
CS 3EA3 - Lecture Notes
Quantification

Marina Mansour

Friday, February 3, 2017

Consider the for loop:

t o t a l := e ;
f o r (i n t i = 0 ; i < n ; i++)

t o t a l := t o t a l ⊕ A[i] ;

What does this for loop do? It adds all the elements in the array A one by one.

This program is a general schema and works for all interpretations of ⊕ and e.

Now consider the definition of a Monoid:

Monoid : (M, ⊕ , e)
⊕ : M → M → M

Where :
• ⊕ i s an a r b i t r a r y binary operator that i s a s s o c i a t i v e .

x⊕(y⊕z) = (x⊕y)⊕z

• e i s an i d e n t i t y operator .
x⊕e = x = e⊕x

This can be applied in many domains:

• i f ⊕ i s and (∧) :
then e i s t rue
and post−cond i t i on : { t o t a l = (∀ i : 0 .. n− 1 · A[i]) }

• i f ⊕ i s or (∨) :
then e i s f a l s e
and post−cond i t i on : { t o t a l = (∃ i : 0 .. n− 1 · A[i]) }

• i f ⊕ i s p lus (⊕) :
then e i s ≡
and post−cond i t i on : { t o t a l = (

∑
i : 0 .. n− 1 · A[i]) }

1

In fact,

(⊕ i : Z | a ≤ i ≤ b · f(i))

is applicable in many programming languages such as Python, SQL, and many others.

Since it is abstract, it offers the advantage of being more efficient (because it can be ex-
ecuted in parallel in some compilers thus optimized) compared to a for-loop.

Translate the above-mentioned for-loop to a recursive function:

F (unsigned i n t N)
{

i f (N == 0)
re turn e ;

e l s e
re turn F (N − 1) ⊕ A[N] ;

}

Note: Composition (;) is not symmetric. For programs A and B, A ; B 6= B ; A

Now, let’s define the recursive function FN :

FN = (⊕ i : Z | 0 ≤ i ≤ N · fi)
F0 = e

FN = FN−1 ⊕ FN

Interestingly, the property 0 ≤ i ≤ N can be replaced with any other property.
→ Memorise the quantifier properties in section 11.4 of the course text.

The ∀ and ∃ quantifiers are handy and show up in lattices naturally.

Note: Leibniz Rule
→ x = y ⇒ f(x) = f(y)

2

The material in the table below is drawn from the book: The Mathematics of Program-
ming: An Inaugural Lecture Delivered Before the University of Oxford on 17 October 1985
by C. A. R. Hoare.

Table 1: Connecting Properties in Mathematics and Programming
Numbers Programs

1. Associativity
a ∗ (b ∗ c) = (a ∗ b) ∗ c

1. Associativity
A ; (B ; C) = (A ; B) ; C

2. Identity
a ∗ 1 = a

2. Identity
A ; SKIP = A

3. Zero
a ∗ 0 = 0

3. Zero
A ; ABORT = ABORT

4. Distributivity
(a + b) ∗ c = (a ∗ c) + (b ∗ c)

4. Distributivity
(A B) ; C = (A ; C) (B ; C)

5. Least Upper Bound
x ↑ y = the greater of x and y

5. Choice
A B = do A or do B

6. Monotonicity
a ≤ b ∧ c ≤ d⇒ a ∗ c ≤ b ∗ d

6. Refinement by Parts
A v B ∧ C v D ⇒ A ; C v B ; D

Notes: (4) In mathematics, order of operations is in effect.
In programming, sequential execution is in effect.

(6) A v B means that A is a refinement of B.
This means that all side effects of A are also side effects of B.

Notes on Galois Connections:

If you have A and C but not B, from A ; B v C, you can derive:

A ; B v C 7→ B v C ÷ A 7→ wp(A, C)

Notes Weakest Precondition and Side effects:

What does it mean for programs A and B to be equal?
A = B if and only if both programs produce identical side effects.
It also means:

∀ p · wp(A, p) ≡ wp(B, p)
where p is any property of A and B

3

