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Today, we present several problems and derive their algorithms, the objective being to
illustrate the use of invariants in loop construction in the simplest possible context.

1 Summing the Elements of an Array

This problem is quickly introduced in Section 13.3.1 of the course text, but here we will
provide the derivation in full.

Given 0 ≤ N , establish

R : total = (⊕i 0 ≤ i < N • A[i])

Note: if ⊕ means:

• add (+) then add the elements of array A.

• product (∗) then multiply the elements of array A.

• and (∧)then all elements of array A are true.

• or (∨) then there exists at least one element of array A that is true.

Let’s take the invariant:

P : total = (⊕i 0 ≤ i < n • A[i]) ∧ 0 ≤ n ≤ N

This invariant holds the notion of “so far”. We do not examine all the elements of the
array (up to N), but we examine a smaller segment of it (up to n).
We need to keep the property of the invariant (P ) true from the beginning to the end. Thus,
we need to make it true initially.

Initially truthify P by:

P [t, n := e, 0] ≡ true where e is the unit of ⊕

Note: This is a proof obligation.
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So, our program so far:

{ 0 ≤ N } Precondition

total, n := e, 0

{ invariant P }

{ R } Post-condition

To reach the post-condition R we would need to reach:

P ∧ n = N

Note: This is another proof obligation.

So our program so far:

{ 0 ≤ N } Precondition

total, n := e, 0

{ invariant P }

{ P ∧ n = N }
{ R } Post-condition

To get to n = N , we should first have a loop that when terminated, n = N becomes true.
This loop will be:

do n 6= N

→ ?

So our program so far:

{ 0 ≤ N } Precondition

total, n := e, 0

{ invariant P }
do n 6= N

→ ?

od

{ P ∧ n = N }
{ R } Post-condition
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Now, we need to find a bound function (bf) in order to make progress to terminate the
loop. We know that

P ∧ n 6= N =⇒ bf > 0

= { where 0 ≤ n < N ∧ n 6= N }
n < N =⇒ bf

= { arithmetic }
N − n > 0 =⇒ bf

Now, we have our bound function:

bf : N − n

Note: This is another proof obligation.
So our program so far:

{ 0 ≤ N } Precondition

total, n := e, 0

{ invariant P ; bf : N − n }
do n 6= N

→ ?

od

{ P ∧ n = N }
{ R } Post-condition

Now, we need to to make progress towards termination by decreasing the bound function
(bf). To decrease N − n we will will increment n:

{ bf = s } n := n + 1 { bf < s }

Note: This is another proof obligation.
This gave us information on what to do with n, but what happens to total? Let’s call it the
arbitrary term X for now.
So our program so far:

{ 0 ≤ N } Precondition

total, n := e, 0

{ invariant P ; bf : N − n }
do n 6= N

→ total, n := X, n + 1

od

{ P ∧ n = N }
{ R } Post-condition
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Rather than guessing, let’s solve for X.

P [t, n := X, n + 1]

= { Definition of P and textual Substitution }
X = (⊕i 0 ≤ i < n + 1 • A[i]) ∧ 0 ≤ n + 1 ≤ N

= { Order of N }
X = (⊕i 0 ≤ i < n + 1 • A[i]) ∧ n + 1 ≤ N

= { Successors strictly above and <-arithmetic }
X = (⊕i 0 ≤ i < n + 1 • A[i]) ∧ n < N

= { Definition of strict order }
X = (⊕i 0 ≤ i < n + 1 • A[i]) ∧ n ≤ N ∧ n 6= N

= { From invariant P }
X = (⊕i 0 ≤ i < n + 1 • A[i]) ∧ n 6= N

= { From loop guard }
X = (⊕i 0 ≤ i < n + 1 • A[i])

= { Split off term theorem and using invariant P }
X = total ⊕ A[n]

Finally, our program:

{ 0 ≤ N } Precondition

total, n := e, 0

{ invariant P ; bf : N − n }
do n 6= N

→ total, n := total ⊕ A[n], n + 1

od

{ P ∧ n = N }
{ R } Post-condition

And the C code will be:

t o t a l = e ; // e i s the un i t o f op lus
f o r ( i n t n = 0 ; n < N ; n ++)

t o t a l = oplus ( t o t a l , f (n ) ) ;
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To derive algorithms like this one, recall the lecture on January 9th, 2017 on Games.
There we said we need to do the following 7 steps:

1. Formalise ‘Givens ’ and ‘Requireds ’ of the problem.

2. Obtain an invariant P and initialise the variables to make it true.

3. Bridge from invariant to post-condition: solve for B in

P ∧ ¬B =⇒ R

4. If ¬B holds then were done, otherwise we construct a loop to obtain it.

5. Solve for a “bound function” bf in P ∧B =⇒ bf > 0

6. Make progress towards termination: solve for S in

{ bf = c } S { bf < c }

where c can be thought of as any “candidate number of iterations remaining”.

7. Ensure that such a program S maintains our invariant!

And the general schema looks like:

{ G } Precondition

initialisation

{ invariant P ; bound bf }
do B → { bf = c } S { bf < c } od
{ P ∧ ¬B =⇒ R }
{ R } Post-condition
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2 Summing the Elements of an Array 2.0

Given 0 ≤ len, establish s the sum of array r[0 ... len− 1]. So our program will look like:

s, n := 0, 0

do n 6= len

→ s, n := s + r[n], n + 1

od

3 All True

Given x ≥ 1, establish ‘a’ as true iff all elements of the array f [0 ... x] are true.
The C code will be:

a = true ; // t rue i s the un i t o f &&
f o r ( i n t i = 0 ; i < x ; i ++)

a = f [ i ] && a ;

4 Factorial

Given n ≥ 0, establish fact = n! = (∗ i 0 ≤ i < n • i + 1)
The C code will be:

f a c t = 1 ; //1 i s the un i t o f ∗
f o r ( i n t i = 0 ; i < b ; i ++)

f a c t = f a c t ∗ ( i + 1 ) ;

5 Tricky but Works!

Given n ≥ 0, establish 1/n!, assuming you cannot divide at the end when you have n!. The
C code will be:

f a c t = 1 ; //1 i s the un i t o f /
f o r ( i n t i = 0 ; i < n ; i ++)

f a c t = f a c t / ( i + 1 ) ;

The reason why this is tricky is because in the general schema, oplus (⊕) has to be associative
and division (/) is not associative.
Thus this program cannot be justified or proven using the general schema defined earlier.
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