
CS 3EA3: Lecture Notes - 10 February 2017

Scribed By: James Zhu

February 10, 2017

1 Announcements

• Personalised Assignments: If there is a topic which interests you
and/or you are currently working on, please ask Musa if you can
do it for marks in this course!

• Quiz 3: Will be open-book, but preferably not open laptop/phone.

Know for Quiz:

1. Quiz questions borrowed from Sheet 5 and 6.

2. Lattices (builds from Sheet 4), Quantification, Textual Substitution
(around 50% of quiz, please see Notes for 6 Feb and 8 Feb lectures)

3. Also know the ternary condition operators from today’s lecture.

Tips:

1. Print latest copy of Theorem List from course website.

2. Don’t forget to read!— when in doubt, look for a similar formula from
Theorem List that you can use.

3. Notable algorithm repeated in Notes and Sheets will show up.

4. Don’t worry too much about Galois Connections.

5. Remember, Musa (and Curtis!) wants you to succeed, but be careful
not to fall into the ”open-book” fallacy: open-book 6= no need to
study!

2 Warm-up: Interesting Puzzle

Consider the following piece of code:

1

i f a < 0 then P1
e l s e i f b != 0 then P2

e l s e i f a = b then P3
e l s e i f a = 0 then P4

Question: When is P4 executed? Is it when:

1. a = 0
OR

2. b != 0
OR

3. b = 0
OR

4. 1 ∧ 2 ∧ 3, ie. false, ie. never
OR

5. always

Answer:

Recall:

I f b then t e l s e f

• b = true =⇒ t

• b = false =⇒ f

Then, at P4, we should be able to assert (before b can happen):

(b = 0) ∧ (0 ≤ a) ∧ (a = 0) ∧ (a 6= b)

This is false.

We can represent this in guarded notation:

if
2a < 0→ P1
2(0 ≤ a) ∧ (b 6= 0)→ P2
2(b = 0) ∧ (a = 0)→ P3
fi

Definition: So now we can specify a general case (to show why we are using
guards in the first place).

2

if B then E else F fi
≡
if
2B → E
2¬B → F
fi

Now, can we do this in C?

First try:

i n t x = i f 0 <= y then 3 e l s e x − 2 ;

We assume that x is defined.

WRONG!

Second try:

i n t x = i f (0 <= y) {3 ;} e l s e {x − 2 ;}

WRONG!

third try:

x = (0 < y) ? 3 : x − 2

This notation is called the ternary conditional.

General Case for Ternary Conditional

? :

3 Weakest Precondition

Lets define

wp S R

to be the condition Q such that ALL states which satisfies it will have S termi-
nate afterwards with state satisfying R.

{Q} S {R}
≡

3

Q =⇒ wp S R, where =⇒ can be replaced with ≤

Look at Knaster-Tarski Lemma from Sheet 6 for fixed points.

Why: it can be used to define a stable state and derive a rule for loops!

4 Folding / Rolling Rule

whi le B do S

≡

i f B then
S ; whi l e B do S

e l s e SKIP

f (x) = i f B then S ; X e l s e SKIP f i

x = whi le B do S

≡

x = f (x)

Note: In C, ”;”: SKIP [Empty statement]

Let’s be adventurous!

Take a look at this DO block:

do
2B1 → S1

2B2 → S2
...
2Bn → Sn

od

From this, we get:
BB ≡ ∃i : 1...n •Bi

Therefore,

H0(R) = ¬BB ∧R
Hk(R) = H0(R)∨ wp ”IF” Hk−1(R)

where

4

IF = if
2B1 → S1
...
2Bn → Sn

fi

So now, we can define the rule for loops:

wp Do R = ∃k •Hk(R)

• There is a bound k such that the loop will finish in at most k steps with
condition R.

Note: This can be thought of solving: limk→∞.

5

