
McMaster University Final Exam
Department of Computing and Software

Musa Al-hassy

COMP SCI 3EA3
Day Class

COMP SCI 3EA3 — Software Specification and Correctness
April 25, 2017

Duration of Examination: 2.5 hours

Name Student Number

This examination paper includes 18 pages (including this cover sheet); it consists of 7 questions (on the first 14
pages), plus a Theorem List (on pages 15–18). You are responsible for ensuring that your copy of the paper is
complete. Bring any discrepancy to the attention of your invigilator.

Special Instructions:

• Make sure your name and student number are on all sheets.

• Do not separate the first 14 pages.

You are allowed to separate the Theorem List pages 15–18.

• This is a closed book examination. No books, notes, texts, calculator or academic aids of any kind are
permitted.

• Answer the questions in the space provided.

• Read each question completely and carefully before answering it.

• Answer all questions.

• You are always allowed to introduce auxiliary definitions and prove auxiliary theorems.

• In doubt, document!

• The marks add up to 100; the bonus question 7 is worth another three marks.

Contents

1 Substitute It! — 15 marks — 2

2 The Other Half Of The Quadrivium — 10 marks — 4

3 An Algorithm of the Old Sages — 15 marks — 5

4 Assign Me To The Moon — 15 marks — 7

5 Quantify! Justify! Edify! — 30 marks — 9

6 Knowing The Source Code — 15 marks — 12

7 (Bonus) Why Are We Here? — 3 marks — 14

The following laws may be particularly useful in this examination,

“Abbreviation” a ≤ x < b ≡ a ≤ x ∧ x < b

“Linear Order Negation” x < b ≡ ¬(b ≤ x)
“Interval Split” a ≤ x < c ≡ a ≤ x < b ∨ b ≤ x < c provided a ≤ b ≤ c

“if-fi Context” if x = y then T x else F y fi = if x = y then T y else F y fi
“if-fi Idempotency” if b then s else s fi = s

Page 1 of 18

https://en.wikipedia.org/wiki/Quadrivium

Computer Science 3EA3 Final Exam 1 SUBSTITUTE IT! — 15 MARKS —

Name: Student Number: .

1 Substitute It! — 15 marks —

Give the grammar for terms in the Backus-Naur Form presented in this class, then give the definition of
substitution on terms, [∶=] ∶ Term → Variable → Term → Term, by pattern matching on the first term.
Afterwards prove t[x ∶= x] = t .

Page 2 of 18

https://en.wikipedia.org/wiki/Backus%E2%80%93Naur_form

Computer Science 3EA3 Final Exam 1 SUBSTITUTE IT! — 15 MARKS —

Name: Student Number: .

.

Page 3 of 18

Computer Science 3EA3 Final Exam 2 THE OTHER HALF OF THE QUADRIVIUM — 10 MARKS —

Name: Student Number: .

2 The Other Half Of The Quadrivium — 10 marks —

1. Prove that any symmetric, associative, and idempotent operator ‘⊕’ is necessarily self-distributive:

x ⊕ (y ⊕ z) = (x ⊕ y) ⊕ (x ⊕ z)
Be explicit about any properties of ‘⊕’ in your calculational proof. .

2. Prove that provided x does not occur in P and R is non-empty, we have

“Superfluous Quantification for Idempotent ⊕”: (⊕x R ● P) = P

As usual, a quantification operation is necessarily associative and symmetric; moreover in this context
it is assumed to have an identity and to be idempotent.

Page 4 of 18

HTTPS://EN.WIKIPEDIA.ORG/WIKI/QUADRIVIUM
https://en.wikipedia.org/wiki/Quadrivium

Computer Science 3EA3 Final Exam 3 AN ALGORITHM OF THE OLD SAGES — 15 MARKS —

Name: Student Number: .

3 An Algorithm of the Old Sages — 15 marks —

Produce an algorithm —necessarily with proof— that satisfies the following informal specification:

“Assign present to be true iff a given element E is in the ordered (monotone) array f [0..N −1].”

Page 5 of 18

Computer Science 3EA3 Final Exam 3 AN ALGORITHM OF THE OLD SAGES — 15 MARKS —

Name: Student Number: .

(Additional space for the previous problem)

Page 6 of 18

Computer Science 3EA3 Final Exam 4 ASSIGN ME TO THE MOON — 15 MARKS —

Name: Student Number: .

4 Assign Me To The Moon — 15 marks —

Using the heuristic of “programming is a goal-orented activity”, step-by-step construct an algorithm to
quantify over an array. Formally, solve:

{ 0 ≤ N } ? { result = (⊕ i 0 ≤ i < N ● f i) }

Page 7 of 18

Computer Science 3EA3 Final Exam 4 ASSIGN ME TO THE MOON — 15 MARKS —

Name: Student Number: .

.

Page 8 of 18

Computer Science 3EA3 Final Exam 5 QUANTIFY! JUSTIFY! EDIFY! — 30 MARKS —

Name: Student Number: .

5 Quantify! Justify! Edify! — 30 marks —

The “maximum segment sum” is specified by computing, for integer array A,

↑ p, q 0 ≤ p ≤ q ≤ lengthA ● (Σ x p ≤ x < q ● Ax)
By the quantifier nesting law, we could formalise this in ACSL as

\max(0, len, \lambda integer p;

\max(p, len, \lambda integer q;

\sum(p, q-1, \lambda integer x; A[x])))

An alternative is to name the important quantifications and give explicit definitions for them —we can
always do this since a quantification over an interval is just a recursively defined notation! For n ∶ N,

max2Dn = (↑ p, q 0 ≤ p ≤ q ≤ n ● S p q)
S p q = (Σ x p ≤ x < q ● Ax)
max1Dn = (↑ p 0 ≤ p ≤ n ● S p n)

Now it suffices to compute max2Dn where n = lengthA. As such, let us find a recursive definition of
max2D.

Taking n = 0 and simplifying we find max2D0 = 0, then using split-off term we obtain that max2D (n+1) =
max2Dn ↑ max1D (n + 1). Consequently, it seems we need to find a recursive definition of max1D. The
case n = 0 again simplifies to 0, whereas the inductive case is more involved.

— 15 marks — For 0 ≤ n, prove max1D (n + 1) = (max1Dn + An) ↑ 0

Page 9 of 18

https://frama-c.com/acsl.html

Computer Science 3EA3 Final Exam 5 QUANTIFY! JUSTIFY! EDIFY! — 30 MARKS —

Name: Student Number: .

(Additional space for previous proof)

Page 10 of 18

Computer Science 3EA3 Final Exam 5 QUANTIFY! JUSTIFY! EDIFY! — 30 MARKS —

Name: Student Number: .

— 3 marks — Use the previous discussion to fill in the following axiomatisation—the last one is done for you.

#define max(a,b) ((a) > (b) ? (a) : (b))

/*@ axiomatic MyMaxOps {

@ logic integer max1D(int* A, integer len) ;

@ logic integer max2D(int* A, integer len) ;

@

@ axiom base1: \forall int* A ;

@ max1D(A, 0) == ; // Here

@ axiom splitOff1 : \forall int* A; \forall integer n ;

@ max1D(A, n + 1) == ; // Here

@

@ axiom base2 : \forall int* A ;

@ max2D(A, 0) == ; // Here

@ axiom splitOff2 : \forall int* A; \forall integer n ;

@ max2D(A , n + 1) == max(max2D(A, n) , max1D(A, n + 1)) ; // Done

@ }

@*/

— 12 marks — Provide appropriate specifications for the the following maximum segment sum program:

/*@ requires ; // Here

@ requires ; // Here

@ assigns ; // Here

@ ensures ; // Here

*/

int kaldewaij(int* A, int len)

{

int n , r , s; n = r = s = 0;

/*@ loop invariant ; // Here

@ loop invariant r == ; // Here

@ loop invariant s == ; // Here

@ loop assigns ; // Here

@ loop variant ; // Here

*/

while(n != len)

{

s = max(s + A[n] , 0) ;

r = max(r, s) ;

n = n + 1 ;

}

return r;
}

Page 11 of 18

https://en.wikipedia.org/wiki/Maximum_subarray_problem#Kadane.27s_algorithm

Computer Science 3EA3 Final Exam 6 KNOWING THE SOURCE CODE — 15 MARKS —

Name: Student Number: .

6 Knowing The Source Code — 15 marks —

One ought to be comfortable using a variety of notational languages —e.g., different programming languages!

As an analogue to the integral ∫ b

a
f (x)dx of a traditional first-year education in continuous mathematics,

let us introduce the “sum” operation as a discrete counterpart,

b∑
a

f (x) δx = (+x ∶ Z a ≤ x < b ● f x)
A host of familar laws from the continous setting also hold in the discrete setting. In-particular,

prove “Additivity”: For a ≤ b ≤ c,

b∑
a

f (x) δx + c∑
b

f (x) δx =
c∑
a

f (x) δx

Page 12 of 18

https://www.amazon.ca/Concrete-Mathematics-Foundation-Computer-Science/dp/0201558025

Computer Science 3EA3 Final Exam 6 KNOWING THE SOURCE CODE — 15 MARKS —

Name: Student Number: .

Recalling the definition,
b∑
a

f (x) δx = (+x ∶ Z a ≤ x < b ● f x)
Also, prove “Fubini’s Theorem”: For a ≤ b and c ≤ d ,

b∑
a

(d∑
c

f (x , y) δx)δ y =
d∑
c

(b∑
a

f (x , y) δy)δ x

Page 13 of 18

Name: Student Number: .

7 (Bonus) Why Are We Here? — 3 marks —

Define the term correct-by-construction programming.

Have A Great Summer!

Page 14 of 18End of Exam

McMaster University Final Exam
Department of Computing and Software

Musa Al-hassy

COMP SCI 3EA3
“Program Construction”

Theorem List

COMP SCI 3EA3 — Software Specification and Correctness
April 18, 2017

Duration of Examination: 2.5 hours

Environments

Our common environments will be the following distributive lattices
• Booleans: (B,⇒,∧,∨, false, true) —Our ambient logic!

• Extended Number Line: (R,≤, ↓ , ↑ ,−∞,+∞)

• Naturals under division: (N, ∣ , gcd , lcm ,1,0)

• Substructures of a given datatype with the substructure ordering.
E.g., sets, lists, and graphs with subset, subsequence, and subgraph ordering.

Simultaneous Textual Substitution

Identity Substitution: t[x ∶= x] = t

Superfluous Substitution: t[x ∶= E] = t provided ¬occurs(‘x ’, ‘t ’)

Re-Substitution: t[x ∶= E][x ∶= F] = t[x ∶= E[x ∶= F]]

Iterated Substitution:

t[x ∶= E][y ∶= F] = t[x ∶= E[y ∶= F]] provided ¬occurs(‘y ’, ‘t ’)
t[x ∶= E][y ∶= F] = (t[x ∶= E[y ∶= F]])[y ∶= F] provided ¬occurs(‘y ’, ‘F ’)
t[x ∶= E][y ∶= F] = t[x , y ∶= E[y ∶= F],F] provided ¬occurs(‘y ’, ‘F ’)

Axiom, Function Patching Definition: f [x ↦ E](y) = if x = y then E else f (y) fi

Propositonal Calculus

Metatheorem: Any two theorems are equivalent; ‘true’ is a theorem.

Equivales is an equivalence relation that is associative —((p ≡ q) ≡ r) ≡ (p ≡ (q ≡ r))—
and has identity true.

Discrepancy ‘/≡’ is symmetric, associtive, has identity ‘false’, mututally associates with

equivales —((p /≡ q) ≡ r) ≡ (p /≡ (q ≡ r))— and muturally interchanges with it as well
—p /≡ q ≡ r ≡ p ≡ q /≡ r—.

Implication has the alternative definition p⇒ q ≡ ¬p ∨ q , has ‘true’ as left identity and
‘false’ as right zero, distributes over ≡ in the second argument, and is self-distributive; and
has the properties

Shunting:
p ∧ q⇒ r ≡ p⇒(q⇒ r)

Contrapositive:
p⇒ q ≡ ¬q⇒¬p

Modus Ponens:
p ∧(p⇒ q) ≡ p ∧ q
p ∧(q⇒p) ≡ p
p ∧(p⇒ q) ⇒ q

Moreover it has the property “(3.62)”: p⇒(q ≡ r) ≡ p ∧ q ≡ p ∧ r .

Conjunction and disjunction distributes over one another, ∨ distributes over ≡, ∧ distributes

over ≡-≡ in that p ∧(q ≡ r ≡ s) ≡ p ∧ q ≡ p ∧ r ≡ p ∧ s, and they satisfy,

Excluded Middle:
p ∨¬p

Contradiction:
p ∧¬p ≡ false

Absorption:
p ∧(¬p ∨ q) ≡ p ∧ q
p ∨(¬p ∧ q) ≡ p ∨ q

De Morgan:
¬(p ∧ q) ≡ ¬p ∨¬q
¬(p ∨ q) ≡ ¬p ∧¬q

With quantifier properties,

Generalised De Morgan: ¬(∀ x R ● P) ≡ (∃ x R ● ¬P)

Trading: (∀ x Q ∧R ● P) ≡ (∀ x Q ● R⇒P)
(∃ x Q ∧R ● P) ≡ (∃ x Q ● R ∧P)

Metatheorem: P is a theorem iff (∀ x ● P) is a theorem.

Metatheorem Witness: If ¬occurs(‘x ’, ‘Q ’), then:

(∃ x R ● P)⇒Q is a theorem iff R ∧P ⇒ Q is a theorem.

Finally, we have a few substitution laws:

(7.27) Axiom, Context: e = f ∧ E[z ∶= e] ≡ e = f ∧ E[z ∶= f]

(7.27a) Context: e = f ⇒ E[z ∶= e] ≡ e = f ⇒ E[z ∶= f]

(7.28) Leibniz: e = f ≡ e = f ∧ (E[z ∶= e] = E[z ∶= f])

Setoids

Axiom, Reflexivity of ≈: a ≈ a

Axiom, Symmetry of ≈: a ≈ b ≡ b ≈ a

Axiom, Transitivity of ≈: a ≈ b ∧ b ≈ c ⇒ a ≈ c

Axiom, Leibniz: a = b ⇒ a ≈ b
a = b ⇒ f a = f b

Context/Replacement: a ≈ b ∧ c ≈ a ≡ a ≈ b ∧ c ≈ b

Posets

Axiom, Reflexivity of ⊑: a ⊑ a

Reflexivity of ⊑ wrt Equality: a = b ⇒ a ⊑ b

Axiom, Transitivity of ⊑: a ⊑ b ∧ b ⊑ c ⇒ a ⊑ c

Transitivity / Inclusion Absorbs Equality: a = b ∧ b ⊑ c ⇒ a ⊑ c
a ⊑ b ∧ b = c ⇒ a ⊑ c

Axiom, Antisymmetry of ⊑: a ⊑ b ∧ b ⊑ a ⇒ a = b

Antisymmetry / Mutual Implication: a ⊑ b ∧ b ⊑ a ≡ a = b

Axiom, Dual Order: b ⊒ a ≡ a ⊑ b

Axiom, Top Element: a ⊑ ⊺

Axiom, Bottom Element: � ⊑ a

The following have the provisio “R[z ∶= a] ∧ R[z ∶= b]” —most often “R ≡ true”. (§8.2)

Indirect Equality, from below: a = b ≡ (∀z R ● z ⊑ a ≡ z ⊑ b)
Indirect Equality, from above: a = b ≡ (∀z R ● a ⊑ z ≡ b ⊑ z)
Indirect Inclusion, from below: a ⊑ b ≡ (∀z R ● z ⊑ a ⇒ z ⊑ b)
Indirect Inclusion, from above: a ⊑ b ≡ (∀z R ● a ⊑ z ⇐ b ⊑ z)

In a lattice, these rules can be combined with ‘induced definition of inclusion’ and ‘golden
rule’ to obtain other various forms of indirect (in)equality.

Heuristic : pick property R that ‘a’ and ‘b’ satisfy so that you can use the “Translation”
rule below to bring more content about z into the body of the quantification to make it
more amiable to calculation.

P
age 15 of 18

Lattices

Let ◻ be one of ⊓ or ⊔.

Axiom, ⊔-Characterisation: a ⊑ c ∧ a ⊑ c ≡ a ⊔ b ⊑ c (8.1)

Axiom, ⊓-Characterisation: c ⊑ a ∧ c ⊑ b ≡ c ⊑ a ⊓ b (8.6)

Symmetry of ◻:
a ◻ b ≡ b ◻ a

Associativity of ◻:
(a ◻ b) ◻ c = a ◻ (b ◻ c)

Idempotency of ◻:
a ◻ a = a

Zero of ◻:
a ⊔ ⊺ = ⊺
a ⊓ � = �

Identity of ◻:
a ⊔ � = a
a ⊓ ⊺ = a

Self-Distributivity of ◻: a ◻ (b ◻ c) = (a ◻ b) ◻ (a ◻ c)

Monotonicity of ◻: a ⊑ b ∧ c ⊑ d ⇒ a ◻ c ⊑ b ◻ d

Weakening/strengthening: a ⊑ a ⊔ b
a ⊓ b ⊑ a
a ⊓ b ⊑ a ⊔ b
a ⊔ (b ⊓ c) ⊑ a ⊔ b
a ⊓ b ⊑ a ⊓ (b ⊔ c)

(7.20)

Absorption: a ⊓ (a ⊔ b) = a
a ⊔ (a ⊓ b) = a

(7.11)

Induced Definition of Inclusion: a ⊑ b ≡ a ⊔ b = b (7.16)
a ⊑ b ≡ a ⊓ b = a (7.17)

Golden Rule: a ⊓ b = a ≡ b = a ⊔ b
a ⊓ b = a ⊔ b ≡ a = b
a ⊔ b ⊑ a ⊓ b ≡ a = b

(7.9)

Duality Principle:
If a statement S is a theorem, then so is S [(⊑,⊓,⊔,⊺,�) ∶= (⊒,⊔,⊓,�,⊺)]
Quantification

Assume ⊕ is associative and symmetric; if it has an identity we denote it by e, and if it has
a zero we denote it by z. Note, “R non-empty ≡ (∃x ● R)”.

Laws apply only when each appearing quantification is defined.
(Quantifications over ∧ or ∨ are always defined; whereas over ‘+’ may not be.)

(11.-1) Axiom, Abbreviations: In the second case, ‘x ’ must be a single identifer.

(⊕x ● P) = (⊕x true ● P)
(⊕x R) = (⊕x R ● x)

(11.0) Axiom, Substitution: Provided ¬occurs(‘y ’, ‘x ,F ’),

(⊕ y R ● P)[x ∶= F] = (⊕ y R[x ∶= F] ● P[x ∶= F])

(11.44) Axiom, Dummy renaming/α-conversion: If ¬occurs(‘y ’, ‘R,P ’),

(⊕ x R ● P) = (⊕ y R[x ∶= y] ● P[x ∶= y])

(11.45) Axiom, Nesting: Provided ¬occurs(‘y ’, ‘R’),

(⊕ x , y R ∧S ● P) = (⊕ x R ● (⊕ y S ● P))

(11.46) Axiom, Dummy List Permutation:

(⊕ x , y R ● P) = (⊕ y , x R ● P)

(11.47) Axiom, Empty Range: (⊕ x false ● P) = e

(11.47a)Axiom, Unit Body: (⊕ x R ● e) = e

(11.47b)Axiom, Zero Body: (⊕ x R ● z) = z for non-empty R

(11.48) Axiom, One-point Rule: Provided ¬occurs(‘x ’, ‘E ’),

(⊕x x = E ● P) = P[x ∶= E]

(11.49) Axiom, Range Split:

(⊕ x R ∨S ● P) ⊕ (⊕ x R ∧S ● P) = (⊕ x R ● P) ⊕ (⊕ x S ● P)

(11.49v) Range Split: Provided R ∧S = false,

(⊕ x R ∨S ● P) = (⊕ x R ● P) ⊕ (⊕ x S ● P)

(11.50) Range Split for idempotent ⊕:

(⊕ x R ∨S ● P) = (⊕ x R ● P) ⊕ (⊕ x S ● P)

(11.51) Axiom, Range Split for idempotent ⊕: Provided ¬occurs(‘x ’, ‘R’),

(⊕x (∃i R ● S) ● P) = (⊕i R ● (⊕x S ● P))

(11.53) Axiom, Trading:
(⊕ x R ∧S ● P) = (⊕ x S ● if R then P else e fi)

(11.54) Axiom, (Quantification) Distributivity/Rearranging:

(⊕ x R ● P ⊕Q) = (⊕ x R ● P) ⊕ (⊕ x R ● Q)

(Thm) Interchange of dummies: if ¬occurs(‘y ’, ‘R’) and ¬occurs(‘x ’, ‘S ’),

(⊕ x R ● (⊕ y S ● P)) = (⊕ y S ● (⊕ x R ● P))

(11.55) Axiom, Distributivity of ⊗ over ⊕:
P ⊗ (⊕ x R ● Q) = (⊕ x R ● P ⊗Q)
Provided ¬occurs(‘x ’, ‘P ’), R is non-empty, and ⊗ distributes over ⊕.

Our usual lattices are distributive and addition and positive multiplication distribute over
↑ , ↓ . Idempotents are self-distributive.
Non-emptiness proviso not required if unit ⊕ = zero ⊗, such as +/× and ⊔/⊓.

(11.57) Translation/Change of dummy:

(⊕ y ∶ Y R ● P) = (⊕ x ∶ X R[y ∶= f x] ● P[y ∶= f x])

Provided f ∶ X → Y has an inverse and ¬occurs(‘y ’, ‘x ,R,P ’)

(11.57) Translation/Change of dummy for idempotent ⊕:

(⊕ y ∶ Y R ● P) = (⊕ x ∶ X R[y ∶= f x] ● P[y ∶= f x])

Provided f ∶ X → Y is surjective and ¬occurs(‘y ’, ‘x ,R,P ’)

Heuristic : pick f so that R[y ∶= f x] is always true, thereby simplifying the quantification,
and giving more content to the body ‘P ’ thereby making it more friendly to calculation.

(Thm) Theorem Split off term: For m,n ∶ Z and dummies i ∶ Z, provided m < n + 1:

(⊕ i m ≤ i < n + 1 ● P) = (⊕ i m ≤ i < n ● P) ⊕ P[i ∶= n]
(⊕ i m ≤ i < n + 1 ● P) = P[i ∶=m] ⊕ (⊕ i m < i < n + 1 ● P)

Lattice Quantification

Axiom, (Body) Monotonicity of ⊕: Body weakening/strengthening
(∀ x R ● Q ⊑ P) ⇒ (⊕ x R ● Q) ⊑ (⊕ x R ● P)

Provided ⊕ preserves order: a ⊑ b ∧ c ⊑ d ⇒ a ⊕ c ⊑ b ⊕ d

Axiom, Generalised ◻-Characterisation:

Q ⊑ (⊓ x R ● P) ≡ (∀x R ● Q ⊑ P)
(⊔ x R ● P) ⊑ Q ≡ (∀x R ● P ⊑ Q)

⊓-Elimination/Instantiation: R[x ∶= E] ⇒ (⊓ x R ● P) ⊑ P[x ∶= E]

P
age 16 of 18

⊔-Introduction/Witness: R[x ∶= E] ⇒ P[x ∶= E] ⊑ (⊔ x R ● P)

Induced ◻-Definition:

m = (⊓ x R ● P) ≡ (∀x R ● m ⊑ P) ∧ (∀l (∀x R ● l ⊑ P) ● l ⊑m)
j = (⊔ x R ● P) ≡ (∀x R ● P ⊑ j) ∧ (∀u (∀x R ● P ⊑ u) ● j ⊑ u)

Meet is greatest lower bound: (⊓x R ● P) = (⊔ l (∀x R ● l ⊑ P))

Join is least upper bound: (⊔x R ● P) = (⊓u (∀x R ● P ⊑ u))

Range-Antitonicity of ⊓: (∀ x ● Q⇒R) ⇒ (⊓ x R ● P) ⊑ (⊓ x Q ● P)

Range-Monotonicity of ⊔: (∀ x ● Q⇒R) ⇒ (⊔ x Q ● P) ⊑ (⊔ x R ● P)

Interchange of quantifications:

(⊔ x R ● (⊓ y Q ● P)) ⊑ (⊓ y Q ● (⊔ x R ● P))

Provided ¬occurs(‘y ’, ‘R’)∧¬occurs(‘x ’, ‘Q ’); and ⊔ distributes over ⊓.

Definition, Order Morphisms: For expressions R and P , with free variable i ,

P monotone on R ∶ ∀x , y R[i ∶= x] ∧ R[i ∶= y] ● x ≤ y ⇒ P[i ∶= x] ⊑ P[i ∶= y]
P antitone on R ∶ ∀x , y R[i ∶= x] ∧ R[i ∶= y] ● x ≤ y ⇒ P[i ∶= y] ⊑ P[i ∶= x]

One-Point Rule For Monotone Body: If P monotone on R and R[i ∶= l] ∧ R[i ∶= u],

(⊓i R ∧ l ≤ i ● P) = P[i ∶= l]
(⊔i R ∧ i ≤ u ● P) = P[i ∶= u]

One-Point Rule For Antitone Body: If P antitone on R and R[i ∶= l] ∧ R[i ∶= u],

(⊓i R ∧ i ≤ u ● P) = P[i ∶= u]
(⊔i R ∧ l ≤ i ● P) = P[i ∶= l]

Induced ◻-Definition for Numbers: Provided R non-empty and finite,

f m = (↓ x R ● f x) ≡ R[x ∶=m] ∧ (∀x R ● f m ≤ f x)
f m = (↑ x R ● f x) ≡ R[x ∶=m] ∧ (∀x R ● f x ≤ f m)

Local Characterisation of Integer Extrema:
Provided R non-empty and finite, and ¬R monotonic,

l = (↑ i ∶ Z R) = R[i ∶= l] ∧ ¬R[i ∶= l + 1]
s = (↓ i ∶ Z R) = R[i ∶= s] ∧ ¬R[i ∶= s − 1]

Hoare Triple Definitions

{Q} S {R}: execution of S begun in any state satisfying predicate Q would terminate in
a state satisfying predicate R. The set of all such states Q is denoted wp S R. Page 110

Axiom, Hoare Triple Definition: {Q} S {R} ≡ Q ⇒ wp S R

Heuristic : When attempting to prove {Q} S1;S2;⋯;Sn {R} we “push” R left-wards
using rule {wp S R} S {R} to obtain {Q} S1;⋯;Sn−1; {wp Sn R} Sn {R}. We use the
required goal R to guide us in calculating/proving our program correct.

Axiom, Law of The Excluded Miracle: wp S false = false

Axiom, Distributivity of Conjunction: wp S (P ∧R) ≡ wp S P ∧ wp S R

Monotoncity in the second argument: (P⇒R) ⇒ (wp S P ⇒ wp S R)

Precondition Strengthening: G⇒G ′ ⇒ {G ′} S {R} ⇒ {G} S {R}

Postcondition Weakening: R⇒R′ ⇒ {G} S {R} ⇒ {G} S {R′}

Semidistributivity of Disjunction: wp S P ∨ wp S R ⇒ wp S (P ∨R)

Axiom, Program Equality: S ≈ T ≡ (∀R ● wp S R ≡ wp T R)
Theorem: All program constructions preserve this equivalence.

Skip and Sequence

Axiom, Skip Rule: wp “skip” R = R §10.2

Axiom/Theorem, Sequence Rule: §10.1

wp“S ;T” R = wp S (wp T R)
{Q} S ;T {R} ⇐ {Q} S {P} ∧ {P} T {R}

Sequencing is Associative: (S ;T);U ≈ S ; (T ;U)

Identity of sequence: skip;S ≈ S ; skip ≈ S

Assignment

Axiom, Assignment Rule: wp “x ∶= E” R = R[x ∶= E] ∧ E well-defined §9.7

Superfluous Variable: x ∶= E ; S ≈ S provided ¬occurs(‘x ’, ‘S ’)
“Execution of x ∶= E may change only x , and no other variable.”

Simultaneous and Sequential Assignment Interchange:
x , y ∶= E ,F ≈ x ∶= E ; y ∶= F ≈ y ∶= F ; x ∶= E

provided ¬occurs(‘x ’, ‘F ’) ∧ ¬occurs(‘y ’, ‘E ’)

Identity Assignment: x ∶= x ≈ skip
x , y ∶= E , y ≈ x ∶= E provided ¬occurs(‘x ’, ‘y ’)

Conditional and Iterative Constructs

We use quantification notation for guarded
commands, for example the alternative-
command on the right. This notation is
suggestive of certain derived properties: the
order of the guarded commands does not
matter —‘ is symmetric’—, and identical
guarded commands can be replaced with one
instance —‘ is idempotent’— without actu-
ally giving a theory of ‘ ’ as an operator of
the language. These properties follow from
the definition of if .. fi in terms of quanti-
fiers ∃ and ∀, which are themselves idempo-
tent and symmetric.

.

if i 0 ≤ i < N ● Bi → Si fi
=

if
B0 → S0

B1 → S1

⋮
BN−1 → SN−1

fi

Axiom/Theorem, Conditional Rule: §10.4

wp “if i ● Bi → Si fi” R ≡ (∃i ● Bi) ∧ (∀i ● {Bi} Si {R})
∧ each Bi is defined

{Q} if i ● Bi → Si fi {R} ≡ (Q⇒ (∃i ● Bi)) ∧ (∀i ● {Q ∧Bi} Si {R})
∧ each Bi is defined

Heuristic “Case Analysis”: To solve “Given G, establish R”, if we find Bi with
G ⇒ B1 ∨⋯∨Bn then the solution is: if i ● Bi → “Given G ∧ Bi, establish R” fi.

Axiom, Iteration Definition: §13.1

do i ● Bi → Si od
≈ if

i ● Bi → Si ; do i ● Bi → Si od
else → skip

fi where else = ¬ (∃i ● Bi)

Axiom, Iteration Rule: wp “do i ● Bi → Si od” R = (∃i ∶ N ● f i+1(false))
where f (X) = (∀i ● {Bi} Si {X }) ∧ (else⇒R) Sheet 6

P
age 17 of 18

http://www.cas.mcmaster.ca/~alhassm/Sheet6.pdf

Program Construction

Heuristic “Programming is a goal-oriented activity”:

1. Formalise ‘G ivens’ and ‘Requireds’ of the problem.

2. Obtain an invariant P and initalise the variables to make it true.

3. Bridge from invariant to post-condition: solve for B in P ∧¬B⇒R

4. If ¬B holds then we’re done, otherwise we construct a loop to obtain it.

5. Solve for a “bound function” bf in P ∧B⇒ bf > 0.

6. Make progress towards termination: find a program S that decreases the bound.

7. Refine program S so that it maintains the invariant!

{G}
intialisation
{invariant P ; bound bf }
;do B → {P ∧B ∧ bf = C} S {P ∧ bf < C} od
{R}

Heuristic “Variable Introduction”: Only introduce variables based on some reason
or derivation and define them by an invariant —not on a hunch, or by magic! Perhaps at
the end of a derivation, introduce a variable to replace a reoccurring expression thereby
improving clarity. See the heuristic of “Conflict Resolution”.

Heuristic “Deleting A Conjunct”: When postcondition R is of the form P ∧B , and P
is “easily” truthified —by, say, x ∶= I under precondition G— while B is not, then one may
try to use P as invariant and the other as negation of the guard of a repetition, leading to

{G} x ∶= I ;do ¬B → ? od {R}
For example, to calculate q , r = AdivB ,AmodB , we obtain algorithm:

{A ≥ 0 ∧ B > 0} q , r ∶= 0,A; do r ≥ B → q , r ∶= q + 1, r −B od {A = q ∗B + r ∧ 0 ≤ r ∧ r < B}

Heuristic “Replacing Constants/Expressions by Variables”: It may be pos-
sible to “work up/down to” the postcondition R, by replacing a constant/expression
C with a variable c and placing bounds on it, —good candidates to try are the
named parameters occurring in both G and R— thereby obtaining (integer) template

{G} c ∶= ?;{Invariant R[C ∶= c]∧0 ≤ c ≤ C , bound C − c},do C ≠ c → ? od {R}
For example, to calculate the ‘⊕-sum/reduction’ of a sequence we obtain algorithm:
{N ≥ 0} n, s ∶= 0, e; do N ≠ n → n, s ∶= n + 1, s ⊕ f n od {s = (⊕i 0 ≤ i < N − 1 ● f i)}

A instance of this heuristic is sufficiently common to merit its own name:

Heuristic “Conflict Resolution”: When choosing an invariant, if parts of the required
goal can be easily truthified by different initalisations to a variable, then resolve such con-
flicts by introducing new additional variables for each such part that are defined to satisfy
those parts. For example, to establish ‘R ∶ A x ∧ B x ’ when it is easy to show that
‘A a’ and ‘B (f a)’ are true, resolve this conflict of what ‘x ’ ought to be by introducing
a new variable y defined by the invariant P ∶ f x ≤ y ∧ A x ∧ B y ; thereby yielding

{0 ≤ a} x , y ∶= a, f a;{inv P , bound y − f x}do f x ≠ y → ? od {R}

Heuristic “Syntactic Similarity”: When it’s not at all clear where to begin, attempt
to massage the expressions G and R so that they are syntactically similar —after all, if
they coincide then skip solves the problem. For example, if G contains a quantification but
R does not, then introduce a quantification using the one-point rule then continue by using
“Conflict Resolution”.

Metatheorem Witness:
If ¬occurs(‘X’, ‘S ,R’), then:

{∃ X ● G} S {R} is a theorem
iff {G} S {R} is a theorem

Linear Search:
Provided b ∶ Z→ B

{∃X ∶ Z ● 0 ≤ X ∧ b X}
x ∶= 0; do ¬b x → x ∶= x + 1 od
{ x = (↓ i ∶ Z 0 ≤ i ∧ b i) }

(Dual) Linear Search:
Provided b ∶ Z→ B and N ∶ Z

{∃X ∶ Z ● X ≤ N ∧ b X}
x ∶= N ; do ¬b x → x ∶= x − 1 od
{ x = (↑ i ∶ Z i ≤ N ∧ b i) }

Theorem Weakening:
{G} S {∃ X ● R}

⇐ {G} S {R}

Bounded Linear Search:
Provided b ∶ 0..N − 1→ B

{0 ≤ N }
x , y ∶= 0,N
;do x ≠ y →

if ¬b x → x ∶= x + 1
b x → y ∶= x

fi
od
{ x = (↑ i ∶ 0..N (∀j ∶ 0..i − 1 ● ¬b j)) }

(§4.1) Heuristic “Binary Search”: Whenever a given informal specification requests
assigning to an integer variable such that it and its neighbour —‘x + 1’ or ‘x − 1’— satisfy
some proposition, then tackle the problem by finding a suitable relation Z and using Bi-
nary Search (below right). Notice that a < m < b is a precondition to the occurrence of m
in the loop body and, with this, one may postulate “ficitous/ghost elements” to remove the
precondition ‘a Z b’ for certain problems —in left below, the sequence b is never inspected
at −1,N and so their values are completely irrelevant to the (outcome of the) computation:
they are thought variables for reasoning only. Other problems may have the alternative’s
guards simplified further by the particular choice of Z occurring in the invariant —see the
left code snippet below! When using the results of an algorithm annotated with fictitious
elements, one must check that the result is valid —otherwise we may have “out of bounds
errors”.

Predicate Instance of Binary Search
Provided predicate b defined on 0..N −1,

{0 ≤ N ∧ b (−1) ∧ ¬ b N
b is fictitious on -1 and N }

x , y ∶= −1,N
;do x + 1 ≠ y →

m ∶= (x + y) ÷ 2
; if b m → x ∶=m

¬ b m → y ∶=m
fi

od
{−1 ≤ x < N ∧ b x ∧ ¬ b (x + 1)

b is fictitious on -1 and N }

(General) Binary Search

Provided Z is a co-transitive relation,
∀x , y ,m ∶ Z ● x Zm ∨ m Z y ⇐ x Z y ,

{a < b ∧ a Z b }
x , y ∶= a, b
;{ Invariant a ≤ x < y ≤ b ∧ x Z y , Bound y − x }
do x + 1 ≠ y →

m ∶= (x + y) ÷ 2
hi{x <m < y}

; if m Z y → x ∶=m
x Zm → y ∶=m

fi
od
{a ≤ x < b ∧ x Z (x + 1) }

Observe that the co-transitives are precisely the complements of retracts of transitives.

Absurdly fast searching! If ¬b is monotonic, then the left snippet ensures, in logarithmic
time, that x = (↑ i ∶ −1..N − 1 b i) and this is far superior to Linear Search!
Or is it . . .What if we’re designing an algorithm to compute log

7
N ?

E
nd of E

xam
P

age 18 of 18

http://www.iis.sinica.edu.tw/~scm/2010/a-survey-of-binary-search/
http://www.cas.mcmaster.ca/~alhassm/Quiz5.pdf
http://www.cas.mcmaster.ca/~alhassm/Quiz6_sol.pdf

	Substitute It! — 15 marks —
	The Other Half Of The Quadrivium — 10 marks —
	An Algorithm of the Old Sages — 15 marks —
	Assign Me To The Moon — 15 marks —
	Quantify! Justify! Edify! — 30 marks —
	Knowing The Source Code — 15 marks —
	(Bonus) Why Are We Here? — 3 marks —

