
CS 3EA3 - Lecture Notes
Algorithm Derivation

Marina Mansour

Wednesday, February 15, 2017

Today, we present several problems and derive their algorithms, the objective being to
illustrate the use of invariants in loop construction in the simplest possible context.

1 Summing the Elements of an Array

This problem is quickly introduced in Section 13.3.1 of the course text, but here we will
provide the derivation in full.

Given 0 ≤ N , establish

R : total = (⊕i 0 ≤ i < N • A[i])

Note: if ⊕ means:

• add (+) then add the elements of array A.

• product (∗) then multiply the elements of array A.

• and (∧)then all elements of array A are true.

• or (∨) then there exists at least one element of array A that is true.

Let’s take the invariant:

P : total = (⊕i 0 ≤ i < n • A[i]) ∧ 0 ≤ n ≤ N

This invariant holds the notion of “so far”. We do not examine all the elements of the
array (up to N), but we examine a smaller segment of it (up to n).
We need to keep the property of the invariant (P) true from the beginning to the end. Thus,
we need to make it true initially.

Initially truthify P by:

P [t, n := e, 0] ≡ true where e is the unit of ⊕

Note: This is a proof obligation.

1

So, our program so far:

{ 0 ≤ N } Precondition

total, n := e, 0

{ invariant P }

{ R } Post-condition

To reach the post-condition R we would need to reach:

P ∧ n = N

Note: This is another proof obligation.

So our program so far:

{ 0 ≤ N } Precondition

total, n := e, 0

{ invariant P }

{ P ∧ n = N }
{ R } Post-condition

To get to n = N , we should first have a loop that when terminated, n = N becomes true.
This loop will be:

do n 6= N

→ ?

So our program so far:

{ 0 ≤ N } Precondition

total, n := e, 0

{ invariant P }
do n 6= N

→ ?

od

{ P ∧ n = N }
{ R } Post-condition

2

Now, we need to find a bound function (bf) in order to make progress to terminate the
loop. We know that

P ∧ n 6= N =⇒ bf > 0

= { where 0 ≤ n < N ∧ n 6= N }
n < N =⇒ bf

= { arithmetic }
N − n > 0 =⇒ bf

Now, we have our bound function:

bf : N − n

Note: This is another proof obligation.
So our program so far:

{ 0 ≤ N } Precondition

total, n := e, 0

{ invariant P ; bf : N − n }
do n 6= N

→ ?

od

{ P ∧ n = N }
{ R } Post-condition

Now, we need to to make progress towards termination by decreasing the bound function
(bf). To decrease N − n we will will increment n:

{ bf = s } n := n + 1 { bf < s }

Note: This is another proof obligation.
This gave us information on what to do with n, but what happens to total? Let’s call it the
arbitrary term X for now.
So our program so far:

{ 0 ≤ N } Precondition

total, n := e, 0

{ invariant P ; bf : N − n }
do n 6= N

→ total, n := X, n + 1

od

{ P ∧ n = N }
{ R } Post-condition

3

Rather than guessing, let’s solve for X.

P [t, n := X, n + 1]

= { Definition of P and textual Substitution }
X = (⊕i 0 ≤ i < n + 1 • A[i]) ∧ 0 ≤ n + 1 ≤ N

= { Order of N }
X = (⊕i 0 ≤ i < n + 1 • A[i]) ∧ n + 1 ≤ N

= { Successors strictly above and <-arithmetic }
X = (⊕i 0 ≤ i < n + 1 • A[i]) ∧ n < N

= { Definition of strict order }
X = (⊕i 0 ≤ i < n + 1 • A[i]) ∧ n ≤ N ∧ n 6= N

= { From invariant P }
X = (⊕i 0 ≤ i < n + 1 • A[i]) ∧ n 6= N

= { From loop guard }
X = (⊕i 0 ≤ i < n + 1 • A[i])

= { Split off term theorem and using invariant P }
X = total ⊕ A[n]

Finally, our program:

{ 0 ≤ N } Precondition

total, n := e, 0

{ invariant P ; bf : N − n }
do n 6= N

→ total, n := total ⊕ A[n], n + 1

od

{ P ∧ n = N }
{ R } Post-condition

And the C code will be:

t o t a l = e ; // e i s the un i t o f op lus
f o r (i n t n = 0 ; n < N ; n ++)

t o t a l = oplus (t o t a l , f (n)) ;

4

To derive algorithms like this one, recall the lecture on January 9th, 2017 on Games.
There we said we need to do the following 7 steps:

1. Formalise ‘Givens ’ and ‘Requireds ’ of the problem.

2. Obtain an invariant P and initialise the variables to make it true.

3. Bridge from invariant to post-condition: solve for B in

P ∧ ¬B =⇒ R

4. If ¬B holds then were done, otherwise we construct a loop to obtain it.

5. Solve for a “bound function” bf in P ∧B =⇒ bf > 0

6. Make progress towards termination: solve for S in

{ bf = c } S { bf < c }

where c can be thought of as any “candidate number of iterations remaining”.

7. Ensure that such a program S maintains our invariant!

And the general schema looks like:

{ G } Precondition

initialisation

{ invariant P ; bound bf }
do B → { bf = c } S { bf < c } od
{ P ∧ ¬B =⇒ R }
{ R } Post-condition

5

http://www.cas.mcmaster.ca/~alhassm/Jan9.pdf

2 Summing the Elements of an Array 2.0

Given 0 ≤ len, establish s the sum of array r[0 ... len− 1]. So our program will look like:

s, n := 0, 0

do n 6= len

→ s, n := s + r[n], n + 1

od

3 All True

Given x ≥ 1, establish ‘a’ as true iff all elements of the array f [0 ... x] are true.
The C code will be:

a = true ; // t rue i s the un i t o f &&
f o r (i n t i = 0 ; i < x ; i ++)

a = f [i] && a ;

4 Factorial

Given n ≥ 0, establish fact = n! = (∗ i 0 ≤ i < n • i + 1)
The C code will be:

f a c t = 1 ; //1 i s the un i t o f ∗
f o r (i n t i = 0 ; i < b ; i ++)

f a c t = f a c t ∗ (i + 1) ;

5 Tricky but Works!

Given n ≥ 0, establish 1/n!, assuming you cannot divide at the end when you have n!. The
C code will be:

f a c t = 1 ; //1 i s the un i t o f /
f o r (i n t i = 0 ; i < n ; i ++)

f a c t = f a c t / (i + 1) ;

The reason why this is tricky is because in the general schema, oplus (⊕) has to be associative
and division (/) is not associative.
Thus this program cannot be justified or proven using the general schema defined earlier.

6

	Summing the Elements of an Array
	Summing the Elements of an Array 2.0
	All True
	Factorial
	Tricky but Works!

