CS 3EAS3 - Lecture Notes
Quantification

Marina Mansour

Friday, February 3, 2017

Consider the for loop:

total = e;
for (int 1 = 0; i < n; i++)
total := total @& A[i];

What does this for loop do? It adds all the elements in the array A one by one.
This program is a general schema and works for all interpretations of @ and e.

Now consider the definition of a Monoid:

Monoid : (M, &, e)
@ : M—-=M-—=M
Where:
. @ is an arbitrary binary operator that is associative.
xB(ydz) = (xDy)Dz

e ¢ is an identity operator.
xPe = X = edx
This can be applied in many domains:

e if & is and (A)

then e is true

and post—condition: {total = (Vi:0.n—1- Afi])}
o if & is or (V)

then e is false

and post—condition: {total = (Fi:0..n—-1- A[i])}
o if ® is plus (&)

then e is =

and post—condition: {total = (> i:0.n—1- A[i])}

In fact,
@i: Z]a<i<b- (1))

is applicable in many programming languages such as Python, SQL, and many others.

Since it is abstract, it offers the advantage of being more efficient (because it can be ex-
ecuted in parallel in some compilers thus optimized) compared to a for-loop.

Translate the above-mentioned for-loop to a recursive function:

F (unsigned int N)

{
if (N=0)
return e;
else
return F (N - 1) & A[N];
}

Note: Composition (;) is not symmetric. For programs A and B, A ; B# B ; A

Now, let’s define the recursive function Fy:

F0:6
Fy=Fy_1® Fn

Interestingly, the property 0 < ¢ < N can be replaced with any other property.
— Memorise the quantifier properties in section 11.4 of the course text.

The V and 3 quantifiers are handy and show up in lattices naturally.

Note: Leibniz Rule
—r=y= f(z)=f(y)

The material in the table below is drawn from the book: The Mathematics of Program-
ming: An Inaugural Lecture Delivered Before the University of Ozford on 17 October 1985

by C. A. R. Hoare.

Notes:

Table 1: Connecting Properties in Mathematics and Programming

Numbers

Programs

1. Associativity
a*x(bxc)=(axb)*c

1. Associativity
A;(B;C)=(A:B);C

2. Identity 2. Identity

axl=a A SKIP = A

3. Zero 3. Zero

ax0=0 A ; ABORT = ABORT

4. Distributivity
(a+b)xc=(a*xc)+ (bxc)

4. Distributivity
(AlB);C=A;0)1(B:C)

5. Least Upper Bound
x Ty = the greater of z and y

5. Choice
AlB=doAordoB

6. Monotonicity
a<bAhc<d=axc<bxd

6. Refinement by Parts
ACBACCED=A;CCB;D

(4) In mathematics, order of operations is in effect.
In programming, sequential execution is in effect.

(6) A C B means that A is a refinement of B.
This means that all side effects of A are also side effects of B.

Notes on Galois Connections:

If you have A and C but not B, from A ; B C C, you can derive:
A;BCC—BLCC+ A~ wplA, C)
Notes Weakest Precondition and Side effects:

What does it mean for programs A and B to be equal?
A = B if and only if both programs produce identical side effects.
It also means:

V p-wp(A, p)=wp(B, p)

where p is any property of A and B

