied:
1. r1 = r2

2. (∀ 0 ≤ i < r1) η−1
1 (i) = η−1

2 (i)
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3. (∀k′ ∈ {0, 1, 2, . . .}) z1(k′) = z2(k′)

In the above definition, zj(k
′) is the current output vector for controller Cj , at time k′.

Also, ηj is a bijective map that associates each σ ∈ Σhib ∩Σj with a unique element in zj(k
′)

in a way that respects the event ordering of γg. See Section 3.7.1 for details.
Point 1 requires that output vectors of the two controllers must be the same size, i.e. they

must have same number of output variables. Point 2 enforces the condition that the two output
vectors must have the same prohibitable events stored in exactly the same order/sequence.
Finally, Point 3 imposes the constraint that for any value of k′, the two output vectors must
have the same enablement information, i.e. one controller should enable a prohibitable event
if and only if the other does. This means that the two controllers must agree with respect to
the enablement of prohibitable events at the reset state, and must continue to agree in the
future as well.

The above definition gives us a way to compare the output information of the SD controller
translated from supervisor S in the ||SD setting to the SD controller translated from S (or
min(S), if S is not minimal) in the SD setting. If the two controllers are output equivalent
with respect to the shared closed-loop behaviour, then they will assert the same forcing and
enablement information on plant G. This will allow us to implement the controller for S, but
apply the controllability and nonblocking results of the SD setting to S and this controller.

7.2 Supporting Propositions

In this section, we introduce two supporting propositions that will be used in the next section
to prove our main result that the corresponding SD controllers generated in the SD and ||SD

settings are output equivalent. Please recall that as per our assumptions (Section 5.2), all
TDES are deterministic automata.

To convert a TDES supervisor to an SD controller, it must be CS deterministic. As
discussed in Section 6.3.1, we might need to minimize the TDES supervisor S in order to
make it CS deterministic. As λ-equivalent states (Definition 2.14) are combined during the
state minimization process, this will make it complicated to compare S to our supervisor S
of the ||SD setting. As a result, in the proofs presented in this section, we will refer to the
distinct sets of λ-equivalent states, labelled as Ek(|Ek| ≥ 2), that are created by Algorithm 2
during the minimization process. We will refer to Ek as Eq′ , where q′ is the aggregate state
label associated with Ek by Algorithm 3. Please refer to Section 6.3.2 for details.

In Proposition 7.1 given below, Xsamp (Definition 3.2) is the set of sampled states for TDES
supervisor S. These are the states of S that are reached from the initial state by a sampled
string (Definition 3.1). The prohibited action function ζ (Definition 3.10) is associated with a
specific supervisor, and maps sampled states of the supervisor to the set of prohibitable events
enabled at these states.

Proposition 7.1. Let S = (X,Σ, ξ, xo, Xm) be a non-minimal TDES supervisor and S′ =
min(S) = (X ′,Σ, ξ′, x′o, X

′
m) be the minimal TDES constructed using Algorithms 2 and 3.

Let ζ be the prohibited action function for S and ζ ′ be the prohibited action function for S′.
Then, for x1, x2 ∈ X and x′ ∈ X ′, the following properties hold:
i) x1 ≡ x2 (mod λ)⇒ (∀σ ∈ Σ) ξ(x1, σ)!⇒ ξ(x2, σ)!

ii) [x1 ≡ x2 (mod λ) ∧ x1, x2 ∈ Xsamp]⇒ ζ(x1) = ζ(x2)

iii) [x′ /∈ X ∧ x′ ∈ X ′samp]⇒ (∀x ∈ Ex′ ∩Xsamp) ζ(x) = ζ ′(x′)
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iv) [x′ ∈ X ∧ x′ ∈ X ′samp]⇒ x′ ∈ Xsamp ∧ ζ(x′) = ζ ′(x′)

Proof. Let x1, x2 ∈ X and x′ ∈ X ′. Assume initial conditions. (1)
i) Show: x1 ≡ x2 (mod λ)⇒ (∀σ ∈ Σ) ξ(x1, σ)!⇒ ξ(x2, σ)!

Assume: x1 ≡ x2 (mod λ)

Let σ ∈ Σ. Let s = σ.
As s ∈ Σ∗, ξ(x1, s)!⇔ ξ(x2, s)! follows automatically from Definition 2.14 of λ-equivalence.
Part (i) complete.

ii) Show: [x1 ≡ x2 (mod λ) ∧ x1, x2 ∈ Xsamp]⇒ ζ(x1) = ζ(x2)

Assume: x1 ≡ x2 (mod λ) and x1, x2 ∈ Xsamp (2)
To show ζ(x1) = ζ(x2), by Definition 3.10 of ζ it is sufficient to show:

{σ ∈ Σhib | ξ(x1, σ)!} = {σ ∈ Σhib | ξ(x2, σ)!}
As Σhib ⊆ Σ and x1 ≡ x2 (mod λ) by (2), this follows automatically from Part (i).
Part (ii) complete.

iii) Show: [x′ /∈ X ∧ x′ ∈ X ′samp]⇒ (∀x ∈ Ex′ ∩Xsamp) ζ(x) = ζ ′(x′)

Assume: x′ /∈ X and x′ ∈ X ′samp (3)
As x′ /∈ X, this means that x′ was added to S′ by Algorithm 3.
Let x ∈ Ex′ ∩Xsamp. (4)
We first note that by Definition 3.10, we have:

ζ(x) = {σ ∈ Σhib | ξ(x, σ)!} and ζ ′(x′) = {σ ∈ Σhib | ξ′(x′, σ)!}
To show that ζ(x) = ζ ′(x′), it is sufficient to show: (∀σ ∈ Σhib) ξ(x, σ)!⇔ ξ′(x′, σ)!

Let σ ∈ Σhib.
Part 1) Show: ξ(x, σ)!⇒ ξ′(x′, σ)!

Assume: ξ(x, σ)!

Let xb = ξ(x, σ), and thus xb ∈ X.
By Proposition 6.3(iii), we can conclude:

(∃x′1, x′2 ∈ X ′) ξ′(x′1, σ) = x′2 ∧ (x′1 = x ∨ x ∈ Ex′1) ∧ (x′2 = xb ∨ xb ∈ Ex′2) (5)
As x ∈ Ex′ by (4), it follows that x /∈ X ′.
As (x′1 = x ∨ x ∈ Ex′1) by (5), it follows that x 6= x′1, thus following that x ∈ Ex′1 .
⇒ x′ = x′1 as Algorithm 2 will put a state in X into at most one distinct set of

λ-equivalent states
⇒ ξ′(x′, σ) = x′2 by (5)
⇒ ξ′(x′, σ)!

Part 2) Show: ξ′(x′, σ)!⇒ ξ(x, σ)!

Assume: ξ′(x′, σ)!

Let x′′ = ξ′(x′, σ). (6)
We have two cases: (a) x′′ ∈ X, or (b) x′′ /∈ X.
Case 2.a) x′′ ∈ X
⇒ x′ /∈ X and x′′ ∈ X by (3)
By Proposition 6.4(iii), we can conclude: (∀xa ∈ Ex′) ξ(xa, σ) = x′′
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As x ∈ Ex′ by (4), we have: ξ(x, σ) = x′′

⇒ ξ(x, σ)!

Case 2.b) x′′ /∈ X
⇒ x′, x′′ /∈ X and ξ′(x′, σ) = x′′ by (3) and (6)
By Proposition 6.4(ii), we can conclude: (∀xa ∈ Ex′) (∃xb ∈ Ex′′) ξ(xa, σ) = xb

As x ∈ Ex′ by (4), we have: ξ(x, σ) = xb
⇒ ξ(x, σ)!

By Cases (2.a) and (2.b), we have ξ(x, σ)!. We thus conclude ξ′(x′, σ)!⇒ ξ(x, σ)!.
By Parts (1) and (2), we conclude that for σ ∈ Σhib, ξ(x, σ)!⇔ ξ′(x′, σ)!.
We thus conclude ζ(x) = ζ(x′).
Part (iii) complete.

iv) Show: [x′ ∈ X ∧ x′ ∈ X ′samp]⇒ x′ ∈ Xsamp ∧ ζ(x′) = ζ ′(x′)

Assume: x′ ∈ X and x′ ∈ X ′samp (7)
We will now show this implies: x′ ∈ Xsamp and ζ(x′) = ζ ′(x′)

Part 1) Show: x′ ∈ Xsamp

By Definition 3.2 of sampled states, it is sufficient to show:
x′ ∈ {xa ∈ X | (∃s ∈ L(S) ∩ Lsamp)xa = ξ(xo, s)}

As x′ ∈ X by (7), all that remains is to show: (∃s ∈ L(S) ∩ Lsamp)x′ = ξ(xo, s)

As x′ ∈ X ′samp by (7), it follows that: (∃s ∈ L(S′) ∩ Lsamp)x′ = ξ′(x′o, s) (8)
We have two cases: (a) x′o ∈ X, or (b) x′o /∈ X.
Case 1.a) x′o ∈ X
As x′ ∈ X by (7), and x′o ∈ X, we apply Proposition 6.4(i) and conclude: ξ(x′o, s) = x′

As x′o ∈ X, it follows by Algorithms 2 and 3 that x′o = xo.
⇒ ξ(xo, s) = x′

Case 1.b) x′o /∈ X
As x′ ∈ X by (7), x′o /∈ X, and ξ′(x′o, s) = x′ by (8), we can apply Proposition 6.4(iii) and
conclude: (∀xa ∈ Ex′o) ξ(xa, s) = x′

As x′o /∈ X, by Algorithms 2 and 3 we can conclude xo ∈ Ex′o .
⇒ ξ(xo, s) = x′

By Cases (1.a) and (1.b), we have: ξ(xo, s) = x′

⇒ s ∈ L(S) ∩ Lsamp by (8)
⇒ x′ ∈ Xsamp

Part (1) complete.

Part 2) Show: ζ(x′) = ζ ′(x′)

To show ζ(x′) = ζ ′(x′), by Definition 3.10 it is sufficient to show:
(∀σ ∈ Σhib) ξ(x

′, σ)!⇔ ξ′(x′, σ)!

Let σ ∈ Σhib.
Part 2.a) Show: ξ(x′, σ)!⇒ ξ′(x′, σ)!
Assume: ξ(x′, σ)!
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Let xb = ξ(x′, σ).
By Proposition 6.3(iii), we can conclude:

(∃x′a, x′b ∈ X ′) ξ′(x′a, σ) = x′b ∧ (x′a = x′ ∨ x′ ∈ Ex′a) ∧ (x′b = xb ∨ xb ∈ Ex′b)
As x′ ∈ X∩X ′ by (1) and (7), by Algorithms 2 and 3 we have x′a = x′, as x′ is λ-equivalent
only to itself.
⇒ ξ′(x′, σ) = x′b
⇒ ξ′(x′, σ)!

Part (2.a) complete.

Part 2.b) Show: ξ′(x′, σ)!⇒ ξ(x′, σ)!
Assume: ξ′(x′, σ)!

Let x′b = ξ′(x′, σ).
⇒ x′b ∈ X ′, x′ ∈ X ∩X ′, and ξ′(x′, σ) = x′b by (1) and (7) (9)
By Proposition 6.3(ii), we can conclude:

(∃xa, xb ∈ X) ξ(xa, σ) = xb ∧ (xa = x′ ∨ xa ∈ Ex′) ∧ (xb = x′b ∨ xb ∈ Ex′b)
As x′ ∈ X by (9), by Algorithms 2 and 3 this implies that x′ is λ-equivalent only to itself.
⇒ xa = x′

⇒ ξ(x′, σ) = xb
⇒ ξ(x′, σ)!

Part (2.b) complete.
By Parts (2.a) and (2.b), we conclude (∀σ ∈ Σhib) ξ(x

′, σ)!⇔ ξ′(x′, σ)!.
⇒ ζ(x′) = ζ ′(x′)

Part (2) complete.
By Parts (1) and (2), we thus conclude x′ ∈ Xsamp and ζ(x′) = ζ ′(x′).
Part (iv) complete.

By Parts (i)-(iv), we conclude that Points (i-iv) of the proposition are satisfied.

We now introduce another supporting proposition that will be key in proving our main
result of output equivalent controllers. The following proposition shows that a sampled string
accepted by the closed-loop system of our ||SD setting, S ||SD G, will take each supervisor S,
S and S ′ to a state with the same prohibitable events enabled. This means whether we use
S or S ′, we get the same result that matches our supervisor S.

Proposition 7.2. Let TDES G = (Q,Σ, δ, qo, Qm) be a plant and TDES S = (X,Σ, ξ, xo, Xm)
be a supervisor. Let G be complete with ||SD for S. Let TDES S = S ||SD G = (Y,Σ, η, yo, Ym)
be a supervisor and S ′ = min(S) = (Y ′,Σ, η′, y′o, Y

′
m) be the minimal TDES constructed using

Algorithms 2 and 3. Let ζS, ζS and ζS′ be the prohibited action functions for supervisors S,
S and S ′ respectively. Then:

(∀s ∈ L(S ||SD G) ∩ Lsamp) ζS(ξ(xo, s)) = ζS(η(yo, s)) = ζS′(η
′(y′o, s))

Proof. Assume initial conditions. Let S = S ||SD G and S ′ = min(S). (1)
Let s ∈ L(S ||SD G) ∩ Lsamp. (2)
Let Xsamp, Ysamp and Y ′samp be the sets of sampled states for S, S and S ′ respectively.
First, we note that s ∈ L(S ||SD G) means that s ∈ L(S) by definition. As state minimization
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does not affect the closed behaviour of an automaton, this implies s ∈ L(S ′). (3)
⇒ η(yo, s)! and η′(y′o, s)!
Let y = η(yo, s) and y′ = η′(y′o, s). (4)
By Definition 4.1 of ||SD operator, we have: (∃x ∈ X) (∃q ∈ Q) y = (x, q) (5)
As both G and S are defined over Σ, it follows by the definition of ||SD that:

ξ(xo, s) = x and δ(qo, s) = q (6)
⇒ s ∈ L(S) and s ∈ L(G) (7)
⇒ s ∈ L(S) ∩ Lsamp by (2)
⇒ x ∈ Xsamp by Definition 3.2 of sampled states
As s ∈ L(S) by (3), by (2) we have: s ∈ L(S) ∩ Lsamp
As y = η(yo, s) by (4), by Definition 3.2 we have: y ∈ Ysamp (8)
Similarly, we have: y′ ∈ Y ′samp (9)
This means that ζS(x), ζS(y) and ζS′(y′) are defined.
We will now show: ζS(ξ(xo, s)) = ζS(η(yo, s)) = ζS′(η

′(y′o, s))

By (4) and (6), it is sufficient to show: ζS(x) = ζS(y) = ζS′(y
′)

We will show this in two steps.
Part 1) Show: ζS(x) = ζS(y)

By Definition 3.10 of ζ, it is sufficient to show: {σ ∈ Σhib | ξ(x, σ)!} = {σ ∈ Σhib | η(y, σ)!}
This is equivalent to showing: (∀σ ∈ Σhib) ξ(x, σ)!⇔ η(y, σ)!

Let σ ∈ Σhib. (10)
Part 1.a) Show: ξ(x, σ)!⇒ η(y, σ)!

Assume: ξ(x, σ)! (11)
⇒ sσ ∈ L(S) by (6) and (7)
As s ∈ L(S) ∩ L(G) by (7), σ ∈ Σhib by (10), and G is complete with ||SD for S by (1), we
can conclude: sσ ∈ L(G)

⇒ δ(q, σ)! by (6)
As ξ(x, σ)! by (11), δ(q, σ)!, σ ∈ Σhib by (10), and y = (x, q) by (5), by the definition of ||SD,
we conclude: η((x, q), σ)!

⇒ η(y, σ)!

Part 1.b) Show: η(y, σ)!⇒ ξ(x, σ)!

Assume: η(y, σ)!

⇒ η((x, q), σ)! by (5)
⇒ ξ(x, σ)! by definition of ||SD and the fact that G and S are defined over Σ

By Parts (1.a) and (1.b), we can conclude: (∀σ ∈ Σhib) ξ(x, σ)!⇔ η(y, σ)!

⇒ ζS(x) = ζS(y)

Part (1) complete.

Part 2) Show: ζS(y) = ζS′(y
′)

By (4), we have: y = η(yo, s)

Using η(yo, s) = y, we can apply Proposition 6.3(iii) and conclude:
(∃y′a, y′b ∈ Y ′) η′(y′a, s) = y′b ∧ (y′a = yo ∨ yo ∈ Ey′a) ∧ (y′b = y ∨ y ∈ Ey′b) (12)
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From Algorithms 2 and 3, we know that yo belongs to at most one set of λ-equivalent states
(Ek), and that either yo = y′o or yo ∈ Ey′o .
⇒ η′(y′o, s) = y′b
⇒ y′b = y′ as y′ = η′(y′o, s) by (4)
⇒ y′ = y or y ∈ Ey′ by (12)
We thus have two cases: (a) y′ = y, or (b) y ∈ Ey′ .
Case 2.a) y′ = y (13)
⇒ y′ ∈ Y
As we have y′ ∈ Y ∩ Y ′ by (4), and y′ ∈ Y ′samp by (9), we can apply Proposition 7.1(iv) and
we have: ζS(y′) = ζS′(y

′)

⇒ ζS(y) = ζS′(y
′) by (13)

Case 2.b) y ∈ Ey′ (14)
By Algorithms 2 and 3, this implies: y′ /∈ Y
As y′ ∈ Y ′ by (4), y′ /∈ Y , and y′ ∈ Y ′samp by (9), we can apply Proposition 7.1(iii) and
conclude: (∀ya ∈ Ey′ ∩ Ysamp) ζS(ya) = ζS′(y

′)

As y ∈ Ey′ by (14) and y ∈ Ysamp by (8), we can conclude: ζS(y) = ζS′(y
′)

By Cases (2.a) and (2.b), we have: ζS(y) = ζS′(y
′)

Part (2) complete.
Combining Parts (1) and (2), we can conclude: ζS(x) = ζS(y) = ζS′(y

′)

By (4) and (6), we can conclude ζS(ξ(xo, s)) = ζS(η(yo, s)) = ζS′(η
′(y′o, s)), as required.

7.3 Output Equivalent Controllers

In this section, we present our main result for output equivalence between two SD controllers
that are translated using the method presented in Section 3.7.

Theorem 7.1 given below proves that an SD controller translated from supervisor S will
be output equivalent to a controller translated from supervisor S ′ = min(S ||SD G). In this
theorem, we only consider the controller for S ′ = min(S ||SD G), and not S = S ||SD G. This
is because if S is already minimal, then min(S ||SD G) = S. Thus, examining S ′ without
assuming that S is minimal will cover both cases. Also, in Proposition 7.2, we have already
proven that for a valid sampled string, both S and S ′ provide the same enablement information
for prohibitable events.

Theorem 7.1. Let TDES G = (Y,Σ, δ, yo, Ym) be a plant, TDES S = (X,Σ, ξ, xo, Xm) be a
CS deterministic supervisor that is SD controllable with ||SD for G, and let G be complete with
||SD for S. Let TDES supervisor S ′ = min(S ||SD G) = (X ′,Σ, ξ′, x′o, X

′
m) constructed using

Algorithms 2 and 3 be CS deterministic. Let C = (I, Z,Q,Ω,Φ,qres) be the SD controller
translated from S, and C′ = (I ′, Z ′, Q′,Ω′,Φ′,q′res) be the SD controller translated from S ′.
Then, C and C′ are output equivalent with respect to the closed-loop behaviour L(Gcl), with
Gcl = S ||SD G.

Proof. Assume initial conditions.
First, we will describe our setting and notation for the proof.
Let Σact ⊆ Σ be the set of activity events and Σhib ⊆ Σact be the set of prohibitable events.
Let Gcl = S ||SD G and S ′ = min(S ||SD G). (1)
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As state minimization process does not change the closed behaviour of an automaton, thus
we have: L(Gcl) = L(S ′)
By Corollary 5.1(iii), we have L(S ||SD G) = L(S ′ ||G). We thus have: L(Gcl) = L(S ||SD

G) = L(S ′ ||G)

As S and S ′ are control equivalent (Definition 2.28), this means we can apply Definition 7.2
of output equivalence to S and S ′.
Let Xsamp ⊆ X and X ′samp ⊆ X ′ be the sets of sampled states for S and S ′ respectively.
Let Λ : Xsamp → Q and Λ′ : X ′samp → Q′ be the injective state mapping functions (Defini-
tion 3.15) for C and C′ respectively.
Let ΓZ : Pwr(Σhib)→ Z and ΓZ′ : Pwr(Σhib)→ Z ′ be the bijective output set mapping func-
tions (Definition 3.17) for C and C′ respectively.
Let Φ : Q → Z and Φ′ : Q′ → Z ′ be the state-to-output maps (Definition 3.19) for C and C′

respectively.
Let ζ : Xsamp → Pwr(Σhib) and ζ ′ : X ′samp → Pwr(Σhib) be the prohibited action functions
(Definition 3.10) for S and S ′ respectively.
Let γg be the canonical event mapping function (Definition 3.11) for the system. This is the
default way to order event variables in vectors.
Let v = |Σact|.
As both S and S ′ are defined over Σ, it follows that each input vector i ∈ I and i′ ∈ I ′ is the
same size, i.e. each contains v variables.
Let γ : Σact → {0, 1, . . . , v − 1} and γ′ : Σact → {0, 1, . . . , v − 1} be the input event mapping
functions (Definition 3.12) for C and C′ respectively. By definition of γ and γ′, we have:

(∀σ1, σ2 ∈ Σact) γg(σ1) < γg(σ2)⇒ γ(σ1) < γ(σ2) ∧ γ′(σ1) < γ′(σ2)

This implies that there is only one way to define γ and γ′, and they both must equal γg, i.e.
γ = γ′ = γg. (2)
Let {ig(k′′)} be a canonical input sequence with respect to γg (i.e. its event variables ordering
matches γg), and let the sequence be input valid for L(Gcl). (3)
As γ = γ′ = γg by (2), it follows that {ig(k′′)} can be used as input vectors for C and C′

directly, without any conversion.
Let r = |Σhib|.
As both S and S ′ are defined over Σ, this implies that each output vector z ∈ Z and z′ ∈ Z ′
is the same size, i.e. each contains r variables. (4)
Let η : Σhib → {0, 1, . . . , r − 1} and η′ : Σhib → {0, 1, . . . , r − 1} be the bijective output event
mapping functions (Definition 3.13) for C and C′ respectively. By definition of η and η′, we
have:

(∀σ1, σ2 ∈ Σhib) γg(σ1) < γg(σ2)⇒ η(σ1) < η(σ2) ∧ η′(σ1) < η′(σ2)

This implies that there is only one way to define η and η′. Thus we have η = η′. (5)
We note that the definition of ΓZ and ΓZ′ is defined in terms of η and η′ respectively. Since
η = η′ by (5), this implies that ΓZ = ΓZ′ . (6)
This implies that output vectors z and z′ are the same size (r) and represent prohibitable
events in exactly the same order.
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For input sequence {ig(k′′)}, let z(k) ∈ Z and z′(k) ∈ Z ′ be the induced output vector at time
k for controllers C and C′ respectively.
Let q(k) ∈ Q and q′(k) ∈ Q′ be the induced state vectors at time k for C and C′ respectively.
Now, we will prove our main result.
To show that C and C′ are output equivalent with respect to L(Gcl), by Definition 7.2 we
need to show:
1. Both output vectors z and z′ are of size r.
2. (∀ 0 ≤ i < r) η−1(i) = η′−1(i)

3. (∀k ∈ {0, 1, 2, . . .}) z(k) = z′(k)

We note that Points 1 and 2 follow immediately from (4) and (5) respectively.
Now all that remains is to show: (∀k ∈ {0, 1, 2, . . .}) z(k) = z′(k)

Let k ∈ {0, 1, . . .}.
We first note that by the TDES to FSM translation method (Section 3.7), we have:

z(k) = Φ(q(k)) and z′(k) = Φ′(q′(k))

By definition of Φ and Φ′, we have:
z(k) = Φ(q(k)) = ΓZ(ζ(x)) and z′(k) = Φ′(q′(k)) = ΓZ′(ζ

′(x′))

where q(k) = Λ(x) and q′(k) = Λ′(x′) for some x ∈ Xsamp and x′ ∈ X ′samp
(7)

As ΓZ = ΓZ′ by (6), all we need to complete the proof is to construct a suitable x ∈ Xsamp

and x′ ∈ X ′samp and show that ζ(x) = ζ ′(x′).
We have two cases: (1) k = 0, and (2) k ∈ {1, 2, . . .}.
Case 1) k = 0

By definition of the TDES to FSM translation method (Section 3.7), we have:
q(0) = qres = Λ(xo) and q′(0) = q′res = Λ′(x′o) (8)

Let s = ε.
⇒ ξ(xo, s) = xo and ξ′(x′o, s) = x′o (9)
As s = ε ∈ Lsamp = {ε} ∪ Σ∗.τ, and S and G have initial states implies that S ||SD G has an
initial state, it follows that s ∈ L(S ||SD G) ∩ Lsamp.
By applying Proposition 7.2, we conclude: ζ(ξ(xo, s)) = ζ ′(ξ′(x′o, s))

⇒ ζ(xo) = ζ ′(x′o) by (9)
We note that by Definition 3.2 of sampled states, initial states are always sampled states.
We then take x = xo and x′ = x′o. We thus have x ∈ Xsamp and x′ ∈ X ′samp, q(k) = Λ(x),
q′(k) = Λ′(x′) and k = 0 by (8), and ζ(x) = ζ ′(x′).
Case 2) k ∈ {1, 2, . . .}
As {ig(k′′)} is input valid for L(Gcl) by (3), we have:

(∃s1, s2, . . . , sk ∈ Lconc) [s1s2 . . . sk ∈ L(Gcl)] ∧
[(∀n ∈ {1, 2, . . . , k}) (∀σ ∈ Σact) ig,γg(σ) (n) = 1 iff σ ∈ Occu(sn)]

Let s = s1s2 . . . sk, and we have s ∈ Lsamp as Lconc = Σ∗act.τ (Definition 3.1). (10)
As Gcl = S ||SD G and S ′ = min(S ||SD G) by (1), we have: s ∈ L(S ′) ∩ Lsamp (11)
As L(S ||SD G) ⊆ L(S) by Proposition 5.1, we have: s ∈ L(S) ∩ Lsamp
By applying Proposition 3.2, we conclude: q(k) = Λ(ξ(xo, s)) and q′(k) = Λ′(ξ′(x′o, s)) (12)

85



Let x = ξ(xo, s) and x′ = ξ′(x′o, s). (13)
⇒ x ∈ Xsamp and x′ ∈ X ′samp as s ∈ Lsamp by (10) (14)
As s ∈ L(S ||SD G) ∩ Lsamp by (11), by applying Proposition 7.2 we conclude:

ζ(ξ(xo, s)) = ζ ′(ξ′(x′o, s))

⇒ ζ(x) = ζ ′(x′) by (13)
We thus have x ∈ Xsamp and x′ ∈ X ′samp by (14), q(k) = Λ(x) and q′(k) = Λ′(x′) by (12)
and (13), and ζ(x) = ζ ′(x′).
By Cases (1) and (2), we have constructed a suitable x and x′ with ζ(x) = ζ ′(x′).
We thus conclude by (7) that z(k) = z′(k), as required.
Hence, we conclude that C and C′ are output equivalent with respect to the closed-loop
behaviour L(Gcl).

We close this section with a proposition that we will find useful in Section 8. It essentially
shows that SD controllers C and C′ will produce the same output for every sampled string
accepted by the closed-loop system, Gcl = S ||SD G.

Proposition 7.3. Let TDES G = (Y,Σ, δ, yo, Ym) be a plant, TDES S = (X,Σ, ξ, xo, Xm) be
a CS deterministic supervisor that is SD controllable with ||SD for G, and let G be complete
with ||SD for S. Let TDES supervisor S ′ = min(S ||SD G) = (X ′,Σ, ξ′, x′o, X

′
m) constructed us-

ing Algorithms 2 and 3 be CS deterministic. Let C = (I, Z,Q,Ω,Φ,qres) be the SD controller
translated from S, and C′ = (I ′, Z ′, Q′,Ω′,Φ′,q′res) be the SD controller translated from S ′.
Let Λ and Λ′ be the state mapping functions for C and C′ respectively. Then:

(∀s ∈ L(S ||SD G) ∩ Lsamp) Φ(Λ(ξ(xo, s))) = Φ′(Λ′(ξ′(x′o, s)))

Proof. Assume initial conditions.
Let ζ and ζ ′ be the prohibited action functions (Definition 3.10) for S and S ′ respectively.
Let η and η′ be the bijective output event mapping functions (Definition 3.13) for C and C′

respectively.
Let ΓZ and ΓZ′ be the bijective output set mapping functions (Definition 3.17) for C and C′

respectively.
Let s ∈ L(S ||SD G) ∩ Lsamp. (1)
Applying Proposition 7.2, we conclude: ζ(ξ(xo, s)) = ζ ′(ξ′(x′o, s)) (2)
Let q = Λ(ξ(xo, s)) and q′ = Λ′(ξ′(x′o, s)). (3)
Applying Theorem 7.1, we can conclude that C and C′ are output equivalent with respect to
L(Gcl).
This implies η = η′, and thus ΓZ = ΓZ′ , as they are defined in terms of η and η′ respectively.

(4)
By Definition 3.19 of Φ, we have: Φ(q) = ΓZ(ζ(x)) if (∃x ∈ Xsamp) q = Λ(x)

As s ∈ Lsamp by (1), we can take x = ξ(xo, s) and we have x ∈ Xsamp, and Λ(x) = q by (3).
We thus have: Φ(q) = ΓZ(ζ(ξ(xo, s)))

Similarly, we can take x′ = ξ′(x′o, s) and we have x′ ∈ X ′samp, and Λ′(x′) = q′ by (3).
⇒ Φ′(q′) = ΓZ′(ζ

′(ξ′(x′o, s)))

As ΓZ = ΓZ′ by (4), and ζ(ξ(xo, s)) = ζ ′(ξ′(x′o, s)) by (2), we have: Φ(q) = Φ′(q′)

⇒ Φ(Λ(ξ(xo, s))) = Φ′(Λ′(ξ′(x′o, s))) by (3)
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8 Controllability and Nonblocking Results for SD
Synchronous Product Setting

In this section, we present the controllability and nonblocking verification results for our ||SD

setting. This section begins with the construction of a TDES supervisory control V , stating
the relevant definitions, and proving its various properties. After that, we thoroughly describe
and formally prove our controllability and nonblocking results. Essentially, we show that if
our theoretical ||SD system is controllable, nonblocking and abide by the specified control laws,
then the physically implemented system will also have these properties, given that the ||SD

system satisfies our adapted properties that were originally identified by the SD supervisory
control methodology.

Please note that in this section, we will use the notation of TDES supervisor S, SD
controller C and TDES supervisory control V while discussing about our ||SD setting. The
notation of TDES supervisor S, SD controller C and TDES supervisory control V will be
used while referring to the SD setting, and they map to S, C and V of Section 3 respectively.
In this section, whenever we refer to an SD controller constructed from a supervisor, we will
always assume that it is translated using the method described in Section 3.7.

From this section onwards, we will take our SD supervisor S to be S = min(S ||SD G), i.e.
the minimal version of S ||SD G that is constructed using Algorithms 2 and 3. The reason is
that if S ||SD G is already minimal, there is no change. However, if it is not already minimal,
we must minimize it to ensure that S is CS deterministic. By simply assuming that we are
always using the minimal version will keep things simple.

Let TDES G = (Q,Σ, δ, qo, Qm) be a plant, TDES S = (X,Σ, ξ, xo, Xm) be a supervisor,
C = (I, Z,Q,Ω,Φ,qres) be an SD controller, and the closed-loop system of our ||SD setting be
S ||SD G. For the rest of this section, we require our system to satisfy the following properties:
1) G and S have finite state spaces and finite event sets, 2) G has proper time behaviour, 3) G
is complete with ||SD for S, 4) G has S-singular prohibitable behaviour with ||SD, 5) S ||SD G
is ALF, 6) S is SD controllable with ||SD for G, 7) S is CS deterministic, and 8) C is an SD
controller translated from S using the translation method described in Section 3.7.

By looking at Proposition 4.5, it is evident that these conditions are sufficient to guarantee
that our system will not “stop the clock”, i.e. for any string s ∈ L(S ||SD G), our ||SD system
will always be able to do a tick event after at most a finite number of activity events. This
ensures that after a sampled string, all new behaviour of the system can be represented as a
sequence of concurrent strings.

8.1 Supervisory Control V

In the SD supervisory control theory [42, 29], the authors have pointed out that an SD
controller is more constrained than a TDES supervisor. This is due to the fact that an SD
controller only changes state on the occurrence of the tick event, whereas a supervisor can do so
every time an event occurs. This in turn implies that the enablement and forcing information
of an SD controller does not always exactly match with that of a TDES supervisor.

To address this issue in the SD setting, a TDES supervisory control is used to express the
enablement and forcing behaviour of an SD controller in terms of strings. In [42], the authors
presented Algorithm 1 to construct this supervisory control. This algorithm’s definition is
then used to argue about the behaviour of the SD controller in various controllability and
nonblocking verification proofs of the SD setting. Since we are building our work on the SD
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supervisory control methodology, we will adopt the same approach to capture the control
action of SD controller in our ||SD setting and prove our desired results.

In this section, we first discuss the construction of a TDES supervisory control V in
our ||SD setting (we will formally prove that V is indeed a TDES supervisory control later
in Proposition 8.4). Specifically, we explain how we have adapted Algorithm 1 to make it
compatible with our ||SD setting. Then, we present some definitions in relation to our V .
Finally, we prove some properties with respect to V that will help us in proving our ||SD

controllability and nonblocking verification results afterwards.

8.1.1 Construction of V

Note: To be clear in our discussion and avoid any ambiguity, we will refer to S, C, V and ΣV

of Algorithm 1 as S, C, V and ΣV respectively.

In order to construct TDES supervisory control V from our SD controller C in the ||SD

setting, we adapt Algorithm 1 from [42]. Our algorithm for the ||SD setting is presented as
Algorithm 4. It is worth-mentioning that the two algorithms are logically identical, although
they differ at line 14, where L(S) of Algorithm 1 has been replaced by L(S ||SD G) in
Algorithm 4.

Please note that the complete description of Algorithm 1 to construct TDES supervisory
control from an SD controller is given in Section 3.8. Most of the items given in Algorithm 4
are defined in Section 3.7. The map of Occu is defined in Section 3.4, and TDES supervisory
control and CBG are defined in Section 3.8. In this section, we only focus on explaining and
comparing those aspects of the two algorithms that differ and need clarification.

For all strings s ∈ L(G), Algorithm 1 sets the default enablement information at lines
1-3 by adding all uncontrollable events and tick event to V(s) . This is done to satisfy
Definition 3.20 of TDES supervisory control. As this definition is given only in terms of
L(G), it remains valid in our ||SD setting as well. Therefore, this part of Algorithm 1 remains
unchanged in Algorithm 4.

By looking at Algorithm 1, we note that it updates the default enablement information
only for those strings that represent valid behaviour in the closed-loop system. These strings
are identified at lines 13-14. Line 13 of Algorithm 1 considers all possible concurrent strings
s′ that extend a sampled string s in L(G). The if statement at line 14 then uses the following
two conditions to filter out those strings that do not meet the required criteria.

1) Occu(s′) ∩ Σhib ⊆ ΣV
This condition excludes concurrent strings that are possible in the closed behaviour of
G, but their occurrence images contain prohibitable events that are not in ΣV . As these
prohibitable events are disabled by controller C, therefore these strings will not occur in
the physical system.

Since we are using the translation method of the SD setting to generate our SD con-
troller C from TDES supervisor S, therefore this condition does not need to be changed
for our ||SD setting, and shows up as it is in Algorithm 4.

2) ss′ ∈ L(S)
In Algorithm 1, this condition disregards concurrent strings that do not represent valid
behaviour in L(S) after sampled string s. This ensures to restrict the set of valid strings to
concurrent strings that are accepted by the supervisor. Ultimately, it results in restricting
the valid strings overall to L(S) ∩ L(G) in the SD setting.
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Algorithm 4 Obtaining V from Controller C, Acting on Plant G

1: for all s ∈ L(G) do
2: V (s)← Σu ∪ {τ}
3: end for
4: Pend← {(ε,qres)}
5: while Pend 6= ∅ do
6: (s,q)← a member from Pend
7: Pend← Pend− {(s,q)}
8: z← Φ(q)
9: ΣV ← Γ−1

Z (z)
10: if ΣV 6= ∅ then
11: V (s)← (V (s) ∪ ΣV )− {τ}
12: end if
13: for all s′ ← σ1σ2 . . . σj ∈ CBG(s) do // σj = τ, by definition of Lconc
14: if (Occu(s′) ∩ Σhib ⊆ ΣV ) ∧ (ss′ ∈ L(S ||SD G)) then
15: Σtemp ← ΣV

16: i← ΓI(Occu(s′)− {τ})
17: q′ ← Ω(q, i)
18: Pend← Pend ∪ {(ss′,q′)}
19: if j > 1 then
20: for i← 1 to j − 1 do
21: Σtemp ← Σtemp − σi
22: if Σtemp 6= ∅ then
23: V (sσ1σ2 . . . σi)← (V (sσ1σ2 . . . σi) ∪ ΣV )− {τ}
24: else
25: V (sσ1σ2 . . . σi)← (V (sσ1σ2 . . . σi) ∪ ΣV )
26: end if
27: end for
28: end if
29: end if
30: end for
31: end while
32: return V

Using the same logic for our ||SD setting, we want to restrict the set of valid strings to
our closed-loop behaviour, L(S ||SD G). In order to do that, we cannot simply replace L(S)
at line 14 of Algorithm 1 with L(S) in our Algorithm 4. This is due to the fact that in the
SD setting, supervisor S is solely responsible for the enablement/disablement of tick event
in the closed-loop system. However, in our ||SD setting, the task of enabling/disabling the
tick event is cooperatively performed by supervisor S and ||SD operator. In our case, a
tick event that is possible in G might be enabled by S too. Still, this tick event might
not be possible in the closed-loop system as our ||SD operator is authorized to remove tick
from the closed-loop system in the presence of enabled prohibitable events. To further
clarify, in most cases, our closed-loop behaviour L(S ||SD G) 6= L(S) ∩ L(G) due to the
synchronization mechanism of our ||SD operator.

For this reason, in order to restrict the set of valid strings to our closed-loop behaviour,
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we have replaced their L(S) with our L(S ||SD G) at line 14. By making this change, we
guarantee that if a string does not represent valid behaviour in our closed-loop system, then
its enablement information, once assigned at line 2, will remain unmodified throughout
the execution of Algorithm 4.

It is worth clarifying that this replacement does not change the original logic of Algo-
rithm 1 for constructing supervisory control from the SD controller. In fact, this change
at line 14 actually ensures that the original logic of Algorithm 1 remains untouched in
Algorithm 4. We will formally prove this in Proposition 8.2 by showing that the two su-
pervisory controls V and V constructed using Algorithms 4 and 1 respectively are equal
with respect to a given plant G.

Another way, probably an easier and straightforward one, to look at this modification
at line 14 is that in our ||SD setting, we have concretely defined S = S ||SD G, or S =
min(S ||SD G) for that matter. We have already proven in our previous sections that S
possesses all the required properties and does qualify to be used as the supervisor of the
SD setting. Since L(S) = L(S ||SD G), replacing L(S) with L(S ||SD G) does not bring any
logical change at line 14, as the two closed languages are same. Therefore, both algorithms
will restrict the update of enablement information to the same set of valid strings in the
closed-loop behaviour due to the way we have constructed S in the ||SD setting.

Another important point that we want to highlight is about line 11 of Algorithm 1. If
any prohibitable event is enabled at state q′ in C (line 10), this prohibitable event needs to
be forced in the current sampling period. Therefore, line 11 removes tick event from V(s) to
satisfy Point ii (⇒) of the SD controllability definition. This tick was added at line 2 while
initializing V(s) with its default enablement information.

It is worth recalling here that Point ii (⇒) of the SD controllability definition does not
exist in our definition of SD controllability with ||SD property, and we are not checking this
condition explicitly in our ||SD setting. We are able to get rid of this explicit check because of
the synchronization mechanism of our ||SD operator that guarantees to automatically satisfy
this condition while forming the closed-loop system. Therefore, although tick event does get
removed at line 11 in Algorithm 4, it is for a different reason. In our case, this removal of tick
is not to satisfy any point of the SD controllability with ||SD definition. Rather, it is to keep
things consistent with the synchronization mechanism used by our ||SD operator to construct
the closed-loop system; hence, line 11 remains unmodified in Algorithm 4.

8.1.2 Preliminary Definitions

In order to define the closed behaviour of V/G, represented as L(V/G), Definition 2.24 uses
TDES plant G and supervisory control V . This definition neither takes into account the
supervisor model nor the synchronization operator while defining L(V/G); thus, this definition
remains valid for our ||SD setting and does not need to be redefined. Below, we present some
definitions in relation to V that are specific to our ||SD setting.

Definition 8.1. For TDES plant G and CS deterministic TDES supervisor S that is SD
controllable with ||SD for G, let C be the SD controller constructed from S using the translation
method described in Section 3.7, and let V be the map constructed from C using Algorithm
4. In the ||SD setting, the marked behaviour of V/G, represented as Lm(V/G)||SD , is defined
as:

Lm(V/G)||SD := L(V/G) ∩ Lm(S ||SD G)
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Definition 8.2. In the ||SD setting, V is said to be nonblocking for G if:
Lm(V/G)||SD = L(V/G)

8.1.3 Map V is Well Defined

In [42], map V generated from SD controller C using Algorithm 1 is shown to be well defined.
Since we have modified Algorithm 1 to suit our needs, it is important to show the same result
in our ||SD setting so that we can consider V as a potential TDES supervisory control.

The proposition given below proves that map V constructed from SD controller C using
Algorithm 4 is well defined. As Algorithms 1 and 4 are logically identical, we have taken the
basic idea of this proof from [42] to prove our desired result.

Proposition 8.1. For TDES plant G = (Y,Σ, δ, yo, Ym), and CS deterministic TDES super-
visor S = (X,Σ, ξ, xo, Xm) that is SD controllable with ||SD for G, let C be the SD controller
constructed from S using the translation method described in Section 3.7, and let V be the
map constructed from C using Algorithm 4. Then, map V is well defined.

Proof. Assume initial conditions.
In order to show that map V is well defined, we need to show that for all s ∈ L(G), Algorithm
4 defines V (s) in only one way. We will show this by analyzing the logic used by Algorithm 4
to construct V (s) from C.
By examining Algorithm 4, first we note that for all s ∈ L(G), the algorithm initializes V (s)
at line 2, and then potentially updates it at lines 11, 23 and 25.
Further examination reveals that for all s /∈ L(S ||SD G) ∩ Lsamp, the algorithm adds Σu and
{τ} to V (s) at line 2, and these strings are not evaluated again in the algorithm. This
means for all such s, V (s) is defined only once at line 2. Therefore, it is evident that for all
s /∈ L(S ||SD G) ∩ Lsamp, V (s) is well defined.

Now we will analyze all the remaining strings s, such that s ∈ L(S ||SD G) ∩ Lsamp.
Let s ∈ L(S ||SD G) ∩ Lsamp
⇒ (∃u ∈ Σ∗) su ∈ L(S ||SD G) ∩ Lsamp by definition of prefix closure of L
⇒ su ∈ L(S) ∩ L(G) ∩ Lsamp by Proposition 5.1

⇒ su ∈ L(S) ∩ Lsamp
⇒ s ∈ L(S) as L(S) is a prefix-closed language (1)
After line 2, the enablement information of V (s) can be modified at lines 11, 23 and 25 of
the algorithm. By analyzing these lines, we observe that line 11 updates V (s) if s ∈ Lsamp.
Otherwise, if s /∈ Lsamp, then V (s) could possibly be updated once or more at line 23 or 25.
Thus, we have two cases: (1) s ∈ Lsamp, and (2) s /∈ Lsamp.
Case 1) s ∈ Lsamp
Algorithm 4 evaluates string-state pairs (s,q), by retrieving them one by one from the set
Pend at line 6. This means the algorithm re-evaluates V (s) of only those strings that were
added to Pend.
If a sampled string s is never added to Pend, its V (s) cannot be modified at line 11. Such
sampled strings will retain their default enablement information that was assigned to them at
line 2. Hence, for such s, V (s) will always be well defined.
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Thus, without any loss of generality, we assume that s was added to Pend at some point
during the execution of Algorithm 4.
Line 11 updates V (s) by adding the set of enabled prohibitable events, ΣV , and removing
the tick event. As we want to show that the algorithm defines V (s) in only one way, it is
sufficient to show that whenever line 11 is executed for s, we always have the same ΣV to
append to V (s). Clearly, as long as ΣV is the same, executing line 11 once or more will not
make any difference, as V (s) will be updated in the same way every time.
By reviewing the algorithm, we note that ΣV is formed from output vector z of controller C
at line 9. This output vector z is in turn obtained from state q of C at line 8. This means
that ΣV is uniquely defined by state q. Thus, it is sufficient to show that sampled string s
will always be paired with state q of controller C.
As s ∈ Lsamp, by Definition 3.1 of Lsamp, we have two possible cases: (a) s = ε, and
(b) s ∈ Σ∗.τ.
Case 1.a) s = ε

The controller C always starts at its initial or reset state, qres. By the definition of SD
controller, qres corresponds to the empty string, ε.
From line 4 of the algorithm, it is clear that ε is always paired with state qres of C.
Hence, we conclude that if s = ε, then s is always paired with the same state qres of C.
Case (1.a) complete.

Case 1.b) s ∈ Σ∗.τ

By examining the algorithm, we note that for every string-state pair (s,q) added to Pend, the
non-empty sampled string s of the pair is constructed by concatenating one or more concurrent
strings together. Thus, for every such s, we have:

(∃n ∈ {1, 2, . . .}) (∃s1, s2, . . . , sn ∈ Lconc) s1s2 . . . sn = s

By Definition 3.3 of concurrent string, we have: Lconc = Σ∗act.τ

This implies that for a given sampled string s, there is only one way to define the sequence of
concurrent strings s1s2 . . . sn. In other words, the sequence of concurrent strings s1s2 . . . sn in
one sampled string s will always be the same.
Except for the first pair (ε,qres), all string-state pairs are added to Pend at line 18. These
pairs are determined at lines 16 and 17 of the algorithm. These two lines show that starting
from the initial state qres, each subsequent state of C is determined by the current state and
the occurrence image of the next concurrent string which is possible in the closed-loop system.
As S is a CS deterministic supervisor and s ∈ L(S) ∩ Lsamp by (1), by the definition of
translation functions ΓI (Definition 3.16), Ω (Definition 3.18), Λ (Definition 3.15) and ∆
(Definition 3.9), it is evident that the sequence of states reached by the sequence of concurrent
strings s1s2 . . . sn will be unique. This implies the state q of controller C that is reached by
sampled string s = s1s2 . . . sn will also be unique.
Hence, we conclude that if s = Σ∗.τ, then s is always paired with the same state q of C.
Case (1.b) complete.
By Cases (1.a) and (1.b), we have shown that sampled string s will always be paired with the
same state q of controller C. In other words, whenever line 11 is executed for s ∈ Lsamp, we
always have same ΣV to append to V (s).
Hence, we conclude that for s ∈ Lsamp, Algorithm 4 defines V (s) in only one way.
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Case (1) complete.

Case 2) s /∈ Lsamp
If s /∈ Lsamp, this implies: (∃t ∈ Lsamp) (∃t′ ∈ Lconc) t < s < tt′

This in turn implies: (∃j > 1) (∃σ1, . . . , σj ∈ Σ) t′ = σ1 . . . σj

As t′ ∈ Lconc, by the definition of Lconc, σj = τ.
We thus have: (∃i ∈ {1, . . . , j − 1}) tσ1, . . . , σi = s

In the above setting, we have j > 1. This is because if we consider j = 0 or j = 1, then
t < s < tt′ would cause a contradiction.
If j = 0, then t′ = ε. As t′ ∈ Lconc, by the definition of Lconc, t′ 6= ε. Moreover, t′ = ε implies
tt′ = t. In this case, we would have t < s < t, that could not be true in any case.
If j = 1, then t′ = τ. Since we require t < s, s must contain at least one event more than t,
and since s /∈ Lsamp, s 6= ε and must not end with a τ. As t′ contains only one event, τ, this
would not allow s < tt′ and s /∈ Lsamp. Thus, we must have j > 1.
We note that in Algorithm 4, if: i) t was never added to Pend, or ii) t was added to Pend
but for all such t′ discussed above, if t′ fail the condition at line 14, then V (s) will never be
updated in the algorithm after its initialization. This implies that V (s) will keep the value
assigned to it on line 2, even after the complete execution of the algorithm. In such case, we
know that V (s) will be well-defined.
Thus, without any loss of generality, we assume that t was added to Pend, and our t′ passes
the condition at line 14.
This implies: t, tt′ ∈ L(S ||SD G)

We have: t′ = σ1 . . . σi σi+1 . . . σj ∈ Lconc
As s = tσ1 . . . σi, it is obvious, from the definition of Lconc, that there is only one way to
define activity events σ1 . . . σi, and thus the sampled string t. This implies that there is only
one way to define s = tσ1 . . . σi. Of course, it is possible that there might be multiple ways to
define σi+1 . . . σj .
From the result of Case (1), we know that whenever line 11 is executed for a given t ∈ Lsamp,
we always have the same ΣV to append to V (t).
By examining Algorithm 4, we note that for s /∈ Lsamp, the portion of the algorithm that we
are interested in, with respect to the modification of V (s), is defined from lines 19-28.
In this section, we see that lines 23 and 25 update V (s) by appending ΣV , which we know
will always be same for t ∈ Lsamp. In addition, V (s) is determined by tσ1, . . . , σi which is
also unique for our s, as discussed above. Thus, it is evident that whenever line 23 or 25 is
executed, we always get the same updated V (s).
Hence, we conclude that for s /∈ Lsamp, Algorithm 4 defines V (s) in only one way.
Case (2) complete.
By Cases (1) and (2), we have shown that for all s ∈ L(S ||SD G) ∩ Lsamp, Algorithm 4 defines
V (s) in only one way.
Thus, we have shown that for all s ∈ L(G), V (s) is well defined.
Hence, we conclude that map V , constructed from SD controller C using Algorithm 4, is well
defined.
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8.1.4 Equivalence of V and V

As discussed in Section 8.1.1, Algorithm 4 is logically equivalent to Algorithm 1 in its way
of constructing TDES supervisory control from the SD controller. By Theorem 7.1, we know
that the two SD controllers C and C, of ||SD and SD setting respectively, are output equivalent
with respect to the closed-loop behaviour, S ||SD G. This means that for a given plant G, two
maps V and V constructed from SD controllers C and C using Algorithms 4 and 1 should also
be equivalent. This is formally proven in our next proposition.

This equivalence result essentially bridges the gap between two settings in terms of their
supervisory controls. This further paves our way for reusing some of the existing SD results
in deriving and concluding our controllability and nonblocking verification results presented
in the next section.

Proposition 8.2. Let TDES G = (Y,Σ, δ, yo, Ym) be a plant to be controlled. Let TDES
S = (X,Σ, ξ, xo, Xm) be a CS deterministic supervisor that is SD controllable with ||SD

for G, and let G be complete with ||SD for S. Let TDES supervisor S = min(S ||SD

G) = (X ′,Σ, ξ′, x′o, X
′
m) constructed using Algorithms 2 and 3 be CS deterministic. Let

C = (I, Z,Q,Ω,Φ,qres) be the SD controller constructed from S, and V be the map con-
structed from C using Algorithm 4. Let C = (I ′, Z ′, Q′,Ω′,Φ′,q′res) be the SD controller
constructed from S, and V be the map constructed from C using Algorithm 1. Then, V = V.
Proof. Assume initial conditions.
We first note that L(S) = L(min(S ||SD G)) = L(S ||SD G), as state minimization does not
change the closed-loop behaviour of an automaton. (1)
We next note that Algorithm 1 will be applied to S and C, while Algorithm 4 will be applied
to S and C.
We note that Algorithms 1 and 4 are identical except for line 14, where Algorithm 1 has
ss′ ∈ L(S) and Algorithm 4 has ss′ ∈ L(S ||SD G).
However, as L(S) = L(S ||SD G) by (1), line 14 is now identical for both. Hence, the two
algorithms now only differ by the fact that Algorithm 4 is applied to C while Algorithm 1 is
applied to C. (2)
We will now show that we can replace controller C by C in Algorithm 1, and V = V will
immediately follow.
First, we need to prove the following claim.
Claim: In the tuples added to Pend in either algorithm, the string t of the tuple will always
satisfy: t ∈ L(S ||SD G) ∩ Lsamp
As for our purpose, the two algorithms are equal by (2), we will examine Algorithm 4 but the
result will equally apply to Algorithm 1.
We will prove this by induction.
Base Case:
We first note that at line 4, Pend is initialized to (ε,qres). We thus have ε ∈ L(S ||SD

G) ∩ Lsamp, as ε ∈ Lsamp by Definition 3.2, and as S and G have initial states, and by
Definition 4.1 of the ||SD operator.
Inductive Step:
Show: s ∈ L(S ||SD G) ∩ Lsamp at line 6 ⇒ ss′ ∈ L(S ||SD G) ∩ Lsamp at line 18
Assume: s ∈ L(S ||SD G) ∩ Lsamp at line 6
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For ss′ to reach line 18, we have s′ ∈ CBG(s) and ss′ ∈ L(S ||SD G) from lines 13 and 14.
⇒ ss′ ∈ L(S ||SD G) and s′ ∈ Lconc by Definition 3.21 of CBG

⇒ ss′ ∈ L(S ||SD G) ∩ Lsamp by Definition 3.3 of Lconc
By base case and inductive step, we conclude that each string t of the tuple at line 6 satisfies
t ∈ L(S ||SD G) ∩ Lsamp.
Claim proven.
This implies that for both algorithms, we only care about the outputs of controllers C and C
for strings t ∈ L(S ||SD G) ∩ Lsamp.
Applying Proposition 7.3, it follows that C and C provide exactly the same output for strings
t ∈ L(S ||SD G) ∩ Lsamp.
This means we can replace controller C by controller C in Algorithm 1 without affecting the
algorithm.
The application of Algorithms 1 and 4 are now identical, so we immediately have V = V, as
required.

8.2 Controllability and Nonblocking Verification

This section presents our controllability and nonblocking verification results for the ||SD setting.
Essentially, we show that the behaviour of TDES plant G under the action of SD controller
C is same as the behaviour of G under the supervision of TDES supervisor S, given that ||SD

system satisfies the properties that are stated in the beginning of this section. Our results
clearly indicate that if the theoretical ||SD system is controllable, nonblocking and satisfies the
specified properties, then the physically implemented system will also have these properties,
and the SD controller will behave as expected with respect to control action, event forcing
and nonblocking.

As discussed before, instead of proving all results from scratch, we will use the existing SD
results to derive and conclude some of our formal ||SD verification results. We will do this by
utilizing the equivalence that we have established between the SD and our ||SD setting in the
previous sections. As we will be needing these results in various proofs, we summarize them
together in the following corollary. We will then simply cite this corollary in our upcoming
proofs, instead of repeating the same argument in multiple proofs.

Corollary 8.1. For plant G = (Y,Σ, δ, yo, Ym) and CS deterministic supervisor S = (X,Σ, ξ,
xo, Xm) that is SD controllable with ||SD for G, let both TDES have finite state spaces, let
G be complete with ||SD for S and has S-singular prohibitable behaviour with ||SD, and let
S ||SD G be ALF. Let TDES S = min(S ||SD G) = (X ′,Σ, ξ′, x′o, X

′
m) be constructed using

Algorithms 2 and 3. Then, the following properties are satisfied: (1) S ||SD G has a finite state
space, (2) S has a finite state space, (3) L(S) = L(S ||SD G) and Lm(S) = Lm(S ||SD G),
(4) G is complete for S, (5) G has S-singular prohibitable behaviour, (6) S is SD controllable
for G, (7) S is CS deterministic, (8) S is ALF, and (9) S ||G is ALF.

Proof. Assume initial conditions. (1)

1) Show: S ||SD G has a finite state space
By (1), we have that G and S have finite state spaces. It follows from Definition 4.1 of
the ||SD operator that S ||SD G has a finite state space.

2) Show: S has a finite state space
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By (1), we have that S = min(S ||SD G) is constructed using Algorithms 2 and 3. It thus
follows automatically from Point (1) that S has a finite state space.

3) Show: L(S) = L(S ||SD G) and Lm(S) = Lm(S ||SD G)
By (1), we have that S = min(S ||SD G) is constructed using Algorithms 2 and 3. As
state space minimization process does not affect the closed and marked languages of an
automaton, we conclude that L(S) = L(S ||SD G) and Lm(S) = Lm(S ||SD G).

4) Show: G is complete for S
By (1), we have that G is complete with ||SD for S. As plant completeness is a language
based property, by Point (3) and Proposition 5.4, we conclude that G is complete for S.

5) Show: G has S-singular prohibitable behaviour
By (1), we have that G has S-singular prohibitable behaviour with ||SD. By Point (3) and
Proposition 5.5, we conclude that G has S-singular prohibitable behaviour.

6) Show: S is SD controllable for G
By (1), we have that S is SD controllable with ||SD for G. By Point (3) and Proposition 5.7,
we conclude that S is SD controllable for G.

7) Show: S is CS deterministic
By (1), we have that S is SD controllable with ||SD for G and S = min(S ||SD G) is
constructed using Algorithms 2 and 3. Applying Proposition 6.2, we conclude that S is
CS deterministic.

8) Show: S is ALF
By Point (1) we have that S ||SD G has a finite state space, and by (1) we have that
S ||SD G is ALF and S = min(S ||SD G) is constructed using Algorithms 2 and 3. Applying
Theorem 6.1, we conclude that S is ALF.

9) Show: S ||G is ALF
By Point (8), we have that S is ALF. As S and G are defined over the same Σ, by
Proposition 5.8 we conclude that S ||G is ALF.

8.2.1 SD Controller as a Supervisory Control

In the ||SD setting, the controlled behaviour of closed-loop system, S ||SD G, is a combination of
the control action of TDES supervisor S and the tick disablement mechanism of ||SD operator.
This means a tick event that is possible in TDES plant G might be enabled by S too. However,
it still might not be possible in S ||SD G, as our ||SD operator is capable of removing tick from
the closed-loop system in the presence of enabled prohibitable events. As this path is not
possible in the theoretical system model, we want to make sure that our SD controller forbids
such strings from occurring in the implemented system as well, thus preventing the physical
system to behave in an undesirable and unexpected way.

We show this in our next proposition by providing sufficient conditions and proving that
if a concurrent string is not possible in our theoretical closed-loop system S ||SD G, then SD
controller C will not allow it to occur in the physical implementation. By proving this result,
we essentially guarantee that the physical system under the control action of SD controller C
does not violate the behaviour, constraints and control laws specified by our theoretical ||SD

system.
It is important to point out that in the following proposition, we are not comparing the

control action of C with S only. This is because in the ||SD setting, designers are not required
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to manually incorporate all of the logic of explicit tick disablement in the supervisor model,
as they have the option of leaving it up to the ||SD operator to automatically perform this task
for them while constructing the closed-loop system. This implies that the individual control
action of S might not always match with C, which is neither required nor expected in the
presence of ||SD operator. Therefore, our goal is to ensure that the control action of C always
remains exactly in line with the controlled behaviour of S ||SD G, and not only S, which is
what we are proving in the proposition given below.

Proposition 8.3. For TDES plant G = (Y,Σ, δ, yo, Ym), let TDES S = (X,Σ, ξ, xo, Xm) be
a CS deterministic supervisor that is SD controllable with ||SD for G. Let G be complete with
||SD for S and have S-singular prohibitable behaviour with ||SD. Let C = (I, Z,Q,Ω,Φ,qres)
be the SD controller constructed from S.
(∀s ∈ L(S ||SD G) ∩ Lsamp) (∀s′ ∈ CBG(s))
If s takes C to state q and ss′ 6∈ L(S ||SD G), then C will reject s′.

Proof. Assume initial conditions. (1)
Let s ∈ L(S ||SD G) ∩ Lsamp and s′ ∈ CBG(s). (2)
Assume: s takes C to state q and ss′ /∈ L(S ||SD G) (3)
We will now show this implies C will reject s′.
We will use Proposition 3.1 of the SD setting to show our desired result. To do this, we first
need to setup things for the SD setting, and show that the preconditions are satisfied.
Let S = min(S ||SD G) = (X ′,Σ, ξ′, x′o, X

′
m) be constructed using Algorithms 2 and 3. (4)

⇒ L(S) = L(S ||SD G) by Corollary 8.1 (5)
We note that except for the CS deterministic property, the remaining conditions needed to
apply Proposition 3.1 are all language based. Thus, if they apply to S ||SD G, they also apply
to S.
By Corollary 5.1(v), we have: L(S ||SD G) = L(S) ∩ L(G)

⇒ s ∈ L(S) ∩ L(G) ∩ Lsamp by (2) (6)
By (1), we have that S is SD controllable with ||SD for G. By (4) and Corollary 8.1, we
conclude that S is CS deterministic. (7)
Let C = (I ′, Z ′, Q′,Ω′,Φ′,q′res) be the SD controller constructed from S.
Let Λ and Λ′ be the state mapping functions (Definition 3.15) for C and C respectively.
As S is CS deterministic by (7) and s ∈ L(S)∩Lsamp by (6), by Proposition 3.2 we conclude
that s will take C to state q′ = Λ′(ξ′(x′o, s)). (8)
As s ∈ L(S ||SD G) ∩ Lsamp by (2), by Proposition 5.1 we conclude that s ∈ L(S) ∩ Lsamp.
We can thus apply Proposition 3.2 and conclude q = Λ(ξ(xo, s)). (9)
As ss′ /∈ L(S ||SD G) by (3), this implies ss′ /∈ L(S) by (5). (10)
We now have s ∈ L(S) ∩ L(G) ∩ Lsamp by (6), s′ ∈ CBG(s) by (2), S is CS deterministic by
(7), s takes C to state q′ by (8), and ss′ /∈ L(S) by (10). Also, by (1), (5) and Corollary 8.1
we have that G is complete for S and has S-singular prohibitable behaviour, and S is SD
controllable for G.
We can now apply Proposition 3.1 and conclude that C will reject s′ at state q′. (11)
As all assumptions of Proposition 7.3 are satisfied, we thus conclude:

Φ(Λ(ξ(xo, s))) = Φ′(Λ′(ξ′(x′o, s)))
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⇒ Φ(q) = Φ′(q′) by (8) and (9)
As q and q′ have the same output, it follows that if C rejects s′ at state q′ (by (11)), then C
will also reject s′ at state q, as required.

8.2.2 SD Controller and Controllability

In general, a TDES supervisor is more expressive than an SD controller in terms of updating its
enablement and forcing information. This is because a supervisor can change this information
every time an event occurs. On the other hand, an SD controller is restricted to update its
enablement and forcing actions only after a tick event, and then it must keep this information
constant until the occurrence of the next tick .

For our ||SD setting, we are interested in showing that despite these differences between
the supervisor and the SD controller, the closed-loop behaviour of TDES plant G and TDES
supervisor S is exactly the same as the closed-loop behaviour of G and SD controller C. Please
note that the closed-loop behaviour of G and C is represented as L(V/G).

This notion is proved in our next theorem. We base our result on Theorem 3.1 of the SD
setting. Our result is useful as it demonstrates that when we implement our supervisor S as
an SD controller C, we are guaranteed to get the same expected closed-loop behaviour in the
physical implementation as our theoretical ||SD system, at least with respect to the required
enablement and forcing actions of the controller.

Theorem 8.1. For plant G = (Y,Σ, δ, yo, Ym) and CS deterministic supervisor S = (X,Σ, ξ,
xo, Xm) that is SD controllable with ||SD for G, let both TDES have finite state spaces,
let G be complete with ||SD for S, have proper time behaviour and S-singular prohibitable
behaviour with ||SD, and let S ||SD G be ALF. Let C = (I, Z,Q,Ω,Φ,qres) be the SD controller
constructed from S, and let V be the map constructed from C using Algorithm 4. Then:

L(V/G) = L(S ||SD G)

Proof. Assume initial conditions. (1)
Must show: L(V/G) = L(S ||SD G)

In order to use Theorem 3.1 of the SD setting to conclude our desired result, we first need to
setup things and show that its preconditions are satisfied.
Let S = min(S ||SD G) = (X ′,Σ, ξ′, x′o, X

′
m) be constructed using Algorithms 2 and 3. (2)

By (1), (2) and Corollary 8.1, we conclude that S is CS deterministic.
Let C = (I ′, Z ′, Q′,Ω′,Φ′,q′res) be the SD controller constructed from S, and let V be the
map constructed from C using Algorithm 1.
Let L(V/G) be the closed behaviour of V/G, and let L(V/G) be the closed behaviour of V/G.
Now we will show that L(V/G) = L(S ||SD G).
We first apply Proposition 8.2 and conclude: V = V
By Definition 2.24 of L(V/G) and L(V/G), this implies: L(V/G) = L(V/G)

By Corollary 5.1(v), we have: L(S ||SD G) = L(S) ∩ L(G)

Thus, to show that L(V/G) = L(S ||SD G), it is sufficient to show: L(V/G) = L(S) ∩ L(G)

By (1), (2), and Corollary 8.1, we have that G and S have finite state spaces, G is complete
for S, G has proper time and S-singular prohibitable behaviour, S is CS deterministic and
SD controllable for G, and S ||G is ALF.
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We can now apply Theorem 3.1 and conclude L(V/G) = L(S) ∩ L(G), as required.

Our next proposition shows that map V constructed from SD controller C using Algorithm
4 is indeed a TDES supervisory control for TDES plant G. We will base our result on
Proposition 3.3 of the SD setting which shows similar result for map V that is constructed
from SD controller C using Algorithm 1.

Proposition 8.4. For plant G = (Y,Σ, δ, yo, Ym) and CS deterministic supervisor S =
(X,Σ, ξ, xo, Xm) that is SD controllable with ||SD for G, let both TDES have finite state
spaces, let G be complete with ||SD for S, have proper time behaviour and S-singular pro-
hibitable behaviour with ||SD, and let S ||SD G be ALF. Let C = (I, Z,Q,Ω,Φ,qres) be the
SD controller constructed from S, and let V be the map constructed from C using Algorithm
4. Then, map V is a TDES supervisory control for G.

Proof. Assume initial conditions. (1)
In order to apply Proposition 3.3 of the SD setting, we first need to setup things and show
that its preconditions are satisfied.
Let S = min(S ||SD G) = (X ′,Σ, ξ′, x′o, X

′
m) be constructed using Algorithms 2 and 3. (2)

By (1), (2) and Corollary 8.1, we conclude that S is CS deterministic.
Let C = (I ′, Z ′, Q′,Ω′,Φ′,q′res) be the SD controller constructed from S, and let V be the
map constructed from C using Algorithm 1.
By (1), (2) and Corollary 8.1, we have that G and S have finite state spaces, G is complete
for S, G has proper time and S-singular prohibitable behaviour, S is CS deterministic and
SD controllable for G, and S ||G is ALF.
We can now apply Proposition 3.3 and conclude that map V is a TDES supervisory control
for G. (3)
We next apply Proposition 8.2 and conclude: V = V
As V is a TDES supervisory control for G by (3) and V = V, it follows immediately that V
is also a TDES supervisory control for G.

8.2.3 SD Controller and Event Generation

In a typical system, prohibitable events are often part of a supervisor’s implementation and
they completely depend on the supervisor’s discretion for their occurrence. In our ||SD setting,
this means that the resulting SD controller could potentially make these prohibitable events to
occur whenever it wants, possibly even when the plant model does not want them to happen.
The occurrence of a prohibitable event might correspond to setting an output of the controller
to true, executing a software routine, or sending a message.

In the following theorem, we provide sufficient conditions to make sure that the afore-
mentioned undesirable situation does not occur in our ||SD setting. Specifically, we formally
prove that if the stated conditions are met, then the SD controller C, translated from TDES
supervisor S, cannot generate a prohibitable event when TDES plant G won’t accept it.

This result is beneficial as it forbids the occurrence of illegal transitions and prevents
the implemented system from violating control laws. It also means that plant model will
accurately reflect the ||SD system’s behaviour when controlled by the SD controller C.

Theorem 8.2. For plant G = (Y,Σ, δ, yo, Ym) and CS deterministic supervisor S = (X,Σ, ξ,
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xo, Xm) that is SD controllable with ||SD for G, let both TDES have finite state spaces,
let G be complete with ||SD for S, have proper time behaviour and S-singular prohibitable
behaviour with ||SD, and let S ||SD G be ALF. Let C = (I, Z,Q,Ω,Φ,qres) be the SD controller
constructed from S, and let V be the map constructed from C using Algorithm 4.
(∀s ∈ L(V/G) ∩ Lsamp) (∀s′ ∈ Σ∗act) (∀σ ∈ Σhib)
If ss′ ∈ L(V/G) and σ then physically occurs after ss′ and before any other events can occur,
then ss′σ ∈ L(G).

Proof. Assume initial conditions. (1)
Let s ∈ L(V/G) ∩ Lsamp, s′ ∈ Σ∗act, and σ ∈ Σhib. (2)
Assume: ss′ ∈ L(V/G) and that σ physically occurs after ss′ and before any other events can
occur (3)
Must show: ss′σ ∈ L(G)

We will use Theorem 3.2 of the SD setting to show our desired result. To do this, we first
need to establish the preconditions of Theorem 3.2 and then the result will follow.
Let S = min(S ||SD G) = (X ′,Σ, ξ′, x′o, X

′
m) be constructed using Algorithms 2 and 3. (4)

By (1), (4) and Corollary 8.1, we conclude that S is CS deterministic.
Let C = (I ′, Z ′, Q′,Ω′,Φ′,q′res) be the SD controller constructed from S, and let V be the
map constructed from C using Algorithm 1.
Let L(V/G) be the closed-loop behaviour of V/G.
We can first apply Proposition 8.2 and conclude: V = V
⇒ L(V/G) = L(V/G)

⇒ s ∈ L(V/G) ∩ Lsamp, s′ ∈ Σ∗act, and σ ∈ Σhib by (2)
We also have that ss′ ∈ L(V/G) and that σ physically occurs after ss′ and before any other
events can occur by (3).
By (1), (4) and Corollary 8.1, we have that G and S have finite state spaces, G is complete
for S, G has proper time and S-singular prohibitable behaviour, S is CS deterministic and
SD controllable for G, and S ||G is ALF.
We can now apply Theorem 3.2 and conclude ss′ ∈ L(G).

8.2.4 SD Controller and Nonblocking

One of the fundamental properties that a TDES is required to satisfy is nonblocking. In
the ||SD setting, we wish to guarantee that if our theoretical ||SD system is nonblocking, then
the physical system implemented under the control action of SD controller will retain this
property. This is the main focus of our next proof.

The following proposition proves that if specified conditions are satisfied in the ||SD setting,
then the closed-loop behaviour of TDES plant G and SD controller C is nonblocking if and
only if the closed-loop behaviour of G and TDES supervisor S is nonblocking.

Proposition 8.5. For plant G = (Y,Σ, δ, yo, Ym) and CS deterministic supervisor S =
(X,Σ, ξ, xo, Xm) that is SD controllable with ||SD for G, let both TDES have finite state
spaces, let G be complete with ||SD for S, have proper time behaviour and S-singular pro-
hibitable behaviour with ||SD, and let S ||SD G be ALF. Let C = (I, Z,Q,Ω,Φ,qres) be the
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SD controller constructed from S, and let V be the map constructed from C using Algorithm
4. Then V is nonblocking for G if and only if S ||SD G is nonblocking.

Proof. Assume initial conditions. (1)
Must show: V is nonblocking for G if and only if S ||SD G is nonblocking
To show this, it is sufficient to show: L(V/G) = L(S ||SD G) and Lm(V/G)||SD = Lm(S ||SD G)

Applying Theorem 8.1 (by (1)), we conclude: L(V/G) = L(S ||SD G) (2)
Now all that remains is to show: Lm(V/G)||SD = Lm(S ||SD G)

By Definition 8.1 of Lm(V/G)||SD , we have:

Lm(V/G)||SD = L(V/G) ∩ Lm(S ||SD G)

= L(S ||SD G) ∩ Lm(S ||SD G) by (2)
= Lm(S ||SD G) as Lm(S ||SD G) ⊆ L(S ||SD G)

We thus conclude that V is nonblocking for G if and only if S ||SD G is nonblocking.

In the SD supervisory control theory, the SD setting is proven to be robust with respect
to multiple variations of concurrent strings and nonblocking. Specifically, if theoretical TDES
system is nonblocking, then TDES plant G under the control of SD controller C is shown to be
nonblocking, even if multiple concurrent strings with the same occurrence image are possible
at a given sampled state in the theoretical SD system and only one of these concurrent strings
is actually possible in the physical implementation.

We also wish to demonstrate such robustness with respect to nonblocking for our ||SD

setting. In order to be able to do that, first we present a supporting proposition that will help
us in proving our main result. In the following proposition, we show that for any V ′ that is a
TDES supervisory control for TDES plant G, V ′ is concurrent supervisory control equivalent
(CSCE: Definition 3.24) to TDES supervisory control V of the ||SD setting if and only if V ′ is
CSCE to TDES supervisory control V of the SD setting.

Proposition 8.6. Let TDES G = (Y,Σ, δ, yo, Ym) be a plant to be controlled. Let TDES
S = (X,Σ, ξ, xo, Xm) be a CS deterministic supervisor that is SD controllable with ||SD

for G, and let G be complete with ||SD for S. Let TDES supervisor S = min(S ||SD

G) = (X ′,Σ, ξ′, x′o, X
′
m) constructed using Algorithms 2 and 3 be CS deterministic. Let

C = (I, Z,Q,Ω,Φ,qres) be the SD controller constructed from S, and V be the map con-
structed from C using Algorithm 4. Let C = (I ′, Z ′, Q′,Ω′,Φ′,q′res) be the SD controller
constructed from S, and V be the map constructed from C using Algorithm 1. Then, for all
V ′ that are TDES supervisory controls for G, V ′ is concurrent supervisory control equivalent
to V if and only if V ′ is concurrent supervisory control equivalent to V.
Proof. Assume initial conditions. (1)
Let V ′ be a TDES supervisory control for G.
Must show: V ′ is concurrent supervisory control equivalent (CSCE) to V if and only if V ′ is
CSCE to V
Let L(V/G), L(V/G) and L(V ′/G) be the closed behaviours of V/G, V/G and V ′/G respec-
tively.
We can now apply Proposition 8.2 (by (1)) and conclude: V = V (2)
⇒ L(V/G) = L(V/G) (3)
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We next note that by Definition 3.24, if V ′ is CSCE to V , this implies:

1) (∀s ∈ L(G))V ′(s) ⊆ V (s)

2) (∀s ∈ L(V ′/G) ∩ Lsamp) (∀s′ ∈ Lconc) ss′ ∈ L(V/G)⇒
(∃s′′ ∈ Lconc) ss′′ ∈ L(V ′/G) ∧Occu(s′) = Occu(s′′)

However, as V = V by (2), and L(V/G) = L(V/G) by (3), we can substitute into the above
and get:

1) (∀s ∈ L(G))V ′(s) ⊆ V(s)

2) (∀s ∈ L(V ′/G) ∩ Lsamp) (∀s′ ∈ Lconc) ss′ ∈ L(V/G)⇒
(∃s′′ ∈ Lconc) ss′′ ∈ L(V ′/G) ∧Occu(s′) = Occu(s′′)

This implies that V ′ is CSCE to V.

We will now present our final result that proves the robustness of the ||SD setting with
respect to different variations of concurrent strings and nonblocking. Our next theorem shows
that if the theoretical ||SD system satisfies the stated conditions and the closed-loop behaviour
of TDES plant G and SD controller C is nonblocking, then any of its CSCE variations will
also be nonblocking. This theorem makes use of Theorem 3.3 of the SD setting to conclude
the desired result.

This result is beneficial as it provides liberty to practitioners to choose any specific imple-
mentation of S ||SD G without having to worry about potential blocking of the physical system.
If they fulfill the specified conditions, then they are guaranteed that the physical system under
the action of the SD controller C will be nonblocking, even if their chosen implementation only
allows a subset of variations of a concurrent string out of all variations possible in S ||SD G.

Theorem 8.3. For plant G = (Y,Σ, δ, yo, Ym) and CS deterministic supervisor S = (X,Σ, ξ,
xo, Xm) that is SD controllable with ||SD for G, let both TDES have finite state spaces,
let G be complete with ||SD for S, have proper time behaviour and S-singular prohibitable
behaviour with ||SD, and let S ||SD G be ALF. Let C = (I, Z,Q,Ω,Φ,qres) be the SD controller
constructed from S, and let V be the map constructed from C using Algorithm 4. Then, for all
V ′ that are TDES supervisory controls for G, if V is nonblocking for G and V ′ is concurrent
supervisory control equivalent to V , then V ′ is also nonblocking for G.

Proof. Assume initial conditions. (1)
Let V ′ be a TDES supervisory control for G.
Assume: V ′ is concurrent supervisory control equivalent (CSCE) to V and that V is non-
blocking for G. By Definition 8.2, this implies: Lm(V/G)||SD = L(V/G) (2)
Must show: V ′ is nonblocking for G

Let L(V ′/G) and Lm(V ′/G) be the closed and marked behaviour of V ′/G.
Sufficient to show: Lm(V ′/G)||SD = L(V ′/G)

We first define our setting and notation for the proof.
Let S = min(S ||SD G) = (X ′,Σ, ξ′, x′o, X

′
m) be constructed using Algorithms 2 and 3. (3)

By (1), (3) and Corollary 8.1, we conclude that S is CS deterministic.
Let C = (I ′, Z ′, Q′,Ω′,Φ′,q′res) be the SD controller constructed from S, and let V be the
map constructed from C using Algorithm 1.
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Let L(V/G) and L(V/G) be the closed behaviours of V/G and V/G respectively.
We now apply Proposition 8.2 and conclude: V = V
⇒ L(V/G) = L(V/G) (4)
Now we will show that Lm(V ′/G)||SD = L(V ′/G).

By Definition 8.1 of Lm(V ′/G)||SD , it is sufficient to show:

L(V ′/G) ∩ Lm(S ||SD G) = L(V ′/G)

⇒ L(V ′/G) ∩ Lm(S) ∩ Lm(G) = L(V ′/G) by Corollary 5.1(vi)

⇒ Lm(V ′/G) = L(V ′/G) by Definition 3.22 of Lm(V ′/G)

This means, in order to show that V ′ is nonblocking for G in our ||SD setting, it is sufficient
to show that V ′ is nonblocking for G in the SD setting (Definition 3.23).
We will show this by using Theorem 3.3 of the SD setting. We will first establish the precon-
ditions of Theorem 3.3 and then the result will follow.
By (2), we have: Lm(V/G)||SD = L(V/G)

⇒ L(V/G) ∩ Lm(S ||SD G) = L(V/G) by Definition 8.1 of Lm(V/G)||SD

⇒ L(V/G) ∩ Lm(S ||SD G) = L(V/G) by (4)

⇒ L(V/G) ∩ Lm(S) ∩ Lm(G) = L(V/G) by Corollary 5.1(vi)

⇒ Lm(V/G) = L(V/G) by Definition 3.22 of Lm(V/G)

By Definition 3.23, this indicates that V is nonblocking for G.
Applying Proposition 8.6, we note that as V ′ is CSCE to V by (2), this implies that V ′ is
CSCE to V.
By (1), (3) and Corollary 8.1, we have that G and S have finite state spaces, G is complete
for S, G has proper time and S-singular prohibitable behaviour, S is CS deterministic and
SD controllable for G, and S ||G is ALF.
We now apply Theorem 3.3 and conclude that V ′ is nonblocking for G in the SD setting.
By showing that V ′ is nonblocking for G in the SD setting, we have thus shown that V ′ is
nonblocking for G in our ||SD setting, as required.

9 Symbolic Verification in SD Synchronous Product Setting

In this section, we discuss theoretical concepts and predicate-based algorithms to symbolically
verify various properties in our ||SD setting. This section is based on symbolic verification of
the SD supervisory control methodology presented in [42], who in turn built upon the symbolic
computation and verification work done by [36] and [31].

We begin this section by introducing the fundamental concepts of predicates and predicate
transformers. This is followed by a discussion on how to use logic formulas to represent state
subsets and transitions in our ||SD setting. After that, we describe the symbolic computation
of transitions, inverse transitions and predicate transformers. Finally, we present algorithms
that can be used to verify various properties in our ||SD setting. All data representations,
computations and verifications discussed in this section are based on ordered binary decision
diagrams (BDD) [9, 10].
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Please note that the algorithms discussed in this section were originally developed as part of
the SD supervisory control methodology by [42]. We have tweaked them to match our adapted
properties of the ||SD setting introduced in Section 4. Since some properties of our ||SD setting
are logically similar to the SD setting, their corresponding algorithm steps remain unchanged.
These unmodified algorithms are included in Appendix B for the sake of completeness.

Note: In this section, we will represent logical equivalence between state predicates by ‘≡’,
logical true by ‘T ’ and logical false by ‘F ’ respectively. Also, we will use S to refer to the
supervisor of the SD setting (Section 3).

9.1 Predicates and Predicate Transformers

This section introduces the concepts of state predicates and predicate transformers from [36].

9.1.1 State Predicates

For the following definitions, let TDES G = (Q,Σ, δ, qo, Qm).

Definition 9.1. A predicate P defined on state set Q is a function P : Q→ {T, F} identified
by the corresponding state subset QP := {q ∈ Q |P (q) = T} ⊆ Q.

If q ∈ QP , then q |= P means “q satisfies P ” or “P includes q”. Thus, we have q |= P ⇐⇒
P (q) = T .

Definition 9.2. A predicate defined on the state set of a TDES is referred to as a state
predicate. The state predicate true is identified by Q, state predicate false by ∅, and state
predicate Pm by Qm.

We write Pred(Q) to represent the set of all predicates defined on Q. Thus, Pred(Q)
is identified by Pwr(Q). For P ∈ Pred(Q), st(P ) denotes the corresponding state subset
QP ⊆ Q which identifies P . We use pr(Q) to represent the predicate that is identified by Q.

For q ∈ Q and P, P1, P2 ∈ Pred(Q), the following predicate operations can be used to
build various boolean expressions:
• (¬P )(q) = T ⇐⇒ P (q) = F

• (P1 ∧ P2)(q) = T ⇐⇒ P1(q) = T and P2(q) = T

• (P1 ∨ P2)(q) = T ⇐⇒ P1(q) = T or P2(q) = T

• (P1 − P2)(q) = T ⇐⇒ P1(q) = T and P2(q) = F

Definition 9.3. The partial order relation � over Pred(Q) is defined as:
(∀P1, P2 ∈ Pred(Q))P1 � P2 ⇐⇒ (P1 ∧ P2) ≡ P1

It is obvious that QP1 ⊆ QP2 ⇐⇒ P1 � P2. Thus, we have (∀q ∈ Q) q |= P1 =⇒ q |= P2.

Definition 9.4. For some state set Q, let P1, P2 ∈ Pred(Q). P1 is a subpredicate of P2 if
P1 � P2. We say P1 is stronger than P2, and P2 is weaker than P1.

Sub(P ) represents the set of all subpredicates of P ∈ Pred(Q) such that Sub(P ) is iden-
tified by Pwr(QP ).

9.1.2 Predicate Transformers

Let TDES G = (Q,Σ, δ, qo, Qm) and P ∈ Pred(Q). A predicate transformer is defined as
a function f : Pred(Q) → Pred(Q). In our subsequent sections, we will use the following
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predicate transformers from [36].

i) R(G, P )
The reachability predicate R(G, P ) holds true for those states in G that can be reached
from qo by states satisfying P . It is inductively defined as follows:

1. qo |= P =⇒ qo |= R(G, P ).
2. q |= R(G, P ) & σ ∈ Σ & δ(q, σ)! & δ(q, σ) |= P =⇒ δ(q, σ) |= R(G, P ).
3. No other states satisfy R(G, P ).

In simple words, a state q |= R(G, P ) if and only if there exists a path from qo to q in
G and each state in that path satisfies P . R(G, true) represents the set of all reachable
states in Q.

ii) CR(G, P )
The coreachability predicate CR(G, P ) holds true for those states in G that can reach a
marked state by states satisfying P . It is inductively defined as follows:

1. Pm ∧ P ≡ false =⇒ CR(G, P ) ≡ false.
2. q |= Pm ∧ P =⇒ q |= CR(G, P ).
3. q |= CR(G, P ) & q′ |= P & σ ∈ Σ & δ(q′, σ)! & δ(q′, σ) = q =⇒ q′ |= CR(G, P ).
4. No other states satisfy CR(G, P ).

In other words, a state q |= CR(G, P ) if and only if there exists a path from q to some
marked state in G and each state in that path satisfies P . CR(G, true) represents the set
of all coreachable states in Q.

iii) CR(G, P ′,Σ′, P )
Let P ′ ∈ Pred(Q) and Σ′ ⊆ Σ. Once G, P ′ and Σ′ are fixed, CR(G, P ′,Σ′, P ) becomes
a predicate transformer. The predicate CR(G, P ′,Σ′, P ) holds true for those states in G
that can reach a state satisfying P ′ by states satisfying P and transitions with events in
Σ′. It is inductively defined as follows:

1. P ′ ∧ P ≡ false =⇒ CR(G, P ′,Σ′, P ) ≡ false.
2. q |= P ′ ∧ P =⇒ q |= CR(G, P ′,Σ′, P ).
3. q |= CR(G, P ′,Σ′, P ) & q′ |= P & σ ∈ Σ′ & δ(q′, σ)! & δ(q′, σ) = q =⇒ q′ |=
CR(G, P ′,Σ′, P ).

4. No other states satisfy CR(G, P ′,Σ′, P ).

This means that a state q |= CR(G, P ′,Σ′, P ) if and only if there exists a path from
q to a state satisfying P ′ in G and each state in that path satisfies P and each transition
event σ is in Σ′.

By comparing the definitions of CR and CR, we note that CR(G, Pm,Σ, P ) ≡ CR(G, P ).

9.2 Symbolic Representation

In this section, we present the symbolic representation for states and transitions in our ||SD

setting. Specifically, we discuss how to use logic formulas to represent state subsets and
transitions for our ||SD system. We have based our work on the symbolic representation of the
SD setting given in [42], who in turn borrowed it from [36].
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Let TDES G = (Q,Σ, δ, qo, Qm) = G1 ||SD G2 ||SD . . . ||SD Gn be constructed by syn-
chronizing component TDES Gi = (Qi,Σi, δi, qo,i, Qm,i) where i = 1, 2, . . . , n, using the SD
synchronous product operator. For any state q ∈ Q, by the definition of Q in the ||SD operator
(Definition 4.1), we have q = (q1, q2, . . . , qn), where qi ∈ Qi.

It is worth pointing out that TDES G might contain some unreachable states. However,
checking for unreachable states while verifying different properties of the TDES is expensive,
and does not seem to provide any benefit as these unreachable states do not contribute towards
the closed and marked behaviour of G, i.e. L(G) and Lm(G). As a result, the property is
first checked (possibly including unreachable states) and then a reachability check is performed
over the entire system, and any unreachable states are excluded from the results. This also
allows us to do one reachability check, and share the results across several algorithms.

9.2.1 State Subsets

Definition 9.5. For TDES G = G1 ||SD G2 ||SD . . . ||SD Gn, let i = 1, 2, . . . , n and qi ∈ Qi.
The state variable vi for the ith component TDES Gi is a variable of domain Qi. If vi is
assigned the value qi, then vi = qi returns T , otherwise it returns F .

Please note that ‘=’ has been used to test if vi has been assigned the value qi.

Definition 9.6. For TDES G = G1 ||SD G2 ||SD . . . ||SD Gn, the state variable vector v
is a vector [v1, v2, . . . , vn] of state variables vi from each component TDES Gi, where i =
1, 2, . . . , n. For state subset A ⊆ Q, the predicate PA for A can be written as:

PA(v) :=
∨
q∈A

(v1 = q1 ∧ v2 = q2 ∧ . . . ∧ vn = qn)

For convenience, instead of PA(v), we will simply write PA if v is understood.

9.2.2 Transitions

Definition 9.7. For TDES G = G1 ||SD G2 ||SD . . . ||SD Gn, let Σhib ⊂ Σ and σ ∈ Σ.
A transition predicate Nσ : Q × Q → {T, F} is a boolean function that identifies all the
transitions for σ in G and is defined as follows:

(∀q, q′ ∈ Q)Nσ(q, q′) :=


T if δ(q, σ)! & δ(q, σ) = q′ & ((σ 6= τ) OR

((σ = τ) & (∀σ′ ∈ Σhib)¬ δ(q, σ′)!))
F otherwise

For each TDES, two different sets of state variables are needed to distinguish between
source and destination states of transitions. These state variables and their corresponding
vectors are defined below.

Definition 9.8. For TDES G = G1 ||SD G2 ||SD . . . ||SD Gn, let i = 1, 2, . . . , n. For each
component TDES Gi, we have the normal state variable vi (source state) and the prime state
variable v′i (destination state), both with domain Qi. For G, we have the normal state variable
vector v = [v1, v2, . . . , vn] and the prime state variable vector v′ = [v′1, v

′
2, . . . , v

′
n].

For each σ ∈ Σ, the transition predicate for σ, Nσ, can be written as follows:

Nσ(v,v′) :=


∧

{1≤i≤n}

( ∨
{qi,q′i∈Qi|δi(qi,σ)=q′i}

(vi = qi) ∧ (v′i = q′i)

)
if X

F otherwise
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where X = (σ 6= τ) OR

σ = τ & (∀σ′ ∈ Σhib)¬

( ∧
{1≤i≤n}

( ∨
{qi∈Qi|δi(qi,σ′)!}

(vi = qi)

))
Essentially, it says that for each σ ∈ Σ−{τ}, if we set v = q and v′ = q′ such that δ(q, σ) = q′,
then Nσ(v,v′) will return T . However, for σ = τ, Nσ(v,v′) will return T only if we set v = q
and v′ = q′ such that δ(q, σ) = q′ and for all events σ′ ∈ Σhib, ¬ δ(q, σ′)!.

When a TDES is designed as several smaller component TDES, designers often model
these components over different event sets. In order to use the above-mentioned formula for
Nσ, selfloops need to be added at every state of the component TDES for events that are
missing from their event sets. This makes the transition predicate a lot more complicated and
cluttered. In order to resolve this issue, the following version of Nσ has been defined.

Definition 9.9. To represent the transition for a given σ ∈ Σ, we use the transition tuple
(vσ,v

′
σ, Nσ) such that vσ := {vi ∈ v |σ ∈ Σi},v′σ := {v′i ∈ v′ |σ ∈ Σi} and Nσ is defined as:

Nσ(v,v′) :=


∧

{1≤i≤n|σ∈Σi}

( ∨
{qi,q′i∈Qi|δi(qi,σ)=q′i}

(vi = qi) ∧ (v′i = q′i)

)
if X

F otherwise

where X = (σ 6= τ)OR

σ = τ& (∀σ′ ∈ Σhib)¬

( ∧
{1≤i≤n|σ′∈Σi}

( ∨
{qi∈Qi|δi(qi,σ′)!}

(vi = qi)

))
It is noteworthy that although selflooped transitions are not explicitly specified in the

above definition, the tuple still expresses the selfloop information. This implies that this
definition can be used to create transition tuples for selflooped components as well.

9.3 Symbolic Computation

By using the logic formula representation for state subsets and transitions of our ||SD system
defined in the previous section, this section discusses the symbolic computation of transitions,
inverse transitions and predicate transformers with respect to our ||SD setting. We have built
our work on the symbolic computation work done by [36], which was used for the SD setting
by [42].

9.3.1 Transitions and Inverse Transitions

Let TDES G = (Q,Σ, δ, qo, Qm) = G1 ||SD G2 ||SD . . . ||SD Gn be constructed by synchronizing
component TDES Gi = (Qi,Σi, δi, qo,i, Qm,i) where i = 1, 2, . . . , n, using the SD synchronous
product operator.

For any state q ∈ Q and event σ ∈ Σ, we want to compute the transition δ(q, σ). An
efficient way to compute transitions is to compute the predicate of the set of next states from
the predicate of the set of current states.

For P ∈ Pred(Q), we can directly compute the function δ̂ : Pred(Q) × Σ → Pred(Q)
which is defined as follows:

(∀P ∈ Pred(Q)) (∀σ ∈ Σ) δ̂(P, σ) := pr({q′ ∈ Q | (∃q |= P ) δ(q, σ) = q′ ∧ ((σ 6= τ) ∨
((σ = τ) ∧ (∀σ′ ∈ Σhib)¬ δ(q, σ′)!))})
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In order to compute the predicate of the set of source states from the predicate of the set
of destination states, we define the inverse function δ̂−1 : Pred(Q)×Σ→ Pred(Q) as follows:

(∀P ∈ Pred(Q)) (∀σ ∈ Σ) δ̂−1(P, σ) := pr({q ∈ Q | δ(q, σ) |= P ∧ ((σ 6= τ) ∨
((σ = τ) ∧ (∀σ′ ∈ Σhib)¬ δ(q, σ′)!))})

As BDD [9, 10] does not support first order logic by itself, [36] has used the existential
quantifier elimination method for finite domain [2] to compute δ̂(P, σ) and δ̂−1(P, σ). We will
use the same method to compute our functions δ̂ and δ̂−1 in the ||SD setting.

Definition 9.10. For TDES G = G1 ||SD G2 ||SD . . . ||SD Gn, let σ ∈ Σ and (vσ,v
′
σ, Nσ) be

the transition tuple for σ in G. For i = 1, 2, . . . , n, if vi ∈ vσ and v′i ∈ v′σ, then ∃viNσ and
∃v′iNσ are defined as follows:

∃viNσ :=
∨
qi∈Qi

Nσ[qi/vi] ∃v′iNσ :=
∨
qi∈Qi

Nσ[qi/v
′
i]

Here, Nσ[qi/vi] is the resulting predicate with each term vi of Nσ substituted by qi, and
Nσ[qi/v

′
i] is the resulting predicate with each term v′i of Nσ substituted by qi. In simple

words, ∃vi and ∃v′i eliminate the variables vi and v′i respectively from Nσ.

For σ ∈ Σ, let (vσ,v
′
σ, Nσ) be the transition tuple for σ in G. For k ∈ {1, 2, . . . , n}, let

vσ = {v̂1, v̂2, .., v̂k} and v′σ = {v̂′1, v̂′2, . . . , v̂′k}.
For convenience, we write ∃vσNσ to represent ∃v̂1(∃v̂2 . . . (∃v̂kNσ) . . .). The resulting logic

formula ∃vσNσ contains only the prime variables in v′σ. If we substitute all the prime variables
by normal variables, denoted as ∃vσNσ[v′σ → vσ], then the resulting predicate represents the
set of destination states for σ transitions in G. This means that each state in this set has a
σ transition entering it, as defined by our Nσ. This variable substitution is required because
normal variables are used to express the logic formula of a state subset predicate.

Likewise, for convenience, we write ∃v′σNσ to represent ∃v̂′1(∃v̂′2 . . . (∃v̂′kNσ) . . .). The re-
sulting logic formula ∃v′σNσ contains only the normal variables in vσ, therefore no variable
substitution is required in this case. ∃v′σNσ represents the predicate for the set of source states
for σ transitions in G. This means that each state in this set has a σ transition leaving it, as
defined by our Nσ.

From the above description, it is obvious that ∃vσNσ[v′σ → vσ] computes the predicate
representing the set of destination states {q′ ∈ Q | (∃q ∈ Q) δ(q, σ) = q′ ∧ ((σ 6= τ) ∨ ((σ =
τ) ∧ (∀σ′ ∈ Σhib)¬δ(q, σ′)!))}. Similarly, ∃v′σNσ computes the predicate representing the set
of source states {q ∈ Q | δ(q, σ)! ∧ ((σ 6= τ) ∨ ((σ = τ) ∧ (∀σ′ ∈ Σhib)¬δ(q, σ′)!))}.

By using the existential quantifier elimination method, we can now compute δ̂ and δ̂−1

symbolically as follows.

Definition 9.11. For TDES G = G1 ||SD G2 ||SD . . . ||SD Gn, let σ ∈ Σ, P ∈ Pred(Q) and
(vσ,v

′
σ, Nσ) be the transition tuple for σ in G. Then, δ̂(P, σ) is computed as follows:

δ̂(P, σ) := (∃vσ(Nσ ∧ P )) [v′σ → vσ]

In the above definition, by first computing Nσ ∧P , we are restricting σ transitions to only
those source states that satisfy P .

Definition 9.12. For TDES G = G1 ||SD G2 ||SD . . . ||SD Gn, let σ ∈ Σ, P ∈ Pred(Q) and
(vσ,v

′
σ, Nσ) be the transition tuple for σ in G. Then, δ̂−1(P, σ) is computed as follows:

δ̂−1(P, σ) := ∃v′σ(Nσ ∧ (P [vσ → v′σ]))

In this definition, P [vσ → v′σ] returns predicate P with its normal variables substituted

108



Algorithm 5 R(G, P )

1: P1 ← P ∧ pr({qo})
2: repeat
3: P2 ← P1

4: for i← 1 to n do
5: P3 ← false
6: repeat
7: Pnew ← P1 − P3

8: P3 ← P1

9: P1 ← P1 ∨
( ∨
σ∈Σi

(δ̂(Pnew, σ) ∧ P )

)
10: until P1 ≡ P3

11: end for
12: until P1 ≡ P2

13: return P1

by prime variables. As prime variables represent destination states, this has the effect of
restricting σ transitions to only those destination states that satisfy P .

9.3.2 Predicate Transformers

In order to compute the predicate transformers R and CR defined in Section 9.1.2, Algorithms
5 and 6 have been taken from [36]. Please refer to [36] for a detailed description of these
algorithms.

Let TDES G = (Q,Σ, δ, qo, Qm) = G1 ||SD G2 ||SD . . . ||SD Gn be constructed by syn-
chronizing component TDES Gi = (Qi,Σi, δi, qo,i, Qm,i) where i = 1, 2, . . . , n, using the SD
synchronous product operator. Let P ∈ Pred(Q).

Reachability Check Algorithm 511 computes R(G, P ) by taking two parameters as input,
a TDES G and a predicate P . It then computes and returns a predicate P1 containing the
set of states in G that are reachable by the initial state qo via states satisfying P .

It is interesting to note that this algorithm has been used in the SD setting by [42], and
we will also use the same algorithm in our ||SD setting without any modification. Although
the steps of the algorithm are the same, it will most likely give different results in the SD and
the ||SD setting.

In the SD setting, the input to Algorithm 5 is TDES G that represents the closed-loop
system formed by combining plant and supervisor models defined over the same event set
using the synchronous product. For this input, it returns a predicate representing the set of
reachable states of this closed-loop system. This predicate is primarily computed at line 9 by
using the definition of δ̂ that is specified for the SD setting.

In the following sections, while discussing symbolic verification of our ||SD setting, we
will use Algorithm 5 to perform reachability check on the TDES that represents our closed-
loop system. In this case, the input to this algorithm will be TDES G that represents the
SD synchronous product of plant and supervisor models, and its output will be the predicate

11Readers will find some differences between Algorithm 6.3 given in [36] and our Algorithm 5. This is because
of the logical errors that were present in the original algorithm and we have fixed those errors in this version.
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containing the set of reachable states of our closed-loop system. As we are using this algorithm
in the ||SD setting, it is implicit that the algorithm will perform all computations based on the
function δ̂ that we have defined for our ||SD setting. Please recall that the function δ̂(P, σ)
(Definition 9.11) relies on Nσ to compute the predicate, and the definition of Nσ in our ||SD

setting (Definition 9.9) is different from the SD setting (Definition B.3).
Therefore, due to different ways of constructing the input TDES G that is passed in to

this algorithm, line 9 uses different underlying definitions of δ̂ in the SD and ||SD settings. For
this reason, the seemingly same looking Algorithm 5 will potentially generate different results
in the two different settings.

Coreachability Check Algorithm 6 computes and returns predicate P1 containing the set
of states of input TDES G that can reach a state satisfying P ′ by states satisfying P and
transitions with events in Σ′.

Algorithm 6 CR(G, P ′,Σ′, P )

1: P1 ← P ′ ∧ P
2: repeat
3: P2 ← P1

4: for i← 1 to n do
5: repeat
6: P3 ← P1

7: P1 ← P1 ∨
( ∨
σ∈Σ′∩Σi

(δ̂−1(P1, σ) ∧ P )

)
8: until P1 ≡ P3

9: end for
10: until P1 ≡ P2

11: return P1

Like Algorithm 5, we are using Algorithm 6 of the SD setting unchanged in our ||SD setting.
As explained above, the only difference is the TDES G that we provide as an input to this
algorithm. Based on how TDES G has been constructed, Algorithm 6 uses the corresponding
definition of function δ̂−1, which in turn relies on Nσ, to compute the required predicate in
the SD and the ||SD setting, as appropriate.

Please note that we will use this algorithm to compute CR(G, P ) which is equivalent to
CR(G, Pm,Σ, P ).

9.4 Construction of Closed-Loop System

In our ||SD setting, we construct the closed-loop system by synchronizing TDES plant G and
TDES supervisor S using the SD synchronous product operator, i.e. S ||SD G. Instead of
designing monolithic TDES, if G and S are modelled in a modular fashion, then we assume
that these component plant and supervisor models are independently combined using product
operator to form G and S respectively.

In case, if plant and supervisor components are combined using synchronous product, then
we can simply add selfloops at every state of the component TDES for events that are missing
from their event sets to obtain our G and S.

For TDES plant components G′i = (Yi,Σi, δi, yo,i, Ym,i) and G′ = G′1 ||G′2 || . . . ||G′k, where
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i = 1, 2, . . . , k, let Gi = selfloop(G′i,Σ− Σi). The TDES plant G is then defined as follows:
G = G1 ×G2 × . . .×Gk = (Y,Σ, δ, yo, Ym)

For modular TDES supervisors S′j = (Xj ,Σj , ξj , xo,j , Xm,j) and S′ = S′1 || S′2 || . . . || S′n,
where j = 1, 2, . . . , n, let Sj = selfloop(S′j ,Σ− Σj). The TDES supervisor S is then defined
as follows:

S = S1 × S2 × . . .× Sn = (X,Σ, ξ, xo, Xm)

Using this approach, both G and S are now defined over the same event set Σ. Finally,
we construct our closed-loop system, Gcl, as follows:

Gcl = S ||SD G = (Q,Σ, η, qo, Qm)

Here, all five elements of Gcl’s tuple are defined as per Definition 4.1 of the SD synchronous
product operator. Please note that at this stage, Gcl might contain some unreachable states.

Next, we borrow some definitions of the SD setting from [42]. As our strategy of con-
structing G and S from component TDES is same as the SD setting, these definitions work
well in our ||SD setting just by changing the way of constructing the closed-loop system.

Definition 9.13. Let Gcl = S ||SD G = (Q,Σ, η, qo, Qm), where G = G1 ×G2 × . . .×Gk =
(Y,Σ, δ, yo, Ym) and S = S1 × S2 × . . .× Sn = (X,Σ, ξ, xo, Xm). For a given event σ ∈ Σ, the
σ plant transition predicate NG,σ : Q×Q→ {T, F} can be expressed as follows:

NG,σ(v,v′) :=
∧

{1≤i≤k}

( ∨
{yi,y′i∈Yi|δi(yi,σ)=y′i}

(vi = yi) ∧ (v′i = y′i)

)
Likewise, the σ supervisor transition predicate NS,σ : Q × Q → {T, F} can be expressed as
follows:

NS,σ(v,v′) :=
∧

{1≤j≤n}

( ∨
{xj ,x′j∈Xj |ξj(xj ,σ)=x′j}

(vj+k = xj) ∧ (v′j+k = x′j)

)
It is noteworthy that NG,σ and NS,σ are defined on Q×Q and use the variables v and v′

like Nσ. We will use NG,σ to determine if there is a σ transition defined at the plant portion
of the indicated states. Similarly, NS,σ will be used to determine if there is a σ transition
defined at the supervisor portion of the indicated states. They must be defined over Q × Q
so that we can compare and combine their results with other state predicates on Q.

Definition 9.14. For TDES plant G = (Y,Σ, δ, yo, Ym) and some σ ∈ Σ, let NG,σ be the σ
plant transition predicate. For P ∈ Pred(Q), the function δ̂G : Pred(Q) × Σ → Pred(Q) is
defined as follows:

δ̂G(P, σ) := (∃v(NG,σ ∧ P ))[v′ → v]

The inverse function δ̂−1
G : Pred(Q)× Σ→ Pred(Q) is defined as follows:

δ̂−1
G (P, σ) := ∃v′(NG,σ ∧ (P [v→ v′]))

Definition 9.15. For TDES supervisor S = (X,Σ, ξ, xo, Xm) and some σ ∈ Σ, let NS,σ be the
σ supervisor transition predicate. For P ∈ Pred(Q), the function ξ̂ : Pred(Q)×Σ→ Pred(Q)
is defined as follows:

ξ̂(P, σ) := (∃v(NS,σ ∧ P ))[v′ → v]

The inverse function ξ̂−1 : Pred(Q)× Σ→ Pred(Q) is defined as follows:
ξ̂−1(P, σ) := ∃v′(NS,σ ∧ (P [v→ v′]))
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9.5 Symbolic Verification

In this section, we discuss predicate-based algorithms from [42] that we have modified to verify
various properties of our ||SD system. Please note that due to space limitations, we will not
provide a detailed explanation for the unchanged parts of these modified algorithms. Please
refer to [42] for the complete logical description of all algorithms. The unmodified algorithms
that can be used to check other ||SD properties are included in Appendix B for the sake of
completeness.

With respect to the unchanged algorithms given in Appendix B, we wish to point out
that although the steps of these algorithms remain unaltered, the input TDES that we pass
in to these algorithms for verification are certainly different than the ones assumed in the
SD setting. Also, the underlying definitions for some variables and functions used by these
algorithms have changed with respect to our ||SD setting. Therefore, in order to use these
algorithms to verify properties in our ||SD setting, it is an implicit assumption that these
algorithms operate on our input, and use the variable and function definitions that we have
specified in this section for our ||SD setting.

Precisely, algorithms for the following properties remain unchanged in our ||SD setting.
Please refer to Sections B.2 and B.3 for further details.
1. Nonblocking (Algorithm 12)
2. Activity-loop-free (ALF) (Algorithm 13)
3. Proper time behaviour (Algorithm 14)
4. S-singular prohibitable behaviour with ||SD (Algorithm 16: lines 12-16)
5. SD controllability with ||SD

i. Point ii (Algorithms 15, 16, 17, 18, 19)
ii. Point iii (Algorithm 20)

Now we will discuss our modified algorithms for the ||SD setting. With TDES plant G =
(Y,Σ, δ, yo, Ym) and TDES supervisor S = (X,Σ, ξ, xo, Xm), our closed-loop system is Gcl =
S ||SD G = (Q,Σ, η, qo, Qm). As per the definition of state set Q in ||SD operator, for every
state q ∈ Q, there must exist a state x ∈ X and y ∈ Y such that q = (x, y).

The system event set Σ is defined as Σ = Σhib ∪̇Σu ∪̇ {τ}, where Σhib and Σu represent the
set of prohibitable events and uncontrollable events of Gcl respectively. The set of controllable
events is Σc = Σhib ∪̇ {τ}, and the set of activity events is Σact = Σhib ∪̇Σu.

9.5.1 Plant Completeness with ||SD

According to Definition 4.2 of plant completeness with ||SD property, the states of Gcl, where
a prohibitable event is enabled at the corresponding state in S but it is not possible at the
corresponding state in G, are the incomplete states that cause this property to fail. We
can express the set of these states, Qincomplete, and its corresponding predicate Pincomplete :=
pr(Qincomplete) as follows:

Qincomplete := {q = (x, y) ∈ Q | (∃σ ∈ Σhib) ξ(x, σ)! & ¬ δ(y, σ)!}

Pincomplete :=
∨

σ∈Σhib

(
ξ̂−1(true, σ) ∧ ¬ δ̂−1

G (true, σ)

)
Here, ξ̂−1 (Definition 9.15) and δ̂−1

G (Definition 9.14) are the inverse functions for supervisor
S and plant G respectively.
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Algorithm 7 CheckPlantCompleteness(G, S)
1: Pincomplete ← false
2: for all (σ ∈ Σhib) do
3: Pincomplete ← Pincomplete ∨ (ξ̂−1(true, σ) ∧ ¬ δ̂−1

G (true, σ))
4: end for
5: Pincomplete ← Pincomplete ∧R(S ||SD G, true)
6: if (Pincomplete 6≡ false) then
7: return False
8: end if
9: return True

Our G is considered to be complete with ||SD for S if none of the states of Qincomplete are
reachable, i.e. Qincomplete ∩ Qreach = ∅, where Qreach is the set of reachable states of Gcl.
This implies that Pincomplete ∧ Preach ≡ false, where Preach := pr(Qreach) is the predicate
representing the set of states in Qreach. Otherwise, Pincomplete ∧ Preach contains the set of
states that cause this property to fail.

This is the logic used by Algorithm 712 to verify plant completeness with ||SD property. It
is notable that our plant completeness with ||SD definition is similar to the plant completeness
property (Definition 2.33) except for the actual supervisor TDES and the way of constructing
the closed-loop system. Therefore, we are passing our TDES supervisor S of the ||SD setting
as input to Algorithm 7. Also, at line 5 of Algorithm 7, we are performing reachability
check on our closed-loop system “S ||SD G” instead of the closed-loop system of the SD setting
“G×S” that was used in the original algorithm. The rest of the algorithm steps are essentially
unaltered.

9.5.2 Untimed Controllability with ||SD

The standard untimed controllability property (Definition 2.20) gets redefined as part of the
timed controllability with ||SD definition (Definition 4.4). Therefore, its corresponding algo-
rithm needs to be amended for use in the ||SD setting.

According to Definition 4.5 for untimed controllability with ||SD, if an uncontrollable event
is possible at a state in G but it is not possible at the corresponding composite state in Gcl,
then this composite state of Gcl is considered bad as it will make our S uncontrollable with
||SD with respect to our G. The set of these bad states, Qbad, and its corresponding predicate
Pbad := pr(Qbad) can be expressed as follows:

Qbad := {q = (x, y) ∈ Q | (∃σu ∈ Σu) δ(y, σu)! & ¬ η(q, σu)!}

Pbad :=
∨

σu∈Σu

(
δ̂−1
G (true, σu) ∧ ¬ δ̂−1(true, σu)

)
Here, δ̂−1

G (Definition 9.14) and δ̂−1 (Definition 9.12) are the inverse functions for G and Gcl

respectively.
In order for S to be untimed controllable with ||SD for G, none of the Qbad states should

be reachable, i.e Qbad ∩ Qreach = ∅, where Qreach is the set of reachable states of Gcl. This
implies that Pbad ∧ Preach ≡ false, where Preach := pr(Qreach) is the predicate representing

12The value returned by this algorithm is a boolean, True or False, instead of a state predicate.
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Algorithm 8 CheckUntimedControllability(G, S)
1: Pbad ← false
2: for all (σu ∈ Σu) do
3: Pbad ← Pbad ∨ (δ̂−1

G (true, σu) ∧ ¬ δ̂−1(true, σu))
4: end for
5: Pbad ← Pbad ∧R(S ||SD G, true)
6: if (Pbad 6≡ false) then
7: return False
8: end if
9: return True

the set of states in Qreach. Otherwise, Pbad ∧ Preach holds the set of states where Gcl is not
allowing an uncontrollable event that is possible at the corresponding state in G.

Algorithm 8 essentially makes use of the above-mentioned logic to verify the untimed
controllability with ||SD property in our ||SD setting. In addition to passing our ||SD supervisor
S as an input, our algorithm differs from the original algorithm of the SD setting at lines 5 and
3, where we use our closed-loop system, S ||SD G, and its inverse function, δ̂−1, respectively.

9.5.3 SD Controllability with ||SD

All algorithms that contribute in verifying the property of SD controllability with ||SD assume
that G has proper time behaviour (Algorithm 14) and Gcl is ALF (Algorithm 13). These
algorithms make use of several variables and functions to verify the SD controllability with
||SD property. We would like to clarify two points about these variables and functions.

1. Gcl stated in these variables and functions refer to our closed-loop system, i.e. Gcl =
S ||SD G, which is different from the original Gcl of the SD setting that was assumed to be
constructed as G× S.

2. In our ||SD setting, the underlying definitions for some of these variables and functions are
different from the original ones that were defined in the SD setting. We will explicitly
highlight them in our discussion. Since we are using these algorithms in our ||SD setting,
it is obvious that all variables and functions will be evaluated using the definitions given
in this section for our ||SD setting.

The following variables and functions are used in the upcoming algorithms:
• Preach: The predicate of the set of reachable states of Gcl.
• PSF : The predicate of the set that contains sampled states of Gcl found by the algorithm.
• ZSP : This set contains the predicates of sampled states in Gcl found and not yet analyzed

by the algorithm.
• NG,σ, NS,σ: Transition predicates for σ for G and S respectively, as in Definition 9.13.
• Nσ: Transition predicate for σ for Gcl , as in Definition 9.9. Please note that our definition

for Nσ is different from Nσ of the SD setting (Definition B.3).
• δ̂: Transition function for state predicates for Gcl, as in Definition 9.11. Please recall that
δ̂ relies on Nσ which makes the computation logic of δ̂ different in the SD and the ||SD

setting.
• δ̂G: Transition function for state predicates for G only, as in Definition 9.14.
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Algorithm 9 CheckSDControllability(G,S)

1: Gcl ← S ||SD G
2: Preach ← R(S ||SD G, true)
3: if (CheckSDCPointi(G,S, Preach) = False) then
4: return False
5: end if
6: SDControllable← True
7: PSF ← pr{qo}
8: ZSP ← {pr{qo}}
9: pNerFail← ∅

10: while (ZSP 6= ∅) do
11: Pss ← Pop(ZSP )
12: SDControllable← AnalyzeSampledState(G,S, PSF , ZSP , Preach, Pss, pNerFail)
13: if (¬SDControllable) then
14: return False
15: end if
16: end while
17: if (pNerFail 6= ∅) then
18: SDControllable← RecheckNerodeCells(pNerFail)
19: if (¬SDControllable) then
20: return False
21: end if
22: end if
23: if (¬CheckSDCPointiii(Preach)) then
24: return False
25: end if
26: return True

• ξ̂: Transition function for state predicates for S only, as in Definition 9.15.
• pNerFail: This set pNerFail ⊆ Pwr(Pred(Q)) is a set of sets of predicates that stores

information where Point ii.2 of SD controllability with ||SD property may have failed.
• SDControllable: This flag asserts if S is SD controllable with ||SD with respect to G.

Algorithm 9 serves as the entry point for checking various points of the SD controllability
with ||SD property. At line 3, it calls Algorithm 10 to verify Point i of SD controllability with
||SD definition. It is note worthy that Point i essentially represents the timed controllability
with ||SD property which includes the untimed controllability with ||SD check. Since we have
already discussed Algorithm 8 for verifying untimed controllability with ||SD, we will not discuss
it again. For the same reason, untimed controllability with ||SD check is not showing up in
Algorithm 10.

In order to verify Point ii of SD controllability with ||SD, processing starts with the initial
state of Gcl which is always a sampled state (line 7). As verification proceeds, a reachability
tree is created for a given sampling period, and required checks including the check of S-
singular prohibitable behaviour with ||SD are performed (line 12). If any of the desired
properties fails, the algorithm terminates, except for Point ii.2 where the algorithm continues
after recording the problematic nerode cells. These cells and Point ii.2 is then tested again
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Algorithm 10 CheckSDCPointi(G,S, Preach)

1: Pq−hib ←
∨

σ∈Σhib

∃v′Nσ

2: Pbad ← ∃v′NG,tick ∧ ¬ (∃v′Ntick ) ∧ ¬Pq−hib
3: if (Pbad ∧ Preach 6≡ false) then
4: return False
5: end if
6: return True

afterwards (line 18).
Finally, the algorithm verifies Point iii of SD controllability with ||SD at line 23 by making

use of Algorithm 20.

Point i Algorithm 10 verifies the timed controllability part of Point i of SD controllability
with ||SD. We have derived this algorithm from Algorithm 11 that was developed by [42] to
verify Point ii of SD controllability (Definition 3.7) in the SD setting.

From lines 2-5, Algorithm 11 checks the forward implication (⇒) of Point ii of SD con-
trollablility. It determines if there exists a reachable state in Gcl = G×S where both tick and
prohibitable events are enabled. If such a such exists, Point ii (⇒) fails, and the algorithm
returns False.

Please recall that Point ii (⇒) of SD controllability does not exist in our definition of SD
controllability with ||SD, and we are not required to check this condition explicitly in our ||SD

setting. We are able to get rid of this explicit check because of the distinct synchronization
mechanism of our ||SD operator that guarantees to automatically disable a tick event in the
closed-loop system Gcl = S ||SD G, if both tick and a prohibitable event is possible in G and
enabled by S. This means that our ||SD operator will never enable both tick and prohibitable
event at any state of Gcl while synchronizing G and S to form the closed-loop system. Since
this condition is automatically satisfied in our ||SD setting, we do not need lines 2-5 of
Algorithm 11 and did not include them in our Algorithm 10.

From lines 6-9, Algorithm 11 checks the reverse implication (⇐) of Point ii of SD control-
lability. It determines if there exists a reachable state in Gcl = G× S where no prohibitable
event is eligible, and tick is possible in G but disabled by S. If such a such exists, Point ii
(⇐) fails, and the algorithm returns False. This is essentially the timed part of the timed
controllability definition (Definition 2.22) used in the SD setting.

In our Algorithm 10, we have modified this logic to check our corresponding condition by
using our closed-loop system Gcl = S ||SD G instead of their supervisor S. This change is in
line with the timed part of our timed controllability with ||SD property (Definition 4.4) that
we have defined for our ||SD setting.

Line 1 of Algorithm 10 identifies the states of Gcl that have one or more prohibitable
events defined. Line 2 determines if there exists a bad state in Gcl where neither tick nor a
prohibitable event is eligible in Gcl, but tick is possible at the corresponding state in G. If
such a bad state exists and is reachable in Gcl (line 3), then the timed check of Point i of
our SD controllability with ||SD fails, and the algorithm returns False at line 4. Otherwise,
it returns True at line 6.

Point ii In order to verify Point ii of SD controllability with ||SD, we will reuse several
variables from [42]. Please note that we have redefined two variables, Σposs and Bconc, to
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Algorithm 11 CheckSDContii(G,S, Preach)
1: Pq−hib ←

∨
σ∈Σhib

∃v′Nσ

2: Pbad ← ∃v′Ntick ∧ Pq−hib
3: if Pbad ∧ Preach 6≡ false then
4: return False
5: end if
6: Pbad ← ∃v′NG,tick ∧ ¬ (∃v′NS,tick) ∧ ¬Pq−hib
7: if Pbad ∧ Preach 6≡ false then
8: return False
9: end if

10: return True

make the corresponding algorithms compatible with our ||SD setting.

• ΣElig: The set of prohibitable events eligible in both G and S at qss, where qss is the
sampled state in Gcl that we are processing.

• Pq: The predicate of current state in Gcl.
• Σposs: [42] defines this variable to be the set of events eligible in both G and S at predicate
Pq of current state in Gcl = G× S. This is because every event that is possible in G and
S will be enabled in Gcl by the product operator. However, this might not be true for our
||SD operator with respect to the tick event.

In our ||SD setting, we define Σposs to be the set of events that are eligible in Gcl =
S ||SD G at predicate Pq of current state in Gcl. Therefore, this set contains activity events
that are eligible in both G and S at predicate Pq of current state in Gcl. Additionally, it
also contains a tick event if it is eligible in G and S, and no prohibitable event is possible
at predicate Pq of current state in Gcl to preempt the tick .

• ΣGposs: The set of prohibitable events eligible in G at predicate Pq of current state in Gcl.
• nextLabel: This number represents the next unused node in Bmap. It is used to name

newly discovered nodes of the reachability tree.
• Bmap: This partial function Bmap : N → Pred(Q) maps the nodes of the reachability tree

to the predicates of the states of Gcl that the nodes represent. This function will sometimes
be treated like the set Bmap ⊆ N × Pred(Q). Note that N = {0, 1, 2, . . .} is the set of
natural numbers.

• Bp: This is the set of nodes pending to be expanded in the reachability tree.
• Bconc: The set Bconc ⊆ N × Pred(Q) contains the nodes that represent concurrent strings

and the sampled states the strings lead to.
In [42], for (b, q) ∈ Bconc, node b is a node at which tick is eligible in G and S, and q

is the sampled state of Gcl = G× S that the tick leads to.
In our ||SD setting, for (b, q) ∈ Bconc, we define b to be a node at which tick is eligible

in Gcl = S ||SD G, and q is the sampled state of Gcl that the tick leads to.
• OccuB: The partial function OccuB : N → Pwr(Σ) maps the nodes of the reachability tree

to the occurrence image of the string that they represent. This function will sometimes be
treated like the set OccuB ⊆ N × Pwr(Σ).

The actual algorithm steps to verify Points ii.1, ii.2 and iii of SD controllability with ||SD are
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essentially the same as [42]. Please refer to Section B.3 to get an overview of these unmodified
algorithms. This includes any function calls in Algorithm 9 that have not been discussed in
this section. Please note that in order to verify Points ii and iii of SD controllability with ||SD

property, all these algorithms make use of the variable and function definitions specified in
this section for our ||SD setting.

10 Flexible Manufacturing System

In this section, we present an example of a Flexible Manufacturing System (FMS) to demon-
strate the application, utilization and benefits of our SD synchronous product operator and
the ||SD setting. This is the same TDES example that has been discussed in [42, 43] to il-
lustrate the SD supervisory control methodology, who in turn based it on the untimed FMS
example given in [21]. We have intentionally selected the same system so that we could clearly
compare and discuss the complexity of designing modular TDES supervisors by hand and the
size of resultant supervisor models in the SD and ||SD setting, i.e. in the absence and presence
of our ||SD operator.

We begin this section by describing the structure and workflow of the FMS. Then, we
provide its various TDES plant components. After that, we analyze the original design of
each modular TDES supervisor developed in the SD setting and discuss how it gets simplified
in our ||SD setting in the presence of the ||SD operator. Finally, we close this section by
presenting a comprehensive discussion on our software implementation and verification results
for the FMS example.

10.1 System Structure

The Flexible Manufacturing System (FMS), shown in Figure 1, consists of six machines and
five buffers, where each buffer has the capacity to hold a single part. These buffers are treated
as specifications and it is desired that buffers never overflow or underflow.

The basic idea of the FMS is that a part enters the system via conveyor Con2 and passes
to a handling Robot via buffer B2. The Robot then passes the part to Lathe via buffer B4.
The Lathe can generate two types of parts, A and B. Once the Robot receives the part back
from Lathe via B4, it sends the part either to buffer B6 or B7 depending upon the part type.
Precisely, type A part goes to B6 while type B part goes to B7. From B7, part B goes to a
painting machine PM via conveyor Con3 and buffer B8. After completing its operation, PM
returns the part to B7 via the same route. From B6 and B7, the part goes to the finishing
machine AM, from where the finished part finally exits the system.

Table 1 shows the mapping of numeric event labels, used in [43], to their meaning. Odd
numbered event labels represent prohibitable events, whereas even numbered labels represent
unconrollable events. Instead of the numeric labels, we will use the meaningful shorthand
event labels in our TDES models for the sake of readability and comprehension. Our shorthand
corresponding to each event label in given in Table 1.

It is notable that there are five event labels in Table 1 that are prefixed by “no”. These
labels do not represent any physical events of the FMS. Rather, they are prohibitable expansion
events that were introduced by [43] to aid in communication between various modular TDES
supervisors in order to satisfy the properties of the SD supervisory control methodology. We
will discuss these events further in our subsequent sections.
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Table 1: Meaning and Shorthand for Event Labels of FMS

Label Meaning Shorthand Label Meaning Shorthand
921 Part enters system pt_ent_sys 922 Part enters B2 pt_ent_B2
933 Robot takes from B2 R_from_B2 934 Robot to B4 R_to_B4
937 B4 to Robot for B6 B4_to_R_for_B6 938 Robot to B6 R_to_B6
939 B4 to Robot for B7 B4_to_R_for_B7 930 Robot to B7 R_to_B7
951 B4 to Lathe (A) B4_to_L_A 952 Lathe to B4 (A) L_to_B4_A
953 B4 to Lathe (B) B4_to_L_B 954 Lathe to B4 (B) L_to_B4_B
961 Initialize AM init_AM 963 B6 to AM B6_to_AM
964 Finished from B6 fin_from_B6 965 B7 to AM B7_to_AM
966 Finished from B7 fin_from_B7 971 B7 to Con3 B7_to_C3

no921 No part enters system no_pt_ent_sys 972 Con3 to B8 C3_to_B8
no963a No B6 to AM (a) no_B6_to_AM_a 973 B8 to Con3 B8_to_C3
no963b No B6 to AM (b) no_B6_to_AM_b 974 Con3 to B7 C3_to_B7
no965a No B7 to AM (a) no_B7_to_AM_a 981 B8 to PM B8_to_PM
no965b No B7 to AM (b) no_B7_to_AM_b 982 PM to B8 PM_to_B8

Please recall from Section 2.3 that in the graphical TDES models, an event name given
in italics and preceded by “!” indicates an uncontrollable event, a double circle represents the
initial state, and a filled circle shows that the state is marked.

10.2 Plant Components

The FMS consists of six plant components: two conveyors Con2 and Con3, Robot, Lathe,
PM and AM. Their TDES models are shown in Figures 17-22. One more TDES plant model,
SysDownNup, is given in Figure 23. This plant component is added to introduce a shutdown
mechanism in the FMS. This could correspond to a physical switch to turn off/restart the
system. When the shutdown event occurs, Con2 stops accepting new parts and all existing
parts exit the system after being processed. In the shutdown state, all components of the
physical system go idle, i.e. return to their marked states in the corresponding TDES models.
The restart event brings the system back up again.

As all these plant models represent the actual uncontrolled behaviour of the physical
system, they are the same in the SD and ||SD setting. This will make it easy for us to compare
the design of modular TDES supervisors in the two settings, since in both cases, supervisors
needed to be designed for the same TDES plant components and the same specifications.

In order to introduce five prohibitable expansion events to the system, three additional
plant components were added by [43] as part of the supervisor design. These plant TDES are
shown in Figures 24-26. We will examine them further in the next section while discussing
the design of modular supervisors.

10.3 Modular Supervisors

Now we will discuss the design of modular TDES supervisors for FMS in the ||SD setting. Our
approach is to first present the modular TDES supervisors that were originally designed in the
SD setting, and then discuss how they get simplified in the presence of our ||SD operator by
comparing them with the TDES supervisor models that we have designed for our ||SD setting.
Essentially, there are two key takeaways from our discussion presented in this section:
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Figure 22: Finishing Machine AM

1. It is noticeable how easy it becomes for the designers to design modular TDES supervisors
in the presence of our ||SD operator and satisfy the same system specifications. This is
because they no longer need to manually keep track of the enablement/disablement of tick
and prohibitable events, nor incorporate this logic explicitly in various supervisor models.

2. It is striking how the size and logical complexity of many of the modular supervisors get
reduced in the presence of our ||SD operator. The reason is that different supervisor models
do not need to communicate with each other and keep track of each other’s behaviour
about enablement/disablement of tick event and forcing of prohibitable events. Also, as
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we will see in Section 10.4, these simplifications make it easy and efficient to verify different
properties of the closed-loop system.

Please note that in order to clearly differentiate between TDES models of the SD supervi-
sory control and our ||SD setting, names of TDES plants and supervisors that are used in the
SD setting but are removed or modified in the ||SD setting, will be stated in bold italics. We
will refer to TDES supervisors that appear in the ||SD setting using bold text only.

10.3.1 Buffer Supervisors

Buffer supervisors control the flow of parts in and out of the buffers. They are primarily
responsible for making sure that buffers do not overflow or underflow. Please note that while
discussing buffer supervisor B2, we will also examine supervisor HndlSysDwn, as these two
supervisors are closely related with respect to the shutdown/restart mechanism of the FMS.

B2 and HndlSysDwn Supervisor B2 , shown in Figure 27, is designed in the SD setting to
make sure that buffer B2 does not overflow or underflow. It guarantees this by watching the
part’s progress once a new part enters the system (pt_ent_sys). B2 first waits for the part
to enter buffer B2 by keeping track of event pt_ent_B2, and then it allows Robot to take the
part from B2 by enabling the prohibitable event R_from_B2. This prevents the underflow of
buffer B2. B2 also ensures that another part does not enter the system (pt_ent_sys) until
the previous part has been removed from buffer B2 (R_from_B2), thus preventing overflow.

Another crucial task performed by B2 is to decide when to force the prohibitable event
pt_ent_sys. As soon as the system is turned on, B2 causes Con2 to accept a new part
into the system by enabling and forcing pt_ent_sys. Please recall that in order to force a
prohibitable event in the SD supervisory control theory, tick event must be explicitly disabled
by the supervisor to satisfy Point ii (⇒) of SD controllability. For this reason, tick has been
disabled at state 0 of B2 to force pt_ent_sys.
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By looking at supervisorB2 , we observe that as soon as Robot takes the part (R_from_B2)
and buffer B2 becomes empty, B2 allows a new part to enter the system by forcing pt_ent_sys.
This behaviour is acceptable as long as the system is up and running. However, once the sys-
tem is shutdown, then Con2 must stop accepting new parts and system must empty out after
processing the existing parts so that all machines can go to their idle (marked) states, as
desired by the system specifications.

This means that after shutdown, pt_ent_sys needs to be disabled and must not be forced
anymore, until the system is restarted. Since tick has already been disabled at state 0 to force
pt_ent_sys, designers must figure out some other way to stop forcing pt_ent_sys without
duplicating information from other parts of the system. Moreover, if pt_ent_sys is not forced
at state 0, some other prohibitable event needs to be forced in the absence of an eligible tick
event. Otherwise, the system becomes uncontrollable.

In order to resolve this issue in the SD setting, a prohibitable expansion event no_pt_ent_sys
is introduced to the system by designing and including an additional plant TDES, AddNoPt-
EntSys (Figure 24). At state 0 of supervisorB2 , a loop of concurrent string “no_pt_ent_sys−
tick ” is added that allows B2 to force no_pt_ent_sys when pt_ent_sys needs to be disabled
to achieve the desired behaviour, while keeping the system controllable and not “stopping the
clock”.

Another supervisor HndlSysDwn , shown in Figure 28, is designed in the SD setting to
make sure that the two events, pt_ent_sys and no_pt_ent_sys, are enabled and disabled at
the right time. Specifically, when the system is initially turned on or restarted, HndlSysDwn
enables pt_ent_sys and disables no_pt_ent_sys to allow new parts to enter the system for
processing. When the system is shutdown, it enables no_pt_ent_sys and disables pt_ent_sys
to stop Con2 from accepting new parts into the system.

This discussion clearly shows that forcing a prohibitable event by explicitly disabling tick ,
along with making sure that system does not become uncontrollable is not a straightforward
and trouble-free task. In this simple example, when prohibitable event pt_ent_sys is under
the control of only two modular supervisors, designers have to add one extra plant TDES,
a prohibitable expansion event and several additional transitions in the supervisor models to
specify the correct forcing mechanism.

All this extra design effort is required because the logic for forcing a prohibitable event
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needed to be manually specified in the supervisor model, and tick event was explicitly disabled
at one state of the supervisor in order to force the prohibitable event. Certainly, this situation
becomes more complicated when the prohibitable event to be forced is under the control of
several modular supervisors. Not to mention, the behaviour of the plant model also needs to
be considered to make sure that prohibitable event is possible in the plant when supervisor
models are collectively trying to force it. We will see a glimpse of this intricate situation later
in Section 10.3.4.

Now we will discuss our buffer supervisor B2, shown in Figure 29, that we have designed
in our ||SD setting. Precisely, we have derived B2 from B2 by trimming away its extra design
logic that is not required in our ||SD setting.

In the ||SD setting, we do not need to manually decide when to force a prohibitable event,
nor incorporate this logic explicitly in any of the supervisor models. Rather, we can simply
enable a prohibitable event to indicate that we want this event to occur, without disabling
the tick and the ||SD operator will force the event automatically (by deleting the tick) as soon
as event is enabled by all supervisors, and the event is possible in the plant. That is why, we
have enabled both tick and prohibitable event pt_ent_sys at state 0 of our supervisor B2.

Since B2 is not disabling tick at state 0, we do not need to worry about the logic of
figuring out how to keep our system controllable with ||SD if pt_ent_sys cannot or should not
be forced. In other words, we are not required to have any alternative expansion event to force
in place of pt_ent_sys in order to make sure that we do not “stop the clock”. This implies
that the above-mentioned issue, that designers had to face and resolve in order to explicitly
force a prohibitable event while designing supervisors in the SD setting, does not exist in our
||SD setting. The development and use of the ||SD synchronization operator has completely and
permanently resolved this issue in our ||SD setting.

As a result, we have altogether removed the expansion event no_pt_ent_sys from our FMS
plant and supervisor models designed in the ||SD setting. Specifically, we are able to remove
plant TDES AddNoPtEntSys from the system. In supervisor B2, we have not defined the
concurrent string of “no_pt_ent_sys − tick ” at state 0. Also, our supervisor HndlSysDwn
shown in Figure 30, that we have developed corresponding to supervisor HndlSysDwn of
the SD setting, does not include any transitions to enable no_pt_ent_sys once the system
has been shutdown.

Another simplification is that we have removed the state changing tick transition between
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Figure 31: Supervisor B4

events pt_ent_sys and pt_ent_B2 of B2 , and only included a selfloop of tick event at state
1 in our supervisor B2. This is because our plant model Con2 already guarantees that these
two events cannot occur in the same sampling period. Therefore, there is no need to replicate
this logic in B2. Due to the same system specifications, the rest of the logic of our supervisors
B2 and HndlSysDwn is the same as their corresponding supervisors B2 and HndlSysDwn
of the SD setting.

B4 Supervisor B4, shown in Figure 31, has been designed in the SD setting to fulfill the
specification that buffer B4 never overflows or underflows. It ensures this by enabling/disabling
related events at the right time. Since this supervisor does not force any prohibitable event,
its design remains unchanged in our ||SD setting.

An additional role performed by supervisor B4 is to ensure that once a part enters buffer
B4, the correct follow-up action is performed to take it out of B4. To do this, it first makes
sure that once a part is moved from buffer B2 to B4, it does go to Lathe for processing. This
is ensured by enabling events B4_to_L_A/B4_to_L_B after R_to_B4. Also, supervisor
B4 assures that after being processed by Lathe, the part goes to the correct buffer, B6 or
B7, depending upon its type. It guarantees this by enabling event B4_to_R_for_B6 after
a type A part is generated by Lathe and put into buffer B4 (L_to_B4_A), and enabling
event B4_to_R_for_B7 after a type B part is produced by Lathe and placed into buffer B4
(L_to_B4_B). We will need this information while discussing supervisors in Sections 10.3.2
and 10.3.3.

B6 and B7 In order to prevent the overflow and underflow of buffers B6 and B7, TDES
supervisors B6 (Figure 32) and B7 (Figure 33) have been designed in the SD setting. These
supervisors are strictly responsible for enabling/disabling prohibitable events to manage their
respective buffers. Since they do not force any prohibitable event by explicitly disabling the
tick event, they remain unchanged for our ||SD setting.

B8 Figure 34 shows buffer supervisor B8 of the SD setting. B8 not only prevents the
overflow and underflow of buffer B8, it also controls the flow of parts once the part arrives at
buffer B7 (R_to_B7), goes to PM and then comes back to B7. It does this by watching the
part’s progress and then forcing prohibitable events B7_to_C3, B8_to_PM and B8_to_C3
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Figure 35: Supervisor B8

as needed, by explicitly disabling tick at states 2, 6 and 10 respectively to manually satisfy
Point ii (⇒) of SD controllability.

It is notable that prohibitable events B7_to_C3 and B8_to_C3 are also under the control
of supervisor B7. This means that B8 needs to make sure that these events must be enabled
by B7 and possible in plant TDES Con3 before it tries to force them by disabling the tick ,
so that supervisor model does not become uncontrollable with respect to G.

In order to force the prohibitable event B7_to_C3, B8 needs to know that the part has
arrived at buffer B7. This is achieved by replicating the logic of supervisor B7 into B8 , i.e.
by repeating the sequence of events “R_to_B7− tick ” in B8 . The fact that B8 cannot just
enable a prohibitable event without knowing the part’s progress and other supervisor’s current
behaviour, and needs to explicitly disable tick at the right time to force the prohibitable event
has made things overly complicated and redundant. This point is also highlighted by [43]
while discussing the design of their FMS supervisors.

Figure 35 shows buffer supervisor B8 that we have designed for our ||SD setting, with its
state size being half (6 states) as compared to the original supervisor B8 (12 states). This is
because in the presence of the ||SD operator, B8 can simply enable prohibitable events without
explicitly deciding when to force them. Therefore, B8 does not need to have redundant logic
to keep track of the part’s progress and supervisor B7’s behaviour. Consequently, B8 gets
simplified in two major ways.
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First, we have not duplicated the related logic of supervisor B7 in B8 by excluding the
uncontrollable event R_to_B7 from B8. Second, since B8 does not need to explicitly de-
cide when to force prohibitable events, we have enabled both tick and prohibitable events
B7_to_C3, B8_to_PM and B8_to_C3 at states 0, 2 and 5 respectively of B8. Our ||SD

operator will automatically disable tick and force the appropriate prohibitable event when it
is enabled by all concerned supervisors and possible in the plant model G, thus keeping our
system controllable with ||SD.

It is worth-mentioning that although we have added a selfloop of prohibitable event
B7_to_C3 at state 0 of supervisor B8, this prohibitable event cannot happen more than
once in the same sampling period. This is because our G is required to have S-singular
prohibitable behaviour with ||SD with respect to our supervisor model S. Moreover, once
B7_to_C3 has occurred in the given sampling period, it will be disabled by supervisor B7
anyway.

The fact that we are able to enable both tick and prohibitable event B7_to_C3 at state
0 of supervisor B8 due to our ||SD operator has also allowed us to remove two explicit state
changing tick transitions that were present in the original supervisor B8 , and include only a
selfloop of tick event at state 0 in B8. First, we have omitted the state changing tick transition
between events B7_to_C3 and C3_to_B8. The reason being that our plant model Con3
makes sure that tick always happens between these two events, and B8 is not preventing
this tick from occurring by explicitly forcing any event. Second, we have eliminated the state
changing tick transition after event B8_to_C3. This is due to the fact that supervisor B7
and plant component Con3 already ensure that B8_to_C3 and B7_to_C3 do not happen
one after another in the same sampling period. Con3 also guarantees that B8_to_C3 and
C3_to_B8 occur in different sampling periods. Therefore, there is no need to replicate this
logic in B8. We have also removed the redundant logic of state changing tick transition
between B8_to_PM and PM_to_B8 of B8 and replaced it with a selfloop of tick event at
state 3 in B8 due to the plant TDES PM.

10.3.2 Robot to B4 to Lathe Path

In order to resolve some nonblocking and concurrency issues along the Robot to B4 to Lathe
path of the FMS, three supervisors are designed in the SD setting: TakeB2 , B4Path and
LathePick . We will discuss them one by one along with the simplifications that we have
made while redesigning them for our ||SD setting.

TakeB2 Please note that we have already described and compared the design of two super-
visors, TakeB2 of the SD setting and TakeB2 of our ||SD setting, with respect to their event
forcing logic in Sections 1.2 and 1.3. Below, we only focus on those details and simplifications
that we have not discussed before.

In the FMS, the Robot is responsible for serving buffers B2 and B4. Since both buffers
cannot be served at the same time, it is essential to dictate the order in which Robot should
provide service to these buffers without blocking the system or starving any one of them. This
order of service is specified by supervisor TakeB2 of the SD setting given in Figure 4.

TakeB2 forces the Robot to first serve buffer B2, followed by buffer B4, and then alternate
between the two. It waits until there is a part in buffer B2 by watching event pt_ent_B2,
after which it moves the part to buffer B4 by forcing the prohibitable event R_from_B2 and
disabling tick at state 2. It does not allow the Robot to serve B2 again, i.e. force another
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Figure 37: Supervisor B4Path

R_from_B2, until Robot has moved the previous part to either buffer B6 (R_to_B6) or B7
(R_to_B7) from B4 after being processed by Lathe.

This alternate order of serving buffers B2 and B4 also prevents the potential blocking issue
that is likely to happen if Robot is allowed to serve buffer B2 two times in a row. In this
case, Robot might move second part from B2 to now empty buffer B4 while first part is being
processed by Lathe, thus leaving no place for the first part to return to B4.

Figure 5 shows our supervisor TakeB2 of the ||SD setting that specifies the same order for
serving buffers B2 and B4 by Robot and addresses the blocking issue but in a much simplified
way, i.e. reducing 8-state supervisor TakeB2 to 3-state TakeB2.

It is notable that TakeB2 also makes sure that events pt_ent_B2 and R_from_B2 do
not occur in the same sampling period. This is already ensured by supervisor B2, therefore
we have not cloned this logic in TakeB2. Also, we have replaced the explicit state changing
tick transition between R_from_B2 and R_to_B6/R_to_B7 of TakeB2 with a selfloop of
tick at state 1 in TakeB2 due to the plant model Robot.

B4Path Supervisor B4Path , given in Figure 36, works with buffer supervisorB4 (Figure 31)
to ensure proper behaviour on the Robot−B4−Lathe path. It contributes to the correct
behaviour of the system by disabling R_from_B2 once a part is moved to buffer B4 from B2
(R_to_B4). Also, only after moving the part from B2 to B4, it enables B4_to_R_for_B6
and B4_to_R_for_B7.

Figure 37 shows our supervisor B4Path that fulfills the same specification as B4Path .
The only way in which the two supervisors differ is that unlike B4Path , B4Path does not con-
tain an explicit state changing tick transition after event B4_to_R_for_B6/B4_to_R_for_B7.
We are able to skip this transition because our plant modelRobot and buffer supervisorB4 al-
ready ensure that these two events occur in different sampling periods than events R_from_B2
and R_to_B4, as desired.

LathePick Supervisor LathePick , shown in Figure 38, specifies the order for producing two
types of parts by Lathe. It forces Lathe to start with type A part, then produce type B part,
and then alternate between the two. It does this by forcing prohibitable events B4_to_L_A
and B4_to_L_B at states 2 and 6 respectively.

As supervisorB4 is also in charge of enabling/disabling events B4_to_L_A and B4_to_L_B,
LathePick needs to have knowledge about the behaviour of B4 so that it can make its forcing
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LathePick

decisions correctly. We note that B4 enables these two events after the occurrence of event
R_to_B4. Therefore, LathePick replicates this logic from B4 and waits for the occurrence of
event R_to_B4. Once R_to_B4 happens, then LathePick forces B4_to_L_A/B4_to_L_B
to avoid any controllability issues.

Figure 39 illustrates our 3-state supervisor LathePick that does the same job as the 8-state
LathePick supervisor. In the ||SD setting, since our supervisors are not required to decide
precisely when to force a prohibitable event, therefore we have not included event R_to_B4
in LathePick. Also, LathePick enables both tick and prohibitable events B4_to_L_A and
B4_to_L_B at states 0 and 2 respectively, leaving it up to the ||SD operator to make the
forcing decision while keeping the supervisor controllable with ||SD with respect to G.

It is notable that supervisorB4 and plant model Lathe guarantee that events B4_to_L_B
and B4_to_L_A occur in different sampling periods. That is why, we have not added an
explicit state changing tick transition after B4_to_L_B in LathePick.

10.3.3 Moving Parts from B4 to B6/B7

In order to resolve some nonblocking and concurrency issues associated with moving parts
from buffer B4 to B6 and B7, two supervisors, TakeB4PutB6 and TakeB4PutB7 , are
designed in the SD setting. Below, we discuss the original design of these supervisors followed
by their remodelling for our ||SD setting.

TakeB4PutB6 The primary purpose of designing supervisor TakeB4PutB6 , shown in Fig-
ure 40, in the SD setting is to decide when to force event B4_to_R_for_B6. As this pro-
hibitable event is under the control of three other modular supervisors, B4, B4Path and B6,
TakeB4PutB6 must not try to force B4_to_R_for_B6 when it is disabled by any of the
other supervisors, or not possible in plant TDES Robot.

In order to have knowledge about the behaviour of the other models, TakeB4PutB6
duplicates the logic by watching for event L_to_B4_A. As soon as type A part enters
buffer B4 from Lathe (L_to_B4_A), TakeB4PutB6 forces B4_to_R_for_B6 to initiate
the movement of part A from B4 to B6. It then waits for event B6_to_AM, signalling that
the part has been moved from B6 to AM and now B6 is ready to accept another part A.
TakeB4PutB6 also makes sure that L_to_B4_A interleaves properly with B6_to_AM by
specifying the logic for these events to occur in any order.
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Figure 40: Supervisor TakeB4PutB6

In our ||SD setting, we do not need to design and include any supervisor corresponding to
TakeB4PutB6 because of the following two reasons: 1) In the presence of the ||SD operator,
we are not required to explicitly decide and specify when to force B4_to_R_for_B6 by
keeping track of other supervisors’ behaviour. In fact, when B4_to_R_for_B6 is possible in
Robot and enabled by supervisors B4, B4Path and B6, the ||SD operator will automatically
disable tick to force B4_to_R_for_B6 in the closed-loop system. 2) Our buffer supervisor
B6 already ensures that Robot cannot begin to move type A part from buffer B4 to B6
(B4_to_R_for_B6) until the previous part has been taken out of B6 and moved to AM
(B6_to_AM). B6 guarantees this by disabling event B4_to_R_for_B6 once it has happened,
and re-enables it only after event B6_to_AM has occurred.

As a result, we do not need to specify/replicate any logic and no supervisor exists in our
||SD setting corresponding to supervisor TakeB4PutB6 of the SD setting.

TakeB4PutB7 Supervisor TakeB4PutB7 designed in the SD setting is shown in Figure 41.
Besides deciding when to force the prohibitable event B4_to_R_for_B7 to initiate the move-
ment of type B part from buffer B4 to B7, TakeB4PutB7 also handles a potential blocking
issue as part B moves along the B7−PM−B7 path.

In order to determine when to force the prohibitable event B4_to_R_for_B7, TakeB4PutB7
must take into account the behaviour of supervisors B4, B4Path and B7, and plant model
Robot, as these models are also in charge of enabling/disabling B4_to_R_for_B7. There-
fore, event L_to_B4_B is added to TakeB4PutB7 to replicate the related logic from super-
visor B4 and determine the right time for forcing B4_to_R_for_B7. As soon as L_to_B4_B
occurs, TakeB4PutB7 disables tick to force B4_to_R_for_B7 at state 2.

When part B is placed in buffer B7 from B4, it first goes to PM for processing. It is
possible that another part B is put in the now empty buffer B7 by Robot, leaving no place
for the returning part, thus blocking the system. Supervisor TakeB4PutB7 prevents this
situation from happening by waiting for the part to return to buffer B7 from PM and then
moved to AM (B7_to_AM), before allowing the Robot to take another part B from B4
(B4_to_R_for_B7) to be placed into B7. The design logic for proper interleaving of events
L_to_B4_B and B7_to_AM is also specified in TakeB4PutB7 .

To fulfill these specifications, our 3-state supervisor TakeB4PutB7 designed for the
||SD setting is given in Figure 42. Since we do not need to manually decide when to force
B4_to_R_for_B7, we have neither added the logic for keeping track of other supervisors’
behaviour and the plant model, nor forcing of event B4_to_R_for_B7 in TakeB4PutB7.
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TakeB4PutB7

As a result, our supervisor does not contain the waiting event L_to_B4_B, and enables both
tick and prohibitable event B4_to_R_for_B7 at state 0.

Once B4_to_R_for_B7 has occurred, TakeB4PutB7 disables this event to avoid the
above-mentioned blocking issue. This event is re-enabled after the occurrence of B7_to_AM,
i.e. when part B returning from PM is moved from buffer B7 to AM. Also, we note that buffer
supervisor B7 already guarantees that events B7_to_AM and B4_to_R_for_B7 always oc-
cur in different sampling periods. For this reason, we have not added an explicit state changing
tick transition after B7_to_AM in TakeB4PutB7, as present in supervisor TakeB4PutB7
of the SD setting.

10.3.4 B6/B7 to AM to Exit Path

Now we will discuss the movement of parts from buffers B6 and B7 to finishing machine AM,
from where finished parts finally exit the system. In order to resolve several concurrency
issues along this path, supervisors ForceB6toAM , ForceB7toAM , ForceInitAM and
AMChooser have been designed in the SD setting. These supervisors are heavily dependent
upon one another and work closely together to make several decisions. We will analyze them
one by one, and then discuss how their design and logic get simplified in the presence of our
||SD operator.

Parts are moved from buffers B6 and B7 to AM using prohibitable events B6_to_AM and
B7_to_AM respectively. Before accepting and processing any part, AM needs to initialize,
which is indicated by prohibitable event init_AM. This means the first thing that needs to
determined and specified along this path is when to force these three prohibitable events by
explicitly disabling tick in order to satisfy Point ii (⇒) of the SD controllability property. We
must also make sure that when one modular supervisor is trying to force a prohibitable event,
it must be enabled by all the concerned supervisors and possible in plant TDES AM, to keep
the system controllable.

This is further complicated by the fact that parts might be waiting in both buffers B6 and
B7 to go to AM for processing. This implies that another decision that needs to be made is
to determine which buffer to service first. Ideally, these decisions should be reflected in the
supervisor models without significant reuse of logic which seemed non-obvious, as stated in
[43].

The solution devised in the SD setting to address the above-mentioned issues is to in-
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troduce four new prohibitable expansion events that provide communication between the
modular supervisors. These expansion events are no_B6_to_AM_a, no_B6_to_AM_b,
no_B7_to_AM_a and no_B7_to_AM_b. They are introduced to the system by designing
two additional plant TDES, AddNoB6toAM (Figure 25) and AddNoB7toAM (Figure 26).

ForceB6toAM and ForceB7toAM Supervisor ForceB6toAM , shown in Figure 43, is
designed in the SD setting to force the prohibitable event B6_to_AM. As B6_to_AM is under
the control of supervisors B6 and TakeB4PutB6 , ForceB6toAM replicates the design logic
from B6 by adding the watch event R_to_B6. ForceB6toAM waits for the occurrence of
R_to_B6, signalling that there is a part in buffer B6 waiting to go to AM. It then forces
B6_to_AM by explicitly disabling tick at state 2 in accordance with Point ii (⇒) of SD
controllability.

However, if B6_to_AM is currently not possible in the plant TDES AM (Figure 22) or
disabled by other supervisors, ForceInitAM (Figure 45) and AMChooser (Figure 47) that
are also in control of B6_to_AM, then ForceB6toAM has no way of knowing this. In this
case, system will become uncontrollable because B6_to_AM could not be forced and tick is
already disabled by ForceB6toAM .

This issue is handled by adding a loop of concurrent string “no_B6_to_AM_a/no_B6_
to_AM_b−tick ” at state 2 of supervisor ForceB6toAM . The idea is to use expansion events,
no_B6_to_AM_a or no_B6_to_AM_b, as alternative forcing options when B6_to_AM
could not be forced. Since enablement information needs to be coordinated between three
supervisors, that is why the designers have added two expansion events, ‘a’ and ‘b’.

As no_B6_to_AM_a and no_B6_to_AM_b are meant to be used as substitute forcing
options for B6_to_AM, they must only be enabled when it is not possible to force B6_to_AM.
Also, it is important to make sure that only one of these three prohibitable events is possible
in the system at a given time. Supervisors ForceInitAM and AMChooser contain the logic
to fulfill these two requirements.

In order to force the prohibitable event B7_to_AM, supervisor ForceB7toAM , shown in
Figure 44, has been designed in the SD setting. As B7_to_AM is under the control of super-
visors B7 and TakeB4PutB7 , therefore ForceB7toAM duplicates the design logic from su-
pervisor B7 by including the watch event C3_to_B7. The rest of the logic of ForceB7toAM
is same as ForceB6toAM . Also, ForceB7toAM communicates with plant component AM,
and supervisors ForceInitAM and AMChooser in a similar fashion as ForceB6toAM .
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Figure 46: Supervisor InitAM

ForceInitAM Figure 45 shows supervisor ForceInitAM of the SD setting that is primarily
responsible for deciding when to force prohibitable event init_AM. By disabling tick at state
0, it forces init_AM right away. After AM has processed the part received from buffer B6
or B7 (B6_to_AM/B7_to_AM), this supervisor then waits for the finished part to leave the
system (fin_from_B6/fin_from_B7) before forcing another init_AM.

Another task performed by ForceInitAM is to make sure that ‘a’ and ‘b’ expansion events
are never eligible in the system at the same time. It ensures this by enabling ‘a’ events when
B6_to_AM/B7_to_AM are not possible in the plant TDES AM. When they are possible
in AM, ForceInitAM enables ‘b’ events instead.

As supervisor AMChooser (Figure 47) ignores ‘a’ events, this guarantees that ‘a’ events
will never be disabled when ForceInitAM needs them. As ForceInitAM never disables ‘b’
events when B6_to_AM/B7_to_AM are possible in AM, this ensures that ‘b’ events will
never be disabled when AMChooser needs them.

By manually devising and explicitly incorporating this intricate logic in the supervisor
models, designers made sure that the two supervisors do not interfere with each other with
respect to these expansion events.

AMChooser The primary purpose of the supervisor AMChooser , given in Figure 47, of
the SD setting is to dictate the order in which AM accepts the parts from buffers B6 and B7,
when both buffers have a part waiting to be processed by AM. If parts A and B arrive in both
buffers (R_to_B6, C3_to_B7) in the same sampling period, then AMChooser forces AM
to first take the part from B7 (B7_to_AM), and then from B6 (B6_to_AM). The reason is
that there are more machines along the B7−PM−B7 path that should be kept busy. If only
one buffer has a part waiting, then this part is taken by AM for processing.

In order to enforce this order for processing parts, AMChooser sometimes has to disable
prohibitable events B6_to_AM and B7_to_AM. In such cases, it enables the appropriate ‘b’
expansion events as a forcing alternative. This also guarantees that substitute forcing options
of B6_to_AM and no_B6_to_AM_b are never enabled at the same time. The same is true
for B7_to_AM and no_B7_to_AM_b.

Remodelling of Modular Supervisors for the ||SD Setting In the SD setting, the only
reason for introducing four prohibitable expansion events was to aid in communication between
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Figure 47: Supervisor AMChooser

various modular supervisors in order to specify the explicit forcing decisions, while making
sure that all desired properties and system specifications are satisfied. In the ||SD setting, since
modular supervisors are only concerned about their own behaviour, this eradicates the need
to add expansion events to our ||SD system. As a result, we can exclude all these expansion
events and their corresponding plant models, AddNoB6toAM and AddNoB7toAM , from
our set of FMS plant components for the ||SD setting.

In the SD setting, the primary purpose of designing supervisors ForceB6toAM and
ForceB7toAM was to decide when to force prohibitable events B6_to_AM and B7_to_AM
respectively. Since we have the ||SD operator that automatically makes these forcing decisions
for us, we will not include these two supervisors in our set of FMS modular supervisors. Please
note that the order of occurrence of events enforced by these two supervisors is already present
in the corresponding buffer supervisors, B6 and B7.

Our ||SD supervisor InitAM, shown in Figure 46, manages the initialization of AM and
the movement of parts along the B6/B7−AM−exit path. Since we are not required to ex-
plicitly force prohibitable event init_AM, we have enabled both tick and init_AM at state
0. Also, plant TDES AM already makes sure that events B6_to_AM/B7_to_AM and
fin_from_B6/fin_from_B7 occur in different sampling periods. Therefore, we have not du-
plicated this logic in InitAM, as specified by ForceInitAM in the SD setting.

It is worth noting how simple this supervisor’s design and logic has become in the absence
of all expansion events and their transitions, as compared to its corresponding supervisor
ForceInitAM of the SD setting. With no expansion events, we do not need to do any extra
design effort to figure out how many other supervisors InitAM will communicate with, deter-
mine the number of expansion events required for communication, and then enable/disable all
expansion events at the right time by keeping track of plant and other supervisors’ behaviours.

Figure 48 illustrates our supervisor AMChooser of the ||SD setting. Essentially, we have
derived it from supervisor AMChooser of the SD setting after removing all expansion event
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Figure 48: Supervisor AMChooser

transitions. AMChooser enforces the same order on AM for accepting parts from buffers B6
and B7 as AMChooser . However, unlike AMChooser , our supervisor AMChooser does
not need to keep track of the plant model and other supervisors’ behaviour to enable/disable
appropriate expansion events at the right time. This results in greatly reducing the complexity
of its design and logic.

10.4 Results and Discussion

Now it is time to present and discuss our results for the FMS example. Our complete results
are shown in Table 2. In order to be clear and precise in our discussion, we will refer to the
FMS TDES models designed in the SD setting as the “SD system”, and the simplified FMS
TDES models designed for our ||SD setting as the “||SD system”.

10.4.1 Theoretical TDES

By looking at the theoretical TDES models discussed in the previous section, we note that for
the same FMS specifications, we are able to model our ||SD system by designing fewer plant
components and modular supervisors. This is because, unlike the SD system, we did not have
to introduce and manage five prohibitable expansion events to aid in communication between
different modular supervisors and make explicit forcing decisions in our ||SD system. These
results are summarized in the topmost section of Table 2.

10.4.2 Verification Results

In order to evaluate the performance of verifying our ||SD properties, we implemented the SD
synchronous product operator and our tweaked algorithms (presented in Section 9) as part of
the DES research tool, DESpot [14]. Our code is based on the source code written by [42]
that verifies the SD supervisory control methodology. The code uses the BuDDy package [30],
a C++ library that implements standard BDD structures and operations.

In the rest of this discussion, we will refer to the algorithms implemented by [42] as the
“SD algorithms”. These SD algorithms check various properties in the SD setting (Section 3)
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Table 2: FMS Example Results in the SD and ||SD Setting

SD System ||SD System
Plant Components 10 7
Modular Supervisors 15 12

System Events 31 26

Supervisor
Properties Verification Time (seconds)

CS Deterministic < 1 < 1

Non-Selfloop ALF < 1 < 1

Closed-Loop System
Properties

SD
Algorithms

||SD
Algorithms

SD
Algorithms

||SD
Algorithms

Nonblocking < 1 < 1 < 1 < 1

Untimed Controllability < 1 < 1 < 1 < 1

Timed Controllability < 1 < 1 < 1 < 1

Proper Time Behaviour < 1 < 1 < 1 < 1

Plant Completeness < 1 < 1 < 1 < 1

ALF 2 2 1 1
SD Controllability &
S-Singular Prohibi-
table Behaviour

30 26 False 7

Check All 32 28 False 8
State Size 82,608 82,608 56,244 49,020

and rely on the standard synchronous product operator to form the closed-loop system. On
the other hand, the adapted algorithms that we have implemented for our ||SD setting will
be referred to as the “||SD algorithms”. These ||SD algorithms verify the ||SD version of the
properties (introduced in Section 4) and use our SD synchronous product operator to construct
the closed-loop system. Please recall that, as mentioned in Section 9, although we are reusing
some algorithms of the SD setting in our ||SD setting without modifying their steps, still these
algorithms are actually different in the two settings because of their way of constructing the
closed-loop system in order to verify the desired properties.

In order to analyze and compare the FMS SD and ||SD systems in detail, we decided to run
SD and ||SD algorithms on both systems. In other words, we not only verified our ||SD system
in our ||SD setting by running our ||SD algorithms, but we also tested it in the SD setting by
running SD algorithms to find out which properties does it fail to satisfy (algorithms return
“False”) in the SD setting in the absence of our ||SD operator. Similarly, besides running SD
algorithms on the SD system, we also ran our ||SD algorithms on the SD system to evaluate
its performance in our ||SD setting.

Table 2 shows our verification results for running various SD and ||SD algorithms on the
SD and ||SD systems. These tests are performed on a machine running Windows 10 with 16GB
of RAM and 2.6GHz Intel 6-core processor.

Supervisor Properties As the ultimate goal of designing TDES supervisors in the SD su-
pervisory control theory is to generate the corresponding SD controller, we started by verifying
two properties that play an important role in this translation process. These two properties are
CS deterministic and non-selfloop ALF supervisors. As shown in Table 2, TDES supervisors
of both SD and ||SD systems passed each of these checks in less than 1 second.

Our next step is to verify various properties of the SD and ||SD closed-loop systems by
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running the SD and ||SD algorithms. Before we analyze the results of these tests in detail,
first we wish to highlight some important points about state sizes of the two systems that are
constructed by the SD and ||SD algorithms.

State Space Size of Closed-Loop System By looking at the state size of SD system given
in Table 2, we observe that although SD and ||SD algorithms use different synchronization
operators to construct the closed-loop system, state size of the SD system is same in both
cases, i.e. 82,608. The reason is that the SD system was originally designed for the SD setting,
where designers are responsible for manually satisfying Point ii (⇒) of SD controllability. In
this case, the ||SD operator does not find any states where it has to disable tick in the presence
of an enabled prohibitable event while constructing the closed-loop system. Consequently, the
synchronization mechanism of the ||SD operator essentially becomes equivalent to the standard
synchronous product operator. This results in having the same state space for the SD system
in both cases.

On the contrary, SD and ||SD algorithms specify different state sizes for our ||SD system.
Specifically, our ||SD closed-loop system constructed by the SD algorithms has 56,244 states,
whereas ||SD algorithms construct the state space of 49,020 states. This is because, keeping
in view the synchronization mechanism of the ||SD operator, we have enabled both tick and
prohibitable events at various states of the TDES supervisors while modelling our ||SD system.
As the synchronous product operator is not capable of automatically disabling tick event in
the presence of enabled prohibitable events while forming the closed-loop system, this is why
SD algorithms construct a bigger state space for our ||SD system than our ||SD algorithms.

In essence, the key point to note is that state size for the FMS example has reduced from
82,608 states in the SD setting to 49,020 states in our ||SD setting. This represents a reduction
of 40% in the overall state space of the FMS closed-loop system.

This decrease in the state space is because of two reasons. First, in the presence of our
||SD operator, less number of TDES plant and supervisor components are required to model
the same system specifications. Second, as evident in Section 10.3, the size and logical design
complexity of most of the modular supervisors of the SD system have been greatly reduced
for our ||SD system.

Next, we discuss our results of verifying various properties of the SD and ||SD systems by
running SD and ||SD algorithms.

Closed-Loop System Properties As shown in Table 2, both SD and ||SD systems satisfy the
properties of nonblocking, untimed controllability, timed controllability, proper time behaviour
and plant completeness in both settings. Each of these checks is completed individually in
less than 1 second.

By running the ALF test, both SD and ||SD systems are found to be ALF. However, this
check was completed for the SD system in 2 seconds, whereas our ||SD system took only 1
second to pass this test in the SD and ||SD settings. Given the fact that we have reused ALF
algorithm of the SD setting in our ||SD setting without changing its steps, this difference in
verification time can be attributed to different state sizes of the SD and ||SD systems. As
our ||SD system has a reduced state space as compared to the SD system, this property gets
verified more efficiently for our ||SD system in both settings.

Currently, in DESpot, the check for S-singular prohibitable behaviour is implemented as
part of the SD controllability test. Therefore, we verified these two properties together for the
SD and ||SD systems. Using SD algorithms, it took 30 seconds to verify these properties for
the SD system. However, when we checked these properties of the SD system using our ||SD
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algorithms, verification time dropped to 26 seconds. This is because our ||SD algorithm tests
the property of SD controllability with ||SD, which does not include an explicit check for Point
ii (⇒) of SD controllability. This saves time by performing one less check in the presence of
our ||SD operator as compared to the SD setting.

When we tried to verify the property of SD controllability for our ||SD system using SD
algorithms, the algorithms returned False. The reason is quite obvious. Since we have not
explicitly disabled tick while enabling prohibitable events at various states of the modular
||SD supervisors, our ||SD system fails to satisfy the constraint imposed by Point ii (⇒) of SD
controllability in the SD setting.

In order to test the properties of SD controllability with ||SD and S-singular prohibitable
behaviour with ||SD for the ||SD system, we ran our corresponding ||SD algorithms. Our ||SD

system not only passed these checks but the verification process was completed within 7
seconds, as opposed to the SD system that took 30 seconds to pass these tests in the SD
setting.

This indicates that for the FMS example, we have verified these two properties of our
||SD system 4x faster as compared to the SD system. In other words, we recorded a 76.6%
reduction in verification time and more than 300% increase in performance in our ||SD setting
as compared to the SD setting with respect to the verification of these two properties.

This significant reduction in verification time is primarily due to the smaller state size
of our ||SD system as compared to the SD system, that we are able to achieve due to the
automatic tick disablement mechanism of the ||SD operator. Moreover, our ||SD algorithms
check one less condition as part of the SD controllability with ||SD property in the presence of
the ||SD operator.

In DESpot, we also have an option to check the desired system properties all at once
(Check All). In the SD setting, it took 32 seconds to verify all properties of the SD system,
while our ||SD system passed all tests in 8 seconds in our ||SD setting. On the whole, our results
demonstrate a time reduction of 75% and performance increase of exactly 300% in our ||SD

setting compared to the SD setting. This shows that we are able to do complete verification
of our FMS ||SD system 4x faster than its corresponding FMS SD system.

10.4.3 Miscellaneous Discussion

We will close this section by discussing two important points.
1. It is worth-mentioning that, apparently, our ||SD operator does more work than the syn-

chronous product while synchronizing plant and supervisor models to construct the closed-
loop system. This is because our ||SD operator is required to figure out whether to en-
able/disable tick event at every state of the closed-loop system using a more complex logic
than synchronous product.

Nevertheless, we are still able to notice a visible decline in the overall verification time
of FMS example in our ||SD setting as compared to the SD setting. This suggests that the
slightly complicated synchronization logic of our ||SD operator has not adversely affected
the overall performance of our ||SD algorithms.

2. We would like to point out that we ran SD algorithms on our ||SD system because we wanted
to inspect that other than manually satisfying Point ii (⇒) of SD controllability, is there
any other reason/significance which necessitates the design of a complicated SD system
instead of modelling a simpler ||SD system? As shown in Table 2, our results indicate that
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our ||SD system satisfies all properties in the SD setting except for Point ii (⇒) of SD
controllability.

This makes it evident that the design and verification of the FMS example got a lot
more complicated in the SD setting just because this one property needed to be satisfied
manually. This clearly shows the significance of our ||SD operator that has made the design
and verification process of our FMS ||SD system relatively simple, easy and efficient, by
providing a guarantee to automatically satisfy this intricate property in our ||SD setting.

11 Conclusions and Future Work

This section presents our conclusions and gives some directions for further research related to
this study.

11.1 Conclusions

In this report, we present an approach to automate the mechanism of disabling the tick event
and force eligible prohibitable events in the sampled-data (SD) supervisory control framework.
The SD supervisory control theory [42, 29] focuses on the implementation of timed discrete
event system (TDES) supervisors as SD controllers, and addresses the related implementation
and concurrency issues in a formal and well-defined way.

Our study begins by devising a new synchronization operator, called the SD synchronous
product (or “||SD operator,” for short), that provides a novel way of constructing closed-loop
system in the SD supervisory control framework. The ||SD operator is smart enough to auto-
matically disable tick event in the closed-loop system, if both tick and a prohibitable event
is possible in the plant TDES and enabled by all modular TDES supervisors. As a result,
designers are no longer required to manually keep track of the enablement/disablement of tick
and prohibitable events in the plant and supervisor models. This includes explicitly deciding
when to force a prohibitable event, and then incorporating this logic into various supervisor
models while designing the modular supervisors by hand.

As we have formulated a new way of constructing the closed-loop system, we adapt the
existing definitions of various TDES and SD properties from the SD supervisory control set-
ting (or “SD setting,” to be concise) to make them compatible with our ||SD operator. Most
importantly, we modify the definition of SD controllability and eliminate the explicit check of
the forward implication (⇒) of Point ii. This is because the synchronization logic of our ||SD

operator ensures that this condition will always be satisfied at every state of the closed-loop
system. In fact, guaranteeing the automatic satisfaction of this intricate property and getting
rid of this explicit check is the primary purpose of devising the ||SD operator.

In order to verify our SD synchronous product setting (or “||SD setting,” from now on),
we formally prove all existing controllability and nonblocking verification results of the SD
setting for our ||SD setting. Rather than proving all these results from scratch, we opt for
establishing logical equivalence between the two settings. Essentially, we prove that the SD
and ||SD settings are equivalent with respect to their closed and marked languages, TDES
and SD properties, and the SD controllers that are obtained by translating concurrent string
deterministic supervisors of the two settings.

By making use of this formal equivalence, we derive and conclude the desired controllability
and nonblocking verification results from the SD setting, but now for our ||SD setting. First, we
discuss the construction of a TDES supervisory control map that captures the enablement and
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forcing behaviour of the SD controller C translated from TDES supervisor S in our ||SD setting,
and prove its desired properties. Then, we formally prove that the behaviour of TDES plant
G under the control of C is the same as the behaviour of G under the supervision of S, given
that the theoretical ||SD system satisfies the properties that we have defined in our ||SD setting.
We also show that if the theoretical ||SD system is nonblocking, then the implemented system
will retain this property. This is proven to be true even if only a single concurrent string, out
of multiple concurrent strings with the same occurrence image possible in theoretical model
at a given sampled state, is actually possible in the physical system.

This is followed by a presentation of predicate-based algorithms that we have adapted from
[42] to symbolically verify various TDES and SD properties in our ||SD setting. We implement
these tweaked algorithms as part of the DES research tool, DESpot [14].

We demonstrate the application and utilization of our ||SD operator and ||SD setting by
discussing an example of a Flexible Manufacturing System (FMS) from [42, 43]. By comparing
the modular TDES supervisors developed for FMS in the SD and ||SD settings, we show that
the design logic of supervisors has greatly simplified in our ||SD setting. In the presence of
our ||SD operator, modular supervisors are only concerned about their own behaviour and do
not need to communicate with each other to collectively make the tick disablement and event
forcing decisions. This reduces the complexity of the TDES modelling process and improves
the ease of designing SD controllable supervisors by hand, as designers are no longer required
to manually satisfy Point ii (⇒) of the SD controllability definition at every state of the
closed-loop system.

We further note that this simplification in the logical design of TDES supervisors also
reduces the state size of individual modular supervisors, hence the overall system. We observe
a decrease of 40% in the overall state space of the FMS closed-loop system designed in our
||SD setting as compared to the FMS system developed in the SD setting. Due to this reduced
state space and one less verification check of Point ii (⇒), we are able to do the complete
verification of our FMS ||SD system 4x faster than the corresponding FMS SD system.

Overall, our FMS example results indicate that the development of the ||SD operator and
the ||SD setting has simplified the formal design and verification process of TDES control
systems. Our approach makes the SD supervisory control methodology more accessible to
software and hardware designers and practitioners. This should increase the adoption of SD
supervisory control methodology in particular, and formal methods in general, in the industry.

11.2 Future Work

We have verified our ||SD approach by applying it to the small example of a Flexible Manu-
facturing System. We noted improvement in the ease of manually designing SD controllable
TDES supervisors, reduction in the state space, and faster verification time of the overall
system. In future, it would be interesting to check the efficacy of our ||SD setting and reaffirm
our results by applying it to TDES with larger state spaces.

In this study, we have implemented our ||SD operator and related properties by tweaking
the predicate-based algorithms implemented by [42] in DESpot [14]. Wang’s implemented
algorithms perform a monolithic check to verify various TDES and SD properties of the
closed-loop system. [19] has implemented a modular method to verify these properties in
DESpot. It would be useful to implement our ||SD operator and ||SD properties in Hamid’s
modular verification method and gauge the performance gain.

139



It would also be interesting to extend our ||SD approach to fault-tolerant supervisory control
[32] and hierarchical interface-based supervisory control [28] in future.
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A Miscellaneous Definitions

A.1 Equivalence Relation

Definition A.1. Let X be a nonempty set. Let E ⊆ X ×X be a binary relation on X. The
relation E is an equivalence relation on X if:
1. (∀x ∈ X)xEx (E is reflexive)
2. (∀x, x′ ∈ X)xEx′ ⇒ x′Ex (E is symmetric)
3. (∀x, x′, x′′ ∈ X)xEx′ & x′Ex′′ ⇒ xEx′′ (E is transitive)

In this definition, we use the standard infix notation xEx′ to represent the ordered pair
(x, x′) ∈ E. Instead of xEx′, we shall often write x ≡ x′(mod E).

A.2 Product Operator

Definition A.2. Let G1 = (Q1,Σ, δ1, qo,1, Qm,1) and G2 = (Q2,Σ, δ2, qo,2, Qm,2) be two DES
defined over the same event set Σ. The product of two DES is defined as:

G1 ×G2 := (Q1 ×Q2,Σ, δ1 × δ2, (qo,1, qo,2), Qm,1 ×Qm,2)

where δ1× δ2 : Q1×Q2×Σ→ Q1×Q2 is given by (δ1× δ2) ((q1, q2), σ) := (δ1(q1, σ), δ2(q2, σ))
whenever δ1(q1, σ)! and δ2(q2, σ)!.

By this definition, we have:
L(G1 ×G2) = L(G1) ∩ L(G2) and Lm(G1 ×G2) = Lm(G1) ∩ Lm(G2)

A.3 Meet Operator

Definition A.3. The meet of two DES G1 and G2, represented as G = meet(G1,G2), is
the reachable sub-DES of the product DES G1 ×G2.

A.4 Selfloop Operation

Definition A.4. Let G = (Q,Σ, δ, qo, Qm) be a DES defined over Σ. Let Σ′ be another set
of events such that Σ ∩ Σ′ = ∅. The selfloop operation on G is used to generate a new DES
G′ by selflooping each event in Σ′ at every state of G. Formally, this is expressed as:

G′ = selfloop(G,Σ′) = (Q,Σ ∪ Σ′, δ′, qo, Qm)

where δ′ : Q× (Σ ∪ Σ′)→ Q is a partial function defined as:

δ′(q, σ) :=


δ(q, σ) σ ∈ Σ, δ(q, σ)!
q σ ∈ Σ′

undefined otherwise

A.5 Bijective Function

Definition A.5. A function f : A→ B is:
1. injective if for every x, y ∈ A, x 6= y ⇒ f(x) 6= f(y);
2. surjective if for every b ∈ B there is an a ∈ A with f(a) = b;
3. bijective if f is both injective and surjective.
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B Symbolic Verification

In this appendix, we provide some content related to symbolic verification from [42] for the
sake of completeness. Specifically, we restate the definition for symbolic representation of
transitions in the SD supervisory control theory that we have referred to in Section 9. Also,
we present some predicate-based algorithms that we are reusing to verify some properties in
our ||SD setting. Please see [42] for complete details.

B.1 Symbolic Representation of Transitions

Let G = (Q,Σ, δ, qo, Qm) = G1 ×G2 × . . .×Gn be the product TDES of component TDES
Gi = (Qi,Σi, δi, qo,i, Qm,i) for i = 1, 2, . . . , n. For any state q ∈ Q, we have q = (q1, q2, . . . , qn)
where qi ∈ Qi.

Definition B.1. For G = G1×G2× . . .×Gn, let σ ∈ Σ. A transition predicate Nσ : Q×Q→
{T, F} identifies all the transitions for σ in G and is defined as follows:

(∀q, q′ ∈ Q)Nσ(q, q′) :=

{
T if δ(q, σ)! & δ(q, σ) = q′

F otherwise
In order to distinguish between source states and destination states, two different vectors

of state variables are needed, as defined below.

Definition B.2. For G = G1 × G2 × . . . × Gn, let i = 1, 2, . . . , n. For each Gi, we have
the normal state variable vi (source state) and the prime state variable v′i (destination state),
both with domain Qi. For G, we have the normal state variable vector v = [v1, v2, . . . , vn]
and the prime state variable vector v′ = [v′1, v

′
2, . . . , v

′
n].

For each σ ∈ Σ, we can write the transition predicate for σ, Nσ, as below. Essentially, if
we set v = q and v′ = q′ such that δ(q, σ) = q′, then Nσ(v,v′) will return T .

Definition B.3. We use the transition tuple (vσ,v
′
σ, Nσ) to represent the transition on σ,

where vσ := {vi ∈ v |σ ∈ Σi},v′σ := {v′i ∈ v′ |σ ∈ Σi}, and

Nσ(v,v′) :=
∧

{1≤i≤n|σ∈Σi}

( ∨
{qi,q′i∈Qi|δi(qi,σ)=q′i}

(vi = qi) ∧ (v′i = q′i)

)

B.2 Symbolic Verification of ||SD Properties

In this section, we present some predicate-based algorithms from [42] that can be reused in
our ||SD setting without altering the actual algorithm steps. It is notable that we will only
mention the underlying modifications while using these algorithms to verify properties in our
||SD setting. Please see complete description of these algorithms in [42].

B.2.1 Nonblocking

Algorithm 1213 checks the property of nonblocking on the input TDES G. As this property
has not changed for our ||SD setting, we can use this algorithm from the SD setting to check
our ||SD system.

13Line 2 of this algorithm is different from the corresponding line of Algorithm 6.5 given in [42]. This is
due to the incorrect number of parameters specified in the original algorithm. We have fixed this error in this
version.
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Algorithm 12 Nonblocking(G)

1: Preach ← R(G, true)
2: Pcoreach ← CR(G, Pm,Σ, Preach)
3: if (Preach ∧ ¬Pcoreach 6≡ false) then
4: return False
5: end if
6: return True

Algorithm 13 ALF(G)

1: Pchk ← R(G, true)
2: Ptmp ← false
3: for (q |= Pchk) do

4: Pvisit ←
( ∨
σ∈Σact

δ̂(pr({q}), σ)

)
∧Pchk

5: overlap← False
6: Pnext ← Pvisit
7: repeat

8: Pnext ←
( ∨
σ∈Σact

δ̂(Pnext, σ)

)
∧Pchk

9: Ptmp ← Pvisit
10: if (Pvisit ∧ Pnext 6≡ false) then
11: overlap← True
12: end if
13: Pvisit ← Pvisit ∨ Pnext
14: if (q |= Pvisit) then
15: return False
16: end if
17: until (Pvisit ≡ Ptmp)
18: Pchk ← Pchk − pr({q})
19: if (¬ overlap) then
20: Pchk ← Pchk − Pvisit
21: end if
22: end for
23: return True

As we are interested in making sure that our closed-loop system is nonblocking, we will
provide our closed-loop system of the ||SD setting as an input to this algorithm, which is
different from the closed-loop system used in the SD setting. Also, R (Algorithm 5) and CR
(Algorithm 6) will be computed using our function definitions, as explained in Section 9.3.2.

B.2.2 Activity Loop Free

As the original activity-loop-free (ALF) property remains unchanged in our ||SD setting, we
can use Algorithm 13 of the SD setting without changing its steps.

The only difference is the TDES G that we provide as an input to this algorithm. In our
||SD setting, parameter G will represent our closed-loop system that we want to make sure is
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Algorithm 14 ProperTimeBehaviour(G)

1: P1 ←
∨

σ∈Σu∪{τ}
δ̂−1
G (true, σ)

2: P2 ← R(G, true)
3: if (P2 − P1 6≡ false) then
4: return False
5: end if
6: return True

ALF. As our input G is constructed in a different way than the closed-loop system of the SD
setting, Algorithm 13 will use our R (Algorithm 5) at line 1, and our Definition 9.11 of the
function δ̂ at lines 4 and 8 to compute the required predicates while verifying ALF property
in our ||SD setting. Please recall that δ̂ relies on Nσ, and the definition of Nσ in our ||SD setting
(Definition 9.9) is different from the SD setting (Definition B.3).

B.2.3 Proper Time Behaviour

The property of proper time behaviour is defined only in terms of TDES plant G. As G is
same in the SD and ||SD settings, Algorithm 14 remains unmodified with respect to its steps,
underlying functions, and input G.

B.2.4 S-Singular Prohibitable Behaviour with ||SD

The property of S-singular prohibitable behaviour with ||SD is verified at lines 12-16 of
Algorithm 16. Please note that we have redefined the meaning of variables Σposs, Bconc, and
node b in our ||SD setting, as discussed in Section 9.5.3. Please refer to Section B.3.2 for further
details on Algorithm 16.

B.3 Symbolic Verification of SD Controllability with ||SD

In this section, we present algorithms from [42] that can be used to verify Points ii and Point
iii of our SD controllability with ||SD property. Please recall that these two points correspond
to Points iii and iv of the SD controllability (Definition 3.7) respectively in the SD setting.

It is worth-mentioning that these algorithms can be used in our ||SD setting without mod-
ifying their steps. However, the input parameters and the underlying definitions for some
variables and functions used by these algorithms have changed in our ||SD setting. Therefore,
it is our implicit assumption that while verifying properties in our ||SD setting, these algo-
rithms use the variable and function definitions as specified in Section 9. In particular, from
Section 9, we have used functions, δ̂ (Definition 9.11) and δ̂G (Definition 9.14), as well as R
(Algorithm 5) to calculate Preach. Please refer to Section 9.5.3 for the definition of variables
used in the following algorithms.

B.3.1 Point ii.1

In order to verify Point ii.1 of SD controllability with ||SD, Algorithm 15 analyzes the concurrent
behaviour of sampled state qss represented by predicate Pss. Starting at qss, it builds a
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Algorithm 15 AnalyzeSampledState(G,S, PSF , ZSP , Preach, Pss, pNerFail)

1: Bmap ← {(0, Pss)}
2: Bconc ← ∅
3: Bp ← {0}
4: nextLabel← 1
5: OccuB ← {(0, ∅)}
6: while (Bp 6= ∅) do
7: b← Pop(Bp)
8: Pq ← Bmap(b)
9: Σposs ← ∅

10: ΣGposs ← ∅
11: for all (σ ∈ Σ) do
12: if (δ̂(Pq, σ) 6≡ false) then
13: Σposs ← Σposs ∪ {σ}
14: end if
15: if (δ̂G(Pq, σ) 6≡ false) then
16: ΣGposs ← ΣGposs ∪ ({σ} ∩ Σhib)
17: end if
18: end for
19: if (Pq ≡ Pss) then
20: ΣElig ← Σposs ∩ Σhib

21: end if
22: if ((Σposs ∪OccuB(b)) ∩ Σhib 6= ΣElig) then
23: return False
24: end if
25: if (¬NextState(b,Σposs,ΣGposs, Pq, nextLabel, Bmap, Bp, Bconc, PSF , ZSP ,

OccuB(b))) then
26: return False
27: end if
28: end while
29: CheckNerodeCells(Bconc,OccuB, pNerFail)
30: return True

reachability tree until all nodes terminate at a tick event or one of the checks fail. As the tree
is built, Point ii.1 of SD controllability with ||SD property is tested at line 22.

This algorithm also calls Algorithms 16 and 17 that contribute in verifying Point ii.2 of
SD controllability with ||SD.

B.3.2 Point ii.2

The following algorithms can be used to verify Point ii.2 of SD controllability with ||SD property.

Next State Algorithm 16 is called by Algorithm 15 to determine all the next states that
need to be processed for checking Point ii.2 of SD controllability with ||SD. This algorithm also
checks the property of S-singular prohibitable behaviour with ||SD. This check is performed
from lines 12-16.
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Algorithm 16 NextState(. . .)

1: if (Σposs = ∅) then
2: return True
3: end if
4: if (τ ∈ Σposs) then
5: Pq′ ← δ̂(Pq, tick)
6: Push(Bconc, (b, Pq′))
7: if (Pq′ ∧ PSF ≡ false) then
8: PSF ← PSF ∨ Pq′
9: Push(ZSP , Pq′)

10: end if
11: end if
12: for all (σ ∈ ΣGposs) do
13: if (OccuB(b) ∩ {σ} 6= ∅) then
14: return False
15: end if
16: end for
17: for all (σ ∈ Σposs − {τ}) do
18: Pq′ ← δ̂(Pq, σ)
19: b′ ← nextLabel
20: nextLabel← nextLabel + 1
21: Push(Bmap, (b′, Pq′))
22: Push(Bp, b′)
23: Push(OccuB, (b′,OccuB(b) ∪ {σ}))
24: end for
25: return True

Check Nerode Cells Algorithm 17 is called by Algorithm 15 to determine if there are
possible violations for Point ii.2 of SD controllability with ||SD. These potentially problematic
states are recorded in pNerFail to be analyzed later.

Recheck Nerode Cells Algorithm 18 is called by Algorithm 9 to recheck Point ii.2 with
respect to the potentially problematic states stored in pNerFail. It makes use of Algorithm
19 to conclude its result.

Recheck Nerode Cell Algorithm 19 is called by Algorithm 18 to recheck Point ii.2 with
respect to the potentially problematic states stored in pNerFail. It determines if the set of
states that this algorithm is called with are λ-equivalent to each other. If they are not, the
algorithm returns False indicating the violation of Point ii.2 of SD controllability with ||SD

property.

B.3.3 Point iii

Algorithm 20 verifies Point iii of SD controllability with ||SD. It determines if there exists a
marked state in Gcl = S ||SD G with an incoming non-tick transition from a reachable state.
If such a state exists, Point iii fails and the algorithm returns False. Please note that in our
||SD setting, Preach = R(S ||SD G, true).
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Algorithm 17 CheckNerodeCells(Bconc,OccuB, pNerFail)

1: while (Bconc 6= ∅) do
2: (b, Pq)← Pop(Bconc)
3: Zeqv ← ∅
4: Push(Zeqv, Pq)
5: sameCell← True
6: for all ((b′, Pq′) ∈ Bconc) do
7: if (OccuB(b) = OccuB(b′)) then
8: Push(Zeqv, Pq′)
9: Bconc ← Bconc − {(b′, Pq′)}

10: if (Pq 6≡ Pq′) then
11: sameCell← False
12: end if
13: end if
14: end for
15: if (¬ sameCell) then
16: Push(pNerFail, Zeqv)
17: end if
18: end while
19: return

Algorithm 18 RecheckNerodeCells(pNerFail)

1: if (pNerFail = ∅) then
2: return True
3: end if
4: V isited← ∅
5: while (pNerFail 6= ∅) do
6: Zeqv ← Pop(pNerFail)
7: if (¬RecheckNerodeCell(Zeqv, V isited)) then
8: return False
9: end if

10: end while
11: return True
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Algorithm 19 RecheckNerodeCell(Zeqv, V isited)

1: Pq1 ← Pop(Zeqv)
2: Pending ← ∅
3: while (Zeqv 6= ∅) do
4: Pq2 ← Pop(Zeqv)
5: Push(Pending, (Pq1 , Pq2))
6: end while
7: while (Pending 6= ∅) do
8: (Pq1 , Pq2)← Pop(Pending)
9: P ← Pq1 ∨ Pq2

10: if ((P ∧ Pm 6≡ false) & (P ∧ Pm 6≡ P )) then
11: return False
12: end if
13: for all (σ ∈ Σ) do
14: P ′ ← δ̂(P, σ)
15: P ′q1 ← δ̂(Pq1 , σ)

16: P ′q2 ← δ̂(Pq2 , σ)
17: if (P ′ 6≡ false) then
18: if ((P ′q1 ∧ P

′ 6≡ false) & (P ′q2 ∧ P
′ 6≡ false)) then

19: if ((P ′q1 6≡ P
′
q2) & ((P ′q1 , P

′
q2) /∈ V isited)) then

20: Push(V isited, (P ′q1 , P
′
q2))

21: Push(V isited, (P ′q2 , P
′
q1))

22: Push(Pending, (P ′q1 , P
′
q2))

23: end if
24: else
25: return False
26: end if
27: end if
28: end for
29: end while
30: return True

Algorithm 20 CheckSDCPointiii(Preach)

1: P ←
∨

σ∈Σ−{τ}
δ̂(Preach, σ)

2: if (P ∧ Pm 6≡ false) then
3: return False
4: end if
5: return True
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