CompSci3EA3 - Lecture Notes Feb $8{\rm th}$

Aaska Shah

February 8, 2017

-Read the textbook! :) it will help with the quizzes -For this, read chapter 9

1 Function Patching

$$for \quad f: X \to Y$$

$$e: X$$

$$E: Y$$

let

$$f[e \mapsto E](x) =$$

if $x = e$
then E
else $f(x)$
 fi

Example:

$$f(x) = x^{2} + 3$$

$$f[0 \mapsto 12](x) =$$
if $x = 0$
then 12
else $f(x)$

$$fi$$

$$f[0 \mapsto 12][3 \mapsto 5] =$$

if $x = 3$
then 5

else if x = 0 then 12 else f(x)fi

2 Wrapping up Assignments

 $\mathbf{b[i]} := \mathbf{e}$: - b at index i becomes e

array:is a sequence of memoryessentially a function

Array: b[0..N-1] over type T \approx function $b: 0..N-1 \rightarrow T$

In accordance with Function Patching, the definition of an array assignment is as follows:

$$b[i] := e^{n} = b^{n} := b[i \mapsto e]^{n}$$

Definition \ast

$$wp"b[i] := e" R$$

= ?

Q: How would you represent this with the assignment rule? R[b[i] := e]? – **Incorrect**

Why? - b[i] is not a variable!

Remember the assignment rule?? : Assignment Rule :

$$wp "x := E" R = R[x := e]$$

 $(\land E \text{ well defined } \land E \text{ has same type as } x)$ - where x is a **variable**, and R & E are **terms**

Correct Answer: $R[b := b[i \mapsto e]](e \text{ well}-defined, \text{ has type of elem in } b, i \text{ valid index of } b)$

Example :

Given b[0..N - 1] of type N, we calculate : wp " $i := 5; \ b[i] = 5/x$ " R $= \{ \text{ sequence with wp } \}$ wp "i := 5" (wp "b[i] = 5/x" R) $= \{ \text{ Definition } * \land x \in \mathbb{N} \land \text{ no-div-by-zero } \}$ wp "i := 5" ($R[b := b[i \mapsto 5/x]$]" $\land 0 \le i < N \land 0 \le \land x \ne 0$) $= \{ \text{Assignment axiom } \land \text{Substitution over function application } \}$ ($R[b := b \ [i \mapsto 5/x]$]) $[i := 5] \land (0 \le i < N)[i := 5] \land (0 < x)[i := 5]$ $= \{ \text{Textual substitution } \}$ $R[b := b[5 \mapsto 5/x]] \land 0 \le 5 < N \land 0 < x$

3 Guards and Weakest Preconditions

Condition 1 Def: wp if

$$\Box B_0 \to S_0$$

$$\Box B_1 \to S_1$$

...

$$\Box B_{n-1} \to S_{n-1}$$

$$fi R$$

$$\equiv$$

 $(\exists i:0..N-1\cdot B_i)\ \land\ //$ one of the guards have to be true ($\forall i:0..N-1\cdot wp\ S_iR)\ //$ chosen guards statement give you R

Theorem:

$$\begin{array}{l} wp \text{ ``if } A \to X \ \Box \ B \to Yfi \ " \ R \\ \equiv (A \lor B) \land (A \Rightarrow wp \ X \ R) \land (B \Rightarrow wp \ Y \ R) \end{array}$$

t: "x + 5 - 2 * z" free variables: x, z

** Terms correspond to functions of their free vars! **

$$f(x, z) = t$$

= x + 5 - 2 * z

Def:

State = function vars \rightarrow values

Theorem

function application distribute over conditional

f if b then E else F fi= if b then f(E) else f(F) fi

Note '=' is equality here, not an arbitrary equivalence relation

Why does it fail if it's E and F are programs?